WO2016104383A1 - 燃焼制御装置、燃焼制御方法、燃焼制御プログラムおよびコンピュータ読み取り可能な記録媒体 - Google Patents

燃焼制御装置、燃焼制御方法、燃焼制御プログラムおよびコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2016104383A1
WO2016104383A1 PCT/JP2015/085575 JP2015085575W WO2016104383A1 WO 2016104383 A1 WO2016104383 A1 WO 2016104383A1 JP 2015085575 W JP2015085575 W JP 2015085575W WO 2016104383 A1 WO2016104383 A1 WO 2016104383A1
Authority
WO
WIPO (PCT)
Prior art keywords
excess air
boiler
air ratio
heat loss
combustion
Prior art date
Application number
PCT/JP2015/085575
Other languages
English (en)
French (fr)
Inventor
康男 稲村
秀二 小澤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2016561033A priority Critical patent/JP6135831B2/ja
Priority to CN201580053061.7A priority patent/CN106796029A/zh
Priority to EP15872951.7A priority patent/EP3239611B1/en
Publication of WO2016104383A1 publication Critical patent/WO2016104383A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/22Measuring heat losses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05001Measuring CO content in flue gas

Definitions

  • the present invention relates to a combustion control device that controls combustion of fuel in a boiler, a combustion control method, a combustion control program, and a computer-readable recording medium.
  • FIG. 8 is a diagram schematically showing the relationship between the excess air ratio and heat loss / thermal efficiency.
  • a straight line 101 indicates heat loss due to excess air
  • a curve 102 indicates heat loss due to incomplete combustion.
  • the straight line 101 As the excess air ratio becomes larger than 1, the excess air discharge amount increases, so that the heat loss increases and the cost of fuel costs also increases.
  • the curve 102 if the excess air ratio is small, incomplete combustion occurs and the heat loss due to CO generation increases, and soot smoke is generated when a certain threshold is exceeded.
  • a curve 201 indicated by a broken line indicates the thermal efficiency of the boiler.
  • the thermal efficiency is maximum at region D 1 including an air excess ratio heat losses are comparable with excess air heat loss and incomplete combustion due to decreases as the air excess ratio is away from the region D 1 . Therefore, in theory, it can be operated most efficiently boiler be performed combustion control in the region D 1.
  • the region D 1 shown in FIG. 8 is referred to as an ultra lean air combustion region.
  • the technique described in Patent Document 1 described above only controls the O 2 concentration as a main control target and suppresses the increase in the CO concentration. That is, in the technique described in Patent Document 1, the region D 2 in which the excess air ratio is relatively small in the region in which the excess air ratio is larger than the ultra-lean air combustion region D 1 shown in FIG. 2 ) is basically performed in the vicinity of the boundary between the ultra lean air combustion region D 1 and the normal optimum combustion region D 2 when the CO concentration increases. For this reason, it is difficult to say that the technique described in Patent Document 1 sufficiently suppresses heat loss of exhaust gas.
  • the present invention has been made in view of the above, and a combustion control device, a combustion control method, a combustion control program, and a computer-readable computer that can easily suppress heat loss of exhaust gas regardless of the type and load of the boiler It is an object to provide a simple recording medium.
  • a combustion control apparatus is a combustion control apparatus that controls combustion of fuel in a boiler, and the boiler is based on a main steam flow rate from the boiler.
  • the excess air ratio setting unit that sets the excess air ratio, which is the ratio of the amount of air input to the theoretical air volume, and the heat loss and non-existence due to excess air based on the oxygen concentration and carbon monoxide concentration in the exhaust gas from the boiler.
  • the excess air ratio correction amount calculation unit calculates a first heat loss calculation formula for calculating a heat loss due to the excess air and a heat loss due to the incomplete combustion.
  • the correction amount for the excess air ratio is calculated using a two heat loss calculation formula.
  • the excess air ratio correction amount calculation unit includes a first simplified heat loss calculation formula obtained by removing the exhaust gas heat quantity of the boiler from the first heat loss calculation formula, and the first The correction amount for the excess air ratio is calculated using a second simplified heat loss calculation formula obtained by removing the boiler exhaust gas flow rate from the two heat loss calculation formula.
  • the first heat loss calculation formula includes an incomplete combustion factor that is a constant for preventing the carbon monoxide concentration in the exhaust gas from exceeding a regulation value.
  • the excess air ratio correction amount calculation unit calculates a heat loss of an upper limit of the carbon monoxide emission amount based on a set restriction value of the carbon monoxide emission amount. Further, the correction amount of the excess air ratio is calculated by further using a three heat loss calculation formula.
  • the excess air ratio correction amount calculation unit further uses a third simplified heat loss calculation formula obtained by removing the exhaust gas heat quantity of the boiler from the third heat loss calculation formula. And calculating the correction amount of the excess air ratio.
  • the combustion control apparatus further includes an excess air ratio characteristic storage unit that stores an excess air ratio characteristic indicating a relationship between the load of the boiler and the excess air ratio in the above invention, and the excess air ratio setting unit Is characterized in that the excess air ratio is set with reference to the excess air ratio characteristic.
  • the combustion control device when the load of the boiler is increased, the set value of the fuel supplied to the boiler after first increasing the set value of the amount of air supplied to the boiler.
  • the fuel set value supplied to the boiler is first lowered and then the air amount set value supplied to the boiler is lowered.
  • An air rich control unit is further provided.
  • a combustion control method is a combustion control method for controlling the combustion of fuel in a boiler, and is an air ratio that is a ratio of an air amount to be introduced into the boiler based on a main steam flow rate from the boiler to a theoretical air amount.
  • An air excess ratio setting step for setting an excess ratio, and the air for making the heat loss due to excess air and the heat loss due to incomplete combustion substantially equal based on the oxygen concentration and carbon monoxide concentration in the exhaust gas from the boiler
  • An excess air ratio correction amount calculating step for calculating an excess ratio correction amount; and an air setting correction signal for correcting the set value of the air amount based on the excess air ratio corrected by the correction amount and the oxygen concentration in the exhaust gas.
  • an oxygen control step to be generated.
  • the combustion control program provides an excess air ratio that is a ratio of the amount of air input to the boiler based on the main steam flow rate from the boiler to the theoretical air amount in a combustion control device that controls combustion of fuel in the boiler.
  • An excess air ratio for setting the heat loss due to excess air and the heat loss due to incomplete combustion substantially equal to each other based on the oxygen concentration and the carbon monoxide concentration in the exhaust gas from the boiler.
  • An excess air ratio correction amount calculating step for calculating a correction amount of the air, and generating an air setting correction signal for correcting the set value of the air amount based on the excess air ratio corrected by the correction amount and the oxygen concentration in the exhaust gas.
  • an oxygen control step is a ratio of the amount of air input to the boiler based on the main steam flow rate from the boiler to the theoretical air amount in a combustion control device that controls combustion of fuel in the boiler.
  • a non-transitory computer-readable recording medium on which an executable program is recorded is a non-transitory computer-readable recording medium on which an executable program is recorded.
  • An air setting correction signal for correcting the set value of the air amount based on the oxygen concentration in the exhaust gas is generated.
  • the correction amount of the excess air ratio for substantially equalizing the heat loss due to excess air and the heat loss due to incomplete combustion is calculated based on the oxygen concentration and carbon monoxide concentration in the exhaust gas from the boiler. Therefore, the heat loss of the exhaust gas can be easily suppressed regardless of the type and load of the boiler.
  • FIG. 1 shows schematic structure of the combustion system containing the combustion control apparatus which concerns on Embodiment 1 of this invention. It is a block diagram which shows the function structure of the combustion control apparatus which concerns on Embodiment 1 of this invention. It is a figure which shows typically the excess air ratio characteristic which the excess air ratio characteristic memory
  • FIG. 1 is a diagram showing a schematic configuration of a combustion system including a combustion control apparatus according to Embodiment 1 of the present invention.
  • the combustion system 1 shown in the figure burns fuel to generate steam, while exhausting exhaust gas (combustion gas) generated by the combustion of the fuel via a discharge path such as a chimney, and the operation of the combustion system 1 And a combustion control device 3 that controls the above in an integrated manner.
  • the combustion system 1 includes a fuel flow rate and an air flow rate that flow into the boiler 2, a main steam flow rate and main steam pressure at the steam outlet of the boiler 2, an exhaust gas temperature, an O 2 concentration and a CO concentration at the exhaust gas outlet of the boiler 2, and the boiler 2.
  • Various types of instruments for measuring or setting the ambient temperature Further, the flow rate of air to be introduced into the boiler 2 is adjusted by an inverter or an air damper under the control of the combustion control device 3.
  • the type of boiler 2 is not particularly limited.
  • FIG. 2 is a block diagram showing a functional configuration of the combustion control device 3 according to the first embodiment.
  • the combustion control device 3 shown in the figure includes a boiler master control unit 4, a fuel control unit 5, an air control unit 6, an air rich control unit 7, an air excess rate characteristic storage unit 8, an air excess rate setting unit 9, and an air excess rate correction amount.
  • a calculation unit 10, an O 2 control unit (oxygen control unit) 11, an excess air ratio lower limit control unit 12, adders 13 and 14, and a high selector 15 are provided.
  • the boiler master control unit 4 generates a boiler master signal that determines the operation of the boiler 2, that is, increase / decrease in the output of the boiler 2, based on the measured values of the main steam flow rate and the main steam pressure, and outputs the boiler master signal to the air rich control unit 7.
  • the boiler master signal is a signal for controlling the boiler 2 to keep the main steam pressure constant, and includes setting signals for the air flow rate and the fuel flow rate.
  • the fuel control unit 5 controls the fuel flow rate with a target fuel flow setting signal (hereinafter referred to as a fuel setting signal) set based on the boiler master signal.
  • the fuel control unit 5 is configured using, for example, a PID adjuster, and outputs a signal for adjusting the opening degree of a fuel valve that inputs fuel into the boiler 2.
  • the air control unit 6 controls the air flow rate with a target of an air flow rate setting signal (hereinafter referred to as an air setting signal) set based on a boiler master signal and an O 2 concentration correction signal of the O 2 control unit 11 described later. .
  • the air control unit 6 outputs a control signal for controlling the inverter and the air damper according to the air setting signal.
  • the control signal for air is output to the high selector 15.
  • the air control unit 6 is configured using, for example, a PID adjuster.
  • the air rich control unit 7 When the boiler load of the boiler 2 is fluctuated, the air rich control unit 7 performs air rich control for increasing the O 2 concentration and setting the CO concentration to be substantially zero, for example, to make the air excessive.
  • the air rich control unit 7 performs control using the difference in response between fuel and air. Specifically, when the boiler load is increased, the air rich control unit 7 increases the set value of the fuel supplied to the boiler 2 after first increasing the set value of the amount of air supplied to the boiler 2. I do. Moreover, when lowering the boiler load, the air rich control unit 7 performs control to lower the set value of the amount of air supplied to the boiler 2 after first lowering the set value of the fuel supplied to the boiler 2.
  • the air rich control unit 7 outputs an air setting signal and a fuel setting signal included in the boiler master signal when the boiler load does not fluctuate.
  • the excess air ratio characteristic storage unit 8 stores the excess air ratio according to the boiler load.
  • FIG. 3 is a diagram schematically illustrating the excess air ratio characteristic stored in the excess air ratio characteristic storage unit 8.
  • the excess air ratio characteristic shown in FIG. 3 is merely an example, and it goes without saying that it varies depending on the type of the boiler 2 and the like.
  • the excess air ratio characteristic for example, a characteristic determined by performing various measurements when performing a trial operation of the boiler 2 may be applied, or a predetermined characteristic corresponding to the type of the boiler 2 may be applied.
  • the excess air ratio setting unit 9 calculates the boiler load using the measured value of the main steam flow rate, refers to the excess air ratio characteristic stored in the excess air ratio characteristic storage unit 8, and the excess air ratio according to the boiler load. Is calculated and output to the adder 13.
  • the excess air ratio correction amount calculation unit 10 calculates an amount corresponding to heat loss due to excess air using the measured value of O 2 concentration, and corresponds to heat loss due to incomplete combustion using the measured value of CO concentration.
  • the amount of air correction is calculated by calculating the amount and comparing the two amounts.
  • L AIR C PA ⁇ (T O ⁇ T I ) ⁇ (G ⁇ D (O 2 ) /0.21) ⁇ ⁇ (1)
  • T O is the air temperature around the boiler 2 (° C.)
  • T I is the exhaust gas temperature of the boiler 2 (° C.)
  • G is the exhaust gas flow rate (Nm 3 / h)
  • D (O 2 ) is the O 2 concentration in the exhaust gas
  • is an incomplete combustion factor defined as a constant smaller than 1. The meaning of the incomplete combustion factor ⁇ will be described later.
  • Heat loss L CO due to incomplete combustion (example of the second heat loss calculation formula) for given by the following equation (2).
  • L CO G ⁇ D (CO out ) ⁇ H CO (2)
  • D (CO out ) is the CO concentration in the exhaust gas
  • FIG. 4 is a diagram illustrating the meaning of the incomplete combustion factor ⁇ , and is an enlarged view of the vicinity of the ultra lean air combustion region.
  • ultra lean air combustion region D 1 in a typical boiler exhaust gas CO concentration regulated by, since the heat loss due to incomplete combustion is relatively small compared to the heat loss due to excess air, incomplete combustion factor in equation (1)
  • the range assumed as the regulation value of CO concentration is obtained. There is a possibility that a large value will be exceeded.
  • the incomplete combustion factor ⁇ is desirably set as a value such that the CO concentration at the intersection R does not exceed the CO concentration regulation value at the place where the combustion system 1 is installed.
  • the value of the incomplete combustion factor ⁇ for example, a value determined based on a trial operation of the boiler 2 may be applied, or a predetermined value may be applied depending on the type of the boiler 2.
  • the value of the incomplete combustion factor ⁇ may be greater than one.
  • the excess air ratio correction amount calculation unit 10 instead of calculating the equations (1) and (2), the amounts obtained by dividing the exhaust gas flow rate G from the equations (1) and (2) by division.
  • Formula (3) is an example of a first simplified heat loss calculation formula
  • Formula (4) is an example of a second simplified heat loss calculation formula.
  • the reason why the excess air ratio correction amount calculation unit 10 calculates the expressions (3) and (4) includes the exhaust gas flow rate G on the right side of the expressions (1) and (2).
  • Embodiment 1 since the simplified equations (3) and (4) that do not include the exhaust gas flow rate G that is not measured in a general boiler are used, the excess air ratio correction amount calculation unit 10 is used. Therefore, the heat loss due to excess air and the heat loss due to incomplete combustion can be efficiently calculated and compared.
  • the excess air ratio correction amount calculation unit 10 includes, for example, two pulse generators. One of the two pulse generators operates when L AIR '> L CO ', and the other pulse generator operates when L AIR ' ⁇ L CO '. The correction amount of the excess air ratio is adjusted by the number of pulses generated by the pulse generator. Note that the configuration for the excess air ratio correction amount calculation unit 10 to output the correction amount is not limited to this.
  • the adder 13 adds the correction amount by adding the setting signal of the excess air ratio output from the excess air ratio setting unit 9 and the correction amount setting signal output from the excess air ratio correction amount calculation unit 10. calculating the excess, and outputs the O 2 concentration setting signal obtained by converting the excess air ratio to the set value of the O 2 concentration to the O 2 control unit 11.
  • the O 2 concentration of the measured values with respect to O 2 concentration setting signal air set amount of the correction signal for correcting the O 2 concentration as the target (hereinafter, referred to as an air set correction signal) adders 14 to output.
  • the O 2 control unit 11 is configured using, for example, a PID adjuster.
  • the adder 14 adds the air setting signal output from the air rich control unit 7 and the air setting correction signal output from the O 2 control unit 11 to add the air setting signal to which the O 2 concentration correction has been added to the air control unit. 6 is output.
  • the excess air ratio lower limit control unit 12 outputs an air setting signal that rapidly increases the amount of air in the boiler 2 when the excess air ratio reaches the lower limit setting value based on the measured value of the CO concentration.
  • the value of the air setting signal is an air amount such that the value of the excess air ratio is larger than the lower limit of the ultra lean air combustion region D 1 shown in FIG.
  • the high selector 15 selects a signal for further increasing the air amount from the air setting signals output by the air control unit 6 and the excess air ratio lower limit control unit 12 and outputs them to the air damper or inverter.
  • the high selector 15 selects the air setting signal output by the air control unit 6 during normal operation, while selecting the air setting signal output by the excess air ratio lower limit control unit 12 when the CO concentration shows an abnormal value. To do.
  • the combustion control device 3 having the above functional configuration includes a CPU (Central Processing Unit), various arithmetic circuits, a ROM (Read Only Memory) in which a program for starting a predetermined OS, etc. is installed in advance, and calculation parameters for each process. It is a computer realized using a processor including a RAM (Random Access Memory) that stores data and the like.
  • the combustion control program according to the first embodiment is preinstalled in the ROM. Further, the combustion control program according to the first embodiment can be recorded on a non-transitory computer-readable recording medium in which an executable program is recorded.
  • the recording of the combustion control program in the ROM or recording medium may be performed when the computer or recording medium is shipped as a product, or may be performed by downloading via a communication network.
  • the communication network here is realized by, for example, an existing public line network, LAN (Local Area Network), WAN (Wide Area Network), etc., and may be wired or wireless.
  • FIG. 5 is a diagram schematically showing an example of the operation of the boiler 2 controlled by the combustion control device 3.
  • the scales of the vertical axes indicating the boiler main steam flow rate, the exhaust gas O 2 concentration, and the exhaust gas CO concentration are different from each other.
  • Periods t ⁇ t 1 , t 2 ⁇ t ⁇ t 3 , and t ⁇ t 4 schematically show state changes during operation of the boiler 2 in the ultra lean air combustion region D 1 shown in FIGS. 4 and 8. Yes.
  • the boiler 2 operates with the boiler main steam flow rate, the exhaust gas O 2 concentration, and the exhaust gas CO concentration maintained in a substantially constant state.
  • combustion control with excellent thermal efficiency is realized by positively controlling the CO concentration and performing combustion control in the ultra-lean air combustion region.
  • the period t 1 ⁇ t ⁇ t 2 schematically shows a state change when the boiler load is increasing, and the period t 3 ⁇ t ⁇ t 4 is when the boiler load is decreasing.
  • the state change of is typically shown.
  • the air rich control unit 7 performs the air rich control described above to temporarily increase the O 2 concentration and reduce the CO concentration to, for example, approximately zero.
  • the boiler 2 operates in a state where the excess air ratio is larger than the ultra lean air combustion region D 1 shown in FIGS.
  • Embodiment 1 of the present invention described above, excess air for equalizing heat loss due to excess air and heat loss due to incomplete combustion based on the oxygen concentration and carbon monoxide concentration in the exhaust gas from the boiler.
  • the excess air rate By controlling the excess air rate by calculating the rate correction amount, the combustion control of the boiler in the ultra-lean air combustion region is performed, so heat loss of exhaust gas can be easily suppressed regardless of boiler type and load can do.
  • the thermal efficiency of the boiler can be improved and fuel for combustion can be reduced.
  • the heat loss due to excess air and the heat loss due to incomplete combustion are determined using the incomplete combustion factor that is a constant for preventing the carbon monoxide concentration in the exhaust gas from exceeding the regulation value. Since the correction amount of the excess air ratio for equalizing is calculated, the CO concentration can be reliably controlled within the regulation range.
  • the calculation formula excluding the exhaust gas flow rate of the boiler is used. Since it is calculated, the calculation is simplified. As a result, in the first embodiment, it is not necessary to measure the exhaust gas flow rate that is generally not measured or to calculate the exhaust gas amount from the fuel component, and it is possible to efficiently calculate the correction amount. .
  • CO control is performed in the ultra-lean air combustion region when the operation of the boiler is stable, while air rich control is performed when the boiler load fluctuates, so that excess air can be handled. Possible combustion control can be performed.
  • the excess air ratio correction amount calculation unit 10 calculates the first simplified heat loss calculation formula (formula (3)) and the second simplified heat loss calculation formula (formula (4)). Instead, the first heat loss calculation formula (formula (1)) and the second heat loss calculation formula (formula (2)) may be calculated.
  • the CO emission amount is set regardless of the load on the boiler by taking into account the CO emission amount restriction value (CO restriction value) set in accordance with conditions such as the place where the boiler is installed. It is characterized by performing control to keep the constant.
  • the setting of the CO regulation value may be realized by inputting the regulation value in advance using an installation device such as an input device to the combustion control apparatus according to the second embodiment, or via a communication network. You may implement
  • the configuration of the combustion control device according to the second embodiment is the same as the configuration of the combustion control device 3 described in the first embodiment.
  • L COlim G ⁇ D (CO lim ) ⁇ H CO (6)
  • D (CO lim ) on the right side of Equation (6) is the CO concentration at the CO emission upper limit calculated based on the CO regulation value.
  • the CO regulation value is a value set in advance in accordance with conditions such as laws and regulations of the place where the boiler 2 is installed.
  • the excess air ratio correction amount calculation unit 10 outputs a correction amount setting signal to the adder 13 by performing an operation for comparing the magnitude relations of the equations (5), (2), and (6). To do. For this reason, also in the second embodiment, the excess air ratio correction amount calculation unit 10 calculates exhaust gas flow rate G that is commonly included in each equation instead of calculating equations (5), (2), and (6). The following formulas (7), (4), and (8) are calculated by excluding.
  • Formula (7) is an example of the first simplified heat loss calculation formula applied in the second embodiment
  • Formula (8) is an example of the third simplified heat loss calculation formula.
  • FIG. 6 is a diagram showing the relationship between the three heat loss calculation formulas applied in the second embodiment, and is an enlarged view of the vicinity of the ultra lean air combustion region.
  • CO in addition to the straight line 101 (corresponding to equation (7)) that gives heat loss due to excess air and the curve 102 (corresponding to equation (4)) that gives heat loss due to incomplete combustion, CO based on the CO regulation value
  • a straight line 104 (corresponding to equation (8)) giving the heat loss at the upper limit of discharge is shown.
  • the heat loss at the CO emission upper limit based on the CO regulation value is constant regardless of the excess air ratio.
  • the excess air ratio correction amount calculation unit 10 the minimum value min by comparing the 'heat loss L COlim of CO emissions limit by the CO regulation value' First excessive heat loss L AIR2 by air (L AIR2 ', L COlim' ) Is output. Subsequently, the excess air ratio correction amount calculation unit 10 compares the minimum value min (L AIR2 ′, L COlim ′) with the heat loss L CO ′ due to incomplete combustion. As a result of comparison, if min (L AIR2 ′, L COlim ′)> L CO ′, the excess air ratio correction amount calculation unit 10 generates a correction amount setting signal that relatively decreases the excess air ratio. And output to the adder 13.
  • the excess air ratio correction amount calculation unit 10 outputs a correction amount setting signal that relatively increases the excess air ratio. It is generated and output to the adder 13.
  • FIG. 7 is a diagram showing an outline of the operation of the combustion system 1 according to the second embodiment.
  • FIG. 7 shows the relationship between the CO emission amount based on the CO regulation value, the boiler load, the exhaust gas heat loss, and the excess air ratio.
  • the CO emission amount by the boiler 2 is constant regardless of the excess air ratio (straight line 301).
  • curve 302 about the relationship between a boiler load and an excess air ratio, the case where an excess air ratio is so small that the boiler load is large is illustrated (curve 302).
  • the combustion control device 3 according to the second embodiment can operate the boiler 2 with a constant CO emission amount regardless of the boiler load. This is because, in the second embodiment, the excess air ratio correction amount calculation unit 10 sets the correction amount of the excess air ratio with reference to the CO emission upper limit based on the CO regulation value.
  • the thermal efficiency of the boiler can be improved and the fuel for combustion can be reduced, and the CO concentration can be ensured within the range of regulation. Can be controlled. Also in the second embodiment, it is not necessary to measure the exhaust gas flow rate that is generally not measured or to calculate the exhaust gas amount from the fuel component, so that the correction amount can be calculated efficiently.
  • the CO emission amount can be made constant regardless of the boiler load. It becomes. As a result, it is not necessary to perform calculation by setting an incomplete combustion factor for each boiler load as in the first embodiment, so that the combustion control of the boiler can be performed more easily. In particular, when it is necessary to determine the incomplete combustion factor by a trial operation of the boiler, such a trial operation itself is not necessary, so that it is possible to save labor at the time of boiler installation.
  • the excess air ratio correction amount calculation unit 10 includes the first simplified heat loss calculation formula (formula (7)), the second simplified heat loss calculation formula (formula (4)), and the first 3 Instead of calculating the simplified heat loss calculation formula (formula (8)), the first heat loss calculation formula (formula (5)), the second heat loss calculation formula (formula (2)), and the third heat loss calculation An equation (equation (6)) may be calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

 ボイラの種類や負荷によらず排ガスの熱損失を簡単に抑制する。この目的のため、燃焼制御装置は、ボイラからの主蒸気流量に基づいてボイラに投入する空気量の理論空気量に対する比率である空気過剰率を設定する空気過剰率設定部と、ボイラからの排ガス中の酸素濃度および一酸化炭素濃度に基づいて過剰空気による熱損失と不完全燃焼による熱損失とを略等しくするための空気過剰率の補正量を算出する空気過剰率補正量算出部と、補正量により補正した空気過剰率と排ガス中の酸素濃度に基づいて空気量の設定値を補正する空気設定補正信号を生成する酸素制御部と、を備える。

Description

燃焼制御装置、燃焼制御方法、燃焼制御プログラムおよびコンピュータ読み取り可能な記録媒体
 本発明は、ボイラにおける燃料の燃焼を制御する燃焼制御装置、燃焼制御方法、燃焼制御プログラムおよびコンピュータ読み取り可能な記録媒体に関する。
 従来、ボイラの燃焼プロセスに関する技術では、省エネルギと公害防止を両立させるために様々な制御方法が試みられている。例えば、ボイラの主蒸気流量から空気過剰率の特性を設定する信号に対して、一酸化炭素(CO)濃度から求めた酸素(O2)濃度の補正量を加算した空気設定信号を用いて空気流量を調節することにより、低空気過剰率での最適制御を行う技術が知られている(例えば、特許文献1を参照)。空気過剰率は、実際にボイラに投入される空気量の理論空気量に対する比率として定義され、空気比とも呼ばれる。ここで理論空気量とは、単位燃料あたりの燃焼に必要な最小の空気量のことである。特許文献1に記載の技術では、COが一定値以上発生した場合は空気過剰率を上昇させてCO濃度を抑制し、黒煙等のばい煙の発生を防止している。
 図8は、空気過剰率と熱損失/熱効率との関係を模式的に示す図である。図8において、直線101は過剰空気による熱損失を示し、曲線102は不完全燃焼による熱損失を示している。直線101によれば、空気過剰率が1より大きくなればなるほど、過剰な空気の排出量が増えるため熱損失が大きくなって燃料代のコストも上昇する。一方、曲線102によれば、空気過剰率が小さいと不完全燃焼が生じてCO発生による熱損失が大きくなり、ある閾値を超えるとばい煙が発生する。
 図8において、破線で記載された曲線201は、ボイラの熱効率を示している。曲線201によれば、熱効率は、過剰空気による熱損失と不完全燃焼による熱損失が同程度である空気過剰率を含む領域D1で最大となり、空気過剰率が領域D1から離れるほど小さくなる。したがって、理論的には、領域D1で燃焼制御を行えば最も効率よくボイラを動作させることができる。以下、図8に示す領域D1を超希薄空気燃焼領域という。
特公平3-21808号公報
 上述した特許文献1に記載の技術は、O2濃度を主たる制御対象とし、CO濃度についてはその上昇を抑制する制御を行っているに過ぎない。すなわち、特許文献1に記載の技術は、図8に示す超希薄空気燃焼領域D1より空気過剰率が大きい領域の中で比較的空気過剰率が小さい領域D2(以下、通常最適燃焼領域D2という)における制御を基本としつつ、CO濃度上昇時に超希薄空気燃焼領域D1と通常最適燃焼領域D2との境界付近での制御を行っているに過ぎない。このため、特許文献1に記載の技術は、排ガスの熱損失を十分に抑制しているとはいい難かった。
 また、特許文献1に記載の技術の場合、CO濃度からO2濃度の補正量を求める際の両者の関係がボイラの種類や、ボイラ負荷等の条件によって異なるため、それらの条件に応じてO2濃度の補正量を正確に設定することは困難であるという問題があった。
 本発明は、上記に鑑みてなされたものであって、ボイラの種類や負荷によらず排ガスの熱損失を簡単に抑制することができる燃焼制御装置、燃焼制御方法、燃焼制御プログラムおよびコンピュータ読み取り可能な記録媒体を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る燃焼制御装置は、ボイラにおける燃料の燃焼を制御する燃焼制御装置であって、前記ボイラからの主蒸気流量に基づいて前記ボイラに投入する空気量の理論空気量に対する比率である空気過剰率を設定する空気過剰率設定部と、前記ボイラからの排ガス中の酸素濃度および一酸化炭素濃度に基づいて過剰空気による熱損失と不完全燃焼による熱損失とを略等しくするための前記空気過剰率の補正量を算出する空気過剰率補正量算出部と、前記補正量により補正した空気過剰率と前記排ガス中の酸素濃度に基づいて前記空気量の設定値を補正する空気設定補正信号を生成する酸素制御部と、を備えたことを特徴とする。
 本発明に係る燃焼制御装置は、上記発明において、前記空気過剰率補正量算出部は、前記過剰空気による熱損失を算出する第1熱損失算出式と前記不完全燃焼による熱損失を算出する第2熱損失算出式とを用いて前記空気過剰率の補正量を算出することを特徴とする。
 本発明に係る燃焼制御装置は、上記発明において、前記空気過剰率補正量算出部は、前記第1熱損失算出式から前記ボイラの排ガス熱量を除いた第1簡素化熱損失算出式および前記第2熱損失算出式から前記ボイラの排ガス流量を除いた第2簡素化熱損失算出式を用いて前記空気過剰率の補正量を算出することを特徴とする。
 本発明に係る燃焼制御装置は、上記発明において、前記第1熱損失算出式は、前記排ガス中の一酸化炭素濃度が規制値を超えなくするための定数である不完全燃焼ファクタを含むことを特徴とする。
 本発明に係る燃焼制御装置は、上記発明において、前記空気過剰率補正量算出部は、設定された一酸化炭素排出量の規制値に基づく一酸化炭素排出量の上限の熱損失を算出する第3熱損失算出式をさらに用いて前記空気過剰率の補正量を算出することを特徴とする。
 本発明に係る燃焼制御装置は、上記発明において、前記空気過剰率補正量算出部は、前記第3熱損失算出式から前記ボイラの排ガス熱量を除いた第3簡素化熱損失算出式をさらに用いて前記空気過剰率の補正量を算出することを特徴とする。
 本発明に係る燃焼制御装置は、上記発明において、前記ボイラの負荷と前記空気過剰率との関係を示す空気過剰率特性を記憶する空気過剰率特性記憶部をさらに備え、前記空気過剰率設定部は、前記空気過剰率特性を参照して前記空気過剰率を設定することを特徴とする。
 本発明に係る燃焼制御装置は、上記発明において、前記ボイラの負荷を上昇させる場合、前記ボイラに供給される空気量の設定値を先に上昇させてから前記ボイラに供給される燃料の設定値を上昇させる制御を行い、前記ボイラの負荷を降下させる場合、前記ボイラに供給される燃料の設定値を先に降下させてから前記ボイラに供給される空気量の設定値を降下させる制御を行うエアリッチ制御部をさらに備えたことを特徴とする。
 本発明に係る燃焼制御方法は、ボイラにおける燃料の燃焼を制御する燃焼制御方法であって、前記ボイラからの主蒸気流量に基づいて前記ボイラに投入する空気量の理論空気量に対する比率である空気過剰率を設定する空気過剰率設定ステップと、前記ボイラからの排ガス中の酸素濃度および一酸化炭素濃度に基づいて過剰空気による熱損失と不完全燃焼による熱損失とを略等しくするための前記空気過剰率の補正量を算出する空気過剰率補正量算出ステップと、前記補正量により補正した空気過剰率と前記排ガス中の酸素濃度に基づいて前記空気量の設定値を補正する空気設定補正信号を生成する酸素制御ステップと、を有することを特徴とする。
 本発明に係る燃焼制御プログラムは、ボイラにおける燃料の燃焼を制御する燃焼制御装置に、前記ボイラからの主蒸気流量に基づいて前記ボイラに投入する空気量の理論空気量に対する比率である空気過剰率を設定する空気過剰率設定ステップと、前記ボイラからの排ガス中の酸素濃度および一酸化炭素濃度に基づいて過剰空気による熱損失と不完全燃焼による熱損失とを略等しくするための前記空気過剰率の補正量を算出する空気過剰率補正量算出ステップと、前記補正量により補正した空気過剰率と前記排ガス中の酸素濃度に基づいて前記空気量の設定値を補正する空気設定補正信号を生成する酸素制御ステップと、を実行させることを特徴とする。
 本発明に係る、実行可能なプログラムが記録された非一時的なコンピュータ読み取り可能な記録媒体は、実行可能なプログラムが記録された非一時的なコンピュータ読み取り可能な記録媒体であって、前記プログラムは、プロセッサに以下を実行するように指示する:ボイラからの主蒸気流量に基づいて前記ボイラに投入する空気量の理論空気量に対する比率である空気過剰率を設定し、前記ボイラからの排ガス中の酸素濃度および一酸化炭素濃度に基づいて過剰空気による熱損失と不完全燃焼による熱損失とを略等しくするための前記空気過剰率の補正量を算出し、前記補正量により補正した空気過剰率と前記排ガス中の酸素濃度に基づいて前記空気量の設定値を補正する空気設定補正信号を生成する。
 本発明によれば、ボイラからの排ガス中の酸素濃度および一酸化炭素濃度に基づいて過剰空気による熱損失と不完全燃焼による熱損失とを略等しくするための空気過剰率の補正量を算出するため、ボイラの種類や負荷によらず排ガスの熱損失を簡単に抑制することができる。
本発明の実施の形態1に係る燃焼制御装置を含む燃焼システムの概略構成を示す図である。 本発明の実施の形態1に係る燃焼制御装置の機能構成を示すブロック図である。 本発明の実施の形態1に係る燃焼制御装置の空気過剰率特性記憶部が記憶する空気過剰率特性を模式的に示す図である。 不完全燃焼ファクタの意味を説明する図である。 本発明の実施の形態1に係る燃焼制御装置が制御するボイラの動作の一例を模式的に示す図である。 本発明の実施の形態2で適用する3つの熱損失算出式の関係を示す図である。 本発明の実施の形態2に係る燃焼システム1の運転の概要を示す図である。 空気過剰率と熱損失/熱効率との関係を模式的に示す図である。
 以下に、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)を説明する。
(実施の形態1)
 図1は、本発明の実施の形態1に係る燃焼制御装置を含む燃焼システムの概略構成を示す図である。同図に示す燃焼システム1は、燃料を燃焼させて蒸気を生成する一方、燃料の燃焼によって生じる排ガス(燃焼ガス)を煙突等の排出路を介して排出するボイラ2と、燃焼システム1の動作を統括して制御する燃焼制御装置3と、を備える。燃焼システム1は、ボイラ2へ流入する燃料流量および空気流量、ボイラ2の蒸気出口における主蒸気流量および主蒸気圧力、ボイラ2の排ガス出口における排ガスの温度、O2濃度およびCO濃度、ならびにボイラ2の周囲の温度、をそれぞれ計測するまたは設定する各種計器を有する。また、ボイラ2へ投入する空気流量は、燃焼制御装置3の制御のもと、インバータまたは空気ダンパによって調整される。なお、本実施の形態1において、ボイラ2の種類は特に制限されない。
 図2は、本実施の形態1に係る燃焼制御装置3の機能構成を示すブロック図である。同図に示す燃焼制御装置3は、ボイラマスタ制御部4、燃料制御部5、空気制御部6、エアリッチ制御部7、空気過剰率特性記憶部8、空気過剰率設定部9、空気過剰率補正量算出部10、O2制御部(酸素制御部)11、空気過剰率下限制御部12、加算器13、14、およびハイセレクタ15を備える。
 ボイラマスタ制御部4は、主蒸気流量および主蒸気圧力の計測値に基づいてボイラ2の動作すなわちボイラ2の出力の増減を決定するボイラマスタ信号を生成し、エアリッチ制御部7に出力する。ボイラマスタ信号は、主蒸気圧力を一定とするようにボイラ2を制御する信号であり、空気流量および燃料流量の設定信号が含まれる。
 燃料制御部5は、ボイラマスタ信号に基づいて設定される燃料流量の設定信号(以下、燃料設定信号という)を目標として燃料流量の制御を行う。燃料制御部5は、例えばPID調節器を用いて構成され、燃料をボイラ2へ投入する燃料弁の開度を調整する信号を出力する。
 空気制御部6は、ボイラマスタ信号および後述するO2制御部11のO2濃度補正信号に基づいて設定される空気流量の設定信号(以下、空気設定信号という)を目標として空気流量の制御を行う。空気制御部6は、空気設定信号に応じてインバータや空気ダンパを制御する制御信号を出力する。空気用の制御信号は、ハイセレクタ15へ出力される。空気制御部6は、例えばPID調節器を用いて構成される。
 エアリッチ制御部7は、ボイラ2のボイラ負荷を変動させる際、O2濃度を上昇させるとともにCO濃度を例えば略ゼロとして空気過剰とするエアリッチ制御を行う。エアリッチ制御部7は、燃料と空気の応答性の違いを利用した制御を行う。具体的には、エアリッチ制御部7は、ボイラ負荷を上昇させる場合、ボイラ2に供給される空気量の設定値を先に上昇させてからボイラ2に供給される燃料の設定値を上昇させる制御を行う。また、エアリッチ制御部7は、ボイラ負荷を降下させる場合、ボイラ2に供給される燃料の設定値を先に降下させてからボイラ2に供給される空気量の設定値を降下させる制御を行う。このような制御を行うことにより、ボイラ負荷が変動する際に大規模な不完全燃焼が発生するのを防止し、黒煙の発生を抑制することができる。なお、エアリッチ制御部7は、ボイラ負荷が変動しない場合、ボイラマスタ信号に含まれる空気設定信号および燃料設定信号を出力する。
 空気過剰率特性記憶部8は、ボイラ負荷に応じた空気過剰率を記憶する。図3は、空気過剰率特性記憶部8が記憶する空気過剰率特性を模式的に示す図である。図3に示す空気過剰率特性の場合、ボイラ負荷が大きいほど空気過剰率が小さい。なお、図3に示す空気過剰率特性はあくまでも一例に過ぎず、ボイラ2の種類等に応じて異なることはいうまでもない。空気過剰率特性として、例えばボイラ2の試運転を行う際に各種計測を行うことによって決定した特性を適用してもよいし、ボイラ2の種類に応じた所定の特性を適用してもよい。
 空気過剰率設定部9は、主蒸気流量の計測値を用いてボイラ負荷を算出し、空気過剰率特性記憶部8が記憶する空気過剰率特性を参照してそのボイラ負荷に応じた空気過剰率を算出して加算器13へ出力する。
 空気過剰率補正量算出部10は、O2濃度の計測値を用いて過剰空気による熱損失に相当する量を算出するとともに、CO濃度の計測値を用いて不完全燃焼による熱損失に相当する量を算出し、この2つの量を比較することによって空気過剰率の補正量を算出する。以下、過剰空気による熱損失および不完全燃焼による熱損失について説明した後、それらの熱損失と空気過剰率補正量算出部10が実際に算出する量との関係を説明する。
 過剰空気による熱損失LAIRは、次式(1)で与えられる(第1熱損失算出式の例)。
  LAIR=CPA・(TO-TI)・(G・D(O2)/0.21)・α ・・・(1)
ここで、CPAは空気の比熱(=1.3[kJ/Nm3・K])、TOはボイラ2の周囲の空気温度(℃)、TIはボイラ2の排ガス温度(℃)、Gは排ガス流量(Nm3/h)、D(O2)は排ガス中のO2濃度、αは1より小さい定数として定義される不完全燃焼ファクタである。不完全燃焼ファクタαの意味については後述する。
 不完全燃焼による熱損失LCOは、次式(2)で与えられる(第2熱損失算出式の例)。
  LCO=G・D(COout)・HCO ・・・(2)
ここで、D(COout)は排ガス中のCO濃度であり、HCOはCOの熱量(=12634[kJ/Nm3])である。
 図4は、不完全燃焼ファクタαの意味を説明する図であり、超希薄空気燃焼領域付近を拡大した図である。超希薄空気燃焼領域D1では、通常のボイラ排ガスCO濃度規制下において、不完全燃焼による熱損失が過剰空気による熱損失と比較して相対的に小さいので、式(1)で不完全燃焼ファクタαを除いた通常の意味での過剰空気による熱損失と式(2)で与えられる不完全燃焼による熱損失が等しい交点PにおけるCO濃度を求めると、CO濃度の規制値として想定される範囲を超えるような大きい値となってしまう可能性がある。そこで、本実施の形態1では、通常の意味での過剰空気による熱損失に対して1より小さい不完全燃焼ファクタαを乗じることによって、過剰空気による熱損失を直線101から直線103へ見かけ上シフトさせ、所望のCO濃度を有する点Qをシフトさせた交点Rを求める。この意味で、不完全燃焼ファクタαは、交点RにおけるCO濃度が燃焼システム1を設置する場所のCO濃度の規制値を超えないような値として設定するのが望ましい。不完全燃焼ファクタαの値は、例えばボイラ2の試運転に基づいて決定した値を適用してもよいし、ボイラ2の種類に応じて所定の値を適用してもよい。また、不完全燃焼ファクタαの値はボイラ負荷によって変わるので、ボイラ負荷帯に応じて複数の不完全燃焼ファクタを用いる場合もある。さらに、理論上、不完全燃焼ファクタαは1より大きい場合もあり得る。
 本実施の形態1において、空気過剰率補正量算出部10は、式(1)、(2)を算出する代わりに、式(1)、(2)から排ガス流量Gを除算によってそれぞれ除外した量
 LAIR’=LAIR/G=CPA・(TO-TI)・(D(O2)/0.21)・α ・・・(3)
 LCO’=LCO/G=D(COout)・HCO ・・・(4)
を算出する。式(3)は第1簡素化熱損失算出式の例であり、式(4)は第2簡素化熱損失算出式の例である。空気過剰率補正量算出部10が式(3)、(4)を算出するのは、式(1)、(2)の右辺に排ガス流量Gがともに含まれているため、両者の大小関係を判定する際に排ガス流量Gが影響を及ぼさないからである。このように、本実施の形態1では、一般のボイラでは計測が行われていない排ガス流量Gを含まない簡素化した式(3)、(4)を用いるため、空気過剰率補正量算出部10の計算量が少なくて済み、過剰空気による熱損失と不完全燃焼による熱損失とを効率よく算出して比較することができる。
 空気過剰率補正量算出部10は、LAIR’>LCO’であれば空気過剰率を相対的に減少させるような補正量設定信号を生成して加算器13に出力する一方、LAIR’≦LCO’であれば空気過剰率を相対的に増加させるような補正量設定信号を生成して加算器13に出力する。
 空気過剰率補正量算出部10は、例えば2つのパルス発生器を有する。2つのパルス発生器のうち一方のパルス発生器はLAIR’>LCO’の場合に動作し、他方のパルス発生器はLAIR’≦LCO’の場合に動作する。空気過剰率の補正量は、パルス発生器が発生したパルス数によって調整される。なお、空気過剰率補正量算出部10が補正量を出力するための構成は、これに限られるわけではない。
 加算器13は、空気過剰率設定部9により出力された空気過剰率の設定信号と空気過剰率補正量算出部10により出力された補正量設定信号とを加算することによって補正量を加味した空気過剰率を算出し、この空気過剰率をO2濃度の設定値に換算したO2濃度設定信号をO2制御部11へ出力する。
 O2制御部11は、O2濃度の計測値に対してO2濃度設定信号を目標としてO2濃度を補正するための空気設定量の補正信号(以下、空気設定補正信号という)を加算器14へ出力する。O2制御部11は、例えばPID調節器を用いて構成される。
 加算器14は、エアリッチ制御部7により出力された空気設定信号とO2制御部11により出力された空気設定補正信号とを加算することによってO2濃度補正を加味した空気設定信号を空気制御部6へ出力する。
 空気過剰率下限制御部12は、CO濃度の計測値に基づいて空気過剰率が下限設定値に達したとき、ボイラ2内の空気量を急速に増加させる空気設定信号を出力する。この空気設定信号の値は、図8に示す超希薄空気燃焼領域D1の下限よりも空気過剰率の値が大きくなるような空気量である。なお、CO濃度計としてレーザCO分析計を用いる場合には、CO濃度の高速測定が可能となり、CO濃度の異常を迅速に抽出することができる。
 ハイセレクタ15は、空気制御部6および空気過剰率下限制御部12によりそれぞれ出力された空気設定信号のうち空気量をより増加させる信号を選択して空気ダンパまたはインバータへ出力する。ハイセレクタ15は、通常運転時は空気制御部6により出力された空気設定信号を選択する一方、CO濃度が異常値を示した時には空気過剰率下限制御部12により出力された空気設定信号を選択する。
 以上の機能構成を有する燃焼制御装置3は、CPU(Central Processing Unit)、各種演算回路、所定のOSを起動するプログラム等が予めインストールされたROM(Read Only Memory)、および各処理の演算パラメータやデータ等を記憶するRAM(Random Access Memory)等を含むプロセッサを用いて実現されるコンピュータである。このうちROMには、本実施の形態1に係る燃焼制御プログラムが予めインストールされている。また、本実施の形態1に係る燃焼制御プログラムは、実行可能なプログラムが記録された非一時的なコンピュータ読み取り可能な記録媒体に記録することも可能である。なお、燃焼制御プログラムのROMまたは記録媒体への記録は、コンピュータまたは記録媒体を製品として出荷する際に行ってもよいし、通信ネットワークを介したダウンロードにより行ってもよい。ここでいう通信ネットワークは、例えば既存の公衆回線網、LAN(Local Area Network)、WAN(Wide Area Network)などによって実現されるものであり、有線、無線を問わない。
 図5は、燃焼制御装置3が制御するボイラ2の動作の一例を模式的に示す図である。なお、図5において、ボイラ主蒸気流量、排ガスO2濃度、および排ガスCO濃度をそれぞれ示す縦軸のスケールは互いに異なる。
 期間t≦t1、t2≦t≦t3、およびt≧t4は、図4および図8に示す超希薄空気燃焼領域D1におけるボイラ2の運転時の状態変化を模式的に示している。これらの期間において、ボイラ2は、ボイラ主蒸気流量、排ガスO2濃度、および排ガスCO濃度がほぼ一定の状態を維持したまま動作する。このように、本実施の形態1では、CO濃度を積極的に制御して超希薄空気燃焼領域での燃焼制御を行うことにより、熱効率に優れた燃焼制御を実現している。
 これに対して、期間t1<t<t2は、ボイラ負荷が上昇している場合の状態変化を模式的に示し、期間t3<t<t4は、ボイラ負荷が降下している場合の状態変化を模式的に示している。ボイラ負荷が変動している場合には、エアリッチ制御部7が上述したエアリッチ制御を行うことにより、一時的にO2濃度を上昇させるとともにCO濃度を例えば略ゼロに減少させる。これらの期間において、ボイラ2は図4および図8に示す超希薄空気燃焼領域D1より空気過剰率が大きい状態で動作する。
 以上説明した本発明の実施の形態1によれば、ボイラからの排ガス中の酸素濃度および一酸化炭素濃度に基づいて過剰空気による熱損失と不完全燃焼による熱損失とを等しくするための空気過剰率の補正量を算出して空気過剰率を補正することにより、超希薄空気燃焼領域でのボイラの燃焼制御を行っているため、ボイラの種類や負荷によらず排ガスの熱損失を簡単に抑制することができる。その結果、ボイラの熱効率が向上して燃焼用の燃料を削減することができる。
 また、本実施の形態1によれば、排ガス中の一酸化炭素濃度が規制値を超えなくするための定数である不完全燃焼ファクタを用いて過剰空気による熱損失と不完全燃焼による熱損失とを等しくするための空気過剰率の補正量を算出しているため、CO濃度を規制の範囲内で確実に制御することが可能となる。
 また、本実施の形態1によれば、過剰空気による熱損失と不完全燃焼による熱損失を等しくするための空気過剰率の補正量を算出する際に、ボイラの排ガス流量を除いた算出式で算出するため、計算が簡素化される。その結果、本実施の形態1では、一般に計測が行われていない排ガス流量を計測したり、燃料成分から排ガス量を算出したりする必要がなくなり、効率よく補正量を算出することが可能となる。
 また、本実施の形態1によれば、ボイラの負荷と空気過剰率との関係を示す空気過剰率特性を用いて空気過剰率を設定するため、ボイラの特性に応じて最適な空気過剰率を設定することができる。
 また、本実施の形態1によれば、ボイラの動作安定時には超希薄空気燃焼領域でCO制御を行う一方、ボイラ負荷変動時にはエアリッチ制御を行うことによって空気過剰とするため、ボイラ負荷の変化に対応可能な燃焼制御を行うことができる。
 なお、本実施の形態1において、不完全燃焼ファクタを用いずに計算した空気過剰による熱損失と不完全燃焼による熱損失とが等しいときのCO濃度が規制上問題ない値であれば、不完全燃焼ファクタは不要であるため、式(3)でα=1として計算を行えばよい。
 また、本実施の形態1において、空気過剰率補正量算出部10は、第1簡素化熱損失算出式(式(3))および第2簡素化熱損失算出式(式(4))を算出する代わりに、第1熱損失算出式(式(1))および第2熱損失算出式(式(2))を算出してもよい。
(実施の形態2)
 本発明の実施の形態2は、ボイラが設置される場所等の条件に応じて設定されるCO排出量の規制値(CO規制値)を考慮することにより、ボイラの負荷によらずCO排出量を一定に保つ制御を行うことを特徴とする。CO規制値の設定は、本実施の形態2に係る燃焼制御装置に対して入力装置等の設置用の装置を用いて予め規制値を入力することによって実現してもよいし、通信ネットワークを介した通信により設定(または更新)を行うことによって実現してもよい。本実施の形態2に係る燃焼制御装置の構成は、実施の形態1で説明した燃焼制御装置3の構成と同様である。
 本実施の形態2においては、過剰空気による熱損失を与える第1熱損失算出式として、不完全燃焼ファクタαを含まない次式(5)を適用する。
  LAIR2=CPA・(TO-TI)・(G・D(O2)/0.21) ・・・(5)
また、この式(5)、および上述した式(2)の不完全燃焼による熱損失LCO(第2熱損失算出式)に加えて、CO規制値に基づいて定められるCO排出上限に相当する熱損失を使用する。CO規制値に基づくCO排出上限の熱損失LCOlimは、次式(6)で与えられる(第3熱損失算出式の例)。
  LCOlim=G・D(COlim)・HCO ・・・(6)
式(6)の右辺のD(COlim)は、CO規制値に基づいて計算されたCO排出上限におけるCO濃度である。CO規制値は、ボイラ2を設置する場所の法令等の条件に応じて予め設定されている値である。
 本実施の形態2において、空気過剰率補正量算出部10は、式(5)、(2)および(6)の大小関係を比較する演算を行うことによって加算器13に補正量設定信号を出力する。このため、本実施の形態2においても、空気過剰率補正量算出部10は、式(5)、(2)および(6)を算出する代わりに、各式に共通して含まれる排ガス流量Gを除算によってそれぞれ除外した次式(7)、(4)および(8)を算出する。
  LAIR2’=LAIR/G=CPA・(TO-TI)・(D(O2)/0.21) ・・・(7)
  LCO’=LCO/G=D(COout)・HCO ・・・(4)
  LCOlim’=LColim/G=D(COlim)・HCO ・・・(8)
式(7)は、本実施の形態2で適用する第1簡素化熱損失算出式の例であり、式(8)は第3簡素化熱損失算出式の例である。
 図6は、本実施の形態2で適用する3つの熱損失算出式の関係を示す図であり、超希薄空気燃焼領域付近を拡大した図である。図6では、過剰空気による熱損失を与える直線101(式(7)に対応)、不完全燃焼による熱損失を与える曲線102(式(4)に対応)に加えて、CO規制値に基づくCO排出上限の熱損失を与える直線104(式(8)に対応)を示している。図6に示すように、CO規制値に基づくCO排出上限の熱損失は、空気過剰率によらず一定である。
 空気過剰率補正量算出部10の具体的な処理を説明する。空気過剰率補正量算出部10は、まず過剰空気による熱損失LAIR2’とCO規制値によるCO排出上限の熱損失LCOlim’とを比較して最小値min(LAIR2’,LCOlim’)を出力する。続いて、空気過剰率補正量算出部10は、この最小値min(LAIR2’,LCOlim’)と不完全燃焼による熱損失LCO’とを比較する。比較の結果、min(LAIR2’,LCOlim’)>LCO’である場合、空気過剰率補正量算出部10は、空気過剰率を相対的に減少させるような補正量設定信号を生成して加算器13に出力する。一方、比較の結果、min(LAIR2’,LCOlim’)≦LCO’である場合、空気過剰率補正量算出部10は、空気過剰率を相対的に増加させるような補正量設定信号を生成して加算器13に出力する。
 以上説明した空気過剰率補正量算出部10の処理を除く燃焼制御装置3の処理の内容は、実施の形態1と同じである。
 図7は、本実施の形態2に係る燃焼システム1の運転の概要を示す図である。図7では、CO規制値に基づくCO排出量、ボイラ負荷、および排ガス熱損失と空気過剰率との関係をそれぞれ示している。ボイラ2によるCO排出量は、空気過剰率によらず一定である(直線301)。ボイラ負荷と空気過剰率の関係については、ボイラ負荷が大きいほど空気過剰率が小さい場合を例示している(曲線302)。排ガス熱損失と空気過剰率との関係は、空気過剰率が1より大きくなればなるほど、過剰な空気の排出量が増える(直線303)。図7からも明らかなように、本実施の形態2に係る燃焼制御装置3は、ボイラ負荷によらず一定のCO排出量でボイラ2を運転することができる。これは、本実施の形態2において、空気過剰率補正量算出部10が、CO規制値に基づくCO排出上限を参照して空気過剰率の補正量を設定するからである。
 以上説明した本発明の実施の形態2によれば、実施の形態1と同様に、ボイラの熱効率が向上して燃焼用の燃料を削減することができ、CO濃度を規制の範囲内で確実に制御することができる。また、本実施の形態2においても、一般に計測が行われていない排ガス流量を計測したり、燃料成分から排ガス量を算出したりする必要がないので、効率よく補正量を算出することができる。
 加えて、本実施の形態2によれば、CO規制値に基づくCO排出上限を参照して空気過剰率の補正量を設定するため、ボイラ負荷によらずCO排出量を一定とすることが可能となる。その結果、実施の形態1のように、不完全燃焼ファクタをボイラ負荷ごとに設定して演算を行う必要がなくなるので、一段と簡易にボイラの燃焼制御を行うことができる。特に、不完全燃焼ファクタをボイラの試運転によって決定する必要がある場合には、そのような試運転自体が不要となるので、ボイラ設置時の手間を省くこともできる。
 なお、本実施の形態2において、空気過剰率補正量算出部10は、第1簡素化熱損失算出式(式(7))、第2簡素化熱損失算出式(式(4))および第3簡素化熱損失算出式(式(8))を算出する代わりに、第1熱損失算出式(式(5))、第2熱損失算出式(式(2))および第3熱損失算出式(式(6))を算出してもよい。
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1、2のみによって限定されるべきものではない。すなわち、本発明は、ここでは記載していない様々な実施の形態等を含みうるものである。
 1 燃焼システム
 2 ボイラ
 3 燃焼制御装置
 4 ボイラマスタ制御部
 5 燃料制御部
 6 空気制御部
 7 エアリッチ制御部
 8 空気過剰率特性記憶部
 9 空気過剰率設定部
 10 空気過剰率補正量算出部
 11 O2制御部
 12 空気過剰率下限制御部
 13、14 加算器
 15 ハイセレクタ

Claims (11)

  1.  ボイラにおける燃料の燃焼を制御する燃焼制御装置であって、
     前記ボイラからの主蒸気流量に基づいて前記ボイラに投入する空気量の理論空気量に対する比率である空気過剰率を設定する空気過剰率設定部と、
     前記ボイラからの排ガス中の酸素濃度および一酸化炭素濃度に基づいて過剰空気による熱損失と不完全燃焼による熱損失とを略等しくするための前記空気過剰率の補正量を算出する空気過剰率補正量算出部と、
     前記補正量により補正した空気過剰率と前記排ガス中の酸素濃度に基づいて前記空気量の設定値を補正する空気設定補正信号を生成する酸素制御部と、
     を備えたことを特徴とする燃焼制御装置。
  2.  前記空気過剰率補正量算出部は、
     前記過剰空気による熱損失を算出する第1熱損失算出式と前記不完全燃焼による熱損失を算出する第2熱損失算出式とを用いて前記空気過剰率の補正量を算出することを特徴とする請求項1に記載の燃焼制御装置。
  3.  前記空気過剰率補正量算出部は、
     前記第1熱損失算出式から前記ボイラの排ガス熱量を除いた第1簡素化熱損失算出式および前記第2熱損失算出式から前記ボイラの排ガス流量を除いた第2簡素化熱損失算出式を用いて前記空気過剰率の補正量を算出することを特徴とする請求項2に記載の燃焼制御装置。
  4.  前記第1熱損失算出式は、前記排ガス中の一酸化炭素濃度が規制値を超えなくするための定数である不完全燃焼ファクタを含むことを特徴とする請求項2に記載の燃焼制御装置。
  5.  前記空気過剰率補正量算出部は、
     設定された一酸化炭素排出量の規制値に基づく一酸化炭素排出量の上限の熱損失を算出する第3熱損失算出式をさらに用いて前記空気過剰率の補正量を算出することを特徴とする請求項2に記載の燃焼制御装置。
  6.  前記空気過剰率補正量算出部は、
     前記第3熱損失算出式から前記ボイラの排ガス熱量を除いた第3簡素化熱損失算出式をさらに用いて前記空気過剰率の補正量を算出することを特徴とする請求項5に記載の燃焼制御装置。
  7.  前記ボイラの負荷と前記空気過剰率との関係を示す空気過剰率特性を記憶する空気過剰率特性記憶部をさらに備え、
     前記空気過剰率設定部は、
     前記空気過剰率特性を参照して前記空気過剰率を設定することを特徴とする請求項1に記載の燃焼制御装置。
  8.  前記ボイラの負荷を上昇させる場合、前記ボイラに供給される空気量の設定値を先に上昇させてから前記ボイラに供給される燃料の設定値を上昇させる制御を行い、前記ボイラの負荷を降下させる場合、前記ボイラに供給される燃料の設定値を先に降下させてから前記ボイラに供給される空気量の設定値を降下させる制御を行うエアリッチ制御部をさらに備えたことを特徴とする請求項1に記載の燃焼制御装置。
  9.  ボイラにおける燃料の燃焼を制御する燃焼制御方法であって、
     前記ボイラからの主蒸気流量に基づいて前記ボイラに投入する空気量の理論空気量に対する比率である空気過剰率を設定する空気過剰率設定ステップと、
     前記ボイラからの排ガス中の酸素濃度および一酸化炭素濃度に基づいて過剰空気による熱損失と不完全燃焼による熱損失とを略等しくするための前記空気過剰率の補正量を算出する空気過剰率補正量算出ステップと、
     前記補正量により補正した空気過剰率と前記排ガス中の酸素濃度に基づいて前記空気量の設定値を補正する空気設定補正信号を生成する酸素制御ステップと、
     を有することを特徴とする燃焼制御方法。
  10.  ボイラにおける燃料の燃焼を制御する燃焼制御装置に、
     前記ボイラからの主蒸気流量に基づいて前記ボイラに投入する空気量の理論空気量に対する比率である空気過剰率を設定する空気過剰率設定ステップと、
     前記ボイラからの排ガス中の酸素濃度および一酸化炭素濃度に基づいて過剰空気による熱損失と不完全燃焼による熱損失とを略等しくするための前記空気過剰率の補正量を算出する空気過剰率補正量算出ステップと、
     前記補正量により補正した空気過剰率と前記排ガス中の酸素濃度に基づいて前記空気量の設定値を補正する空気設定補正信号を生成する酸素制御ステップと、
     を実行させることを特徴とする燃焼制御プログラム。
  11.  実行可能なプログラムが記録された非一時的なコンピュータ読み取り可能な記録媒体であって、前記プログラムは、プロセッサに以下を実行するように指示する:
     ボイラからの主蒸気流量に基づいて前記ボイラに投入する空気量の理論空気量に対する比率である空気過剰率を設定し、
     前記ボイラからの排ガス中の酸素濃度および一酸化炭素濃度に基づいて過剰空気による熱損失と不完全燃焼による熱損失とを略等しくするための前記空気過剰率の補正量を算出し、
     前記補正量により補正した空気過剰率と前記排ガス中の酸素濃度に基づいて前記空気量の設定値を補正する空気設定補正信号を生成する。
PCT/JP2015/085575 2014-12-25 2015-12-18 燃焼制御装置、燃焼制御方法、燃焼制御プログラムおよびコンピュータ読み取り可能な記録媒体 WO2016104383A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016561033A JP6135831B2 (ja) 2014-12-25 2015-12-18 燃焼制御装置、燃焼制御方法および燃焼制御プログラム
CN201580053061.7A CN106796029A (zh) 2014-12-25 2015-12-18 燃烧控制装置、燃烧控制方法、燃烧控制程序及计算机可读存储介质
EP15872951.7A EP3239611B1 (en) 2014-12-25 2015-12-18 Combustion control system, combustion control method, combustion control program, and computer-readable recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-262911 2014-12-25
JP2014262911 2014-12-25
JPPCT/JP2015/065745 2015-06-01
JP2015065745 2015-06-01

Publications (1)

Publication Number Publication Date
WO2016104383A1 true WO2016104383A1 (ja) 2016-06-30

Family

ID=56150402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085575 WO2016104383A1 (ja) 2014-12-25 2015-12-18 燃焼制御装置、燃焼制御方法、燃焼制御プログラムおよびコンピュータ読み取り可能な記録媒体

Country Status (5)

Country Link
EP (1) EP3239611B1 (ja)
JP (1) JP6135831B2 (ja)
CN (1) CN106796029A (ja)
TW (1) TWI677649B (ja)
WO (1) WO2016104383A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110851968A (zh) * 2019-10-31 2020-02-28 华北电力科学研究院有限责任公司 干排渣钢带电机频率控制方法及装置
CN118031245A (zh) * 2024-03-06 2024-05-14 山东福源电力技术有限公司 一种燃煤锅炉智能优化燃烧控制系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109899829A (zh) * 2017-12-08 2019-06-18 伍育毅 一种节能燃烧控制系统
CN108763651B (zh) * 2018-04-28 2022-04-12 国网山东省电力公司电力科学研究院 一种从锅炉运行数据中提取燃烧器配风挡板过流特性的方法
KR102293265B1 (ko) * 2019-12-20 2021-08-24 주식회사 포스코 배가스 처리 장치
CN111666530B (zh) * 2020-04-23 2023-09-01 中冶华天工程技术有限公司 基于成分修正的燃气燃烧计算方法
CN113915601A (zh) * 2021-09-09 2022-01-11 中国五环工程有限公司 燃油燃气锅炉空燃比自动控制系统及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723047A (en) * 1970-05-26 1973-03-27 Bailey Controle Control network for burning fuel oil and gases with reduced excess air
JPS57174620A (en) * 1981-04-20 1982-10-27 Sumitomo Metal Ind Ltd Combustion control system
JPS59208320A (ja) * 1983-05-11 1984-11-26 Toshiba Corp 燃焼プロセス制御方法
US4531905A (en) * 1983-09-15 1985-07-30 General Signal Corporation Optimizing combustion air flow
JPS62166219A (ja) * 1986-01-17 1987-07-22 Yokogawa Electric Corp 燃焼プロセスの低過剰空気率運転制御装置
JPH06180116A (ja) * 1992-12-08 1994-06-28 Toshiba Corp 排ガス濃度制御装置
JP2011099608A (ja) * 2009-11-05 2011-05-19 Mitsubishi Electric Corp ボイラ燃焼制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW232044B (ja) * 1992-06-12 1994-10-11 Ehara Seisakusho Kk O
CN1320309C (zh) * 2003-03-27 2007-06-06 株式会社田熊 填料器式垃圾焚烧炉的自动燃烧控制方法
WO2009105094A1 (en) * 2008-02-20 2009-08-27 Utc Fire & Security Corporation Assisted commissioning method for combustion control systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723047A (en) * 1970-05-26 1973-03-27 Bailey Controle Control network for burning fuel oil and gases with reduced excess air
JPS57174620A (en) * 1981-04-20 1982-10-27 Sumitomo Metal Ind Ltd Combustion control system
JPS59208320A (ja) * 1983-05-11 1984-11-26 Toshiba Corp 燃焼プロセス制御方法
US4531905A (en) * 1983-09-15 1985-07-30 General Signal Corporation Optimizing combustion air flow
JPS62166219A (ja) * 1986-01-17 1987-07-22 Yokogawa Electric Corp 燃焼プロセスの低過剰空気率運転制御装置
JPH06180116A (ja) * 1992-12-08 1994-06-28 Toshiba Corp 排ガス濃度制御装置
JP2011099608A (ja) * 2009-11-05 2011-05-19 Mitsubishi Electric Corp ボイラ燃焼制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110851968A (zh) * 2019-10-31 2020-02-28 华北电力科学研究院有限责任公司 干排渣钢带电机频率控制方法及装置
CN110851968B (zh) * 2019-10-31 2023-06-06 华北电力科学研究院有限责任公司 干排渣钢带电机频率控制方法及装置
CN118031245A (zh) * 2024-03-06 2024-05-14 山东福源电力技术有限公司 一种燃煤锅炉智能优化燃烧控制系统

Also Published As

Publication number Publication date
JP6135831B2 (ja) 2017-05-31
TWI677649B (zh) 2019-11-21
JPWO2016104383A1 (ja) 2017-04-27
EP3239611A1 (en) 2017-11-01
EP3239611A4 (en) 2018-08-15
CN106796029A (zh) 2017-05-31
EP3239611B1 (en) 2021-03-24
TW201638528A (zh) 2016-11-01

Similar Documents

Publication Publication Date Title
JP6135831B2 (ja) 燃焼制御装置、燃焼制御方法および燃焼制御プログラム
JP5089638B2 (ja) アンモニア注入量補正制御装置及びアンモニア注入量補正制御方法
JP5970368B2 (ja) ボイラ制御装置
JP2011099608A (ja) ボイラ燃焼制御装置
EP3830480B1 (en) Calibration of a boiler
WO2016021298A1 (ja) 流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法
KR20150011848A (ko) 보일러 시스템
JP6153090B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP4627509B2 (ja) プラントの制御装置及びプラントの制御方法
JP5314946B2 (ja) 加熱炉制御装置
JP6164064B2 (ja) ボイラシステム
JP2001198438A (ja) 脱硝装置のアンモニア注入量制御方法
JP2009150619A (ja) ボイラー装置
JP5640689B2 (ja) 熱風炉の燃焼制御装置及び熱風炉の燃焼制御方法
KR101322902B1 (ko) 코크스 오븐 배기가스 온도를 이용한 소연도 압력 제어방법
JP4605656B2 (ja) 火力発電用ボイラと燃焼用空気供給制御方法
CN108119237B (zh) 无模型燃烧动力自动调谐
JP2006132902A (ja) 燃焼条件推定装置および方法
KR20160004730A (ko) 차량 엔진의 출력 향상 제어 방법
RU159803U1 (ru) Система автоматического регулирования расхода воздуха в барабанном котле
JP2019191687A (ja) プラントの制御装置、プラント、プラントの制御方法及びプラントの制御プログラム
KR20160006072A (ko) 질소산화물 농도를 이용한 차량 엔진의 출력 향상 제어 방법
JP5818945B2 (ja) ガスタービンの制御方法及びガスタービンの燃空比設定方法
JP6330404B2 (ja) ボイラシステム
JP2017207255A (ja) 加熱炉の燃焼制御方法および加熱炉ならびに熱間圧延ライン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561033

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015872951

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015872951

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE