WO2016104522A1 - ナノ粒子の製造方法及び製造装置ならびにそれによって製造したナノ粒子 - Google Patents

ナノ粒子の製造方法及び製造装置ならびにそれによって製造したナノ粒子 Download PDF

Info

Publication number
WO2016104522A1
WO2016104522A1 PCT/JP2015/085864 JP2015085864W WO2016104522A1 WO 2016104522 A1 WO2016104522 A1 WO 2016104522A1 JP 2015085864 W JP2015085864 W JP 2015085864W WO 2016104522 A1 WO2016104522 A1 WO 2016104522A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
reaction
metal nanoparticles
reaction tube
nanoparticles
Prior art date
Application number
PCT/JP2015/085864
Other languages
English (en)
French (fr)
Inventor
渡辺 健一
秀和 甲田
山下 史郎
秀樹 国上
溥 国上
Original Assignee
株式会社新光化学工業所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新光化学工業所 filed Critical 株式会社新光化学工業所
Priority to JP2016566400A priority Critical patent/JP6393344B2/ja
Publication of WO2016104522A1 publication Critical patent/WO2016104522A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties

Definitions

  • the present invention relates to a method and apparatus for producing nanoparticles and nanoparticles produced thereby. More specifically, the raw material solution containing the nanoparticle component is circulated in the reaction tube as a reaction solution together with the solution containing the reducing agent, and at least a part of the reaction tube is irradiated with microwaves, In introducing the gas such as an inert gas or hydrogen into at least a part of the raw material solution in the reaction tube to guide the temperature to the set temperature in a short time and proceed the reduction reaction of the raw material solution, the reaction tube
  • the present invention relates to a method and a production apparatus for producing a target nanoparticle by suppressing precipitation and adhesion of a precipitate on the tube wall of the tube and a nanoparticle produced thereby.
  • a reaction solution in which a solution containing a metal salt as a raw material for metal nanoparticles is mixed with a solution containing a reducing agent for the metal salt is circulated in a reaction tube, and microparticles are added to at least a part of the reaction tube.
  • An example is an attempt to continuously produce metal nanoparticles by irradiating waves and heating the reaction solution in the reaction tube to a predetermined temperature suitable for the reduction reaction, thereby reducing the metal salt. is there.
  • a reaction solution containing silver nitrate as a metal salt and its reducing agent is circulated in a reaction tube made of glass or resin, and the reaction solution is irradiated with microwaves and heated, and the temperature of the reaction solution is suitable for the reduction reaction. It has been proposed to obtain a silver nanoparticle by increasing the temperature to a lower temperature and causing a reduction reaction of silver nitrate. However, if the reduction of the silver nitrate is continued, silver is deposited and attached to the inner wall of the reaction tube in a relatively short time. Since the silver adhering to the inner wall reflects the microwave, the microwave is not absorbed by the reaction solution, and the temperature of the reaction solution is rapidly lowered.
  • Patent Document 1 when reducing a capric acid noble metal salt or the like with a monohydric alcohol having 4 to 8 carbon atoms, which is a reducing solvent, the reaction solution is heated by applying microwaves in a commercially available microwave oven or the like, and silver Manufacturing noble metal nanoparticles such as gold and platinum.
  • Patent Document 2 discloses that when a fatty acid copper salt is reduced with a reducing solvent having a hydrocarbon group having 1 to 40 carbon atoms, microwaves are irradiated to heat the reaction liquid to produce copper nanoparticles. Is described. Patent Documents 1 and 2 do not have a description corresponding to a reaction tube in which the reaction liquid is introduced and circulates, and Patent Documents 1 and 2 are considered to disclose batch processing.
  • Patent Documents 3 and 4 a reaction liquid containing a metal salt, a dispersant, and a reducing agent is allowed to flow in a reaction tube passing through a microwave cavity, and the reaction liquid is heated by irradiating the reaction liquid with microwaves.
  • a reaction liquid containing a metal salt, a dispersant, and a reducing agent is allowed to flow in a reaction tube passing through a microwave cavity, and the reaction liquid is heated by irradiating the reaction liquid with microwaves.
  • continuous production of metal nanoparticles is described.
  • reaction solution can be irradiated with microwaves and expected to produce a uniform and fast rise in temperature of the reaction solution, and the reduction reaction can be effectively advanced. Has been. And it is described that the variation in the particle size of the produced nanoparticles can be expected, the reaction time can be shortened, the production cost can be reduced, and the like.
  • a metal layer, a reducing agent, and a dispersing agent are poured into a reaction tube, and the reduction reaction is promoted under heating by microwave irradiation to produce metal nanoparticles.
  • the level is serious.
  • the deposition layer generated on the wall surface of the reaction tube reflects the microwave.
  • Patent Document 5 describes a method for solving the problem.
  • Patent Document 5 discloses that a metal oxide or metal hydroxide dissolved in an organic solvent is reduced in a glass container to generate metal nanoparticles. Further, it is disclosed that when the temperature of the reaction solution is increased using microwaves and the reduction reaction is continued for a certain time, the metal fine particles adhere to the inner wall surface of the container. Further, it has been pointed out that the adhering matter is heated by absorbing microwaves, the container is locally heated, and the glass is broken.
  • Patent Document 5 a mixed solvent of an organic solvent that easily absorbs microwaves and an organic solvent that hardly absorbs microwaves is placed in a 1 L (1 liter) separable container, and metal oxide is added to the mixed solvent.
  • An organic modifier having an equimolar amount or less with respect to the product or metal hydroxide and metal element is added, a reducing agent is added to the resulting solution, and the resulting reaction solution is heated with microwaves to form metal nanoparticles.
  • Manufacturing is described.
  • One of the reasons for using a mixed solvent of an organic solvent that easily absorbs microwaves and an organic solvent that hardly absorbs microwaves is close to the wall of the container when the reaction liquid is irradiated from the outside of the container. By the way, a mitigation measure against microwave absorption is given.
  • Many types of metal salts, solvents that easily absorb microwaves, solvents that hardly absorb microwaves, and organic modifiers have been proposed.
  • Patent Document 5 a microwave transmitting material is used for a portion where the metal fine particles of the reaction vessel are not deposited and adhered, and a microwave shielding member is disposed on a portion of the reaction vessel where the metal fine particles are deposited and adhered. Is described.
  • a reaction liquid is circulated through a fluororesin tubular reaction tube partially passing through a microwave irradiation field, the reaction liquid is irradiated with microwaves, and metal nanoparticles are reduced.
  • the reaction liquid is irradiated with microwaves, and metal nanoparticles are reduced.
  • the reaction solution is circulated through a fluororesin reaction tube having an inner diameter of 2 mm, an outer diameter of 3 mm, and a length of a portion to be inserted into a cylindrical microwave cavity of 100 mm. Further, the reaction tube is irradiated with TM 010 mode microwaves having a frequency of 2.4 to 2.5 GHz to generate copper nanoparticles, silver nanoparticles, and the like. In such a case, it is obvious that the method disclosed in Patent Document 5 cannot be used.
  • a reaction liquid containing a metal nanoparticle and a metal nanoparticle dispersing agent synthesized with a metal salt and a reducing agent is flowed, and the reaction liquid is heated by irradiating microwaves with the metal.
  • the reaction liquid is heated by irradiating microwaves with the metal.
  • silver precipitates are formed on the inner wall of the reaction tube.
  • reflection of the microwave occurs thereby.
  • the microwave does not reach the reaction solution, and the temperature of the reaction solution, which has been the appropriate temperature for the reduction, is lowered to a temperature inappropriate for the reduction, and the unreacted metal salt is mixed in the product.
  • the yield of nanoparticles becomes low.
  • a reaction solution containing a silver salt dissolved solution, a silver nanoparticle dispersing agent, and a silver salt reducing agent is circulated in a reaction tube, and the reaction solution is irradiated with microwaves.
  • the temperature is raised to a suitable temperature for reduction and the reduction reaction is carried out, silver deposits begin to adhere to the inner wall of the reaction tube and various problems occur.
  • the microwave irradiated to the reaction tube from the outside of the reaction tube is reflected by the silver deposit attached to the inner wall of the reaction tube, so that the temperature of the reaction solution that has become the appropriate temperature for the reduction is made inappropriate for the reduction. It will decrease. Moreover, the unreacted solution is mixed in a predetermined amount or more, and the quality of the silver nanoparticles to be manufactured is deteriorated. A major obstacle occurs in the production of metal nanoparticles.
  • JP 2004-353038 A JP 2007-056321 A JP 2011-162837 A JP 2013-019025 A JP 2011-012290 A
  • the present invention has been made in view of the above circumstances, and one of the problems to be solved by the present invention is to irradiate microwaves to a reaction solution to be circulated in a reaction tube to promote a reduction reaction, thereby continuously forming nanoparticles. It is an object of the present invention to provide a continuous production method and production apparatus for metal nanoparticles, which can significantly reduce the deposition of deposits on the inner wall of a reaction tube.
  • One of the problems to be solved by the present invention is to provide nanoparticles and / or colloids containing nanoparticles produced by the above method.
  • One of the problems to be solved by the present invention is to alleviate obstacles in the flow of the reaction liquid due to deposits adhering to the inner wall of the reaction tube through which the reaction liquid flows.
  • One of the problems to be solved by the present invention is to provide nanoparticles having a low production cost including core-shell nanoparticles.
  • One of the problems to be solved by the present invention is to reduce unnecessary oxidation of nanoparticles that are easily oxidized.
  • One of the problems to be solved by the present invention is to provide an apparatus for producing metal nanoparticles that can be automated or semi-automated.
  • One of the problems to be solved by the present invention is to provide metal nanoparticles at low cost by using the above-described continuous production method or apparatus for metal nanoparticles.
  • One of the problems to be solved by the present invention is to introduce hydrogen or other gas into a reaction solution containing a raw material salt of nanoparticles in the microwave irradiation process to control the properties of the nanoparticles.
  • a first invention (hereinafter referred to as invention 1) as an embodiment of the present invention, which has been made to solve the problem, includes a first liquid containing a metal nanoparticle precursor in a reaction tube (that is, at least A reaction liquid which is a liquid obtained by mixing a first liquid containing a raw material salt of metal nanoparticles and a second liquid containing the reducing agent (that is, a second liquid containing the reducing agent of the raw material salt).
  • the reaction liquid is a mixed phase flow of gas and liquid. is there.
  • a second invention (hereinafter referred to as invention 2) as an embodiment of the present invention made to solve the problem is at least partially a microwave irradiation field (such as a cavity resonator or a waveguide).
  • a first liquid containing a metal nanoparticle precursor solution that is, a first liquid containing at least a raw material salt of metal nanoparticles
  • a second liquid containing the reducing agent that is, A step of circulating a reaction liquid which is a liquid obtained by mixing a second liquid containing a reducing agent of the raw material salt), Irradiating the reaction liquid with microwaves and heating the reaction liquid;
  • At least one of the first liquid, the second liquid, and the reaction liquid is circulated through at least a part of the reaction tube to control the reduction action of the metal nanoparticles and continuously synthesize the metal nanoparticles.
  • the first liquid and / or the second liquid and / or the reaction liquid In the method for continuously producing metal nanoparticles, the first liquid and / or the second liquid and
  • the third invention (hereinafter referred to as invention 3) as an embodiment of the present invention developed by developing the invention 1 or 2 is a mixture of the first liquid and the second liquid into a reaction liquid. 3.
  • the fourth invention (hereinafter referred to as invention 4) as an embodiment of the present invention developed by developing invention 3 is a type of gas in which gases inserted into the first liquid and the second liquid are different. It is a continuous manufacturing method of the metal nanoparticle of invention 3 which is.
  • a fifth invention (hereinafter referred to as invention 5) as an embodiment of the present invention developed by developing the inventions 1 to 4 is a reaction liquid obtained by mixing the first liquid and the second liquid. 5.
  • a sixth invention (hereinafter referred to as invention 6) as an embodiment of the present invention developed by developing inventions 3 to 5 is the inventions 3 to 5 in which the pressure or linear velocity of the gas to be inserted is controlled. It is the continuous manufacturing method of the metal nanoparticle in any one of.
  • a seventh invention (hereinafter referred to as invention 7) as an embodiment of the present invention developed by developing inventions 1 to 6 is any one of inventions 1 to 6 wherein the gas is an inert gas. It is a continuous manufacturing method of metal nanoparticles.
  • the seventh invention is the continuous method for producing metal nanoparticles according to any one of inventions 1 to 6, wherein the gas is at least one kind of gas of hydrogen gas and reactive gas. Good.
  • the eighth invention (hereinafter referred to as invention 8) as an embodiment of the present invention developed by developing invention 7 is a continuous metal nanoparticle according to invention 7, wherein the inert gas is nitrogen gas. Manufacturing method.
  • a ninth invention (hereinafter referred to as invention 9) as an embodiment of the present invention developed by developing inventions 2 to 8 is any one of inventions 2 to 8 in which the microwave is a single mode. It is a continuous manufacturing method of metal nanoparticles.
  • a tenth invention as an embodiment of the present invention developed from Inventions 2 to 9 is any one of Inventions 2 to 9 in which the microwave is multimode. It is a continuous manufacturing method of metal nanoparticles.
  • invention 11 An eleventh invention (hereinafter referred to as invention 11) as an embodiment of the present invention developed by developing inventions 2 to 10 is that the microwave mode is such that m is an integer of 0 or more and n is When the integer is 1 or more, Invention 2 is one selected from the TM mn0 mode in the cylindrical resonator and the TEm0n mode in the rectangular resonator (the flow direction of the reaction tube is the y direction of TE xyz ).
  • a continuous production method of metal nanoparticles according to any one of 1 to 10.
  • the TE 011 , TE 101 , TE 012 , or TE 201 mode is particularly preferred.
  • the twelfth invention (hereinafter referred to as invention 12) as an embodiment of the present invention developed by developing the inventions 7 to 11 includes a solution (first liquid) containing at least a precursor of metal nanoparticles.
  • a step of preparing a step of preparing a solution containing a metal nanoparticle reducing agent (second liquid), a step of mixing solution 1 and solution 2 to form a mixed solution (hereinafter referred to as a reaction solution), an inert gas Inserting the first liquid and / or the second liquid and / or the reaction liquid, further heating the first liquid and / or the second liquid and / or the reaction liquid to a predetermined temperature;
  • the continuous production method of metal nanoparticles according to any one of Inventions 7 to 11, wherein the first liquid and / or the second liquid and / or the reaction liquid are fed at a predetermined liquid feeding speed.
  • invention 13 The thirteenth invention as an embodiment of the present invention developed by developing the inventions 2 to 12 (hereinafter referred to as invention 13) was heated before and / or microwaved with the reaction solution.
  • the method for continuously producing metal nanoparticles according to any one of inventions 2 to 12, further comprising a step of bringing the reaction liquid to a predetermined temperature using temperature adjusting means other than microwaves at least in a later step. is there.
  • the fourteenth invention (hereinafter referred to as the invention 14) as an embodiment of the present invention developed by developing the inventions 2 to 13 includes a liquid source of the first liquid and the second liquid, and a flow pipe. 14.
  • a fifteenth invention (hereinafter referred to as invention 15) as an embodiment of the present invention developed by developing the invention 13 or 14 is a temperature control means using a Peltier element as a temperature control means other than the microwave. It is the continuous manufacturing method of the metal nanoparticle of the invention 13 or 14 which is.
  • the sixteenth invention (hereinafter referred to as invention 16) as an embodiment of the present invention developed by developing the invention 15 is a comparison of thermal conductivity in which temperature control means other than microwaves are arranged with Peltier elements. It is the continuous manufacturing method of the metal nanoparticle of the invention 15 which is a temperature control means which makes a reaction liquid contact a suitable object, or passes the inside of such a container.
  • the seventeenth invention (hereinafter referred to as invention 17) as an embodiment of the present invention developed by developing inventions 2 to 16 is an invention in which the temperature decrease in the microwave irradiation field is 15 ° C. or less.
  • the temperature in a microwave irradiation field it is preferable that there is little sudden drop of an instantaneous moment.
  • the eighteenth invention (hereinafter referred to as the invention 18) as an embodiment of the present invention developed by developing the inventions 7 to 17 is that the insertion amount of the inert gas into the reaction solution is in the microwave irradiation field.
  • the average inner diameter of the reaction tube is 2r (mm), it is 0.4 ⁇ r 2 (liter) / minute or more and 3 ⁇ r 2 (liter) / minute or less. This is a continuous production method of particles.
  • the nineteenth invention (hereinafter referred to as invention 19) as an embodiment of the present invention developed by developing the invention 18 has an insertion amount of inert gas into the reaction liquid of 1.0 ⁇ r 2 ( Liter) / minute or more, preferably 1.0 ⁇ r 2 (liter) / minute or more and 3 ⁇ r 2 (liter) / minute or less.
  • invention 20 as an embodiment of the present invention developed by developing the inventions 7 to 17, the linear velocity of the inert gas inserted into the reaction liquid in the reaction tube is 2 m / 18.
  • the twenty-first invention (hereinafter referred to as invention 21) as an embodiment of the present invention developed by developing invention 20 has a linear velocity of 5 m / second or more in the reaction tube of the inert gas inserted into the reaction solution. It is the continuous manufacturing method of the metal nanoparticle of the invention 20 which is.
  • a twenty-second invention (hereinafter referred to as invention 22) as an embodiment of the present invention developed by developing the inventions 1 to 21 includes the first liquid, the second liquid, Predetermined output from a sensor for detecting at least one of temperature, flow rate, reaction progress information related to the liquid, and information related to the particle size, which is arranged in at least a part of the gas and each flow path of the reaction liquid or in the vicinity thereof.
  • a twenty-third invention (hereinafter referred to as invention 23) as an embodiment of the present invention developed by developing the inventions 1 to 22 is that the metal nanoparticles in the flow path or shunt of the reaction solution in the production apparatus. 23.
  • a twenty-fourth invention (hereinafter referred to as invention 24) as an embodiment of the present invention developed by developing inventions 1 to 23 is a joint provided in the flow path or branch path of the reaction liquid in the production apparatus. 24.
  • the twenty-fifth invention (hereinafter referred to as invention 25) as an embodiment of the present invention developed by developing the invention 24 is the particle size of the metal nanoparticles in the flow path or shunt of the reaction liquid in the production apparatus. 25.
  • invention 26 which is an embodiment of the present invention developed from the first to the fifth aspects of the present invention, a predetermined particle diameter range or a predetermined particle diameter 26.
  • invention 27 The twenty-seventh invention (hereinafter referred to as invention 27) as an embodiment of the present invention developed by developing invention 26 is the metal according to invention 26 in which the means for purifying the metal nanocolloid is ultrafiltration. This is a continuous production method of nanoparticles.
  • invention 28 as an embodiment of the present invention developed by developing inventions 1 to 27 is that the procedure for producing a reaction liquid is such that the second liquid is circulated first.
  • invention 29 The twenty-ninth invention as an embodiment of the present invention developed by developing the invention 28 is the first liquid before the first liquid is mixed with the second liquid. It is the continuous manufacturing method of the metal nanoparticle of the invention 28 which inserts the said gas in 2 liquid.
  • a thirtieth invention (hereinafter referred to as invention 30) as an embodiment of the present invention developed by developing the inventions 1 to 29 is the invention 1 in which the first liquid is a liquid containing a copper precursor. 30.
  • the first liquid is copper nitrate (Cu (NO 3 ) 2 .3H 2. O) 104.0 g (0.42 mol) and copper hydroxide (Cu (OH) 2 ) 41.6 g (0.43 mol) were added with 472 g of ion-exchanged water, and monoethanolamine (NH 2 —CH 2 CH 2 —) was added.
  • the thirty-second invention (hereinafter referred to as invention 32) as an embodiment of the present invention developed by developing the invention 30 or 31 is a hydrazine compound wherein the second liquid is a reducing agent for a copper precursor.
  • the continuous manufacturing method of the metal nanoparticle of the invention 30 or 31 which is a solution prepared by adding 270.1 g of ion exchange water to 99.9 g of a monohydrate (NH 2 NH 2 .H 2 O) is there.
  • the components of the reaction solution may be appropriately increased or decreased at the above ratio.
  • a thirty-third invention (hereinafter referred to as invention 33) as an embodiment of the present invention developed by developing the inventions 1 to 29 is the invention 1 in which the first liquid is a liquid containing a silver precursor.
  • the first liquid is a liquid containing a silver precursor.
  • the first liquid ionizes 720 g (4.24 mol) of silver nitrate (AgNO3). It is a continuous manufacturing method of the metal nanoparticle of the invention 33 which is a solution prepared by dissolving in 5040 g of exchange water. In the present invention, the components of the reaction solution may be appropriately increased or decreased at the above ratio.
  • the second liquid contains 1888 g (21.18 mol) of 2-dimethylaminoethanol.
  • the components of the reaction solution may be appropriately increased or decreased at the above ratio.
  • invention 36 The thirty-sixth aspect of the present invention (hereinafter referred to as "invention 36"), which is an embodiment of the present invention developed from the inventions 33 to 35, dissolves 479 g (2.82 mol) of silver nitrate (AgNO3) in 3363 g of ion-exchanged water. 36.
  • the components of the reaction solution may be appropriately increased or decreased at the above ratio.
  • the second liquid is 1258 g (14.11 mol) of 2-dimethylaminoethanol.
  • the components of the reaction solution may be appropriately increased or decreased at the above ratio.
  • invention 38 as an embodiment of the present invention made to solve the problem uses the method for producing metal nanoparticles according to any one of inventions 1 to 37. It is a continuous production apparatus of metal nanoparticles for producing metal nanoparticles.
  • a thirty-ninth aspect of the present invention as an embodiment of the present invention (hereinafter referred to as “invention 39”), which is made to solve the problem, is a method for continuously producing metal nanoparticles according to any one of 1 to 37. It is the metal nanoparticle manufactured using it.
  • a reaction liquid containing a nanoparticle raw material salt, a nanoparticle dispersant, and a raw material salt reducing agent is circulated through a reaction tube, and the nanoparticle reduction reaction proceeds while passing through a microwave irradiation field.
  • the reaction solution is allowed to pass through a microwave irradiation field together with a gas such as an inert gas such as nitrogen or argon, and the reduction reaction of the nanoparticles proceeds to continuously produce the nanoparticles.
  • FIG. 1 It is a schematic diagram of the manufacturing apparatus of the nanoparticle used for the embodiment of this invention. It is a figure which shows the temperature change of the reaction liquid by the microwave irradiation in the synthesis
  • the explanation of the nanoparticle production apparatus may also serve as explanation of the production method and nanoparticle, and vice versa.
  • the drawings used for explanation of the embodiments of the present invention may be illustrated by partially changing the enlargement ratio without particular notice. And may not be similar to the description.
  • the description mainly focuses on the introduction of gas into the reaction solution and / or the heating of the metal salt by irradiation of microwaves into the reaction solution.
  • the use of microwaves is not limited to this.
  • the description of the continuous production method means that a reaction solution containing a metal salt is circulated in the reaction tube, and the reaction solution is processed for a certain time while suppressing deposits on the inner wall of the reaction tube. means. Therefore, it is possible to continuously perform the reaction for a long time, but this also includes stopping the production when a certain amount of nanoparticles is produced. Furthermore, it is also within the scope of the present invention to change the physical properties of the nanoparticles by introducing gas and / or microwave irradiation to the reaction solution containing the nanoparticle raw materials.
  • Silver nitrate reduction which is widely known as a silver mirror phenomenon, was performed.
  • Silver nitrate solution as liquid X1 is fed to the first pipe of the T-shaped joint at a rate of 4.55 ml / min with a plunger pump, and at room temperature, silver nitrate is supplied as liquid X2 to the second pipe of the T-shaped joint.
  • a liquid containing 2-dimethylaminoethanol, which is a reducing agent, and Disperbyk-190, which is a dispersing agent for silver nanoparticles, is fed at a rate of 8.15 ml / min and mixed with the first liquid. Put the mixed liquid as a reaction liquid into the reaction tube made of fluororesin from the third pipe of the T-shaped joint, and irradiate the reaction liquid with microwaves to advance the reduction reaction to synthesize silver nanoparticles Tried.
  • the reduction reaction proceeds before the mixed reaction liquid passes through the microwave irradiation part of the reaction tube, and the reaction tube can be visually confirmed in a very short time. It became so black. Moreover, the silver mirror reaction has already started to occur without microwave irradiation, and the continuous synthesis of silver nanoparticles was not possible.
  • Diethylene glycol monobutyl ether (hereinafter also referred to as BDG) and dodecane (C 12 H 26 ) are added to the liquid X1 to form a first liquid
  • the X2 is a second liquid
  • the first liquid and the second liquid Were mixed with a T-shaped joint as described above, and by irradiating the mixture with microwaves, an attempt was made to synthesize silver nanoparticles by advancing the reduction reaction.
  • the metal material is changed from silver to copper, and microwave irradiation is performed to conduct experiments on copper nanoparticle synthesis. Tried.
  • a solution obtained by adding Disperbyk-190 as a dispersing agent for copper nanoparticles to a solution in which copper nitrate and copper hydroxide are dissolved, and adding BDG and dodecane thereto as a first liquid, hydrazine as a reducing agent for a copper salt was used as the second liquid.
  • the plunger pump With the plunger pump, the first liquid is fed to the T-shaped joint at a speed of 10.2 ml (milliliter) / min and the second liquid is fed at a speed of 2.50 ml / min.
  • the liquid of No. 2 was mixed to make a reaction liquid, this reaction liquid was sent to a reaction tube, and microwaves were irradiated to the reaction liquid to try to synthesize copper nanoparticles.
  • dodecane is removed by washing the reaction tube when the amount is less than a certain amount.
  • the preferred dosage of dodecane is often 10-30% for the aqueous phase.
  • the amount of BDG that absorbs microwaves is also important.
  • the ratio of BDG is small, it becomes difficult to heat the reaction solution, and extra power must be applied to heat the reaction solution. Also, it tends to deviate from the target temperature.
  • FIG. 1 is a schematic view of a nanoparticle production apparatus created to explain an embodiment of the present invention in consideration of these various requirements.
  • reference numeral 1 is a microwave irradiation port (waveguide)
  • 2 is a microwave irradiation field
  • 4 is an electric field monitor
  • 5 is a thermometer
  • 6 is a microwave oscillator / controller
  • 7, 7a and 7b are reactions.
  • Tube, 8 is a reaction liquid
  • 21 is an inert gas source
  • 22 to 25 are T-shaped joints
  • 30 is a connection part
  • 30a is a reaction liquid take-out part
  • 31 is a first liquid source (for example, A liquid, C liquid
  • 32 is a second liquid source (for example, B liquid, D liquid, etc.)
  • 33 is a third liquid source (for example, E liquid, etc.)
  • 34 is a recovery tank
  • 72 to 78 are liquid channels or liquids.
  • a gas mixture passage 71 is an inert gas passage. Of these, it is not necessary to provide all of them in the nanoparticle production apparatus, and the apparatus can be configured using only necessary ones.
  • Reference numerals S-1 to S-14 denote sensors for measuring information about the reaction solution such as temperature, pressure, flow rate, flow rate, electric field strength, etc. used for reaction system control and other purposes.
  • a-1 to a-9 are arrows.
  • the liquid feed pump is not shown. Some embodiments may be configured with only a portion of the illustration.
  • a stirring device is arranged in each liquid source, a recovery tank, etc., to make each liquid, reaction liquid, etc. uniform.
  • the first kind of liquid is prepared in the liquid source 31
  • the second kind of liquid is prepared in the liquid source 32
  • a plunger as a liquid delivery means is provided in each liquid source, for example.
  • a pump is provided and set to each predetermined liquid feeding speed.
  • the liquids from the liquid sources 31 and 32 are sent from the liquid sources 31 and 32 through the liquid flow paths 73 and 74 in the directions of arrows a-2 and a-7, respectively, at predetermined speeds.
  • the inert gas sent from the inert gas source 21 in the directions of arrows a-1 and a-4 is introduced.
  • each liquid into which the inert gas has been introduced passes through the flow paths 77 and 76, is sent to the T-shaped joint 25, is mixed by the T-shaped joint 25, and is discharged from the remaining flow paths of the T-shaped joint 25.
  • One end is sent to the liquid flow path 78 connected to the reaction tube 7.
  • the liquid in the liquid stock 33 passes through the liquid flow path 72 at a predetermined speed, and after the inert gas from the inert gas source 21 is introduced by the T-shaped joint 24, The T-shaped joint 23 is mixed with the liquid from the second liquid source 32. At this time, the inert gas from the inert gas source 21 is also mixed with the liquid from the second liquid source 32. Note that the inert gas source 21 may be directly disposed in the second liquid source 32 depending on the type of liquid.
  • the liquid from the liquid flow path 78 enters the reaction tube 7 passing through the cavity 2 as a microwave irradiation field, and receives microwave irradiation in the microwave irradiation field 2.
  • the optimal shape of the reaction tube 7 in the microwave irradiation field 2 may vary depending on the microwave frequency (within a range of 300 MHz to 300 GHz), the microwave mode, the type of liquid, and the like.
  • the effect of the microwave irradiation can be controlled.
  • the shape of the reaction tube 7 include a linear shape, an S-shape, a coil shape, and a mixed shape thereof.
  • the effect of microwave irradiation can be controlled by disposing a part of the reaction tube 7 outside the microwave irradiation field 2.
  • connection part 30 is a connection part for connecting the output part 7a of the reaction tube 7 and the reaction tube 7b, and may not be provided depending on the purpose of manufacturing the nanoparticles, the state of the apparatus, and the parts.
  • the reaction tube 7b may have the same specifications as the reaction tube 7, or the diameter may be changed depending on the purpose.
  • Reference numeral 30a denotes a reaction liquid take-out portion, which is provided as necessary and may be used for reaction control.
  • a method of introducing an inert gas into the first liquid a method of introducing an inert gas into the second liquid, or an inert gas is introduced into the second liquid and allowed to flow through the liquid flow path.
  • the method of mixing the first liquid into the place where the first liquid is introduced, and the method of mixing the first liquid into which the inert gas is introduced into the place where the inert gas is introduced into the second liquid and circulated in the liquid flow path For example, there are appropriate methods according to the method of selecting the raw material of the nano particles and the reducing agent.
  • the reaction liquid into which the inert gas has been introduced into the reaction tube It is possible to effectively prevent the metal deposits from adhering to the inner wall of the reaction tube by flowing the reaction liquid into which the inert gas has been introduced into the reaction tube.
  • the first liquid containing the metal salt into which the inert gas is introduced is mixed with the second liquid containing the reducing agent into which the inert gas has been introduced.
  • a method of mixing the first liquid containing the metal salt into the place where the second liquid containing the reducing agent introduced with the inert gas is circulated in the pipe Even when the first liquid and the second liquid are mixed to form a reaction liquid and then an inert gas is introduced into the reaction liquid in the next stage, the remarkable effect of introducing the inert gas can be exhibited. .
  • the liquid from the first liquid source and the liquid from the second liquid source are allowed to flow through the flow path, respectively, and an inert gas is mixed into each liquid, and both liquids are mixed and reacted by a T-shaped joint.
  • An embodiment of a method for irradiating a reaction liquid with microwaves after forming the liquid will be described.
  • the measurement results of the electric field monitor 4 and the thermometer 5 shown in FIG. 1 are first fed back to the microwave oscillator / controller 6.
  • the flow rate of the inert gas is measured by the sensors S-8 and S-1 in FIG.
  • Sensors S-1 to S-13 indicate the flow rate, flow rate, and components of each solution, gas, and mixture constituting the reaction solution; the state of the particle size and distribution of the nanoparticles; and the mixing state of the reaction solution and gas. Measured as necessary, sent to microwave oscillator / controller, each liquid feeding device, temperature control device (not shown), control system controlling nanoparticle synthesis system in some cases, synthesis quality of nanoparticles Can be managed.
  • An optical and / or electrical detection means for depositing deposits on the inner wall of the reaction tube can be provided in the reaction tube and control circuit.
  • Electrical and / or optical measuring means such as the reaction process of the reaction solution, the particle size and particle size distribution of the nanoparticles after the reaction, and the average particle size can be provided in the reaction tube or the vicinity thereof or in the recovery tank.
  • the state of metal deposit adhesion to the inner wall of the reaction tube is judged by measuring the temperature of the reaction solution and the electric field strength of the reflected wave of the microwave, and the result is synthesized with the nanoparticles. Used for control. Moreover, information from each sensor is also used for nanoparticle synthesis control as necessary.
  • a reaction tube made of a fluororesin that transmits microwaves at least to a portion irradiated with microwaves was used as a basic portion.
  • the scope of rights of the present invention is not limited to this reaction tube.
  • the reaction solution first select a material that easily deposits precipitates on the inner wall of the reaction tube, such as copper or silver, that is, a material containing a copper salt or silver salt that easily forms a copper mirror or silver mirror on the inner wall of the tube, and a dispersant. And a reaction solution containing a reducing agent. The reaction solution was circulated in the reaction tube.
  • the reduction reaction proceeds to a predetermined temperature suitable for the reduction of the reaction liquid, and deposits are generated on the inner wall of the reaction tube It was investigated variously.
  • the microwave used for heating the reaction liquid can be either single mode or multimode.
  • the microwave resonator may be either a cylindrical type or a rectangular type, but a cylindrical type is more preferable.
  • a microwave is sent from a magnetron, a semiconductor oscillator, or the like to a microwave irradiation field for heating a sample through a waveguide.
  • a microwave reflector may be provided at one end of the waveguide to reflect it, and a mode that concentrates the electric and magnetic fields at a specific position in the waveguide may be formed to generate heat in the sample. it can.
  • the microwave frequency band a frequency of 24 to 25 GHz band was used from the viewpoint of easy availability of the apparatus, and experiments were also performed at frequencies other than those described above.
  • a TM010 mode was mainly used as a single mode.
  • the microwave frequency and mode are not limited to this.
  • the TM mode When the TM mode is used as the microwave mode, it is particularly preferable to use the TM mn0 mode where m is an integer of 0 or more and n is an integer of 1 or more.
  • the TE mode it is particularly preferable to use the TE 011 , TE 101 , TE 012 , and TE 201 modes.
  • Microwave irradiation is not limited to a cylindrical microwave resonator, and any device that can use the advantages of microwave heating, such as one using a rectangular waveguide, can exhibit the effects of the present invention.
  • a cylindrical microwave resonator having a maximum microwave output of 500 W was used as the resonator, and PFA was used as a material for the reaction tube.
  • the microwave mode TM010 of single mode which is one of the modes excellent in accuracy is used. Note that the scope of the present invention is not limited to these.
  • the dimensions of the basic part of the reaction tube are not limited to this, but a basic part having an outer diameter of 3 mm, an inner diameter of 2 mm, and a basic part entering the microwave resonator of 41 cm was used.
  • 10 cm out of the length of 41 cm of the basic portion is arranged in the central portion of the microwave cavity in a direction substantially perpendicular to the TM010 mode of microwaves, and the microwave is added to the reaction liquid flowing through the reaction tube.
  • a reaction tube having the same inner diameter was connected before and after the basic portion of the reaction tube in the flow direction of the reaction solution, which was used as an input side and an output side of the reaction solution, respectively.
  • FIG. 2 is a diagram showing the temperature change of the reaction solution by microwave irradiation in the synthesis of copper nanoparticles as an example of the present invention
  • FIG. 3 is the microwave irradiation in the synthesis of copper nanoparticles as an example of the present invention.
  • FIG. 4 is a diagram showing a change in reflected wave intensity of microwaves
  • FIG. 4 is a diagram showing a temperature change of a reaction solution by microwave irradiation in the synthesis of copper nanoparticles as a comparative example
  • FIG. 5 is a diagram in the synthesis of copper nanoparticles as a comparative example. It is a figure which shows the reflected wave intensity change of the microwave by microwave irradiation.
  • reference numerals 50, 52, and 53 are temperature curves
  • 50a, 52a, and 53a are temperature curves at the time of rising of the microwave
  • 50b, 52b, and 53b are temperatures after the microwave irradiation reaches a steady state.
  • Curves 50c and 53c are temperature curves at the end of the microwave irradiation due to the end of synthesis
  • 52c are temperature curves at the end of the microwave irradiation due to the end of the synthesis
  • 51, 54 and 55 are reflected wave intensity curves of the microwaves
  • 51a, 54a, 55a is a reflected wave intensity curve at the time of rising of the microwave
  • 51b, 54b and 55b are reflected wave intensity curves after the microwave irradiation reaches a steady state
  • 51c and 55c are reflected waves at the end of the microwave irradiation due to the end of synthesis.
  • An intensity curve 54c indicates a reflected wave intensity curve at the end of microwave irradiation due to the interruption of synthesis.
  • Example 1 Synthesis example 1 of copper nanoparticles.
  • the reaction solution a solution obtained by sufficiently mixing the following solution A and solution B was used.
  • Dispersbyk-190 which is a dispersing agent
  • 154.4 g of BDG and 305.92 g of dodecane were added, and the mixture was sufficiently stirred and prepared as the A liquid in the first liquid source 31.
  • Liquid A in which the aqueous phase and dodecane are sufficiently mixed, is sent out from the flow path 73 by a plunger pump at 10.2 ml / min, and the nitrogen gas sent from the gas source 21 through the flow path 71 and the T-shaped joint 22. Are mixed and sent to the T-shaped joint 25 through the flow path 77.
  • B liquid is sent out from the flow path 74 at a rate of 2.50 ml / min, mixed with nitrogen gas sent from the gas source 21 through the flow path 71 by the T-shaped joint 23, and then passed through the flow path 76.
  • the mixture of nitrogen gas and A liquid coming from the flow path 77 and the mixture of nitrogen gas and B liquid coming from the flow path 76 are mixed and sent out as a reaction liquid to the flow path 78.
  • the introduction rate of nitrogen gas as an inert gas was 0.4 L / min (0.4 liters per minute) in total for the gases mixed in the A and B liquids.
  • the detection of copper deposition and deposition on the inner wall of the reaction vessel is carried out by measuring the temperature in the reaction tube with the thermometer 5 in the cavity as a microwave irradiation field and from the reaction tube with the electrolytic monitor 4.
  • the copper mirror phenomenon was confirmed by visual observation of the inner wall of the reaction tube from the viewing window of the cavity.
  • the temperature change of the reaction solution due to microwave irradiation is plotted with temperature (° C) on the vertical axis and time (seconds) on the horizontal axis. Intensity (W (Watt)) and time (seconds) on the horizontal axis are shown in FIG.
  • the target temperature is set to 80 ° C and microwave irradiation is performed.
  • the copper is not subjected to a copper mirror phenomenon on the inner wall of the reaction vessel, and synthesis is performed for 2 hours and 11 minutes. I was able to synthesize.
  • the average reaction temperature was 80.0 ° C, and the reaction temperature ranged from 66.0 ° C to 93.2 ° C.
  • Example 1 PFA was used as the material of the reaction tube.
  • PFA was selected because it was highly transparent among the resins and it was easy to determine if there was deposit on the inner wall of the reaction tube, and it was easy to obtain.
  • PFA is resistant to heat, and deposits on the inner wall of the reaction tube can be relatively easily found visually, and can be said to be a useful reaction tube material.
  • Example 2 Synthesis example 2 of copper nanoparticles. Copper nanoparticles were synthesized under the same conditions as in Example 1 except that the material of the reaction tube was PTFE, and copper nanoparticles could be synthesized in approximately the same time without generating a copper mirror phenomenon.
  • FIG. 4 shows the temperature change of the reaction solution due to microwaves at this time, with the vertical axis representing temperature (° C.) and the horizontal axis representing time (seconds).
  • FIG. 5 shows the reflected wave intensity data of the microwave, with the vertical axis representing the reflected wave intensity (W (watts)) and the horizontal axis representing time (seconds).
  • reference numeral 52c is a temperature curve showing a state in which copper precipitates adhere and the temperature inside the reaction tube does not increase and decreases to nearly 40-30 ° C, and 52d is when the temperature drops to 52c.
  • 53 is a temperature curve after the reaction tube with a copper mirror is replaced with a new reaction tube and the copper synthesis is resumed, and 53c is the end of the microwave irradiation due to the completion of the synthesis after the synthesis of the charged amount is completed.
  • 54c is a microwave reflected wave intensity curve showing a state in which the temperature inside the reaction tube does not increase due to adhesion of copper precipitates and decreases to nearly 40-30 ° C, and 55 is a reaction in which a copper mirror is formed. The reflected wave intensity curve of the microwave is shown after replacing the tube with a new reaction tube and resuming copper synthesis.
  • the intensity of the reflected wave starts to increase around 4400 seconds after the start of synthesis, and the temperature of the reaction liquid decreases accordingly, and the reaction liquid is microwaved from 4430 seconds when the rise of the reflected wave becomes decisive. No longer heated. Around 4430 seconds, a copper mirror adhered to the inner wall of the reaction tube, and this could be confirmed from the window except for the cavity.
  • Example 3 Synthesis example 3 of copper nanoparticles Disperbyk-190 was 60.96 g, the liquid A flow rate was 15.3 ml / min, the liquid B flow rate was 3.75 ml / min, otherwise, that is, the total introduction rate of nitrogen gas as the inert gas was 0.00.
  • the copper nanoparticles were synthesized under the same conditions as in Example 1 except that the rate was 4 L / min.
  • the planned amount of copper nanoparticles could be synthesized without deposits on the reaction tube wall.
  • the average reaction temperature was 80.0 ° C and the reaction temperature ranged from 66.0 ° C to 93.1 ° C. It was possible to synthesize the entire charged amount without producing a copper mirror for 5000 seconds or more from the start of synthesis.
  • Example 4 During the implementation of Examples 1 to 3, it was found that there were differences in the superheated state of the reaction solution and the reflected wave intensity of the microwave depending on the amount of inert gas fed, the flow rate at the time of mixing each solution, and the like. Therefore, the experiment was carried out by changing the feed amount of the inert gas, the flow velocity before mixing of the liquid A and liquid B, and the like.
  • Synthesis example 4 of copper nanoparticles Disperbyk-190 60.96 g, A liquid flow rate 15.3 ml / min, B liquid flow rate 3.75 ml / min, introduction rate of nitrogen gas as inert gas is 1.0 L / min in total Except for the above, copper nanoparticles were synthesized under the same conditions as in Example 1. The planned amount of copper nanoparticles could be synthesized without deposits on the reaction tube wall. The average reaction temperature was 80.0 ° C, and the reaction temperature ranged from 68.2 ° C to 90.9 ° C.
  • Example 5 Synthesis example 1 of silver nanoparticles. This corresponds to the case where the reference numerals 33 and 24 in FIG. C liquid preparation.
  • Silver nitrate (AgNO 3 ) 91.36 g (0.54 mol) was dissolved in 645.76 g of ion-exchanged water and prepared as the C liquid in the first liquid source 31.
  • E liquid Formulation of E liquid. 297.14 g of dodecane and 89.14 g of BDG were added and mixed to prepare the third liquid source 33 as an E liquid.
  • Liquid C, liquid D, and liquid E were fed by 3 plunger pumps at 16.4 ml / min, 13.9 ml / min, and 12.2 ml / min, respectively.
  • the total nitrogen gas flow rate for the liquid C, liquid D and liquid E was 1.8 L / min.
  • the target temperature at the time of microwave irradiation was set to 70 ° C.
  • the reaction tube was set to PFA, and the reaction was performed for 5 minutes from 52 seconds when the reaction temperature reached 70 ° C.
  • the remaining reaction solution was unused. No silver deposit adhered to the inner wall of the reaction tube.
  • the reaction temperature varied from 63.0 ° C to 73.0 ° C, with an average of 69.9 ° C.
  • the reflected wave power was 0 W to 219 W, the average was 31.8 W, the incident wave power was 272 W to 320 W, and the average was 290.5 W.
  • FIG. 6 The temperature change of the reaction solution is shown in FIG.
  • the vertical and horizontal axes are the same as in FIG.
  • reference numeral 60 is a temperature curve
  • 60a is a temperature curve at the time of rising of the microwave
  • 60b is a temperature curve after the microwave irradiation reaches a steady state
  • 60c is a temperature curve at the end of the microwave irradiation due to the end of synthesis. Indicates.
  • Example 2 The reaction was carried out under the same conditions as in Example 5 except that nitrogen was passed through the reaction tube. Before the reaction, the matching was performed with a matching device such as a sliase tub tuner so that the reflected wave was reduced under the condition that no nitrogen was passed. The experiment was scheduled for 5 minutes, but when the microwave irradiation was stopped when the reflected wave rose to 500 W, silver deposits adhered to the inner wall of the reaction tube. The reaction temperature changed between 56.6 ° C and 77.8 ° C after the reaction temperature reached 70 ° C. The average reaction temperature was 69.7 ° C.
  • the reflected wave power was 0 W to 503 W, the average was 162 W, the incident wave power was 300 W to 392 W, and the average was 338 W.
  • the reaction temperature range was as wide as 21.2 ° C., and the reflected wave power and incident wave power were high.
  • FIG. 7 The temperature change of the reaction solution at this time is shown in FIG.
  • the vertical and horizontal axes are the same as in FIG.
  • reference numeral 64 is a temperature curve
  • 64 a is a temperature curve at the time of rising of the microwave
  • 64 b is a temperature curve after the microwave irradiation reaches a steady state
  • 64 c is a microwave irradiation due to the stop of synthesis because it enters the danger region.
  • the temperature curve at the end is shown.
  • Example 6 and Comparative Example 3 For comparison of the particles obtained by microwave irradiation, as Example 6 and Comparative Example 3, the conditions of Example 5 (flowing nitrogen) and Comparative Example 2 (flowing no nitrogen) were each 1 minute 30. The mixture was allowed to react for 2 seconds, and the resulting solution was immediately cooled with ice to stop the reaction. After centrifugal purification, spectroscopic measurement and TEM observation were performed.
  • Example 6 In the particles produced in Example 6 under the condition of flowing nitrogen, only a peak at 430 nm was observed in the spectroscopic analysis, and in TEM, the coalescence of the particles was relatively small. More particles with a smaller diameter were observed than in Comparative Example 3. This is probably because when nitrogen is flowed, the time for staying in the cavity is short, so that silver nanoparticles having a relatively small particle size are obtained compared to when nitrogen is not flowed.
  • Example 7 Synthesis example 2 of silver nanoparticles.
  • E liquid 1782.80 g of dodecane and 534.84 g of BDG were added and prepared as the E liquid in the third liquid source 33.
  • Liquid C, liquid D, and liquid E were respectively pumped at 16.4 ml / min, 13.9 ml / min, and 12.2 ml / min.
  • the flow rate of nitrogen gas flowing through liquid D and liquid E was 0.9 L / min, and the rate of nitrogen gas flowing through liquid C was 0.9 L / min.
  • the target temperature during microwave irradiation was 70 ° C., and the reaction tube was PFA. In 4 hours, C solution, D solution, and E solution were completely drained, and microwave irradiation was completed. No silver deposit adhered to the inner wall of the reaction tube. After the reaction temperature reached 70 ° C., the reaction temperature varied between 63.0 ° C.
  • the reflected wave power was 0 W to 219 W, the average was 31.8 W, the incident wave power was 272 W to 320 W, and the average was 290.5 W.
  • Example 8 Synthesis example 3 of silver nanoparticles. Synthesis for 457 g of silver was performed. C liquid preparation. 720 g (4.24 mol) of silver nitrate (AgNO 3) was dissolved in 5040 g of ion-exchanged water and prepared as the C liquid in the first liquid source 31. Preparation of D liquid. 1888 g (21.18 mol) of 2-dimethylaminoethanol and 2308 g of ion-exchanged water were added, 86 g of Disperbyk-190 was added thereto, 1308 g of BDG and 2598 g of dodecane were further added, and the second liquid source 32 was prepared as a D liquid. .
  • Liquid D and liquid C in which the aqueous phase of liquid D and dodecane were sufficiently mixed with a magnetic stirrer, nitrogen gas was introduced into each liquid at 0.5 L / min, and then liquid C was charged with a plunger pump to 9.09 ml / min. , D liquid is sent to the T-shaped joint 25 through the respective liquid feeding pipes at a rate of 16.3 ml / min, and is sent as a mixed liquid CD from the liquid feeding pipe 78 to the reaction tube 7 made of PFA as the reaction liquid.
  • the target temperature at the time of microwave irradiation was set to 85 ° C.
  • the reaction tube was set to PFA as in the silver nanoparticle synthesis example 1, and the C solution was allowed to flow for 9 hours and 48 minutes to complete the synthesis of the silver nanoparticles.
  • the reaction temperature was 76.9 ° C. to 94.2 ° C., and the average was 85.0 ° C.
  • the optimum inert gas depends on the type of metal nanoparticle precursor and the type of reducing agent. It was found that there was a difference in the way of introduction of the active gas into the reaction liquid and the timing of introduction.
  • an inert gas is introduced into the solution containing the silver nanoparticle reducing agent.
  • the temperature in the microwave irradiation field is likely to fluctuate even if the temperature is controlled because the reaction solution flows through the reaction tube while carrying out a reductive reaction with an inert gas inserted.
  • the maximum temperature drop was 15 ° C. It has also been found that suppressing this temperature drop to 10 ° C. or less can facilitate the production of nanoparticles.
  • the temperature change of the reaction solution was measured every second. The instantaneous temperature drop refers to a peak value when the pulse temperature fluctuates from the set temperature.
  • the “abrupt instantaneous decrease in temperature” refers to a decrease in a pulse-like decrease from the set temperature when the temperature in the microwave irradiation field is measured every second. Further, in the present invention, it is preferable that “sudden momentary temperature drop” is 15 ° C., preferably 10 ° C. or less.
  • a liquid containing silver nitrate as a first liquid is used as a first liquid source, and a liquid containing a silver nitrate reducing agent is used as a second liquid as a second liquid.
  • a liquid containing a silver nitrate reducing agent is used as a second liquid as a second liquid.
  • the length of the liquid flow path through which the reaction liquid flows is about 3 cm, and the end of the liquid flow path opposite to the end connected to the T-shaped joint is the second.
  • the temperature of at least a part other than the part passing through the microwave irradiation field of the reaction tube is controlled by using temperature control means other than the microwave as a heating source or a cooling source to control the particle size of the metal nanoparticles.
  • temperature control means other than the microwave as a heating source or a cooling source to control the particle size of the metal nanoparticles.
  • the above-mentioned part is brought into contact with a relatively good heat conductive object provided with a Peltier element, passed through such a container, or the first and second liquid sources. It is possible to control the particle size of the metal nanoparticles by controlling the temperature of at least one of them using a Peltier element.
  • the Peltier element can be used for both raising and lowering the temperature electrically by controlling it electrically, the particle size control, reaction suitability temperature and particle size control temperature of the metal nanoparticles can be controlled appropriately.
  • the reaction progress information about the temperature, the flow rate, the liquid, A sensor that detects at least one of the information regarding the particle diameter can be arranged, and the output can be fed back to a predetermined control system for control.
  • a means for measuring the particle size of the metal nanoparticles in the flow path or shunt path of the reaction solution in the production process of the metal nanoparticles can be provided, and the current particle size of the metal nanoparticles can be measured.
  • a T-type or Y-type joint is provided in the flow path or shunt of the reaction liquid, and the reaction liquid is collected from the joint to measure the particle size of the metal nanoparticles, or the metal in the flow path or shunt of the reaction liquid
  • a means for directly measuring the particle diameter of the nanoparticles for example, a measuring means using phase rotation of laser light can be provided.
  • particle size, temperature control information, and flow rate control information are useful for controlling the particle size distribution of metal nanoparticles to be synthesized, for example.
  • the reaction liquid is used at 0.4 L / min or more.
  • the effect of flowing nitrogen gas into the gas is great. It has been found that controlling the total flow rate suitable for mass production to 0.5 L / min or more, more preferably 1 L / min or more shows a stable effect.
  • the total flow rate is more preferably 2 L / min or less.
  • the total insertion amount of the inert gas into the reaction liquid when the average inner diameter of the reaction tube for flowing the reaction liquid is 2 r (mm) is preferably 0.4 ⁇ r 2 (liter) / min or more. More preferably, it is 0.5 ⁇ r 2 (liter) / min or more, and further preferably 1.0 ⁇ r 2 / min or more. However, economically, it is desirable not to exceed 3.0 ⁇ r 2 (liter) / min.
  • the linear velocity of the inert gas inserted into the reaction solution in the reaction tube is preferably 2 m / sec or more, and stable synthesis can be continued when the linear velocity is 5 m / sec or more.
  • inert gas other than nitrogen, such as argon, has the same effect.
  • nitrogen gas is particularly preferred economically.
  • a gas is inserted into at least one of the first liquid and the second liquid to form a multiphase flow, and then the first liquid and the second liquid are mixed.
  • first liquid and the second liquid Before mixing the first liquid and the second liquid into a reaction liquid, different types of gases can be used as the gases inserted into the first liquid and the second liquid.
  • a step of inserting a gas is further provided, so that the quality of control can be adapted to the type of metal.
  • Disperbyk-190 as a nanoparticle dispersant
  • a hydrophilic dispersant is preferable, for example, polyoxyalkyleneamine, monoamine, diamine, polyacrylic acid, etc.
  • dispersants There are many dispersants. Hydrophobic dispersants can also be used.
  • a magnetic stirrer was used to use the stirring action for adjusting the liquid constituting the reaction liquid, but the present invention is not limited to this, and other methods such as using ultrasonic waves can be used. It is.
  • ultrasonic vibration for example, low frequency ultrasonic waves such as 30 KHz, medium frequency ultrasonic waves such as 200 KHz, and relatively high frequency ultrasonic waves near 500 KHz are used.
  • ultrasonic vibration for example, low frequency ultrasonic waves such as 30 KHz, medium frequency ultrasonic waves such as 200 KHz, and relatively high frequency ultrasonic waves near 500 KHz are used.
  • ultrasonic vibration for example, low frequency ultrasonic waves such as 30 KHz, medium frequency ultrasonic waves such as 200
  • the ultrasonic wave When irradiating the reaction liquid with microwaves, the ultrasonic wave can be propagated, and thereby the particle diameter and distribution of the synthesized nanoparticles can be controlled.
  • Examples of means for purifying the metal nanoparticle colloid include ultrafiltration.
  • the T-shaped joint is used for mixing the A liquid and the B liquid and the reaction liquid and the inert gas.
  • the present invention is not limited to this, and the Y-shaped joint.
  • the preparation procedure of a reaction liquid is a procedure which distribute
  • the liquid containing the reducing agent of the metal nanoparticle precursor to be circulated in advance and the liquid containing the metal nanoparticle precursor to be mixed therewith at least the liquid containing the reducing agent of the metal nanoparticle precursor is added to the metal nanoparticle precursor. More preferably, the gas is inserted before mixing the liquid containing the particle precursor. It has been found that when an inert gas is used as the gas, a particularly great effect is exhibited.
  • TM010 mode for the mode of the microwave used for reaction promotion of a reaction liquid
  • this invention is not limited to this narrowly.
  • a microwave standing wave of TM mn0 mode (m is an integer of 0 or more and n is an integer of 1 or more) has a concentration of electrolysis in the radial direction of the cylinder, and a uniform electric field strength at a position parallel to the central axis.
  • microwave heating heating by an electric field can be used, but heating by a magnetic field can also be used.
  • various measuring means for monitoring the progress of reaction of the reaction solution are installed at various places as described above.
  • At least one of an electric field monitor that monitors the electric field of the microwave and a thermometer that detects the temperature in the microwave irradiation field or the temperature of the reaction tube is provided in the microwave irradiation field, and the measurement result is stored in a system such as a microwave oscillator or controller.
  • a system such as a microwave oscillator or controller.
  • various measuring means can be provided everywhere as necessary. At least part of the electric field monitor and thermometer are fed back to the microwave oscillator / controller.
  • a means for measuring the flow rate per minute can be provided in a part of the flow path or the inert gas source, and the flow rate and components of each liquid constituting the reaction liquid can be determined.
  • the measuring means can be provided in the T-shaped joint or the liquid flow path in front of it, the temperature measuring means is not limited to the thermometer, and it can be provided at a key point, and the optical deposit of deposits on the inner wall of the reaction tube And / or an electrical detection means can be provided in the reaction tube, the control circuit, etc., and the electrical and / or the reaction process of the reaction solution, the particle size and particle size distribution of the nanoparticles after the reaction, the average particle size, etc.
  • Optical equal measuring means can be provided in the reaction tube or the vicinity thereof, or in the recovery tank.
  • the reduction suitability temperature varies depending on the metal salt, reducing agent, dispersant and other additives.
  • the reduction suitability temperature is 70 ° C. in Example 5, and therefore the microwave set temperature was set to 70 ° C., and the reflected power and temperature were measured every second.
  • the reflected power was 75 to 308 W in 86 seconds from 54 seconds to 140 seconds after the reaction temperature reached 70 ° C. after starting the microwave irradiation. It was. Moreover, it was 46 times that recorded 150W or more in the meantime, and it was 2 times that exceeded 300W in the meantime.
  • the reflected power during the period of 152 seconds from 140 seconds to 292 seconds to be stopped was 38 to 503 W, 150 W or more was 78 times, and 300 W or more was 22 times. It was dangerous to continue any further, so microwave irradiation was stopped.
  • 300 seconds after 352 seconds from the end of the experiment from 52 seconds when the reaction temperature reached 70 ° C. after starting the microwave irradiation.
  • the reflected power between the two was 0 to 219 W.
  • 100 W or more was recorded 12 times, of which 150 W or more was recorded 5 times, of which 200 to 230 W was recorded 2 times.
  • there was no 230W or more From this, it can be said that a mirror can be easily formed at least when the number of times the reflected power is 150 W or more is 8 times or more in 20 seconds. The effect of liquid backflow must also be considered.
  • Measured results of these various measuring means can be controlled according to manufacturing specifications.
  • the average particle size, particle size distribution, and the like can be controlled by feeding back measurement data to a microwave oscillator / controller and / or a system control circuit (not shown) to control the manufacturing system.
  • the metal nanoparticles of the present invention can be made into products in the above-mentioned various forms according to customer demands.
  • the present invention is not limited to the various examples described above, and many variations are possible according to the technical idea of the present invention.
  • the ratio of the constituent components of the reaction liquid in each example may be increased or decreased as appropriate.
  • how to combine each component, selection of non-use, and nanoparticle depending on the nanoparticle by using reducing gas or reactive gas with substance modification property how to combine each component, selection of non-use, and nanoparticle depending on the nanoparticle by using reducing gas or reactive gas with substance modification property. Improvement of particles, cleaning of components, etc. can be given.
  • the description has focused on introducing an inert gas as a gas into the reaction solution to prevent deposits from adhering to the inner wall of the reaction tube.
  • Reducing hydrogen gas can be introduced instead of inert gas, and reactive gas used in the semiconductor field can be introduced, preventing mirrors, adding physical properties, and reforming Is also possible.
  • Metal nanoparticle production method, production apparatus, metal nanoparticles represented by copper and silver according to the present invention have advantages such as low production costs, small variations in quality when products are produced, and characteristics of nanoparticles. Therefore, it has a great effect in a wide range of technical fields such as the catalyst industry, the wiring of electronic boards, and the joining of electronic components in the electronics / electronics industry and the automobile industry.
  • Microwave irradiation port 2 Microwave irradiation field 4: Electric field monitor 5: Thermometer 6: Microwave oscillator / controller 7, 7a, 7b: Reaction tube 8: Reaction liquid 21: Inert gas source 22-25: T-shaped joint 30: connection portion 30a: reaction solution take-out portion 31, 32, 33: liquid source 34: recovery tank 50, 52, 53, 60, 64, 50a, 52a, 53a, 60a, 64a, 50b, 52b , 53b, 60b, 64b, 50c, 53c, 53c, 60c, 64c: Temperature curve 51, 54, 55, 51a, 54a, 55a, 51b, 54b, 55b, 51c, 54c, 55c: Reflected wave intensity curve of microwaves , 71, 72 to 78: flow path a-1 to a-9: arrow S-1 to S-14: sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 本発明の金属ナノ粒子の製造方法は、反応管に、少なくとも金属ナノ粒子の原料塩を含む第1の液と、前記原料塩の還元剤を含む第2の液とを混合させた反応液を流通させて、金属ナノ粒子を合成する工程を有し、前記反応液が、気体と液体の混相流である。

Description

ナノ粒子の製造方法及び製造装置ならびにそれによって製造したナノ粒子
 本発明は、ナノ粒子の製造方法及び製造装置ならびにそれによって製造したナノ粒子に関する。さらに具体的には、ナノ粒子の成分を含む原料溶液を、その還元剤を含む溶液と共に反応液として反応管中を流通させ、前記反応管の少なくとも一部にマイクロ波を照射し、反応液の温度を設定温度に短時間で導き、前記原料溶液の還元反応を進行させるにあたり、前記反応管中の前記原料溶液の少なくとも一部に不活性ガスや水素などのガスを導入して、前記反応管の管壁に析出物が析出・付着するのを抑制し、目的とするナノ粒子を製造する方法及び製造装置ならびにそれによって製造したナノ粒子に関する。
 本願は、2014年12月22日に、日本に出願された特願2014-258734号に基づき優先権を主張し、その内容をここに援用する。
 近年、粒径が200nm(ナノメートル)以下のナノ粒子の研究・開発が盛んに行われ、多くの提案がなされている。例えば、金属ナノ粒子の原材料としての金属塩を溶解した溶液と前記金属塩の還元剤を含む溶液とを混合させた反応液を反応管の中に流通させ、その反応管の少なくとも一部にマイクロ波を照射して、反応管の中の反応液を還元反応に適した所定の温度まで加熱し、もって、金属塩を還元し、金属ナノ粒子を連続的に製造しようとする試みがその一例である。
 例えば、金属塩としての硝酸銀とその還元剤を含む反応液をガラスや樹脂製の反応管の中に流通させ、反応液にマイクロ波を照射して加熱し、反応液の温度を還元反応に適した温度まで上昇させて、もって、硝酸銀の還元反応を行わせ、銀ナノ粒子を得ることが提案されている。しかし、前記硝酸銀の還元を続けようとすると、比較的短時間で反応管の内壁に銀が析出して付着してしまう。内壁に付着した銀はマイクロ波を反射するので、反応液にマイクロ波が吸収されず、反応液の温度が急激に低下してしまう。その結果、生成物の中に還元未反応の硝酸銀が多く混入してしまい、銀ナノ粒子の収率が低くなるという問題があった。そのほか、良質の銀ナノ粒子を製造することができなくなるなどの重大な問題があった。
 ところが、反応管へのマイクロ波照射を利用して金属ナノ粒子の量産を試みる例がまだ多くないため、前記の問題を論じた特許文献は見当たらない。
 特許文献1には、カプリン酸貴金属塩等を還元性溶媒である炭素数4~8の一価アルコールで還元するときに、市販の電子レンジ等で反応液にマイクロ波をかけて加熱し、銀、金、白金などの貴金属ナノ粒子を製造することが記載されている。また、特許文献2には、脂肪酸銅塩を炭素数1~40の炭化水素基を有する還元性溶媒で還元するときにマイクロ波を照射して反応液を加熱し、銅ナノ粒子を製造することが記載されている。特許文献1と2には前記反応液を入れて流通させる反応管に相当する記載がなく、特許文献1と2はバッチ処理を開示していると思われる。
 特許文献3と4にはマイクロ波キャビティー中を通っている反応管の中に金属塩と分散剤と還元剤を含む反応液を流し、マイクロ波を反応液に照射して反応液を加熱しながら、金属ナノ粒子を連続的に製造することが記載されている。しかし、反応管内壁への金属の析出に関しては記載がない。
 この他、多くの特許文献には、反応液にマイクロ波を照射することにより、反応液の均一で立ち上がりの速い温度上昇をもたらす効果が期待され、還元反応を効果的に進めることができると記載されている。そして、製造されるナノ粒子の粒径のバラツキが少なくなること、反応時間が短くなること、製造コストを低減できることなどが期待できると記載されている。
 発明者らの実験では、金属塩と還元剤と分散剤を含む反応液を反応管に流し、マイクロ波照射による加熱の下で還元反応を促進させ、金属ナノ粒子を製造するときに、金属層が反応管の内壁に付着することが確認されている。特に、銀ナノ粒子の場合、そのレベルは深刻である。金属ナノ粒子の析出が反応管の壁面に生じると、反応管の壁面に生じた析出層がマイクロ波を反射する。その結果、発振器に損傷が生じたり、反応液の均一性の高い加熱ができなくなくなったり、加熱の効果が全く生じなくなるなどの問題を生じることが確認されている。
 また、反応管に反応液を流しながら金属ナノ粒子を連続的に製造する場合に、前記のマイクロ波による加熱効果に問題が生じることが確認されている。そのほかに、反応管が目詰まりを起こし、反応液が流れなくなり、これにより、爆発を生じる危険性があったり、金属ナノ粒子の製造品質の著しい悪化を招いたり、反応管を取り替えなければならなくなったり、製造コストの上昇を招いたりするなど、大きな問題が生じることが確認されている。また、マイクロ波照射の利点が大きく損なわれてしまうという問題を生じることが確認されている。
 しかし、マイクロ波を照射しながらナノ粒子を製造する場合に発生する前記問題の解決を図ろうとする提案は見あたらない。バッチ処理で反応液にマイクロ波を照射して反応液中の金属塩の還元反応を行わせるときに、容器の内壁に金属析出物が付着し、容器を破損させてしまうなどの問題が生じること、及びそれを解決する方法が特許文献5に記載されている。
 特許文献5には、金属酸化物や金属水酸化物を有機溶媒で溶解した反応液をガラス容器内で還元し、金属ナノ粒子を生成することが開示されている。また、マイクロ波を用いて反応液の温度を高め、一定時間還元反応を続けると、金属微粒子が容器の内壁面に付着することが開示されている。また、その付着物がマイクロ波を吸収して加熱され、容器が局部的に高温になり、ガラスが破損する危険性が指摘されている。
 これを解決するため、特許文献5では、1L(1リットル)のセパラブル容器に、マイクロ波を吸収し易い有機溶媒とマイクロ波を吸収し難い有機溶媒の混合溶媒を入れ、この混合溶媒に金属酸化物または金属水酸化物と金属元素に対して等モル量以下の有機修飾剤を添加し、得られた溶液に還元剤を加え、得られた反応液をマイクロ波で加熱して金属ナノ粒子を製造することが記載されている。マイクロ波を吸収し易い有機溶媒とマイクロ波を吸収し難い有機溶媒の混合溶媒を用いることの理由の一つとして、マイクロ波を容器の外側から反応液に照射したときに、容器の壁面に近いところでマイクロ波が吸収されてしまうことに対する緩和策をあげている。金属塩の種類、マイクロ波を吸収しやすい溶媒、マイクロ波を吸収しにくい溶媒、有機修飾剤などには、多くの種類が提案されている。
 特許文献5では、さらに、反応容器の金属微粒子が析出して付着しない部分にはマイクロ波透過材料を用い、反応容器の金属微粒子が析出して付着する部分にはマイクロ波遮蔽部材を配置することが記載されている。
 本発明者らの実験によれば、一部がマイクロ波照射場を通るフッ素樹脂製の管状反応管に反応液を流通させ、反応液にマイクロ波を照射し、金属ナノ粒子を還元し、もって、金属ナノ粒子を製造しようとする場合、特許文献5も含めた従来の方法では、反応管の内壁に析出物が付着することは避けられないことが判明した。また、極めて深刻な問題があることも判明した。
 例えば、内径が2mmであり、外径が3mmであり、円筒型のマイクロ波キャビティーに入れる部分の長さが100mmであるフッ素樹脂製反応管に反応液を流通させる。また、この反応管に周波数2.4~2.5GHzのTM010モードのマイクロ波を照射し、銅ナノ粒子や銀ナノ粒子などを生成する。このような場合に、特許文献5に開示されている方法を用いることができないことは自明である。
 マイクロ波キャビティー中を通っている反応管の中に、金属塩と還元剤と合成される金属ナノ粒子の分散剤を含む反応液を流し、マイクロ波を照射して反応液を加熱しながら金属ナノ粒子を製造する場合、反応管内壁への銀析出物が生じる。また、それによるマイクロ波の反射が起こる。その結果、マイクロ波が反応液に到達せず、還元の適温になっていた反応液の温度を還元に不適切な温度に低下させてしまい、生成物の中に還元未反応の金属塩が混入してしまい、ナノ粒子の収率が低くなる。
 前記のように、反応管に、銀塩を溶解させた溶液と銀ナノ粒子の分散剤と前記銀塩の還元剤を含む反応液を流通させ、反応液にマイクロ波を照射して反応液の温度を還元適性温度まで高めて、還元反応を行わせると、銀析出物が反応管内壁に付着しはじめ、種々の問題が発生する。
 すなわち、反応管内壁に付着した銀析出物により、反応管の外部から反応管に照射しているマイクロ波が反射され、還元の適温になっていた反応液の温度を還元に不適切な温度に低下させてしまう。また、未反応の溶液が所定量以上に混入し、製造予定の銀ナノ粒子の品質を低下させてしまう。金属ナノ粒子の製造に大きな障害が生じる。
 また、銀析出物の付着で反応管が目詰まりを起こし、反応液の流通が止まってしまう問題が生じる。また、反応管の温度分布が大きく変わったりするなどの問題が生じる。
 このような現象は製造しようとする金属の種類によってもかなり異なるが、他の金属でも注意を要する、解決すべき課題である。例えば、銅でも上記現象が起こることが確認されている。
 種々の金属ナノ粒子の連続的な合成の公開特許によって提案され始めており、その合成・精製方法については、生産性、簡便さ、低コスト、スケールアップなどの可能性が開示されている。しかし、実際に前記の問題を解決しようとする提案がなされていない。
特開2004-353038号公報 特開2007-056321号公報 特開2011-162837号公報 特開2013-019025号公報 特開2011-012290号公報
 本発明は前記の事情に鑑みなされたもので、本発明の解決すべき課題の一つは、反応管に流通させる反応液にマイクロ波を照射して還元反応を促進し、ナノ粒子を連続的に製造する工程において、反応管内壁に析出物が付着するのを大幅に低減させる金属ナノ粒子の連続的な製造方法及び製造装置を提供することにある。
 本発明の解決すべき課題の一つは、前記方法によって製造したナノ粒子および/またはナノ粒子を含むコロイドを提供することにある。
 本発明の解決すべき課題の一つは、反応液を流通させる反応管の内壁に付着する析出物による反応液の流通障害を軽減することにある。
 本発明の解決すべき課題の一つは、コアシェル型ナノ粒子も含めて、製造コストが安いナノ粒子を提供することにある。本発明の解決すべき課題の一つは、酸化しやすいナノ粒子の不要な酸化を軽減することにある。
 本発明の解決すべき課題の一つは、自動化や半自動化が可能な金属ナノ粒子の製造装置を提供することにある。
 本発明の解決すべき課題の一つは、前記の金属ナノ粒子の連続的な製造方法あるいは製造装置を用いて金属ナノ粒子を安価に提供することにある。
 本発明の解決すべき課題の一つは、マイクロ波照射工程で、ナノ粒子の原料塩を含む反応液に水素その他の気体を導入し、ナノ粒子の性質を制御することにある。
 課題を解決するために成された本発明の実施の形態例としての第1の発明(以下、発明1という)は、反応管に、金属ナノ粒子前駆体を含む第1の液(すなわち、少なくとも金属ナノ粒子の原料塩を含む第1の液)と、その還元剤を含む第2の液(すなわち、前記原料塩の還元剤を含む第2の液)とを混合させた液である反応液を流通させて、金属ナノ粒子を連続的に合成する工程を有する金属ナノ粒子の連続的な製造方法において、前記反応液が気体と液体の混相流である金属ナノ粒子の連続的な製造方法である。
 課題を解決するために成された本発明の実施の形態例としての第2の発明(以下、発明2という)は、少なくとも一部がマイクロ波照射場(空胴共振器や導波管など)に配置された反応管に金属ナノ粒子前駆体溶液を含む第1の液(すなわち、少なくとも金属ナノ粒子の原料塩を含む第1の液)と、その還元剤を含む第2の液(すなわち、前記原料塩の還元剤を含む第2の液)とを混合させた液である反応液を流通させる工程と、
 前記反応液にマイクロ波を照射して、前記反応液を加熱する工程と、
 前記反応管の少なくとも一部に、第1の液、第2の液および前記反応液の少なくとも1つを流通させて、金属ナノ粒子の還元作用を制御し、金属ナノ粒子を連続的に合成する工程とを有する金属ナノ粒子の連続的な製造方法において、
 前記第1の液および/または前記第2の液および/または前記反応液が、気体と液体の混相流である金属ナノ粒子の連続的な製造方法である。
 発明1または2を展開して成された本発明の実施の形態例としての第3の発明(以下、発明3という)は、前記第1の液と第2の液を混合して反応液にする前に、前記第1の液と第2の液の少なくとも一方に気体を挿入して混相流にする工程をさらに有する発明1または2に記載の金属ナノ粒子の連続的な製造方法である。
 発明3を展開して成された本発明の実施の形態例としての第4の発明(以下、発明4という)は、前記第1の液と第2の液に挿入する気体が異なる種類の気体である発明3に記載の金属ナノ粒子の連続的な製造方法である。
 発明1~4を展開して成された本発明の実施の形態例としての第5の発明(以下、発明5という)は、前記第1の液と第2の液を混合した反応液に、気体を挿入して混相流にする工程を有する発明1~4のいずれかに記載の金属ナノ粒子の製造方法である。
 発明3~5を展開して成された本発明の実施の形態例としての第6の発明(以下、発明6という)は、挿入する気体の圧力または線速度が制御されている発明3~5のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明1~6を展開して成された本発明の実施の形態例としての第7の発明(以下、発明7という)は、前記気体が不活性ガスである発明1~6のいずれかに記載の金属ナノ粒子の連続的な製造方法である。なお、第7の発明は、前記気体が水素ガスと反応性ガスのうちの少なくとも1種類のガスである発明1~6のいずれかに記載の金属ナノ粒子の連続的な製造方法であってもよい。
 発明7を展開して成された本発明の実施の形態例としての第8の発明(以下、発明8という)は、前記不活性ガスが窒素ガスである発明7に記載の金属ナノ粒子の連続的な製造方法である。
 発明2~8を展開して成された本発明の実施の形態例としての第9の発明(以下、発明9という)は、前記マイクロ波がシングルモードである発明2~8のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明2~9を展開して成された本発明の実施の形態例としての第10の発明(以下、発明10という)は、前記マイクロ波がマルチモードである発明2~9のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明2~10を展開して成された本発明の実施の形態例としての第11の発明(以下、発明11という)は、前記マイクロ波のモードが、mを0以上の整数とし、nを1以上の整数とした場合、円筒型共振器でのTMmn0モード及び矩形型共振器でのTEm0nモード(反応管の流通方向をTExyzのy方向とする)から選ばれる一つである発明2~10のいずれかに記載の金属ナノ粒子の連続的な製造方法である。矩形型共振器ではTE011、TE101、TE012、又はTE201モードが特に好ましい。
 発明7~11を展開して成された本発明の実施の形態例としての第12の発明(以下、発明12という)は、少なくとも金属ナノ粒子の前駆体を含む溶液(第1の液)を調合する工程、金属ナノ粒子の還元剤を含む溶液(第2の液)を調合する工程、溶液1と溶液2を混合して混合液(以下、反応液という)にする工程、不活性ガスを第1の液および/または第2の液および/または反応液に挿入する工程、第1の液および/または第2の液および/または反応液を所定の温度に加熱する工程をさらに有し、第1の液および/または第2の液および/または反応液を所定の送液速度で送液する発明7~11のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明2~12を展開して成された本発明の実施の形態例としての第13の発明(以下、発明13という)は、反応液をマイクロ波で加熱する前および/またはマイクロ波で加熱した後の少なくとも一部で、反応液を、マイクロ波以外の温度調整手段を用いて所定の温度にする工程をさらに有する発明2~12のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明2~13を展開して成された本発明の実施の形態例としての第14の発明(以下、発明14という)は、第1の液及び第2の液の液源、並びに流通管の少なくとも一部にマイクロ波以外の温度制御手段を用いて所定の温度にする工程をさらに有する発明2~13のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明13または14を展開して成された本発明の実施の形態例としての第15の発明(以下、発明15という)は、マイクロ波以外の温度制御手段が、ペルチエ素子を用いた温度制御手段である発明13または14に記載の金属ナノ粒子の連続的な製造方法である。
 発明15を展開して成された本発明の実施の形態例としての第16の発明(以下、発明16という)は、マイクロ波以外の温度制御手段が、ペルチエ素子を配した熱伝導性の比較的よい物体に反応液を接触させるか、そのような容器内を通過させる温度制御手段である発明15に記載の金属ナノ粒子の連続的な製造方法である。
 発明2~16を展開して成された本発明の実施の形態例としての第17の発明(以下、発明17という)は、マイクロ波照射場内の温度の低下幅は15°C以下である発明2~16のいずれかに記載の金属ナノ粒子の連続的な製造方法である。前記温度の低下幅は10°C以下であることがより好ましい。なお、マイクロ波照射場内の温度に関しては、突発的な一瞬の低下幅が少ないことが好ましい。
 発明7~17を展開して成された本発明の実施の形態例としての第18の発明(以下、発明18という)は、不活性ガスの反応液への挿入量が、マイクロ波照射場における反応管の平均内径を2r(mm)とした場合、0.4×r(リットル)/分以上3×r(リットル)/分以下である発明7~17のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明18を展開して成された本発明の実施の形態例としての第19の発明(以下、発明19という)は、不活性ガスの反応液への挿入量が、1.0×r(リットル)/分以上、好ましくは1.0×r(リットル)/分以上3×r(リットル)/分以下である発明18に記載の金属ナノ粒子の連続的な製造方法である。
 発明7~17を展開して成された本発明の実施の形態例としての第20の発明(以下、発明20という)は、反応液に挿入した不活性ガスの反応管内における線速度が2m/秒以上である発明7~17のいずれかに記載の金属ナノ粒子の製造方法である。
 発明20を展開して成された本発明の実施の形態例としての第21の発明(以下、発明21という)は、反応液に挿入した不活性ガスの反応管内における線速度が5m/秒以上である発明20に記載の金属ナノ粒子の連続的な製造方法である。
 発明1~21を展開して成された本発明の実施の形態例としての第22の発明(以下、発明22という)は、製造装置内の、前記第1の液、前記第2の液、前記気体、及び前記反応液の各流路又はその近傍の少なくとも一部に配置され、温度、流量、液に関する反応進行情報、及び粒径に関する情報の少なくとも1つを検出するセンサーからの出力を所定の制御系にフィードバックして制御を行う工程をさらに有する発明1~21のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明1~22を展開して成された本発明の実施の形態例としての第23の発明(以下、発明23という)は、製造装置内の反応液の流路もしくは分路における金属ナノ粒子の粒径を測定する工程をさらに有する発明1~22のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明1~23を展開して成された本発明の実施の形態例としての第24の発明(以下、発明24という)は、製造装置内の反応液の流路もしくは分路に設けられたジョイント(T型やY型等の)から反応液を採取して金属ナノ粒子の粒径を測定する工程をさらに有する発明1~23のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明24を展開して成された本発明の実施の形態例としての第25の発明(以下、発明25という)は、製造装置内の反応液の流路もしくは分路において金属ナノ粒子の粒径を測定する手段がレーザ光の位相回転を利用した手段である発明24のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明1~25を展開して成された本発明の実施の形態例としての第26の発明(以下、発明26という)は、反応液の流路に、所定の粒径範囲または所定の粒径以上または所定の粒径以下の金属ナノ粒子を分離する手段が設けられている発明1~25のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明26を展開して成された本発明の実施の形態例としての第27の発明(以下、発明27という)は、金属ナノコロイドを精製する手段が限外ろ過である発明26に記載の金属ナノ粒子の連続的な製造方法である。
 発明1~27を展開して成された本発明の実施の形態例としての第28の発明(以下、発明28という)は、反応液の製造手順が、第2の液を先に流通させておき、この第2の液へ第1の液を混合させる手順である発明1~26のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明28を展開して成された本発明の実施の形態例としての第29の発明(以下、発明29という)は、前記第2の液に前記第1の液を混合する前に、前記第2の液に前記気体を挿入する発明28に記載の金属ナノ粒子の連続的な製造方法である。
 発明1~29を展開して成された本発明の実施の形態例としての第30の発明(以下、発明30という)は、前記第1の液が銅の前駆体を含む液である発明1~29のいずれかに記載の金属ナノ粒子の連続的な製造方法である。
 発明30を展開して成された本発明の実施の形態例としての第31の発明(以下、発明31という)は、前記第1の液が、硝酸銅(Cu(NO・3HO)104.0g(0.42mol)と水酸化銅(Cu(OH))41.6g(0.43mol)に、イオン交換水472gを加え、モノエタノールアミン(NH-CHCH-OH)177.6g(2.90mol)及びアンモニア水(NH)32.0g(アンモニア0.53mol)を添加して銅を溶解させ、得られた溶液に、さらに、銅ナノ粒子の分散剤となるDisperbyk-190(登録商標)を40.64g添加し、ジエチレングリコールモノブチルエーテル(以下、BDGという)154.4g、ドデカン(C1226)305.92gを投入して調合した溶液である発明30に記載の金属ナノ粒子の連続的な製造方法である。なお、本発明では、反応液の構成成分を前記の割合で適宜増減して構成してもよい。
 発明30または31を展開して成された本発明の実施の形態例としての第32の発明(以下、発明32という)は、前記第2の液が、銅前駆体の還元剤であるヒドラジン・1水和物(NHNH・HO)99.9gに、イオン交換水270.1gを加えて調合した溶液である発明30または31に記載の金属ナノ粒子の連続的な製造方法である。なお、本発明では、反応液の構成成分を前記の割合で適宜増減して構成してもよい。
 発明1~29を展開して成された本発明の実施の形態例としての第33の発明(以下、発明33という)は、前記第1の液が銀の前駆体を含む液である発明1~29のいずれか1項に記載の金属ナノ粒子の連続的な製造方法である。
 発明33を展開して成された本発明の実施の形態例としての第34の発明(以下、発明34という)は、前記第1の液が、硝酸銀(AgNO3)720g(4.24mol)をイオン交換水5040gに溶解させて調合した溶液である発明33に記載の金属ナノ粒子の連続的な製造方法である。なお、本発明では、反応液の構成成分を前記の割合で適宜増減して構成してもよい。
 発明33または34を展開して成された本発明の実施の形態例としての第35の発明(以下、発明35という)は、前記第2の液が、2-ジメチルアミノエタノール1888g(21.18mol)に、イオン交換水2308gを投入し、そこへ、Disperbyk-190を86g添加し、さらに、BDG1308g及びドデカン2598gを加えて調合した溶液である発明33または34に記載の金属ナノ粒子の連続的な製造方法である。なお、本発明では、反応液の構成成分を前記の割合で適宜増減して構成してもよい。
 発明33~35を展開して成された本発明の実施の形態例としての第36の発明(以下、発明36という)は、硝酸銀(AgNO3)479g(2.82mol)をイオン交換水3363gに溶解させて調合した溶液である発明33~35のいずれかに記載の金属ナノ粒子の連続的な製造方法である。なお、本発明では、反応液の構成成分を前記の割合で適宜増減して構成してもよい。
 発明33~36を展開して成された本発明の実施の形態例としての第37の発明(以下、発明37という)は、前記第2の液が、2-ジメチルアミノエタノール1258g(14.11mol)に、イオン交換水1538gを投入し、そこへ、Disperbyk-190を57g添加、さらに、BDG872g及びドデカン1732gを加えて調合した溶液である発明33~36のいずれかに記載の金属ナノ粒子の連続的な製造方法である。なお、本発明では、反応液の構成成分を前記の割合で適宜増減して構成してもよい。
 課題を解決するために成された本発明の実施の形態例としての第38の発明(以下、発明38という)は、発明1~37のいずれかに記載の金属ナノ粒子の製造方法を用いて金属ナノ粒子を製造する金属ナノ粒子の連続的な製造装置である。
 課題を解決するために成された本発明の実施の形態例としての第39の発明(以下、発明39という)は、1~37のいずれかに記載の金属ナノ粒子の連続的な製造方法を用いて製造された金属ナノ粒子である。
 本発明者は、これらの各発明を用い、後記実施の形態例等をも考慮して、特許請求の範囲に記載の各請求項を案出した。
 本発明によれば、ナノ粒子の原料塩とナノ粒子の分散剤と原料塩の還元剤を含む反応液を反応管に流通させ、マイクロ波照射場を通過させながら、ナノ粒子の還元反応を進行させるとき、反応液を窒素やアルゴン等の不活性ガス等の気体とともにマイクロ波照射場を通過させてナノ粒子の還元反応を進行させ、ナノ粒子を連続的に製造することができる。よって、従来のように反応管内壁に析出物の付着を生じ、マイクロ波の反応液を加熱する効果を阻害したり、未反応液の合成液への混入を増加させたり、短時間で反応管の目詰まりを生じさせたりすることが防止される。また、連続的な製造の中止を余儀なくされるという大問題を大幅に緩和することができる。また、品質がよいナノ粒子を安価に提供できる。
本発明の実施の形態例に用いたナノ粒子の製造装置の模式図である。 本発明の実施例としての銅ナノ粒子の合成におけるマイクロ波照射による反応液の温度変化を示す図である。 本発明の実施例としての銅ナノ粒子の合成におけるマイクロ波照射でのマイクロ波の反射波強度変化を示す図である。 比較例としての銅ナノ粒子の合成におけるマイクロ波照射による反応液の温度変化を示す図である。
比較例としての銅ナノ粒子の合成におけるマイクロ波照射でのマイクロ波の反射波強度変化を示す図である。 実施例としての銀ナノ粒子の合成におけるマイクロ波照射での反応液の温度変化を示す図である。 比較例としての銀ナノ粒子の合成におけるマイクロ波照射での反応液の温度変化を示す図である。
 以下、本発明の実施の形態例を説明する。なお、説明の重複を避けるため、ナノ粒子の製造装置の説明で製造方法の説明やナノ粒子の説明を兼ねることもあり、その逆の場合もある。また、本発明の実施の形態の説明に用いる各図は、本発明の例の説明の都合上、特に断らずに部分的に拡大率を変えて図示する場合もあり、必ずしも実施例などの実物や記述と相似形でない場合もある。また、各図において、同様な構成成分については同一の番号を付けて示し、説明の重複を避けることもある。
 本発明に関する前記の説明も含めて、本願では、反応液への気体の導入および/又は反応液へのマイクロ波の照射による金属塩の加熱を中心に説明しているが、気体の導入および/又はマイクロ波の利用はこれに狭く限定されるものではない。また、連続的な製造方法という記載は、金属塩を含む反応液を反応管中に流通させて、反応管内壁への析出物付着を抑制しながら、一定時間反応液の処理を行わせることを意味する。したがって、長時間反応を連続して行うことが可能であるが、一定量のナノ粒子の製造を行ったら製造を中止することも含んでいる。さらに、ナノ粒子の原料を含む反応液に、気体の導入および/またはマイクロ波照射を行って、ナノ粒子の物性を変えることも本発明の範囲である。
 まず、銀鏡現象として広く知られている硝酸銀の還元作用を行った。硝酸銀溶液を液X1としてプランジャーポンプで4.55ml/分の速度でT字型ジョイントの第1のパイプに送液し、室温で、T字型ジョイントの第2のパイプに液X2として、硝酸銀の還元剤である2-ジメチルアミノエタノールと銀ナノ粒子の分散剤であるDisperbyk-190を含む液を8.15ml/分の速度で送液して、前記第1の液と混合し、得られた混合液を反応液としてT字型ジョイントの第3のパイプからフッ素樹脂製の反応管に入れ、マイクロ波を反応液に照射することにより、還元反応を進行させて銀ナノ粒子を合成することを試みた。
 しかし、反応液として前記液X1と液X2を混合するとすぐに、混合した反応液が反応管のマイクロ波照射部分を通過する前に還元反応が進行し、極めて短時間で反応管が目視でわかるくらい真っ黒になった。また、マイクロ波を照射しない状態ですでに銀鏡反応が生じはじめてしまい、銀ナノ粒子の連続的な合成はできなかった。
 前記液X1に、ジエチレングリコールモノブチルエーテル(以下、BDGともいう)とドデカン(C1226)を加えて第1の液とし、前記X2を第2の液とし、第1の液と第2の液を前記のようにT字型ジョイントで混合し、この混合液にマイクロ波を照射することにより、還元反応を進行させて銀ナノ粒子を合成することを試みた。
 しかし、銀は、ナノ粒子の合成過程において反応管内壁に析出物を生じさせる可能性があるため、金属材料を銀から銅に変え、マイクロ波照射を行って、銅ナノ粒子の合成の実験を試みた。
 硝酸銅と水酸化銅を溶解させた溶液に銅ナノ粒子の分散剤としてのDisperbyk-190を添加し、それにBDGとドデカンを投入したものを第1の液とし、銅塩の還元剤としてのヒドラジンを第2の液とした。プランジャーポンプで、第1の液を10.2ml(ミリリットル)/分の速度で、第2の液を2.50ml/分の速度で、T字型ジョイントにそれぞれ送り、第1の液と第2の液を混合して反応液とし、この反応液を反応管に送液し、反応液にマイクロ波を照射することにより、銅ナノ粒子の合成を試みた。
 反応管内壁に銅の析出物はできたが、一定時間は連続して銅ナノ粒子の合成をすることができた。ドデカンを添加しないと銅ナノ粒子を連続して合成できる時間が短くなることもわかった。ドデカンは疎水性で、PFA(四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂)やPTFE(四フッ化エチレン樹脂、テフロン(登録商標))の反応管と親和性があり、水溶液中の金属塩、あるいは金属ナノ粒子を反応管に接触しにくくし、金属の反応管への析出を抑制し、反応を進めることができると推察される。また、金属析出の種が反応管に生成しても、一定量以下の場合はドデカンが反応管を洗い流すことで除去されると考えられる。ドデカンの好ましい投入量は、多くの場合、水相にたいして10~30%である。
 しかし、ドデカンの添加だけでは、マイクロ波の照射を行いながら銀のような金属ナノ粒子の合成を長時間続けることができないこともわかった。そこで、還元反応により生じる析出物が反応管の内壁に付着することを抑制する方法について、通常は行われないことも含めて種々の実験を行った。
 その結果、反応液にマイクロ波を照射する前に、金属の種類によってはマイクロ波キャビティーに近いところで、反応液を流通させている反応管に窒素のような不活性ガスを挿入すると、反応管内壁に析出物が付着してマイクロ波を反射させたり、反応管を詰まらせたりすることなく、適切な還元反応を続けることが可能であるということを見いだした。以下に、詳細に説明する。
 不活性ガスを反応液に導入することにより、反応管内を流れる反応液の流れが一方方向に近くなり、金属の析出を抑制できると考えられる。ドデカンと不活性ガスの効果で、反応温度が一定になり、極めて長時間の金属ナノ粒子の製造が可能になった。
 さらに、金属の反応管内壁への析出の抑制及び反応温度の一定化には、不活性ガスの流速の適度な増大とともに、金属塩や還元剤の溶液の流速の高速化も関係することが分かった。
 また、金属ナノ粒子の連続的な製造法では、反応管内での反応液の滞留時間、金属塩の溶液や還元液の流速、不活性ガスの流速などが重要であることも判明した。
 マイクロ波照射部における温度が一定になるように製造装置を運転するためには、マイクロ波を良く吸収するBDGの量も重要である。BDGの割合が少ないと、反応液を加熱し難くなり、加熱する為に電力を余計にかけなければならない。また、目標温度からはずれる傾向になりやすい。
 図1は、これらの諸要件を考慮して本発明の実施の形態例を説明するために作成したナノ粒子製造装置の模式図である。図中、全ての構成要件を全ての形態例に使用するのではなく、形態例によっては不要なものもあり、具備していない場合もあるが、説明の都合上、具備している場合を説明する。図1で、符号1はマイクロ波照射口(導波管)、2はマイクロ波照射場、4は電界モニター、5は温度計、6はマイクロ波発振器・制御器、7,7a,7bは反応管、8は反応液、21は不活性ガス源、22~25はT字型ジョイント、30は接続部、30aは反応液の取り出し部、31は第1液源(例えば、A液、C液など)、32は第2液源(例えば、B液、D液など)、33は第3液源(例えば、E液など)、34は回収タンク、72~78は各液流路または液とガスの混合体流路、71は不活性ガスの流路である。これらのうちには、全てをナノ粒子製造装置に設ける必要はなく、必要なものだけ用いて装置を構成することができる。符号S-1~S-14は、反応系制御その他の目的に用いる温度、圧力、流量、流速、電界強度等、反応液に関する情報を測定するセンサーで、液源、液流路、ガス流路、回収タンク、マイクロ波照射場などに配置してある。センサーは、不必要な場合は設けなくてもよい。a-1~a-9は矢印である。送液ポンプは図示していない。実施の形態例によっては図示のうちの一部だけで構成されるものもある。また、図示していないが、各液源、回収タンクなどに攪拌装置を配置し、各液、反応液等の均一化を図っている。
 図1で、例えば、少なくとも符号33と24がない場合について説明する。たとえば混合する液が2種類の場合、液源31に1種類目の液を用意し、液源32に2種類目の液を用意し、それぞれの液源にそれぞれ液送出手段としてのたとえばプランジャーポンプを設け、各所定の送液速度に設定する。液源31,32からの各液は、液源31,32から所定の速度でそれぞれ液流路73,74を矢印a-2,a-7の方向に送られ、T字型ジョイント22,23でそれぞれ不活性ガス源21から矢印a-1,a-4方向に送られてくる不活性ガスを導入される。その後、不活性ガスが導入された各液は、流路77,76を通り、T字型ジョイント25に送られ、T字型ジョイント25で混合され、T字型ジョイント25の残りの流路から一端が反応管7に接続されている液流路78に送られる。
 図1で符号33がある場合は、液原33の液は、所定の速度で液流路72を通り、T字型ジョイント24で不活性ガス源21からの不活性ガスを導入されて後、T字型ジョイント23で第2液源32からの液と混合される。このとき、不活性ガス源21からの不活性ガスは第2液源32からの液にも混合される。なお、液の種類などによって、不活性ガス源21が第2液源32にも直接配置されることもある。
 液流路78からの液は、マイクロ波照射場としてのキャビティー2を通る反応管7に入り、マイクロ波照射場2でマイクロ波の照射を受ける。
 マイクロ波照射場2内の反応管7は、マイクロ波の周波数(300MHz~300GHzの範囲内)、マイクロ波のモード、液の種類などによって最適形状が異なる場合がある。マイクロ波照射場2内における反応管7の形状を適宜選択することによって、マイクロ波照射の効果をコントロールすることが出来る。反応管7の形状としては、直線状、S字型、コイル状、それらの混合形状等が挙げられる。また、反応管7の一部をマイクロ波照射場2外に配置することによってマイクロ波照射の効果をコントロールすることも出来る。
 接続部30は反応管7の出力部7aと反応管7bを接続する接続部であり、ナノ粒子の製造目的や装置、部品の状況などによっては設けない場合もある。その場合は、反応管7bは反応管7と同じ仕様の場合もあり、あるいは目的によっては直径を変えることもある。符号30aは反応液の取り出し部であり、必要に応じて設け、反応のコントロールに利用されることもある。
 本発明の実施の形態例を種々検討した結果、マイクロ波照射を受けてナノ粒子原料液の還元反応を含む合成工程で、反応管の内壁に析出物の付着を生じさせないためには、マイクロ波照射の前に反応液に不活性ガスを導入することが好ましいことが判明した。不活性ガスの導入は、反応液を構成する各液の流通のさせ方、不活性ガスの導入の仕方などが重要な要素であることも判明した。前記第1の液と第2の液を混合して反応液を形成してから不活性ガスを反応液に導入しても、反応管壁に鏡現象が生じることを緩和することができる。このほか、第1の液に不活性ガスを導入する方法、第2の液に不活性ガスを導入する方法、あるいは、第2の液に不活性ガスを導入して液流路内を流通させているところへ第1の液を混合する方法、第2の液に不活性ガスを導入して液流路内を流通させているところへ不活性ガスを導入した第1の液を混合する方法など、ナノ粒子の原料とその還元剤の選択の仕方に合わせた適切な方法がある。
 不活性ガスを導入した反応液を反応管中に流すことにより金属析出物が反応管内壁へ付着するのを効果的に予防することができる。たとえば、金属ナノ粒子を合成する場合、不活性ガスを導入した還元剤を含む第2の液を管内に流通させているところへ、不活性ガスを導入した金属塩を含む第1の液を混合する方法や、不活性ガスを導入した還元剤を含む第2の液を管内に流通させているところへ金属塩を含む第1の液を混合する方法がある。第1の液と第2の液を混合して反応液を形成してから、次の段階で不活性ガスを反応液に導入する方法でも不活性ガス導入の顕著な効果を発揮することができる。
 以下の実施例では、流路にそれぞれ第1液源からの液と第2液源からの液を流して各液に不活性ガスを混合し、T字型ジョイントで両液を混合して反応液を形成してから、反応液にマイクロ波を照射する方法の実施の形態例を説明する。
 図1に示してある電界モニター4と温度計5の測定結果は、まず、マイクロ波発振器・制御器6にフィードバックされる。不活性ガスの流量は、図1のセンサーS-8,S-1で測定される。反応液を構成する各液、ガス、及び混合物の流量、流速、並びに成分;ナノ粒子の粒径・分布などの状況;並びに反応液とガスの混合状態などをセンサーS-1~S-13で必要に応じて測定し、マイクロ波発振器・制御器、各液の送流装置、図示していない温度制御装置、場合によりナノ粒子合成系を制御している制御系に送り、ナノ粒子の合成品質を管理することができる。
 反応管内壁への析出付着物の光学的および/または電気的検出手段を反応管や制御回路等へ設けることができる。反応液の反応過程や反応後のナノ粒子の粒径や粒径分布、平均粒径などの電気的および/または光学的測定手段を反応管あるいはその近傍あるいは回収タンクなどに設けることができる。
 本発明の実施の形態例においては、反応管内壁への金属析出物付着の状況を、反応液の温度とマイクロ波の反射波の電界強度を測定して判断し、その結果をナノ粒子の合成制御に用いた。また、必要に応じて各センサーからの情報もナノ粒子の合成制御に用いる。
 本発明の実験においては、反応管の一例として、少なくともマイクロ波を照射する部分にマイクロ波を透過するフッ素樹脂製の反応管を基本部分として用いた。ただし、本発明の権利範囲は、この反応管に狭く限定されない。反応液としては、まず、銅や銀のような反応管の内壁に析出物を付着させやすい材料、すなわち管内壁に銅鏡や銀鏡を形成させやすい銅塩や銀塩を含む材料を選び、分散剤や還元剤を含む反応液を作製した。その反応液を反応管の中に流通させた。反応液流路の少なくとも一部で反応管中の反応液にマイクロ波を照射しながら,反応液の還元に適した所定の温度にして還元反応を進行させ、反応管の内壁に付着物が生じるか否かを種々調査した。
 反応液の加熱に用いるマイクロ波はシングルモード、マルチモードのいずれも用いることができる。また、マイクロ波共振器としては、円筒型、矩形型いずれでもよいが、円筒型がより好ましい。マイクロ波は、一般に、マグネトロンや半導体発振器などから導波路を介して試料を加熱するマイクロ波照射場に送られる。また、マイクロ波のモードによっては、導波路の一端にマイクロ波反射体を設けて反射させ、導波路内の特定位置に電場・磁場を集中させるモードを形成し、試料に発熱させて用いることもできる。
 マイクロ波の周波数帯としては、装置の入手しやすさの観点から24~25GHz帯の周波数を用い、前記以外の周波数でも実験した。マイクロ波のモードは,主としてシングルモードでTM010モードを用いた。しかし、マイクロ波の周波数、モードともに、これに狭く限定されない。
 マイクロ波のモードに、TMモードを用いる場合は、mを0以上、nを1以上の整数として、TMmn0モードを用いるのが特に好ましい。TEモードを用いる場合は、TE011,TE101,TE012,TE201モードを用いるのが特に好ましい。
 シングルモードに限らず、マルチモードを用いることができる。マイクロ波照射は円筒型マイクロ波共振器に狭く限定されず、方形導波管を用いるものなど、マイクロ波加熱の長所を用いることができるものならいずれも本発明の効果を発揮することができる。
 実施の形態例では、共振器として円筒型マイクロ波共振器であって、マイクロ波出力が最大500Wである円筒型マイクロ波共振器を用い、反応管の材質としてPFAを用いた。マイクロ波のモードとしては、精度の面で優れたモードの1つであるシングルモードのTM010を用いた。なお、本発明の範囲はこれらに狭く限定されない。
 反応管の基本部分の寸法は、これに狭く限定されないが、外径φ3mm、内径φ2mm、マイクロ波共振器に入る基本部分の長さが41cmのものを用いた。反応管は、前記基本部分の長さ41cmのうちの10cmをマイクロ波のTM010モードに概ね直交する方向に、マイクロ波キャビティーの中央部に配置し、反応管内を流通する反応液にマイクロ波を照射して反応液を所定の温度に効果的に加熱し、還元反応を進めた。反応液の流通方向に、反応管の基本部分の前後に同じ内径の反応管を接続し、それぞれ、反応液の入力側、出力側とした。
 以下、本発明の実施の形態例を、鏡現象の顕著な銀ナノ粒子と、少し緩やかな銅ナノ粒子を例にとり、従来の製造方法を用いた比較例とともに説明する。
 図1で符号33と24がない場合を用いて、本発明の実施の形態例としての銅ナノ粒子の合成例を図2~図5を用いて説明する。図2は本発明の実施例としての銅ナノ粒子の合成におけるマイクロ波照射による反応液の温度変化を示す図、図3は本発明の実施例としての銅ナノ粒子の合成におけるマイクロ波照射でのマイクロ波の反射波強度変化を示す図、図4は比較例としての銅ナノ粒子の合成におけるマイクロ波照射による反応液の温度変化を示す図、図5は比較例としての銅ナノ粒子の合成におけるマイクロ波照射でのマイクロ波の反射波強度変化を示す図である。
 図2~図5において、符号50,52,53は温度曲線、50a,52a,53aはマイクロ波の立ち上がり時の温度曲線、50b,52b,53bはマイクロ波照射が定常状態に達してからの温度曲線、50c,53cは合成終了によるマイクロ波照射終了時の温度曲線、52cは合成中断によるマイクロ波照射終了時の温度曲線、51,54,55はマイクロ波の反射波強度曲線、51a,54a,55aはマイクロ波の立ち上がり時の反射波強度曲線、51b,54b,55bはマイクロ波照射が定常状態に達してからの反射波強度曲線、51c,55cは合成終了によるマイクロ波照射終了時の反射波強度曲線、54cは合成中断によるマイクロ波照射終了時の反射波強度曲線を示す。
(実施例1)
 銅ナノ粒子の合成例1。
反応液としては、下記のA液とB液を充分に混合したものを用いた。
 A液の調合。
 硝酸銅(Cu(NO・3HO)104.0g(0.42mol)と水酸化銅(Cu(OH))41.6g(0.42mol)を投入し、イオン交換水472gを加えた。そこへ、攪拌しながら、モノエタノールアミン(NH-CHCH-OH)177.6g(2.90mol)、続けてアンモニア水(NH)32.0g(アンモニア0.53mol)を添加して銅を溶解させた。さらに、分散剤であるDisperbyk-190を40.64g添加し、BDG154.4g、ドデカン305.92gを投入し、充分攪拌し、A液として第1液源31に用意した。
 B液の調合。
 還元剤であるヒドラジン・1水和物(NHNH・HO)を99.9g添加し、そこへ、イオン交換水270.1gを加えて、充分攪拌し、B液として第2液源32に用意した。
 A液とB液の混合。
 水相とドデカンを充分混合させたA液をプランジャーポンプで10.2ml/分で流路73から送出し、ガス源21から流路71を通って送出される窒素ガスとT字型ジョイント22で混合して、流路77を通ってT字型ジョイント25へ向けて送る。
 B液を2.50ml/分の速度で流路74から送出し、ガス源21から流路71を通って送出される窒素ガスとT字型ジョイント23で混合して、流路76を通ってT字型ジョイント25へ向けて送る。T字型ジョイント25で、流路77からきた窒素ガスとA液の混合体と流路76からきた窒素ガスとB液の混合体とが混合され、流路78へ反応液として送出される。
 不活性ガスとしての窒素ガスの導入速度は、A液とB液に混合されるガスを合計して、0.4L/分(毎分0.4リッター)とした。
 銅が反応菅内壁に析出・付着することすなわち銅鏡現象を発生することの検出は、マイクロ波照射場としてのキャビティー内の温度計5による反応管内の温度測定と電解モニター4による反応管からのマイクロ波の反射波強度の測定によるとともに、銅鏡現象の確認をキャビティーの覗き窓から反応管内壁の目視によって行った。マイクロ波照射による反応液の温度変化を縦軸に温度(°C)、横軸に時間(秒)をとって図2に、マイクロ波の反射波強度変化のデータを、縦軸に反射波の強度(W(ワット))、横軸に時間(秒)をとって図3にそれぞれ示す。
 目標温度を80°Cに設定してマイクロ波を照射し、銅が反応菅内壁に銅鏡現象を発生することなく、合成を2時間11分行い、予定したA液を流し切って銅ナノ粒子を合成することができた。反応温度の平均は80.0°Cで、反応温度は66.0°Cから93.2°Cの範囲であった。
 実施例1では反応管の材質にPFAを用いた。樹脂の中で透明度が高くて反応管の内壁に析出物の付着があれば判定しやすいこと、入手しやすいことなどの理由からPFAを選定した。PFAは熱に強く、反応管内壁への析出物の付着を目視でも比較的簡単に発見することができ、有用な反応管材料ともいえる。
(実施例2)
 銅ナノ粒子の合成例2。
 反応管の材質をPTFEにした以外は実施例1と同じ条件で銅ナノ粒子を合成を行い、銅鏡現象を発生することなく、概ね同じ時間で銅ナノ粒子の合成を行うことができた。
(比較例1)
 銅ナノ粒子の合成比較例1。
 窒素ガスを反応液A液、B液に導入することを除き、実施例1と同じ実験系を用いて、混合液ABを反応液として銅の合成を試みたところ、合成開始後4430秒で銅鏡が出て、反応液の温度が上昇しなくなり、銅ナノ粒子の合成ができなくなった。
 このときのマイクロ波による反応液の温度変化を、縦軸に温度(°C)、横軸に時間(秒)をとって図4に示す。また、マイクロ波の反射波強度のデータを、縦軸に反射波の強度(W(ワット))、横軸に時間(秒)をとって図5に示す。マイクロ波照射場としてのマイクロ波キャビティーの除き窓から反応管の内壁の様子を観察したところ、目視でもわかる程度に銅鏡が付着しているのが確認された。合成開始から4500秒までの反応液の温度変化とマイクロ波の反射波強度変化を、図4,図5に示す。
 図4、図5において、符号52cは銅析出物が付着して反応管内部の温度が上がらなくなり、40~30°C近くまで下がった状態を示す温度曲線、52dは52cの温度まで低下するときの状態を示す温度曲線、53は銅鏡ができた反応管から新しい反応管に取り替えて銅の合成を再開してからの温度曲線、53cは仕込み量の合成が終了した合成終了によるマイクロ波照射終了時の温度曲線、54cは銅析出物が付着して反応管内部の温度が上がらなくなり、40~30°C近くまで下がった状態を示すマイクロ波の反射波強度曲線、55は銅鏡ができた反応管から新しい反応管に取り替えて銅の合成を再開してからのマイクロ波の反射波強度曲線を示す。
 図4、図5では、合成開始後4400秒辺りから反射波の強度が上がり始め、それに伴い反応液の温度が低下してきて、反射波の上昇が決定的になる4430秒から反応液がマイクロ波により加熱されなくなった。4430秒あたりでは反応管内壁に銅鏡が付着しており、このことはキャビティーの除き窓から確認することができた。
(実施例3)
 銅ナノ粒子の合成例3。
 Disperbyk-190を60.96g、A液の流速を15.3ml/分、B液の流速を3.75ml/分、それ以外、すなわち、不活性ガスとしての窒素ガスの合計の導入速度を0.4L/分にすること、そのほかの条件を実施例1と同じ条件で銅ナノ粒子の合成を行った。反応管壁への析出物の付着を生じることなく計画した量の銅ナノ粒子の合成を行うことができた。反応温度の平均は80.0°Cで、反応温度は66.0°Cから93.1°Cの範囲であった。合成開始から5000秒以上銅鏡を生じることなく仕込み量全量の合成を行うことが出来た。
(実施例4)
 実施例1~3を実施する中で、不活性ガスの送量、各液の混合時の流速などによって、反応液の過熱状況やマイクロ波の反射波強度に違いがあることを見いだした。そこで、不活性ガスの送量、A液、B液の混合前の流速などを変えて実験した。
 銅ナノ粒子の合成例4。
 Disperbyk-190を60.96g、A液の流速を15.3ml/分、B液の流速を3.75ml/分、不活性ガスとしての窒素ガスの導入速度は、合計で、1.0L/分にした以外は実施例1と同じ条件で銅ナノ粒子の合成を行った。反応管壁への析出物の付着を生じることなく計画した量の銅ナノ粒子の合成を行うことができた。反応温度の平均は80.0°C、反応温度は68.2°Cから90.9°Cの範囲であった。
(実施例5)
 銀ナノ粒子の合成例1。
 図1の符号33,24がある場合に相当する。
 C液の調合。
 硝酸銀(AgNO)91.36g(0.54mol)をイオン交換水645.76gに溶解させて、C液として第1液源31に用意した。
 D液の調合。
 2-ジメチルアミノエタノール215.62g(2.42mol)、イオン交換水265.38gを投入し、そこへ、Disperbyk-190を8.44g添加、さらに、BDG60.40gを加え、D液として第2液源32に用意した。
 E液の調合。
 ドデカン297.14gとBDG89.14gを加え、混合してE液として第3液源33に用意した。
 C液、D液、E液を夫々3つのプランジャーポンプで、16.4ml/分、13.9ml/分、12.2ml/分で送液した。C液、D液、E液に流す窒素ガス速度を合計で1.8L/分とした。マイクロ波照射時の目標温度を70℃とし、反応管をPFAとし、反応温度が70°Cに達した52秒から5分間反応させた。残余の反応液は未使用であった。反応管内壁への銀の析出物付着は生じなかった。反応温度が70°Cに達してから反応温度は、63.0°Cから73.0°Cで変動し、平均は69.9°Cであった。
 反射波電力は、0W~219Wで、平均は31.8W、入射波電力は、272W~320Wで、平均は290.5Wであった。
 反応液の温度変化を図6に示す。縦軸、横軸は図2の場合と同様である。図6で、符号60は温度曲線、60aはマイクロ波の立ち上がり時の温度曲線、60bはマイクロ波照射が定常状態に達してからの温度曲線、60cは合成終了によるマイクロ波照射終了時の温度曲線を示す。
(比較例2)
 反応管に窒素を流す以外は実施例5と同じ条件で反応させた。反応させる前に、窒素を流さない条件で、スリースタブチューナーなどの整合装置で、反射波が少なくなるように整合した。実験の予定は5分間であったが、反射波が500Wに上昇した時点でマイクロ波の照射を止めたところ、反応管内壁への銀の析出物付着が生じていた。反応温度が70°Cに達してから反応温度は、56.6°Cから77.8°Cの間で変化した。平均反応温度は69.7°Cであった。反射波電力は0W~503Wで、平均は162W、入射波電力は300W~392Wで、平均は338Wであった。実験例5と比較して、反応温度の幅が21.2°Cと広く、反射波電力も入射波電力も高かった。
 このときの反応液の温度変化を図7に示す。縦軸、横軸は図2の場合と同様である。図7で、符号64は温度曲線、64aはマイクロ波の立ち上がり時の温度曲線、64bはマイクロ波照射が定常状態に達してからの温度曲線、64cは危険領域に入ったため合成中止によるマイクロ波照射終了時の温度曲線を示す。
(実施例6および比較例3)
 マイクロ波照射で得られる粒子の比較の為に、実施例6および比較例3として、実施例5の条件(窒素を流す)と比較例2の条件(窒素を流さない)で、夫々1分30秒反応させ、得られた液を直ぐに氷冷して反応を止めて、遠心精製した後、分光測定とTEM観察を行った。
 実施例6において窒素を流した条件で作製した粒子は、分光では430nmのピークだけが観測され、TEMでは、粒子同士の合一は比較的少なく、粒径の大きい粒子の他に、それより粒径の小さな粒子が比較例3よりも多く観察された。窒素を流した場合、キャビティーに滞留する時間が短いために、窒素を流さない時に比べて比較的小さい粒径の銀ナノ粒子になるためであると思われる。
 比較例3として窒素を流さない条件で作製した粒子は、分光では420nmのピークとともに、550nm~600nm付近にブロードな山があり、TEMでは、粒子が30~50nmの粒子が複数合一した粒子が観察された。窒素を流さない場合、キャビティーに滞留する時間が長いために、窒素を流した時に比べてより多くの硝酸銀が還元されて銀粒子になるが、粒子同士が合一した粒子が多く生成する事がわかった。なお、実施例6および比較例3における残余の反応液は未使用であった。
(実施例7)
 銀ナノ粒子の合成例2。
 C液の調合。
硝酸銀(AgNO)548.16g(3.23mol)をイオン交換水3874.57gに溶解させて、C液として第1液源31に用意した。
 D液の調合。
2-ジメチルアミノエタノール1293.68g(14.53mol)、イオン交換水1592.28gを投入し、そこへ、Disperbyk-190を50.68g添加、さらに、BDG362.36gを加え、D液として第2液源32に用意した。
 E液の調合。
ドデカン1782.80gとBDG534.84gを加え、E液として第3液源33に用意した。
 C液、D液、E液を夫々ポンプで、16.4ml/分、13.9ml/分、12.2ml/分で送液した。D液とE液に流す窒素ガスの流量を0.9L/分、C液に流す窒素ガス速度を0.9L/分とした。マイクロ波照射時の目標温度を70℃とし、反応管をPFAとした。4時間でC液、D液、E液を流し切ってマイクロ波照射を終了した。反応管内壁への銀の析出物付着は生じなかった。反応温度が70°Cに達してから反応温度は、63.0°Cから73.0°Cの間で変化し、平均反応温度は69.9°Cであった。反射波電力は0W~219Wで、平均は31.8W、入射波電力は、272W~320Wで、平均は290.5Wであった。
(実施例8)
 銀ナノ粒子の合成例3。
銀457g分の合成を実施した。
C液の調合。
 硝酸銀(AgNO3)720g(4.24mol)をイオン交換水5040gに溶解させて、C液として第1液源31に用意した。
D液の調合。
 2-ジメチルアミノエタノール1888g(21.18mol)、イオン交換水2308gを投入し、そこへ、Disperbyk-190を86g添加、さらに、BDG1308g,ドデカン2598gを加え、D液として第2液源32に用意した。
 マグネティックスターラーでD液の水相とドデカンを充分混合させたD液とC液を、各液に0.5L/分で窒素ガスを導入後、プランジャーポンプで、C液を9.09ml/分、D液を16.3ml/分の速度でそれぞれの送液管を経由してT字型ジョイント25に送り、混合液CDとして、送液管78からPFA製の反応管7に反応液として送液した
 マイクロ波照射時の目標温度を85°Cとし、反応管を銀ナノ粒子の合成例1と同じくPFAとし、9時間48分でC液を流しきって、銀ナノ粒子の合成を終えた。反応管内壁への銀の析出物付着すなわち銀鏡現象は生じなかった。反応温度は、76.9°Cから94.2°Cで、平均は85.0°Cであった。
 不活性ガスの流し方を種々検討したところ、金属ナノ粒子をその還元剤によって還元することによって金属ナノ粒子を合成する場合、金属ナノ粒子前駆体の種類とその還元剤の種類によって、最適な不活性ガスの反応液への導入の仕方や導入のタイミングに違いがあることが判明した。金属ナノ粒子の還元反応において、鏡反応が比較的激しい場合、たとえば、金属元素が銀で還元剤にジメチルアミノエタノールを使う場合には、銀ナノ粒子の還元剤を含む溶液に不活性ガスを導入して流しておき、そこへ金属ナノ粒子の原料液を混合する方が、反応管内壁への金属の析出物の付着をより効果的に防ぐことが出来ることが判明した。また、金属元素が銅で、その還元剤にヒドラジンを使う場合、銅イオンを含む液とヒドラジンを含む液を混合して反応液とし、それを反応管に流しておき、マイクロ波照射場の直前で不活性ガスを反応液に導入するのが好ましいことが判明した。
 マイクロ波照射場内の温度に関しては、反応液が不活性ガスを挿入された状態で反応管内を還元反応をしながら流動するため、温度制御をしても変動しやすい。しかし、銀ナノ粒子の合成中に調べた結果、突発的な一瞬の温度の低下幅が少なく、その温度低下は最大で15℃であることがわかった。この温度低下を10℃以下に抑えることが、ナノ粒子の製造をより安定に進めることができることも判明した。反応液の温度変化の測定は毎秒行った。前記一瞬の温度低下とは、設定温度からパルス的に変動して低下したときのピーク値をいう。すなわち、「突発的な一瞬の温度の低下幅」とは、マイクロ波照射場内の温度を1秒ごとに測定したときに、設定温度からパルス的に低下する低下幅のことをいう。また、本発明においては、「突発的な一瞬の温度の低下幅」が15℃、好ましくは10℃以下であることが好ましい。
 銀ナノ粒子の合成に関して、図1に示した構成で、1種類目の液として硝酸銀を含む液を第1の液源に、2種類目の液として硝酸銀の還元剤を含む液を第2の液源に用意し、それぞれプランジャーポンプで各所定の液送速度で、それぞれの液流路を通ってT字型ジョイントに送り、T字型ジョイントで両液を混合すると、還元適性温度に上昇させる前に混合された両液は還元を開始してしまい、T字型ジョイントに接続されている液流路に流通した反応液が透明から黒色に変化する様子が観測された。
 窒素ガスを早期に挿入するため、この反応液が流れる液流路の長さを約3cmにし、液流路のT字型ジョイントに接続されている端部とは反対側の端部を第2のT字型ジョイントに接続し、第2のT字型ジョイントの一端に接続されている流路から窒素ガスを挿入し、反応液とともに第2のT字型ジョイントの一端に接続されている液流路を通り、マイクロ波照射場を通る反応管へと流入させた。これにより、銀ナノ粒子の合成を、反応管内壁に析出物の付着を生じさせることなく、長時間にわたって行うことができた。
 また、反応管のマイクロ波照射場を通る部分以外の少なくとも一部を、加熱源または冷却源としてのマイクロ波以外の温度制御手段を用いて温度制御して、金属ナノ粒子の粒径制御を行うことができる。これに狭く限定されないが、例えば上記一部を、ペルチエ素子を配した熱伝導性の比較的よい物体に接しさせたり、そのような容器内を通過させたり、第1・第2の液源の少なくとも一方をペルチエ素子を用いて温度制御して、金属ナノ粒子の粒径制御を行うことができる。
 ペルチエ素子は電気的に制御して温度を上げることにも下げることにも使い分けることができるため、金属ナノ粒子の粒径制御や反応適性温度や粒径制御温度を適性に制御することができる。
 また、金属ナノ粒子の製造工程内の、第1の液、第2の液、前記気体、反応液の各流路又はその近傍等の少なくとも一部に、温度、流量、液に関する反応進行情報や粒径に関する情報の少なくとも1つを検出するセンサーを配置し、その出力を所定の制御系にフィードバックして制御を行うことができる。
 また、金属ナノ粒子の製造工程内の反応液の流路もしくは分路における金属ナノ粒子の粒径を測定する手段を設け、金属ナノ粒子のその時点での粒径を測定することができる。
 反応液の流路もしくは分路にT型やY型等のジョイントを設け、前記ジョイントから反応液を採取して金属ナノ粒子の粒径を測定したり、反応液の流路もしくは分路において金属ナノ粒子の粒径を直接測定する手段、たとえば、レーザ光の位相回転を利用した測定手段を設けることができる。
 これらの粒径に関する情報、温度制御情報、流量制御情報は、たとえば、合成する金属ナノ粒子の粒径分布を制御することに役立つ。
 前出の銅の場合(比較例1)も実施例1と比較するとわかるように、実施例1のように窒素ガスを反応液に導入した場合は、鏡現象を生じずに前記予定量の合成ができたが、窒素ガスを反応液に導入しなかった比較例1では、鏡現象のため銅の合成が途中で止まってしまった結果になっている。実施例1は予定した量の銅ナノ粒子の合成を終えたので実験をやめたわけであるが、比較例1は同じ予定量を合成できなかったのである。
 銀の場合はさらにはっきりした違いが出ている。窒素ガスを反応液に導入しなかった比較例2では、銀塩を還元剤と混合した段階で、反応温度が反応温度に達してから約4分で鏡現象のため銀ナノ粒子の合成ができなくなり、マイクロ波照射をやめた。これに対して、窒素ガスを反応液に導入した場合は、実施例7のように、予定合成量を348g分の銀の合成に設定した場合、合成中全く鏡を生じずに4時間で全予定量の銀の合成を終えている。条件を適切に決めることにより、12時間以上の合成ができることを確認している。
 窒素ガスの流量について検討した結果、わずかな量でも鏡現象の軽減に役立つが、内径2mmで且つマイクロ波照射領域が100mmの前出フッ素樹脂反応管の場合、0.4L/分以上で反応液に窒素ガスを流入させる効果が大きい。量産に適する合計流量を0.5L/分以上、さらに好ましくは1L/分以上に制御することが安定した効果を示すことがわかった。合計流量は2L/分以下であることがより好ましい。
 反応液を流す反応管の平均内径を2r(mm)としたときの不活性ガスの反応液への合計挿入量は、0.4×r(リットル)/分以上であることが好ましく、0.5×r(リットル)/分以上であることがより好ましく、1.0×r/分以上であることがさらに好ましい。ただし、経済的には3.0×r(リットル)/分を越えないことが望ましい。
 反応液に挿入した不活性ガスの反応管内における線速度が2m/秒以上であることが好ましく、線速度が5m/秒以上であるようにすると安定した合成を続けることができた。
 さらに、不活性ガスとしてのガスの種類を種々変えて実験してみた結果、アルゴンなど窒素以外の不活性ガスでも同様の効果があることが判明した。しかし、経済的には窒素ガスが特に好ましい。
 また、前記第1の液と第2の液を混合して反応液にする前に、前記第1の液と第2の液の少なくとも一方に気体を挿入して混相流にして後、前記第1の液と第2の液を混合して反応液にすることにより、反応系の緻密な制御を可能にする。
 前記第1の液と第2の液を混合して反応液にする前に、前記第1の液と第2の液に挿入する気体に異なる種類の気体を用いることができる。また、前記第1の液と第2の液を混合して後、気体を挿入する工程をさらに設けることによって、制御の質を金属の種類に適するようにすることができる。
 また、挿入する気体の圧力または線速度を制御する工程を有するようにすることが好ましい。
 ナノ粒子の分散剤としてDisperbyk-190を用いた例を説明したが、これに狭く限定されないが、分散剤として、親水性のものが好ましく、たとえばポリオキシアルキレンアミン、モノアミン、ジアミン、ポリアクリル酸など多くの分散剤がある。疎水性の分散剤も使うことができる。また、反応液を構成する液の調整に攪拌作用を利用するにあたり、マグネティックスターラーを用いたが、本発明はこれに狭く限定されず、超音波を用いることなど、他の方法を用いることが可能である。超音波振動を利用する場合、たとえば、30KHzのような低周波の超音波、200KHzのような中程度の周波数の超音波、500KHz近傍の比較的高い周波数の超音波を、その周波数の特性を利用して、本発明の効果を一層大きくすることができる。
 反応液にマイクロ波を照射する場合、超音波を伝搬させることができるようにし、これにより、合成されるナノ粒子の粒子径やその分布を制御することができる。
 金属ナノ粒子コロイドを精製する手段としては限外ろ過などを挙げることができる。
 また、実施例などにおいて、A液とB液の混合や反応液と不活性ガスの混合にT字型ジョイントを用いたが、本発明はこれに狭く限定されず、Y字型ジョイントや、混合する液や不活性ガスの種類や性質等を考慮して多種類の液やガスを混合することができるように設計したジョイントを用いて、還元反応等の効果を緻密に制御し、本発明の効果を一層大ならしめることができる。
 なお、反応液の作製手順は、金属ナノ粒子前駆体の還元剤を含む液を先に流通させておき、そこへ金属ナノ粒子前駆体を含む液を混合させる手順であることが好ましい。
 そして、先に流通させる金属ナノ粒子前駆体の還元剤を含む液とそれに混合させる金属ナノ粒子前駆体を含む液のうちの、少なくとも金属ナノ粒子前駆体の還元剤を含む液に、前記金属ナノ粒子前駆体を含む液を混合する前に、前記気体を挿入することがさらに好ましい。前記気体として不活性ガスを用いると特に大きな効果を発揮することが判明した。
 また、反応液の反応促進に用いるマイクロ波のモードにTM010モードを用いる例を実施例として記載したが、本発明はこれに狭く限定されない。たとえば、TMmn0モード(mは0以上の、nは1以上の整数)のマイクロ波定在波は、円筒の半径方向に電解の集中するところがあり、中心軸に平行な位置では均一な電界強度を有し、同様に利用できる。
 マイクロ波加熱では、電界による加熱を利用することができるが、磁界による加熱を利用することもできる。
 ナノ粒子の合成を安定化し、合成可能時間を長時間化し、合成品質を高めるには、反応液の流れをより良く制御することが好ましい。
 その一つの手段として、前記のように、反応液の反応進行状況などをモニターするための各種測定手段を随所に設置する方法がある。マイクロ波の電界をモニターする電界モニターとマイクロ波照射場内の温度あるいは反応管の温度を検出する温度計の少なくとも一方をマイクロ波照射場内に設け、その測定結果をマイクロ波発振器・制御器などシステムの制御系にフィードバックして、マイクロ波の発信状況を制御するほか、高いレベルの自動製造システムの構築を実現できるものである。
 図示していないが、必要に応じて各種測定手段を随所に設けることができる。電界モニターと温度計は少なくともそれらの一部がマイクロ波発振器・制御器にフィードバックされている。このほかに、不活性ガスの流量に関しては、たとえば毎分の流量を測定する手段を流路や不活性ガス源の一部に設けることができ、反応液を構成する各液の流量や成分の測定手段をT字型ジョイントあるいはその手前の液流路等に設けることができ、温度の測定手段も温度計に限られず要所に設けることができ、反応管内壁への析出付着物の光学的および/または電気的等検出手段を反応管や制御回路等へ設けることができ、反応液の反応過程や反応後のナノ粒子の粒径や粒径分布、平均粒径などの電気的および/または光学的等測定手段を反応管あるいはその近傍あるいは回収タンクなどに設けることができる。
 還元適性温度は金属塩と還元剤、分散剤等添加剤によって異なる。銀の場合、実施例5では還元適性温度が70°Cなので、マイクロ波の設定温度を70°Cに設定し、毎秒反射電力と温度測定を行った。反応液に不活性ガスを導入しない比較例2においては、マイクロ波の照射を開始後、反応温度が70°Cに達した54秒から140秒までの86秒における反射電力は75~308Wであった。また、この間で150W以上を記録したのは46回で、その間300Wを超えたのは2回であった。140秒から停止させる292秒までの152秒の間の反射電力は38~503Wで、150W以上が78回、300W以上が22回であった。これ以上続けることは危険であったので、マイクロ波照射をやめた。これに対して、反応液に不活性ガスを導入した実施例5の場合は、マイクロ波の照射を開始後、反応温度が70°Cに達した52秒から実験終了した352秒後の300秒の間での反射電力は0~219Wであった。また、その間に100W以上を記録したのは12回で、その内で150W以上を記録したのが5回で、その内、200~230Wを記録したのが2回であった。また、230W以上はなかった。これより、少なくとも、反射電力が150W以上の出現回数が20秒で8回以上になると鏡ができやすいということができる。液の逆流の影響も考慮を要する。
 これら各種測定手段の測定結果は、製造仕様等によってコントロールすることができる。例えば、測定データをマイクロ波発振器・制御器および/または図示していないシステム制御回路にフィードバックして製造システムを制御することにより、平均粒径、粒径分布などをコントロールすることができる。
 本発明の方法で製造した金属ナノ粒子には、その製造上、反応液に挿入して混相流とした気体、不活性ガス、窒素ガス等が少なくとも微量混入している可能性が大きい。
 本発明の金属ナノ粒子は、顧客の要望に応じて、前記種々の形態をとって製品になり得るるものである。そして、本発明は、前記種々の例に狭く限定されず、本発明の技術思想に従って多くのバリエーションを可能としている。たとえば、前記各実施例と比較例では、それぞれ各実施例における反応液の構成成分の割合を適宜増減してもよい。また、図1のセンサーからの検出情報を基に、各構成要素の組み合わせ方、使用不使用の選択、ナノ粒子によっては、還元力のある水素や物質改変性のある反応性ガスの利用によるナノ粒子の改善、構成要素の洗浄等々をあげることが出来る。
 本発明の説明においては反応液に気体として不活性ガスを導入して、反応管内壁に析出物の付着を防ぐことを中心に説明してきた。還元性のある水素ガスを不活性ガスの代わりに導入することもでき、半導体分野で使われている反応性ガスを導入することもでき、鏡を防ぐとともに、物性の付与、改質をすることも可能である。また、マイクロ波照射部分を複数段設けて、制御により多目的に使うこと、すなわち、還元反応その他を高精度に実施することも可能である。マイクロ波として複数種類の波長を用いることも可能である。
 ナノ粒子自体の測定器と組み合わせて、種々の測定、加工なども可能である。
 本発明の金属ナノ粒子の製造方法、製造装置、銅、銀に代表される金属ナノ粒子は、製造コストが安く、製品を製造したときの品質のバラツキが小さいことやナノ粒子の特性などの利点を有するので、触媒業界、電子基板の配線、電子部品の接合など電子・電機業界、自動車業界などにおける広い技術分野において大きな効果を発揮する。
 1:マイクロ波照射口
 2:マイクロ波照射場
 4:電界モニター
 5:温度計
 6:マイクロ波発振器・制御器
 7,7a,7b:反応管
 8:反応液
 21:不活性ガス源
 22~25:T字型ジョイント
 30:接続部
 30a:反応液の取り出し部
 31,32,33:液源
 34:回収タンク
 50,52,53,60,64,50a,52a,53a,60a,64a,50b,52b,53b,60b,64b,50c,53c,53c,60c,64c:温度曲線
 51,54,55,51a,54a,55a,51b,54b,55b,51c,54c,55c:マイクロ波の反射波強度曲線、
 71,72~78:流路
 a-1~a-9:矢印
 S-1~S-14:センサー

Claims (15)

  1.  反応管に、少なくとも金属ナノ粒子の原料塩を含む第1の液と、前記原料塩の還元剤を含む第2の液とを混合させた反応液を流通させて、金属ナノ粒子を合成する工程を有する金属ナノ粒子の製造方法において、
     前記反応液が、気体と液体の混相流である金属ナノ粒子の製造方法。
  2.  少なくとも一部がマイクロ波照射場に配置された反応管に、少なくとも金属ナノ粒子の原料塩を含む第1の液と、前記原料塩の還元剤を含む第2の液とを混合させた液である反応液を流通させる工程と、
     前記反応液にマイクロ波を照射して、前記反応液を加熱する工程と、
     前記反応管の少なくとも一部に、第1の液、第2の液および前記反応液の少なくとも1つ以上を流通させて、金属ナノ粒子の還元作用を制御し、金属ナノ粒子を合成する工程とを有する金属ナノ粒子の製造方法において、
     前記第1の液および/または第2の液および/または前記反応液が、気体と液体の混相流である金属ナノ粒子の製造方法。
  3.  請求項1または2に記載の金属ナノ粒子の製造方法において、前記気体が不活性ガスである金属ナノ粒子の製造方法。
  4.  請求項2または3に記載の金属ナノ粒子の製造方法において、マイクロ波照射場内の温度の低下幅は15°C以下である金属ナノ粒子の製造方法。
  5.  請求項4に記載の金属ナノ粒子の製造方法において、マイクロ波照射場内の前記温度の低下幅は10°C以下である金属ナノ粒子の製造方法。
  6.  請求項3~5のいずれか1項に記載の金属ナノ粒子の製造方法において、不活性ガスの反応液への挿入量が、マイクロ波照射場における反応管の平均内径を2r(mm)とした場合、0.4×r(リットル)/分以上3×r(リットル)/分以下である金属ナノ粒子の製造方法。
  7.  請求項2~6のいずれか1項に記載の金属ナノ粒子の製造方法において、前記気体が水素ガスと反応性ガスのうちの少なくとも1種類のガスである金属ナノ粒子の製造方法。
  8.  請求項3~5のいずれか1項に記載の金属ナノ粒子の製造方法において、反応液に挿入した不活性ガスの反応管内における線速度が2m/秒以上である金属ナノ粒子の製造方法。
  9.  請求項8に記載の金属ナノ粒子の製造方法において、反応液に挿入した不活性ガスの反応管内における線速度が5m/秒以上である金属ナノ粒子の製造方法。
  10.  請求項1~9のいずれか1項に記載の金属ナノ粒子の製造方法であって、
     製造装置内の、前記第1の液、前記第2の液、前記気体、及び前記反応液の各流路又はその近傍の少なくとも一部に配置され、温度、流量、液に関する反応進行情報、及び粒径に関する情報の少なくとも1つを検出するセンサーからの出力を所定の制御系にフィードバックする工程と、センサーからの情報を利用して制御を行う工程をさらに有する金属ナノ粒子の製造方法。
  11.  請求項1~10のいずれか1項に記載の金属ナノ粒子の製造方法であって、
     製造装置内の反応液の流路もしくは分路における金属ナノ粒子の粒径を測定する工程をさらに有する金属ナノ粒子の製造方法。
  12.  請求項2~11のいずれか1項に記載の金属ナノ粒子の製造方法において、マイクロ波のシングルモードを用いる金属ナノ粒子の製造方法。
  13.  請求項2~11のいずれか1項に記載の金属ナノ粒子の製造方法において、マイクロ波のマルチモードを用いる金属ナノ粒子の製造方法。
  14.  請求項1~13のいずれか1項に記載の金属ナノ粒子の製造方法を用いて金属ナノ粒子を製造する金属ナノ粒子の製造装置。
  15.  請求項1~13のいずれか1項に記載の金属ナノ粒子の製造方法を用いて製造された金属ナノ粒子。
PCT/JP2015/085864 2014-12-22 2015-12-22 ナノ粒子の製造方法及び製造装置ならびにそれによって製造したナノ粒子 WO2016104522A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566400A JP6393344B2 (ja) 2014-12-22 2015-12-22 ナノ粒子の製造方法及び製造装置ならびにそれによって製造したナノ粒子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-258734 2014-12-22
JP2014258734 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016104522A1 true WO2016104522A1 (ja) 2016-06-30

Family

ID=56150538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085864 WO2016104522A1 (ja) 2014-12-22 2015-12-22 ナノ粒子の製造方法及び製造装置ならびにそれによって製造したナノ粒子

Country Status (2)

Country Link
JP (3) JP6393344B2 (ja)
WO (1) WO2016104522A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106623977A (zh) * 2016-12-30 2017-05-10 西安交通大学青岛研究院 一种金纳米线的制备方法
JP2018104749A (ja) * 2016-12-26 2018-07-05 株式会社新光化学工業所 ニッケル超微粒子の製造方法及び製造装置ならびに微粒子
JP2018197392A (ja) * 2014-12-22 2018-12-13 株式会社新光化学工業所 ナノ粒子の製造方法及び製造装置ならびにそれによって製造したナノ粒子
CN114015487A (zh) * 2021-11-10 2022-02-08 燕山大学 一种纳米冰态水合物的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102253947B1 (ko) * 2019-07-16 2021-05-20 순천향대학교 산학협력단 나노 입자를 제조하는 장치(100) 및 이를 이용한 나노 입자를 제조하는 방법
CN114728339A (zh) * 2019-11-28 2022-07-08 M技术株式会社 银微粒的制造方法
KR102522521B1 (ko) * 2021-01-05 2023-04-18 순천향대학교 산학협력단 나노입자를 제조하는 장치에 의해 제조된 활성산소종(ros)-반응성 약물 전달 나노입자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474811A (ja) * 1990-07-18 1992-03-10 Agency Of Ind Science & Technol 化学還元による金属微粉末の製造法
JP2010184230A (ja) * 2009-01-15 2010-08-26 Asahi Glass Co Ltd 連続式マイクロ波反応装置および連続式マイクロ波反応システム
JP2011137226A (ja) * 2009-12-05 2011-07-14 National Institute Of Advanced Industrial Science & Technology 金属微粒子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514107B1 (ko) * 2003-03-05 2005-09-09 한국화학연구원 마이크로파를 이용한 나노크기 지르코니아 수화물 졸의연속 제조방법
KR20090012605A (ko) * 2007-07-30 2009-02-04 삼성전기주식회사 금속 나노입자의 제조방법
JP2009219947A (ja) * 2008-03-13 2009-10-01 Wako Pure Chem Ind Ltd フロー反応装置及び方法
JP6393344B2 (ja) * 2014-12-22 2018-09-19 株式会社新光化学工業所 ナノ粒子の製造方法及び製造装置ならびにそれによって製造したナノ粒子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474811A (ja) * 1990-07-18 1992-03-10 Agency Of Ind Science & Technol 化学還元による金属微粉末の製造法
JP2010184230A (ja) * 2009-01-15 2010-08-26 Asahi Glass Co Ltd 連続式マイクロ波反応装置および連続式マイクロ波反応システム
JP2011137226A (ja) * 2009-12-05 2011-07-14 National Institute Of Advanced Industrial Science & Technology 金属微粒子の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018197392A (ja) * 2014-12-22 2018-12-13 株式会社新光化学工業所 ナノ粒子の製造方法及び製造装置ならびにそれによって製造したナノ粒子
JP2018104749A (ja) * 2016-12-26 2018-07-05 株式会社新光化学工業所 ニッケル超微粒子の製造方法及び製造装置ならびに微粒子
CN106623977A (zh) * 2016-12-30 2017-05-10 西安交通大学青岛研究院 一种金纳米线的制备方法
CN106623977B (zh) * 2016-12-30 2018-07-10 西安交通大学青岛研究院 一种金纳米线的制备方法
CN114015487A (zh) * 2021-11-10 2022-02-08 燕山大学 一种纳米冰态水合物的制备方法
CN114015487B (zh) * 2021-11-10 2022-07-05 燕山大学 一种纳米冰态水合物的制备方法

Also Published As

Publication number Publication date
JP6393344B2 (ja) 2018-09-19
JP2020105636A (ja) 2020-07-09
JP2018197392A (ja) 2018-12-13
JPWO2016104522A1 (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6393344B2 (ja) ナノ粒子の製造方法及び製造装置ならびにそれによって製造したナノ粒子
JP6436305B2 (ja) 金属微粒子の製造方法および金属微粒子の製造装置
Nishioka et al. Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system
JP6551495B2 (ja) 金属コア・酸化物シェルのコアシェル構造ナノ粒子の連続合成方法および連続合成装置ならびにコアシェル構造ナノ粒子
US6833019B1 (en) Microwave assisted continuous synthesis of nanocrystalline powders and coatings using the polyol process
JP6362206B2 (ja) 銅ナノ粒子コロイド、銅ナノ粒子、それを用いた銅ナノ粒子ペースト、銅ナノ粒子コアシェル金属、銅ナノ粒子コロイドの製造装置、銅ナノ粒子コロイドの製造方法
US20050142059A1 (en) Method for continuous preparation of nanometer-sized hydrous zirconia sol using microwave
JP2022502556A (ja) プラスチックを解重合するためのプロセスおよびシステム
Quinsaat et al. Continuous production of tailored silver nanoparticles by polyol synthesis and reaction yield measured by X-ray absorption spectroscopy: Toward a growth mechanism
US9073761B2 (en) Controlled synthesis of nanoparticles using ultrasound in continuous flow
JP2015059243A5 (ja) 銅ナノ粒子コロイド、銅ナノ粒子、それを用いた銅ナノ粒子ペースト、銅ナノ粒子コアシェル金属、銅ナノ粒子コロイドの製造装置、銅ナノ粒子コロイドの製造方法
JP6500174B2 (ja) パラジウムコア白金シェルナノ粒子、その製造装置及び製造方法ならびに電池
JP2017226916A (ja) 微粒子の製造方法及び製造装置ならびに微粒子
JP6603838B2 (ja) 銅ナノ粒子、それを用いた銅ナノ粒子ペースト、銅ナノ粒子コアシェル金属、銅ナノ粒子製造装置、銅ナノ粒子の製造方法
JP6609755B2 (ja) ニッケル超微粒子の製造方法及び製造装置ならびに微粒子
JP2020073712A (ja) ニッケル超微粒子の製造方法及び製造装置ならびに微粒子
JP2018104749A (ja) ニッケル超微粒子の製造方法及び製造装置ならびに微粒子
JP2006096569A (ja) 銅酸化物微粒子の製造方法
JP2021142469A (ja) 担体担持金属微粒子コロイド、担体担持白金族含有コロイド、担体担持パラジウムコロイド、担体担持白金コロイド、担体担持パラジウム―白金合金微粒子コロイド、担体担持パラジウム―白金コアシェル微粒子コロイド、およびそれらの高濃度連続製造方法ならびに触媒、センサ、電池、抗菌材料
JP2019077923A (ja) 金属ナノ粒子の製造装置
US20200353539A1 (en) Method of producing silver nanoparticles
JP2013019025A (ja) 金属微粒子の製造方法
JP2019199652A (ja) 銅ナノ粒子、それを用いた銅ナノ粒子ペースト、銅ナノ粒子コアシェル金属、銅ナノ粒子製造装置、銅ナノ粒子の製造方法
JP2024033909A (ja) 銀ナノ粒子の製造方法
JP2005254179A (ja) 合成方法及び合成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873090

Country of ref document: EP

Kind code of ref document: A1