WO2016104464A1 - 位相デジタル変換器、位相差パルス生成器、無線通信装置および無線通信方法 - Google Patents
位相デジタル変換器、位相差パルス生成器、無線通信装置および無線通信方法 Download PDFInfo
- Publication number
- WO2016104464A1 WO2016104464A1 PCT/JP2015/085747 JP2015085747W WO2016104464A1 WO 2016104464 A1 WO2016104464 A1 WO 2016104464A1 JP 2015085747 W JP2015085747 W JP 2015085747W WO 2016104464 A1 WO2016104464 A1 WO 2016104464A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- capacitor
- phase difference
- charging
- charge
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 47
- 238000000034 method Methods 0.000 title claims description 11
- 239000003990 capacitor Substances 0.000 claims abstract description 184
- 230000010355 oscillation Effects 0.000 claims description 66
- 230000000630 rising effect Effects 0.000 claims description 31
- 230000005540 biological transmission Effects 0.000 claims description 26
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 abstract description 2
- 101100152663 Caenorhabditis elegans tdc-1 gene Proteins 0.000 description 39
- 238000010586 diagram Methods 0.000 description 24
- 101100428617 Homo sapiens VMP1 gene Proteins 0.000 description 6
- 101150074162 TDC1 gene Proteins 0.000 description 6
- 102100038001 Vacuole membrane protein 1 Human genes 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 101100366948 Arabidopsis thaliana STOP2 gene Proteins 0.000 description 3
- 101100366946 Arabidopsis thaliana STOP1 gene Proteins 0.000 description 2
- 101100478715 Drosophila melanogaster Start1 gene Proteins 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/099—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
-
- G—PHYSICS
- G04—HOROLOGY
- G04F—TIME-INTERVAL MEASURING
- G04F10/00—Apparatus for measuring unknown time intervals by electric means
- G04F10/005—Time-to-digital converters [TDC]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K21/00—Details of pulse counters or frequency dividers
- H03K21/02—Input circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/22—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
- H03K5/24—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/22—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
- H03K5/26—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being duration, interval, position, frequency, or sequence
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/093—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/099—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
- H03L7/0991—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator being a digital oscillator, e.g. composed of a fixed oscillator followed by a variable frequency divider
- H03L7/0992—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator being a digital oscillator, e.g. composed of a fixed oscillator followed by a variable frequency divider comprising a counter or a frequency divider
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
- H04L7/033—Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L2207/00—Indexing scheme relating to automatic control of frequency or phase and to synchronisation
- H03L2207/50—All digital phase-locked loop
Definitions
- Embodiments described herein relate generally to a phase digital converter, a phase difference pulse generator, a wireless communication device, and a wireless communication method.
- the main circuit in the wireless communication device is often formed by a CMOS process for chip formation.
- the local oscillation signal can be generated by an all-digital ADPLL (All Digital Phase-Locked Loop) circuit and a phase digital converter.
- ADPLL All Digital Phase-Locked Loop
- each output of a multi-stage inverter is latched by a corresponding flip-flop to generate a phase difference signal.
- a circuit several tens of stages of inverters and flip-flops are required, resulting in an increase in circuit scale and a large current consumption in the entire phase digital converter.
- the problem to be solved by the present invention is to provide a phase digital converter, a phase difference pulse generator, a wireless communication apparatus, and a wireless communication method that can reduce the circuit scale and power consumption.
- a counter that measures the number of periods of the first signal;
- a first phase difference detector for generating a phase difference signal having a pulse width corresponding to a phase difference between the first signal and a second signal having a frequency twice or more lower than the first signal;
- a first capacitor that charges a charge corresponding to a pulse width of the phase difference signal;
- a second capacitor having a capacitance N times that of the first capacitor (N is a real number greater than 1);
- a comparator for comparing the charging voltage of the first capacitor with the charging voltage of the second capacitor;
- a first charge control unit that continues to charge the second capacitor until the comparator detects that the charge voltage of the second capacitor is equal to or higher than the charge voltage of the first capacitor;
- a first phase difference calculator that calculates a phase difference between the first signal and the second signal by a value obtained by dividing the count value of the counter in the charging period of the second capacitor by the N.
- a digital converter is provided.
- FIG. 1 is a block diagram showing a schematic configuration of a TDC according to a first embodiment.
- the block diagram which shows schematic structure of the local oscillator using TDC.
- the timing diagram of TDC by a 1st embodiment.
- the block diagram which shows the internal structure of the phase difference pulse generator by 2nd Embodiment.
- the timing diagram of the phase difference pulse generator of FIG. The block diagram which shows the internal structure of TDC by 3rd Embodiment.
- FIG. 8 is a timing chart of TDC1 in FIG.
- the block diagram which shows schematic structure of TDC1 by 5th Embodiment.
- FIG. 6 is a block diagram showing an internal configuration of a receiver having a TDC in any of the first to fourth embodiments.
- wireless communication apparatus by 5th Embodiment. 1 is a diagram illustrating a block configuration of a wireless communication device. The figure which shows the example which performs radio
- phase digital converter the phase difference pulse generator
- wireless communication apparatus the characteristic configuration and operation in the phase digital converter, the phase difference pulse generator, and the wireless communication apparatus will be mainly described.
- the phase digital converter, the phase difference pulse generator, and the wireless communication apparatus May have configurations and operations omitted in the following description.
- these omitted configurations and operations are also included in the scope of the present embodiment.
- FIG. 1 is a block diagram showing a schematic configuration of a phase-to-digital converter (TDC) 1 according to the first embodiment
- FIG. 2 is a block diagram showing a schematic configuration of a local oscillator 2 using the TDC 1.
- TDC phase-to-digital converter
- the local oscillator 2 in FIG. 2 is a circuit that generates a local oscillation signal used in, for example, a wireless communication apparatus.
- the local oscillator 2 in FIG. 2 includes a digitally controlled oscillator (DCO: Digitally Control Oscillator) 3, a TDC 1 whose detailed configuration is shown in FIG. 1, and an ADPLL circuit 4.
- the ADPLL circuit 4 includes a first differentiator 5 that differentiates the output signal of the TDC 1, a second differentiator 7 that differentiates the output signal of the counter 6 in the TDC 1, a logical operator 8 that calculates frequency error information, and a loop And a filter 9.
- the counter 6 is provided separately from the TDC 1, but in this specification, an example in which the counter 6 is provided inside the TDC 1 will be described.
- the counter 6 counts the number of rising edges or falling edges of the oscillation signal of the DCO 3.
- the output signal of the counter 6 is a signal representing the integer phase of the oscillation signal of the DCO 3.
- the second differentiator 7 differentiates the output signal of the counter 6.
- the output signal of the second differentiator 7 is a signal representing the integer frequency of the oscillation signal of the DCO 3.
- the TDC 1 shown in detail in FIG. 1 generates a phase difference signal between the oscillation signal of the DCO 3 and the reference signal, as will be described later.
- This phase difference signal is a signal representing the decimal phase of the oscillation signal of the DCO 3.
- the first differentiator 5 differentiates the output signal of the TDC 1.
- the output signal of the first differentiator 5 is a signal that represents the decimal frequency of the oscillation signal of the DCO 3.
- the logical operation unit 8 calculates a signal obtained by subtracting the output signal of the first differentiator 5 and the output signal of the second differentiator 7 from the frequency code FCW set from the outside.
- the output signal of the logic unit 8 is a frequency error signal that represents an error between the frequency indicated by the frequency code FCW and the frequency of the oscillation signal of the DCO 3.
- the loop filter 9 removes noise components contained in the frequency error signal.
- the output signal of the loop filter 9 is input to the DCO 3.
- the DCO 3 Based on the output signal of the loop filter 9, the DCO 3 performs a feedback operation so that there is no error between the frequency indicated by the frequency code FCW and the frequency of the oscillation signal of the DCO 3.
- the DCO 3 is provided in the local oscillator 2, but instead of generating an oscillation signal by the DCO 3 in the local oscillator 2, it is generated by a VCO (Voltage Control Oscillator) provided outside the local oscillator 2.
- VCO Voltage Control Oscillator
- the generated oscillation signal may be input to the local oscillator 2.
- FIG. 1 includes a counter 6, a phase difference detector (first phase difference detector) 11, a first charge pump 12, a second charge pump 13, a first current source 14, and a comparator 15.
- the charging / discharging control unit (first charging control unit) 16, the first holder 17, the second holder 18, and the phase difference calculator (first phase difference calculator) 19 are provided.
- the counter 6 measures the number of periods of the oscillation signal (first signal) of the DCO 3. That is, the counter 6 measures the number of rising edges or falling edges of the oscillation signal of the DCO 3.
- the phase difference detector 11 generates a phase difference signal PE between the oscillation signal of the DCO 3 and the reference signal (second signal) REF.
- the reference signal REF is a signal generated by the reference signal source 10, for example.
- the reference signal source 10 may be provided inside the TDC 1 or outside.
- the frequency of the reference signal REF is a signal that is two or more times lower than the frequency of the oscillation signal of the DCO 3.
- the phase difference signal PE generated by the phase difference detector 11 is a signal representing a phase difference within one cycle of the oscillation signal of the DCO 3, that is, a decimal phase difference.
- the phase difference detector 11 includes a DFF (first synchronization circuit) 21 that generates a signal RTREF obtained by synchronizing (latching) the reference signal REF with the rising edge or falling edge of the oscillation signal of the DCO 3; A first logic unit 22 that generates a phase difference signal PE representing a phase difference between the signal RTREF and the reference signal REF; A signal having the same logic as the signal RFREF is a START signal.
- a first logic unit 22 that generates a phase difference signal PE representing a phase difference between the signal RTREF and the reference signal REF
- a signal having the same logic as the signal RFREF is a START signal.
- the first charge pump 12 includes a first capacitor 23, a first switch (first switch) 24, and a second switch (third switch) 25.
- the first switch 24 switches whether to supply the current from the first current source 14 to the first capacitor 23 to charge the first capacitor 23.
- the first switch 24 When the first switch 24 is turned on, the current from the first current source 14 is supplied to the first capacitor 23, and the first capacitor 23 is charged.
- the first switch 24 is turned on or off by the phase difference signal PE output from the phase difference detector 11. For example, if the phase difference signal PE is high, the first switch 24 is turned on, and if the phase difference signal PE is low, the first switch 24 is turned off.
- the second switch 25 switches whether to short-circuit between the both end electrodes of the first capacitor 23.
- the second switch 25 is turned on, both electrodes of the first capacitor 23 are short-circuited and the first capacitor 23 is discharged.
- the second switch 25 is turned on or off by an output signal of the charge / discharge control unit 16 described later.
- the second charge pump 13 includes a second capacitor 26, a third switch 27 (second switch), and a fourth switch (fourth switch) 28.
- the second capacitor 26 has a capacitance N times that of the first capacitor 23 (N is a real number larger than 1).
- the third switch 27 switches whether or not to charge the second capacitor 26 by supplying the current from the first current source 14 to the second capacitor 26.
- the third switch 27 is turned on, the current from the first current source 14 is supplied to the second capacitor 26 and the second capacitor 26 is charged.
- the fourth switch 28 switches whether to short-circuit between the both end electrodes of the second capacitor 26.
- the fourth switch 28 is turned on, both electrodes of the second capacitor 26 are short-circuited, and the second capacitor 26 is discharged.
- the third switch 27 and the fourth switch 28 are turned on or off by an output signal of the charge / discharge control unit 16 described later.
- the comparator 15 compares the charging voltage of the first capacitor 23 and the charging voltage of the second capacitor 26, and outputs a signal corresponding to the voltage difference between the two charging voltages.
- the charge / discharge control unit 16 continues to charge the second capacitor 26 until the comparator 15 detects that the charge voltage of the second capacitor 26 has become equal to or higher than the charge voltage of the first capacitor 23. That is, the charge / discharge control unit 16 uses the first logic (for example, low) when the charging voltage of the second capacitor 26 is equal to or lower than the charging voltage of the first capacitor 23, and the charging voltage of the second capacitor 26 is When it becomes higher than the charging voltage, a second logic (eg, high) signal is generated. The signal generated by the charge / discharge control unit 16 is used to switch the second switch 25, the third switch 27, and the fourth switch 28 on or off.
- first logic for example, low
- the charge / discharge control unit 16 includes a D flip-flop (hereinafter referred to as DFF) 16a and an inverter 16b.
- DFF D flip-flop
- the output signal of the comparator 15 is input to the clock terminal of the DFF 16a, the D input terminal of the DFF 16a is set to the power supply voltage Vdd, and the START signal is input to the reset terminal of the DFF 16a.
- the START signal is, for example, a pulse signal having a pulse width during a period when the output signal of the DFF 21 in the phase difference detector 11 is high.
- the DFF 16a is reset and charging of the second capacitor 26 is started.
- the Q output signal of the DFF 16a is a STOP signal.
- the third switch 27 is turned off, the fourth switch 28 is turned on, and the second capacitor 26 is discharged.
- the STOP signal becomes high when the charging voltage of the second capacitor 26 becomes equal to or higher than the charging voltage of the first capacitor 23 in the comparator 15. As described above, when the charging voltage of the second capacitor 26 becomes equal to or higher than the charging voltage of the first capacitor 23, the charging of the second capacitor 26 is finished and the first capacitor 23 and the second capacitor 26 are discharged.
- the first holder 17 holds the count value of the counter 6 when the second capacitor 26 starts charging.
- the first holder 17 has, for example, a DFF, and the count value of the counter 6 is input to the D input terminal of the DFF, and the START signal is input to the clock terminal. At the rising edge of the START signal, the DFF latches (holds) the count value of the counter 6.
- the second holder 18 holds the count value of the counter 6 when the comparator 15 detects that the charging voltage of the second capacitor 26 has become equal to or higher than the charging voltage of the first capacitor 23.
- the second holder 18 has, for example, a DFF.
- the count value of the counter 6 is input to the D input terminal of the DFF, and the STOP signal is input to the clock terminal.
- the phase difference calculator 19 calculates the phase difference between the oscillation signal of the DCO 3 and the reference signal REF. More specifically, a decimal phase difference smaller than one cycle of the oscillation signal of DCO 3 is calculated.
- the phase difference calculator 19 includes, for example, a difference calculator 19a that calculates a difference between a value held by the first holder 17 and a value held by the second holder 18, and a difference calculated by the difference calculator 19a.
- FIG. 3 is a timing diagram of the TDC 1 according to the first embodiment. The operation of the TDC 1 in FIG. 1 will be described with reference to this timing diagram.
- the phase difference detector 11 detects the phase difference between the oscillation signal of the DCO 3 and the reference signal REF, and generates a phase difference signal PE having a pulse width equal to the detected phase difference (time t1 to t2).
- the phase difference signal PE is a pulse signal having a pulse width from the rising edge of the reference signal REF to the rising edge of the signal RTREF obtained by synchronizing the reference signal REF with the rising edge of the oscillation signal of the DCO 3. is there.
- the first switch 24 in the first charge pump 12 is turned on while the phase difference signal PE is high. Therefore, the first switch 24 is turned on during a period (t1 to t2) from the rising edge of the reference signal REF to the rising edge of the signal RTREF.
- the first switch 24 is turned on, the current from the first current source 14 flows to the first capacitor 23 through the first switch 24, and the first capacitor 23 is charged.
- the first capacitor 23 is charged during the period from the rising edge of the reference signal REF to the rising edge of the signal RTREF.
- the charging voltage CP1out of the first capacitor 23 rises sharply.
- the START signal is a signal that changes according to the Q output of the DFF 21 in the phase difference detector 11. Therefore, the START signal rises slightly after the rising edge of the signal RTREF, which is the Q output of the DFF (time t2), and remains high until time t3.
- the START signal becomes high, the Q output of the DFF in the charge / discharge control unit 16 becomes low, the third switch 27 is turned on, and the fourth switch 28 is turned off.
- a current flows from the first current source 14 through the third switch 27 in the second charge pump 13 to the second capacitor 26, and the second capacitor 26 is charged (time t2 to t4).
- the comparator 15 compares the charging voltage CP1out of the first capacitor 23 with the charging voltage CP2out of the second capacitor 26.
- the output of the comparator 15 changes from low to high.
- the STOP signal which is the Q output of the DFF in the charge / discharge control unit 16, goes from low to high.
- the STOP signal becomes high, the third switch 27 in the second charge pump 13 is turned off, the fourth switch 28 is turned on, and the charge of the second capacitor 26 is discharged.
- the first charge pump 12, the second charge pump 13, and the charge / discharge control unit 16 constitute a single slope type A / D converter. That is, as shown in FIG. 3, the comparison operation is stopped when the charging voltage CP1out of the first capacitor 23 coincides with the linearly increasing voltage, and the period from the start of the comparison operation to the stop is measured by the counter 6. Counting is performed, and the count value of the counter 6 is set as an A / D conversion value.
- the first holder 17 holds the count value of the counter 6 at the rising edge (time t2) of the START signal, and the second holder 18 counters the counter at the rising edge (time t4) of the STOP signal. Holds a count value of 6.
- the difference calculator 19 a calculates the difference between the count value held by the second holder 18 and the count value held by the first holder 17. This difference is a count value of the counter 6 while the comparator 15 is performing the comparison operation, and corresponds to a phase difference between the oscillation signal of the DCO 3 and the reference signal REF.
- the ratio of the capacitance of the first capacitor 23 in the first charge pump 12 to the capacitance of the second capacitor 26 in the second charge pump 13 is 1: N.
- the maximum length of the charging period of the first capacitor 23 is one cycle of the oscillation signal of the DCO 3. It takes N times as long as the first capacitor 23 to charge the second capacitor 26. Therefore, the maximum length of the charging period of the second capacitor 26 is the N period of the oscillation signal of the DCO 3.
- a value obtained by dividing the difference calculated by the difference calculator 19a by N is a fractional phase difference of the oscillation signal of the DCO 3, that is, a phase difference between the oscillation signal of the DCO 3 and the reference signal REF when the phase full scale value is 2 ⁇ . It becomes a digital value corresponding to.
- the multiplier 19b multiplies the difference calculated by the difference calculator 19a by 1 / N to obtain the decimal phase difference.
- N is a capacitance ratio between the first capacitor 23 and the second capacitor 26, and this ratio N corresponds to the full-scale value 2 ⁇ of the phase difference between the oscillation signal of the DCO 3 and the reference signal REF. Therefore, by dividing the count value of the counter 6 by N, the decimal phase difference between the oscillation signal of the DCO 3 and the reference signal REF can be easily calculated.
- FIG. 3 shows timing waveforms for three cycles of the reference signal REF.
- the fractional phase difference is a value obtained by dividing these phase differences by N. As shown in FIG. 3, the smaller the phase difference, the narrower the pulse width of the phase difference signal PE, and the shorter the period from when the comparator 15 starts the comparison operation to when it stops.
- the first capacitor 23 is charged.
- the second capacitor 26 is charged until it becomes equal to the charging voltage CP1out, and the phase difference is detected based on the count value of the counter 6 within the period during which the second capacitor 26 is charging.
- the decimal phase difference between the oscillation signal of the DCO 3 and the reference signal REF is detected by a value obtained by dividing this phase difference by the capacitance ratio N of the first capacitor 23 and the second capacitor 26.
- the TDC 1 is provided with a counter 6 for detecting an integer phase. Since the decimal phase difference is detected by using the counter 6, it is necessary to provide a separate counter for detecting the decimal phase difference. Thus, the circuit scale can be further reduced and the power consumption can be reduced.
- the single slope type A / D converter is provided in the TDC 1 and the first charge pump 12 and the second charge pump 13 in the A / D converter share the first current source 14, It is not necessary to provide a current source for each of the charge pumps 12 and 13, and the circuit scale can be reduced. Also, variations in the current flowing through the charge pumps 12 and 13 do not occur, and A / D conversion accuracy can be improved.
- the capacitance ratio N between the first capacitor 23 in the first charge pump 12 and the second capacitor 26 in the second charge pump 13 is a full-scale value of the phase difference
- the count value of the counter 6 is divided by N.
- the fractional phase difference can be calculated simply. This eliminates the need for calibration processing for detecting the full-scale value of the phase difference, thereby further reducing the circuit scale and reducing power consumption.
- the second embodiment relates to a phase difference pulse generator applicable as the phase difference detector 11 in the TDC 1.
- FIG. 4 is a block diagram showing an internal configuration of the phase difference pulse generator 30 according to the second embodiment
- FIG. 5 is a timing diagram of the phase difference pulse generator 30 of FIG.
- the phase difference pulse generator 30 in FIG. 4 has an M-stage (m is an integer equal to or greater than 1) DFF (second synchronization circuit) 31 cascaded after the DFF 21 in the phase difference detector 11 in FIG. Is.
- DFF second synchronization circuit
- FIG. 4 shows an example having one stage of DFF 31, two or more stages of DFFs 1 may be connected in cascade.
- the Q output signal RTREF of the DFF 21 is input to the first logic unit 22, but in FIG. 4, the Q output signal of the final DFF in the m-stage DFF 31 is used.
- the signal RTREF is input to the first logic unit 22.
- the first logic unit 22 generates a phase difference signal PE that is high from the rising edge of the reference signal REF to the rising edge of the signal RTREF based on the signal RTREF and the reference signal REF. To do.
- This phase difference signal PE is used for switching on / off of the first switch 24 in the first charge pump 12 as in FIG.
- m-stage DFF 31 is cascade-connected to the subsequent stage of the DFF 21 that synchronizes the reference signal REF with the oscillation signal of the DCO 3 is that the reference signal REF and the oscillation signal of the DCO 3 are in an asynchronous relationship. This is because there is a possibility that the holding operation may be performed without satisfying the setup time and hold time determined by the DFF 21, and the Q output signal of the DFF 21 may be in a metastable (metastable) state. For this reason, in the circuit of FIG. 4, m-stage DFFs 31 are cascade-connected to the subsequent stage of the DFF 21, and the latch operation is repeated with the clock signal having the same timing as the DFF 21 (in this case, the oscillation signal of the DCO 3).
- the waveform rounding of the Q output signal is suppressed.
- the pulse width of the phase difference signal PE increases by 2 ⁇ , that is, by one period of the oscillation signal of the DCO 3. Therefore, when the phase difference signal PE generated by the phase difference pulse generator 30 in FIG. 4 is used for the TDC 1 in FIG. 1 to detect a fractional phase difference, the pulse width of the phase difference signal PE increases after A / D conversion. It is necessary to perform a process such as removing the amount as a DC offset.
- the Q output signal of the DFF 21 that synchronizes the reference signal REF with the rising edge or the falling edge of the oscillation signal of the DCO 3 enters the metastable state, Since m stages of DFFs 31 are connected in cascade, the Q output signal waveform of the final stage DFF 31 can be made steep. Therefore, even if the oscillation signal of the DCO 3 and the reference signal REF are asynchronous, the phase difference signal PE that accurately reflects the phase difference between the reference signal REF and the oscillation signal of the DCO 3 can be generated.
- phase difference pulse generator 30 described in the second embodiment is used as the phase difference detector 11 in the TDC 1.
- FIG. 6 is a block diagram showing an internal configuration of the TDC 1 according to the third embodiment.
- a TDC 1 in FIG. 6 is obtained by replacing the phase difference detector 11 in the TDC 1 in FIG. 1 with a phase difference pulse generator 30 in FIG.
- the phase difference signal PE generated by the phase difference detector 11 in FIG. 6 has a pulse width corresponding to the number of stages of the m-stage DFF 31.
- the waveform of the phase difference signal PE can be a steep pulse signal.
- the pulse width of the phase difference signal PE increases by 2 ⁇ , that is, by one period of the oscillation signal of the DCO 3.
- the charging time of the first capacitor 23 in the first charge pump 12 is also a time corresponding to the number of stages of the m-stage DFF 31.
- the charging time of the second capacitor 26 in the second charge pump 13 is also a time corresponding to the m-stage DFF 31.
- the count value of the counter 6 also increases in accordance with the number of stages of the m-stage DFF 31, and the difference count value calculated by the difference calculator 19a is also set to the count value of the m-stage DFF 31 as the original phase difference count value. It is the sum of the values.
- One stage of DFF corresponds to one period of the oscillation signal of DCO3. Therefore, when m stages of DFFs 31 are cascade-connected, a value obtained by adding count values for m cycles is output from the difference calculator 19a.
- the phase difference output from the TDC 1 is the original decimal phase difference plus the oscillation period of the DCO 3 ⁇ m / N.
- the combined value is output.
- the original fractional phase difference is obtained by differentiating the output signal of the TDC 1 by the second differentiator 7.
- the amount added to is deleted, and the original decimal frequency is obtained.
- ADPLL circuit 4 can perform the phase lock process. Therefore, even if a value corresponding to the provision of the m-stage DFF 31 is added to the decimal phase difference and output from the TDC 1, there is no particular problem in performing the phase lock control of the ADPLL circuit 4.
- m-stage DFFs 31 are cascaded in the phase difference detector 11 after the DFF 21 that synchronizes the reference signal REF with the rising edge or falling edge of the oscillation signal of the DCO 3. Therefore, the Q output signal of the final DFF in the m-stage DFF 31 does not enter the metastable state, and the pulse of the phase difference signal PE also has a steep waveform. Therefore, the phase difference between the oscillation signal of DCO 3 and the reference signal REF can be detected with high accuracy.
- the pulse width of the phase difference signal PE is correspondingly increased.
- the pulse width of the phase difference signal PE increases by one period of the oscillation signal of the DCO 3.
- the charging voltage CP1out of the first capacitor 23 increases, and as a result, the time until the charging voltage CP2out of the second capacitor 26 becomes equal to the charging voltage CP1out of the first capacitor 23 increases, and the phase difference It takes time to detect.
- FIG. 7 is a block diagram showing an internal configuration of the TDC 1 according to the fourth embodiment
- FIG. 8 is a timing chart of the TDC 1 in FIG. TDC1 in FIG. 7 is obtained by adding a precharge signal generator 35 to TDC1 in FIG.
- the precharge signal generator 35 generates a precharge signal having a pulse width corresponding to the time required for the reference signal REF to pass through the m-stage DFF 31.
- the 7 includes an m-stage DFF (third synchronization circuit) 36 and a second logic operation unit 37 that are cascade-connected.
- the number of stages m of the DFF 36 is the same as the number of stages m of the DFF 31 in the phase difference detector 11.
- the m-stage DFF 36 synchronizes (latches) the output signal of the DFF 21 in the phase difference detector 11 or the previous stage DFF with the oscillation signal of the DCO 3.
- the final DFF in the m-stage DFF 36 outputs a signal RTREF2 having a phase delayed by the oscillation period of m ⁇ DCO3 from the phase difference signal PE.
- the signal RTREF2 is a signal delayed by one cycle (2 ⁇ ) of the oscillation signal of the DCO 3 from the phase difference signal PE.
- the second logic unit 37 in the precharge signal generator 35 generates a pulse signal PC having a pulse width from the falling edge of the phase difference signal PE to the rising edge of the signal RTREF2. Further, a signal obtained by delaying the signal RTREF2 by an even number of inverters becomes a START signal.
- the TDC 1 in FIG. 7 includes a second current source 38 and a fifth switch 39.
- the fifth switch 39 is turned on / off by the pulse signal PC generated by the precharge signal generator 35. More specifically, the fifth switch 39 is turned on when the pulse signal PC is turned on, and the fifth switch 39 is turned off when the pulse signal PC is turned off.
- the fifth switch 39 When the fifth switch 39 is turned on, the current from the second current source 38 flows to the second capacitor 26 in the second charge pump 13. Therefore, during the period when the pulse signal PC is high, the second capacitor 26 is precharged, that is, precharged.
- the START signal becomes high
- the Q output signal of the DFF 16a in the charge / discharge control unit 16 becomes low
- the third switch 27 in the second charge pump 13 is turned on.
- the fourth switch 28 is turned off, and the second capacitor 26 is charged.
- the ratio of the current flowing through the first current source 14 and the current flowing through the second current source 38 is 1: K (1 ⁇ K ⁇ N). If K ⁇ N, it is not desirable because the charging voltage CP2out of the second capacitor 26 becomes equal to or higher than the charging voltage CP1out of the first capacitor 23 during the preliminary charging period, and A / D conversion cannot be performed normally. Further, if K ⁇ 1, the time until the comparison operation of the comparator 15 is completed is longer than that in the case where the precharge signal generator 35 is not provided.
- the time until the comparison operation of the comparator 15 is completed can be shortened, and the oscillation signal of the DCO 3 can be reduced. Can be detected with high accuracy in a short time.
- the precharge signal generator 35 Since the second capacitor 26 is precharged as much as the pulse width of the phase difference signal PE increases, the time required for the comparison operation in the comparator 15 can be shortened, and the phase difference between the oscillation signal of the DCO 3 and the reference signal REF. Can be detected quickly and accurately.
- the decimal phase difference of the oscillation signal of the DCO 3 can be detected more accurately as the ratio N of the capacitance of the second capacitor 26 to the capacitance of the first capacitor 23 is increased.
- N the ratio of the capacitance of the second capacitor 26 to the capacitance of the first capacitor 23 is increased.
- the number of counts in the counter 6 increases, and it takes time to detect the decimal phase difference and power consumption increases.
- a small number of phase differences can be detected with high accuracy with a small number of counts, thereby achieving rapid processing and reducing power consumption.
- FIG. 9 is a block diagram showing a schematic configuration of the TDC 1 according to the fifth embodiment. 9, parts that are the same as those in FIG. 1 are given the same reference numerals, and differences will be mainly described below.
- 9 includes a phase difference detector (first phase difference detector, second phase difference detector) 11a, a reference signal source 10, a pulse generator 51, a first charge pump 12, and a second charge.
- the charge / discharge control unit 16 includes an OR gate 52, a DFF 16a, an OR gate 53, and an inverter 16b.
- the phase difference detector 11a in the TDC 1 is partially different from the phase difference detector 11 in FIG.
- the phase difference detector 11a includes a second phase difference detector including a DFF 21a, a pulse generator 59, and a first logic operation unit 22a.
- the second phase difference detector continues to charge the second capacitor 26 and the comparator 15 detects that the charging voltage of the second capacitor 26 is equal to or higher than the charging voltage of the first capacitor 23.
- a phase difference signal (PE signal) having a pulse width corresponding to the phase difference between the oscillation signal of the DCO 3 and the reference signal REF is generated.
- the DFF 21a generates and outputs a signal (hereinafter, RTREF signal) obtained by latching the SSADCstop signal at the rising edge of the oscillation signal of the DCO 3.
- RTREF signal a signal obtained by latching the SSADCstop signal at the rising edge of the oscillation signal of the DCO 3.
- the SSADCstop signal will be described later.
- the pulse generator 59 generates and outputs a pulse signal having a predetermined width (hereinafter referred to as a START pulse signal) in synchronization with the rising edge of the RTREF signal.
- the first logic unit 22a has an EXOR gate 22b and an AND gate 22c.
- the EXOR gate 22b generates and outputs an exclusive OR signal of the RTREF signal and the SSADCstop signal.
- the AND gate 22c generates and outputs a PE signal that is a logical product of the SSADCstop signal and the output signal of the EXOR gate 22b.
- the charge / discharge control unit 16 charges the first capacitor 23 based on the pulse width of the PE signal detected by the above-described second phase difference detector, and then the charge voltage of the second capacitor 26 becomes the voltage of the first capacitor 23. It has a function of a second charge control unit that continues to charge the second capacitor 26 until the comparator 15 detects again that the charge voltage is exceeded.
- OR gate 52 generates a logical sum signal of the output signal of comparator 15 and the REF pulse signal.
- the DFF 16a latches the power supply voltage Vdd at the rising edge of the OR gate 52 and generates the SSADCstop signal. Further, the DFF 16a resets the SSADCstop signal when the STARTpulse signal becomes high.
- the OR gate 53 generates and outputs a logical sum signal of the SSADCstop signal and the RST signal. When the output signal of the OR gate 53 becomes high, the fourth switch 28 is turned on and the second capacitor 26 is discharged.
- the RST signal is a signal that outputs a positive pulse when the number of rising edges of the SSADCstop signal is a multiple of three.
- the counter logic unit 54 counts the number of SSADCstop signals, and sets the START1 signal, the STOP1 signal, the START2 signal, and the STOP2 signal to high in accordance with the counted number. Further, the counter logic unit 54 generates the above-described RST signal.
- the DFF 17 latches the count value of the counter 6 that counts the integer phase at the rising edge of the START1 signal.
- the DFF 18 latches the count value of the counter 6 at the rising edge of the STOP1 signal.
- the DFF 55 latches the count value of the counter 6 at the rising edge of the START2 signal.
- the DFF 56 latches the count value of the counter 6 at the rising edge of the STOP2 signal.
- the difference calculator 19 a in the first phase difference calculator 19 calculates a difference value between the count value held by the DFF 18 and the count value held by the DFF 17.
- the multiplier 19b calculates a value obtained by multiplying the difference value output from the difference calculator 19a by 1 / N.
- the DFF 55 latches the count value of the counter 6 at the rising edge of the START2 signal.
- the DFF 56 latches the count value of the counter 6 at the rising edge of the STOP2 signal.
- the difference calculator 57 a in the second phase difference calculator 57 calculates a difference value between the count value held by the DFF 56 and the count value held by the DFF 55.
- the multiplier 57b calculates the difference value output from the difference calculator 57a 1 / N 2 times the value.
- the third phase difference calculator 58 calculates and outputs the difference between the value output from the multiplier 19b and the value output from the multiplier 57b.
- the output signal of the third phase difference calculator 58 is a PhaseError signal representing a decimal phase difference.
- FIG. 10 is a timing diagram of the TDC 1 according to the fifth embodiment.
- the PE signal indicating the phase difference between the reference signal REF and the oscillation signal of DCO3 becomes high, and the first capacitor 23 is charged during this period.
- the charging of the second capacitor 26 is performed between times t2 and t3.
- the charging voltage of the first capacitor 23 and the charging voltage of the second capacitor 26 match, the output of the comparator 15 is inverted, and the SSADCstop signal becomes high.
- the count value of the counter 6 between the times t1 and t3 is output from the difference calculator 19a. By dividing the count value in this period by N, a rough decimal phase difference can be obtained.
- the PE signal between times t3 and t4 is a phase difference that cannot be detected between times t1 and t3. This amount of phase difference is detected between times t4 and t5.
- the phase difference detected between times t4 and t5 is output from the difference calculator 57a in the second phase difference calculator 57. This phase difference is multiplied by 1 / N 2 by the multiplier 57b, and the final decimal phase difference is detected by the third phase difference calculator 58.
- the process of detecting the decimal phase difference is performed in two stages, the rough decimal phase difference is detected in the first stage, and the first stage can be detected in the second stage.
- the fractional phase difference corresponding to the missing amount is detected. Since the phase difference is detected using the common first capacitor 23 and second capacitor 26 in both the first stage and the second stage, there is no possibility that the hardware configuration becomes complicated.
- the capacitance ratio N of the first capacitor 23 and the second capacitor 26 can be reduced, the time required for the first stage and the second stage, more specifically, in the first stage and the second stage.
- FIG. 11 is a block diagram showing an internal configuration of the receiver 40 having the TDC 1 in any of the first to 54th embodiments.
- the receiver 40 of FIG. 11 includes an antenna 41, a local oscillator 2 configured similarly to FIG. 2, a high frequency amplifier 42, quadrature demodulators 43a and 43b, a 90 ° phase shifter 44, and low pass filters 45a and 45b. And variable gain amplifiers (VGA: Variable Gain Amplifier) 46a and 46b, A / D converters 47a and 47b, and a baseband processing unit 48.
- VGA Variable Gain Amplifier
- the quadrature demodulator 43a, 43b is an I signal having a phase difference of 90 ° based on the local oscillation signal output from the local oscillator 41 and a signal obtained by shifting the local oscillation signal by 90 ° by the 90 ° phase shifter 44. And Q signal are generated.
- the low-pass filters 45a and 45b remove harmonic noise contained in the I signal and the Q signal.
- the variable gain amplifiers 46a and 46b adjust the gains of the I signal and Q signal after noise removal.
- the A / D converters 47 a and 47 b convert the I signal and Q signal output from the variable gain amplifiers 46 a and 46 b into digital data and input the digital data to the baseband processing unit 48.
- the receiver 40 can be used alone or as a wireless communication device including a transmitter.
- FIG. 12 is a block diagram showing a schematic configuration of a wireless communication apparatus 71 according to the fifth embodiment.
- the wireless communication device 71 of FIG. 12 includes a baseband processing unit 72, an RF unit 73, and an antenna unit 74.
- the baseband processing unit 72 includes a control circuit 75, a transmission processing circuit 76, and a reception processing circuit 77. Each circuit in the baseband processing unit 72 performs digital signal processing.
- the control circuit 75 performs, for example, processing of a MAC (Media Access Control) layer.
- the control circuit 75 may perform processing of a network layer higher than the MAC layer. Further, the control circuit 75 may perform processing related to MIMO (Multi-Input Multi-Output). For example, the control circuit 75 may perform propagation path estimation processing, transmission weight calculation processing, stream separation processing, and the like.
- MIMO Multi-Input Multi-Output
- the transmission processing circuit 76 generates a digital transmission signal.
- the reception processing circuit 77 performs processing such as analysis of a preamble and a physical header after demodulation and decoding.
- the RF unit 73 includes a transmission circuit 78 and a reception circuit 79.
- the transmission circuit 78 includes a transmission filter (not shown) that extracts a signal in the transmission band, a mixer (not shown) that uses the oscillation signal of the DCO 3 to upconvert the signal that has passed through the transmission filter to a radio frequency, and after the upconversion. And a preamplifier (not shown) for amplifying the above signal.
- the receiving circuit 79 is configured in the same manner as the receiver 40 of FIG. 11 described above. That is, the reception circuit 79 includes the TDC 1, the ADPLL circuit 4, the reception RF unit 81, and the DCO 3.
- the transmission circuit 78 and the reception circuit 79 in FIG. 12 share the DCO 3, but separate DCOs may be provided.
- a switch for connecting either the transmission circuit 78 or the reception circuit 79 to the antenna unit 74 may be provided in the RF unit 73. With such a switch, the antenna unit 74 can be connected to the transmission circuit 78 during transmission, and the antenna unit 74 can be connected to the reception circuit 79 during reception.
- the transmission processing circuit 76 in FIG. 12 outputs only one system of transmission signals, depending on the wireless system, the transmission processing circuit 76 may output the signals separately for an I signal and a Q signal.
- the block configuration of the wireless communication apparatus 71 in this case is as shown in FIG. 13, for example.
- the wireless communication device 71 of FIG. 13 is different from FIG. 12 in the configuration from the transmission processing circuit 76 to the transmission circuit 78.
- the transmission processing circuit 76 generates two digital baseband signals (hereinafter, digital I signal and digital Q signal).
- a DA conversion circuit 82 that converts a digital I signal into an analog I signal and a DA conversion circuit 83 that converts a digital Q signal into an analog Q signal are provided.
- the transmission circuit 78 up-converts the analog I signal and the analog Q signal with a mixer (not shown).
- the reception RF unit 81 includes, for example, the local oscillator 41, the high frequency amplifier 42, the quadrature demodulators 43a and 43b, the 90 ° phase shifter 44, the low pass filters 45a and 45b, and a variable gain amplifier (VGA: VariableGAGain).
- Amplifier 46a, 46b, A / D converters 47A, 47B, and a baseband processing unit 48.
- the RF unit 73 and the baseband processing unit 72 shown in FIGS. 12 and 13 may be formed as one chip, or the RF unit 73 and the baseband processing unit 72 may be formed as separate chips. Further, a part of the RF unit 73 and the baseband processing unit 72 may be configured by discrete components, and the rest may be configured by one or a plurality of chips.
- the RF unit 73 and the baseband processing unit 72 may be configured by software reconfigurable software.
- the functions of the RF unit 73 and the baseband processing unit 72 may be realized by software using a digital signal processor.
- a bus, a processor unit, and an external interface unit are provided inside the wireless communication device 71 shown in FIGS.
- the processor unit and the external interface unit are connected via a bus, and firmware operates in the processor unit.
- the firmware can be updated by a computer program.
- the processor unit operates the firmware, the processor unit can perform processing operations of the RF unit 73 and the baseband processing unit 72 illustrated in FIGS. 12 and 13.
- the 12 and 13 includes only one antenna unit 74, but the number of antennas is not particularly limited.
- the transmitting antenna unit 74 and the receiving antenna unit 74 may be provided separately, or the I signal antenna unit 74 and the Q signal antenna unit 74 may be provided separately.
- transmission and reception may be switched with a transmission / reception selector switch.
- the wireless communication device 71 shown in FIGS. 12 and 13 can be applied to a stationary wireless communication device 71 such as an access point, a wireless router, or a computer, and can also be applied to a portable wireless terminal such as a smartphone or a mobile phone. It can also be applied to peripheral devices that perform wireless communication with a host device such as a mouse or a keyboard, can be applied to a card-like member with a built-in wireless function, and can also be applied to a wearable terminal that wirelessly communicates biological information.
- the wireless method of wireless communication between the wireless communication devices 71 shown in FIG. 12 or FIG. 13 is not particularly limited, and third-generation or later cellular communication, wireless LAN, Bluetooth (registered trademark), proximity wireless communication Various things are applicable.
- FIG. 14 shows an example in which wireless communication is performed between the PC 84 as a host device and a mouse 85 as a peripheral device.
- the wireless communication device 71 shown in FIG. Built in.
- the mouse 85 performs wireless communication using the power of the built-in battery.
- a wireless method capable of low-consumption wireless communication such as Bluetooth Low Energy established in the Bluetooth (registered trademark) 4.0 standard.
- FIG. 15 shows an example in which wireless communication is performed between the wearable terminal 86 and a host device (for example, PC 84).
- the wearable terminal 86 is worn on the human body, and is not only a type that is worn on the arm as shown in FIG. 15, but also a type that is affixed to the body such as a seal type, and a type other than the arm such as a glasses type and an earphone type. Various things are possible, such as those that are worn on the body and those that are placed inside the body such as a pacemaker.
- the wireless communication device 71 shown in FIG. 12 or 13 is built in both the wearable terminal 86 and the PC 84.
- the PC 84 is a computer or a server. Since the wearable terminal 86 is also worn on the human body and the space for the built-in battery is limited, a wireless method capable of wireless communication with low power consumption such as Bluetooth Low Energy is adopted. Is desirable.
- the type of information transmitted and received by wireless communication is not particularly limited. However, it is desirable to change the wireless system between the case where information with a large amount of data such as moving image data is transmitted and received and the case where information with a small amount of data such as operation information of the mouse 85 is transmitted and received. It is necessary to perform wireless communication with an optimal wireless system according to the amount of information.
- a notification unit that notifies the user of the operation state of wireless communication may be provided.
- the operation state may be displayed on a display device such as an LED, the operation state may be notified by vibration of a vibrator, or the operation state may be obtained from sound information from a speaker, a buzzer, or the like. May be notified.
- At least a part of the TDC 1 and the receiver 40 described in the above-described embodiment may be configured by hardware or software.
- a program that realizes at least part of the functions of the TDC 1 and the receiver 40 may be stored in a recording medium such as a flexible disk or a CD-ROM, and read and executed by a computer.
- the recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.
- a program that realizes at least part of the functions of the TDC 1 and the receiver 40 may be distributed via a communication line (including wireless communication) such as the Internet. Further, the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.
- a communication line including wireless communication
- the program may be distributed in a state where the program is encrypted, modulated or compressed, and stored in a recording medium via a wired line such as the Internet or a wireless line.
- phase digital converter 1 phase digital converter (TDC), 2 local oscillator, 3 DCO, 4 ADPLL circuit, 5 first differentiator, 6 counter, 7 second differentiator, 8 logic operator, 9 loop filter, 11 phase difference detector, 12 1st charge pump, 13 2nd charge pump, 14 1st current source, 15 comparator, 16 charge / discharge control part, 17 1st holder, 18 2nd holder, 19 phase difference calculator, 21 DFF, 22 1st logic unit, 23 1st capacitor, 24 1st switch, 25 2nd switch, 26 2nd capacitor, 27 3rd switch, 28 4th switch, 30 phase difference pulse generator, 31 DFF, 35 precharge signal Generator, 36 DFF, 38 Second current source, 39 Fifth switch, 41 Antenna, 42 High frequency amplifier, 43a, 43b Quadrature demodulator, 44 Phase shifter, 45a, 4 b Low-pass filter, 46a, 46b variable gain amplifier, 47a, 47b A / D converter, 48 baseband processing unit
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Manipulation Of Pulses (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Transceivers (AREA)
Abstract
【課題】回路規模を縮小でき、かつ消費電力も低減できる。 【解決手段】位相デジタル変換器は、第1信号の周期の数を計測するカウンタと、第1信号と、第1信号よりも2倍以上周波数が低い第2信号と、の位相差に応じたパルス幅を持つ位相差信号を生成する第1位相差検出器と、位相差信号のパルス幅に応じた電荷を充電する第1キャパシタと、第1キャパシタのN倍のキャパシタンスを有する第2キャパシタと、第1キャパシタの充電電圧と、第2キャパシタの充電電圧とを比較する比較器と、第2キャパシタの充電電圧が第1キャパシタの充電電圧以上になったことが比較器にて検出されるまで、第2キャパシタへの充電を継続する第1充電制御部と、第2キャパシタへの充電期間におけるカウンタの計数値をNで割った値により、第1信号と第2信号との位相差を演算する第1位相差演算器と、を備える。
Description
本発明の実施形態は、位相デジタル変換器、位相差パルス生成器、無線通信装置および無線通信方法に関する。
無線通信装置内の主要回路は、チップ化のために、CMOSプロセスで形成されることが多い。例えば、局部発振信号は、オールデジタルのADPLL(All Digital Phase-Locked Loop)回路と、位相デジタル変換器とで生成可能である。
従来の位相デジタル変換器は、多数段のインバータの各出力を、対応するフリップフロップでラッチして、位相差信号を生成していた。このような回路では、数十段のインバータとフリップフロップが必要となり、回路規模が大きくなるとともに、位相デジタル変換器全体での消費電流が大きいという問題があった。
本発明が解決しようとする課題は、回路規模を縮小でき、かつ消費電力も低減可能な位相デジタル変換器、位相差パルス生成器、無線通信装置および無線通信方法を提供することにある。
本実施形態によれば、第1信号の周期の数を計測するカウンタと、
前記第1信号と、前記第1信号よりも2倍以上周波数が低い第2信号と、の位相差に応じたパルス幅を持つ位相差信号を生成する第1位相差検出器と、
前記位相差信号のパルス幅に応じた電荷を充電する第1キャパシタと、
前記第1キャパシタのN倍(Nは1より大きい実数)のキャパシタンスを有する第2キャパシタと、
前記第1キャパシタの充電電圧と、前記第2キャパシタの充電電圧とを比較する比較器と、
前記第2キャパシタの充電電圧が前記第1キャパシタの充電電圧以上になったことが前記比較器にて検出されるまで、前記第2キャパシタへの充電を継続する第1充電制御部と、
前記第2キャパシタへの充電期間における前記カウンタの計数値を前記Nで割った値により、前記第1信号と前記第2信号との位相差を演算する第1位相差演算器と、を備える位相デジタル変換器が提供される。
前記第1信号と、前記第1信号よりも2倍以上周波数が低い第2信号と、の位相差に応じたパルス幅を持つ位相差信号を生成する第1位相差検出器と、
前記位相差信号のパルス幅に応じた電荷を充電する第1キャパシタと、
前記第1キャパシタのN倍(Nは1より大きい実数)のキャパシタンスを有する第2キャパシタと、
前記第1キャパシタの充電電圧と、前記第2キャパシタの充電電圧とを比較する比較器と、
前記第2キャパシタの充電電圧が前記第1キャパシタの充電電圧以上になったことが前記比較器にて検出されるまで、前記第2キャパシタへの充電を継続する第1充電制御部と、
前記第2キャパシタへの充電期間における前記カウンタの計数値を前記Nで割った値により、前記第1信号と前記第2信号との位相差を演算する第1位相差演算器と、を備える位相デジタル変換器が提供される。
以下、図面を参照して本発明の実施形態を説明する。以下の実施形態では、位相デジタル変換器、位相差パルス生成器および無線通信装置内の特徴的な構成および動作を中心に説明するが、位相デジタル変換器、位相差パルス生成器および無線通信装置には以下の説明で省略した構成および動作が存在しうる。ただし、これらの省略した構成および動作も本実施形態の範囲に含まれるものである。
(第1の実施形態)
図1は第1の実施形態による位相デジタル変換器(TDC:Time to Digital Converter)1の概略構成を示すブロック図、図2はTDC1を用いた局部発振器2の概略構成を示すブロック図である。
図1は第1の実施形態による位相デジタル変換器(TDC:Time to Digital Converter)1の概略構成を示すブロック図、図2はTDC1を用いた局部発振器2の概略構成を示すブロック図である。
図1のTDC1の構成および動作を説明する前に、図2の局部発振器2の構成および動作を説明する。
図2の局部発振器2は、例えば無線通信装置で用いられる局部発振信号を生成する回路である。図2の局部発振器2は、デジタル制御発振器(DCO:Digitally Control Oscillator)3と、図1に詳細構成を示すTDC1と、ADPLL回路4とを有する。ADPLL回路4は、TDC1の出力信号を微分する第1微分器5と、TDC1内のカウンタ6の出力信号を微分する第2微分器7と、周波数誤差情報を演算する論理演算器8と、ループフィルタ9とを備えている。図2では、TDC1とは別個にカウンタ6を設けているが、本明細書では、TDC1の内部にカウンタ6が設けられる例について説明する。
カウンタ6は、DCO3の発振信号の立ち上がりエッジまたは立ち下がりエッジの数をカウントする。カウンタ6の出力信号は、DCO3の発振信号の整数位相を表す信号である。第2微分器7は、カウンタ6の出力信号を微分処理する。第2微分器7の出力信号は、DCO3の発振信号の整数周波数を表す信号である。
図1に詳細を示すTDC1は、後述するように、DCO3の発振信号と基準信号との位相差信号を生成する。この位相差信号は、DCO3の発振信号の小数位相を表す信号である。第1微分器5は、TDC1の出力信号を微分処理する。第1微分器5の出力信号は、DCO3の発振信号の小数周波数を表す信号である。
論理演算器8は、外部から設定される周波数コードFCWから、第1微分器5の出力信号と第2微分器7の出力信号とを差し引いた信号を演算する。論理演算器8の出力信号は、周波数コードFCWが示す周波数とDCO3の発振信号の周波数との誤差を表す周波数誤差信号である。
ループフィルタ9は、周波数誤差信号に含まれるノイズ成分を除去する。ループフィルタ9の出力信号は、DCO3に入力される。DCO3は、ループフィルタ9の出力信号に基づいて、周波数コードFCWが示す周波数とDCO3の発振信号の周波数との誤差がなくなるように、帰還動作を行う。
なお、図2では、局部発振器2内にDCO3を設けているが、局部発振器2内のDCO3で発振信号を生成する代わりに、局部発振器2の外部に設けられたVCO(Voltage Control Oscillator)で生成された発振信号を局部発振器2に入力してもよい。
次に、図1に基づいて、TDC1の構成および動作を説明する。図1のTDC1は、カウンタ6と、位相差検出器(第1位相差検出器)11と、第1チャージポンプ12と、第2チャージポンプ13と、第1電流源14と、比較器15と、充放電制御部(第1充電制御部)16と、第1保持器17と、第2保持器18と、位相差演算器(第1位相差演算器)19とを備えている。
カウンタ6は、DCO3の発振信号(第1信号)の周期の数を計測する。すなわち、カウンタ6は、DCO3の発振信号の立ち上がりエッジまたは立ち下がりエッジの数を計測する。
位相差検出器11は、DCO3の発振信号と基準信号(第2信号)REFとの位相差信号PEを生成する。基準信号REFは、例えば基準信号源10で生成される信号である。
基準信号源10は、TDC1の内部に設けてもよいし、外部に設けてもよい。基準信号REFの周波数は、DCO3の発振信号の周波数よりも2倍以上低い信号である。位相差検出器11が生成する位相差信号PEは、DCO3の発振信号の1周期以内の位相差、すなわち小数位相差を表す信号である。
基準信号源10は、TDC1の内部に設けてもよいし、外部に設けてもよい。基準信号REFの周波数は、DCO3の発振信号の周波数よりも2倍以上低い信号である。位相差検出器11が生成する位相差信号PEは、DCO3の発振信号の1周期以内の位相差、すなわち小数位相差を表す信号である。
より詳細には、位相差検出器11は、基準信号REFをDCO3の発振信号の立ち上がりエッジまたは立ち下がりエッジで同期化(ラッチ)した信号RTREFを生成するDFF(第1同期化回路)21と、信号RTREFと基準信号REFとの位相差を表す位相差信号PEを生成する第1論理演算器22とを有する。信号RFREFと同論理の信号がSTART信号である。
第1チャージポンプ12は、第1キャパシタ23と、第1スイッチ(第1切替器)24と、第2スイッチ(第3切替器)25とを有する。
第1スイッチ24は、第1電流源14からの電流を第1キャパシタ23に供給して第1キャパシタ23の充電を行うか否かを切り替える。第1スイッチ24がオンすると、第1電流源14からの電流が第1キャパシタ23に供給されて、第1キャパシタ23は充電される。第1スイッチ24は、位相差検出器11から出力される位相差信号PEによりオンまたはオフする。例えば、位相差信号PEがハイであれば第1スイッチ24はオンし、位相差信号PEがロウであれば第1スイッチ24はオフする。
第2スイッチ25は、第1キャパシタ23の両端電極間を短絡するか否かを切り替える。第2スイッチ25がオンすると、第1キャパシタ23の両端電極間が短絡されて、第1キャパシタ23は放電される。第2スイッチ25は、後述する充放電制御部16の出力信号によりオンまたはオフする。
第2チャージポンプ13は、第2キャパシタ26と、第3スイッチ27(第2切替器)と、第4スイッチ(第4切替器)28とを有する。
第2キャパシタ26は、第1キャパシタ23のN倍(Nは1より大きい実数)のキャパシタンスを有する。
第3スイッチ27は、第1電流源14からの電流を第2キャパシタ26に供給して第2キャパシタ26の充電を行うか否かを切り替える。第3スイッチ27がオンすると、第1電流源14からの電流が第2キャパシタ26に供給されて、第2キャパシタ26は充電される。
第4スイッチ28は、第2キャパシタ26の両端電極間を短絡するか否かを切り替える。第4スイッチ28がオンすると、第2キャパシタ26の両端電極間が短絡されて、第2キャパシタ26は放電される。第3スイッチ27と第4スイッチ28は、後述する充放電制御部16の出力信号によりオンまたはオフする。
比較器15は、第1キャパシタ23の充電電圧と第2キャパシタ26の充電電圧とを比較して、両充電電圧の電圧差に応じた信号を出力する。
充放電制御部16は、第2キャパシタ26の充電電圧が第1キャパシタ23の充電電圧以上になったことが比較器15にて検出されるまで、第2キャパシタ26への充電を継続する。すなわち、充放電制御部16は、第2キャパシタ26の充電電圧が第1キャパシタ23の充電電圧以下のときは第1論理(例えばロウ)で、第2キャパシタ26の充電電圧が第1キャパシタ23の充電電圧より高くなると第2論理(例えばハイ)の信号を生成する。充放電制御部16が生成した信号は、第2スイッチ25、第3スイッチ27および第4スイッチ28のオンまたはオフを切り替えるために用いられる。
より詳細には、充放電制御部16は、Dフリップフロップ(以下、DFF)16aと、インバータ16bとを有する。DFF16aのクロック端子には比較器15の出力信号が入力され、DFF16aのD入力端子は電源電圧Vddに設定され、DFF16aのリセット端子にはSTART信号が入力されている。START信号は、例えば位相差検出器11内のDFF21の出力信号がハイの期間のパルス幅を持つパルス信号である。START信号が入力されると、DFF16aはリセットされて、第2キャパシタ26の充電が開始される。このDFF16aのQ出力信号は、STOP信号であり、このSTOP信号がロウの間は、第3スイッチ27はオンで、第4スイッチ28はオフであり、第2キャパシタ26の充電が行われる。STOP信号がハイになると、第3スイッチ27はオフで、第4スイッチ28はオンし、第2キャパシタ26の放電が行われる。STOP信号がハイになるのは、比較器15にて、第2キャパシタ26の充電電圧が第1キャパシタ23の充電電圧以上になった場合である。このように、第2キャパシタ26の充電電圧が第1キャパシタ23の充電電圧以上になると、第2キャパシタ26の充電が終了するとともに、第1キャパシタ23と第2キャパシタ26の放電が行われる。
第1保持器17は、第2キャパシタ26が充電を開始する時点でのカウンタ6の計数値を保持する。第1保持器17は、例えばDFFを有し、このDFFのD入力端子にはカウンタ6の計数値が入力され、クロック端子にはSTART信号が入力される。START信号の立ち上がりエッジで、DFFはカウンタ6の計数値をラッチ(保持)する。
第2保持器18は、第2キャパシタ26の充電電圧が第1キャパシタ23の充電電圧以上になったことが比較器15にて検出された時点でのカウンタ6の計数値を保持する。第2保持器18は、例えばDFFを有し、このDFFのD入力端子にはカウンタ6の計数値が入力され、クロック端子にはSTOP信号が入力される。
位相差演算器19は、DCO3の発振信号と基準信号REFとの位相差を演算する。より詳細には、DCO3の発振信号の1周期より小さい小数位相差を演算する。
位相差演算器19は、例えば、第1保持器17が保持した値と第2保持器18が保持した値との差分を演算する差分演算器19aと、差分演算器19aで演算された差分を1/Nした値を演算する乗算器19bとを有する。
図3は第1の実施形態によるTDC1のタイミング図である。このタイミング図を参照しながら、図1のTDC1の動作を説明する。
まず、位相差検出器11は、DCO3の発振信号と基準信号REFとの位相差を検出し、検出した位相差と等しいパルス幅を持つ位相差信号PEを生成する(時刻t1~t2)。図3に示すように、位相差信号PEは、基準信号REFの立ち上がりエッジから、基準信号REFをDCO3の発振信号の立ち上がりエッジで同期化した信号RTREFの立ち上がりエッジまでのパルス幅を持つパルス信号である。
第1チャージポンプ12内の第1スイッチ24は、位相差信号PEがハイの期間にオンする。よって、第1スイッチ24は、基準信号REFの立ち上がりエッジから、信号RTREFの立ち上がりエッジまでの期間(t1~t2)、オンする。第1スイッチ24がオンすると、第1電流源14からの電流が第1スイッチ24を通って第1キャパシタ23に流れ、第1キャパシタ23の充電が行われる。このように、第1キャパシタ23は、基準信号REFの立ち上がりエッジから信号RTREFの立ち上がりエッジまでの期間、充電される。これにより、図3に示すように、第1キャパシタ23の充電電圧CP1outは、急峻に上昇する。
一方、START信号は、位相差検出器11内のDFF21のQ出力に応じて変化する信号である。よって、START信号は、DFFのQ出力である信号RTREFの立ち上がりエッジから少し遅れて立ち上がり(時刻t2)、時刻t3までの間ハイを保持する。
START信号がハイになると、充放電制御部16内のDFFのQ出力がロウになり、第3スイッチ27がオンして、第4スイッチ28がオフする。これにより、第1電流源14から、第2チャージポンプ13内の第3スイッチ27を通って、第2キャパシタ26に電流が流れ、第2キャパシタ26の充電が行われる(時刻t2~t4)。
START信号がハイになると、充放電制御部16内のDFFのQ出力がロウになり、第3スイッチ27がオンして、第4スイッチ28がオフする。これにより、第1電流源14から、第2チャージポンプ13内の第3スイッチ27を通って、第2キャパシタ26に電流が流れ、第2キャパシタ26の充電が行われる(時刻t2~t4)。
比較器15は、第1キャパシタ23の充電電圧CP1outと第2キャパシタ26の充電電圧CP2outとを比較する。第2キャパシタ26の充電電圧CP2outが第1キャパシタ23の充電電圧CP1out以上になると(時刻t4)、比較器15の出力はロウからハイに変化する。これにより、充放電制御部16内のDFFのQ出力であるSTOP信号はロウからハイになる。STOP信号がハイになると、第2チャージポンプ13内の第3スイッチ27がオフして、第4スイッチ28がオンし、第2キャパシタ26の電荷は放電される。
第1チャージポンプ12、第2チャージポンプ13および充放電制御部16は、シングルスロープ型のA/D変換器を構成している。すなわち、図3に示すように、第1キャパシタ23の充電電圧CP1outが、線形に増加する電圧と一致したときに比較動作を停止し、比較動作を開始してから停止までの期間をカウンタ6で計数し、カウンタ6の計数値をA/D変換値とする。
より具体的には、第1保持器17は、START信号の立ち上がりエッジ(時刻t2)でカウンタ6の計数値を保持し、第2保持器18は、STOP信号の立ち上がりエッジ(時刻t4)でカウンタ6の計数値を保持する。そして、差分演算器19aは、第2保持器18が保持した計数値と第1保持器17が保持した計数値との差分を演算する。この差分は、比較器15が比較動作を行っている間のカウンタ6の計数値であり、DCO3の発振信号と基準信号REFとの位相差に相当する。
第1チャージポンプ12内の第1キャパシタ23のキャパシタンスと、第2チャージポンプ13内の第2キャパシタ26のキャパシタンスとの比は、1:Nである。第1キャパシタ23の充電期間の最大長さは、DCO3の発振信号の1周期である。第2キャパシタ26を充電するのには、第1キャパシタ23のN倍の時間を要する。よって、第2キャパシタ26の充電期間の最大長さは、DCO3の発振信号のN周期となる。差分演算器19aで演算した差分をNで割った値が、DCO3の発振信号の小数位相差、すなわち、位相のフルスケール値を2πとしたときのDCO3の発振信号と基準信号REFとの位相差に対応するデジタル値となる。
そこで、乗算器19bでは、差分演算器19aで演算した差分に1/Nを乗算して、小数位相差を求めている。Nは、上述したように、第1キャパシタ23と第2キャパシタ26とのキャパシタンスの比であり、この比NがDCO3の発振信号と基準信号REFとの位相差のフルスケール値2πに対応することから、カウンタ6の計数値をNで割ることで、DCO3の発振信号と基準信号REFとの小数位相差を簡易に演算することができる。
図3は基準信号REFの3周期分のタイミング波形を示しており、基準信号REFの第1周期におけるDCO3の発振信号と基準信号REFとの位相差は6-1=5、第2周期における位相差は7-1=6、第3周期における位相差は2-1=1である例を示している。小数位相差は、これら位相差をNで割った値となる。図3に示すように、位相差が小さいほど、位相差信号PEのパルス幅は狭くなり、比較器15が比較動作を開始してから停止するまでの期間が短くなる。
このように、第1の実施形態では、DCO3の発振信号と基準信号REFとの位相差を示す位相差信号PEのパルス幅分、第1キャパシタ23への充電を行った後、第1キャパシタ23の充電電圧CP1outと等しくなるまで、第2キャパシタ26への充電を行い、第2キャパシタ26が充電を行っている期間内のカウンタ6の計数値により、位相差を検出する。この位相差を、第1キャパシタ23と第2キャパシタ26とのキャパシタンスの比Nで割った値により、DCO3の発振信号と基準信号REFとの小数位相差を検出する。これにより、TDC1の内部に多数のインバータと各段のインバータ出力をラッチするフリップフロップとを設ける必要がなくなり、回路規模を縮小できるとともに、消費電力を大幅に低減できる。
また、TDC1には、整数位相を検出するためのカウンタ6が設けられており、このカウンタ6を利用して小数位相差を検出するため、小数位相差を検出するために別個のカウンタを設ける必要がなくなり、さらなる回路規模の縮小化と低消費電力化が図れる。
さらに、TDC1内にシングルスロープ型のA/D変換器を設けるとともに、このA/D変換器内の第1チャージポンプ12と第2チャージポンプ13が第1電流源14を共用するようにしたため、各チャージポンプ12,13ごとに電流源を設ける必要がなくなって回路規模を縮小できるとともに、各チャージポンプ12,13に流れる電流のばらつきも生じなくなり、A/D変換精度を向上できる。
また、第1チャージポンプ12内の第1キャパシタ23と第2チャージポンプ13内の第2キャパシタ26とのキャパシタンス比Nが位相差のフルスケール値となるため、カウンタ6の計数値をNで割るだけで、小数位相差を簡易に演算できる。これにより、位相差のフルスケール値を検出するためのキャリブレーション処理が不要となり、さらなる回路規模の縮小化と低消費電力化を図れる。
(第2の実施形態)
第2の実施形態は、TDC1内の位相差検出器11として適用可能な位相差パルス生成器に関する。
第2の実施形態は、TDC1内の位相差検出器11として適用可能な位相差パルス生成器に関する。
図4は第2の実施形態による位相差パルス生成器30の内部構成を示すブロック図、図5は図4の位相差パルス生成器30のタイミング図である。図4の位相差パルス生成器30は、図1の位相差検出器11内のDFF21の後段に、m段(mは1以上の整数)のDFF(第2同期化回路)31を縦続接続したものである。図4では、1段のDFF31を有する例を示しているが、2段以上のDFF1を縦続接続してもよい。
図1の位相差検出器11では、DFF21のQ出力信号RTREFを第1論理演算器22に入力していたが、図4では、m段のDFF31の中の最終段のDFFのQ出力信号を信号RTREFとして、第1論理演算器22に入力している。
第1論理演算器22は、図1と同様に、信号RTREFと基準信号REFとに基づいて、基準信号REFの立ち上がりエッジから、信号RTREFの立ち上がりエッジまでの間ハイとなる位相差信号PEを生成する。この位相差信号PEは、図1と同様に、第1チャージポンプ12内の第1スイッチ24のオン/オフを切り替えるために用いられる。
基準信号REFをDCO3の発振信号で同期化するDFF21の後段にm段のDFF31を縦続接続する理由は、基準信号REFとDCO3の発振信号とは非同期の関係にあることから、DFF21でラッチ動作を行う際に、DFF21が定めるセットアップ時間やホールド時間を満たさずに保持動作を行う可能性があり、DFF21のQ出力信号が準安定(メタステーブル)状態になるおそれがあるためである。このため、図4の回路では、DFF21の後段にm段のDFF31を縦続接続して、DFF21と同じタイミングのクロック信号(この場合は、DCO3の発振信号)でラッチ動作を繰り返すことで、DFF31のQ出力信号の波形のなまりを抑えるようにしている。例えば、m=1だと、合計2段のDFF21,31が縦続接続されることになるが、2段目のDFF31のQ出力信号がまだ準安定状態であれば、さらにもう1段DFF31を追加することで、メタステーブル状態がより起きにくくなる。ただし、図5に示すように、mの数を1つ増やすたびに、位相差信号PEのパルス幅が2πずつ、すなわちDCO3の発振信号の1周期分ずつ増加していく。よって、図4の位相差パルス生成器30で生成した位相差信号PEを図1のTDC1に用いて小数位相差を検出する場合は、A/D変換後に、位相差信号PEのパルス幅が増加した分を、DCオフセットとして除去するなどの処理が必要となる。
このように、第2の実施形態では、基準信号REFをDCO3の発振信号の立ち上がりエッジまたは立ち下がりエッジで同期化するDFF21のQ出力信号がメタステーブル状態になったとしても、このDFF21の後段にm段のDFF31を縦続接続するため、最終段のDFF31のQ出力信号波形を急峻な波形とすることができる。よって、DCO3の発振信号と基準信号REFとが非同期であっても、基準信号REFとDCO3の発振信号との位相差を正確に反映した位相差信号PEを生成できる。
(第3の実施形態)
以下に説明する第3の実施形態は、第2の実施形態で説明した位相差パルス生成器30をTDC1内の位相差検出器11として用いるものである。
以下に説明する第3の実施形態は、第2の実施形態で説明した位相差パルス生成器30をTDC1内の位相差検出器11として用いるものである。
図6は第3の実施形態によるTDC1の内部構成を示すブロック図である。図6のTDC1は、図1のTDC1内の位相差検出器11を図4の位相差パルス生成器30に置換したものである。図6の位相差検出器11で生成される位相差信号PEは、m段のDFF31の段数に応じたパルス幅を有する。m段のDFF31を設けることで、基準信号REFとDCO3の発振信号とが非同期であっても、m段のDFF31の中の最終段のDFFのQ出力信号RTREFがメタステーブル状態になることはなく、位相差信号PEの波形を急峻なパルス信号とすることができる。
DFFの段数が1段増えるたびに、位相差信号PEのパルス幅は、2πすなわちDCO3の発振信号の1周期分ずつ大きくなる。このため、第1チャージポンプ12内の第1キャパシタ23の充電時間も、m段のDFF31の段数に応じた時間となる。また、第2チャージポンプ13内の第2キャパシタ26の充電時間も、m段のDFF31に応じた時間となる。カウンタ6の計数値も、m段のDFF31の段数に応じて増加し、差分演算器19aで演算される差分計数値も、本来の位相差分の計数値に、m段のDFF31分の計数値を足し合わせた値となる。1段分のDFFがDCO3の発振信号の1周期に対応する。
よって、m段のDFF31が縦続接続されている場合は、m周期分の計数値が加算された値が差分演算器19aから出力される。
よって、m段のDFF31が縦続接続されている場合は、m周期分の計数値が加算された値が差分演算器19aから出力される。
以上より、位相差検出器11内にm段のDFF31が縦続接続されている場合には、TDC1から出力される位相差は、本来の小数位相差に、DCO3の発振周期×m/Nを足し合わせた値が出力される。
図2に示すように、局部発振器2では、TDC1の後段に第2微分器7が接続されているため、TDC1の出力信号を第2微分器7で微分処理することで、本来の小数位相差に加算された分は削除され、本来の小数周波数が得られる。
また、TDC1の出力に、DCO3の発振周期×m/Nが含まれていても、ADPLL回路4は、位相ロック処理を行うことができる。よって、m段のDFF31を設けた分の値が小数位相差に加算されてTDC1から出力されたとしても、ADPLL回路4の位相ロック制御を行う上では特に支障はない。
このように、第3の実施形態では、位相差検出器11内に、基準信号REFをDCO3の発振信号の立ち上がりエッジまたは立ち下がりエッジで同期化するDFF21の後段に、m段のDFF31を縦続接続するため、m段のDFF31の中の最終段のDFFのQ出力信号はメタステーブル状態になることはなく、位相差信号PEのパルスも急峻な波形となる。よって、DCO3の発振信号と基準信号REFとの位相差を精度よく検出できる。
(第4の実施形態)
以下に説明する第4の実施形態は、第2チャージポンプ13内のチャージポンプ動作を高速化するものである。
以下に説明する第4の実施形態は、第2チャージポンプ13内のチャージポンプ動作を高速化するものである。
第3の実施形態の場合、位相差検出器11内にm段のDFF31を設けているため、その分、位相差信号PEのパルス幅が大きくなる。mが1増えるたびに、DCO3の発振信号の1周期分ずつ位相差信号PEのパルス幅が大きくなる。mが増えるたびに、第1キャパシタ23の充電電圧CP1outが高くなり、結果として、第2キャパシタ26の充電電圧CP2outが第1キャパシタ23の充電電圧CP1outに等しくなるまでの時間が長くなり、位相差を検出するのに時間がかかってしまう。
これは、シングルスロープ型のA/D変換器としてのダイナミックレンジ、すなわちTDC1のダイナミックレンジが減少することを意味する。これに対する対策を施したのが第4の実施形態である。
図7は第4の実施形態によるTDC1の内部構成を示すブロック図、図8は図7のTDC1のタイミング図である。図7のTDC1は、図6のTDC1にプリチャージ信号生成器35を追加したものである。プリチャージ信号生成器35は、基準信号REFがm段のDFF31を通過するのに要する時間分のパルス幅を持つプリチャージ信号を生成する。
図7のプリチャージ信号生成器35は、縦続接続されたm段のDFF(第3同期化回路)36と、第2論理演算器37とを有する。m段のDFF36は、位相差検出器11内のm段のDFF31と同じ段数のDFFが縦続接続されたものである。図7では、m=1としているが、mは2以上でもよい。また、DFF36の段数mは、位相差検出器11内のDFF31の段数mと同じである。
m段のDFF36は、位相差検出器11内のDFF21または前段のDFFの出力信号を、DCO3の発振信号で同期化(ラッチ)する。これにより、m段のDFF36の中の最終段のDFFは、位相差信号PEよりも、m×DCO3の発振周期分遅れた位相の信号RTREF2を出力する。図7の場合、m=1であるため、信号RTREF2は、位相差信号PEよりも、DCO3の発振信号の1周期分(2π)遅れた信号になる。
プリチャージ信号生成器35内の第2論理演算器37は、位相差信号PEの立ち下がりエッジから信号RTREF2の立ち上がりエッジまでのパルス幅を持つパルス信号PCを生成する。また、信号RTREF2を偶数段のインバータで遅延させた信号がSTART信号となる。
また、図7のTDC1は、第2電流源38と第5スイッチ39とを備えている。第5スイッチ39は、プリチャージ信号生成器35で生成されたパルス信号PCにてオン/オフされる。より具体的には、パルス信号PCがオンすると第5スイッチ39はオンし、パルス信号PCがオフすると第5スイッチ39はオフする。
第5スイッチ39がオンすると、第2電流源38からの電流は第2チャージポンプ13内の第2キャパシタ26に流れる。よって、パルス信号PCがハイの期間には、第2キャパシタ26の予備充電すなわちプリチャージが行われる。
第2キャパシタ26の予備充電が終了すると、START信号がハイになり、充放電制御部16内のDFF16aのQ出力信号がロウになり、第2チャージポンプ13内の第3スイッチ27がオンして、第4スイッチ28がオフし、第2キャパシタ26の充電が行われる。
第1電流源14が流す電流と第2電流源38が流す電流との比は、1:K(1<K<N)である。仮に、K≧Nとすると、予備充電の期間内に第2キャパシタ26の充電電圧CP2outが第1キャパシタ23の充電電圧CP1out以上となり、正常にA/D変換が行えなくなるため、望ましくない。また、K≦1とすると、プリチャージ信号生成器35がない場合と比べて、比較器15の比較動作が終了するまでの時間がより長くなってしまうため、やはり望ましくない。
図8の第2キャパシタ26の充電電圧CP2out波形を見ればわかるように、プリチャージ信号生成器35を設けることで、比較器15の比較動作が終了するまでの時間を短縮でき、DCO3の発振信号と基準信号REFとの小数位相差を短時間で精度よく検出できる。
このように、第4の実施形態では、位相差検出器11内にm段のDFF31を設けたために位相差信号PEのパルス幅が大きくなったとしても、プリチャージ信号生成器35にて、位相差信号PEのパルス幅が広がった分だけ、第2キャパシタ26を予備充電するため、比較器15における比較動作に要する時間を短縮することができ、DCO3の発振信号と基準信号REFとの位相差を迅速かつ精度よく検出できる。
(第5の実施形態)
上述した第1~第4の実施形態では、第1キャパシタ23のキャパシタンスに対する第2キャパシタ26のキャパシタンスの比Nを大きくするほど、DCO3の発振信号の小数位相差を精度よく検出できる。ところが、Nの値が大きいほど、カウンタ6でのカウント数が多くなり、小数位相差を検出するのに時間がかかるとともに、消費電力が増えてしまう。以下に説明する第5の実施形態は、少ないカウント数で、高精度に小数位相差を検出できるようにして、迅速処理と消費電力の削減を図るものである。
上述した第1~第4の実施形態では、第1キャパシタ23のキャパシタンスに対する第2キャパシタ26のキャパシタンスの比Nを大きくするほど、DCO3の発振信号の小数位相差を精度よく検出できる。ところが、Nの値が大きいほど、カウンタ6でのカウント数が多くなり、小数位相差を検出するのに時間がかかるとともに、消費電力が増えてしまう。以下に説明する第5の実施形態は、少ないカウント数で、高精度に小数位相差を検出できるようにして、迅速処理と消費電力の削減を図るものである。
図9は第5の実施形態によるTDC1の概略構成を示すブロック図である。図9では、図1と共通する部分には同一符号を付しており、以下では相違点を中心に説明する。図9のTDC1は、位相差検出器(第1位相差検出器、第2位相差検出器)11aと、基準信号源10と、パルス生成器51と、第1チャージポンプ12と、第2チャージポンプ13と、比較器15と、充放電制御部(第1充電制御部、第2充電制御部)16と、カウンタロジック部54と、DFF17と、DFF18と、第1位相差演算器19と、DFF55と、DFF56と、第2位相差演算器57と、第3位相差演算器58とを有する。
充放電制御部16は、ORゲート52と、DFF16aと、ORゲート53と、インバータ16bとを有する。
TDC1内の位相差検出器11aは、図1の位相差検出器11とは一部構成が異なっている。位相差検出器11aは、DFF21aと、パルス生成器59と、第1論理演算器22aとを含む第2位相差検出器を有する。この第2位相差検出器は、第2キャパシタ26への充電を継続して、第2キャパシタ26の充電電圧が第1キャパシタ23の充電電圧以上になったことが比較器15にて検出された時点において、DCO3の発振信号と基準信号REFとの位相差に応じたパルス幅を持つ位相差信号(PE信号)を生成する。
DFF21aは、SSADCstop信号をDCO3の発振信号の立ち上がりエッジでラッチした信号(以下、RTREF信号)を生成して出力する。SSADCstop信号については後述する。
パルス生成器59は、RTREF信号の立ち上がりエッジに同期して、所定幅のパルス信号(以下、STARTpulse信号)を生成して出力する。
第1論理演算器22aは、EXORゲート22bとANDゲート22cとを有する。EXORゲート22bは、RTREF信号とSSADCstop信号との排他的論理和の信号を生成して出力する。ANDゲート22cは、SSADCstop信号とEXORゲート22bの出力信号との論理積であるPE信号を生成して出力する。
充放電制御部16は、上述した第2位相差検出器にて検出されたPE信号のパルス幅に基づいて第1キャパシタ23を充電した後、第2キャパシタ26の充電電圧が第1キャパシタ23の充電電圧以上になったことが再び比較器15にて検出されるまで、第2キャパシタ26への充電を継続する第2充電制御部の機能を有する。
ORゲート52は、比較器15の出力信号とREFpulse信号との論理和信号を生成する。DFF16aは、電源電圧VddをORゲート52の立ち上がりエッジでラッチしてSSADCstop信号を生成する。また、DFF16aは、STARTpulse信号がハイになると、SSADCstop信号をリセットする。ORゲート53は、SSADCstop信号とRST信号との論理和信号を生成して出力する。ORゲート53の出力信号がハイになると、第4スイッチ28をオンして、第2キャパシタ26を放電する。RST信号は、SSADCstop信号の立ち上がりエッジの数が3の倍数のときに正のパルスを出力する信号である。
カウンタロジック部54は、SSADCstop信号の数をカウントし、カウントした数に応じて、START1信号、STOP1信号、START2信号、およびSTOP2信号の順にハイにする。また、カウンタロジック部54は、上述したRST信号を生成する。
DFF17は、整数位相をカウントするカウンタ6のカウント値をSTART1信号の立ち上がりエッジでラッチする。DFF18は、カウンタ6のカウント値をSTOP1信号の立ち上がりエッジでラッチする。DFF55は、カウンタ6のカウント値をSTART2信号の立ち上がりエッジでラッチする。DFF56は、カウンタ6のカウント値をSTOP2信号の立ち上がりエッジでラッチする。
第1位相差演算器19内の差分演算器19aは、DFF18が保持するカウント値とDFF17が保持するカウント値との差分値を演算する。乗算器19bは、差分演算器19aから出力された差分値を1/N倍した値を演算する。
DFF55は、カウンタ6のカウント値をSTART2信号の立ち上がりエッジでラッチする。DFF56は、カウンタ6のカウント値をSTOP2信号の立ち上がりエッジでラッチする。
第2位相差演算器57内の差分演算器57aは、DFF56が保持するカウント値とDFF55が保持するカウント値との差分値を演算する。乗算器57bは、差分演算器57aから出力された差分値を1/N2倍した値を演算する。
第3位相差演算器58は、乗算器19bから出力された値と乗算器57bから出力された値との差分を演算して出力する。第3位相差演算器58の出力信号は、小数位相差を表すPhaseError信号である。
図10は第5の実施形態によるTDC1のタイミング図である。時刻t1からt2の間に、基準信号REFとDCO3の発振信号との位相差を表すPE信号がハイになり、この期間内には第1キャパシタ23が充電される。その後、時刻t2~t3の間は、第2キャパシタ26の充電が行われる。時刻t3のときに、第1キャパシタ23の充電電圧と第2キャパシタ26の充電電圧とが一致し、比較器15の出力が反転し、SSADCstop信号がハイになる。
本実施形態では、第1キャパシタ23の容量に対する第2キャパシタ26の容量の比Nを第1~第4の実施形態よりも小さくしており、例えばN=4程度である。よって、比較的短い時間で、比較器15の出力は反転する。これにより、時刻t3~t4の間に、PE信号が再びハイになり、この期間内に、再度第1キャパシタ23が充電される。時刻t4~t5の間は、第2キャパシタ26の充電が行われる。時刻t5のときに、第1キャパシタ23の充電電圧と第2キャパシタ26の充電電圧とが再び一致し、比較器15の出力が再び反転する。今度は、RST信号がハイになり、PE信号はロウのままである。
時刻t1~t3の間におけるカウンタ6のカウント値は、差分演算器19aから出力される。この期間内のカウント値をNで割ることにより、大まかな小数位相差を求めることができる。
時刻t3~t4の間のPE信号は、時刻t1~t3の間に検出しきれなかった分の位相差である。この分の位相差は、時刻t4~t5の間に検出される。時刻t4~t5の間に検出された位相差は、第2位相差演算器57内の差分演算器57aから出力される。この位相差は、乗算器57bにて1/N2倍されて、第3位相差演算器58にて最終的な小数位相差が検出される。
図10の例では、時刻t1~t2の間に検出された位相差PE信号に対応するデータCは、時刻t2~t3にて、(4-1)/4=0.75として検出される。続いて、時刻t3~t4の間に検出された位相差PE信号に対応するデータFは、時刻t4~t5にて、(7-5)/16=0.125として検出される。これらの値の差分値(0.75-0.125=0.7375)が最終的な小数位相差として第3位相差演算器58から出力される。
同様に、時刻t6~t7の間に検出された位相差PE信号に対応するデータCは、時刻t7~t8にて、(15-11)/4=1.00として検出される。続いて、時刻t8~t9の間に検出された位相差PE信号に対応するデータFは、時刻t9~t10にて、(18-16)/16=0.125として検出される。これらの値の差分値(1.00-0.125)=0.875が最終的な小数位相差として第3位相差演算器58から出力される。
このように、第5の実施形態では、小数位相差を検出する処理を2段階に分けて行い、第1段階では大まかな小数位相差を検出し、第2段階では第1段階で検出しきれなかった分の小数位相差を検出する。第1段階も第2段階も、共通の第1キャパシタ23と第2キャパシタ26を用いて位相差を検出するため、ハードウェア構成が複雑化するおそれはない。また、本実施形態では、第1キャパシタ23と第2キャパシタ26の容量の比Nを小さくできるため、第1段階と第2段階に要する時間、より詳細には、第1段階と第2段階におけるDCO3の発振信号のクロック数を削減でき、結果として、より短い時間で、より精度の高い小数位相差を検出できる。例えば、16段階の小数位相差を検出する場合、第1の実施形態では、N=16にする必要があり、第2キャパシタ26の容量を大きくして、かつ小数位相差が検出されるまでのDCO3の発振信号のクロック数も最大16個必要であったが、本実施形態によれば、N=4でよく、第2キャパシタ26の容量を小さくできるとともに、小数位相差が検出されるまでのDCO3の発振信号のクロック数も、最大で4+4=8クロックで済む。これにより、本実施形態によれば、容量の小さい第2キャパシタ26を用いて、精度を落とさずに短時間で小数位相差を検出できるため、消費電力の削減が図れる。
(第6の実施形態)
上述した第1~第5の実施形態におけるTDC1は、受信機に用いられることができる。図11は第1~第54の実施形態のいずれかにおけるTDC1を有する受信機40の内部構成を示すブロック図である。
上述した第1~第5の実施形態におけるTDC1は、受信機に用いられることができる。図11は第1~第54の実施形態のいずれかにおけるTDC1を有する受信機40の内部構成を示すブロック図である。
図11の受信機40は、アンテナ41と、図2と同様に構成された局部発振器2と、高周波増幅器42と、直交復調器43a,43bと、90°位相器44と、ローパスフィルタ45a,45bと、可変利得増幅器(VGA:Variable Gain Amplifier)46a,46bと、A/D変換器47a,47bと、ベースバンド処理部48とを有する。
直交復調器43a,43bは、局部発振器41から出力された局部発振信号と、この局部発振信号を90°位相器44で90°位相をずらした信号とに基づいて、90°位相の異なるI信号とQ信号を生成する。ローパスフィルタ45a,45bは、I信号とQ信号に含まれる高調波ノイズを除去する。可変利得増幅器46a,46bは、ノイズ除去後のI信号とQ信号の利得を調整する。A/D変換器47a,47bは、可変利得増幅器46a,46bから出力されたI信号とQ信号をデジタルデータに変換して、ベースバンド処理部48に入力する。
受信機40は、単体として用いることもできるし、送信機を含めた無線通信装置として用いることもできる。
図12は第5の実施形態による無線通信装置71の概略構成を示すブロック図である。
図12の無線通信装置71は、ベースバンド処理部72と、RF部73と、アンテナ部74とを備えている。
図12の無線通信装置71は、ベースバンド処理部72と、RF部73と、アンテナ部74とを備えている。
ベースバンド処理部72は、制御回路75と、送信処理回路76と、受信処理回路77とを有する。ベースバンド処理部72内の各回路は、デジタル信号処理を行う。
制御回路75は、例えば、MAC(Media Access Control)層の処理を行う。制御回路75は、MAC層よりも上位のネットワーク階層の処理を行ってもよい。また、制御回路75は、MIMO(Multi-Input Multi-Output)に関する処理を行ってもよい。例えば、制御回路75は、伝搬路推定処理、送信ウェイト計算処理、およびストリームの分離処理などを行ってもよい。
送信処理回路76は、デジタル送信信号を生成する。受信処理回路77は、復調や復号を行った後に、プリアンブルおよび物理ヘッダの解析などの処理を行う。
RF部73は、送信回路78と、受信回路79とを有する。送信回路78は、送信帯域の信号を抽出する不図示の送信フィルタと、DCO3の発振信号を利用して送信フィルタを通過後の信号を無線周波数にアップコンバートする不図示のミキサと、アップコンバート後の信号を増幅する不図示のプリアンプとを含んでいる。受信回路79は、上述した図11の受信機40と同様に構成されている。すなわち、受信回路79は、TDC1と、ADPLL回路4と、受信RF部81と、DCO3とを有する。図12の送信回路78と受信回路79は、DCO3を共用しているが、それぞれ別個のDCOを設けてもよい。
アンテナ部74で無線信号の送受信を行う場合には、送信回路78および受信回路79のいずれか一方をアンテナ部74に接続するためのスイッチがRF部73に設けられていてもよい。このようなスイッチがあれば、送信時にはアンテナ部74を送信回路78に接続し、受信時にはアンテナ部74を受信回路79に接続することができる。
図12の送信処理回路76は、一系統の送信信号のみを出力しているが、無線方式によっては、I信号とQ信号に分けて出力する場合もある。この場合の無線通信装置71のブロック構成は例えば図13のようになる。図13の無線通信装置71は、送信処理回路76から送信回路78までの構成が図12とは異なっている。
送信処理回路76は、2系統のデジタルベースバンド信号(以下、デジタルI信号とデジタルQ信号)を生成する。
送信処理回路76と送信回路78の間には、デジタルI信号をアナログI信号に変換するDA変換回路82と、デジタルQ信号をアナログQ信号に変換するDA変換回路83とが設けられている。送信回路78は、不図示のミキサにて、アナログI信号とアナログQ信号をアップコンバートする。
受信RF部81は、例えば図11の局部発振器41と、高周波増幅器42と、直交復調器43a,43bと、90°位相器44と、ローパスフィルタ45a,45bと、可変利得増幅器(VGA:Variable Gain Amplifier)46a,46bと、A/D変換器47A,47Bと、ベースバンド処理部48とを有する。
図12および図13に示したRF部73とベースバンド処理部72はワンチップ化してもよいし、RF部73とベースバンド処理部72とで別個のチップにしてもよい。また、RF部73とベースバンド処理部72の一部はディスクリート部品で構成し、残りを1つまたは複数のチップで構成してもよい。
さらに、RF部73とベースバンド処理部72は、ソフトウェア的に再構成可能なソフトウェア無線機で構成してもよい。この場合、デジタル信号処理プロセッサを用いて、ソフトウェアにてRF部73とベースバンド処理部72の機能を実現すればよい。この場合、図12および図13に示した無線通信装置71の内部に、バス、プロセッサ部および外部インタフェース部が設けられる。プロセッサ部と外部インタフェース部はバスを介して接続され、プロセッサ部ではファームウェアが動作する。ファームウェアは、コンピュータプログラムにより更新が可能である。プロセッサ部がファームウェアを動作させることで、プロセッサ部にて図12および図13に示したRF部73とベースバンド処理部72の処理動作を行うことができる。
図12および図13に示した無線通信装置71は、一つのアンテナ部74しか備えていないが、アンテナの数には特に制限はない。例えば、送信用のアンテナ部74と受信用のアンテナ部74を別個に設けてもよいし、I信号用のアンテナ部74とQ信号用のアンテナ部74を別個に設けてもよい。アンテナ部74が一つだけのときは、送受切替スイッチで、送信と受信を切り替えればよい。
図12および図13に示した無線通信装置71は、アクセスポイントや無線ルータ、コンピュータなどの据置型の無線通信装置71にも適用できるし、スマートフォンや携帯電話等の携帯可能な無線端末にも適用できるし、マウスやキーボードなどのホスト装置と無線通信を行う周辺機器にも適用できるし、無線機能を内蔵したカード状部材にも適用できるし、生体情報を無線通信するウェアラブル端末にも適用できる。図12または図13に示した無線通信装置71同士での無線通信の無線方式は、特に限定されるものではなく、第3世代以降のセルラー通信、無線LAN、Bluetooth(登録商標)、近接無線通信など、種々のものが適用可能である。
図14はホスト装置であるPC84と周辺機器であるマウス85との間で無線通信を行う例を示しており、PC84とマウス85の双方に、図12または図13に示した無線通信装置71が内蔵されている。マウス85は、内蔵バッテリの電力を利用して無線通信を行うが、バッテリを内蔵するスペースは限られているため、できるだけ低消費電力で無線通信を行う必要がある。このため、Bluetooth(登録商標)4.0の規格の中で策定されたBluetooth Low Energyなどの低消費無線通信が可能な無線方式を用いて無線通信を行うのが望ましい。
図15はウェアラブル端末86とホスト装置(例えばPC84)との間で無線通信を行う例を示している。ウェアラブル端末86は、人間の身体に装着されるものであり、図15のように腕に装着するタイプだけでなく、シールタイプなどの身体に貼り付けるものや、眼鏡タイプおよびイヤホンタイプなどの腕以外の身体に装着するものや、ペースメーカなどの身体の内部に入れるものなど、種々のものが考えられる。図15の場合も、ウェアラブル端末86とPC84の両方に、図12または図13に示した無線通信装置71が内蔵されている。なお、PC84とは、コンピュータやサーバなどである。ウェアラブル端末86も、人間の身体に装着されるため、内蔵バッテリのためのスペースが限られているため、上述したBluetooth Low Energy等の低消費電力での無線通信が可能な無線方式を採用するのが望ましい。
また、図12または図13に示した無線通信装置71同士で無線通信を行う場合、無線通信によって送受される情報の種類は特に限定されない。ただし、動画像データのようなデータ量の多い情報を送受する場合と、マウス85の操作情報のようにデータ量の少ない情報を送受する場合とでは、無線方式を変えるのが望ましく、送受される情報量に応じて最適な無線方式で無線通信を行う必要がある。
さらに、図12または図13に示した無線通信装置71同士で無線通信を行う場合、無線通信の動作状態をユーザに報知する報知部を設けてもよい。報知部の具体例としては、例えば、LED等の表示装置に動作状態を表示してもよいし、バイブレータの振動により動作状態を報知してもよいし、スピーカやブザー等による音声情報より動作状態を報知してもよい。
上述した実施形態で説明したTDC1および受信機40の少なくとも一部は、ハードウェアで構成してもよいし、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、TDC1および受信機40の少なくとも一部の機能を実現するプログラムをフレキシブルディスクやCD-ROM等の記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。
また、TDC1および受信機40の少なくとも一部の機能を実現するプログラムを、インターネット等の通信回線(無線通信も含む)を介して頒布してもよい。さらに、同プログラムを暗号化したり、変調をかけたり、圧縮した状態で、インターネット等の有線回線や無線回線を介して、あるいは記録媒体に収納して頒布してもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 位相デジタル変換器(TDC)、2 局部発振器、3 DCO、4 ADPLL回路、5 第1微分器、6 カウンタ、7 第2微分器、8 論理演算器、9 ループフィルタ、11 位相差検出器、12 第1チャージポンプ、13 第2チャージポンプ、14 第1電流源、15 比較器、16 充放電制御部、17 第1保持器、18 第2保持器、19 位相差演算器、21 DFF、22 第1論理演算器、23 第1キャパシタ、24 第1スイッチ、25 第2スイッチ、26 第2キャパシタ、27 第3スイッチ、28 第4スイッチ、30 位相差パルス生成器、31 DFF、35 プリチャージ信号生成器、36 DFF、38 第2電流源、39 第5スイッチ、41 アンテナ、42 高周波増幅器、43a,43b 直交復調器、44 位相器、45a,45b
ローパスフィルタ、46a,46b 可変利得増幅器、47a,47b A/D変換器、48 ベースバンド処理部
ローパスフィルタ、46a,46b 可変利得増幅器、47a,47b A/D変換器、48 ベースバンド処理部
Claims (16)
- 第1信号の周期の数を計測するカウンタと、
前記第1信号と、前記第1信号よりも2倍以上周波数が低い第2信号と、の位相差に応じたパルス幅を持つ位相差信号を生成する第1位相差検出器と、
前記位相差信号のパルス幅に応じた電荷を充電する第1キャパシタと、
前記第1キャパシタのN倍(Nは1より大きい実数)のキャパシタンスを有する第2キャパシタと、
前記第1キャパシタの充電電圧と、前記第2キャパシタの充電電圧とを比較する比較器と、
前記第2キャパシタの充電電圧が前記第1キャパシタの充電電圧以上になったことが前記比較器にて検出されるまで、前記第2キャパシタへの充電を継続する第1充電制御部と、
前記第2キャパシタへの充電期間における前記カウンタの計数値を前記Nで割った値により、前記第1信号と前記第2信号との位相差を演算する第1位相差演算器と、を備える位相デジタル変換器。 - 前記第1キャパシタおよび前記第2キャパシタに対して充電電流を供給する第1電流源と、
前記位相差信号により、前記第1電流源から前記第1キャパシタに充電電流を流すか否かを切り替える第1切替器と、
前記第1充電制御部からの信号により、前記第1電流源から前記第2キャパシタに充電電流を流すか否かを切り替える第2切替器と、を備える請求項1に記載の位相デジタル変換器。 - 前記第2キャパシタの充電電圧が前記第1キャパシタの充電電圧以上になったことが前記比較器にて検出されると、前記第1キャパシタおよび前記第2キャパシタを放電する放電制御部を備える請求項1に記載の位相デジタル変換器。
- 前記放電制御部は、
前記第1充電制御部からの信号により、前記第1キャパシタの両電極間を短絡して前記第1キャパシタを放電する第3切替器と、
前記第1充電制御部からの信号により、前記第2キャパシタの両電極間を短絡して前記第2キャパシタを放電する第4切替器と、を有する請求項3に記載の位相デジタル変換器。 - 前記第1充電制御部は、前記位相差信号のパルス幅の時間だけ前記第1キャパシタを充電する請求項1乃至4のいずれかに記載の位相デジタル変換器。
- 前記第2キャパシタが充電を開始する時点での前記カウンタの計数値を保持する第1保持器と、
前記第2キャパシタの充電電圧が前記第1キャパシタの充電電圧以上になったことが前記比較器にて検出された時点での前記カウンタの計数値を保持する第2保持器と、
前記第2保持器の計数値と前記第1保持器の計数値との差分の計数値を演算する差分演算器と、を備え、
前記第1位相差演算器は、前記差分演算器で演算された計数値を前記Nで割って前記位相差を演算する請求項1乃至5のいずれか1項に記載の位相デジタル変換器。 - 前記第1位相差検出器は、
前記第2信号を前記第1信号の立ち上がりエッジまたは立ち下がりエッジにて同期化する第1同期化回路と、
前記第1同期化回路と同じ前記第1信号のエッジにて、前記第1同期回路の出力信号または前段の出力信号をラッチする縦続接続されたm段(mは1以上の整数)の第2同期化回路と、
前記第1同期化回路の出力信号と、前記第2同期化回路の出力信号とに基づいて、前記位相差信号を生成する第1論理演算器と、を有する請求項1乃至6のいずれか1項に記載の位相デジタル変換器。 - 前記第2信号が前記m段の第2同期化回路を通過するのに要する時間分のパルス幅を有するプリチャージ信号を生成するプリチャージ信号生成器と、
前記第2キャパシタへの充電を開始してから、前記プリチャージ信号のパルス幅分の時間だけ前記第2キャパシタへの充電電流を増強する充電増強部と、を備える請求項7に記載の位相デジタル変換器。 - 前記プリチャージ信号生成器は、
前記第1同期化回路と同じ前記第1信号のエッジにて、前記第1同期回路の出力信号または前段の出力信号をラッチする前記m段の第3同期化回路と、
前記第1同期化回路の出力信号と、前記第3同期化回路の出力信号とに基づいて、前記プリチャージ信号を生成する第2論理演算器と、を有する請求項8に記載の位相デジタル変換器。 - 前記第1キャパシタおよび前記第2キャパシタに対して充電電流を供給する第1電流源を備え、
前記充電増強部は、前記第2キャパシタに充電電流を流す第2電流源を有し、
前記第2電流源が前記第2キャパシタに流す充電電流は、前記第1電流源が前記第2キャパシタに流す充電電流のK倍(Kは1より大きく、前記Nより小さい実数)である請求項8または9に記載の位相デジタル変換器。 - 前記第1充電制御部にて前記第2キャパシタへの充電を継続して行い、前記第2キャパシタの充電電圧が前記第1キャパシタの充電電圧以上になったことが前記比較器にて検出された時点において、前記第1信号と前記第2信号との位相差に応じたパルス幅を持つ位相差信号を生成する第2位相差検出器と、
前記第2位相差検出器にて検出された位相差信号のパルス幅に基づいて前記第1キャパシタを充電した後、前記第2キャパシタの充電電圧が前記第1キャパシタの充電電圧以上になったことが再び前記比較器にて検出されるまで、前記第2キャパシタへの充電を継続する第2充電制御部と、
前記第2キャパシタへの充電期間における前記カウンタの計数値を前記N2で割った値により、前記第1信号と前記第2信号との位相差を演算する第2位相差演算器と、
前記第1位相差演算器で演算された位相差と、前記第2位相差演算器で演算された位相差と、に基づいて、前記第1信号と前記第2信号との小数位相差を検出する第3位相差演算器と、を備える請求項1乃至10のいずれか1項に記載の位相デジタル変換器。 - 第1信号の立ち上がりエッジまたは立ち下がりエッジにて、前記第1信号よりも2倍以上周波数が低い第2信号をラッチする第1同期化回路と、
前記第1同期化回路と同じ前記第2信号のエッジにて、前記第1同期回路の出力信号または前段の出力信号をラッチする縦続接続されたm段(mは1以上の整数)の第2同期化回路と、
前記第1同期化回路の出力信号と、前記第2同期化回路の出力信号とに基づいて、前記第1信号と前記第2信号との位相差信号を生成する論理演算器と、を備える位相差パルス生成器。 - 請求項1乃至11のいずれか1項に記載の位相デジタル変換器を含む集積回路。
- 請求項13に記載の集積回路と、
少なくとも1つのアンテナと、を備える無線通信装置。 - RF部と、ベースバンド部とを備えた無線通信装置であって、
前記RF部は、送信回路と、受信回路と、を有し、
前記ベースバンド部は、送信処理回路と、受信処理回路と、を有し、
前記受信回路は、
位相差に応じた発振信号を生成する発振器と、
前記発振信号と基準信号との前記位相差を検出する位相デジタル変換器と、
前記位相差がなくなるように前記発振信号を帰還制御するPLL回路と、
前記発振信号を用いて受信処理を行う受信RF部と、を有し、
前記位相デジタル変換器は、
第1信号の周期の数を計測するカウンタと、
前記第1信号と、前記第1信号よりも2倍以上周波数が低い第2信号と、の位相差に応じたパルス幅を持つ位相差信号を生成する第1位相差検出器と、
前記位相差信号のパルス幅に応じた電荷を充電する第1キャパシタと、
前記第1キャパシタのN倍(Nは1より大きい実数)のキャパシタンスを有する第2キャパシタと、
前記第1キャパシタの充電電圧と、前記第2キャパシタの充電電圧とを比較する比較器と、
前記第2キャパシタの充電電圧が前記第1キャパシタの充電電圧以上になったことが前記比較器にて検出されるまで、前記第2キャパシタへの充電を継続する第1充電制御部と、
前記第2キャパシタへの充電期間における前記カウンタの計数値を前記Nで割った値により、前記第1信号と前記第2信号との位相差を演算する第1位相差演算器と、を備える無線通信装置。 - カウンタにて、第1信号の周期の数を計測するステップと、
前記第1信号と、前記第1信号よりも2倍以上周波数が低い第2信号と、の位相差に応じたパルス幅を持つ位相差信号を生成するステップと、
前記位相差信号のパルス幅に応じた電荷を第1キャパシタに充電するステップと、
前記第1キャパシタのN倍(Nは1より大きい実数)のキャパシタンスを有する第2キャパシタの充電電圧と、前記第1キャパシタの充電電圧とを比較するステップと、
前記第2キャパシタの充電電圧が前記第1キャパシタの充電電圧以上になるまで、前記第2キャパシタへの充電を継続するステップと、
前記第2キャパシタへの充電期間における前記カウンタの計数値を前記Nで割った値により、前記第1信号と前記第2信号との位相差を演算するステップと、
前記第1信号を用いて受信処理を行うステップと、を備える無線通信方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016566370A JPWO2016104464A1 (ja) | 2014-12-25 | 2015-12-22 | 位相デジタル変換器、位相差パルス生成器、無線通信装置および無線通信方法 |
US15/462,288 US10218364B2 (en) | 2014-12-25 | 2017-03-17 | Time to digital converter, phase difference pulse generator, radio communication device, and radio communication method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014263385 | 2014-12-25 | ||
JP2014-263385 | 2014-12-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/462,288 Continuation US10218364B2 (en) | 2014-12-25 | 2017-03-17 | Time to digital converter, phase difference pulse generator, radio communication device, and radio communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016104464A1 true WO2016104464A1 (ja) | 2016-06-30 |
Family
ID=56150482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/085747 WO2016104464A1 (ja) | 2014-12-25 | 2015-12-22 | 位相デジタル変換器、位相差パルス生成器、無線通信装置および無線通信方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10218364B2 (ja) |
JP (1) | JPWO2016104464A1 (ja) |
WO (1) | WO2016104464A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107317581A (zh) * | 2016-04-26 | 2017-11-03 | 华邦电子股份有限公司 | 具有高分辨率的时间数字转换器 |
US10128881B2 (en) | 2016-06-24 | 2018-11-13 | Kabushiki Kaisha Toshiba | Time to digital converter, radio communication device, and radio communication method |
WO2019146177A1 (ja) * | 2018-01-25 | 2019-08-01 | ソニーセミコンダクタソリューションズ株式会社 | 時間デジタル変換回路および位相同期回路 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI662795B (zh) * | 2017-07-10 | 2019-06-11 | National Kaohsiung University Of Science And Technology | 利用脈衝寬度改變實現之數位至時間轉換裝置 |
JP6906460B2 (ja) * | 2018-02-23 | 2021-07-21 | ルネサスエレクトロニクス株式会社 | Pll回路、それを備えた半導体装置、及び、pll回路の制御方法 |
US10324420B1 (en) | 2018-03-19 | 2019-06-18 | King Fahd University Of Petroleum And Minerals | 555-timer based time-to-voltage converter |
CN110311192B (zh) * | 2018-03-27 | 2021-12-07 | 松下电器产业株式会社 | 移相器和无线通信装置 |
US11018688B1 (en) * | 2020-06-08 | 2021-05-25 | Samsung Electronics Co., Ltd. | DTC device and method based on capacitive DAC charging |
CN112953516B (zh) * | 2021-01-27 | 2022-09-09 | 浙江大学 | 一种低功耗小数分频锁相环电路 |
CN113162566B (zh) * | 2021-05-17 | 2022-12-06 | 合肥工业大学 | 一种可编程高精度高动态范围的时间放大器 |
FR3127661A1 (fr) | 2021-09-24 | 2023-03-31 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Convertisseur temps numérique et boucle à verrouillage de phase |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011001652A1 (ja) * | 2009-07-02 | 2011-01-06 | 三洋電機株式会社 | Pll回路、およびそれを搭載した無線通信装置 |
JP2011155601A (ja) * | 2010-01-28 | 2011-08-11 | Renesas Electronics Corp | Adpll、半導体装置及び携帯電話機 |
JP2013168786A (ja) * | 2012-02-15 | 2013-08-29 | Mitsubishi Electric Corp | 時間差デジタル変換装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6429693B1 (en) | 2000-06-30 | 2002-08-06 | Texas Instruments Incorporated | Digital fractional phase detector |
JP2016181735A (ja) | 2013-08-23 | 2016-10-13 | 株式会社東芝 | 位相−デジタル変換器および受信機 |
JP6351058B2 (ja) * | 2013-11-28 | 2018-07-04 | 株式会社メガチップス | タイムデジタルコンバータ及びこれを用いたpll回路 |
US9571082B2 (en) * | 2015-04-17 | 2017-02-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | High resolution time-to-digital convertor |
US9804573B1 (en) * | 2016-12-29 | 2017-10-31 | Silicon Laboratories Inc. | Use of redundancy in sub-ranging time-to-digital converters to eliminate offset mismatch issues |
-
2015
- 2015-12-22 JP JP2016566370A patent/JPWO2016104464A1/ja not_active Abandoned
- 2015-12-22 WO PCT/JP2015/085747 patent/WO2016104464A1/ja active Application Filing
-
2017
- 2017-03-17 US US15/462,288 patent/US10218364B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011001652A1 (ja) * | 2009-07-02 | 2011-01-06 | 三洋電機株式会社 | Pll回路、およびそれを搭載した無線通信装置 |
JP2011155601A (ja) * | 2010-01-28 | 2011-08-11 | Renesas Electronics Corp | Adpll、半導体装置及び携帯電話機 |
JP2013168786A (ja) * | 2012-02-15 | 2013-08-29 | Mitsubishi Electric Corp | 時間差デジタル変換装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107317581A (zh) * | 2016-04-26 | 2017-11-03 | 华邦电子股份有限公司 | 具有高分辨率的时间数字转换器 |
US10128881B2 (en) | 2016-06-24 | 2018-11-13 | Kabushiki Kaisha Toshiba | Time to digital converter, radio communication device, and radio communication method |
WO2019146177A1 (ja) * | 2018-01-25 | 2019-08-01 | ソニーセミコンダクタソリューションズ株式会社 | 時間デジタル変換回路および位相同期回路 |
US11251797B2 (en) | 2018-01-25 | 2022-02-15 | Sony Semiconductor Solutions Corporation | Time-to-digital converter and phase locked loop |
Also Published As
Publication number | Publication date |
---|---|
US10218364B2 (en) | 2019-02-26 |
JPWO2016104464A1 (ja) | 2017-06-15 |
US20170194972A1 (en) | 2017-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016104464A1 (ja) | 位相デジタル変換器、位相差パルス生成器、無線通信装置および無線通信方法 | |
JP2017229024A (ja) | 位相デジタル変換器、無線通信装置および無線通信方法 | |
JP6471057B2 (ja) | 位相同期回路、無線通信装置および無線通信方法 | |
US8615064B2 (en) | Phase locked loop circuit and receiver using the same | |
KR101301404B1 (ko) | 디지털 위상 고정 루프 (dpll) 에서의 전력 소모를 제어하는 시스템 및 방법 | |
JP2018157434A (ja) | 発振器、集積回路、および無線通信装置 | |
JP2011517161A (ja) | 高分解能の時間/デジタル変換器 | |
JP2010119077A (ja) | 位相比較器、pll回路、及び位相比較器の制御方法 | |
JP2012500596A (ja) | 三分周直交位相周波数分周器 | |
JP5475125B2 (ja) | 予め定められたデューティサイクル信号発生器 | |
WO2012111133A1 (ja) | クロックデータ再生回路及びそれを含む無線モジュール | |
JP2012005022A (ja) | デジタル位相差検出器およびそれを備えた周波数シンセサイザ | |
WO2015025966A1 (ja) | 位相-デジタル変換器、無線通信装置、集積回路および無線通信方法 | |
JP2017130886A (ja) | 発振器、集積回路、無線通信装置および無線通信方法 | |
US11115031B2 (en) | Phase-locked loop | |
JP4735632B2 (ja) | Pll回路 | |
JP2012147080A (ja) | デルタシグマ変調型分数分周pll周波数シンセサイザおよびそれを備えた無線通信装置 | |
JP2012060603A (ja) | 半導体集積回路および無線通信装置 | |
JP2000357966A (ja) | 周波数シンセサイザ | |
US8140026B2 (en) | All-digital selectable duty cycle generation | |
JP2013009365A (ja) | 周波数シンセサイザ | |
JP2018074312A (ja) | 周波数検出器及びクロックデータリカバリ装置 | |
US10305493B2 (en) | Phase-locked loop and frequency synthesizer | |
Dingjuan | RF Transceiver Design for Wireless Sensor Networks | |
TWM434375U (en) | Phase locked loop having active load differential amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15873032 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016566370 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15873032 Country of ref document: EP Kind code of ref document: A1 |