CN112953516B - 一种低功耗小数分频锁相环电路 - Google Patents
一种低功耗小数分频锁相环电路 Download PDFInfo
- Publication number
- CN112953516B CN112953516B CN202110110734.5A CN202110110734A CN112953516B CN 112953516 B CN112953516 B CN 112953516B CN 202110110734 A CN202110110734 A CN 202110110734A CN 112953516 B CN112953516 B CN 112953516B
- Authority
- CN
- China
- Prior art keywords
- charging
- voltage
- phase
- switch
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013139 quantization Methods 0.000 claims abstract description 38
- 238000005070 sampling Methods 0.000 claims abstract description 33
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- 239000003990 capacitor Substances 0.000 claims description 91
- 230000000630 rising effect Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 abstract description 11
- 238000001514 detection method Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000009123 feedback regulation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/16—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
- H03L7/18—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
- H03L7/197—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
- H03L7/1974—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/091—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector using a sampling device
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/099—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
- H03L7/0995—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/10—Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
- H03L7/101—Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using an additional control signal to the controlled loop oscillator derived from a signal generated in the loop
- H03L7/102—Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using an additional control signal to the controlled loop oscillator derived from a signal generated in the loop the additional signal being directly applied to the controlled loop oscillator
- H03L7/103—Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using an additional control signal to the controlled loop oscillator derived from a signal generated in the loop the additional signal being directly applied to the controlled loop oscillator the additional signal being a digital signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/16—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
- H03L7/18—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
本发明公开一种低功耗小数分频锁相环电路,其包括鉴相模块、电压到电流转换模块、环路滤波器、压控振荡器、分频器和数字逻辑模块;鉴相模块、电压到电流转换模块、环路滤波器、压控振荡器、分频器依次连接;参考信号从鉴相模块输入,鉴相模块将参考信号和分频器输出的带有量化误差的反馈信号进行鉴相,并补偿小数分频产生的量化相位误差,输出补偿后的鉴相结果给电压到电流转换模块;小数分频产生的量化误差通过数字域转换到电压域或者直接耦合到鉴相模块中的相位误差信号完成量化误差的补偿。本发明通过将量化误差补偿和采样鉴相两个过程中的边沿转换过程进行合并,减少边沿转换的次数,从而减小功耗,完成小数分频量化误差的补偿。
Description
技术领域
本发明涉及到射频集成电路中频率的产生和综合领域,具体涉及一种低功耗小数分频锁相环电路。
背景技术
锁相环在电子系统中被广泛应用,可以在通信系统中作为本振信号,在数模转换中作为采样时钟等等。锁相环是一种负反馈系统,通过比较参考信号与反馈信号的相位误差,并控制压控振荡器调整输出信号的频率,实现输出信号频率是参考信号的固定倍数,相位与参考信号保持同步,也就是将输出信号锁定到参考信号。
在锁相环的反馈回路中,分频器将相对于参考信号频率固定倍数的振荡信号进行分频反馈给鉴相模块。为了实现小数分频,会将分频器的分频比进行调制,用一组整数的分频比序列,等效地动态实现小数分频。分频比的动态调整通过累加微分调制器进行,累加积分调制器将小数部分进行累加并量化得到实时的分频比。在量化的过程中,实际的分频比会与理想的小数分频比存在误差,在反馈信号中表现为存在量化的相位误差,导致锁相环输出的信号频谱中存在量化噪声。
如图1所示,在传统的小数锁相环中,反馈回路或参考路径会插入数字到时间转换器,补偿由于小数分频带来的量化误差。在数字到时间转换器中,数字逻辑模块生成的补偿信号会控制边沿产生的过程,对相位进行补偿。补偿后的信号再在采样鉴相器中完成与另一路信号的相位比较,转换为数字域或者电压域的控制信号。在补偿的过程中,数字到时间转换器会产生带有一定斜率的边沿,之后会转换为陡峭的边沿,在采样鉴相器中,陡峭的边沿会再次产生带有一定斜率的边沿。在补偿和鉴相的过程中,有多次边沿转换的操作,会增加一定的功耗。
发明内容
针对现有技术的不足,本发明提供一种低功耗小数分频锁相环电路,该电路能够在有效的对小数分频带来的量化误差进行补偿的情况下,减小功耗。
本发明的目的通过如下的技术方案来实现:
一种低功耗小数分频锁相环电路,该电路包括鉴相模块、电压到电流转换模块、环路滤波器、压控振荡器、分频器和数字逻辑模块;所述鉴相模块、电压到电流转换模块、环路滤波器、压控振荡器、分频器依次连接;参考信号从鉴相模块输入,鉴相模块将所述参考信号和所述分频器输出的带有量化误差的反馈信号进行鉴相,并补偿小数分频产生的量化相位误差,输出补偿后的鉴相结果给电压到电流转换模块;
所述小数分频产生的量化误差通过数字域转换到电压域或者直接调整鉴相模块中的电流或者电容完成量化误差的补偿。
进一步地,所述鉴相模块为固定斜率采样电路,其包括电流源、充电开关、充电电容、预充电开关、数字到电压转换器、保持开关和保持电容,所述电流源与充电开关的一端连接,数字到电压转换器与预充电开关的一端相连,保持电容的一端与保持开关的一端相连,所述充电开关、预充电开关、保持开关的另一端均与充电电容的一端相连;充电电容和保持电容的另一端均接地;数字到电压转换器的另一端与数字逻辑模块相连;
所述数字到电压转换器输出不同的电压调整充电电容的起始电压值,对小数分频产生的量化误差进行补偿;控制电流源对充电电容的充电时间,完成参考信号与反馈信号的相位比较。
进一步地,所述鉴相模块的时序逻辑具体为:
当反馈信号或参考信号中的一个的上升沿到来时,充电信号控制充电开关闭合,使电流源对充电电容进行充电;
当反馈信号或参考信号中的另外一个的上升沿到来时,充电信号控制充电开关断开,停止电流源对充电电容进行充电,同时采样信号控制保持开关闭合,保持电容对充电电容上的电压进行采样保持;
在采样保持结束之后,采样信号控制断开保持开关,预充电信号控制预充电开关闭合,将数字到电压转换器输出连接到充电电容,数字到电压转换器接收所述数字逻辑模块的补偿信号,调整充电电容上的起始充电电压;完成预充电后,预充电信号控制断开预充电开关,等待充电开关闭合。
进一步地,所述鉴相模块为可变斜率采样电路,包括可变电流源、可变充电电容、保持电容、充电开关、复位开关和保持开关;其中,可变电流源与充电开关的一端连接,保持电容与保持开关的一端连接,充电开关、保持开关、复位开关的另一端均与可变充电电容的一端连接,可变充电电容、复位开关、保持电容的另一端均接地;
通过调整可变电流源输出电流的大小或者可变充电电容的大小改变充电斜坡的斜率,对小数分频产生的量化误差进行补偿;控制可变电流源对可变充电电容的充电时间,完成参考信号与反馈信号的相位比较。
进一步地,所述鉴相模块的时序逻辑具体为:
当反馈信号或参考信号其中之一的上升沿到来时,充电信号控制闭合充电开关,使可变电流源对可变充电电容进行充电;
当反馈信号或参考信号另外一个的上升沿到来时,充电信号控制断开充电开关,停止可变电流源对可变充电电容充电,同时采样信号控制闭合保持开关,保持电容对可变充电电容上的电压进行采样保持;
在采样保持结束之后,采样信号控制断开保持开关,复位信号控制闭合复位开关,将可变充电电容连接到地,使起始充电电压复位为零;接收所述数字逻辑模块的补偿信号,调整可变充电电容的电容值或可变电流源的电流;复位信号控制断开复位开关,等待充电开关闭合。
进一步地,所述的压控振荡器为环形振荡器或LC振荡器。
本发明的有益效果如下:
本发明的低功耗小数分频锁相环电路通过将量化误差补偿和采样鉴相两个过程中的边沿转换过程进行合并,减少边沿转换的次数,从而减小功耗,完成小数分频量化误差的补偿。
附图说明
图1为传统的小数分频锁相环电路的结构示意图;
图2为本发明的低功耗小数分频锁相环电路的结构示意图;
图3为本发明鉴相模块的其中一种实施方式原理示意图;
图4为本发明鉴相模块的其中一种实施方式中各路控制信号的时序示意图;
图5为本发明鉴相模块的另一个实施方式的原理示意图;
图6为本发明鉴相模块的另一个实施方式中各路控制信号的时序示意图。
具体实施方式
