WO2016104369A1 - 通信システム - Google Patents

通信システム Download PDF

Info

Publication number
WO2016104369A1
WO2016104369A1 PCT/JP2015/085511 JP2015085511W WO2016104369A1 WO 2016104369 A1 WO2016104369 A1 WO 2016104369A1 JP 2015085511 W JP2015085511 W JP 2015085511W WO 2016104369 A1 WO2016104369 A1 WO 2016104369A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal line
master
serial data
terminal
Prior art date
Application number
PCT/JP2015/085511
Other languages
English (en)
French (fr)
Inventor
涼平 香川
秀次 高橋
学 石関
秀太郎 河野
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016549593A priority Critical patent/JP6054006B2/ja
Priority to EP15872937.6A priority patent/EP3187097A4/en
Priority to CN201580054927.6A priority patent/CN106793928B/zh
Publication of WO2016104369A1 publication Critical patent/WO2016104369A1/ja
Priority to US15/479,338 priority patent/US10038865B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17748Structural details of configuration resources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/18Automatic changing of the traffic direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/38Transmitter circuitry for the transmission of television signals according to analogue transmission standards

Definitions

  • the present invention relates to a communication system in an endoscope system having an endoscope on which a CMOS sensor is mounted as an image sensor.
  • I2C Inter-Integrated ⁇ ⁇ Circuit
  • This I2C is a synchronous serial communication standard that communicates with two open collector signal lines (serial data SDA and serial clock SCL) that are bi-directionally pulled up by resistors, and is specified using these SDA and SCL. Writing to and reading from the device are performed. These SDA and SCL are both bus signals. In I2C, a plurality of elements are connected by this bus.
  • a master that requests reading and writing of data using these SDA and SCL bus signals, and a slave that receives or sends data according to the request of the master are provided, and a plurality of buses are provided on the bus. Slave can be connected. Further, the master designates the address of the slave determined individually and selects the slave, and then communicates with the slave.
  • endoscopes equipped with an image sensor have been widely used in the medical field and industrial field.
  • CMOS sensor includes an A / D conversion unit as well as an imaging unit in the sensor chip, and an output signal as a sensor is a digital signal.
  • the CMOS sensor and the processor disposed at the distal end of the endoscope are connected by a cable having a length of several meters, which is one of the slaves.
  • This means that the CMOS sensor and the master processor are connected by a cable of several meters.
  • this type of endoscope system is often used in the vicinity of a noise source such as a so-called electric knife, and the cable connecting the master (processor) and the slave (CMOS sensor) is exposed to this type of noise.
  • a noise source such as a so-called electric knife
  • the peripheral device such as the electric knife described above can be a relatively powerful noise source, when the noise is applied to the cable connecting the master (processor) and the slave (CMOS sensor), this cable
  • the external noise may be mistaken for the rising edge of the serial clock SCL on the slave (CMOS sensor) side connected to the I2C bus.
  • collision When the I2C system misidentifies the external noise as a rising edge of the serial clock SCL, a bit shift occurs in the communication sequence between the slave (CMOS sensor) and the master (processor), and the direction of signal output of the serial data SDA Will cause a phenomenon called output signal collision (hereinafter simply referred to as collision).
  • I2C In I2C, it is premised on bus arbitration (arbitration of bus ownership) by collision detection and bus arbitration on a multi-master bus, so when a collision occurs on the I2C bus, There is no problem because the other masters are guaranteed to collide with each other.
  • the master processor misinterprets it as simultaneous access with another master, and the serial clock SCL. Further, there is a possibility that the serial data SDA is stopped, that is, the bus is set in a free state.
  • the master processor cannot access slaves other than the CMOS sensor. That is, since the bus continues to appear to be busy from the master, the master does not return in a standby state, and a so-called system freeze state is set.
  • the I2C bus using the bi-directional open collector signal line as described above forms a wired OR.
  • the configuration of the wired OR is a factor that easily causes the above-described problem. That is, in wired OR, when any one of the devices connected to the bus is in the L drive state, the bus physically complies with the logic.
  • I2C realizes bidirectionality by defining a rule that there is a single device capable of L drive in the bit sequence rule. In other words, I2C enables bidirectional communication by observing this rule.
  • the present invention has been made in view of the above points, and in a communication system in an endoscope system having an endoscope in which a CMOS sensor is mounted as an imaging device, communication that can avoid occurrence of system freeze due to external noise.
  • the purpose is to provide a system.
  • a communication system includes a slave device, a clock signal line that transmits a clock transmitted from the master device, a master device that transmits and receives data to and from the slave device by designating an address, and a data A serial data signal line for transmitting data in both directions, comprising a part of the serial data signal line and transmitting predetermined data from the master device to the slave device.
  • 1 signal line, a part of the serial data signal line, a second signal line for transmitting predetermined data from the slave device to the master device, the first signal line, and the first signal line A signal line selection unit that selects one of the two signal lines to be effective as the serial data signal line; Comprising a signal controller for controlling the selection operation in the signal line selection unit.
  • FIG. 1 is a diagram illustrating a configuration of an I2C system in an endoscope system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a truth table of a logic circuit of a bus signal direction switching mechanism for serial data SDA in the endoscope system according to the first embodiment.
  • FIG. 3 is a timing chart showing the state of each serial bus signal in the normal state in the endoscope system of the first embodiment.
  • FIG. 4 shows each serial bus when an abnormal signal is applied to the serial clock SCL bus in the endoscope system of the first embodiment when it is assumed that the serial signal SDA bus signal direction switching mechanism is not provided. The timing chart which showed the state of the signal.
  • FIG. 5 is a timing chart showing the state of each serial bus signal when an abnormal signal is applied on the serial clock SCL bus in the endoscope system of the first embodiment.
  • FIG. 1 is a diagram illustrating a configuration of an I2C system in the endoscope system according to the first embodiment of the present invention.
  • an endoscope system 1 includes an endoscope 2 that employs a CMOS sensor as an image sensor and is detachably connected to the endoscope 2.
  • the main part is configured by the processor 3 that performs various signal processing related to the endoscope 2.
  • the endoscope 2 is provided at the distal end of an insertion portion to be inserted into a subject, and is connected to the CMOS sensor 11 that captures an optical image of the subject and outputs a predetermined digital imaging signal, and the CMOS sensor 11.
  • a cable 20 for transmitting a control signal for the CMOS sensor 11 and the like, and a connector portion 21 disposed at the other end of the cable 20 and connected to the processor 3 are provided.
  • the CMOS sensor 11 includes an imaging unit 12 (PD12) that captures an optical image of a subject and generates a predetermined analog imaging signal by using a predetermined clock and a vertical synchronization signal VD / horizontal synchronization signal HD generated in the processor 3.
  • An AFE circuit (not shown) provided with an A / D converter that performs predetermined signal processing on the imaging unit 12 and converts it into a digital imaging signal, and parallel / serial conversion of the digital imaging signal from the AFE circuit
  • a P / S circuit (not shown) that outputs to the subsequent stage.
  • the endoscope according to the present embodiment employs the CMOS sensor 11 as an imaging device.
  • the CMOS sensor 11 disposed at the distal end of the endoscope and the signal are used.
  • the above-described I2C is applied to communication control with the processor 3 as a processing unit.
  • the CMOS sensor 11 is one of the slaves in the I2C control, while the master is mounted on the processor 3, and two serial bus signal lines (serial data SDA and serial clock) are connected between the master and slave. (SCL).
  • the CMOS sensor which is one of the slaves disposed at the distal end portion of the endoscope, and the processor 3 as the master, the serial data SDA and the serial clock.
  • the connection is made with a cable 20 having a length of several meters, which internally includes a part of the SCL.
  • the endoscope system of the present embodiment is often used in the vicinity of a strong noise source such as an electric knife, so that the cable connecting the master and slave is exposed to strong noise. Will be.
  • the cable 20 when a strong noise such as an electric knife is applied to the cable 20 connecting the master (processor) and the slave (CMOS sensor), the cable 20 has sufficient noise resistance. Even on the slave (CMOS sensor) side connected to the I2C bus, the serial clock SCL may be disturbed by the external noise.
  • the present application has been made in view of such circumstances, and is characterized in that system freeze can be avoided even if the serial clock SCL is disturbed by the external noise.
  • the processor 3 is provided with an I2C master 30 as a master to which two serial bus signal lines (serial data SDA and serial clock SCL) are connected.
  • the CMOS sensor 11 provided at the distal end of the endoscope 2 is provided with an I2C slave 10 as a slave to which two serial bus signal lines (serial data SDA and serial clock SCL) are similarly connected. Is done.
  • the I2C slave 10 functions as an I2C controller that controls the imaging unit 12 (PD12).
  • serial bus signal lines serial data SDA and serial clock SCL
  • the two serial bus signal lines (serial data SDA and serial clock SCL) extended from the I2C slave 10 are inserted into the cable 20 in the endoscope 2, and the processor is connected via the connector unit 21. 3 is extended.
  • the connector section 21 includes a serial clock SCL terminal 21a and a serial data SDA terminal 21b, and is connected to a serial clock SCL terminal 3a or a serial data SDA terminal 3b provided in the opposing processor 3, respectively. It has become.
  • Serial data SDA bus signal direction switching mechanism The direction switching mechanism for the serial data SDA bus signal in the first embodiment will be described below.
  • the bus signal direction switching mechanism of the serial data SDA is constituted by a so-called FPGA (field-programmable gate array) 32, and a first signal line 41 for transmitting predetermined data from the I2C master 30 to the I2C slave 10;
  • One of the second signal line 42 for transmitting predetermined data from the I2C slave 10 to the I2C master 30, and the first signal line 41 and the second signal line 42 is a bus signal line for serial data SDA.
  • the first signal line 41 is a signal line used when the first direction “master side ⁇ slave side” is selected in the bus signal direction switching mechanism
  • the second signal line Reference numeral 42 denotes a signal line used when the second direction “slave side ⁇ master side” is selected.
  • the specific paths of the first signal line 41 and the second signal line 42 are as follows. This will be described in detail later.
  • an I2C slave 61 and an I2C slave 62 that function as other slaves in the I2C system are provided.
  • the signal control unit 31 has a terminal 31a for inputting a master side serial clock SCL (MASTER_SCL) from the serial clock SCL bus, and a master side serial data SDA from the serial data SDA bus (first signal line 41 to be described later).
  • a terminal 31b for inputting (MASTER_SDA) a terminal 31c for inputting slave-side serial data SDA (SLAVE_SDA) from the serial data SDA bus (second signal line 42 described later), and a bus signal direction switching signal for serial data SDA ( DIRECTION) and a terminal 31e for inputting the slave address (ASSIGN_ADDR) of the I2C slave 10 in the CMOS sensor 11.
  • the first signal line selector 51 includes a first OR circuit 54 and a first three-state buffer circuit 55 provided on the first signal line 41 in the serial data SDA, and a second signal line 42 in the serial data SDA. And a first buffer 56 provided above.
  • an output terminal “O” of a second buffer 53 (described later) is connected to an input terminal of the first OR circuit 54 in the first signal line selector 51 and in the signal controller 31.
  • the terminal 31d is connected, and the master side serial data SDA signal in the first signal line 41 and the bus signal direction switching signal DIRECTION output from the terminal 31d in the signal control unit 31 are input.
  • the first three-state buffer circuit 55 in the first signal line selection unit 51 receives the output signal of the first OR circuit 54 at its input terminal “I”, and the control input terminal “T” at the above-mentioned input terminal “I”.
  • the bus signal direction switching signal DIRECTION output from the terminal 31d in the signal control unit 31 is input, and the output signal from the output terminal “I / O” is controlled according to the bus signal direction switching signal DIRECTION. .
  • the slave side serial data SDA input from the serial clock SCL terminal 3a on the second signal line 42 is input to the input terminal of the first buffer 56 in the first signal line selector 51, and The output terminal “I / O” of the first three-state buffer circuit 55 is connected.
  • the output terminal “O” of the first buffer 56 is connected to the input terminal of the second OR circuit 57 (described later).
  • the second signal line selector 52 includes a second OR circuit 57 and a second three-state buffer circuit 58 provided on the second signal line 42 in the serial data SDA, and a first signal in the serial data SDA.
  • a second buffer 53 provided on the line 41; and an inverter circuit 59 provided between the terminal 31d of the signal control unit 31 and the second OR circuit 57.
  • the output terminal “O” of the first buffer 56 is connected to the input terminal of the second OR circuit 57 in the second signal line selector 52, and the terminal 31 d in the signal controller 31 is connected to the input terminal of the second OR circuit 57.
  • the slave-side serial data SDA signal on the second signal line 42 that is connected, output from the first buffer 56, and output from the terminal 31d in the signal control unit 31 and inverted by the inverter circuit 59
  • the bus signal direction switching signal DIRECTION is input.
  • the second three-state buffer circuit 58 in the second signal line selection unit 52 receives the output signal of the second OR circuit 57 at its input terminal “I” and the control input terminal “T” at the above-mentioned input terminal “I”.
  • the bus signal direction switching signal DIRECTION output from the terminal 31d in the signal control unit 31 and inverted by the inverter circuit 59 is input, and output from the output terminal “I / O” according to the inverted bus signal direction switching signal DIRECTION. The signal is controlled.
  • Master-side serial data SDA input from the I2C master 30 side on the first signal line 41 is input to the input terminal of the second buffer 53 in the second signal line selector 52, and the second The output terminal “I / O” of the three-state buffer circuit 58 is connected.
  • the output terminal “O” of the second buffer 53 is connected to the input terminal of the first OR circuit 54 and is input as master-side serial data SDA.
  • the inverter circuit 59 in the second signal line selection unit 52 inputs the bus signal direction switching signal DIRECTION output from the terminal 31 d in the signal control unit 31 and inputs an inverted output to the second OR circuit 57. It is like that.
  • FIG. 2 is a truth table of logic circuits in the first three-state buffer circuit 55 and the second three-state buffer circuit 58 in the first signal line selection unit 51 and the second signal line selection unit 52.
  • the bus signal direction switching signal DIRECTION is input to the control input terminal “T” in the first three-state buffer circuit 55 in the first signal line selection unit 51, while the second signal line selection unit
  • the bus signal direction switching signal DIRECTION inverted by the inverter circuit 59 is input to the control input terminal “T” in the second three-state buffer circuit 58 in FIG.
  • the “L” signal when the first direction is selected from the terminal 31d of the signal control unit 31 (master ⁇ slave), the “L” signal is on the other hand, and when the second direction is selected (slave ⁇ The “master” is configured to output an “H” signal.
  • the signal control unit 31 selects the first direction “master side ⁇ slave side” using the first signal line 41 as the bus signal direction switching mechanism.
  • the signal control unit 31 outputs an “L” signal for selecting the first direction as the bus signal direction switching signal DIRECTION from the DIRECTION terminal 31d.
  • the bus signal direction switching signal DIRECTION is input to the control input terminal “T” of the first three-state buffer circuit 55 as an “L” signal on the one hand and to the inverter circuit 59 on the other hand, and the inverter circuit 59, so that the “H” signal is input to the control input terminal “T” of the second three-state buffer circuit 58.
  • the output terminal “I / O” in the second three-state buffer circuit 58 becomes a high impedance “Z”, and the signal from the I2C master 30 in the master side serial data SDA is sent to the second buffer 53 side. It will flow.
  • the master-side serial data SDA input from the I2C master 30 side appears as it is at the output terminal “O” in the second buffer 53.
  • the bus signal direction switching signal DIRECTION in the “L” state output from the terminal 31 d of the signal control unit 31 is input to the control input terminal “T” of the first three-state buffer circuit 55. .
  • the output terminal “I / O” in the first three-state buffer circuit 55 has a signal input to the input terminal “I”, in this case, the master input from the I2C master 30 side via the second buffer 53.
  • the side serial data SDA is output as it is.
  • the path from the I2C master 30 ⁇ the second buffer 53 ⁇ the first OR circuit 54 ⁇ the first three-state buffer circuit 55 ⁇ the serial data SDA terminal 3 b is the first signal line 41. .
  • the first signal line 41 can be selected by the above-described mechanism.
  • the signal control unit 31 selects the second direction “slave side ⁇ master side” using the second signal line 42 as the bus signal direction switching mechanism.
  • the signal control unit 31 outputs an “H” signal for selecting the first direction as the bus signal direction switching signal DIRECTION from the DIRECTION terminal 31d.
  • the bus signal direction switching signal DIRECTION is input to the control input terminal “T” of the first three-state buffer circuit 55 as an “H” signal on the one hand and to the inverter circuit 59 on the other hand, and is input by the inverter circuit 59.
  • the “L” signal is input to the control input terminal “T” of the second three-state buffer circuit 58.
  • the output terminal “I / O” in the first three-state buffer circuit 55 becomes high impedance “Z”, and the signal from the I2C slave 10 in the slave side serial data SDA is transferred to the first buffer 56 side. Will flow. Then, the slave side serial data SDA input from the I2C slave 10 side appears as it is at the output terminal “O” in the first buffer 56.
  • the bus signal direction switching signal DIRECTION in the “L” state via the inverter circuit 59 is input to the control input terminal “T” of the second three-state buffer circuit 58 as described above.
  • the output terminal “I / O” in the second three-state buffer circuit 58 has a signal input to the input terminal “I”, in this case, a slave input from the I2C slave 10 side via the first buffer 56.
  • the side serial data SDA is output as it is.
  • the path from the I2C slave 10 to the serial data SDA terminal 3b ⁇ the first buffer 56 ⁇ the second OR circuit 57 ⁇ the second three-state buffer circuit 58 ⁇ the I2C master 30 is a second signal. Line 42.
  • the second signal line 42 can be selected by the above-described mechanism.
  • the bus signal direction switching mechanism described above sets the direction of the bus signal in the serial data SDA to the first direction “master side ⁇ slave side”, and the I2C master 30 side Only when receiving data from the I2C slave 10 in the CMOS sensor 11 (for example, Ack or ReadData), the direction of the bus signal in the serial data SDA is changed to the second direction “slave side ⁇ master side”. It is characterized by setting.
  • FIG. 3 is a timing chart showing the state of each serial bus signal in the normal state in the endoscope system of the first embodiment.
  • FIG. 3 shows a state in which predetermined data is transmitted from the I2C master 30 to the I2C slave 10 in the CMOS sensor 11 by the master serial data SDA (MASTER_SDA) according to the master serial clock SCL (MASTER_SCL) from the I2C master 30. Show.
  • the signal control unit 31 is configured as a bus signal direction switching mechanism.
  • the first direction “master side ⁇ slave side” using the first signal line 41 is selected.
  • the signal control unit 31 outputs an “L” signal for selecting the first direction as the bus signal direction switching signal DIRECTION from the DIRECTION terminal 31d.
  • control input terminal “T” of the second three-state buffer circuit 58 receives the “H” signal inverted by the inverter circuit 59, while the control input terminal “T” of the first three-state buffer circuit 55. "L” signal is input to ".”
  • the output terminal “I / O” in the second three-state buffer circuit 58 becomes high impedance “Z”, and the signal from the I2C master 30 in the master side serial data SDA is on the second buffer 53 side.
  • the master-side serial data SDA input from the I2C master 30 side is output as it is to the serial data SDA terminal 3b via the second buffer 53 and the first three-state buffer circuit 55.
  • the control unit 31 selects the second direction “slave side ⁇ master side” using the second signal line 42 as a bus signal direction switching mechanism.
  • the signal control unit 31 outputs an “H” signal for selecting the second direction as the bus signal direction switching signal DIRECTION from the DIRECTION terminal 31d.
  • the output terminal “I / O” in the first three-state buffer circuit 55 becomes a high impedance “Z”, and the signal from the I2C slave 10 in the slave side serial data SDA is on the first buffer 56 side.
  • the slave-side serial data SDA input from the I2C slave 10 side is output as it is to the I2C master 30 via the first buffer 56 and the second three-state buffer circuit 58.
  • FIG. 4 shows each serial bus when an abnormal signal is applied to the serial clock SCL bus in the endoscope system according to the first embodiment when it is assumed that a bus signal direction switching mechanism for serial data SDA is not provided. It is a timing chart which showed the state of a signal.
  • the endoscope system as in this embodiment is often used in the vicinity of a noise source such as a so-called electric knife, and serial data SDA and serial data for connecting the I2C slave 10 in the CMOS sensor 11 and the I2C master 30 in the processor 3.
  • a noise source such as a so-called electric knife
  • serial data SDA and serial data for connecting the I2C slave 10 in the CMOS sensor 11 and the I2C master 30 in the processor 3.
  • the cable 20 having a part of the clock SCL is exposed to this kind of noise.
  • peripheral devices such as an electric knife can be a relatively powerful noise source, even if the cable 20 has sufficient noise resistance, the I2C slave 10 (especially in the serial clock SCL) ( On the CMOS sensor side, the external noise may be mistaken for the rising edge of the serial clock SCL.
  • FIG. 4 shows a state where the I2C system misidentifies the external noise as a rising edge of the serial clock SCL in the slave-side serial clock SCL (SLAVE_SCL).
  • I2C In I2C, it is premised on bus arbitration (arbitration of bus ownership) by collision detection and bus arbitration on a multi-master bus, so when a collision occurs on the I2C bus, There is no problem because the other masters are guaranteed to collide with each other.
  • serial data SDA bus signal direction switching mechanism as in this embodiment is not provided, if the external noise is mistaken as the rising edge of the serial clock SCL, the master processor accesses the other master simultaneously.
  • the serial clock SCL and the serial data SDA are stopped, that is, the bus is set in a free state.
  • the I2C master 30 since the bus continues to appear to be busy from the I2C master 30, the I2C master 30 does not return in a standby state, and a so-called system freeze state occurs. As a result, the I2C master 30 cannot access any slave other than the I2C slave 10 (CMOS sensor 11).
  • FIG. 5 illustrates the state of each serial bus signal when an abnormal signal is applied on the serial clock SCL bus in the first embodiment including the bus signal direction switching mechanism configured as described above.
  • the bus signal direction in the serial data SDA is set to the first direction “master side ⁇ slave side” in principle by the bus signal direction switching mechanism. That is, the bus signal direction switching signal DIRECTION from the signal control unit 31 is set to the “L” state.
  • the bus signal direction switching signal DIRECTION is still at the timing at which this pseudo clock is generated. Since it is in the “L” state, even if an Ack signal is transmitted from the I2C slave 10 to the I2C master 30 immediately after this, as long as the bus signal direction switching signal DIRECTION is in the “L” state, the I2C master 30 No signal is received.
  • the signal control unit 31 selects the second direction “slave side ⁇ master side” as a bus. Since the signal direction switching signal DIRECTION is set to the “H” state), the I2C master 30 receives the ReadData in a state of not receiving the Ack signal, and processes it as NoAck.
  • the I2C master 30 is NoAck and receives ReadData, issues a Stop bit, resets both bit sequences, and performs the Read process again.
  • the I2C master 30 interprets it as Ack, and reads Data shifted by 1 bit. For example, the erroneous data read can be avoided by devising the software sequence of the I2C master 30 as shown in FIG.
  • the bus signal direction switching mechanism for serial data SDA which is configured by the FPGA 32, is provided in the processor 3, but the arrangement position of the bus signal direction switching mechanism is not limited to this. That is, even if the bus signal direction switching mechanism is disposed between the I2C master 30 and the I2C slave 10, for example, in the connector portion 21 or the operation portion on the endoscope 2 side, the same effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Surgery (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Endoscopes (AREA)
  • Small-Scale Networks (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 I2Cスレーブ10とI2Cマスタ30とが、I2Cマスタ30から送信されるクロックを伝達するシリアルクロックSCLと、データを双方向に送信するシリアルデータSDAとで接続される通信システムであって、シリアルデータSDAの一部を構成し、I2Cマスタ30からI2Cスレーブ10に対して所定のデータを送信する第1の信号線41と、シリアルデータSDAの一部を構成し、I2Cスレーブ10からI2Cマスタ30に対して所定のデータを送信する第2の信号線42と、第1の信号線と第2の信号線とのいずれか一方がシリアルデータSDAとして有効となるように選択する第1の信号線選択部51および第2の信号線選択部52と、前記信号線選択部における選択動作を制御する信号制御部31とを具備する。

Description

通信システム
 本発明は、撮像素子としてCMOSセンサを搭載する内視鏡を有する内視鏡システムにおける通信システムに関する。
 従来、複数の素子間を通信により接続するための汎用のシリアル接続方式として、いわゆるI2C(Inter-Integrated Circuit)と呼ばれるシリアル通信規格が知られている。
 このI2Cは、抵抗でプルアップされた双方向の2本のオープンコレクタ信号線(シリアルデータSDAおよびシリアルクロックSCL)により通信する同期式のシリアル通信規格であり、これらSDAおよびSCLを用いて指定したデバイスへの書き込み、および、読み出しを行うものである。これらSDAおよびSCLはいずれもバス信号であり、I2Cではこのバスにより複数の素子間を接続するようになっている。
 そしてI2Cでは、これらSDAとSCLのバス信号を利用してデータの読み取りおよび書き込みの要求を行うマスタと、マスタの要求に応じてデータを受け取りまたは送出するスレーブとを設け、さらにバスには複数のスレーブが接続可能となっている。また、マスタは個別に決められたスレーブのアドレスを指定してスレーブを選択した後に当該スレーブと通信を行うようになっている。
 一方、従来、医療用分野及び工業用分野において撮像素子を備えた内視鏡が広く用いられている。また、内視鏡に着脱自在に接続され、内視鏡に係る各種信号処理をプロセッサと称する信号処理装置により担い、内視鏡システムを構成する技術も知られるところにある。
 また、近年、撮像素子としてCMOSセンサを採用する内視鏡も提案されている。この種のCMOSセンサは、そのセンサチップ内に撮像部と共にA/D変換部を備え、センサとしての出力信号はデジタル信号となっている。
 そして、この種のCMOSセンサを採用する内視鏡を有する内視鏡システムにおいて、CMOSセンサと信号処理部であるプロセッサとの間における通信制御を、上述したI2Cにより行う技術が知られている(特許第5356632号公報)。
 ところで、上述したI2Cにより通信制御を行うCMOSセンサを内視鏡先端に採用した内視鏡システムの場合、CMOSセンサをスレーブの一つとし、マスタはプロセッサに実装される構成が考えられる。
 このような内視鏡システムの場合、内視鏡先端部に配設されたCMOSセンサとプロセッサとは、数mの長さのケーブルで接続されることとなるが、これは、スレーブの一つであるところのCMOSセンサと、マスタであるプロセッサとが数mものケーブルで接続されることを意味する。
 一方、この種の内視鏡システムは、いわゆる電気メス等のノイズ源の近傍で用いられることも多く、前記マスタ(プロセッサ)とスレーブ(CMOSセンサ)とを結ぶケーブルはこの種のノイズに曝されることとなる。
 ここで、上述した電気メス等の周辺機器は比較的強力なノイズ源となり得えることから、前記マスタ(プロセッサ)とスレーブ(CMOSセンサ)とを結ぶケーブルに当該ノイズが印可された場合、このケーブルがたとえ十分なノイズ耐性を備えていたとしても、I2Cバスに接続されたスレーブ(CMOSセンサ)側では、当該外来ノイズをシリアルクロックSCLの立上りエッジと誤認する虞がある。
 そして、I2Cシステムが前記外来ノイズをシリアルクロックSCLの立上りエッジと誤認した場合、スレーブ(CMOSセンサ)とマスタ(プロセッサ)との通信シーケンス上でbitズレが発生し、シリアルデータSDAの信号出力の方向がかみ合わず、いわゆる出力信号の衝突(以下、単に衝突)と呼ばれる現象を引き起こすこととなる。
 ところで、I2Cでは、マルチ・マスタ・バスで衝突検知とバス・アービトレーションでバス調停(バスの所有権の調停)することを前提とするので、I2Cバス上において衝突が生じた場合、それは複数のマスタが同時にアクセスしていると解釈し、また、これら他マスタ同士の衝突は保障されているので問題はない。
 しかしながら、I2Cシステムにおいて、マスタ-スレーブ間においてのbitズレによる衝突は想定外の挙動である。
 そして上述した内視鏡システムにおいて、スレーブであるCMOSセンサが外来ノイズをシリアルクロックSCLの立上りエッジと誤認したような場合、マスタであるプロセッサは、他マスタとの同時アクセスと誤解し、シリアルクロックSCLおよびシリアルデータSDAを停止し、すなわちバスをフリー状態にしてしまう虞がある。
 さらに、マスタによる上記シリアルクロックSCLおよびシリアルデータSDAの停止タイミングが、スレーブ側のLドライブ(例えば、Ackによる)と重なった場合、シリアルデータSDAは“L”に引張られたまま停止することになるので、バスはビジー状態と同等となる。
 その結果、マスタであるプロセッサは、CMOSセンサ以外のスレーブにアクセスすることが不可能になってしまうという不都合が生じる。すなわち、マスタからは、バスがビジー状態のように見え続けるので、マスタは待機したままで復帰しないこととなり、いわゆるシステムフリーズ状態となる。
 上述のごとき内視鏡システムにおいてシステムフリーズ状態になると、例えば、ユーザへのプロセッサ再起動の手間(電源スイッチオフからオン動作等)、検査中の記録データ(観察動画キャプチャ等の一時保管データ等)がすべて無効になるという不都合を生じる。
 ところで、上述のごとき双方向のオープンコレクタ信号線によるI2Cバスは、ワイヤードORを構成するが、このワイヤードORを構成することが上述した問題を引き起こしやすい要因となっている。すなわち、ワイヤードORでは、バスに接続されたデバイスのどれか一つがLドライブ状態となると、バスは物理的にその論理に強制的に従うことになる。
 I2Cは、bitシーケンスルール上、Lドライブが可能なデバイスが単一であるというルールを規定することで双方向を実現するものである。すなわち、I2Cでは、このルールを遵守することにより双方向通信を可能とするものである。
 しかしながら、上述したごとき内視鏡先端部に配設されたスレーブであるところのCMOSセンサと、マスタであるプロセッサとの間を数mものケーブルで接続する構成をなす内視鏡システムにおいては、当該ケーブルに混入する外来ノイズの影響により、上述したようにそのルールが破綻しやすい状況下にあるため、バス上の出力信号の衝突を起こしやすいという問題がある。
 本発明は上述した点に鑑みてなされたもので、撮像素子としてCMOSセンサを搭載する内視鏡を有する内視鏡システムにおける通信システムにおいて、外来ノイズによるシステムフリーズの発生を回避することができる通信システムを提供することを目的とする。
 本発明の一態様の通信システムは、スレーブデバイスと、アドレスを指定することにより前記スレーブデバイスとデータを送受信するマスタデバイスとが、前記マスタデバイスから送信されるクロックを伝達するクロック信号線と、データを双方向に送信するシリアルデータ信号線とで接続される通信システムであって、前記シリアルデータ信号線の一部を構成し、前記マスタデバイスから前記スレーブデバイスに対して所定のデータを送信する第1の信号線と、前記シリアルデータ信号線の一部を構成し、前記スレーブデバイスから前記マスタデバイスに対して所定のデータを送信する第2の信号線と、前記第1の信号線と前記第2の信号線とのいずれか一方が前記シリアルデータ信号線として有効となるように選択する信号線選択部と、前記信号線選択部における前記選択動作を制御する信号制御部と、を具備する。
図1は、本発明の第1の実施形態の内視鏡システムにおけるI2Cシステムの構成を示す図。 図2は、第1の実施形態の内視鏡システムにおけるシリアルデータSDAのバス信号方向切替機構の論理回路の真理値表を示した図。 図3は、第1の実施形態の内視鏡システムにおいて、通常時の各シリアルバス信号の状態を示したタイミングチャート。 図4は、第1の実施形態の内視鏡システムにおいて、シリアルデータSDAのバス信号方向切替機構を備えないと仮定した際にシリアルクロックSCLバス上に異常信号が印可された際の各シリアルバス信号の状態を示したタイミングチャート。 図5は、第1の実施形態の内視鏡システムにおいて、シリアルクロックSCLバス上に異常信号が印可された際の各シリアルバス信号の状態を示したタイミングチャート。
 以下、図面を参照して本発明の実施形態を説明する。 
 図1は、本発明の第1の実施形態の内視鏡システムにおいてI2Cシステムの構成を示す図である。
 図1に示すように本発明の第1の実施形態である内視鏡システム1は、撮像素子としてCMOSセンサを採用した内視鏡2と、前記内視鏡2に着脱自在に接続され、内視鏡2に係る各種信号処理を行うプロセッサ3と、により主要部が構成される。
 前記内視鏡2は、被検体に挿入される挿入部の先端に設けられ、被検体の光学像を撮像して所定のデジタル撮像信号を出力するCMOSセンサ11と、前記CMOSセンサ11に接続され前記デジタル撮像信号のほかCMOSセンサ11に対する制御信号等を伝送するケーブル20と、当該ケーブル20の他端に配設され前記プロセッサ3に接続するためのコネクタ部21と、を備える。
 CMOSセンサ11は、プロセッサ3において生成された所定のクロックおよび垂直同期信号VD・水平同期信号HDにより、被検体の光学像を撮像して所定のアナログ撮像信号を生成する撮像部12(PD12)と、当該撮像部12に対して所定の信号処理を施すと共にデジタル撮像信号に変換して出力するA/D変換部を備える図示しないAFE回路と、当該AFE回路からのデジタル撮像信号をパラレル/シリアル変換して後段に出力する図示しないP/S回路と、を有して構成される。
 上述したように本実施形態における内視鏡は撮像素子としてCMOSセンサ11を採用するが、本第実施形態の内視鏡システムにおいては、内視鏡先端に配設された当該CMOSセンサ11と信号処理部であるプロセッサ3との間における通信制御に、上述したI2Cを適用することを特徴とする。
 また、本実施形態においては、I2C制御においてCMOSセンサ11をスレーブの1つとし、一方マスタはプロセッサ3に実装し、これらマスタ-スレーブ間を2本のシリアルバス信号線(シリアルデータSDAおよびシリアルクロックSCL)により接続することを特徴とする。
 そして本実施形態の如き内視鏡システムの場合、内視鏡先端部に配設されたスレーブの1つであるところのCMOSセンサとマスタであるプロセッサ3とは、前記シリアルデータSDAおよび前記シリアルクロックSCLの一部を内設する数mの長さのケーブル20とで接続されることとなる。
 一方、上述したように、本実施形態の内視鏡システムは、電気メス等の強力なノイズ源の近傍で用いられることも多いことから前記マスタ-スレーブ間を結ぶケーブルについては強力なノイズに曝されることとなる。
 すなわち、上述したように、マスタ(プロセッサ)とスレーブ(CMOSセンサ)とを結ぶ前記ケーブル20に電気メス等の強力なノイズが印可された場合、このケーブル20がたとえ十分なノイズ耐性を備えていたとしても、特にI2Cバスに接続されたスレーブ(CMOSセンサ)側では、当該外来ノイズによりシリアルクロックSCLが乱される虞がある。
 本願は係る事情に鑑みてなされたものであり、当該外来ノイズによりシリアルクロックSCLが乱されたとしても、システムフリーズを避けることができることを特徴とする。
 図1に戻って、プロセッサ3には、2本のシリアルバス信号線(シリアルデータSDAおよびシリアルクロックSCL)が接続された、マスタとしてのI2Cマスタ30が配設される。
 一方、内視鏡2の先端に配設されたCMOSセンサ11には、同じく2本のシリアルバス信号線(シリアルデータSDAおよびシリアルクロックSCL)が接続された、スレーブとしてのI2Cスレーブ10が配設される。なお、このI2Cスレーブ10は、撮像部12(PD12)を制御するI2Cコントーラとして機能する。
 前記I2Cスレーブ10から延出された前記2本のシリアルバス信号線(シリアルデータSDAおよびシリアルクロックSCL)は、内視鏡2内においてケーブル20内に挿通され、前記コネクタ部21を経由してプロセッサ3内に延設される。
 前記コネクタ部21は、シリアルクロックSCL用端子21aおよびシリアルデータSDA用端子21bを備え、それぞれ対向するプロセッサ3に設けられたシリアルクロックSCL用端子3aまたはシリアルデータSDA用端子3bに接続されるようになっている。
<シリアルデータSDAのバス信号方向切替機構>
 以下、本第1の実施形態におけるシリアルデータSDAのバス信号の方向切替機構について説明する。
 本第1の実施形態においては、前記プロセッサ3における前記シリアルクロックSCL用端子3aおよびシリアルデータSDA用端子3b以降の前記I2Cマスタ30との間において、シリアルデータSDAのバス信号方向、すなわち第1の方向「マスタ側→スレーブ側」と第2の方向「スレーブ側→マスタ側」とのバス信号の方向を切り替える機構を配設する。
 このシリアルデータSDAのバス信号方向切替機構は、いわゆるFPGA(field-programmable gate array)32により構成され、I2Cマスタ30からI2Cスレーブ10に対して所定のデータを送信する第1の信号線41と、I2Cスレーブ10からI2Cマスタ30に対して所定のデータを送信する第2の信号線42と、第1の信号線41と第2の信号線42とのいずれか一方がシリアルデータSDAのバス信号線として有効となるように選択する第1の信号線選択部51および第2の信号線選択部52と、前記第1の信号線選択部51および第2の信号線選択部52における前記選択動作を制御する信号制御部31と、を具備する。
 ここで、前記第1の信号線41は、当該バス信号方向切替機構において前記第1の方向「マスタ側→スレーブ側」が選択された際に用いられる信号線であり、前記第2の信号線42は同前記第2の方向「スレーブ側→マスタ側」が選択された際に用いられる信号線であって、これら第1の信号線41および第2の信号線42の具体的な経路については後に詳述する。
 なお、プロセッサ3内には、当該I2Cシステムにおける他のスレーブとして機能するI2Cスレーブ61およびI2Cスレーブ62が設けられている。
 前記信号制御部31は、前記シリアルクロックSCLのバスからマスタ側シリアルクロックSCL(MASTER_SCL)を入力する端子31a、前記シリアルデータSDAのバス(後述する第1の信号線41)からマスタ側シリアルデータSDA(MASTER_SDA)を入力する端子31b、前記シリアルデータSDAのバス(後述する第2の信号線42)からスレーブ側シリアルデータSDA(SLAVE_SDA)を入力する端子31c、シリアルデータSDAのバス信号方向切替信号(DIRECTION)を出力する端子31d、前記CMOSセンサ11におけるI2Cスレーブ10のスレーブアドレス(ASSIGN_ADDR)を入力する端子31eをそれぞれ備えている。
 第1の信号線選択部51は、シリアルデータSDAにおける第1の信号線41上に設けられた第1オア回路54および第1スリーステートバッファ回路55と、シリアルデータSDAにおける第2の信号線42上に設けられた第1バッファ56とを有する。
 より具体的に前記第1の信号線選択部51における第1オア回路54の入力端子には、第2バッファ53(後述する)の出力端子“O”が接続されるとともに前記信号制御部31における端子31dが接続され、前記第1の信号線41におけるマスタ側シリアルデータSDA信号と、前記信号制御部31における端子31dから出力される前記バス信号方向切替信号DIRECTIONと、を入力する。
 前記第1の信号線選択部51における第1スリーステートバッファ回路55は、その入力端子“I”には第1オア回路54の出力信号が入力され、また制御入力端子“T”には、前記信号制御部31における端子31dから出力される前記バス信号方向切替信号DIRECTIONが入力され、当該バス信号方向切替信号DIRECTIONに従って出力端子“I/O”からの出力信号が制御されるようになっている。
 前記第1の信号線選択部51における第1バッファ56の入力端には、第2の信号線42上における前記シリアルクロックSCL用端子3aから入力するスレーブ側シリアルデータSDAが入力され、また、前記第1スリーステートバッファ回路55の出力端子“I/O”が接続される。なお、第1バッファ56の出力端子“O”は、第2オア回路57(後述する)の入力端子に接続されるようになっている。
 一方、第2の信号線選択部52は、シリアルデータSDAにおける第2の信号線42上に設けられた第2オア回路57および第2スリーステートバッファ回路58と、シリアルデータSDAにおける第1の信号線41上に設けられた第2バッファ53と、信号制御部31における前記端子31dと前記第2オア回路57間に設けられたインバータ回路59と、を有する。
 より具体的に前記第2の信号線選択部52における第2オア回路57の入力端子には、前記第1バッファ56の出力端子“O”が接続されるとともに前記信号制御部31における端子31dが接続され、前記第2の信号線42におけるスレーブ側シリアルデータSDA信号であって前記第1バッファ56の出力信号と、前記信号制御部31における端子31dから出力され前記インバータ回路59により反転された前記バス信号方向切替信号DIRECTIONと、を入力する。
 前記第2の信号線選択部52における第2スリーステートバッファ回路58は、その入力端子“I”には第2オア回路57の出力信号が入力され、また制御入力端子“T”には、前記信号制御部31における端子31dから出力され前記インバータ回路59により反転された前記バス信号方向切替信号DIRECTIONが入力され、当該反転されたバス信号方向切替信号DIRECTIONに従って出力端子“I/O”からの出力信号が制御されるようになっている。
 前記第2の信号線選択部52における第2バッファ53の入力端には、第1の信号線41上における前記I2Cマスタ30側から入力するマスタ側シリアルデータSDAが入力され、また、前記第2スリーステートバッファ回路58の出力端子“I/O”が接続される。なお、第2バッファ53の出力端子“O”は、第1オア回路54の入力端子に接続され、マスタ側シリアルデータSDAとして入力されるようになっている。
 前記第2の信号線選択部52における前記インバータ回路59は、前記信号制御部31における端子31dから出力された前記バス信号方向切替信号DIRECTIONを入力し、反転出力を第2オア回路57に入力するようになっている。
<シリアルデータSDAのバス信号方向切替機構の仕組>
 上述したシリアルデータSDAのバス信号の方向切替機構の仕組みについて説明する。
 図2は、第1の信号線選択部51および第2の信号線選択部52における、第1スリーステートバッファ回路55および第2スリーステートバッファ回路58における論理回路の真理値表である。
 上述したように、第1の信号線選択部51における第1スリーステートバッファ回路55における制御入力端子“T”には、バス信号方向切替信号DIRECTIONが入力され、一方、第2の信号線選択部52における第2スリーステートバッファ回路58における制御入力端子“T”には、インバータ回路59により反転されたバス信号方向切替信号DIRECTIONが入力されるようになっている。
 また、本第1の実施形態においては、信号制御部31の端子31dから第1の方向選択時(マスタ→スレーブ)には、“L”信号が、一方、第2の方向選択時(スレーブ→マスタ)には、“H”信号が出力されるようになっている。
 ここで、図2における真理値表に示すように、第1スリーステートバッファ回路55または第2スリーステートバッファ回路58の制御入力端子“T”に“H”信号が入力すると、入力信号の状態に拘わらず出力端子“I/O”はハイインピーダンス“Z”となる。このとき、第2バッファ53または第1バッファ56の出力端子“O”は、入力した信号をそのまま出力することとなる。
 具体的に、例えば今、信号制御部31がバス信号方向切替機構として、前記第1の信号線41を用いる前記第1の方向「マスタ側→スレーブ側」を選択したとする。
 このとき、信号制御部31は、そのDIRECTION端子31dから前記バス信号方向切替信号DIRECTIONとして第1の方向を選択する“L”信号を出力する。
 そして当該バス信号方向切替信号DIRECTIONは、一方で前記第1スリーステートバッファ回路55の制御入力端子“T”に“L”信号として入力されるとともに、他方でインバータ回路59に入力し、当該インバータ回路59により反転され、これにより第2スリーステートバッファ回路58の制御入力端子“T”には“H”信号が入力される。
 すると、上述したように、第2スリーステートバッファ回路58における出力端子“I/O”は ハイインピーダンス“Z”となり、マスタ側シリアルデータSDAにおけるI2Cマスタ30からの信号は、第2バッファ53側に流れることとなる。そして、第2バッファ53における出力端子“O”には、I2Cマスタ30側から入力されたマスタ側シリアルデータSDAがそのまま現れることとなる。
 一方、第1スリーステートバッファ回路55の制御入力端子“T”には、上述したように、信号制御部31の端子31dから出力された“L”状態のバス信号方向切替信号DIRECTIONが入力される。
 このとき第1スリーステートバッファ回路55における出力端子“I/O”には、入力端子“I”に入力した信号、今の場合、第2バッファ53を経由したI2Cマスタ30側から入力されたマスタ側シリアルデータSDAがそのまま出力さることとなる。
 ここで、本実施形態においては、I2Cマスタ30→第2バッファ53→第1オア回路54→第1スリーステートバッファ回路55→シリアルデータSDA用端子3bへの経路を第1の信号線41とする。
 すなわち、バス信号方向切替機構として、前記第1の方向「マスタ側→スレーブ側」への切替を所望した際は、上述した仕組みにより前記第1の信号線41を選択することができる。
 他方、例えば今、信号制御部31がバス信号方向切替機構として、前記第2の信号線42を用いる前記第2の方向「スレーブ側→マスタ側」を選択したとする。
 このとき、信号制御部31は、そのDIRECTION端子31dから前記バス信号方向切替信号DIRECTIONとして第1の方向を選択する“H”信号を出力する。
 そして当該バス信号方向切替信号DIRECTIONは、一方で第1スリーステートバッファ回路55の制御入力端子“T”に“H”信号として入力されるとともに、他方でインバータ回路59に入力され当該インバータ回路59により反転され、これにより第2スリーステートバッファ回路58の制御入力端子“T”には“L”信号が入力される。
 すると、上記とは逆に、第1スリーステートバッファ回路55における出力端子“I/O”が ハイインピーダンス“Z”となり、スレーブ側シリアルデータSDAにおけるI2Cスレーブ10からの信号が、第1バッファ56側に流れることとなる。そして、第1バッファ56における出力端子“O”には、I2Cスレーブ10側から入力されたスレーブ側シリアルデータSDAがそのまま現れることとなる。
 一方で、第2スリーステートバッファ回路58の制御入力端子“T”には、上述したようにインバータ回路59を経由した“L”状態のバス信号方向切替信号DIRECTIONが入力される。
 このとき第2スリーステートバッファ回路58における出力端子“I/O”には、入力端子“I”に入力した信号、今の場合、第1バッファ56を経由したI2Cスレーブ10側から入力されたスレーブ側シリアルデータSDAがそのまま出力さることとなる。
 ここで、本実施形態においては、I2Cスレーブ10→シリアルデータSDA用端子3b→第1バッファ56→第2オア回路57→第2スリーステートバッファ回路58→I2Cマスタ30への経路を第2の信号線42とする。
 すなわち、バス信号方向切替機構として、前記第2の方向「スレーブ側→マスタ側」への切替を所望した際は、上述した仕組みにより前記第2の信号線42を選択することができる。
<第1の実施形態の作用>
 次に、本第1の実施形態の作用について説明する。
<シリアルクロックSCLのバス信号方向の固定>
 本第1の実施形態は、上述したように、プロセッサ3に配設したマスタ側(I2Cマスタ30)と、内視鏡2に配設したスレーブ側(CMOSセンサ11におけるI2Cスレーブ10)との通信制御にI2Cシステムを採用するが、本第1の実施形態においては、まず、シリアルクロックSCLを常時、「マスタ側→スレーブ側」に固定することを特徴とする。
<シリアルデータSDAのバス信号方向の切替作用>
 本第1の実施形態においては、上述したバス信号方向切替機構により、原則としてシリアルデータSDAにおけるバス信号の方向を前記第1の方向「マスタ側→スレーブ側」に設定し、I2Cマスタ30側が、CMOSセンサ11におけるI2Cスレーブ10からのデータを受信する受信bit時(例えば、AckまたはReadData)の際にのみ、シリアルデータSDAにおけるバス信号の方向を前記第2の方向「スレーブ側→マスタ側」に設定することを特徴とする。
 図3は、第1の実施形態の内視鏡システムにおいて、通常時の各シリアルバス信号の状態を示したタイミングチャートである。
 図3は、I2Cマスタ30からのマスタシリアルクロックSCL(MASTER_SCL)に従って、マスタシリアルデータSDA(MASTER_SDA)によりI2Cマスタ30からCMOSセンサ11におけるI2Cスレーブ10に対して所定のデータが送信されている様子を示している。
 上述したように、本実施形態においてはシリアルデータSDAにおけるバス信号の方向を前記第1の方向「マスタ側→スレーブ側」に設定することから、信号制御部31は、バス信号方向切替機構として、前記第1の信号線41を用いる前記第1の方向「マスタ側→スレーブ側」を選択する。
 すなわち、信号制御部31は、そのDIRECTION端子31dから前記バス信号方向切替信号DIRECTIONとして第1の方向を選択する“L”信号を出力する。
 これにより、第2スリーステートバッファ回路58の制御入力端子“T”には前記インバータ回路59により反転された“H”信号が入力され、一方、第1スリーステートバッファ回路55の制御入力端子“T”には、“L”信号が入力される。
 このとき、上述したように、第2スリーステートバッファ回路58における出力端子“I/O”は ハイインピーダンス“Z”となり、マスタ側シリアルデータSDAにおけるI2Cマスタ30からの信号は、第2バッファ53側に流れ、第2バッファ53、第1スリーステートバッファ回路55を経由してシリアルデータSDA用端子3bには、I2Cマスタ30側から入力されたマスタ側シリアルデータSDAがそのまま出力さることとなる。
 図3において、MASTER_SDAにおいてI2Cマスタ30から8bit分のデータが送信されている際は、上述したように第1の信号線41を用いた第1の方向「マスタ側→スレーブ側」が選択されている。
 一方、この8bit分のデータが送信され終わった次bitである、I2Cマスタ30がCMOSセンサ11のI2Cスレーブ10側からのデータを受信する受信bit時、この場合は、Ackの際には、信号制御部31は、バス信号方向切替機構として、前記第2の信号線42を用いる前記第2の方向「スレーブ側→マスタ側」を選択する。
 すなわち、信号制御部31は、そのDIRECTION端子31dから前記バス信号方向切替信号DIRECTIONとして第2の方向を選択する“H”信号を出力する。
 これにより、第2スリーステートバッファ回路58の制御入力端子“T”には前記インバータ回路59により反転された“L”信号が入力され、一方、第1スリーステートバッファ回路55の制御入力端子“T”には、“H”信号が入力される。
 このとき、上述したように、第1スリーステートバッファ回路55における出力端子“I/O”は ハイインピーダンス“Z”となり、スレーブ側シリアルデータSDAにおけるI2Cスレーブ10からの信号は、第1バッファ56側に流れ、第1バッファ56、第2スリーステートバッファ回路58を経由してI2Cマスタ30に対しては、I2Cスレーブ10側から入力されたスレーブ側シリアルデータSDAがそのまま出力さることとなる。
 図3において、MASTER_SDAにおいてI2Cマスタ30がSLAVE_SDAからのAck信号を受信している際は、上述したように第2の信号線42を用いた第2の方向「スレーブ側→マスタ側」が選択されている。
 次に、上述した本実施形態におけるバス信号方向切替機構を備えないと仮定した際にシリアルクロックSCLバス上に異常信号が印可された際の各シリアルバス信号が如何なる状態になるか説明する。
 図4は、第1の実施形態の内視鏡システムにおいて、シリアルデータSDAのバス信号方向切替機構を備えないと仮定した場合にシリアルクロックSCLバス上に異常信号が印可された際の各シリアルバス信号の状態を示したタイミングチャートである。
 本実施形態の如き内視鏡システムは、いわゆる電気メス等のノイズ源の近傍で用いられることも多く、CMOSセンサ11におけるI2Cスレーブ10とプロセッサ3におけるI2Cマスタ30とを接続するシリアルデータSDAおよびシリアルクロックSCLの一部を内設するケーブル20はこの種のノイズに曝されることとなる。
 そして、上述したように、電気メス等の周辺機器は比較的強力なノイズ源となり得えることから、ケーブル20がたとえ十分なノイズ耐性を備えていたとしても、シリアルクロックSCLにおける特にI2Cスレーブ10(CMOSセンサ)側では、当該外来ノイズをシリアルクロックSCLの立上りエッジと誤認する虞がある。
 図4は、スレーブ側シリアルクロックSCL(SLAVE_SCL)において、I2Cシステムが前記外来ノイズをシリアルクロックSCLの立上りエッジと誤認した場合の様子を示している。
 図4に示すように、前記外来ノイズによりI2Cスレーブ10側ではシリアルクロックSCLが1個多く見え、bitずれが生じることとなる。一方、I2Cマスタ30側では、1b(Read)と0b(Ack)とが衝突しているように見える。
 ところで、I2Cでは、マルチ・マスタ・バスで衝突検知とバス・アービトレーションでバス調停(バスの所有権の調停)することを前提とするので、I2Cバス上において衝突が生じた場合、それは複数のマスタが同時にアクセスしていると解釈し、また、これら他マスタ同士の衝突は保障されているので問題はない。
 しかしながら、I2Cシステムにおいて、図4に示す如く、マスタ-スレーブ間においてのbitズレによる衝突は想定外の挙動である。
 よって本実施形態の如きシリアルデータSDAのバス信号方向切替機構を備えないと仮定すると、外来ノイズをシリアルクロックSCLの立上りエッジと誤認したような場合、マスタであるプロセッサは、他マスタとの同時アクセスと誤解し、シリアルクロックSCLおよびシリアルデータSDAを停止し、すなわちバスをフリー状態にしてしまう。
 そして、I2Cマスタ30による上記シリアルクロックSCLおよびシリアルデータSDAの停止タイミングが、スレーブ側のLドライブ(例えば、上述したAckによる)と重なった場合、シリアルデータSDAは“L”に引張られたまま停止することになるので、バスはビジー状態となり復帰することができない。
 すなわち、I2Cマスタ30からは、バスがビジー状態のように見え続けるので、I2Cマスタ30は待機したままで復帰しないこととなり、いわゆるシステムフリーズ状態となる。その結果、I2Cマスタ30は、I2Cスレーブ10(CMOSセンサ11)以外のスレーブにアクセスすることが不可能になってしまうという不都合が生じる。
 図5は、上述の如き構成されたバス信号方向切替機構を備える本第1の実施形態において、シリアルクロックSCLバス上に異常信号が印可された際の各シリアルバス信号の状態について説明する。
 上述したように、本第1の実施形態においてはバス信号方向切替機構により原則としてシリアルデータSDAにおけるバス信号の方向を前記第1の方向「マスタ側→スレーブ側」に設定する。すなわち、信号制御部31からのバス信号方向切替信号DIRECTIONは“L”状態に設定される。
 そして、I2Cマスタ30側が、CMOSセンサ11におけるI2Cスレーブ10からのデータを受信する受信bit時(例えば、AckまたはReadData)の際にのみ、シリアルデータSDAにおけるバス信号の方向を前記第2の方向「スレーブ側→マスタ側」に設定する。
 これにより、図4に示すようなタイミングでSLAVE_SCLに外来ノイズが混入され、シリアルクロックSCLが1個多く見え擬似クロックが生じたとしても、この擬似クロックが生じるタイミングにおいてバス信号方向切替信号DIRECTIONは未だ“L”状態であるため、この直後にI2Cスレーブ10からI2Cマスタ30に対してAck信号が送信されたとしても、バス信号方向切替信号DIRECTIONが“L”状態である限りI2Cマスタ30はこのAck信号を受信することはない。
 この後、シリアルデータSDAにおいてI2Cスレーブ10からI2Cマスタ30に対してReadDataが送信されたとしても(このとき、信号制御部31は、第2の方向「スレーブ側→マスタ側」を選択するとしてバス信号方向切替信号DIRECTIONを“H”状態にしている)、I2Cマスタ30はAck信号を受信しない状態でReadDataを受けることからNoAckであるとして処理する。
 すなわち、I2Cマスタ30は、NoAckであってReadDataを受信したとしてStop bitを発行して双方bitシーケンスはリセットされ、再度Read処理を行う。
 そして、図5に示すように、受け取ったReadDataが0bであれば、I2Cマスタ30はこれをAckと解釈することになり、1bitずれたDataを読み出すこととなるが、2,3度読みで確認する等、誤ったDataのReadは、I2Cマスタ30のソフトシーケンスを工夫することで上述した図4に示すような不具合は回避することができる。
 以上説明したように本実施形態によると、撮像素子としてCMOSセンサを搭載する内視鏡を有する内視鏡システムにおける通信システムにおいて、外来ノイズによるシステムフリーズの発生を回避することができる。
 なお、上述した実施形態においては、FPGA32により構成される、シリアルデータSDAのバス信号方向切替機構をプロセッサ3内に設けたが、当該バス信号方向切替機構の配設位置はこれに限らない。すなわち、当該バス信号方向切替機構をI2Cマスタ30とI2Cスレーブ10の間、例えば内視鏡2側におけるコネクタ部21または操作部等に配設しても同等の効果を奏することができる。
 また、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能であり、上述した実施形態等を部分的に組み合わせる等して構成される実施形態も本発明に属する。
 本出願は、2014年12月25日に日本国に出願された特願2014-263188号公報を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (12)

  1.  スレーブデバイスと、アドレスを指定することにより前記スレーブデバイスとデータを送受信するマスタデバイスとが、前記マスタデバイスから送信されるクロックを伝達するクロック信号線と、データを双方向に送信するシリアルデータ信号線とで接続される通信システムであって、
     前記シリアルデータ信号線の一部を構成し、前記マスタデバイスから前記スレーブデバイスに対して所定のデータを送信する第1の信号線と、
     前記シリアルデータ信号線の一部を構成し、前記スレーブデバイスから前記マスタデバイスに対して所定のデータを送信する第2の信号線と、
     前記第1の信号線と前記第2の信号線とのいずれか一方が前記シリアルデータ信号線として有効となるように選択する信号線選択部と、
     前記信号線選択部における前記選択動作を制御する信号制御部と、
     を具備することを特徴とする通信システム。
  2.  前記信号制御部は、前記シリアルデータ信号線において前記マスタデバイスと前記スレーブデバイスとの間で送受信されるデータの種別に応じて、前記第1の信号線と前記第2の信号線とのいずれか一方が前記シリアルデータ信号線として有効となるように選択するよう前記信号線選択部における前記選択動作を制御する
     ことを特徴とする請求項1に記載の通信システム。
  3.  前記信号制御部は、前記マスタデバイスから前記スレーブデバイスに前記所定のデータを送信する際には、前記第1の信号線が前記シリアルデータ信号線として有効となるように選択し、前記マスタデバイスが前記スレーブデバイスからの前記所定のデータを受信する受信ビット時の際のみ、前記第2の信号線が前記シリアルデータ信号線として有効となるように選択するよう前記信号線選択部における前記選択動作を制御することを特徴とする請求項1に記載の通信システム。
  4.  前記信号制御部は、前記信号線選択部における前記選択動作を制御するための信号方向切替信号を出力する端子を備えることを特徴とする請求項3に記載の通信システム。
  5.  前記信号制御部は、前記第1の信号線が前記シリアルデータ信号線として有効とする場合、所定の信号レベルの前記信号方向切替信号を前記信号線選択部に出力し、前記第2の信号線が前記シリアルデータ信号線として有効とする場合、前記所定の信号レベルを反転させた前記信号方向切替信号を前記信号線選択部に出力することを特徴とする請求項4に記載の通信システム。
  6.  前記信号線選択部は、第1の信号線選択部及び第2の信号線選択部により構成され、
     前記第1の信号線選択部は、前記第1の信号線上に設けられた第1オア回路及び第1スリーステートバッファ回路と、前記第2の信号線上に設けられた第1バッファとを有し、
     前記第2の信号線選択部は、前記第2の信号線上に設けられた第2オア回路及び第2スリーステートバッファ回路と、前記第1の信号線上に設けられた第2バッファと、前記信号制御部の前記端子と前記第2オア回路との間に設けられたインバータ回路と、を有することを特徴とする請求項4に記載の通信システム。
  7.  前記第1オア回路の2つの入力端子の一方には、前記第2バッファの出力端子が接続され、
     前記第1オア回路の前記2つの入力端子の他方には、前記信号制御部の前記端子が接続されることを特徴とする請求項6に記載の通信システム。
  8.  前記第1スリーステートバッファ回路の入力端子には、前記第1オア回路の出力端子が接続され、
     前記第1スリーステートバッファ回路の制御入力端子には、前記信号制御部の前記端子が接続されることを特徴とする請求項6に記載の通信システム。
  9.  前記第1スリーステートバッファ回路は、前記信号制御部の前記端子から出力された前記信号方向切替信号に従って、出力端子からの出力信号を制御することを特徴とする請求項8に記載の通信システム。
  10.  前記インバータ回路の入力端子には、前記信号制御部の前記端子が接続され、
     前記第2オア回路の2つの入力端子の一方には、前記第1バッファの出力端子が接続され、
     前記第2オア回路の2つの入力端子の他方には、前記インバータ回路の出力端子が接続されることを特徴とする請求項6に記載の通信システム。
  11.  前記第2スリーステートバッファ回路の入力端子には、前記第2オア回路の出力端子が接続され、
     前記第2スリーステートバッファ回路の制御入力端子には、前記インバータ回路の出力端子が接続されることを特徴とする請求項6に記載の通信システム。
  12.  前記第2スリーステートバッファ回路は、前記信号制御部の前記端子から出力され前記インバータ回路により反転された前記信号方向切替信号に従って、出力端子からの出力信号を制御することを特徴とする請求項11に記載の通信システム。
     
PCT/JP2015/085511 2014-12-25 2015-12-18 通信システム WO2016104369A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016549593A JP6054006B2 (ja) 2014-12-25 2015-12-18 通信システム
EP15872937.6A EP3187097A4 (en) 2014-12-25 2015-12-18 Communication system
CN201580054927.6A CN106793928B (zh) 2014-12-25 2015-12-18 通信系统
US15/479,338 US10038865B2 (en) 2014-12-25 2017-04-05 Communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014263188 2014-12-25
JP2014-263188 2014-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/479,338 Continuation US10038865B2 (en) 2014-12-25 2017-04-05 Communication system

Publications (1)

Publication Number Publication Date
WO2016104369A1 true WO2016104369A1 (ja) 2016-06-30

Family

ID=56150388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085511 WO2016104369A1 (ja) 2014-12-25 2015-12-18 通信システム

Country Status (5)

Country Link
US (1) US10038865B2 (ja)
EP (1) EP3187097A4 (ja)
JP (1) JP6054006B2 (ja)
CN (1) CN106793928B (ja)
WO (1) WO2016104369A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427303B1 (ja) * 2017-07-24 2018-11-21 オリンパス株式会社 信号処理システムおよび内視鏡
WO2019021571A1 (ja) * 2017-07-24 2019-01-31 オリンパス株式会社 信号処理システムおよび内視鏡
WO2019207762A1 (ja) * 2018-04-27 2019-10-31 オリンパス株式会社 撮像システムおよび内視鏡システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768815B (zh) * 2018-07-27 2023-10-10 东君新能源有限公司 切换信号线的方法和太阳能系统
US10573373B1 (en) * 2019-03-28 2020-02-25 Micron Technology, Inc. Serializer
JP7086027B2 (ja) * 2019-04-03 2022-06-17 三菱電機株式会社 双方向シリアルバススイッチ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575583A (ja) * 1991-09-13 1993-03-26 Matsushita Electric Works Ltd 双方向伝送波形整形回路
JPH06224976A (ja) * 1993-01-26 1994-08-12 Matsushita Electric Works Ltd 半2重シリアル伝送用インターフェース変換回路
JP2012195639A (ja) * 2011-03-15 2012-10-11 Nec Access Technica Ltd 情報処理装置、情報処理方法及び情報処理プログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240946A (ja) * 1991-01-25 1992-08-28 Nec Eng Ltd データ通信システム
JPH0548671A (ja) * 1991-08-14 1993-02-26 Matsushita Electric Works Ltd シリアル通信マルチ変換器
JPH065242U (ja) * 1992-06-17 1994-01-21 クラリオン株式会社 波形整形装置
US5812796A (en) * 1995-08-18 1998-09-22 General Magic, Inc. Support structures for an intelligent low power serial bus
CN1163434A (zh) * 1996-04-24 1997-10-29 大宇通信株式会社 装有电源控制系统的计算机
KR100641744B1 (ko) * 1997-12-18 2006-11-06 톰슨 라이센싱 고속 데이터 버스 드라이버
JP3284995B2 (ja) * 1999-01-14 2002-05-27 日本電気株式会社 双方向バスリピータ制御装置
EP1050824A3 (en) * 1999-04-22 2004-01-28 Matsushita Electric Industrial Co., Ltd. Bidirectional signal transmission circuit and bus system
US6638212B1 (en) * 1999-07-27 2003-10-28 Olympus Optical Endoscope system having storage part of endoscope-related-data provided in endoscope
US6724224B1 (en) * 2003-04-07 2004-04-20 Pericom Semiconductor Corp. Bus relay and voltage shifter without direction control input
JP4631569B2 (ja) * 2005-07-12 2011-02-16 パナソニック株式会社 通信システム、並びにこれに用いられるマスター装置及びスレーブ装置、通信方法
US8971469B2 (en) * 2010-08-31 2015-03-03 Sharp Kabushiki Kaisha Serial data communication method and serial data communication device
WO2013128767A1 (ja) 2012-03-01 2013-09-06 オリンパスメディカルシステムズ株式会社 撮像システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575583A (ja) * 1991-09-13 1993-03-26 Matsushita Electric Works Ltd 双方向伝送波形整形回路
JPH06224976A (ja) * 1993-01-26 1994-08-12 Matsushita Electric Works Ltd 半2重シリアル伝送用インターフェース変換回路
JP2012195639A (ja) * 2011-03-15 2012-10-11 Nec Access Technica Ltd 情報処理装置、情報処理方法及び情報処理プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187097A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427303B1 (ja) * 2017-07-24 2018-11-21 オリンパス株式会社 信号処理システムおよび内視鏡
WO2019021571A1 (ja) * 2017-07-24 2019-01-31 オリンパス株式会社 信号処理システムおよび内視鏡
CN110169053A (zh) * 2017-07-24 2019-08-23 奥林巴斯株式会社 信号处理系统和内窥镜
US10729311B2 (en) 2017-07-24 2020-08-04 Olympus Corporation Signal processing system and endoscope
CN110169053B (zh) * 2017-07-24 2021-04-20 奥林巴斯株式会社 信号处理系统和内窥镜
WO2019207762A1 (ja) * 2018-04-27 2019-10-31 オリンパス株式会社 撮像システムおよび内視鏡システム
US11765478B2 (en) 2018-04-27 2023-09-19 Olympus Corporation Imaging system and endoscope system

Also Published As

Publication number Publication date
JP6054006B2 (ja) 2016-12-27
JPWO2016104369A1 (ja) 2017-04-27
EP3187097A1 (en) 2017-07-05
CN106793928A (zh) 2017-05-31
CN106793928B (zh) 2018-06-29
US10038865B2 (en) 2018-07-31
US20170208275A1 (en) 2017-07-20
EP3187097A4 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6054006B2 (ja) 通信システム
JP4949816B2 (ja) 双方向通信回路、双方向通信システム及び双方向通信回路の通信方法
JP4426249B2 (ja) 信号伝送装置及び伝送方法
US11132323B2 (en) System, apparatus and method for extended communication modes for a multi-drop interconnect
WO2012029602A1 (ja) シリアルデータ通信方法及びシリアルデータ通信装置
US20140157035A1 (en) Bit-Timing Symmetrization
KR20170110610A (ko) 시리얼 버스를 위한 수신 클록 캘리브레이션
JP2011138466A (ja) I2c/spi制御インターフェース回路構造、集積回路構造およびバス構造
JP2019507926A (ja) モジュールバスとaxiバスの間のリクエストを変換するためのバスブリッジ
JP2008118342A (ja) 非同期シリアル通信方法及び非同期シリアル通信装置
JP6007509B2 (ja) シリアルi/fバス制御装置及び撮像装置
KR102187781B1 (ko) I2c 라우터 시스템
JP5332428B2 (ja) レベルシフト回路及びその方法
US8606985B2 (en) Controlled device to control switching between transmission paths for transmitting data at different rate
JP2016220254A (ja) 撮像装置
CN107529970B (zh) 中继设备和医疗设备
US20140258584A1 (en) Bus relay apparatus, integrated circuit apparatus, cable, connector, electronic appliance, and bus relay method
JPWO2009034653A1 (ja) 回路、その制御方法及び処理装置
KR101490823B1 (ko) Fpga를 활용한 장치 제어용 범용 i2c 인터페이스 장치 및 이를 이용한 통신 방법
JP4759494B2 (ja) シリアルデータ通信方式およびシリアルデータ通信装置
JP2009130684A (ja) 制御信号通信方法、光トランシーバ装置
US20220391346A1 (en) Communication apparatus and communication system
JP7187564B2 (ja) 画像処理装置
CN217562028U (zh) 一种基于sccb总线协议的多个主器件电路
US20150058655A1 (en) Interface circuit and system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016549593

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872937

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015872937

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015872937

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE