WO2016104159A1 - 積層体フィルムと電極基板フィルムおよびこれ等の製造方法 - Google Patents

積層体フィルムと電極基板フィルムおよびこれ等の製造方法 Download PDF

Info

Publication number
WO2016104159A1
WO2016104159A1 PCT/JP2015/084616 JP2015084616W WO2016104159A1 WO 2016104159 A1 WO2016104159 A1 WO 2016104159A1 JP 2015084616 W JP2015084616 W JP 2015084616W WO 2016104159 A1 WO2016104159 A1 WO 2016104159A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent substrate
layer
metal
laminated
Prior art date
Application number
PCT/JP2015/084616
Other languages
English (en)
French (fr)
Inventor
大上 秀晴
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2016535748A priority Critical patent/JP6233618B2/ja
Publication of WO2016104159A1 publication Critical patent/WO2016104159A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a touch panel by forming a transparent film made of a resin film and a laminated film having a laminated film provided on the transparent substrate, and forming a circuit pattern made of laminated fine wires by etching the laminated film of the laminated film.
  • it relates to an electrode substrate film used for components such as high brightness illumination by reducing reflection from a laminated thin wire observed from the transparent substrate side after the etching process (that is, observed through the transparent substrate).
  • the present invention also relates to an electrode substrate film in which a circuit pattern composed of the above-described laminated thin wires is difficult to be visually recognized, a laminate film used for producing the electrode substrate film, and a method for producing the same.
  • the “touch panel” is roughly divided into a resistance type and a capacitance type.
  • a “resistive touch panel” is a transparent substrate made of a resin film, an X coordinate (or Y coordinate) detection electrode sheet provided on the substrate, and a Y coordinate (or X coordinate) detection electrode sheet, and a space between these sheets The main part is comprised with the insulator spacer provided in this.
  • the X-coordinate detection electrode sheet and the Y-coordinate detection electrode sheet are spatially separated from each other.
  • the “capacitance-type touch panel” has an X-coordinate (or Y-coordinate) detection electrode sheet and a Y-coordinate (or X-coordinate) detection electrode sheet laminated via an insulating sheet. It has a structure in which an insulator is disposed. When a finger is brought close to the insulator such as glass, the electric capacity of the X-coordinate detection electrode and the Y-coordinate detection electrode in the vicinity thereof changes so that the position can be detected.
  • a transparent conductive film such as ITO (indium oxide-tin oxide) has been widely used (see Patent Document 1). Further, along with the increase in the size of touch panels, metal fine wires (metal films) having a mesh structure disclosed in Patent Document 2, Patent Document 3, and the like have begun to be used.
  • the transparent conductive film When the transparent conductive film is compared with a thin metal wire (metal film), the transparent conductive film has an advantage that the circuit pattern such as an electrode is hardly visually recognized because of its excellent transparency in the visible wavelength region. Since the electric resistance value is higher than that of the film), there is a disadvantage that is not suitable for increasing the size of the touch panel and increasing the response speed.
  • thin metal wires metal films are suitable for increasing the size of touch panels and increasing the response speed due to their low electrical resistance, but they have high reflectivity in the visible wavelength region, so they are processed into a fine mesh structure. Even if it is done, a circuit pattern may be visually recognized under high-intensity illumination, and it has the fault of reducing a product value.
  • a metal absorbing layer (blackening) made of a metal oxide between the transparent substrate made of a resin film and the thin metal wire (metal film). (Referred to as Patents 4 and 5) to reduce reflection of thin metal wires (metal film) observed from the transparent substrate side (that is, observed through the transparent substrate) There is a proposed method.
  • the said metal absorption layer which consists of metal oxides is a long resin film by reactive sputtering etc. which usually used the metal target (metal material) and reactive gas from the viewpoint of aiming at the film-forming efficiency of a metal oxide.
  • a film is being manufactured.
  • an electrode substrate film used as a component part such as a touch panel is a chloride substrate formed of a laminated film having a transparent substrate made of a resin film and a laminated film made of a metal absorption layer and a metal layer provided on the substrate. It is manufactured by etching with an etchant such as a dicopper aqueous solution or a ferric chloride aqueous solution, and processing the laminated film (metal absorption layer and metal layer) of the laminated film into a circuit pattern such as an electrode.
  • an etchant such as a dicopper aqueous solution or a ferric chloride aqueous solution
  • the laminate film used for the production of the electrode substrate film has a characteristic that the laminated film (metal absorption layer and metal layer) is easily etched with an etching solution such as a cupric chloride aqueous solution or a ferric chloride aqueous solution,
  • the circuit pattern such as the etched electrode is required to have a characteristic that it is difficult to see under high brightness illumination.
  • circuit patterns are formed on both surfaces of a transparent substrate e made of a resin film, and a part of the metal layer of the second layer b counted from the transparent substrate e side is formed by a wet plating method, and transparent In the electrode substrate film in which the second metal absorption layer of the third layer c counted from the substrate e side is formed on the metal layer, regular reflection from the circuit pattern observed through the transparent substrate e (transparent substrate)
  • the regular reflection g at the interface between the first metal absorption layer and the transparent substrate counting from the side is from the second metal absorption layer of the third layer c counting from the transparent substrate e side as shown in FIG.
  • the circuit pattern may be visibleAnd even if the metal absorption layer of the first layer a and the second metal absorption layer of the third layer c counted from the transparent substrate e side are formed by reactive sputtering film formation under the same conditions, the transparent substrate e is passed through the transparent substrate e. Since the reflection from the metal absorption layer of the first layer a observed in FIG. 2 becomes conspicuous, there is a need to improve this.
  • JP 2003-151358 A (refer to claim 2) JP 2011-018194 A (refer to claim 1) JP 2013-0669261 A (see paragraph 0004) JP 2014-142462 A (see claim 5, paragraph 0038) JP 2013-225276 A (refer to claim 1, paragraph 0041)
  • the present invention has been made paying attention to such a problem, and the problem is that the laminated thin wire (the first layer of metal counted from the transparent substrate side) observed through the transparent substrate after the etching process.
  • the surface roughness of each of the two metal absorption layers was examined, it was confirmed that the surface roughness of the transparent substrate made of a resin film was about Ra 0.005 ⁇ m and the surface roughness at the interface between the transparent substrate and the metal absorption layer was about Ra 0.005 ⁇ m.
  • the surface roughness of the metal layer partially formed by the wet plating method is about Ra 0.02 ⁇ m
  • the surface roughness of the second metal absorption layer formed on the metal layer is about Ra 0.02 ⁇ m.
  • the surface roughness at the interface between the transparent substrate and the first metal absorption layer is counted from the transparent substrate side as the third layer. It was confirmed that it was necessary to set the same as the surface roughness of the second metal absorption layer.
  • the present invention has been completed through such investigation and technical analysis.
  • the first invention according to the present invention is: In a laminate film composed of a transparent substrate made of a resin film and a laminate film provided on at least one surface of the transparent substrate, On the surface of the transparent substrate before the laminated film is formed, an antiglare layer having a surface roughness Ra of 0.2 ⁇ m or less and a haze value of 2.5 to 10% is provided.
  • the laminated film formed on the antiglare layer has a first metal absorption layer, a second metal layer and a third metal absorption layer counted from the transparent substrate side.
  • the second invention is In the laminate film according to the first invention, The scratch hardness of the antiglare layer in accordance with JIS K5600-5-4 1999 is H or less
  • the third invention is In the laminate film according to the first invention, The film thickness of the second metal layer as counted from the transparent substrate side is 50 nm or more and 5000 nm or less
  • the fourth invention is: In the laminate film according to the first invention or the third invention, A part of the second metal layer counted from the transparent substrate side is formed by a wet plating method.
  • the fifth invention In the laminate film according to the first invention, The first metal absorption layer counted from the transparent substrate side is selected from Ni or Cu alone, or Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn.
  • the sixth invention is:
  • the second metal absorption layer of the third layer counted from the transparent substrate side is Ni simple substance or Cu simple substance, or Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, Zn
  • the seventh invention In the laminate film according to the fifth invention or the sixth invention, The alloy is made of a Ni-based alloy to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn are added. .
  • the eighth invention In an electrode substrate film having a transparent substrate made of a resin film and a circuit pattern having a mesh structure provided on at least one surface of the transparent substrate,
  • the circuit pattern is composed of laminated thin wires having a line width of 20 ⁇ m or less formed by processing a laminated film provided on at least one surface of a transparent substrate,
  • an antiglare layer having a surface roughness Ra of 0.2 ⁇ m or less and a haze value of 2.5 to 10% is provided.
  • the laminated film formed on the antiglare layer has a first metal absorption layer, a second metal layer and a third metal absorption layer counted from the transparent substrate side.
  • the ninth invention In the electrode substrate film according to the eighth invention, The scratch hardness of the antiglare layer in accordance with JIS K5600-5-4 1999 is H or less,
  • the tenth invention is In the electrode substrate film according to the eighth invention, The film thickness of the second metal layer as counted from the transparent substrate side is 50 nm or more and 5000 nm or less,
  • the eleventh invention is In the electrode substrate film according to the eighth invention or the tenth invention, A part of the second metal layer counted from the transparent substrate side is formed by a wet plating method,
  • the twelfth invention is In the electrode substrate film according to the eighth invention,
  • the first metal absorption layer counted from the transparent substrate side is selected from Ni or Cu alone, or Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn.
  • the thirteenth invention is In the electrode substrate film according to the eighth invention or the twelfth invention,
  • the second metal absorption layer of the third layer counted from the transparent substrate side is Ni simple substance or Cu simple substance, or Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, Zn
  • the fourteenth invention In the electrode substrate film according to the twelfth invention or the thirteenth invention,
  • the alloy is made of a Ni-based alloy to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn are added. .
  • the fifteenth aspect of the invention is In the method for producing a laminate film composed of a transparent substrate made of a resin film and a laminate film provided on at least one surface of the transparent substrate, A first step of forming an antiglare layer having a surface roughness Ra of 0.2 ⁇ m or less and a haze value of 2.5 to 10% on at least one surface of the transparent substrate; A second step of forming a first metal absorption layer on the anti-glare layer, counting from the transparent substrate side of the laminated film; A third step of forming a second metal layer on the metal absorption layer, counting from the transparent substrate side of the laminated film; A fourth step of forming a third metal absorption layer on the metal layer as a third layer, counting from the transparent substrate side of the laminated film; It is characterized by comprising.
  • the sixteenth invention In the method for producing a laminate film according to the fifteenth invention, in the third step, a part of the metal layer is formed by a wet plating method, The seventeenth invention In the method for producing a laminate film according to the fifteenth invention, In the second step, from Ni alone or Cu alone, or an alloy containing two or more elements selected from Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn.
  • the metal absorption layer is formed by a reactive film formation method using a metal material and a reactive gas containing oxygen,
  • the eighteenth invention In the method for producing a laminate film according to the fifteenth aspect or the seventeenth aspect, In the fourth step, from Ni alone or Cu alone, or an alloy containing two or more elements selected from Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn.
  • the alloy is made of a Ni-based alloy to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn are added. .
  • the twentieth invention In the method for producing an electrode substrate film having a circuit pattern having a mesh structure composed of a transparent substrate made of a resin film and a laminated fine wire provided on at least one surface of the transparent substrate,
  • the laminated film of the laminated film according to any one of the first to seventh inventions is subjected to a chemical etching treatment to carry out wiring processing on the laminated thin wire having a line width of 20 ⁇ m or less.
  • a laminate film according to the present invention comprising a transparent substrate made of a resin film and a laminate film provided on at least one surface of the transparent substrate, On the surface of the transparent substrate before the laminated film is formed, an antiglare layer having a surface roughness Ra of 0.2 ⁇ m or less and a haze value of 2.5 to 10% is provided.
  • the laminated film formed on the antiglare layer has a first metal absorption layer, a second metal layer and a third metal absorption layer counted from the transparent substrate side. It is said.
  • the laminated film of the laminate film is etched and laminated thin wires (the first metal absorption layer, the second metal absorption layer, and the third second metal absorption layer counted from the transparent substrate side).
  • the electrode substrate film on which the circuit pattern consisting of An anti-glare layer is provided between the transparent substrate and the laminated thin wire and reflection from the laminated fine wire (the first metal absorption layer counted from the transparent substrate side) observed through the transparent substrate is reduced by the action of the anti-glare layer. Therefore, even under high-luminance illumination, the circuit pattern composed of the laminated thin wires is difficult to be visually recognized.
  • the substrate film due to the action of the antiglare layer, regular reflection from the circuit pattern observed through the transparent substrate (reflection at the interface between the first metal absorption layer and the transparent substrate counted from the transparent substrate side) and Since the regular reflection from the second metal absorption layer of the third layer, which is counted from the transparent substrate side, is arranged to the same extent, the circuit pattern made of the laminated thin wire is more difficult to be visually recognized.
  • the schematic cross-section explanatory drawing of the laminated body film which concerns on the prior art which has a 1st metal absorption layer and a 2nd metal layer on both surfaces of the transparent substrate which consists of a resin film from the transparent substrate side.
  • the first metal absorption layer, the second metal layer and the third metal absorption layer counted from the transparent substrate side on both sides of the transparent substrate made of a resin film, and the metal layer is dry-type
  • FIG. 9A shows the factors that affect the haze value of the transparent substrate on which the antiglare layer is formed (particle size and particle density contained in the antiglare layer).
  • FIG. Explanatory drawing which shows the case where it is large. In FIG.
  • FIG. 10 (A) is an explanatory diagram of a coating (anti-glare layer) crack “existing” when a transparent substrate with an anti-glare layer is subjected to a 180 ° bending test with a mandrel diameter of 1 mm ⁇ in accordance with JIS K5600-5-1.
  • 10 (B) is an explanatory view of the coating (antiglare layer) crack “none” when the 180 ° bending test is performed on the transparent substrate on which the antiglare layer is formed.
  • a first laminate film according to prior art includes a transparent substrate made of a resin film and a laminate film provided on at least one surface of the transparent substrate.
  • the laminated film has a first metal absorption layer and a second metal layer as counted from the transparent substrate side, and the metal absorption layer is Ni simple substance or Cu simple substance, or Ni, Ti , Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, Zn
  • the 1st laminated body film which concerns on a prior art is the metal formed by the dry-type film-forming method (dry plating method) on both surfaces of the transparent substrate 40 which consists of a resin film as shown in FIG. It is composed of absorption layers 41 and 43 and metal layers 42 and 44.
  • the metal layer may be formed by a combination of a dry film formation method (dry plating method) and a wet film formation method (wet plating method).
  • the metal layers 52 and 54 are formed on the metal absorption layers 51 and 53 by a dry film formation method (dry plating method), and the metal layers 52 and 54 are formed by a wet film formation method (wet plating method).
  • the metal layers 55 and 56 may be used.
  • the second laminate film according to the prior art is based on the first laminate film, and the laminate film has a third metal absorption layer as a third layer counted from the transparent substrate side.
  • the second metal absorption layer is made of Ni or Cu alone, or two or more elements selected from Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu, and Zn. It is formed by a reactive film formation method using a metal material made of an alloy containing oxygen and a reactive gas containing oxygen.
  • the 2nd laminated body film which concerns on a prior art presupposes the 1st laminated body film shown in FIG. 2, and forms a 2nd metal absorption layer on the metal layer of this laminated body film. is there.
  • the metal layers 62 and 64 are formed on the metal absorption layers 61 and 63 by a dry film formation method (dry plating method), and the metal layers 62 and 64 are formed by a wet film formation method (wet plating method).
  • the metal absorbing layer 61 and the second metal absorbing layer 67 are formed on both surfaces of the metal layers denoted by reference numerals 62 and 65, and the metals denoted by reference numerals 64 and 66 are formed.
  • the metal absorption layer 63 and the second metal absorption layer 68 are formed on both sides of the layer because the mesh made of the metal laminated thin wires when the electrode substrate film produced using the laminate film is incorporated in the touch panel. This is to prevent the circuit pattern of the structure from being reflected.
  • Electrode substrate film according to the prior art (2-1) The laminated film of the laminate film according to the prior art is etched to form an electrode substrate film by wiring into a laminated thin wire having a line width of 20 ⁇ m or less. Obtainable. For example, an electrode substrate film as shown in FIG. 4 can be obtained by etching the laminate film of the laminate film shown in FIG.
  • the electrode substrate film according to the prior art shown in FIG. 4 has a transparent substrate 70 made of a resin film and a circuit pattern having a mesh structure made up of laminated thin wires provided on both surfaces of the transparent substrate 70.
  • the first metal absorption layers 71 and 73, the second metal layers 72, 75, 74, and 76, and the third layer of the third layer as counted from the transparent substrate 70 side. 2 metal absorption layers 77 and 78.
  • the electrode substrate film which concerns on a prior art can be used for a touch panel by making the electrode (wiring) pattern of an electrode substrate film into the stripe form or grid
  • the laminated thin wire processed into the electrode (wiring) pattern maintains the laminated structure of the laminated film, the circuit pattern such as the electrode provided on the transparent substrate is visually recognized even under high luminance illumination. It can be provided as a difficult electrode substrate film.
  • a photoresist film is formed on the laminate film surface of the laminate film, exposed and developed so that the photoresist film remains at a position where a wiring pattern is to be formed, and the photoresist film is formed on the laminate film surface.
  • an aqueous solution of ferric chloride or an aqueous solution of cupric chloride can be used as an etching solution for the above chemical etching.
  • circuit patterns are formed on both surfaces of a transparent substrate 70 made of a resin film, and a part of the second metal layer (reference numeral) is counted from the transparent substrate 70 side.
  • 75 and 76 are formed by a wet plating method, and the third metal absorption layers 77 and 78 of the third layer counted from the transparent substrate 70 side are formed on the metal layers 75 and 76, respectively.
  • regular reflection from the circuit pattern observed through the transparent substrate 70 reflection at the interface between the first metal absorption layers 71 and 73 and the transparent substrate 70 counted from the transparent substrate 70 side: FIG.
  • FIG. 6 is counted from the transparent substrate e (FIG. 4: reference numeral 70) side as the second metal absorption layer (FIG. 4: reference numeral). 77, 78) because it is larger than the regular reflection from As shown in FIG. 6, a metal absorption layer made of a metal oxide between the transparent substrate e (FIG. 4: reference numeral 70) and the second-layer metal layer b (FIG. 4: reference numerals 72, 75, 74, 76). Even when (the first layer indicated by the symbol a in FIG. 6) is interposed, the circuit pattern observed through the transparent substrate e may be visually recognized.
  • the reason why the circuit pattern is visually recognized is that a part of the metal layer (the portions indicated by reference numerals 75 and 76 in FIG. 4) which is the second layer b counted from the transparent substrate e (FIG. 4: reference numeral 70) side. Since the metal layer surface is roughened by the wet plating method, the surface of the second metal absorption layer (FIG. 4: reference numerals 77 and 78) of the third layer c is also roughened as shown in FIG. As a result, the amount of light scattering on the surfaces of the second metal absorption layers 77 and 78 increases, so that regular reflection from the second metal absorption layers 77 and 78 decreases.
  • Laminate film and electrode substrate film according to the present invention Consists of a transparent substrate made of a resin film and a laminated film provided on at least one surface of the transparent substrate, and the surface roughness Ra is 0.2 ⁇ m or less on the surface of the transparent substrate before the laminated film is formed. And an anti-glare layer having a haze value of 2.5 to 10%, and a laminated film formed on the anti-glare layer includes a first metal absorption layer and a second layer counted from the transparent substrate side.
  • the electrode substrate film according to the present invention is A transparent substrate made of a resin film, and a circuit pattern having a mesh structure provided on at least one surface of the transparent substrate, wherein the circuit pattern is obtained by processing a laminated film provided on at least one surface of the transparent substrate. It is composed of laminated thin wires having a formed line width of 20 ⁇ m or less, and has a surface roughness Ra of 0.2 ⁇ m or less and a haze value of 2.5 to 10 on the surface of the transparent substrate before the laminated film is formed. % Of the anti-glare layer, and the laminated film formed on the anti-glare layer includes a first metal absorption layer, a second metal layer, and a second second layer as counted from the transparent substrate side. It has a metal absorption layer.
  • the 1st laminated body film which concerns on this invention is the transparent substrate which consists of a resin film, and the anti-glare layer provided in the at least one surface of this transparent substrate, And a laminated film comprising a first metal absorption layer, a second metal layer and a third metal absorption layer which are provided on the antiglare layer and counted from the transparent substrate side.
  • the antiglare layer has a surface roughness Ra of 0.2 ⁇ m or less and a haze value of 2.5 to 10%.
  • the first metal absorption layer, the second metal layer, and the third metal absorption layer are formed by dry deposition using the following film forming materials.
  • the second metal layer formed by a film method may be formed by a combination of a dry film formation method (dry plating method) and a wet film formation method (wet plating method). .
  • a second laminate film according to the present invention includes a transparent substrate made of a resin film, and an antiglare layer provided on at least one surface of the transparent substrate.
  • the first metal absorption layer, the second metal layer, and the third layer are formed on both surfaces of the transparent substrate on which at least one surface is provided with the antiglare layer and counted from the transparent substrate side.
  • the anti-glare layer has a surface roughness Ra of 0.2 ⁇ m or less and a haze value of 2.5 to 10%.
  • the first metal absorption layer, the second metal layer, and the third metal absorption layer are formed by dry deposition using the following film forming materials.
  • the second metal layer formed by a film method may be formed by a combination of a dry film formation method (dry plating method) and a wet film formation method (wet plating method). .
  • Electrode Substrate Film According to the Present Invention
  • wiring is processed into a laminated thin wire having a line width of 20 ⁇ m or less.
  • the electrode substrate film according to the invention can be obtained.
  • an electrode substrate film according to the present invention shown in FIG. 7 includes a transparent substrate e made of a resin film, an antiglare layer f provided on one side of the transparent substrate e, and a transparent substrate provided with an antiglare layer f on one side.
  • the metal layer as the second layer b is formed by combining a dry film forming method (dry plating method) and a wet film forming method (wet plating method). As shown in FIG. The surface of the second metal absorption layer, which is c, is in a roughened state.
  • the antiglare layer f is provided on one side of the transparent substrate e, but the antiglare layer f may be provided on both sides of the transparent substrate e.
  • the electrode substrate film which concerns on this invention can be used for a touch panel by making the electrode (wiring) pattern of an electrode substrate film into the stripe form or grid
  • the laminated thin wire processed into the electrode (wiring) pattern maintains the laminated structure of the laminated film, and the first layer a of the metal absorbing layer is present on the transparent substrate e side.
  • the processing can be performed by the above-described known subtractive method as in the prior art.
  • the material of the resin film is not particularly limited, and a specific example thereof is polyethylene.
  • norbornene resin materials representative examples include ZEONOR (trade name) manufactured by ZEON Corporation, Arton (trade name) manufactured by JSR Corporation, and the like.
  • the electrode substrate film produced using the laminate film according to the present invention is used for a “touch panel” or the like, it is desirable that the resin film has excellent transparency in the visible wavelength region.
  • the first metal absorption layer and the third metal absorption layer counted from the transparent substrate side are Ni simple substance or Cu simple substance, or Ni, Ti, Al, V, W, Ta, Si, It is formed by a reactive film-forming method using a metal material made of an alloy containing two or more elements selected from Cr, Ag, Mo, Cu, and Zn, and a reactive gas containing nitrogen or oxygen, and particularly as the metal material Cu simple substance or Ni-Cu alloy is preferable.
  • the metal absorption layer becomes transparent when the oxidation of the metal oxide constituting the metal absorption layer proceeds excessively, it is necessary to set the oxidation level to such a level that it becomes a blackened film.
  • Examples of the reactive film formation method include magnetron sputtering, ion beam sputtering, vacuum deposition, ion plating, and CVD.
  • the optical constant (refractive index, extinction coefficient) at each wavelength of the metal absorption layer is greatly influenced by the degree of reaction, that is, the degree of oxidation and nitridation, and is determined only by the metal material made of Cu or Ni-based alloy. It is not something.
  • the constituent material (metal material) of the metal layer is not particularly limited as long as it is a metal having a low electric resistance value.
  • a metal having a low electric resistance value For example, Cu alone, or Ti, Al, V, W, Ta, Si, Cr, Ag Cu-based alloy to which one or more selected elements are added, Ag alone, or Ag to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, and Cu are added
  • Cu alone is desirable from the viewpoint of circuit pattern workability and resistance.
  • the thickness of the metal layer depends on the electrical characteristics and is not determined from optical elements, but is usually set to a thickness at which transmitted light cannot be measured.
  • the desirable thickness of the metal layer is preferably 50 nm or more, more preferably 60 nm or more from the viewpoint of electrical resistance. On the other hand, from the viewpoint of workability for processing the metal layer into a wiring pattern, it is preferably 5 ⁇ m (5000 nm) or less, more preferably 3 ⁇ m (3000 nm) or less.
  • the antiglare layer is formed as a hard coat layer on at least one surface of a transparent substrate made of a resin film, and the hard coat layer constituting the antiglare layer contains a resin and fine particles, and the resin includes an ultraviolet curable urethane resin. Or acrylic resin is used.
  • the hardness of the antiglare layer can be controlled by adding an inorganic sol such as silica sol having a particle size of 500 nm or less.
  • fine particles having a particle diameter of 0.5 ⁇ m to 20 ⁇ m and a particle diameter within twice the thickness of the antiglare layer can be added to the antiglare layer.
  • inorganic fine particles or organic fine particles can be used.
  • silicon oxide fine particles, titanium oxide fine particles, aluminum oxide fine particles, zinc oxide fine particles, tin oxide fine particles, calcium carbonate fine particles, barium sulfate fine particles, talc fine particles, kaolin fine particles, calcium sulfate fine particles, etc. can be selected.
  • the organic fine particles include polymethyl methacrylate acrylate resin powder (PMMA fine particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, polyester resin powder, Polyamide resin powder, polyimide resin powder, polyfluorinated ethylene resin powder, and the like can be selected.
  • PMMA fine particles polymethyl methacrylate acrylate resin powder
  • silicone resin powder silicone resin powder
  • polystyrene resin powder polycarbonate resin powder
  • acrylic styrene resin powder acrylic styrene resin powder
  • benzoguanamine resin powder benzoguanamine resin powder
  • melamine resin powder polyolefin resin powder
  • polyester resin powder Polyamide resin powder
  • Polyamide resin powder polyimide resin powder
  • polyfluorinated ethylene resin powder and the like
  • the particle size of the fine particles and the mixing ratio can be appropriately determined in consideration of the surface roughness Ra and the haze value of the antiglare layer, and the layer thickness of the antiglare layer is 30 ⁇ m or less, preferably 10 ⁇ m or less. It is set appropriately according to the characteristics.
  • JISK7136 haze measurement
  • Fig. 8 shows the outline of haze measurement. That is, the anti-glare-treated PET film (transparent substrate) i is fixed on the light incident side of the integrating sphere h, and the other end side opening of the integrating sphere h is closed by the diffusion plate to enter the light. Then, the light reflected in the integrating sphere h by multiple reflection is measured by a light receiver provided below the integrating sphere to measure “total light transmittance” j. Next, light is incident with the other end side opening of the integrating sphere h not closed by the diffuser plate, and light that has been subjected to multiple reflections within the integrating sphere h (however, light transmitted through the opening is not included). Is measured with the above-mentioned light receiver to measure “scattered light transmittance” k.
  • haze value (scattered light transmittance) ⁇ (total light transmittance).
  • the haze value when the antiglare layer is provided on one side of the transparent substrate is preferably 10% or less.
  • the haze value of the anti-glare layer exceeds 10%, the image of the flat panel display observed through the touch panel is fogged and visibility (transmittance) is deteriorated.
  • the laminated film of the laminated film according to the present invention is processed into an electrode substrate film by etching, an image of the flat panel display is observed through the antiglare layer of the transparent substrate from which the laminated film has been removed by etching. Therefore, the haze value of the antiglare layer provided on the transparent substrate is desirably 10% or less.
  • antiglare layers may be provided on both surfaces of a transparent substrate made of a resin film.
  • the haze value of the anti-glare layer on each surface may be 10% or less.
  • the haze value of each antiglare layer that does not adversely affect the visibility even when an image of the flat display panel is observed through an electrode substrate film provided with antiglare layers on both sides is 10% or less.
  • the haze value of the transparent substrate subjected to the antiglare treatment is mainly determined by the particle size (particle size s) and density (particle density m) of the fine particles contained in the antiglare layer.
  • particle size s particle size
  • particle density m particle density of the fine particles contained in the antiglare layer.
  • fine particles with a large particle diameter are used, a gap is generated when the metal mesh touch panel is bonded to another film in a subsequent process of the metal mesh touch panel (touch panel having a mesh structure circuit pattern). May end up.
  • the surface roughness of the antiglare layer needs to be 0.1 ⁇ m or more in terms of Ra.
  • the haze value is 2.5% or more even if the fine particles contained in the antiglare layer are arbitrarily selected.
  • a metal mesh touch panel (a touch panel having a circuit pattern having a mesh structure) may be used in a curved surface or a bent state in addition to being used on a flat surface.
  • the coating material used for the anti-glare layer is generally a surface hardness (conforming to JIS K5600-5-4 1999) of 2H or higher after curing (in a usable state), but as shown in FIG. 10 (A) A hard coating material may break during bending. As shown in FIG. 10 (B), in order to prevent the above-described cracking, it is preferable to select a soft coating material having a pencil hardness of about HB to H after curing (in a usable state).
  • this film-forming apparatus is called a sputtering web coater, and is used when a film-forming process is continuously and efficiently performed on the surface of a long resin film conveyed by a roll-to-roll method.
  • a film forming apparatus for a long resin film conveyed by a roll-to-roll method is provided in a vacuum chamber 10 as shown in FIG.
  • a predetermined film forming process is performed on the unrolled long resin film 12, and then the film is wound by a winding roll 24.
  • a can roll 16 that is rotationally driven by a motor is disposed in the middle of the conveyance path from the unwind roll 12 to the take-up roll 24. Inside the can roll 16, a coolant whose temperature is adjusted outside the vacuum chamber 10 circulates.
  • the pressure is reduced to an ultimate pressure of about 10 ⁇ 4 Pa and the pressure is adjusted to about 0.1 to 10 Pa by introducing a sputtering gas thereafter.
  • a known gas such as argon is used as the sputtering gas, and a gas such as oxygen is further added depending on the purpose.
  • the shape and material of the vacuum chamber 10 are not particularly limited as long as they can withstand such a reduced pressure state, and various types can be used.
  • various devices such as a dry pump, a turbo molecular pump, and a cryocoil are incorporated in the vacuum chamber 10.
  • a free roll 13 for guiding the long resin film 12 and a tension sensor roll 14 for measuring the tension of the long resin film 12 are arranged in this order on the conveyance path from the unwinding roll 11 to the can roll 16. ing.
  • the long resin film 12 fed from the tension sensor roll 14 toward the can roll 16 is adjusted with respect to the peripheral speed of the can roll 16 by a motor-driven front feed roll 15 provided in the vicinity of the can roll 16.
  • the long resin film 12 can be brought into close contact with the outer peripheral surface of the can roll 16.
  • the conveyance path from the can roll 16 to the take-up roll 24 is a motor driven post-feed roll 21 that adjusts the peripheral speed of the can roll 16 and a tension sensor roll that measures the tension of the long resin film 12. 22 and a free roll 23 for guiding the long resin film 12 are arranged in this order.
  • the tension balance of the long resin film 12 is maintained by torque control using a powder clutch or the like.
  • the long resin film 12 is unwound from the unwinding roll 11 and wound around the winding roll 24 by the rotation of the can roll 16 and the motor-driven front feed roll 15 and the rear feed roll 21 that rotate in conjunction with the rotation. It has come to be taken.
  • a film is formed at a position facing a conveyance path defined on the outer peripheral surface of the can roll 16 (that is, a region around which the long resin film 12 is wound on the outer peripheral surface of the can roll 16).
  • Magnetron sputtering cathodes 17, 18, 19, and 20 are provided as means, and gas discharge pipes 25, 26, 27, 28, 29, 30, 31, and 32 for discharging reactive gas are installed in the vicinity thereof.
  • a plate-like target when carrying out the sputtering film formation of the metal absorption layer and the metal layer, a plate-like target can be used as shown in FIG. 5, but when a plate-like target is used, nodules (growth of foreign matter) are formed on the target. May occur. When this becomes a problem, it is preferable to use a cylindrical rotary target that generates no nodules and has high target use efficiency.
  • (6-2-1) A method of releasing reactive gas at a constant flow rate.
  • (6-2-2) A method of releasing reactive gas so as to maintain a constant pressure.
  • (6-2-3) A method of releasing reactive gas (impedance control) so that the impedance of the sputtering cathode becomes constant.
  • (6-2-4) A method of releasing reactive gas (plasma emission control) so that the plasma intensity of sputtering is constant.
  • Examples 1 to 16, Comparative Examples 1 to 20 (Formation of anti-glare layer) Two types of hard and soft UV curable acrylic resins are applied as the antiglare layer resin, and polymethyl methacrylate acrylate resin powder (PMMA fine particles) having a particle diameter of 0.5 ⁇ m to 1 ⁇ m as fine particles for addition.
  • PMMA fine particles polymethyl methacrylate acrylate resin powder
  • the particle size and blending amount of the PMMA fine particles are appropriately selected, and “Haze value (%)”, “Surface roughness Ra ( ⁇ m)”, and “Transmissivity T (%) of undeposited film” in Table 1
  • the antiglare layer having a thickness of 1 ⁇ m set to the value shown in the “Surface Hardness” column of Table 2 was formed on one side of the PET film, and the antiglare treatment was performed on Examples 1-16 and Comparative Examples 1-20.
  • a substrate was prepared.
  • a transparent substrate having no antiglare layer was used as a “reference example”.
  • the characteristic objects of the laminated film for characteristic evaluation are shown in Table 2 “After film formation, 5 ° regular reflectance R (%) at a wavelength of 550 nm measured through a PET film” “Presence / absence of gaps at the time of bonding” In addition, “coat crack of 180 ° bending test” with a mandrel diameter of 1 mm ⁇ in accordance with JIS K5600-5-1 1999 was adopted.
  • the film forming apparatus (sputtering web coater) shown in FIG. 5 is used, oxygen gas is used as the reactive gas, and the can roll 16 is made of stainless steel having a diameter of 600 mm and a width of 750 mm, and the surface of the roll body is hard chrome plated. Is given.
  • the front feed roll 15 and the rear feed roll 21 are made of stainless steel having a diameter of 150 mm and a width of 750 mm, and hard chrome plating is applied to the surface of the roll body.
  • gas discharge pipes 25, 26, 27, 28, 29, 30, 31, 32 are installed on the upstream side and downstream side of each magnetron sputtering cathode 17, 18, 19, 20, and the magnetron sputtering cathodes 17, 18 are installed. Is attached with a Ni—Cu target for the metal absorption layer, and magnetron sputtering cathodes 19 and 20 with a Cu target for the metal layer.
  • the resin film constituting the transparent substrate a PET film having a thickness of 50 ⁇ m, a width of 600 mm and a length of 1200 m was used, and the can roll 16 was controlled to be cooled to 0 ° C.
  • the vacuum chamber 10 was evacuated to 5 Pa with a plurality of dry pumps, and further evacuated to 3 ⁇ 10 ⁇ 3 Pa using a plurality of turbo molecular pumps and cryocoils.
  • argon gas is supplied from the said gas discharge pipe 29,30,31,32.
  • 500 sccm was introduced, and the cathodes 19 and 20 were formed under power control to obtain a Cu film thickness of 80 nm.
  • the metal absorption layer also introduced a mixed gas in which argon gas 500 sccm and oxygen gas 50 sccm were mixed from the gas release pipes 25, 26, 27, and 28 shown in FIG. 5, and the cathodes 17 and 18 shown in FIG. -The film was formed under power control to obtain a Cu oxide film thickness of 30 nm.
  • the sputtering target used for the metal absorption layer of the resin film according to Example 16 is “Cu” which is different from “Ni—Cu” in other examples and comparative examples.
  • the action of the antiglare layer Therefore, specular reflection from the circuit pattern observed through the transparent substrate (reflection at the interface between the first metal absorption layer and the transparent substrate counted from the transparent substrate side) and the third layer counted from the transparent substrate side Since the regular reflection from the second metal absorption layer of the eye is arranged to the same extent, it is confirmed that the circuit pattern composed of the laminated thin wires has an effect of being extremely difficult to be visually recognized.
  • the antiglare layers according to Examples 1 to 10 and 16 In an electrode substrate film (metal mesh touch panel) manufactured using a transparent substrate having the above, the metal mesh touch panel and another film are bonded together There is no harmful effect of causing a gap when the anti-glare layer is broken as shown in FIG. 10 (A) even when the metal mesh touch panel is curved or bent
  • the anti-glare layer meets the requirements of “Surface roughness Ra is 0.2 ⁇ m or less” and “Haze value is 2.5 to 10%” (see Table 1), but conforms to JIS K5600-5-4 1999
  • the antiglare layer does not satisfy the requirement of “scratch hardness of H or less” (see Table 2).
  • the laminated film for property evaluation according to Examples 11 to 15 having a mandrel diameter of 1 mm ⁇ according to JIS K5600-5-1 1999 is “180”.
  • the circuit pattern is difficult to be seen even under high-intensity illumination. Therefore, the “touch panel” installed on the surface of the FPD (flat panel display) It has industrial potential to be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】透明基板越しに観察される回路パターンが視認され難い電極基板フィルムと該電極基板フィルムの作製に使用される積層体フィルムを提供する。 【解決手段】樹脂フィルムから成る透明基板eと該基板の少なくとも一方の面に設けられたメッシュ構造の回路パターンを有する電極基板フィルムであり、回路パターンは、透明基板の少なくとも一方の面に設けられた積層膜を加工して形成された線幅20μm以下の積層細線で構成され、上記積層膜が形成される前の透明基板の表面に表面粗さRaが0.2μm以下かつヘイズ値が2.5~10%のアンチグレア層fを備えると共に、上記アンチグレア層上に形成される積層膜が、透明基板側から数えて第1層目aの金属吸収層と第2層目bの金属層と第3層目cの第2金属吸収層を有することを特徴とする。

Description

積層体フィルムと電極基板フィルムおよびこれ等の製造方法
 本発明は、樹脂フィルムから成る透明基板と該透明基板に設けられた積層膜を有する積層体フィルム、および、該積層体フィルムの積層膜をエッチング処理し積層細線から成る回路パターンを形成してタッチパネル等の構成部品に用いられる電極基板フィルムに係り、特に、エッチング処理後において透明基板側から観察される(すなわち、透明基板越しに観察される)積層細線からの反射を低下させて、高輝度照明下においても上記積層細線から成る回路パターンが視認され難い電極基板フィルムと該電極基板フィルムの作製に使用される積層体フィルムおよびこれ等の製造方法に関するものである。
 近年、携帯電話、携帯電子文書機器、自動販売機、カーナビゲーション等のフラットパネルディスプレイ(FPD)表面に設置する「タッチパネル」が普及し始めている。
 上記「タッチパネル」には、大きく分けて抵抗型と静電容量型が存在する。「抵抗型のタッチパネル」は、樹脂フィルムから成る透明基板と該基板上に設けられたX座標(またはY座標)検知電極シート並びにY座標(またはX座標)検知電極シートと、これ等シートの間に設けられた絶縁体スペーサーとで主要部が構成されている。そして、上記X座標検知電極シートとY座標検知電極シートは空間的に隔たっているが、ペン等で押さえられたときに両座標検知電極シートは電気的に接触してペンの触った位置(X座標、Y座標)が判るようになっており、ペンを移動させればその都度座標を認識して、最終的に文字の入力が行なえる仕組みとなっている。他方、「静電容量型のタッチパネル」は、絶縁シートを介してX座標(またはY座標)検知電極シートとY座標(またはX座標)検知電極シートが積層され、これ等の上にガラス等の絶縁体が配置された構造を有している。そして、ガラス等の上記絶縁体に指を近づけたとき、その近傍のX座標検知電極、Y座標検知電極の電気容量が変化するため、位置検知を行なえる仕組みとなっている。
 そして、電極等の回路パターンを構成する導電性材料として、従来、ITO(酸化インジウム-酸化錫)等の透明導電膜が広く用いられていた(特許文献1参照)。また、タッチパネルの大型化に伴い、特許文献2や特許文献3等に開示されたメッシュ構造の金属製細線(金属膜)も使用され始めている。
 上記透明導電膜と金属製細線(金属膜)を較べた場合、透明導電膜は、可視波長領域における透過性に優れるため電極等の回路パターンが殆ど視認されない利点を有するが、金属製細線(金属膜)より電気抵抗値が高いためタッチパネルの大型化や応答速度の高速化には不向きな欠点を有する。他方、金属製細線(金属膜)は、電気抵抗値が低いためタッチパネルの大型化や応答速度の高速化に向いているが、可視波長領域における反射率が高いため、例え微細なメッシュ構造に加工されたとしても高輝度照明下において回路パターンが視認されることがあり、製品価値を低下させてしまう欠点を有する。
 そこで、電気抵抗値が低い上記金属製細線(金属膜)の特性を生かすため、樹脂フィルムから成る透明基板と金属製細線(金属膜)との間に金属酸化物から成る金属吸収層(黒化膜と称される)を介在させて(特許文献4、特許文献5参照)、透明基板側から観測される(すなわち、透明基板越しに観察される)金属製細線(金属膜)の反射を低減させる方法が提案されている。
 そして、金属酸化物から成る上記金属吸収層は、金属酸化物の成膜効率を図る観点から、通常、金属ターゲット(金属材)と反応性ガスを用いた反応性スパッタリング等により長尺状樹脂フィルム面に成膜され、かつ、成膜された金属吸収層上に銅等の金属ターゲット(金属材)を用いたスパッタリング等により金属層が成膜されて電極基板フィルムの作製に使用される積層体フィルムが製造されている。
 また、タッチパネル等の構成部品として用いられる電極基板フィルムは、樹脂フィルムから成る透明基板と該基板に設けられた金属吸収層と金属層から成る積層膜を有する積層体フィルムの上記積層膜を塩化第二銅水溶液や塩化第二鉄水溶液等のエッチング液によりエッチング処理し、積層体フィルムの上記積層膜(金属吸収層と金属層)を電極等の回路パターンに加工して製造されている。
 このため、電極基板フィルムの作製に使用される積層体フィルムは、積層膜(金属吸収層と金属層)が塩化第二銅水溶液や塩化第二鉄水溶液等のエッチング液によりエッチングされ易い特性と、エッチング加工された電極等の回路パターンが高輝度照明下において視認され難い特性が要求される。
 ところで、樹脂フィルムから成る透明基板と金属製細線(金属膜)との間に金属酸化物から成る上記金属吸収層(黒化膜)を介在させることで、透明基板越しに観察される回路パターンが視認され難くはなったが、樹脂フィルムから成る透明基板と金属吸収層(黒化膜)との界面における光学反射をゼロにすることは困難なため、回路パターンの上記視認性については未だ改善の余地を有していた。
 特に、樹脂フィルムから成る透明基板eの両面に回路パターンが形成され、かつ、透明基板e側から数えて第2層目bの金属層の一部が湿式めっき法によりそれぞれ形成されると共に、透明基板e側から数えて第3層目cの第2金属吸収層が上記金属層上に成膜された電極基板フィルムにおいては、透明基板e越しに観察される回路パターンからの正反射(透明基板側から数えて第1層目の金属吸収層と透明基板との界面における正反射g)が、図6に示すように透明基板e側から数えて第3層目cの第2金属吸収層からの正反射に較べて大きいため、例え透明基板と金属製細線(金属膜)との間に金属酸化物から成る金属吸収層(黒化膜)を介在させたとしても、透明基板越しに観察される回路パターンが視認されてしまう場合があった。そして、透明基板e側から数えて第1層目aの金属吸収層と第3層目cの第2金属吸収層をそれぞれ同じ条件で反応性スパッタリング成膜により形成したとしても、透明基板e越しに観察される第1層目aの金属吸収層からの反射が目立ってしまうため、これを改善する必要性が存在した。
特開2003-151358号公報(請求項2参照) 特開2011-018194号公報(請求項1参照) 特開2013-069261号公報(段落0004参照) 特開2014-142462号公報(請求項5、段落0038参照) 特開2013-225276号公報(請求項1、段落0041参照)
 本発明はこのような問題点に着目してなされたもので、その課題とするところは、エッチング処理後において透明基板越しに観察される積層細線(透明基板側から数えて第1層目の金属吸収層)からの反射を低下させて、高輝度照明下においても回路パターンが視認され難い電極基板フィルムと該電極基板フィルムの作製に使用される積層体フィルムを提供し、合わせて積層体フィルムと電極基板フィルムの製造方法を提供することにある。
 上記課題を解決するため、透明基板越しに観察される回路パターンからの正反射(透明基板e側から数えて第1層目aの金属吸収層と透明基板eとの界面における正反射g)に較べ、透明基板e側から数えて第3層目cの第2金属吸収層からの正反射が小さくなる原因について本発明者が調査したところ、透明基板e側から数えて第2層目bである金属層の一部が湿式めっき法によりそれぞれ形成された電極基板フィルムにおいては、湿式めっき法により形成された金属層の表面が粗面になっているため、図6に示すように第3層目cの第2金属吸収層表面も粗面になる結果、第2金属吸収層表面の光散乱が多くなる分、第2金属吸収層からの正反射が小さくなっていることを発見するに至った。
 そこで、電極基板フィルム(積層体フィルム)を構成している透明基板、透明基板側から数えて第1層目の金属吸収層、第2層目である金属層、および、第3層目の第2金属吸収層の表面粗さについてそれぞれ調べたところ、樹脂フィルムから成る透明基板の表面粗さはRa0.005μm程度、透明基板と金属吸収層界面における表面粗さもRa0.005μm程度であることが確認され、また、一部が湿式めっき法で形成された金属層の表面粗さはRa0.02μm程度、金属層上に成膜される第2金属吸収層の表面粗さもRa0.02μm程度であることが確認された。
 そして、透明基板越しに観察される積層細線からの反射を低下させるには、透明基板と第1層目の金属吸収層との界面における表面粗さについて、透明基板側から数えて第3層目である第2金属吸収層の表面粗さと同程度に設定する必要があることが確認された。
 本発明はこのような調査と技術的分析を経て完成されたものである。
 すなわち、本発明に係る第1の発明は、
 樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層膜とで構成される積層体フィルムにおいて、
 上記積層膜が形成される前の透明基板の表面に、表面粗さRaが0.2μm以下でかつヘイズ値が2.5~10%のアンチグレア層を備えると共に、
 上記アンチグレア層上に形成される積層膜が、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層を有することを特徴とする。
 第2の発明は、
 第1の発明に記載の積層体フィルムにおいて、
 JIS K5600-5-4 1999に準拠する上記アンチグレア層のひっかき硬度がH以下であることを特徴とし、
 第3の発明は、
 第1の発明に記載の積層体フィルムにおいて、
 透明基板側から数えて第2層目の金属層の膜厚が、50nm以上5000nm以下であることを特徴とし、
 第4の発明は、
 第1の発明または第3の発明に記載の積層体フィルムにおいて、
 透明基板側から数えて第2層目の金属層の一部が、湿式めっき法により形成されていることを特徴とし、
 また、第5の発明は、
 第1の発明に記載の積層体フィルムにおいて、
 透明基板側から数えて第1層目の上記金属吸収層が、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されていることを特徴とし、
 第6の発明は、
 第1の発明または第5の発明に記載の積層体フィルムにおいて、
 透明基板側から数えて第3層目の上記第2金属吸収層が、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されていることを特徴とし、
 第7の発明は、
 第5の発明または第6の発明に記載の積層体フィルムにおいて、
 上記合金が、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれる1種以上の元素が添加されたNi系合金で構成されていることを特徴とする。
 次に、第8の発明は、
 樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられたメッシュ構造の回路パターンを有する電極基板フィルムにおいて、
 上記回路パターンは、透明基板の少なくとも一方の面に設けられた積層膜を加工して形成された線幅20μm以下の積層細線で構成されており、
 上記積層膜が形成される前の透明基板の表面に、表面粗さRaが0.2μm以下でかつヘイズ値が2.5~10%のアンチグレア層を備えると共に、
 上記アンチグレア層上に形成される積層膜が、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層を有することを特徴とする。
 第9の発明は、
 第8の発明に記載の電極基板フィルムにおいて、
 JIS K5600-5-4 1999に準拠する上記アンチグレア層のひっかき硬度がH以下であることを特徴とし、
 第10の発明は、
 第8の発明に記載の電極基板フィルムにおいて、
 透明基板側から数えて第2層目の金属層の膜厚が、50nm以上5000nm以下であることを特徴とし、
 第11の発明は、
 第8の発明または第10の発明に記載の電極基板フィルムにおいて、
 透明基板側から数えて第2層目の金属層の一部が、湿式めっき法により形成されていることを特徴とし、
 第12の発明は、
 第8の発明に記載の電極基板フィルムにおいて、
 透明基板側から数えて第1層目の上記金属吸収層が、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されていることを特徴とし、
 第13の発明は、
 第8の発明または第12の発明に記載の電極基板フィルムにおいて、
 透明基板側から数えて第3層目の上記第2金属吸収層が、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されていることを特徴とし、
 また、第14の発明は、
 第12の発明または第13の発明に記載の電極基板フィルムにおいて、
 上記合金が、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれる1種以上の元素が添加されたNi系合金で構成されていることを特徴とする。
 次に、第15の発明は、
 樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層膜とで構成される積層体フィルムの製造方法において、
 上記透明基板の少なくとも一方の面に表面粗さRaが0.2μm以下でかつヘイズ値が2.5~10%のアンチグレア層を形成する第1工程と、
 上記積層膜の透明基板側から数えて第1層目の金属吸収層を上記アンチグレア層上に形成する第2工程と、
 上記積層膜の透明基板側から数えて第2層目の金属層を上記金属吸収層上に形成する第3工程と、
 上記積層膜の透明基板側から数えて第3層目の第2金属吸収層を上記金属層上に形成する第4工程、
を具備することを特徴とする。
 また、第16の発明は、
 第15の発明に記載の積層体フィルムの製造方法において、
 上記第3工程において、上記金属層の一部を湿式めっき法により形成することを特徴とし、
 第17の発明は、
 第15の発明に記載の積層体フィルムの製造方法において、
 上記第2工程において、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により上記金属吸収層を形成することを特徴とし、
 第18の発明は、
 第15の発明または第17の発明に記載の積層体フィルムの製造方法において、
 上記第4工程において、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により上記第2金属吸収層を形成することを特徴とし、
 また、第19の発明は、
 第17の発明または第18の発明に記載の積層体フィルムの製造方法において、
 上記合金が、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれる1種以上の元素が添加されたNi系合金で構成されていることを特徴とする。
 更に、第20の発明は、
 樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層細線から成るメッシュ構造の回路パターンを有する電極基板フィルムの製造方法において、
 第1の発明~第7の発明のいずれかに記載の積層体フィルムの積層膜を化学エッチング処理して、線幅が20μm以下である上記積層細線を配線加工することを特徴とする。
 樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層膜とで構成される本発明に係る積層体フィルムは、
 上記積層膜が形成される前の透明基板の表面に、表面粗さRaが0.2μm以下でかつヘイズ値が2.5~10%のアンチグレア層を備えると共に、
 上記アンチグレア層上に形成される積層膜が、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層を有することを特徴としている。
 そして、積層体フィルムの積層膜をエッチング加工して積層細線(透明基板側から数えて第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層を有する)から成る回路パターンが形成される電極基板フィルムによれば、
 透明基板と積層細線との間にアンチグレア層を有し、透明基板越しに観測される積層細線(透明基板側から数えて第1層目の金属吸収層)からの反射がアンチグレア層の作用により低減されるため、高輝度照明下においても上記積層細線から成る回路パターンが視認され難い効果を有する。
 特に、樹脂フィルムから成る透明基板の両面に積層細線から成る回路パターンが形成され、かつ、透明基板側から数えて第2層目の金属層の一部が湿式めっき法によりそれぞれ形成されている電極基板フィルムにおいては、上記アンチグレア層の作用により、透明基板越しに観察される回路パターンからの正反射(透明基板側から数えて第1層目の金属吸収層と透明基板との界面における反射)と、透明基板側から数えて第3層目の第2金属吸収層からの正反射が同程度に揃えられるため、上記積層細線から成る回路パターンが更に視認され難くなる効果を有する。
樹脂フィルムから成る透明基板の両面に透明基板側から数えて第1層目の金属吸収層と第2層目の金属層を有する従来技術に係る積層体フィルムの概略断面説明図。 樹脂フィルムから成る透明基板の両面に透明基板側から数えて第1層目の金属吸収層と第2層目の金属層を有しかつ金属層が乾式成膜法と湿式成膜(湿式めっき)法で形成された従来技術に係る積層体フィルムの概略断面説明図。 樹脂フィルムから成る透明基板の両面に透明基板側から数えて第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層を有しかつ金属層が乾式成膜法と湿式成膜(湿式めっき)法で形成された従来技術に係る積層体フィルムの概略断面説明図。 樹脂フィルムから成る透明基板の両面に金属製の積層細線がそれぞれ形成された従来技術に係る電極基板フィルムの概略断面説明図。 樹脂フィルムから成る透明基板上に金属吸収層と金属層を形成する真空成膜法を実施する成膜装置(スパッタリングウェブコータ)の説明図。 従来技術に係る電極基板フィルムの「透明基板越しに観察される回路パターンからの正反射」と「透明基板側から数えて第3層目の第2金属吸収層からの正反射」の関係を示す説明図。尚、図6中、符号aは「第1層目」、符号bは「第2層目」、符号cは「第3層目」、符号dは「散乱」、符号eは「透明基板」、および、符号gは「第1層目正反射」をそれぞれ示す。 透明基板の両面に回路パターンが形成された本発明に係る電極基板フィルムの「透明基板越しに観察される回路パターンからの正反射」と「透明基板側から数えて第3層目の第2金属吸収層からの正反射」の関係を示す説明図。尚、図7中、符号aは「第1層目」、符号bは「第2層目」、符号cは「第3層目」、符号dは「散乱」、符号eは「透明基板」、符号fは「アンチグレア層」、および、符号gは「第1層目正反射」をそれぞれ示す。 表面にアンチグレア層が設けられかつアンチグレア層上に積層膜が形成される前の透明基板に関しそのヘイズ値を測定する方法の一例を示す説明図。尚、図8中、符号hは「積分球」、符号iは「PETフィルム」、符号jは「全光透過率(拡散板有)」、および、符号kは「散乱光透過率(拡散板無)」をそれぞれ示す。 アンチグレア層が形成された透明基板のヘイズ値に影響を与える因子(アンチグレア層に含まれる粒子サイズと粒子密度)を示し、図9(A)は影響が小さい場合、図9(B)は影響が大きい場合を示す説明図。尚、図9中、符号sは「粒子サイズ」、および、符号mは「粒子密度」をそれぞれ示す。 図10(A)はアンチグレア層が形成された透明基板についてJIS K5600-5-1 1999に準拠するマンドレル径1mmφの180°曲げ試験を行ったときのコート(アンチグレア層)割れ「有り」の説明図、10(B)はアンチグレア層が形成された透明基板について上記180°曲げ試験を行ったときのコート(アンチグレア層)割れ「なし」の説明図。
 以下、本発明の実施の形態について従来技術と共に詳細に説明する。
(1)従来技術に係る積層体フィルム
(1-1)従来技術に係る第一の積層体フィルムは、樹脂フィルムから成る透明基板と、該透明基板の少なくとも一方の面に設けられた積層膜とで構成され、積層膜が、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層を有すると共に、金属吸収層が、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されている。
 そして、従来技術に係る第一の積層体フィルムは、図1に示すように樹脂フィルムから成る透明基板40と、該透明基板40の両面に乾式成膜法(乾式めっき法)により形成された金属吸収層41、43と金属層42、44とで構成されている。
 尚、上記金属層については、乾式成膜法(乾式めっき法)と湿式成膜法(湿式めっき法)を組み合わせて形成してもよい。
 すなわち、図2に示すように樹脂フィルムから成る透明基板50と、該透明基板50の両面に乾式成膜法(乾式めっき法)により形成された膜厚15nm~30nmの金属吸収層51、53と、該金属吸収層51、53上に乾式成膜法(乾式めっき法)により形成された金属層52、54と、該金属層52、54上に湿式成膜法(湿式めっき法)により形成された金属層55、56とで構成してもよい。
(1-2)従来技術に係る第二の積層体フィルムは、上記第一の積層体フィルムを前提とし、積層膜が、透明基板側から数えて第3層目の第2金属吸収層を有すると共に、第2金属吸収層が、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されている。
 そして、従来技術に係る第二の積層体フィルムは、図2に示した第一の積層体フィルムを前提とし、該積層体フィルムの金属層上に第2金属吸収層を形成して成るものである。
 すなわち、図3に示すように樹脂フィルムから成る透明基板60と、該透明基板60の両面に乾式成膜法(乾式めっき法)により形成された膜厚15nm~30nmの金属吸収層61、63と、該金属吸収層61、63上に乾式成膜法(乾式めっき法)により形成された金属層62、64と、該金属層62、64上に湿式成膜法(湿式めっき法)により形成された金属層65、66と、該金属層65、66上に乾式成膜法(乾式めっき法)により形成された膜厚15nm~30nmの第2金属吸収層67、68とで構成されている。
 ここで、図3に示す第二の積層体フィルムにおいて、符号62、65で示す金属層の両面に金属吸収層61と第2金属吸収層67を形成し、また、符号64、66で示す金属層の両面に金属吸収層63と第2金属吸収層68を形成しているのは、該積層体フィルムを用いて作製された電極基板フィルムをタッチパネルに組み込んだときに金属製積層細線から成るメッシュ構造の回路パターンが反射して見えないようにするためである。
 尚、樹脂フィルムから成る透明基板の片面に金属吸収層を形成し、該金属吸収層上に金属層が形成された第一の積層体フィルムを用いて電極基板フィルムを作製した場合にも、該透明基板からの上記回路パターンの視認を防止することが可能である。
(2)従来技術に係る電極基板フィルム
(2-1)従来技術に係る積層体フィルムの積層膜をエッチング処理して、線幅が20μm以下である積層細線に配線加工することにより電極基板フィルムを得ることができる。例えば、図3に示す積層体フィルムの積層膜をエッチング処理して図4に示すような電極基板フィルムを得ることができる。
 すなわち、図4に示す従来技術に係る電極基板フィルムは、樹脂フィルムから成る透明基板70と、該透明基板70の両面に設けられた積層細線から成るメッシュ構造の回路パターンを有し、上記積層細線が、線幅20μm以下でかつ透明基板70側から数えて第1層目の金属吸収層71、73と、第2層目の金属層72、75、74、76と、第3層目の第2金属吸収層77、78とで構成されている。
 そして、電極基板フィルムの電極(配線)パターンをタッチパネル用のストライプ状若しくは格子状とすることで、従来技術に係る電極基板フィルムをタッチパネルに用いることができる。また、電極(配線)パターンに配線加工された積層細線は、積層体フィルムの積層構造を維持していることから、高輝度照明下においても透明基板に設けられた電極等の回路パターンが視認され難い電極基板フィルムとして提供することができる。
(2-2)そして、従来技術に係る積層体フィルムから電極基板フィルムに配線加工するには、公知のサブトラクティブ法により加工が可能である。
 サブトラクティブ法は、積層体フィルムの積層膜表面にフォトレジスト膜を形成し、配線パターンを形成したい箇所にフォトレジスト膜が残るように露光、現像し、かつ、上記積層膜表面にフォトレジスト膜が存在しない箇所の積層膜を化学エッチングにより除去して配線パターンを形成する方法である。
 上記記化学エッチングのエッチング液としては、塩化第二鉄水溶液や塩化第二銅水溶液を用いることができる。
(3)従来技術に係る積層体フィルムと電極基板フィルムの問題点
 図4に例示した従来技術に係る電極基板フィルムにおいては、樹脂フィルムから成る透明基板70と金属層72、75、74、76との間に金属酸化物から成る金属吸収層71、73を介在させているため、透明基板70越しに観察される回路パターンの視認性は低減されている。
 しかし、樹脂フィルムから成る透明基板70と金属酸化物から成る金属吸収層71、73との界面における光学反射をゼロにすることは、従来技術において説明したように困難なため、回路パターンの視認性については未だ改善の余地を有していた。
 特に、図4に示す電極基板フィルムのように、樹脂フィルムから成る透明基板70の両面に回路パターンが形成され、かつ、透明基板70側から数えて第2層目の金属層の一部(符号75、76で示す)が湿式めっき法により形成され、更に、透明基板70側から数えて第3層目の第2金属吸収層77、78が上記金属層75、76上に成膜された電極基板フィルムにおいては、透明基板70越しに観察される回路パターンからの正反射(透明基板70側から数えて第1層目の金属吸収層71、73と透明基板70との界面における反射:図6の符号gで示す第1層目正反射)が、図6に示すように透明基板e(図4:符号70)側から数えて第3層目cの第2金属吸収層(図4:符号77、78)からの正反射に較べて大きいため、例え、図6に示すように透明基板e(図4:符号70)と第2層目bの金属層(図4:符号72、75、74、76)との間に金属酸化物から成る金属吸収層(図6の符号aで示す第1層目)を介在させたとしても、透明基板e越しに観察される回路パターンが視認されてしまう場合があった。
 尚、回路パターンが視認される原因は、透明基板e(図4:符号70)側から数えて第2層目bである金属層の一部(図4において符号75、76で示す部位)が湿式めっき法により形成されて金属層表面が粗面になっているため、図6に示すように第3層目cの第2金属吸収層(図4:符号77、78)表面も粗面になる結果、第2金属吸収層77、78表面の光散乱が多くなる分、第2金属吸収層77、78からの正反射が小さくなるためであった。
(4)本発明に係る積層体フィルムと電極基板フィルム
 本発明に係る積層体フィルムは、
 樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層膜とで構成され、上記積層膜が形成される前の透明基板の表面に、表面粗さRaが0.2μm以下でかつヘイズ値が2.5~10%のアンチグレア層を備えると共に、上記アンチグレア層上に形成される積層膜が、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層を有することを特徴とし、
 また、本発明に係る電極基板フィルムは、
 樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられたメッシュ構造の回路パターンを有し、上記回路パターンは、透明基板の少なくとも一方の面に設けられた積層膜を加工して形成された線幅20μm以下の積層細線で構成されており、上記積層膜が形成される前の透明基板の表面に、表面粗さRaが0.2μm以下でかつヘイズ値が2.5~10%のアンチグレア層を備えると共に、上記アンチグレア層上に形成される積層膜が、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層を有することを特徴とするものである。
(4-1)本発明に係る第一の積層体フィルム
 本発明に係る第一の積層体フィルムは、樹脂フィルムから成る透明基板と、該透明基板の少なくとも一方の面に設けられたアンチグレア層と、該アンチグレア層上に設けられかつ透明基板側から数えて第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層から成る積層膜とで構成されると共に、上記アンチグレア層の表面粗さRaが0.2μm以下でかつヘイズ値が2.5~10%であることを特徴とする。
 尚、従来技術に係る積層体フィルムと同様、第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層は、下記成膜材料を用いた乾式成膜法(乾式めっき法)により形成され、かつ、第2層目の金属層については、乾式成膜法(乾式めっき法)と湿式成膜法(湿式めっき法)を組み合わせて形成してもよい。
(4-2)本発明に係る第二の積層体フィルム
 本発明に係る第二の積層体フィルムは、樹脂フィルムから成る透明基板と、該透明基板の少なくとも一方の面に設けられたアンチグレア層と、少なくとも一方の面にアンチグレア層が設けられた透明基板の両面に成膜されかつ透明基板側から数えて第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層から成る一対の積層膜とで構成されると共に、上記アンチグレア層の表面粗さRaが0.2μm以下でかつヘイズ値が2.5~10%であることを特徴とする。
 尚、従来技術に係る積層体フィルムと同様、第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層は、下記成膜材料を用いた乾式成膜法(乾式めっき法)により形成され、かつ、第2層目の金属層については、乾式成膜法(乾式めっき法)と湿式成膜法(湿式めっき法)を組み合わせて形成してもよい。
(4-3)本発明に係る電極基板フィルム
 本発明に係る上記第一若しくは第二の積層体フィルムの積層膜をエッチング処理し、線幅が20μm以下である積層細線に配線加工することにより本発明に係る電極基板フィルムを得ることができる。
 例えば、図7に示す本発明に係る電極基板フィルムは、樹脂フィルムから成る透明基板eと、該透明基板eの片面に設けられたアンチグレア層fと、片面にアンチグレア層fが設けられた透明基板eの両面に設けられた積層細線から成るメッシュ構造の回路パターンを有し、上記積層細線が、線幅20μm以下でかつ透明基板e側から数えて第1層目aの金属吸収層と、第2層目bの金属層と、第3層目cの第2金属吸収層とで構成されている。
 尚、第2層目bである金属層が、乾式成膜法(乾式めっき法)と湿式成膜法(湿式めっき法)を組み合わせて形成されており、図7に示すように第3層目cである第2金属吸収層の表面は粗面化された状態になっている。
 また、図7に示す電極基板フィルムおいては、透明基板eの片面にアンチグレア層fが設けられているが、透明基板eの両面にアンチグレア層fを設けてもよい。
 そして、電極基板フィルムの電極(配線)パターンをタッチパネル用のストライプ状若しくは格子状とすることで、本発明に係る電極基板フィルムをタッチパネルに用いることができる。また、電極(配線)パターンに配線加工された積層細線は、積層体フィルムの積層構造を維持し、透明基板e側に第1層目aの金属吸収層が存在するため、高輝度照明下においても透明基板eに設けられた電極等の回路パターンが視認され難い電極基板フィルムとして提供することができる。
 更に、図7に示す本発明に係る電極基板フィルムにおいては、透明基板eの片面に設けられたアンチグレア層fの作用により、透明基板e越しに観察される回路パターンからの正反射(透明基板e側から数えて第1層目aの金属吸収層と透明基板eとの界面における第1層目正反射g)と、透明基板e側から数えて第3層目cの第2金属吸収層からの正反射が同程度に揃えられるため、積層細線から成る回路パターンが更に視認され難くなる利点を有する。
 そして、本発明に係る積層体フィルムから上記電極基板フィルムに配線加工するには、従来技術と同様、上述した公知のサブトラクティブ法により加工が可能である。
(5)本発明に係る積層体フィルムと電極基板フィルムの構成材料
(5-1)透明基板を構成する樹脂フィルム
 上記樹脂フィルムの材質としては特に限定されることはなく、その具体例として、ポリエチレンテレフタレート(PET)、ポリエーテルスルフォン(PES)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリオレフィン(PO)、トリアセチルセルロース(TAC)およびノルボルネンの樹脂材料から選択された樹脂フィルムの単体、あるいは、上記樹脂材料から選択された樹脂フィルム単体とこの単体の片面または両面を覆うアクリル系有機膜との複合体が挙げられる。特に、ノルボルネン樹脂材料については、代表的なものとして、日本ゼオン社のゼオノア(商品名)やJSR社のアートン(商品名)等が挙げられる。
 尚、本発明に係る積層体フィルムを用いて作製される電極基板フィルムは「タッチパネル」等に使用するため、上記樹脂フィルムの中でも可視波長領域での透明性に優れるものが望ましい。
(5-2)金属吸収層の構成材料(金属材)
 透明基板側から数えて第1層目の金属吸収層および第3層目である第2金属吸収層は、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と窒素や酸素を含む反応性ガスを用いた反応成膜法により形成され、上記金属材として特にCu単体若しくはNi-Cu合金が好ましい。また、金属吸収層を構成する金属酸化物の酸化が進み過ぎると金属吸収層が透明になってしまうため、黒化膜になる程度の酸化レベルに設定することを要する。上記反応成膜法としては、マグネトロンスパッタ、イオンビームスパッタ、真空蒸着、イオンプレーティング、CVD等がある。また、金属吸収層の各波長における光学定数(屈折率、消衰係数)は、反応の度合い、すなわち、酸化度や窒化度に大きく影響され、CuやNi系合金から成る金属材だけで決定されるものではない。
(5-3)金属層の構成材料(金属材)
 上記金属層の構成材料(金属材)としては、電気抵抗値が低い金属であれば特に限定されず、例えば、Cu単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Agより選ばれる1種以上の元素が添加されたCu系合金、または、Ag単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Cuより選ばれる1種以上の元素が添加されたAg系合金が挙げられ、特に、Cu単体が、回路パターンの加工性や抵抗値の観点から望ましい。また、金属層の膜厚は電気特性に依存するものであり、光学的な要素から決定されるものではないが、通常、透過光が測定不能なレベルの膜厚に設定される。
 そして、金属層の望ましい膜厚は、電気抵抗の観点からは50nm以上が好ましく、60nm以上がより好ましい。一方、金属層を配線パターンに加工する加工性の観点からは5μm(5000nm)以下が好ましく、3μm(3000nm)以下がより好ましい。
(5-4)アンチグレア処理(アンチグレア層の形成)
 上記アンチグレア層は樹脂フィルムから成る透明基板の少なくとも一方の面にハードコート層として形成され、アンチグレア層を構成するハードコート層は樹脂と微粒子を含有し、該樹脂には紫外線硬化型のウレタン系樹脂やアクリル系樹脂等が用いられる。
 また、アンチグレア層の硬度は、粒径500nm以下のシリカゾル等の無機ゾルを添加することにより制御できる。
 そして、アンチグレア層には、粒径0.5μm~20μmでかつアンチグレア層における層厚の二倍以内の粒径を有する微粒子を加えることができる。また、微粒子には無機微粒子や有機微粒子を用いることができる。無機微粒子には、酸化ケイ素微粒子、酸化チタン微粒子、酸化アルミニウム微粒子、酸化亜鉛微粒子、酸化錫微粒子、炭酸カルシウム微粒子、硫酸バリウム微粒子、タルク微粒子、カオリン微粒子、硫酸カルシウム微粒子等を選択することができ、有機微粒子には、ポリメタクリル酸メチルアクリレート樹脂粉末(PMMA微粒子)、シリコーン樹脂粉末、ポリスチレン樹脂粉末、ポリカーボネート樹脂粉末、アクリルスチレン樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン樹脂粉末、ポリオレフィン樹脂粉末、ポリエステル樹脂粉末、ポリアミド樹脂粉末、ポリイミド樹脂粉末、ポリフッ化エチレン樹脂粉末等を選択することができる。
 更に、微粒子の粒径や配合の割合は、アンチグレア層の表面粗さRaやヘイズ値を考慮して適宜定めることができ、また、アンチグレア層の層厚は30μm以下望ましくは10μm以下であり、光学特性に応じて適宜設定される。
 ところで、アンチグレア処理の評価方法にヘイズ測定(JISK7136)がある。
 図8にヘイズ測定の概略を示す。すなわち、アンチグレア処理が施されたPETフィルム(透明基板)iを積分球hの光入射側に固定し、かつ、積分球hの他端側開口部を拡散板で閉止した状態にして光を入射させ、積分球h内を多重反射した光を積分球下方に設けられた受光器で計測して「全光透過率」jを測定する。次に、上記積分球hの他端側開口部を拡散板で閉止しない状態にして光を入射させ、積分球h内を多重反射した光(但し、開口部を透過した光は含まれない)を上記受光器で計測して「散乱光透過率」kを測定する。
 そして、ヘイズ値=(散乱光透過率)÷(全光透過率)の数式からヘイズ値を求める。
 尚、透明基板の片面にアンチグレア層が設けられた場合のヘイズ値は10%以下が望ましい。アンチグレア層のヘイズ値が10%を超えた場合、タッチパネルを通して観察されるフラットパネルディスプレイの画像を曇らせ、視認性(透過率)を悪化させる。特に、本発明に係る積層体フィルムの積層膜をエッチング処理して電極基板フィルムに加工した場合、エッチングにより積層膜が除去された透明基板のアンチグレア層を介してフラットパネルディスプレイの画像が観測されることになるため、透明基板に設けられたアンチグレア層のヘイズ値は10%以下が望ましい。
 また、上述したように樹脂フィルムから成る透明基板の両面にアンチグレア層を設けてもよい。透明基板の両面にアンチグレア層を設ける場合、それぞれの面のアンチグレア層のヘイズ値が10%以下であればよい。両面にアンチグレア層が設けられた電極基板フィルムを介しフラットディスプレイパネルの画像を観察した場合においても視認性に悪影響を与えない各アンチグレア層のヘイズ値は、各々10%以下である。
 アンチグレア処理を施した透明基板のヘイズ値は、図9に示すようにアンチグレア層内に含まれる微粒子の粒径(粒子サイズs)と密度(粒子密度m)によって主に決定され、微粒子の粒径サイズが大きく、粒子密度が高い程、ヘイズ値に大きく影響する。また、粒径の大きな微粒子を採用した場合、メタルメッシュタッチパネル(メッシュ構造の回路パターンを有するタッチパネル)の後工程において、該メタルメッシュタッチパネルと他のフィルム等と貼り合わせを行うときに隙間を生じさせてしまうことがある。
 また、積層体フィルムや該積層体フィルムを加工して得られる電極基板フィルムの特性としては、ヘイズ値は低い方が望ましい。しかし、積層膜(金属吸収層)の反射率を下げるためには、アンチグレア層の表面粗さがRaで0.1μm以上必要である。そして、アンチグレア層の表面粗さRaを0.1μm以上にすると、アンチグレア層に含まれる微粒子を任意に選択してもヘイズ値は2.5%以上になる。
 更に、メタルメッシュタッチパネル(メッシュ構造の回路パターンを有するタッチパネル)は平面で使用する以外に曲面あるいは折り曲げて使用することがある。アンチグレア層に使用するコート材は硬化後(使用できる状態)で表面硬度(JIS K5600-5-4 1999に準拠する)2H以上のタイプが一般的であるが、図10(A)に示すように硬質なコート材は折り曲げの際に割れてしまうことがある。図10(B)に示すように上記割れを防止するには、硬化後(使用できる状態)の鉛筆硬度がHB~H程度の軟らかいコート材を選択するとよい。この場合、JIS K5600-5-4 1999に準拠するアンチグレア層のひっかき硬度(鉛筆硬度)がH以下の条件を満たすなら、JIS K5600-5-1 1999に規定される「塗膜の機械的性質-耐屈曲性(円筒形マンドレル法)」において、マンドレル径2mmφ以下を実現することができる。
(6)反応成膜法を実施する成膜装置
(6-1)スパッタリングウェブコータ
 成膜法の一例としてスパッタリング法を挙げ、その成膜装置について説明する。
 尚、この成膜装置はスパッタリングウェブコータと称され、ロールツーロール方式で搬送される長尺樹脂フィルム表面に連続的に効率よく成膜処理を施す場合に用いられる。
 具体的に説明すると、ロールツーロール方式で搬送される長尺樹脂フィルムの成膜装置(スパッタリングウェブコータ)は、図5に示すように真空チャンバー10内に設けられており、巻き出しロール11から巻き出された長尺樹脂フィルム12に対して所定の成膜処理を行った後、巻き取りロール24で巻き取るようになっている。これ等巻き出しロール12から巻き取りロール24までの搬送経路の途中に、モータで回転駆動されるキャンロール16が配置されている。このキャンロール16の内部には、真空チャンバー10の外部で温調された冷媒が循環している。
 真空チャンバー10内では、スパッタリング成膜のため、到達圧力10-4Pa程度までの減圧と、その後のスパッタリングガスの導入による0.1~10Pa程度の圧力調整が行われる。スパッタリングガスにはアルゴン等公知のガスが使用され、目的に応じて更に酸素等のガスが添加される。真空チャンバー10の形状や材質は、このような減圧状態に耐え得るものであれば特に限定はなく種々のものを使用することができる。また、真空チャンバー10内を減圧してその状態を維持するため、真空チャンバー10にはドライポンプ、ターボ分子ポンプ、クライオコイル等の種々の装置(図示せず)が組み込まれている。
 巻き出しロール11からキャンロール16までの搬送経路には、長尺樹脂フィルム12を案内するフリーロール13と、長尺樹脂フィルム12の張力の測定を行う張力センサロール14とがこの順で配置されている。また、張力センサロール14から送り出されてキャンロール16に向かう長尺樹脂フィルム12は、キャンロール16の近傍に設けられたモータ駆動の前フィードロール15によってキャンロール16の周速度に対する調整が行われ、これによりキャンロール16の外周面に長尺樹脂フィルム12を密着させることができる。
 キャンロール16から巻き取りロール24までの搬送経路も、上記同様に、キャンロール16の周速度に対する調整を行うモータ駆動の後フィードロール21、長尺樹脂フィルム12の張力の測定を行う張力センサロール22および長尺樹脂フィルム12を案内するフリーロール23がこの順に配置されている。
 上記巻き出しロール11および巻き取りロール24では、パウダークラッチ等によるトルク制御によって長尺樹脂フィルム12の張力バランスが保たれている。また、キャンロール16の回転とこれに連動して回転するモータ駆動の前フィードロール15、後フィードロール21により、巻き出しロール11から長尺樹脂フィルム12が巻き出されて巻き取りロール24に巻き取られるようになっている。
 キャンロール16の近傍には、キャンロール16の外周面上に画定される搬送経路(すなわち、キャンロール16外周面の内の長尺樹脂フィルム12が巻き付けられる領域)に対向する位置に、成膜手段としてのマグネトロンスパッタリングカソード17、18、19および20が設けられ、この近傍に反応性ガスを放出するガス放出パイプ25、26、27、28、29、30、31、32が設置されている。
 ところで、上記金属吸収層と金属層のスパッタリング成膜を実施する際、図5に示すように板状のターゲットを使用できるが、板状ターゲットを用いた場合、ターゲット上にノジュール(異物の成長)が発生することがある。これが問題になる場合は、ノジュールの発生がなくかつターゲットの使用効率も高い円筒形のロータリーターゲットを使用することが好ましい。
(6-2)反応性スパッタリング
 金属酸化物から成る金属吸収層を成膜する目的で酸化物ターゲットを適用した場合、成膜速度が遅く量産に適さない。このため、高速成膜が可能なNi系若しくはCu系の金属ターゲット(金属材)を用い、かつ、酸素を含む反応性ガスを制御しながら導入する反応性スパッタリング等の反応成膜法が採られている。
 そして、反応性ガスを制御する方法として以下の4つの方法が知られている。
(6-2-1)一定流量の反応性ガスを放出する方法。
(6-2-2)一定圧力を保つように反応性ガスを放出する方法。
(6-2-3)スパッタリングカソードのインピーダンスが一定になるように反応性ガスを放出する(インピーダンス制御)方法。
(6-2-4)スパッタリングのプラズマ強度が一定になるように反応性ガスを放出する(プラズマエミッション制御)方法。
 以下、本発明の実施例について比較例を挙げて具体的に説明するが、本発明は以下の実施例により限定されるものではない。
[実施例1~16,比較例1~20]
(アンチグレア層の形成)
 アンチグレア層用の樹脂として、2種類の硬質並びに軟質の紫外線硬化型アクリル系樹脂を適用し、かつ、添加用の微粒子として粒径0.5μm~1μmのポリメタクリル酸メチルアクリレート樹脂粉末(PMMA微粒子)を適用すると共に、PMMA微粒子の粒径と配合量を適宜選択して、表1の「ヘイズ値(%)」「表面粗さRa(μm)」「未成膜フィルムの透過率T(%)」および表2の「表面硬度」欄に示す数値に設定された層厚1μmのアンチグレア層をPETフィルムの片面に形成し、アンチグレア処理がなされた実施例1~16と比較例1~20に係る透明基板を調製した。
 尚、アンチグレア層を有しない透明基板を「参考例」とした。
(特性評価用積層フィルムの製造)
 次に、アンチグレア処理がなされた実施例1~16と比較例1~20に係る透明基板および参考例に係る透明基板に対し、図5に示す成膜装置(スパッタリングウェブコータ)を用いて「第1層目の金属吸収層」と「第2層目の金属層」を形成して積層体フィルムの前駆体である特性評価用積層フィルムを製造した。
 尚、特性評価用積層フィルムの特性対象は、表2に示す「成膜後、PETフィルム越しに測定する波長550nmにおける5°正反射率R(%)」「貼り合わせ時の隙間発生有無」、および、JIS K5600-5-1 1999に準拠するマンドレル径1mmφの「180°曲げ試験のコート割れ」とした。
 すなわち、図5に示す成膜装置(スパッタリングウェブコータ)を用い、反応性ガスには酸素ガスを用いると共に、キャンロール16は、直径600mm、幅750mmのステンレス製で、ロール本体表面にハードクロムめっきが施されている。前フィードロール15と後フィードロール21は直径150mm、幅750mmのステンレス製で、ロール本体表面にハードクロムめっきが施されている。また、各マグネトロンスパッタリングカソード17、18、19、20の上流側と下流側にガス放出パイプ25、26、27、28、29、30、31、32を設置し、かつ、マグネトロンスパッタリングカソード17、18には金属吸収層用のNi-Cuターゲット、マグネトロンスパッタリングカソード19と20には金属層用のCuターゲットを取り付けた。
 また、透明基板を構成する樹脂フィルムには、厚さ50μm、幅600mmで長さ1200mのPETフィルムを用い、キャンロール16は0℃に冷却制御した。また、真空チャンバー10を複数台のドライポンプにより5Paまで排気した後、更に、複数台のターボ分子ポンプとクライオコイルを用いて3×10-3Paまで排気した。
 そして、実施例1~16と比較例1~20に係る透明基板および参考例に係る樹脂フィルムの搬送速度を2m/分にした後、上記ガス放出パイプ29、30、31、32からアルゴンガスを500sccm導入し、カソード19と20については、Cu膜厚80nmが得られる電力制御で成膜を行った。一方、金属吸収層も図5に示すガス放出パイプ25、26、27、28からアルゴンガス500sccmと酸素ガス50sccmが混合された混合ガスを導入し、図5に示すカソード17と18については、Ni-Cu酸化膜厚30nmが得られる電力制御で成膜を行った。
 尚、実施例16に係る樹脂フィルムの金属吸収層に用いたスパッタリングターゲットは、他の実施例と比較例等の「Ni-Cu」と異なる「Cu」としている。
(特性評価)
 次に、実施例1~16と比較例1~20に係る特性評価用積層フィルム、および、参考例に係る特性評価用積層フィルムについて、上記「成膜後、PETフィルム越しに測定する波長550nmにおける5°正反射率R(%)」「貼り合わせ時の隙間発生有無」、および、JIS K5600-5-1 1999に準拠するマンドレル径1mmφの「180°曲げ試験のコート割れ」を測定した。
 この結果を以下の表1と表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(評価結果)
(1)アンチグレア層が設けられた実施例1~16と比較例1~20に係る特性評価用積層フィルム、および、参考例に係る特性評価用積層フィルムの「成膜後、PETフィルム越しに測定する波長550nmにおける5°正反射率R(%)」欄から分かるように、アンチグレア処理を施すことによりPETフィルム越しに観測される波長550nmにおける5°正反射率R(%)が低減されていることが確認される。そして、PETフィルム越しに観測される波長550nmにおける5°正反射率R(%)が低減されていることから、実施例1~16と比較例1~20に係るアンチグレア層を有する透明基板の両面に積層細線から成る回路パターンが形成され、かつ、透明基板側から数えて第2層目の金属層の一部が湿式めっき法によりそれぞれ形成されている電極基板フィルムにおいては、上記アンチグレア層の作用により、透明基板越しに観察される回路パターンからの正反射(透明基板側から数えて第1層目の金属吸収層と透明基板との界面における反射)と、透明基板側から数えて第3層目の第2金属吸収層からの正反射が同程度に揃えられるため、上記積層細線から成る回路パターンが極めて視認され難くなる効果を有することが確認される。
(2)アンチグレア層の「表面粗さRaが0.2μm以下」並びに「ヘイズ値が2.5~10%」(表1参照)およびJIS K5600-5-4 1999に準拠するアンチグレア層の「ひっかき硬度がH以下」(表2参照)の要件を満たす実施例1~10、16に係る特性評価用積層フィルムの「貼り合わせ時の隙間発生有無」(表2参照)とJIS K5600-5-1 1999に準拠するマンドレル径1mmφの「180°曲げ試験のコート割れ」(表2参照)欄において全て「なし」と評価されていることから分かるように、実施例1~10、16に係るアンチグレア層を有する透明基板を用いて製造された電極基板フィルム(メタルメッシュタッチパネル)においては、該メタルメッシュタッチパネルと他のフィルムを貼り合わせるときに隙間を生じさせてしまう弊害がなく、かつ、該メタルメッシュタッチパネルを曲面あるいは折り曲げて使用しても図10(A)に示すようなアンチグレア層の割れが発生することもない効果を有することが確認される。
(3)一方、アンチグレア層の「表面粗さRaが0.2μm以下」と「ヘイズ値が2.5~10%」(表1参照)の要件は満たすがJIS K5600-5-4 1999に準拠するアンチグレア層の「ひっかき硬度がH以下」(表2参照)の要件を満たさない実施例11~15に係る特性評価用積層フィルムのJIS K5600-5-1 1999に準拠するマンドレル径1mmφの「180°曲げ試験のコート割れ」欄(表2参照)から分かるように、アンチグレア層のひっかき硬度がHを越えた透明基板を用いて製造された電極基板フィルム(メタルメッシュタッチパネル)においては、該メタルメッシュタッチパネルを曲面あるいは折り曲げて使用した場合にアンチグレア層の割れを生ずることがあるため平面で使用する方が望ましいことが確認される。
(4)他方、アンチグレア層の「表面粗さRaが0.2μm以下」(表1参照)なる要件を満たさない比較例5~11および比較例14~20に係る特性評価用積層フィルムの「貼り合わせ時の隙間発生有無」(表2参照)欄の評価「有り」から分かるように、比較例5~11および比較例14~20に係るアンチグレア層を有する透明基板を用いて製造された電極基板フィルム(メタルメッシュタッチパネル)においては、該メタルメッシュタッチパネルと他のフィルムを貼り合わせるときに隙間を生じさせてしまう弊害があることが確認される。
(5)また、アンチグレア層の「ヘイズ値が2.5~10%」(表1参照)なる要件を満たさない比較例1~2、3~4、10~13および19~20に係る特性評価用積層フィルムの「未成膜フィルムの透過率T(%)」(表1参照)から分かるように、アンチグレア層の「ヘイズ値が2.5~10%」なる要件を満たさない透明基板を用いた場合、透過率が90%未満になってしまうことが確認される。
 本発明に係る積層体フィルムおよび該積層体フィルムを用いて作製された電極基板フィルムにおいては回路パターンが高輝度照明下においても視認され難いためFPD(フラットパネルディスプレイ)表面に設置する「タッチパネル」に利用される産業上の可能性を有している。
 10 真空チャンバー
 11 巻き出しロール
 12 長尺樹脂フィルム
 13 フリーロール
 14 張力センサロール
 15 前フィードロール
 16 キャンロール
 17 マグネトロンスパッタリングカソード
 18 マグネトロンスパッタリングカソード
 19 マグネトロンスパッタリングカソード
 20 マグネトロンスパッタリングカソード
 21 後フィードロール
 22 張力センサロール
 23 フリーロール
 24 巻き取りロール
 25 ガス放出パイプ
 26 ガス放出パイプ
 27 ガス放出パイプ
 28 ガス放出パイプ
 29 ガス放出パイプ
 30 ガス放出パイプ
 31 ガス放出パイプ
 32 ガス放出パイプ
 40 樹脂フィルム(透明基板)
 41 金属吸収層
 42 金属層(銅層)
 43 金属吸収層
 44 金属層(銅層)
 50 樹脂フィルム(透明基板)
 51 金属吸収層
 52 乾式成膜法で形成された金属層(銅層)
 53 金属吸収層
 54 乾式成膜法で形成された金属層(銅層)
 55 湿式成膜法で形成された金属層(銅層)
 56 湿式成膜法で形成された金属層(銅層)
 60 樹脂フィルム(透明基板)
 61 金属吸収層
 62 乾式成膜法で形成された金属層(銅層)
 63 金属吸収層
 64 乾式成膜法で形成された金属層(銅層)
 65 湿式成膜法で形成された金属層(銅層)
 66 湿式成膜法で形成された金属層(銅層)
 67 第2金属吸収層
 68 第2金属吸収層
 70 樹脂フィルム(透明基板)
 71 金属吸収層
 72 乾式成膜法で形成された金属層(銅層)
 73 金属吸収層
 74 乾式成膜法で形成された金属層(銅層)
 75 湿式成膜法で形成された金属層(銅層)
 76 湿式成膜法で形成された金属層(銅層)
 77 第2金属吸収層
 78 第2金属吸収層

Claims (20)

  1.  樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層膜とで構成される積層体フィルムにおいて、
     上記積層膜が形成される前の透明基板の表面に、表面粗さRaが0.2μm以下でかつヘイズ値が2.5~10%のアンチグレア層を備えると共に、
     上記アンチグレア層上に形成される積層膜が、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層を有することを特徴とする積層体フィルム。
  2.  JIS K5600-5-4 1999に準拠する上記アンチグレア層のひっかき硬度がH以下であることを特徴とする請求項1に記載の積層体フィルム。
  3.  透明基板側から数えて第2層目の金属層の膜厚が、50nm以上5000nm以下であることを特徴とする請求項1に記載の積層体フィルム。
  4.  透明基板側から数えて第2層目の金属層の一部が、湿式めっき法により形成されていることを特徴とする請求項1または3に記載の積層体フィルム。
  5.  透明基板側から数えて第1層目の上記金属吸収層が、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されていることを特徴とする請求項1に記載の積層体フィルム。
  6.  透明基板側から数えて第3層目の上記第2金属吸収層が、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されていることを特徴とする請求項1または5に記載の積層体フィルム。
  7.  上記合金が、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれる1種以上の元素が添加されたNi系合金で構成されていることを特徴とする請求項5または6に記載の積層体フィルム。
  8.  樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられたメッシュ構造の回路パターンを有する電極基板フィルムにおいて、
     上記回路パターンは、透明基板の少なくとも一方の面に設けられた積層膜を加工して形成された線幅20μm以下の積層細線で構成されており、
     上記積層膜が形成される前の透明基板の表面に、表面粗さRaが0.2μm以下でかつヘイズ値が2.5~10%のアンチグレア層を備えると共に、
     上記アンチグレア層上に形成される積層膜が、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層を有することを特徴とする電極基板フィルム。
  9.  JIS K5600-5-4 1999に準拠する上記アンチグレア層のひっかき硬度がH以下であることを特徴とする請求項8に記載の電極基板フィルム。
  10.  透明基板側から数えて第2層目の金属層の膜厚が、50nm以上5000nm以下であることを特徴とする請求項8に記載の電極基板フィルム。
  11.  透明基板側から数えて第2層目の金属層の一部が、湿式めっき法により形成されていることを特徴とする請求項8または10に記載の電極基板フィルム。
  12.  透明基板側から数えて第1層目の上記金属吸収層が、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されていることを特徴とする請求項8に記載の電極基板フィルム。
  13.  透明基板側から数えて第3層目の上記第2金属吸収層が、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されていることを特徴とする請求項8または12に記載の電極基板フィルム。
  14.  上記合金が、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれる1種以上の元素が添加されたNi系合金で構成されていることを特徴とする請求項12または13に記載の電極基板フィルム。
  15.  樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層膜とで構成される積層体フィルムの製造方法において、
     上記透明基板の少なくとも一方の面に表面粗さRaが0.2μm以下でかつヘイズ値が2.5~10%のアンチグレア層を形成する第1工程と、
     上記積層膜の透明基板側から数えて第1層目の金属吸収層を上記アンチグレア層上に形成する第2工程と、
     上記積層膜の透明基板側から数えて第2層目の金属層を上記金属吸収層上に形成する第3工程と、
     上記積層膜の透明基板側から数えて第3層目の第2金属吸収層を上記金属層上に形成する第4工程、
    を具備することを特徴とする積層体フィルムの製造方法。
  16.  上記第3工程において、上記金属層の一部を湿式めっき法により形成することを特徴とする請求項15に記載の積層体フィルムの製造方法。
  17.  上記第2工程において、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により上記金属吸収層を形成することを特徴とする請求項15に記載の積層体フィルムの製造方法。
  18.  上記第4工程において、Ni単体若しくはCu単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により上記第2金属吸収層を形成することを特徴とする請求項15または17に記載の積層体フィルムの製造方法。
  19.  上記合金が、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cu、Znより選ばれる1種以上の元素が添加されたNi系合金で構成されていることを特徴とする請求項17または18に記載の積層体フィルムの製造方法。
  20.  樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層細線から成るメッシュ構造の回路パターンを有する電極基板フィルムの製造方法において、
     請求項1~7のいずれかに記載の積層体フィルムの積層膜を化学エッチング処理して、線幅が20μm以下である上記積層細線を配線加工することを特徴とする電極基板フィルムの製造方法。
PCT/JP2015/084616 2014-12-24 2015-12-10 積層体フィルムと電極基板フィルムおよびこれ等の製造方法 WO2016104159A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016535748A JP6233618B2 (ja) 2014-12-24 2015-12-10 積層体フィルムと電極基板フィルムおよびこれ等の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014259973 2014-12-24
JP2014-259973 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016104159A1 true WO2016104159A1 (ja) 2016-06-30

Family

ID=56150189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084616 WO2016104159A1 (ja) 2014-12-24 2015-12-10 積層体フィルムと電極基板フィルムおよびこれ等の製造方法

Country Status (3)

Country Link
JP (1) JP6233618B2 (ja)
TW (1) TWI668117B (ja)
WO (1) WO2016104159A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016137693A (ja) * 2015-01-29 2016-08-04 マツダ株式会社 加飾積層体
JP2018015973A (ja) * 2016-07-27 2018-02-01 住友金属鉱山株式会社 積層体フィルム及びこれをパターニング加工してなる電極基板フィルム
CN108162518A (zh) * 2017-12-27 2018-06-15 信利光电股份有限公司 一种贴膜结构及其制作方法
CN109963710A (zh) * 2016-11-17 2019-07-02 科思创德国股份有限公司 用于热管理的透明多层体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103348A (ja) * 2005-09-12 2007-04-19 Nitto Denko Corp 透明導電性フィルム、タッチパネル用電極板およびタッチパネル
JP2013225276A (ja) * 2012-04-19 2013-10-31 Samsung Electro-Mechanics Co Ltd タッチパネル及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI388876B (zh) * 2003-12-26 2013-03-11 Fujifilm Corp 抗反射膜、偏光板,其製造方法,液晶顯示元件,液晶顯示裝置,及影像顯示裝置
KR100954309B1 (ko) * 2005-09-12 2010-04-21 닛토덴코 가부시키가이샤 투명 도전성 필름, 터치 패널용 전극판 및 터치 패널
CN102012532B (zh) * 2009-09-03 2015-05-20 株式会社巴川制纸所 光学层叠体、偏振片及使用其的显示装置
WO2015166850A1 (ja) * 2014-05-02 2015-11-05 コニカミノルタ株式会社 透明導電性フィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103348A (ja) * 2005-09-12 2007-04-19 Nitto Denko Corp 透明導電性フィルム、タッチパネル用電極板およびタッチパネル
JP2013225276A (ja) * 2012-04-19 2013-10-31 Samsung Electro-Mechanics Co Ltd タッチパネル及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016137693A (ja) * 2015-01-29 2016-08-04 マツダ株式会社 加飾積層体
JP2018015973A (ja) * 2016-07-27 2018-02-01 住友金属鉱山株式会社 積層体フィルム及びこれをパターニング加工してなる電極基板フィルム
CN109963710A (zh) * 2016-11-17 2019-07-02 科思创德国股份有限公司 用于热管理的透明多层体
CN108162518A (zh) * 2017-12-27 2018-06-15 信利光电股份有限公司 一种贴膜结构及其制作方法

Also Published As

Publication number Publication date
TW201627146A (zh) 2016-08-01
TWI668117B (zh) 2019-08-11
JP6233618B2 (ja) 2017-11-22
JPWO2016104159A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2017099187A1 (ja) 透明導電体
JP6233618B2 (ja) 積層体フィルムと電極基板フィルムおよびこれ等の製造方法
JP6597621B2 (ja) 積層体フィルムと電極基板フィルムおよびこれ等の製造方法
JP6617607B2 (ja) 成膜方法及びこれを用いた積層体基板の製造方法
JP2007206146A (ja) 反射防止フィルムとその製造方法、およびその反射防止フィルムを備えたディスプレイ
TWI676549B (zh) 積層體薄膜與電極基板薄膜及彼等之製造方法
TWI671185B (zh) 積層體薄膜與電極基板薄膜及彼等之製造方法
JP2006339526A (ja) 透光性電磁波シールド膜の製造方法および透光性電磁波シールド膜
JP6277926B2 (ja) 成膜装置および積層体フィルムと電極基板フィルムの各製造方法
JP6597622B2 (ja) 電極基板フィルムとその製造方法
JP6613995B2 (ja) 硬化層を備えた基板を有する積層体フィルム
JP6891418B2 (ja) 電極基板フィルム及びその製造方法
WO2014185403A1 (ja) 電子部品を作製するために用いられる積層体および積層体製造方法、フィルムセンサおよびフィルムセンサを備えるタッチパネル装置、並びに、濃度勾配型の金属層を成膜する成膜方法
JP6891716B2 (ja) 長尺体への印刷方法
JP6330708B2 (ja) 成膜方法および積層体フィルムの製造方法
JP6361462B2 (ja) 透明導電性積層体の選別方法、及び透明導電性積層体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016535748

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872728

Country of ref document: EP

Kind code of ref document: A1