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图2所示,本发明的低功耗小数分频锁相环电路包括鉴相模块、电压电流转换模块、环路滤波器、压控振荡器、分频模块和数字逻辑模块。所述鉴相模块、电压到电流转换模块、环路滤波器、压控振荡器、分频器依次连接;参考信号从鉴相模块输入,鉴相模块将所述参考信号和所述分频器输出的带有量化误差的反馈信号进行鉴相,并补偿小数分频产生的量化相位误差,输出补偿后的鉴相结果给电压到电流转换模块;电压到电流转换模块将鉴相模块输出的鉴相结果采样电压与输入的参考电压进行比较,输出电流;所述环路滤波器将所述电压到电流转换模块输出的电流进行积分,并对其滤波,得到控制电压信号,用于控制所述压控振荡器输出对应频率的振荡信号;所述分频器对压控振荡器输出的振荡信号进行分频,并在数字逻辑模块调制的分频比下实现小数分频,产生的分频信号反馈回所述鉴相模块,进行反馈调节。
所述数字逻辑模块输出经过调制的整数分频比序列到分频模块,完成小数分频,并将量化误差继续计算得到补偿信号,再输出到鉴相模块;
所述小数分频产生的量化误差通过数字域转换到电压域或者直接调整鉴相模块中的电流或者电容完成量化误差的补偿。
压控振荡器为环形振荡器或LC振荡器。
该系统结构相较于传统的小数分频锁相环,将数字到时间转换器与采样鉴相器进行结合,能够在实现鉴相的同时完成量化误差的补偿,减少了边沿转换的次数。从而,该结构有效的实现了量化噪声的补偿和相位误差的检测,并减小了功耗。
作为其中一种实施方式,如图3所示,鉴相模块为固定斜率采样电路,其包括电流源、充电开关、充电电容、预充电开关、数字到电压转换器、保持开关和保持电容,电流源与充电开关的一端连接,数字到电压转换器与预充电开关的一端相连,保持电容的一端与保持开关的一端相连,所述充电开关、预充电开关、保持开关的另一端均与充电电容的一端相连;充电电容和保持电容的另一端均接地;数字到电压转换器的另一端与数字逻辑模块相连。
电流源对充电电容进行充电,保持电容负责保持充电结束时刻的电压,数字到电压转换器接收数字逻辑模块的补偿信号,输出通过预充电开关与充电电容相连,调整每次充电的起始电压。所述鉴相模块通过时序逻辑进行控制,利用参考信号和反馈信号产生时序信号控制电流源、保持电容和数字到电压转换器工作,如图4所示,时序逻辑的控制过程如下:
当反馈信号或参考信号的一个的上升沿到来时,充电信号控制充电开关闭合,使电流源对充电电容进行充电;
当反馈信号或参考信号另外一个的上升沿到来时,充电信号控制充电开关断开,停止电流源对充电电容进行充电,采样信号控制保持开关闭合,保持电容对充电电容上的电压进行采样保持;
在采样保持结束之后,采样信号控制断开保持开关,预充电信号控制预充电开关闭合,将数字到电压转换器输出连接到充电电容,数字到电压转换器接收所述数字逻辑模块的补偿信号,调整充电电容上的起始充电电压;完成预充电后,预充电信号控制断开预充电开关,等待充电开关闭合。
数字到电压转换器采用R2R结构,包括二进制电阻阵列以及温度计码电阻阵列,根据数字逻辑反馈的补偿信号输出相应的补偿电压。
通过数字到电压转换器输出不同的电压调整充电电容的起始电压值,对小数分频产生的量化误差进行补偿,再通过控制电流源对充电电容的充电时间完成参考信号与反馈信号的相位比较,减少了在参考路径或者反馈路径中插入数字到时间转换器的采样型小数分频锁相环中的边沿转换次数,有效地降低了功耗,减少了噪声和非线性度的来源。
如图5所示,作为另一种实施方式,鉴相模块为可变斜率采样电路,包括可变电流源、可变充电电容、保持电容、充电开关、复位开关和保持开关;其中,可变电流源与充电开关的一端连接,保持电容与保持开关的一端连接,充电开关、保持开关、复位开关的另一端均与可变充电电容的一端连接,可变充电电容、复位开关、保持电容的另一端均接地。
通过调整可变电流源输出电流的大小或者可变充电电容的大小改变充电斜坡的斜率,对小数分频产生的量化误差进行补偿;控制可变电流源对可变充电电容的充电时间,完成参考信号与反馈信号的相位比较。
如图6所示,鉴相模块的时序逻辑具体为:
当反馈信号或参考信号其中之一的上升沿到来时,充电信号控制闭合充电开关,使可变电流源对可变充电电容进行充电;
当反馈信号或参考信号另外一个的上升沿到来时,充电信号控制断开充电开关,停止可变电流源对可变充电电容充电,同时采样信号控制保持开关闭合,保持电容对可变充电电容上的电压进行采样保持;
在采样保持结束之后,采样信号控制断开保持开关,复位信号控制闭合复位开关,将可变充电电容连接到地,使起始充电电压复位为零;接收所述数字逻辑模块的补偿信号,调整可变充电电容的电容值或可变电流源的电流;复位信号控制断开复位开关,等待充电开关闭合。
电流源可以采用可变电流源阵列,根据数字信号逻辑反馈的补偿信号调整输出电流的大小。充电电容可以采用可变电容阵列,根据数字信号逻辑反馈的补偿信号调整充电电容的大小。
通过调整可变电流源输出电流的大小或者可变充电电容的大小改变充电斜坡的斜率,对小数分频产生的量化误差进行补偿,再通过控制电流源对充电电容的充电时间完成参考信号与反馈信号的相位比较,减少了在参考路径或者反馈路径中插入数字到时间转换器的采样型小数分频锁相环中的边沿转换次数,有效地降低了功耗,减少了噪声和非线性度的来源。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。
Claims (4)
1.一种低功耗小数分频锁相环电路,其特征在于,该电路包括鉴相模块、电压到电流转换模块、环路滤波器、压控振荡器、分频器和数字逻辑模块;所述鉴相模块、电压到电流转换模块、环路滤波器、压控振荡器、分频器依次连接;参考信号从鉴相模块输入,鉴相模块将所述参考信号和所述分频器输出的带有量化误差的反馈信号进行鉴相,并补偿小数分频产生的量化相位误差,输出补偿后的鉴相结果给电压到电流转换模块;
所述小数分频产生的量化误差通过数字域转换到电压域或者直接调整鉴相模块中的电流或者电容完成量化误差的补偿;
所述鉴相模块为固定斜率采样电路,其包括电流源、充电开关、充电电容、预充电开关、数字到电压转换器、保持开关和保持电容,所述电流源与充电开关的一端连接,数字到电压转换器与预充电开关的一端相连,保持电容的一端与保持开关的一端相连,所述充电开关、预充电开关、保持开关的另一端均与充电电容的一端相连;充电电容和保持电容的另一端均接地;数字到电压转换器的另一端与数字逻辑模块相连;
所述数字到电压转换器输出不同的电压调整充电电容的起始电压值,对小数分频产生的量化误差进行补偿;控制电流源对充电电容的充电时间,完成参考信号与反馈信号的相位比较;
所述鉴相模块的时序逻辑具体为:
当反馈信号或参考信号中的一个的上升沿到来时,充电信号控制充电开关闭合,使电流源对充电电容进行充电;
当反馈信号或参考信号中的另外一个的上升沿到来时,充电信号控制充电开关断开,停止电流源对充电电容进行充电,同时采样信号控制保持开关闭合,保持电容对充电电容上的电压进行采样保持;
在采样保持结束之后,采样信号控制断开保持开关,预充电信号控制预充电开关闭合,将数字到电压转换器输出连接到充电电容,数字到电压转换器接收所述数字逻辑模块的补偿信号,调整充电电容上的起始充电电压;完成预充电后,预充电信号控制断开预充电开关,等待充电开关闭合。
2.根据权利要求1所述的低功耗小数分频锁相环电路,其特征在于,所述的压控振荡器为环形振荡器或LC振荡器。
3.一种低功耗小数分频锁相环电路,其特征在于,该电路包括鉴相模块、电压到电流转换模块、环路滤波器、压控振荡器、分频器和数字逻辑模块;所述鉴相模块、电压到电流转换模块、环路滤波器、压控振荡器、分频器依次连接;参考信号从鉴相模块输入,鉴相模块将所述参考信号和所述分频器输出的带有量化误差的反馈信号进行鉴相,并补偿小数分频产生的量化相位误差,输出补偿后的鉴相结果给电压到电流转换模块;
所述小数分频产生的量化误差通过数字域转换到电压域或者直接调整鉴相模块中的电流或者电容完成量化误差的补偿;
所述鉴相模块为可变斜率采样电路,包括可变电流源、可变充电电容、保持电容、充电开关、复位开关和保持开关;其中,可变电流源与充电开关的一端连接,保持电容与保持开关的一端连接,充电开关、保持开关、复位开关的另一端均与可变充电电容的一端连接,可变充电电容、复位开关、保持电容的另一端均接地;
通过调整可变电流源输出电流的大小或者可变充电电容的大小改变充电斜坡的斜率,对小数分频产生的量化误差进行补偿;控制可变电流源对可变充电电容的充电时间,完成参考信号与反馈信号的相位比较;
所述鉴相模块的时序逻辑具体为:
当反馈信号或参考信号其中之一的上升沿到来时,充电信号控制闭合充电开关,使可变电流源对可变充电电容进行充电;
当反馈信号或参考信号另外一个的上升沿到来时,充电信号控制断开充电开关,停止可变电流源对可变充电电容充电,同时采样信号控制闭合保持开关,保持电容对可变充电电容上的电压进行采样保持;
在采样保持结束之后,采样信号控制断开保持开关,复位信号控制闭合复位开关,将可变充电电容连接到地,使起始充电电压复位为零;接收所述数字逻辑模块的补偿信号,调整可变充电电容的电容值或可变电流源的电流;复位信号控制断开复位开关,等待充电开关闭合。
4.根据权利要求3所述的低功耗小数分频锁相环电路,其特征在于,所述的压控振荡器为环形振荡器或LC振荡器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110110734.5A CN112953516B (zh) | 2021-01-27 | 2021-01-27 | 一种低功耗小数分频锁相环电路 |
PCT/CN2022/072209 WO2022161193A1 (zh) | 2021-01-27 | 2022-01-17 | 一种低功耗小数分频锁相环电路 |
US17/973,518 US11936390B2 (en) | 2021-01-27 | 2022-10-25 | Low-power fractional-N phase-locked loop circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110110734.5A CN112953516B (zh) | 2021-01-27 | 2021-01-27 | 一种低功耗小数分频锁相环电路 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112953516A CN112953516A (zh) | 2021-06-11 |
CN112953516B true CN112953516B (zh) | 2022-09-09 |
Family
ID=76237770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110110734.5A Active CN112953516B (zh) | 2021-01-27 | 2021-01-27 | 一种低功耗小数分频锁相环电路 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11936390B2 (zh) |
CN (1) | CN112953516B (zh) |
WO (1) | WO2022161193A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112953516B (zh) | 2021-01-27 | 2022-09-09 | 浙江大学 | 一种低功耗小数分频锁相环电路 |
CN113471806B (zh) * | 2021-07-09 | 2022-09-27 | 电子科技大学中山学院 | 一种多反馈激光器步进扫频驱动装置及方法 |
CN113552793B (zh) * | 2021-07-26 | 2022-04-05 | 大连理工大学 | 一种自校准的高精度数字时间转换电路 |
CN114978155B (zh) * | 2022-06-30 | 2024-06-18 | 西安工程大学 | 一种具有优化相位噪声的锁相环系统 |
CN117254805B (zh) * | 2023-11-20 | 2024-05-28 | 深圳市华普微电子股份有限公司 | 一种sub-1g全频覆盖频率综合电路 |
CN117559993A (zh) * | 2023-11-22 | 2024-02-13 | 中国科学技术大学 | 一种电荷舵鉴数字相器及其电荷舵采样全数字锁相环 |
Family Cites Families (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5614869A (en) * | 1995-12-20 | 1997-03-25 | Microclock Incorporated | High speed divider for phase-locked loops |
US5703537A (en) * | 1996-07-03 | 1997-12-30 | Microclock Incorporated | Phase-locked loop clock circuit for generation of audio sampling clock signals from video reference signals |
US5945855A (en) * | 1997-08-29 | 1999-08-31 | Adaptec, Inc. | High speed phase lock loop having high precision charge pump with error cancellation |
US7276970B2 (en) * | 1998-11-12 | 2007-10-02 | Broadcom Corporation | System and method for linearizing a CMOS differential pair |
US7696823B2 (en) * | 1999-05-26 | 2010-04-13 | Broadcom Corporation | System and method for linearizing a CMOS differential pair |
JP3807593B2 (ja) * | 2000-07-24 | 2006-08-09 | 株式会社ルネサステクノロジ | クロック生成回路および制御方法並びに半導体記憶装置 |
US6704383B2 (en) * | 2001-03-20 | 2004-03-09 | Gct Semiconductor, Inc. | Sample and hold type fractional-N frequency synthesizer |
DE10313884A1 (de) * | 2003-03-27 | 2004-12-09 | Frauenhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. (FHG) | Frequenzgenerator mit einer Phasenregelschleife |
US6900675B2 (en) * | 2003-09-02 | 2005-05-31 | Standard Microsystems Corporation | All digital PLL trimming circuit |
US6995618B1 (en) * | 2003-09-11 | 2006-02-07 | Xilinx, Inc. | VCO feedback loop to reduce phase noise |
WO2005093955A1 (en) * | 2004-03-29 | 2005-10-06 | Koninklijke Philips Electronics N.V. | Fast phase-frequency detector arrangement |
US7599677B2 (en) * | 2004-03-31 | 2009-10-06 | Broadcom Corporation | Charge pump circuit having switches |
US7135905B2 (en) * | 2004-10-12 | 2006-11-14 | Broadcom Corporation | High speed clock and data recovery system |
US20070018701A1 (en) * | 2005-07-20 | 2007-01-25 | M/A-Com, Inc. | Charge pump apparatus, system, and method |
JP4623678B2 (ja) * | 2005-09-08 | 2011-02-02 | パナソニック株式会社 | Pll回路 |
JP2009033688A (ja) * | 2007-07-31 | 2009-02-12 | Renesas Technology Corp | 半導体集積回路およびウルトラワイドバンド・インパルスラジオ・送信機の動作方法 |
US7825737B1 (en) * | 2007-12-17 | 2010-11-02 | Marvell International Ltd. | Apparatus for low-jitter frequency and phase locked loop and associated methods |
US7737743B1 (en) * | 2008-03-07 | 2010-06-15 | National Semiconductor Corporation | Phase-locked loop including sampling phase detector and charge pump with pulse width control |
US7750701B2 (en) * | 2008-07-15 | 2010-07-06 | International Business Machines Corporation | Phase-locked loop circuits and methods implementing multiplexer circuit for fine tuning control of digitally controlled oscillators |
US7969247B2 (en) * | 2009-06-29 | 2011-06-28 | Integrated Device Technology, Inc. | Charge pump linearization technique for delta-sigma fractional-N synthesizers |
US9225353B2 (en) * | 2011-06-27 | 2015-12-29 | Syntropy Systems, Llc | Apparatuses and methods for linear to discrete quantization conversion with reduced sampling-variation errors |
US8564471B1 (en) * | 2011-01-06 | 2013-10-22 | Marvell International Ltd. | High resolution sampling-based time to digital converter |
US9966937B2 (en) * | 2011-04-29 | 2018-05-08 | Marvell World Trade Ltd. | Frequency multipliers |
US9092730B2 (en) * | 2011-08-11 | 2015-07-28 | Greenray Industries, Inc. | Neural network frequency control and compensation of control voltage linearity |
JP5817516B2 (ja) * | 2011-12-27 | 2015-11-18 | 富士通株式会社 | 受信回路 |
US20130271229A1 (en) * | 2012-04-12 | 2013-10-17 | Marvell World Trade Ltd. | Method and apparatus for local oscillator |
CN105765867B (zh) * | 2013-11-14 | 2019-05-17 | 马维尔国际贸易有限公司 | 用于校准频率合成器的方法和装置 |
US20150200588A1 (en) * | 2014-01-16 | 2015-07-16 | Qualcomm Incorporated | Low-power, self-biasing-capable charge pump with current matching capabilities |
WO2016061781A1 (en) * | 2014-10-23 | 2016-04-28 | Lattice Semiconductor Corporation | Phase locked loop with sub-harmonic locking prevention functionality |
CN104506190B (zh) * | 2014-12-18 | 2017-03-08 | 华为技术有限公司 | 数字小数分频锁相环控制方法及锁相环 |
JPWO2016104464A1 (ja) * | 2014-12-25 | 2017-06-15 | 株式会社東芝 | 位相デジタル変換器、位相差パルス生成器、無線通信装置および無線通信方法 |
US9531394B1 (en) * | 2015-06-22 | 2016-12-27 | Silicon Laboratories Inc. | Calibration of digital-to-time converter |
US9362936B1 (en) * | 2015-06-22 | 2016-06-07 | Silicon Laboratories Inc. | Digital-to-time converter |
US9740175B2 (en) * | 2016-01-18 | 2017-08-22 | Marvell World Trade Ltd. | All-digital phase locked loop (ADPLL) including a digital-to-time converter (DTC) and a sampling time-to-digital converter (TDC) |
CN105871372A (zh) * | 2016-03-24 | 2016-08-17 | 中国电子科技集团公司第二十四研究所 | 防止带内噪声被放大至分频比的平方倍的下采样锁相环 |
CN107528588A (zh) * | 2016-06-21 | 2017-12-29 | 马维尔国际贸易有限公司 | 模拟分数n锁相环 |
JP2017229024A (ja) * | 2016-06-24 | 2017-12-28 | 株式会社東芝 | 位相デジタル変換器、無線通信装置および無線通信方法 |
WO2018090037A1 (en) * | 2016-11-14 | 2018-05-17 | Marvell World Trade Ltd. | Systems and methods for phase synchronization of local oscillator paths in oscillator-operated circuits |
US9853650B1 (en) * | 2016-11-21 | 2017-12-26 | Realtek Semiconductor Corp. | Method and apparatus of frequency synthesis |
US10122378B2 (en) * | 2017-03-16 | 2018-11-06 | Samsung Electronics Co., Ltd. | Digital-to-time converter and operating method thereof |
US10313105B2 (en) * | 2017-09-12 | 2019-06-04 | Credo Technology Group Limited | Fractional-N PLL based clock recovery for SerDes |
US10847239B2 (en) * | 2017-09-18 | 2020-11-24 | Analog Devices, Inc. | Analog track-and-hold including first-order extrapolation |
US10581418B2 (en) * | 2018-01-05 | 2020-03-03 | Samsung Electronics Co., Ltd | System and method for fast converging reference clock duty cycle correction for digital to time converter (DTC)-based analog fractional-N phase-locked loop (PLL) |
US10680624B2 (en) * | 2018-03-07 | 2020-06-09 | Analog Devices Global Unlimited Company | Phase-locked loop with filtered quantization noise |
US10693482B2 (en) * | 2018-06-27 | 2020-06-23 | Silicon Laboratories Inc. | Time-to-voltage converter with extended output range |
US10601431B2 (en) * | 2018-06-28 | 2020-03-24 | Silicon Laboratories Inc. | Time-to-voltage converter using correlated double sampling |
US11095296B2 (en) * | 2018-09-07 | 2021-08-17 | Innophase, Inc. | Phase modulator having fractional sample interval timing skew for frequency control input |
US10804913B1 (en) * | 2018-09-10 | 2020-10-13 | Inphi Corporation | Clock and data recovery devices with fractional-N PLL |
CN109936361B (zh) * | 2019-04-03 | 2020-08-04 | 杭州城芯科技有限公司 | 一种含有pfd/dac量化噪声消除技术的小数分频频率综合器 |
US11552635B2 (en) * | 2019-05-20 | 2023-01-10 | Cypress Semiconductor Corporation | High performance inductive sensing all digital phase locked loop |
CN110174058B (zh) * | 2019-06-06 | 2020-06-23 | 浙江理工大学 | 动态偏频锁定式正弦频率扫描干涉绝对测距装置和方法 |
US10895850B1 (en) * | 2019-07-25 | 2021-01-19 | Si-Ware Systems S.A.E. | Mixed-domain circuit with differential domain-converters |
CN110739966B (zh) * | 2019-09-29 | 2021-12-17 | 浙江大学 | 一种宽带低杂散锁相环电路 |
US10944322B1 (en) * | 2019-10-24 | 2021-03-09 | Kinetic Technologies | Adaptive on-time DC-to-DC buck regulators with constant switching frequency |
CN110908270B (zh) * | 2019-11-19 | 2024-04-02 | 复旦大学 | 一种恒定斜率数字时间转换器及其控制方法 |
US10965297B1 (en) * | 2020-03-03 | 2021-03-30 | Samsung Electronics Co., Ltd | Sigma-delta modulation quantization error reduction technique for fractional-N phase-locked loop (PLL) |
US11018688B1 (en) * | 2020-06-08 | 2021-05-25 | Samsung Electronics Co., Ltd. | DTC device and method based on capacitive DAC charging |
US11411569B2 (en) * | 2020-06-30 | 2022-08-09 | Qualcomm Incorporated | Calibration of sampling-based multiplying delay-locked loop (MDLL) |
US11784653B2 (en) * | 2020-10-28 | 2023-10-10 | Digital Analog Integration, Inc. | Hybrid analog-to-digital converter |
US11177819B1 (en) * | 2020-12-03 | 2021-11-16 | Qualcomm Incorporated | Power and area efficient digital-to-time converter with improved stability |
US11411567B2 (en) * | 2020-12-10 | 2022-08-09 | Qualcomm Incorporated | Phase interpolation-based fractional-N sampling phase-locked loop |
US11784649B2 (en) * | 2021-01-12 | 2023-10-10 | Texas Instruments Incorporated | High gain detector techniques for high bandwidth low noise phase-locked loops |
CN112953516B (zh) * | 2021-01-27 | 2022-09-09 | 浙江大学 | 一种低功耗小数分频锁相环电路 |
US11418205B1 (en) * | 2021-03-22 | 2022-08-16 | Infineon Technologies Ag | System and method of FN-PLL with multi modulus divider |
US11870448B2 (en) * | 2021-09-21 | 2024-01-09 | Texas Instruments Incorporated | Adjustable phase locked loop |
US11962311B2 (en) * | 2021-10-20 | 2024-04-16 | Samsung Electronics Co., Ltd. | Sub-sampling phase locked loop with compensated loop bandwidth and integrated circuit including the same |
JP2023147600A (ja) * | 2022-03-30 | 2023-10-13 | セイコーエプソン株式会社 | 回路装置及び発振器 |
-
2021
- 2021-01-27 CN CN202110110734.5A patent/CN112953516B/zh active Active
-
2022
- 2022-01-17 WO PCT/CN2022/072209 patent/WO2022161193A1/zh active Application Filing
- 2022-10-25 US US17/973,518 patent/US11936390B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2022161193A1 (zh) | 2022-08-04 |
CN112953516A (zh) | 2021-06-11 |
US20230053266A1 (en) | 2023-02-16 |
US11936390B2 (en) | 2024-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112953516B (zh) | 一种低功耗小数分频锁相环电路 | |
US6704383B2 (en) | Sample and hold type fractional-N frequency synthesizer | |
CN1768479B (zh) | 用于抖动补偿的方法和系统 | |
CN106209093B (zh) | 一种全数字小数分频锁相环结构 | |
CN105814797B (zh) | 开关电容回路滤波器 | |
US9319051B2 (en) | Digital PLL with hybrid phase/frequency detector and digital noise cancellation | |
CN107634761B (zh) | 一种数字锁相环频率综合装置 | |
US20130271186A1 (en) | Wide Range Frequency Synthesizer with Quadrature Generation and Spur Cancellation | |
US20080130816A1 (en) | Serializer deserializer circuits | |
US9484859B2 (en) | Modulation circuit and operating method thereof | |
EP1371167B1 (en) | Fractional-n frequency synthesizer with fractional compensation method | |
US20140354335A1 (en) | Digital Phase Locked Loop with Hybrid Delta-Sigma Phase/Frequency Detector | |
US7394322B2 (en) | Phase locked loop | |
WO2011119022A1 (en) | Transceiver comprising sub-sampled frequency-locked loop | |
CN201270504Y (zh) | 频率合成器 | |
US8638141B1 (en) | Phase-locked loop | |
CN117097338A (zh) | 一种基于可调延时精度tdc的电压数字转换电路 | |
CN109547017A (zh) | 一种应用于fpga的双环路锁相环模拟核心电路及锁相环 | |
US10756739B1 (en) | Charge pump and active loop filter with shared unity gain buffer | |
CN115800997B (zh) | 一种全新的采样锁相环电路 | |
CN102307048A (zh) | 一种基于Pico RRU的时钟及其实现方法 | |
CN115473527A (zh) | 一种基于多级量化噪声补偿的分数采样锁相环 | |
CN117674831A (zh) | 基于tdc数字模块的快速锁定宽频带亚采样型锁相环 | |
CN118590058A (zh) | 一种锁相环频率综合器 | |
CN116388753A (zh) | 一种频率综合器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |