WO2016103953A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2016103953A1
WO2016103953A1 PCT/JP2015/081771 JP2015081771W WO2016103953A1 WO 2016103953 A1 WO2016103953 A1 WO 2016103953A1 JP 2015081771 W JP2015081771 W JP 2015081771W WO 2016103953 A1 WO2016103953 A1 WO 2016103953A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
wave device
conductive film
elastic wave
piezoelectric film
Prior art date
Application number
PCT/JP2015/081771
Other languages
English (en)
French (fr)
Inventor
高峰 裕一
毅 山根
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016566022A priority Critical patent/JPWO2016103953A1/ja
Priority to KR1020177017163A priority patent/KR20170086628A/ko
Priority to CN201580065140.XA priority patent/CN107005225B/zh
Priority to DE112015005769.2T priority patent/DE112015005769T5/de
Priority to KR1020197010690A priority patent/KR20190042107A/ko
Publication of WO2016103953A1 publication Critical patent/WO2016103953A1/ja
Priority to US15/596,079 priority patent/US10256793B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • H03H9/6496Reducing ripple in transfer characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14517Means for weighting
    • H03H9/1452Means for weighting by finger overlap length, apodisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/178Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of a laminated structure of multiple piezoelectric layers with inner electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters

Definitions

  • the present invention relates to an elastic wave device.
  • an elastic wave filter described in Patent Document 1 below has a laminated body in which a high acoustic velocity film, a low acoustic velocity film made of an insulator, and a piezoelectric film are laminated in this order.
  • An IDT electrode is provided on the piezoelectric film.
  • the bulk wave sound velocity propagating through the high sound velocity film is faster than the main mode elastic wave sound velocity propagating through the piezoelectric film.
  • the bulk-wave sound velocity propagating through the low-sonic film is slower than the main-mode elastic wave sound velocity propagating through the piezoelectric film.
  • An object of the present invention is to provide an elastic wave device in which a ripple is hardly generated in a pass band.
  • An elastic wave device is an elastic wave device having a piezoelectric film, wherein a high sound velocity member having a bulk wave sound velocity propagating faster than an elastic wave sound velocity of a main mode propagating through the piezoelectric film;
  • a plurality of IDT electrodes having electrode fingers and bus bars are provided on the piezoelectric film, and the plurality of IDTs are formed by the first conductive film. At least the electrode fingers of the electrodes are configured, and at least part of the connection wiring connecting the plurality of IDT electrodes is configured by the second conductive film.
  • the piezoelectric film is directly laminated on the high sound velocity member.
  • an adhesion layer is formed between the high-sonic speed member and the piezoelectric film.
  • the adhesion between the high sound velocity member and the piezoelectric film can be enhanced.
  • the bulk wave sound velocity that is laminated on the high sound velocity member is lower than the acoustic wave velocity of the main mode that propagates through the piezoelectric film.
  • a low sound velocity film is further provided, and the piezoelectric film is indirectly laminated on the high sound velocity member via the low sound velocity film.
  • connection wirings are made of the second conductive film.
  • the area of the first conductive film can be reduced.
  • surge breakdown of the IDT electrode can be made difficult to occur, and ripples can be made difficult to occur in the passband.
  • the connection wiring includes a first wiring portion made of the first conductive film, and the first wiring portion is between the IDT electrodes.
  • An insulating film that is connected and is provided on the first wiring portion is further provided, and a part of the second conductive film is provided on the insulating film.
  • a three-dimensional wiring in which the first wiring portion and a part of the second conductive film are stacked via the insulating film can be configured. Thereby, the elastic wave device can be reduced in size.
  • the electrode fingers and the bus bar are configured by the first conductive film.
  • an electrode finger and a bus bar can be provided simultaneously.
  • the electrode fingers are constituted by the first conductive film, the bus bar is made of the second conductive film, and the bus bar is the electrode. It overlaps the edge of the finger. In this case, the area of the first conductive film can be reduced. As a result, surge breakdown of the IDT electrode can be made difficult to occur, and ripples can be made difficult to occur in the passband.
  • the high sound speed member is formed of a high sound speed film, and is provided on a surface of the high sound speed film opposite to the surface on which the low sound speed film is provided.
  • the support substrate is further provided.
  • a high sound velocity member that can make it difficult to effectively leak the energy of the elastic wave can be provided on the support substrate. Therefore, the Q value can be effectively increased.
  • the high-sonic speed member is formed of a high-sonic speed substrate.
  • the support substrate can be omitted. Therefore, the number of parts and the cost can be reduced. Therefore, productivity can be improved.
  • a ladder filter having a series arm resonator and a parallel arm resonator, wherein at least one of the series arm resonator and the parallel arm resonator is provided.
  • the elastic wave device is a longitudinally coupled resonator type elastic wave filter.
  • ripples can be made difficult to occur in the pass band of the longitudinally coupled resonator type acoustic wave filter.
  • the duplexer includes a first bandpass filter and a second bandpass filter having a passband different from that of the first bandpass filter. At least one of the first band-pass filter and the second band-pass filter is an elastic wave device configured according to the present invention. In this case, it is possible to make it difficult for ripples to occur in at least one of the passbands of the first bandpass filter and the second bandpass filter of the duplexer.
  • FIG. 1 is a circuit diagram of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic front sectional view of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a schematic plan view of the series arm resonator according to the first embodiment of the present invention.
  • FIG. 4 is a schematic front sectional view of an elastic wave device according to a modification of the first embodiment of the present invention.
  • FIG. 5 is a partially cutaway plan view schematically showing a state in which the first conductive film is provided on the piezoelectric film in the first embodiment of the present invention.
  • FIG. 6 is a partially cutaway plan view schematically showing the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 1 is a circuit diagram of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic front sectional view of the acoustic wave device according to the
  • FIG. 7 is a partially cutaway plan view schematically showing a state in which the first conductive film is provided on the piezoelectric film in the comparative example.
  • FIG. 8 is a partially cutaway plan view schematically showing an elastic wave device of a comparative example.
  • FIG. 9 is a diagram showing the frequency characteristics of the acoustic wave device in the pass band of the first embodiment of the present invention and the comparative example.
  • FIG. 10 is a partially cutaway plan view schematically showing a state in which the first conductive film is provided on the piezoelectric film in the second embodiment of the present invention.
  • FIG. 11 is a partially cutaway plan view schematically showing an acoustic wave device according to a second embodiment of the present invention.
  • FIG. 12 is a partially cutaway plan view schematically showing a state in which the first conductive film is provided on the piezoelectric film in the third embodiment of the present invention.
  • FIG. 13 is a partially cutaway plan view schematically showing an acoustic wave device according to a third embodiment of the present invention.
  • FIG. 14 is a circuit diagram of an acoustic wave device according to the fourth embodiment of the present invention.
  • FIG. 15 is a schematic plan view showing a modification of the IDT electrode in the first embodiment of the present invention.
  • FIG. 16 is a diagram showing the relationship between the LiTaO 3 film thickness and the Q value in the acoustic wave device.
  • FIG. 1 is a circuit diagram of an acoustic wave device according to a first embodiment of the present invention.
  • the elastic wave device 1 is a ladder type filter having series arm resonators S1 to S5 and parallel arm resonators P1 to P4. Between the input terminal 13 and the output terminal 14, series arm resonators S1 to S5 are connected in series with each other.
  • a parallel arm resonator P1 is connected between a connection point between the series arm resonator S1 and the series arm resonator S2 and the ground potential.
  • a parallel arm resonator P2 is connected between a connection point between the series arm resonator S2 and the series arm resonator S3 and the ground potential.
  • a parallel arm resonator P3 is connected between a connection point between the series arm resonator S3 and the series arm resonator S4 and the ground potential.
  • a parallel arm resonator P4 is connected between a connection point between the series arm resonator S4 and the series arm resonator S5 and the ground potential.
  • FIG. 2 is a schematic front sectional view of the acoustic wave device according to the first embodiment of the present invention.
  • the elastic wave device 1 has a support substrate 2.
  • the support substrate 2 is made of Si.
  • the support substrate 2 may be made of a material other than Si.
  • a bonding film 3 is laminated on the support substrate 2.
  • the bonding film 3 bonds the support substrate 2 and a high sound velocity film 4 as a high sound velocity member described later.
  • Bonding film 3 is made of SiO 2.
  • the bonding film 3 may be made of a material other than SiO 2 as long as it has a high bonding force with both the support substrate 2 and the high sound velocity film 4.
  • the bonding film 3 is not necessarily provided, but the bonding film 3 is preferably provided because the bonding force between the support substrate 2 and the high acoustic velocity film 4 can be increased.
  • a high sound velocity film 4 is laminated on the bonding film 3.
  • the bulk acoustic velocity that propagates through the high acoustic velocity film 4 is higher than the acoustic velocity in the main mode that propagates through the piezoelectric membrane 6 described later.
  • the high acoustic velocity film 4 is made of SiN.
  • the high sound velocity film 4 may be made of, for example, aluminum nitride, aluminum oxide, silicon carbide, silicon oxynitride, a DLC film, or a material mainly composed of diamond as long as it is a relatively high sound velocity material. Good.
  • the sound speed of the bulk wave is a sound speed inherent to the material, and there are a P wave that vibrates in the wave traveling direction, that is, the longitudinal direction, and an S wave that vibrates in the lateral direction that is perpendicular to the traveling direction.
  • the bulk wave propagates in any of the piezoelectric film, the high sound speed film, and the low sound speed film.
  • isotropic materials there are P waves and S waves.
  • anisotropic materials there are P waves, slow S waves, and fast S waves.
  • an SH wave and an SV wave are generated as two S waves.
  • the acoustic wave velocity of the main mode propagating through the piezoelectric film is to obtain a pass band as a filter and resonance characteristics as a resonator among the three modes of P wave, SH wave, and SV wave. Say the mode you are using.
  • the low sound velocity film 5 is laminated on the high sound velocity film 4, a low sound velocity film 5 is laminated.
  • the bulk wave sound velocity propagating through the low sound velocity film 5 is lower than the elastic wave sound velocity in the main mode propagating through the piezoelectric film 6 described later.
  • Low acoustic velocity film 5 is made of SiO 2.
  • the low sound velocity film 5 may be made of, for example, a material mainly composed of glass, silicon oxynitride, tantalum oxide, or a compound obtained by adding fluorine, carbon, or boron to silicon oxide, as long as the material has a relatively low sound velocity. It may be.
  • a piezoelectric film 6 is laminated on the low acoustic velocity film 5.
  • the piezoelectric film 6 is made of a LiTaO 3 film having a cut angle of 50 °.
  • the cut angle of the piezoelectric film 6 is not particularly limited to the above value.
  • the piezoelectric film 6 may be made of a piezoelectric single crystal other than LiTaO 3 such as LiNbO 3 .
  • the piezoelectric film 6 may be made of piezoelectric ceramics.
  • the laminated body 7 in which the high acoustic velocity film 4, the low acoustic velocity film 5, and the piezoelectric film 6 are laminated in this order is provided.
  • the thickness of the support substrate 2 is 200 ⁇ m.
  • the thickness of the bonding film 3 is 1800 nm.
  • the thickness of the high acoustic velocity film 4 is 1345 nm.
  • the thickness of the low acoustic velocity film 5 is 670 nm.
  • the thickness of the piezoelectric film 6 is 600 nm.
  • the thicknesses of the support substrate 2, the bonding film 3, the high sound velocity film 4, and the low sound velocity film 5 are not particularly limited to the above values.
  • the thickness of the piezoelectric film 6 is preferably 3.5 ⁇ or less when the wavelength ⁇ is determined by the electrode finger pitch of the IDT electrode 8 described later.
  • This will be described with reference to FIG. Figure 16 is a high speed of sound support substrate made of silicon, low sound speed film and the Euler angles of SiO 2 film having a thickness of 0.35 ⁇ (0 °, 140.0 °, 0 °) LiTaO 3 i.e. cut angle 90 ° in the structure obtained by laminating a piezoelectric film from a diagram showing the thickness of LiTaO 3, the relationship between the Q value.
  • the thickness of LiTaO 3 is preferably 3.5 ⁇ or less. More preferably, it is 1.5 ⁇ or less.
  • the IDT electrode 8 is provided on the piezoelectric film 6.
  • the IDT electrode 8 is the IDT electrode of the series arm resonator S1 shown in FIG. In the following, the configuration of the series arm resonator S1 will be described as a representative example.
  • FIG. 3 is a schematic plan view of the series arm resonator according to the first embodiment of the present invention.
  • FIG. 3 is a schematic plan view of a series arm resonator in which a protective film described later is omitted.
  • Reflectors 9 are provided on both sides of the IDT electrode 8 in the surface acoustic wave propagation direction. Thereby, a series arm resonator S1 is configured.
  • the IDT electrode 8 includes a plurality of first electrode fingers 8a1, a plurality of second electrode fingers 8b1, and first and second bus bars 8a2 and 8b2.
  • the plurality of first electrode fingers 8a1 and the plurality of second electrode fingers 8b1 are interleaved with each other.
  • One ends of the plurality of first electrode fingers 8a1 are commonly connected to the first bus bar 8a2.
  • One ends of the plurality of second electrode fingers 8b1 are commonly connected to the second bus bar 8b2.
  • the IDT electrode 8 further includes a plurality of first dummy electrodes 8a3 and a plurality of second dummy electrodes 8b3.
  • One ends of the plurality of first dummy electrodes 8a3 are commonly connected to the first bus bar 8a2.
  • the plurality of first dummy electrodes 8a3 are opposed to the plurality of second electrode fingers 8b1. One ends of the plurality of second dummy electrodes 8b3 are commonly connected to the second bus bar 8b2. The plurality of second dummy electrodes 8b3 are opposed to the plurality of first electrode fingers 8a1. In the present specification, those having electrode fingers and bus bars are collectively referred to as “IDT electrodes”.
  • the IDT electrode 8 is a laminate in which an Al—Cu alloy containing 1% by weight of Cu is laminated on Ti.
  • the thickness of Ti is 12 nm, and the thickness of the Al—Cu alloy is 162 nm.
  • the IDT electrode 8 may have a laminated structure other than the above, or may be a single layer.
  • a protective film 12 is provided on the IDT electrode 8.
  • the protective film 12 is made of SiO 2 and has a thickness of 25 nm.
  • the protective film 12 may be made of a material other than SiO 2 and the thickness is not particularly limited to the above value.
  • the protective film 12 is not necessarily provided, the protective film 12 is preferably provided because the IDT electrode 8 can be hardly damaged.
  • the series arm resonators S2 to S5 and the parallel arm resonators P1 to P4 have an IDT electrode and a reflector, like the series arm resonator S1.
  • the IDT electrodes and reflectors of the series arm resonators S1 to S5 and the parallel arm resonators P1 to P4 are made of a first conductive film to be described later.
  • the energy of the elastic wave concentrates on the medium of low sound velocity.
  • the high sound velocity film 4, the low sound velocity film 5 and the piezoelectric film 6 are laminated in this order, the energy of elastic waves can be confined in the low sound velocity film 5 and the piezoelectric film 6. Therefore, it is difficult for the energy of elastic waves to leak to the support substrate 2 side. Accordingly, the Q value can be increased.
  • a high sound velocity substrate 54 may be used as the high sound velocity member instead of the high sound velocity film.
  • the high sonic substrate 54 is made of, for example, Si.
  • the high sound velocity substrate 54 may be made of a material other than Si as long as the bulk wave sound velocity propagating through the acoustic wave velocity of the main mode propagating through the piezoelectric film 6 is higher. Even when the high sound velocity substrate 54 is used, the energy of elastic waves can be confined in the low sound velocity film 5 and the piezoelectric film 6.
  • the support substrate 2 shown in FIG. 2 can be omitted. Therefore, the number of parts and the cost can be reduced. Therefore, productivity can be improved.
  • the high acoustic velocity film 4 made of a member that can make the acoustic wave energy more difficult to leak is provided on the support substrate 2. Thereby, the Q value can be further increased.
  • an adhesion layer may be formed between the high sound velocity film 4 and the piezoelectric film 6.
  • the adhesion layer may be a resin or metal, and for example, an epoxy resin or a polyimide resin is used.
  • FIG. 6 is a partially cutaway plan view schematically showing the acoustic wave device according to the present embodiment.
  • FIG. 5 is a partially cutaway plan view schematically showing a state in the middle of the manufacturing process of the acoustic wave device of the present embodiment. More specifically, FIG. 5 is a partially cutaway plan view schematically showing a state in which the first conductive film is provided on the piezoelectric film.
  • FIG. 6 is a partially cutaway plan view with the protective film omitted.
  • the series arm resonator, the parallel arm resonator, the IDT electrode, and the reflector are schematically shown by drawing two diagonal lines in a rectangle. .
  • series arm resonators S1 to S3 and S5 and parallel arm resonators P2 and P3 are formed on the piezoelectric film 6.
  • Each IDT electrode and each reflector is a first conductive film provided on the piezoelectric film.
  • the second conductive film is provided on the piezoelectric film 6 and part of the first conductive film. A configuration in which the second conductive film is provided is shown in FIG.
  • an input terminal 13, a ground terminal 15, and a connection wiring 17 are provided on the piezoelectric film 6.
  • an output terminal is also provided on the piezoelectric film 6.
  • the input terminal 13, the output terminal, the ground terminal 15, and the connection wiring 17 are made of a second conductive film.
  • connection wiring 17 connects the series arm resonator S1 and the series arm resonator S2. Similarly, the connection wiring 17 connects the series arm resonators S1 to S5, the parallel arm resonators P1 to P4, the input terminal 13 and the output terminal 14 shown in FIG.
  • the parallel arm resonators P1 to P4 are connected to the ground terminal 15 by the connection wiring 17.
  • the ground terminal 15 is connected to the ground potential. Thereby, the circuit shown in FIG. 1 is configured.
  • connection wiring 17 is made of the second conductive film and has a portion that is not stacked on the first conductive film. As shown in FIG. 5, when the series arm resonators S1 to S3 and S5 and the parallel arm resonators P2 and P3 are provided on the piezoelectric film 6, the connection wiring 17 shown in FIG. 6 is not provided. Note that the connection wiring 17 may include components other than the second conductive film as long as it has a portion that is not stacked on the first conductive film. For example, an insulating film or the like may be stacked.
  • the second conductive film reaches the first and second bus bars 8a2 and 8b2 of the IDT electrode 8 of the series arm resonator S1 shown in FIG. Similarly, the second conductive film reaches the bus bars of the IDT electrodes of the series arm resonators S2 to S5 and the parallel arm resonators P1 to P4. Thereby, the electrical resistance can be reduced. Note that the second conductive film may not reach each bus bar.
  • the first conductive film and the second conductive film are provided on the piezoelectric film 6, a metal film is formed on the piezoelectric film 6 by, for example, a CVD method or a sputtering method. Next, the metal film is patterned by a photolithography method or the like. Thereby, the first conductive film can be obtained. At this time, the IDT electrodes and reflectors of the series arm resonators S1 to S5 and the parallel arm resonators P1 to P4 shown in FIG. 1 are provided.
  • a resist pattern is formed on the piezoelectric film 6 and the first conductive film by, for example, photolithography.
  • a metal film is formed on the entire surface by CVD or sputtering.
  • the metal film is patterned by removing the resist pattern. Thereby, a second conductive film can be obtained.
  • an input terminal 13, an output terminal 14, a ground terminal 15, and a connection wiring 17 are provided.
  • connection wiring 17 is made of the second conductive film. Thereby, it is possible to make it difficult for ripples to occur in the passband. This will be described below.
  • FIG. 8 is a partially cutaway plan view schematically showing an elastic wave device of a comparative example.
  • FIG. 7 is a partially cutaway plan view schematically showing a state in the middle of the manufacturing process of the elastic wave device of the comparative example. More specifically, FIG. 7 is a partially cutaway plan view schematically showing a state where the first conductive film is provided on the piezoelectric film.
  • connection wiring 67 of the elastic wave device 61 of the comparative example shown in FIG. 8 is a laminated body laminated so that the first conductive film and the second conductive film are in contact with each other. More specifically, the connection wiring 67 includes a first wiring portion 67a made of the first conductive film shown in FIG. 7 and a second wiring portion 67b made of the second conductive film shown in FIG.
  • the elastic wave device 61 of the comparative example is a ladder type filter having the same configuration as that of the first embodiment except for the above.
  • the piezoelectric film is laminated on the low acoustic velocity film that is an insulator. For this reason, in the process of forming the electrode on the piezoelectric film, electric charges are likely to accumulate on the electrode. Further, as shown in FIG. 7, in the comparative example, the first wiring portion 67a is also provided simultaneously with the IDT electrodes of the series arm resonators S1 to S3 and S5 and the parallel arm resonators P2 and P3. Therefore, the surface area of the first conductive film is large.
  • the amount of charge accumulated in the first conductive film is large.
  • the facing area between the end face of the tip of the electrode finger of the IDT electrode and the facing portion of the end face is particularly small. For this reason, electric charges are concentrated on the facing portion of the IDT electrode. Furthermore, the distance between the end face of the tip of the electrode finger of the IDT electrode and the opposing portion of the end face is short. Therefore, in the comparative example, surge breakdown may occur at the facing portion of the IDT electrode.
  • Surge breakdown is more likely to occur as the surface area of the simultaneously formed electrodes increases. Furthermore, surge breakdown of the IDT electrode is more likely to occur as the minimum value of the facing area of the facing portion is smaller. Therefore, the greater the following area ratio, the easier the surge breakdown of the IDT electrode occurs.
  • connection wiring 17 shown in FIG. 6 is made of the second conductive film. That is, when the IDT electrode is formed, the connection wiring 17 is not formed. Thereby, the surface area of the electrode formed simultaneously with the IDT electrode and the IDT electrode can be reduced. Therefore, the area ratio can be reduced. Therefore, surge breakdown of the IDT electrode can be made difficult to occur, and a ripple is hardly generated in the pass band.
  • the end face area corresponds to the minimum facing area of the above area.
  • the minimum end face area of the tip faces of the plurality of first and second electrode fingers is the minimum facing of the above area ratio. It corresponds to the area.
  • FIG. 9 is a diagram showing frequency characteristics in the pass band of the elastic wave devices of the first embodiment and the comparative example of the present invention.
  • a solid line indicates the frequency characteristic of the first embodiment, and a broken line indicates the frequency characteristic of the comparative example.
  • the connection wiring 17 that connects the series arm resonators or between the resonators and the external terminals is the second conductive film, and has a portion that is not stacked on the first conductive film.
  • the structure is shown.
  • the first and second bus bars 78a2 and 78b2 of the IDT electrode 78 may be formed of a second conductive film. That is, the first bus bar 78a2 is constituted by the second conductive film, and each first electrode finger 78a1 is constituted by the first conductive film.
  • a first bus bar 78a2 overlaps the end of each first electrode finger 78a1. Thereby, each first electrode finger 78a1 is connected by the first bus bar 78a2.
  • the second bus bar 78b2 is made of a second conductive film
  • each second electrode finger 78b1 is made of a first conductive film.
  • a second bus bar 78b2 overlaps the end of each second electrode finger 78b1.
  • Each second electrode finger 78b1 is connected by a second bus bar 78b2.
  • first and second dummy electrodes 78a3 and 78b3 made of the first conductive film are also provided.
  • FIG. 11 is a partially cutaway plan view schematically showing an acoustic wave device according to a second embodiment of the present invention.
  • FIG. 10 is a partially cutaway plan view schematically showing a state in the middle of the manufacturing process of the acoustic wave device of the second embodiment. More specifically, FIG. 10 is a partially cutaway plan view schematically showing a state where the first conductive film is provided on the piezoelectric film.
  • the elastic wave device 21 is different from the first embodiment in that it is a longitudinally coupled resonator type elastic wave filter. Except for the above, the second embodiment has the same configuration as that of the first embodiment.
  • IDT electrodes 28A to 28E As shown in FIG. 10, on the piezoelectric film 6, IDT electrodes 28A to 28E, a reflector 29, and a first ground wiring 25a are provided.
  • the IDT electrodes 28A to 28E, the reflector 29, and the first ground wiring 25a are made of a first conductive film provided on the piezoelectric film 6.
  • the IDT electrodes 28A to 28E are arranged in the surface acoustic wave propagation direction of the IDT electrodes 28A to 28E.
  • the IDT electrodes 28A to 28E have first end portions 28Aa to 28Ea and second end portions 28Ab to 28Eb, respectively.
  • the first end portions 28Aa to 28Ea and the second end portions 28Ab to 28Eb face each other.
  • the reflectors 29 are provided on both sides of the IDT electrodes 28A to 28E in the surface acoustic wave propagation direction.
  • the acoustic wave device 21 is a longitudinally coupled resonator type acoustic wave filter having IDT electrodes 28A to 28E and a reflector 29.
  • the first ground wiring 25a is electrically connected to the ground potential.
  • the first ground wiring 25a has a portion connected to the reflector 29 and the second ends 28Ab, 28Cb, 28Eb of the IDT electrodes 28A, 28C, 28E.
  • the first ground wiring 25a is not connected between any IDT electrodes.
  • the second conductive film is provided in the step after the first conductive film is provided.
  • a structure in which the second conductive film is provided is shown in FIG.
  • a second ground wiring 25b made of a second conductive film is provided on the first ground wiring 25a and the piezoelectric film 6.
  • the second ground wiring 25b is connected to the first ground wiring 25a.
  • the first ground wiring 25a and the second ground wiring 25b have a portion connected to the ground potential. Thereby, the first and second ground lines 25a and 25b are electrically connected to the ground potential.
  • the first end portions 28Ba and 28Da of the IDT electrodes 28B and 28D are connected to the second ground wiring 25b.
  • the second conductive film reaches each bus bar of each IDT electrode also in this embodiment.
  • An insulating film 22 is laminated on the piezoelectric film 6 and the first ground wiring 25a.
  • a hot-side wiring 24a made of a second conductive film is provided on the piezoelectric film 6 and the insulating film 22 .
  • the hot-side wiring 24a is connected to the first end portions 28Aa, 28Ca, 28Ea of the IDT electrodes 28A, 28C, 28E.
  • the hot-side wiring is also connected to the second end portions 28Bb and 28Db of the IDT electrodes 28B and 28D.
  • the hot-side wiring to which the IDT electrode 28B and the IDT electrode 28D are connected is also a connection wiring 27 that connects the IDT electrode 28B and the IDT electrode 28D. That is, the connection wiring 27 is made of the second conductive film.
  • the hot-side wiring 24 a and the connection wiring 27 are provided via the insulating film 22 at a position overlapping the first ground wiring 25 a in a plan view.
  • a three-dimensional wiring in which the hot-side wiring 24 a and the connection wiring 27 and the first ground wiring 25 a are stacked via the insulating film 22 is configured. Accordingly, the area required for providing the first and second ground wirings 25a and 25b, the hot-side wiring 24a, and the connection wiring 27 can be reduced. Therefore, size reduction can be achieved.
  • the insulating film 22 may be provided at least at a position where the first ground wiring 25a overlaps with the hot-side wiring 24a and the connection wiring 27 in a plan view.
  • the connection wiring 27 is made of the second conductive film, and has a portion that is not stacked on the first conductive film. As shown in FIG. 10, none of the IDT electrodes 28A to 28E is connected by the first conductive film. Therefore, the area of the first conductive film can be reduced. That is, the area of the electrode formed simultaneously with the IDT electrode and the IDT electrode having the above area ratio can be reduced. Therefore, surge breakdown of the IDT electrode can be made difficult to occur, and a ripple is hardly generated in the pass band.
  • the first ground wiring 25a is provided in order to configure the three-dimensional wiring and reduce the size.
  • the first ground wiring 25a may not be provided. Thereby, the area of the first conductive film can be further reduced. Therefore, surge breakdown of the IDT electrode can be made less likely to occur, and ripple is less likely to occur in the passband.
  • FIG. 13 is a partially cutaway plan view schematically showing an acoustic wave device according to a third embodiment of the present invention.
  • FIG. 12 is a partially cutaway plan view schematically showing a state in the middle of the manufacturing process of the acoustic wave device of the third embodiment. More specifically, FIG. 12 is a partially cutaway plan view schematically showing a state in which the first conductive film is provided on the piezoelectric film.
  • the acoustic wave device 31 is associated with the connection wiring 37 having a portion made of the first conductive film, the longitudinally coupled resonator type acoustic wave filter having nine IDT electrodes, and nine IDT electrodes.
  • the electrode structure is different from that of the second embodiment. Except for these, the third embodiment has the same configuration as the second embodiment.
  • IDT electrodes 38A to 38I, a reflector 39, and a first ground wiring 35a are provided on the piezoelectric film 6.
  • the IDT electrodes 38A to 38I, the reflector 39, and the first ground wiring 35a are made of a first conductive film provided on the piezoelectric film 6.
  • the IDT electrodes 38A to 38I are arranged in the surface acoustic wave propagation direction of the IDT electrodes 38A to 38I.
  • the IDT electrodes 38A to 38I have first end portions 38Aa to 38Ia and second end portions 38Ab to 38Ib, respectively.
  • the first end portions 38Aa to 38Ia and the second end portions 38Ab to 38Ib face each other.
  • the reflectors 39 are provided on both sides of the IDT electrodes 38A to 38I in the surface acoustic wave propagation direction.
  • the acoustic wave device 31 is a longitudinally coupled resonator type acoustic wave filter having IDT electrodes 38A to 38I and a reflector 39.
  • the first ground wiring 35a is electrically connected to the ground potential.
  • the first ground wiring 35a has a portion connected to the reflector 39 and the second end portions 38Ab, 38Cb, 28Eb, 38Gb, 38Ib of the IDT electrodes 38A, 38C, 38E, 38G, 38I.
  • the first ground wiring 35a also has a portion connecting the IDT electrodes 38C, 38E, and 38G.
  • the portion of the first ground wiring 35a that connects the IDT electrodes 38C, 38E, and 38G is also a first wiring portion 37a of a connection wiring that will be described later.
  • the second conductive film is provided in the step after the first conductive film is provided.
  • a structure in which the second conductive film is provided is shown in FIG.
  • the second ground wiring 35b made of the second conductive film is provided on the first ground wiring 35a and the piezoelectric film 6.
  • the second ground wiring 35b is connected to the first ground wiring 35a.
  • the second ground wiring 35b has a portion connected to the ground potential. Thereby, the first and second ground wirings 35a and 35b are electrically connected to the ground potential.
  • the first end portions 38Ba, 38Da, 38Fa, 38Ha of the IDT electrodes 38B, 38D, 38F, 38H are connected to the second ground wiring 35b.
  • the second conductive film reaches each bus bar of each IDT electrode in this embodiment as well.
  • An insulating film 32 is laminated on the piezoelectric film 6 and the first ground wiring 35a.
  • hot-side wirings 34a and 34b made of a second conductive film are provided on the piezoelectric film 6 and the insulating film 32.
  • the hot-side wiring 34a is connected to the first end portions 38Aa, 38Ca, 38Ea, 38Ga, 38Ia of the IDT electrodes 38A, 38C, 38E, 38G, 38I.
  • the hot-side wiring 34b is connected to the second ends 38Bb, 38Db, 38Fb, 38Hb of the IDT electrodes 38B, 38D, 38F, 38H.
  • the hot-side wiring 34b is also a connection wiring 37 that connects the IDT electrodes 38B, 38D, 38F, and 38H. More specifically, in the present embodiment, the connection wiring 37 includes a first wiring portion 37a made of a first conductive film and a second wiring portion 37b made of a second conductive film. The connection wiring 37 has a portion that is not stacked on the first conductive film in the second wiring portion 37b. The IDT electrodes 38B, 38D, 38F, and 38H are connected by the second wiring portion 37b of the connection wiring 37. As shown in FIG. 12, the IDT electrodes 38C, 38E, and 38G are connected by a first wiring portion 37a.
  • an insulating film 32 is laminated on the first wiring portion 37a, and a second wiring portion 37b is laminated on the insulating film 32.
  • a hot-side wiring 34a is provided via an insulating film 32 at a position overlapping the first ground wiring 35a that is not directly connected to the IDT electrodes 38C, 38E, and 38G.
  • the IDT electrodes 38B, 38D, 38F, and 38H are connected by the second wiring portion 37b of the connection wiring 37. As shown in FIG. 12, the portion of the first conductive film that connects the IDT electrodes 38B, 38D, 38F, and 38H is not formed. Thus, even if the connection wiring 37 has the first wiring portion 37a, the area of the first conductive film can be reduced. Therefore, surge breakdown of the IDT electrode can be made difficult to occur, and a ripple is hardly generated in the pass band.
  • FIG. 14 is a circuit diagram of an acoustic wave device according to the fourth embodiment of the present invention.
  • the elastic wave device 40 of the present embodiment is a duplexer having a first band-pass filter 41a and a second band-pass filter 41b having a different pass band from the first band-pass filter 41a. Except for the above, the fourth embodiment has a configuration similar to that of the first embodiment.
  • the acoustic wave device 40 includes an antenna terminal 44a, an input terminal 13, and an output terminal 44b provided on the piezoelectric film.
  • the antenna terminal 44a is connected to the antenna.
  • the antenna terminal 44a functions as an input terminal and an output terminal.
  • a signal input from the input terminal 13 is output from the antenna terminal 44a.
  • a signal input from the antenna terminal 44a is output from the output terminal 44b.
  • An impedance adjustment inductor L is connected between the antenna terminal 44a and the ground potential.
  • the first band-pass filter 41a is a ladder filter. Series arm resonators S1 to S5 are connected in series between the input terminal 13 and the antenna terminal 44a. Except for the above, the first band-pass filter 41a is a ladder filter having the same configuration as that of the acoustic wave device 1 of the first embodiment.
  • the second band-pass filter 41b includes a longitudinally coupled resonator type elastic wave filter 41b1 and characteristic adjusting resonators 46a to 46d.
  • the longitudinally coupled resonator type acoustic wave filter 41b1 has the same configuration as the acoustic wave device 21 of the second embodiment.
  • Resonators 46a and 46b are connected in series between the antenna terminal 44a and the longitudinally coupled resonator type acoustic wave filter 41b1.
  • a resonator 46c is connected between a connection point between the resonator 46a and the resonator 46b and the ground potential.
  • a resonator 46d is connected between the output terminal of the longitudinally coupled resonator type elastic wave filter 41b1 and the ground potential.
  • the first and second bandpass filters may be, for example, ladder filters, or may be longitudinally coupled resonator type acoustic wave filters.
  • First and second connection wiring 28A to 28E IDT electrodes 28Aa to 28Ea ... First End portion 28Ab to 28Eb ... Second end portion 29 ... Reflector 31 ... Acoustic wave device 32 ... Insulating film 34a, 34b ... Hot side wiring 35a, 35b ... First and second ground wiring 37 ... Connection wiring 37 , 37b, first and second wiring portions 38A to 38I, IDT electrodes 38Aa to 38Ia, first end 38Ab to 38Ib, second end 39, reflector 40, elastic wave device 41a, 41b, first. , Second band-pass filter 41b1 ... longitudinally coupled resonator type acoustic wave filter 44a ... antenna terminal 44b ... output terminals 46a to 46d ...

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 通過帯域内においてリップルが生じ難い弾性波装置を提供する。 弾性波装置1は、圧電膜6を有する弾性波装置1であって、圧電膜6を伝搬するメインモードの弾性波音速よりも伝搬するバルク波音速が高速である高音速部材と、高音速部材上に直接または間接に積層されている圧電膜6と、圧電膜6上に設けられている第1の導電膜と、圧電膜6上及び第1の導電膜の少なくとも一部の上に設けられている第2の導電膜とを備える。圧電膜6上には電極指とバスバーとを有する複数のIDT電極が設けられており、第1の導電膜により、複数のIDT電極8の少なくとも電極指が構成されており、第2の導電膜により、複数のIDT電極8間を接続している接続配線の少なくとも一部が構成されている。

Description

弾性波装置
 本発明は弾性波装置に関する。
 従来、弾性波装置が携帯電話機などに広く用いられている。
 例えば、下記の特許文献1に記載の弾性波フィルタは、高音速膜、絶縁体からなる低音速膜及び圧電膜がこの順番で積層された積層体を有する。圧電膜上に、IDT電極が設けられている。
 なお、高音速膜を伝搬するバルク波音速は、圧電膜を伝搬するメインモードの弾性波音速よりも高速である。低音速膜を伝搬するバルク波音速は、圧電膜を伝搬するメインモードの弾性波音速よりも低速である。
国際公開第2012/086639号
 しかしながら、特許文献1に記載の弾性波フィルタでは、圧電膜の厚みが薄く、さらに絶縁体からなる低音速膜が圧電膜下に設けられているため、圧電膜上にIDT電極を形成する工程において、電荷が滞留してしまい、IDT電極の電極指とバスバーとの間などにおいてサージ破壊が生じることがあった。従って、弾性波フィルタの通過帯域内においてリップルが生じることがあった。リップルの発生周波数や大きさもばらつきがちであった。
 本発明の目的は、通過帯域内においてリップルが生じ難い弾性波装置を提供することにある。
 本発明に係る弾性波装置は、圧電膜を有する弾性波装置であって、前記圧電膜を伝搬するメインモードの弾性波音速よりも伝搬するバルク波音速が高速である高音速部材と、前記高音速部材上に直接または間接に積層されている前記圧電膜と、前記圧電膜上に設けられている第1の導電膜と、前記圧電膜上及び前記第1の導電膜の少なくとも一部の上に設けられている第2の導電膜とを備え、前記圧電膜上には、電極指とバスバーとを有する複数のIDT電極が設けられており、前記第1の導電膜により、前記複数のIDT電極の少なくとも前記電極指が構成されており、前記第2の導電膜により、前記複数のIDT電極間を接続している接続配線の少なくとも一部が構成されている。
 本発明に係る弾性波装置のある特定の局面では、前記圧電膜が、前記高音速部材上に直接積層されている。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記高音速部材と前記圧電膜との間に密着層が形成されている。この場合には、高音速部材と圧電膜との密着性を高めることができる。
 本発明に係る弾性波装置の他の特定の局面では、前記高音速部材上に積層されており、前記圧電膜を伝搬するメインモードの弾性波音速よりも、伝搬するバルク波音速が低速である低音速膜がさらに備えられており、前記圧電膜が、前記低音速膜を介して前記高音速部材上に間接に積層されている。
 本発明に係る弾性波装置の他の特定の局面では、前記接続配線の全てが前記第2の導電膜からなる。この場合、第1の導電膜の面積を小さくすることができる。それによって、IDT電極のサージ破壊を生じ難くすることができ、通過帯域内においてリップルを生じ難くすることができる。
 本発明に係る弾性波装置の他の特定の局面では、前記接続配線が、前記第1の導電膜からなる第1の配線部分を有し、前記第1の配線部分が、前記IDT電極間を接続しており、前記第1の配線部分の上に設けられている絶縁膜をさらに備え、前記第2の導電膜の一部が前記絶縁膜上に設けられている。この場合、第1の配線部分と第2の導電膜の一部とが絶縁膜を介して積層された立体配線を構成することができる。それによって、弾性波装置を小型にすることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記第1の導電膜により前記電極指及び前記バスバーが構成されている。この場合、電極指及びバスバーを同時に設けることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記第1の導電膜により前記電極指が構成されており、前記バスバーが前記第2の導電膜からなり、かつ前記バスバーが前記電極指の端部に重なっている。この場合、第1の導電膜の面積を小さくすることができる。それによって、IDT電極のサージ破壊を生じ難くすることができ、通過帯域内においてリップルを生じ難くすることができる。
 本発明に係る弾性波装置の別の特定の局面では、前記高音速部材が高音速膜からなり、前記高音速膜の、前記低音速膜が設けられている面とは反対側の面に設けられている支持基板をさらに備える。この場合、弾性波のエネルギーを効果的に漏洩し難くし得る高音速部材を支持基板上に設けることができる。よって、Q値を効果的に高めることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記高音速部材が、高音速基板からなる。この場合、前記支持基板を省くことができる。よって、部品点数及びコストを減らすことができる。従って、生産性を高めることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、直列腕共振子及び並列腕共振子を有するラダー型フィルタであって、前記直列腕共振子及び前記並列腕共振子の内の少なくとも一方が前記複数のIDT電極を有する。この場合、ラダー型フィルタの通過帯域内においてリップルを生じ難くすることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、弾性波装置は、縦結合共振子型弾性波フィルタである。この場合、縦結合共振子型弾性波フィルタの通過帯域内においてリップルを生じ難くすることができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、第1の帯域通過型フィルタ及び前記第1の帯域通過型フィルタと通過帯域が異なる第2の帯域通過型フィルタを有するデュプレクサであって、前記第1の帯域通過型フィルタ及び前記第2の帯域通過型フィルタの内の少なくとも一方が、本発明に従って構成されている弾性波装置である。この場合、デュプレクサの第1の帯域通過型フィルタ及び第2の帯域通過型フィルタの内の少なくとも一方の通過帯域内においてリップルを生じ難くすることができる。
 本発明によれば、通過帯域内においてリップルが生じ難い弾性波装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の回路図である。 図2は、本発明の第1の実施形態に係る弾性波装置の略図的正面断面図である。 図3は、本発明の第1の実施形態における直列腕共振子の略図的平面図である。 図4は、本発明の第1の実施形態の変形例の弾性波装置の略図的正面断面図である。 図5は、本発明の第1の実施形態における圧電膜上に第1の導電膜を設けた状態を略図的に示す部分切欠き平面図である。 図6は、本発明の第1の実施形態に係る弾性波装置を略図的に示す部分切欠き平面図である。 図7は、比較例における圧電膜上に第1の導電膜を設けた状態を略図的に示す部分切欠き平面図である。 図8は、比較例の弾性波装置を略図的に示す部分切欠き平面図である。 図9は、本発明の第1の実施形態及び比較例の通過帯域における弾性波装置の周波数特性を示す図である。 図10は、本発明の第2の実施形態における圧電膜上に第1の導電膜を設けた状態を略図的に示す部分切欠き平面図である。 図11は、本発明の第2の実施形態に係る弾性波装置を略図的に示す部分切欠き平面図である。 図12は、本発明の第3の実施形態における圧電膜上に第1の導電膜を設けた状態を略図的に示す部分切欠き平面図である。 図13は、本発明の第3の実施形態に係る弾性波装置を略図的に示す部分切欠き平面図である。 図14は、本発明の第4の実施形態に係る弾性波装置の回路図である。 図15は、本発明の第1の実施形態におけるIDT電極の変形例を示す略図的平面図である。 図16は、弾性波装置におけるLiTaOの膜厚と、Q値との関係を示す図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の回路図である。
 弾性波装置1は、直列腕共振子S1~S5及び並列腕共振子P1~P4を有するラダー型フィルタである。入力端子13と出力端子14との間には、直列腕共振子S1~S5が互いに直列に接続されている。直列腕共振子S1と直列腕共振子S2との間の接続点とグラウンド電位との間には、並列腕共振子P1が接続されている。直列腕共振子S2と直列腕共振子S3との間の接続点とグラウンド電位との間には、並列腕共振子P2が接続されている。直列腕共振子S3と直列腕共振子S4との間の接続点とグラウンド電位との間には、並列腕共振子P3が接続されている。直列腕共振子S4と直列腕共振子S5との間の接続点とグラウンド電位との間には、並列腕共振子P4が接続されている。
 以下において、図2及び図3を用いて、弾性波装置1のより具体的な構成を説明する。
 図2は、本発明の第1の実施形態に係る弾性波装置の略図的正面断面図である。
 弾性波装置1は、支持基板2を有する。支持基板2は、Siからなる。なお、支持基板2は、Si以外の材料からなっていてもよい。
 支持基板2上には、接合膜3が積層されている。接合膜3は、支持基板2と後述する高音速部材としての高音速膜4とを接合している。接合膜3は、SiOからなる。なお、接合膜3は、支持基板2及び高音速膜4の双方との接合力が高い材料であれば、SiO以外の材料からなっていてもよい。接合膜3は、必ずしも設けられていなくともよいが、支持基板2と高音速膜4との接合力を高めることができるため、接合膜3が設けられていることが好ましい。
 接合膜3上には、高音速膜4が積層されている。高音速膜4を伝搬するバルク波音速は、後述する圧電膜6を伝搬するメインモードの弾性波音速よりも高速である。高音速膜4は、SiNからなる。なお、高音速膜4は、相対的に高音速な材料であれば、例えば、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、酸窒化ケイ素、DLC膜またはダイヤモンドを主成分とする材料などからなっていてもよい。
 なお、バルク波の音速は材料に固有の音速であり、波の進行方向すなわち縦方向に振動するP波と、進行方向に垂直な方向である横方向に振動するS波とが存在する。上記バルク波は、圧電膜、高音速膜、低音速膜のいずれにおいても伝搬する。等方性材料の場合には、P波とS波とが存在する。異方性材料の場合、P波と、遅いS波と、速いS波とが存在する。そして、異方性材料を用いて弾性表面波を励振した場合、2つのS波として、SH波とSV波とが生じる。本明細書において、圧電膜を伝搬するメインモードの弾性波音速とは、P波、SH波及びSV波の3つのモードのうち、フィルタとしての通過帯域や、共振子としての共振特性を得るために使用しているモードを言うものとする。
 高音速膜4上には、低音速膜5が積層されている。低音速膜5を伝搬するバルク波音速は、後述する圧電膜6を伝搬するメインモードの弾性波音速よりも低速である。低音速膜5は、SiOからなる。なお、低音速膜5は、相対的に低音速な材料であれば、例えば、ガラス、酸窒化ケイ素、酸化タンタルまたは酸化ケイ素にフッ素、炭素やホウ素を加えた化合物を主成分とする材料などからなっていてもよい。
 低音速膜5上には、圧電膜6が積層されている。圧電膜6は、カット角50°のLiTaO膜からなる。なお、圧電膜6のカット角は上記値に特に限定されない。圧電膜6は、LiTaO以外の、例えばLiNbOなどの圧電単結晶からなっていてもよい。あるいは、圧電膜6は、圧電セラミックスからなっていてもよい。
 このように、支持基板2及び接合膜3上に、高音速膜4、低音速膜5及び圧電膜6がこの順番で積層された積層体7が設けられている。本実施形態では、支持基板2の厚みは200μmである。接合膜3の厚みは1800nmである。高音速膜4の厚みは1345nmである。低音速膜5の厚みは670nmである。圧電膜6の厚みは600nmである。なお、支持基板2、接合膜3、高音速膜4、及び低音速膜5のそれぞれの厚みは、上記値に特に限定されない。
 他方、上記圧電膜6の厚みは、後述するIDT電極8の電極指ピッチで定める波長λとしたときに、3.5λ以下であることが好ましい。これを、図16を参照して説明する。図16は、シリコンからなる高音速支持基板上に、厚み0.35λのSiO膜からなる低音速膜及びオイラー角(0°,140.0°,0°)すなわちカット角90°のLiTaOから圧電膜を積層した構造における、LiTaOの膜厚と、Q値との関係を示す図である。図16から明らかなように、LiTaOの膜厚が3.5λ以下の場合、3.5λを越えた場合に比べてQ値が高くなることがわかる。従って、好ましくは、LiTaOの膜厚は3.5λ以下であることが好ましい。より好ましくは、1.5λ以下である。
 圧電膜6上には、IDT電極8が設けられている。IDT電極8は、図1に示した直列腕共振子S1のIDT電極である。以下において、代表例として、直列腕共振子S1の構成を説明する。
 図3は、本発明の第1の実施形態における直列腕共振子の略図的平面図である。なお、図3は、後述する保護膜を省いた直列腕共振子の略図的平面図である。
 IDT電極8の弾性表面波伝搬方向における両側には、反射器9が設けられている。それによって、直列腕共振子S1が構成されている。
 IDT電極8は、複数本の第1の電極指8a1、複数本の第2の電極指8b1及び第1,第2のバスバー8a2,8b2を有する。複数本の第1の電極指8a1と複数本の第2の電極指8b1とは、互いに間挿し合っている。複数本の第1の電極指8a1の一端は、第1のバスバー8a2に共通接続されている。複数本の第2の電極指8b1の一端は、第2のバスバー8b2に共通接続されている。IDT電極8は、複数本の第1のダミー電極8a3及び複数本の第2のダミー電極8b3をさらに有する。複数本の第1のダミー電極8a3の一端は、第1のバスバー8a2に共通接続されている。複数本の第1のダミー電極8a3は、複数本の第2の電極指8b1に対向している。複数本の第2のダミー電極8b3の一端は、第2のバスバー8b2に共通接続されている。複数本の第2のダミー電極8b3は、複数本の第1の電極指8a1に対向している。なお、本明細書においては、電極指とバスバーとを有するものを「IDT電極」と総称することとする。
 IDT電極8は、Tiの上に、Cu1重量%を含有してなるAl-Cu合金が積層された積層体である。Tiの厚みは12nmであり、Al-Cu合金の厚みは162nmである。なお、IDT電極8は、上記以外の積層構造を有していてもよく、あるいは単層であってもよい。
 図2に示すように、IDT電極8上には、保護膜12が設けられている。保護膜12は、SiOからなり、厚みは25nmである。なお、保護膜12はSiO以外の材料からなっていてもよく、厚みは上記値に特に限定されない。保護膜12は必ずしも設けられていなくともよいが、IDT電極8を破損し難くすることができるため、保護膜12が設けられていることが好ましい。
 直列腕共振子S2~S5及び並列腕共振子P1~P4は、直列腕共振子S1と同様に、IDT電極及び反射器を有する。直列腕共振子S1~S5及び並列腕共振子P1~P4のIDT電極及び反射器は、後述する第1の導電膜からなる。
 ところで、弾性波のエネルギーは、低音速な媒質に集中する。本実施形態では、高音速膜4、低音速膜5及び圧電膜6がこの順番で積層されているため、低音速膜5及び圧電膜6に弾性波のエネルギーを閉じ込めることができる。よって、支持基板2側に弾性波のエネルギーが漏洩し難い。従って、Q値を高めることができる。
 なお、図4に示す変形例のように、高音速部材として、高音速膜ではなく、高音速基板54を用いてもよい。高音速基板54は、例えば、Siなどからなる。高音速基板54は、圧電膜6を伝搬するメインモードの弾性波音速よりも伝搬するバルク波音速が高速であれば、Si以外の材料からなっていてもよい。高音速基板54を用いても、低音速膜5及び圧電膜6に弾性波のエネルギーを閉じ込めることができる。さらに、図2に示した支持基板2を省くことができる。よって、部品点数及びコストを減らすことができる。従って、生産性を高めることができる。もっとも、本実施形態のように、弾性波エネルギーをより一層漏洩し難くし得る部材からなる高音速膜4が支持基板2上に設けられていることが好ましい。それによって、Q値をより一層高めることができる。
 なお、高音速膜4と圧電膜6との間に密着層が形成されていてもよい。密着層を形成すると、高音速膜4と圧電膜6との密着性を向上させることができる。密着層は、樹脂や金属であればよく、例えば、エポキシ樹脂やポリイミド樹脂が用いられる。
 以下において、図5及び図6を用いて、弾性波装置1のより具体的な構成を説明する。
 図6は、本実施形態に係る弾性波装置を略図的に示す部分切欠き平面図である。図5は、本実施形態の弾性波装置の製造工程の途中の段階の状態を略図的に示す部分切欠き平面図である。より具体的には、図5は、圧電膜上に第1の導電膜を設けた状態を略図的に示す部分切欠き平面図である。なお、図6は、保護膜を省いた部分切欠き平面図である。
 図5、図6並びに後述する図7、図8及び図10~図13では、直列腕共振子、並列腕共振子、IDT電極及び反射器を、矩形に2本の対角線を引いた略図で示す。
 図5に示すように、圧電膜6上には、直列腕共振子S1~S3及びS5並びに並列腕共振子P2,P3が構成されている。図5には示されていないが、圧電膜6上には、図1に示した直列腕共振子S4及び並列腕共振子P1,P4も構成されている。すなわち、圧電膜6上には、直列腕共振子S1~S5及び並列腕共振子P1~P4の各IDT電極及び各反射器が設けられている。上記各IDT電極及び各反射器は、圧電膜上に設けられている第1の導電膜である。本実施形態では、第1の導電膜が設けられた後の工程において、圧電膜6上及び第1の導電膜の一部の上に第2の導電膜が設けられる。第2の導電膜が設けられている構成が、図6に示されている。
 図6に示すように、圧電膜6上には、入力端子13、グラウンド端子15及び接続配線17が設けられている。図示されていないが、圧電膜6上には、出力端子も設けられている。入力端子13、出力端子、グラウンド端子15及び接続配線17は、第2の導電膜からなる。
 接続配線17は、直列腕共振子S1と直列腕共振子S2とを接続している。同様に、接続配線17は、図1に示した直列腕共振子S1~S5、並列腕共振子P1~P4、入力端子13及び出力端子14間も、それぞれ接続している。並列腕共振子P1~P4は、接続配線17によりグラウンド端子15に接続されている。グラウンド端子15は、グラウンド電位に接続される。それによって、図1に示した回路が構成されている。
 接続配線17は、第2の導電膜からなり、かつ第1の導電膜に積層されていない部分を有する。図5に示すように、直列腕共振子S1~S3及びS5並びに並列腕共振子P2及びP3が圧電膜6上に設けられた段階では、図6に示した接続配線17は設けられていない。なお、接続配線17は、第1の導電膜に積層されていない部分を有するものであれば、第2の導電膜以外のものを含んでいてもよい。例えば、絶縁膜などが積層されていてもよい。
 第2の導電膜は、図3に示した直列腕共振子S1のIDT電極8の第1,第2のバスバー8a2,8b2の上に至っている。直列腕共振子S2~S5及び並列腕共振子P1~P4のIDT電極の各バスバー上にも、同様に第2の導電膜が至っている。それによって、電気抵抗を小さくすることができる。なお、各バスバー上には、第2の導電膜は至っていなくてもよい。
 圧電膜6上に第1の導電膜及び第2の導電膜を設けるに際しては、例えば、CVD法やスパッタリング法などにより、圧電膜6上に金属膜を形成する。次に、フォトリソグラフィ法などにより、金属膜をパターニングする。これにより、第1の導電膜を得られる。このとき、図1に示した直列腕共振子S1~S5及び並列腕共振子P1~P4のIDT電極及び反射器が設けられる。
 次に、例えば、フォトリソグラフィ法などにより、圧電膜6上及び第1の導電膜上にレジストパターンを形成する。次に、CVD法やスパッタリング法などにより、全面に金属膜を形成する。次に、レジストパターンを剥離することにより、金属膜をパターニングする。これにより、第2の導電膜を得られる。このとき、入力端子13、出力端子14、グラウンド端子15及び接続配線17が設けられる。
 本実施形態の特徴は、接続配線17が、第2の導電膜からなることにある。それによって、通過帯域においてリップルを生じ難くすることができる。これを、以下において説明する。
 図8は、比較例の弾性波装置を略図的に示す部分切欠き平面図である。図7は、比較例の弾性波装置の製造工程の途中の段階の状態を略図的に示す部分切欠き平面図である。より具体的には、図7は、圧電膜上に第1の導電膜を設けた状態を略図的に示す部分切欠き平面図である。
 図8に示す比較例の弾性波装置61の接続配線67は、第1の導電膜と第2の導電膜とが接するように積層された積層体である。より具体的には、接続配線67は、図7に示す第1の導電膜からなる第1の配線部分67a及び図8に示す第2の導電膜からなる第2の配線部分67bを有する。比較例の弾性波装置61は、上記以外の点では第1の実施形態と同様の構成を有するラダー型フィルタである。
 高音速膜、低音速膜及び圧電膜がこの順番で積層された積層体を有する弾性波装置では、絶縁体である低音速膜上に圧電膜が積層されている。そのため、圧電膜上に電極を形成する工程において、電極に電荷が溜まり易い。さらに、図7に示すように、比較例では、直列腕共振子S1~S3及びS5並びに並列腕共振子P2及びP3のIDT電極と同時に、第1の配線部分67aも設けられている。そのため、第1の導電膜の表面積が大きい。よって、第1の導電膜に溜まる電荷の量が多かった。第1の導電膜においては、IDT電極の電極指の先端の端面と該端面の対向部とにおける対向面積が特に小さい。そのため、IDT電極の上記対向部に電荷が集中していた。さらに、IDT電極の電極指の先端の端面及び該端面の対向部との距離は短い。従って、比較例においては、IDT電極の上記対向部においてサージ破壊が生じることがあった。
 サージ破壊は、同時に形成される電極の表面積が大きいほど生じ易くなる。さらに、IDT電極のサージ破壊は、対向している部分の対向面積の最小値が小さいほど生じ易くなる。よって、下記の面積比が大きいほど、IDT電極のサージ破壊は生じ易くなる。
 (IDT電極及びIDT電極と同時に形成される電極の膜厚×IDT電極及びIDT電極と同時に形成される電極の周辺長)/IDT電極における最小対向面積
 比較例では、上記の面積比が大きかったため、IDT電極の上記対向部においてサージ破壊が生じることがあった。それによって、弾性波装置61の通過帯域内においてリップルが生じることがあった。リップルの発生周波数や大きさもばらつきがちであった。
 これに対して、本実施形態では、図6に示した接続配線17は、第2の導電膜からなる。すなわち、IDT電極を形成するときには、接続配線17は形成されていない。それによって、IDT電極及びIDT電極と同時に形成される電極の表面積を小さくすることができる。よって、上記の面積比を小さくすることができる。従って、IDT電極のサージ破壊を生じ難くすることができ、通過帯域内においてリップルが生じ難い。
 本実施形態では、図3に示した複数本の第1,第2の電極指8a1,8b1及び複数本の第1,第2のダミー電極8a3,8b3のそれぞれの先端の端面の内、最小の端面面積が、上記の面積の最小対向面積に相当する。なお、第1,第2のダミー電極を有さない場合は、複数本の第1,第2の電極指のそれぞれの先端の端面の内、最小の端面面積が、上記の面積比の最小対向面積に相当する。
 図9は、本発明の第1の実施形態及び比較例の弾性波装置の通過帯域における周波数特性を示す図である。実線は第1の実施形態の周波数特性を示し、破線は比較例の周波数特性を示す。
 図9に示すように、比較例では、通過帯域においてリップルが生じている。他方、本実施形態では、通過帯域内においてリップルが生じていないことがわかる。このように、本実施形態では、通過帯域内においてリップルを生じ難くし得ることがわかる。
 図5、図6では、直列腕共振子間または共振子と外部端子間等を接続する接続配線17が、第2の導電膜であって、第1の導電膜に積層されていない部分を有する構造を示した。なお、図15に示すように、IDT電極78の第1,第2のバスバー78a2,78b2を第2の導電膜で構成してもよい。すなわち、第1のバスバー78a2は第2の導電膜により構成されており、各第1の電極指78a1は第1の導電膜により構成されている。各第1の電極指78a1の端部に第1のバスバー78a2が重なっている。それによって、各第1の電極指78a1は、第1のバスバー78a2により接続されている。同様に、第2のバスバー78b2は第2の導電膜により構成されており、各第2の電極指78b1は第1の導電膜により構成されている。各第2の電極指78b1の端部に第2のバスバー78b2が重なっている。各第2の電極指78b1は、第2のバスバー78b2により接続されている。このように、第1,第2のバスバー78a2,78b2を各第1,第2の電極指78a1,78b1に積層されていない部分を有するように形成することで、第1の導電膜の面積を小さくすることができる。よって、第1の実施形態と同様の効果が得られる。
 なお、図15では、第1の導電膜からなる第1,第2のダミー電極78a3,78b3も設けられている。
 本発明の第2の実施形態について、図10及び図11を用いて説明する。
 図11は、本発明の第2の実施形態に係る弾性波装置を略図的に示す部分切欠き平面図である。図10は、第2の実施形態の弾性波装置の製造工程の途中の段階の状態を略図的に示す部分切欠き平面図である。より具体的には、図10は、圧電膜上に第1の導電膜を設けた状態を略図的に示す部分切欠き平面図である。
 弾性波装置21は、縦結合共振子型弾性波フィルタである点で、第1の実施形態とは異なる。上記以外の点では、第2の実施形態は、第1の実施形態と同様の構成を有する。
 図10に示すように、圧電膜6上には、IDT電極28A~28E、反射器29及び第1のグラウンド配線25aが設けられている。IDT電極28A~28E、反射器29及び第1のグラウンド配線25aは、圧電膜6上に設けられている第1の導電膜からなる。
 IDT電極28A~28Eは、IDT電極28A~28Eの弾性表面波伝搬方向に配置されている。IDT電極28A~28Eは、それぞれ第1の端部28Aa~28Ea及び第2の端部28Ab~28Ebを有する。第1の端部28Aa~28Eaと第2の端部28Ab~28Ebとは、互いに対向し合っている。反射器29は、IDT電極28A~28Eの弾性表面波伝搬方向における両側に設けられている。弾性波装置21は、IDT電極28A~28E及び反射器29を有する縦結合共振子型弾性波フィルタである。
 第1のグラウンド配線25aは、グラウンド電位に電気的に接続される。第1のグラウンド配線25aは、反射器29及びIDT電極28A,28C,28Eの第2の端部28Ab,28Cb,28Ebに接続されている部分を有する。第1のグラウンド配線25aは、いずれのIDT電極間も接続していない。
 第1の実施形態と同様に、第1の導電膜が設けられた後の工程において、第2の導電膜が設けられる。第2の導電膜が設けられている構成が、図11に示されている。
 図11に示すように、第1のグラウンド配線25a上及び圧電膜6上には、第2の導電膜からなる第2のグラウンド配線25bが設けられている。第2のグラウンド配線25bは、第1のグラウンド配線25aに接続されている。第1のグラウンド配線25a及び第2のグラウンド配線25bは、グラウンド電位に接続される部分を有する。それによって、第1,第2のグラウンド配線25a,25bは、グラウンド電位に電気的に接続される。
 IDT電極28B,28Dの第1の端部28Ba,28Daは、第2のグラウンド配線25bに接続されている。なお、第1の実施形態と同様に本実施形態においても、各IDT電極の各バスバーには、第2の導電膜が至っている。
 圧電膜6上及び第1のグラウンド配線25a上には、絶縁膜22が積層されている。圧電膜6上及び絶縁膜22上には、第2の導電膜からなるホット側の配線24aが設けられている。ホット側の配線24aは、IDT電極28A,28C,28Eの第1の端部28Aa,28Ca,28Eaに接続されている。ホット側の配線は、IDT電極28B,28Dの第2の端部28Bb,28Dbにも接続されている。IDT電極28B及びIDT電極28Dが接続されているホット側の配線は、IDT電極28BとIDT電極28Dとを接続している接続配線27でもある。すなわち、接続配線27は、第2の導電膜からなる。
 図11に示すように、平面視において、第1のグラウンド配線25aと重なる位置に、絶縁膜22を介してホット側の配線24a及び接続配線27が設けられている。言い換えれば、ホット側の配線24a及び接続配線27と第1のグラウンド配線25aとが絶縁膜22を介して積層された立体配線が構成されている。それによって、第1,第2のグラウンド配線25a,25b及びホット側の配線24a及び接続配線27を設けるために必要な面積を小さくすることができる。よって、小型化を図ることができる。
 なお、絶縁膜22は少なくとも、平面視において、第1のグラウンド配線25aと、ホット側の配線24a及び接続配線27とが重なる位置に設けられていればよい。
 接続配線27は、第2の導電膜からなり、第1の導電膜に積層されていない部分を有する。図10に示すように、IDT電極28A~28Eの内、いずれのIDT電極間も、第1の導電膜により接続されていない。よって、第1の導電膜の面積を小さくすることができる。すなわち、上記の面積比のIDT電極及びIDT電極と同時に形成される電極の面積を小さくすることができる。従って、IDT電極のサージ破壊を生じ難くすることができ、通過帯域内においてリップルが生じ難い。
 本実施形態では、上述したように、立体配線を構成して小型化を図るために、第1のグラウンド配線25aが設けられている。なお、第1のグラウンド配線25aは設けられていなくてもよい。それによって、第1の導電膜の面積をさらに小さくすることができる。よって、IDT電極のサージ破壊をより一層生じ難くすることができ、通過帯域内においてリップルがより一層生じ難い。
 本発明の第3の実施形態について、図12及び図13を用いて説明する。
 図13は、本発明の第3の実施形態に係る弾性波装置を略図的に示す部分切欠き平面図である。図12は、第3の実施形態の弾性波装置の製造工程の途中の段階の状態を略図的に示す部分切欠き平面図である。より具体的には、図12は、圧電膜上に第1の導電膜を設けた状態を略図的に示す部分切欠き平面図である。
 弾性波装置31は、接続配線37が第1の導電膜からなる部分を有すること、縦結合共振子型弾性波フィルタが9個のIDT電極を有すること及び9個のIDT電極を有することに伴う電極構造が、第2の実施形態と異なる。これら以外においては、第3の実施形態は第2の実施形態と同様の構成を有する。
 図12に示すように、圧電膜6上には、IDT電極38A~38I、反射器39及び第1のグラウンド配線35aが設けられている。IDT電極38A~38I、反射器39及び第1のグラウンド配線35aは、圧電膜6上に設けられている第1の導電膜からなる。
 IDT電極38A~38Iは、IDT電極38A~38Iの弾性表面波伝搬方向に配置されている。IDT電極38A~38Iは、それぞれ第1の端部38Aa~38Ia及び第2の端部38Ab~38Ibを有する。第1の端部38Aa~38Iaと第2の端部38Ab~38Ibとは、互いに対向し合っている。反射器39は、IDT電極38A~38Iの弾性表面波伝搬方向における両側に設けられている。弾性波装置31は、IDT電極38A~38I及び反射器39を有する縦結合共振子型弾性波フィルタである。
 第1のグラウンド配線35aは、グラウンド電位に電気的に接続される。第1のグラウンド配線35aは、反射器39及びIDT電極38A,38C,38E,38G,38Iの第2の端部38Ab,38Cb,28Eb,38Gb,38Ibに接続されている部分を有する。第1のグラウンド配線35aは、IDT電極38C,38E,38Gを接続している部分も有する。第1のグラウンド配線35aのIDT電極38C,38E,38Gを接続している部分は、後述する接続配線の第1の配線部分37aでもある。
 第2の実施形態と同様に、第1の導電膜が設けられた後の工程において、第2の導電膜が設けられる。第2の導電膜が設けられている構成が図13に示されている。
 図13に示すように、第1のグラウンド配線35a上及び圧電膜6上には、第2の導電膜からなる第2のグラウンド配線35bが設けられている。第2のグラウンド配線35bは、第1のグラウンド配線35aに接続されている。第2のグラウンド配線35bは、グラウンド電位に接続される部分を有する。それによって、第1,第2のグラウンド配線35a,35bは、グラウンド電位に電気的に接続される。
 IDT電極38B,38D,38F,38Hの第1の端部38Ba,38Da,38Fa,38Haは、第2のグラウンド配線35bに接続されている。なお、第2の実施形態と同様に本実施形態においても、各IDT電極の各バスバーには、第2の導電膜が至っている。
 圧電膜6上及び第1のグラウンド配線35a上には、絶縁膜32が積層されている。圧電膜6上及び絶縁膜32上には、第2の導電膜からなるホット側の配線34a,34bが設けられている。ホット側の配線34aは、IDT電極38A,38C,38E,38G,38Iの第1の端部38Aa,38Ca,38Ea,38Ga,38Iaに接続されている。ホット側の配線34bは、IDT電極38B,38D,38F,38Hの第2の端部38Bb,38Db,38Fb,38Hbに接続されている。
 ホット側の配線34bは、IDT電極38B,38D,38F,38Hを接続している接続配線37でもある。より具体的には、本実施形態では、接続配線37は、第1の導電膜からなる第1の配線部分37a及び第2の導電膜からなる第2の配線部分37bを有する。接続配線37は、第2の配線部分37bにおいては、第1の導電膜に積層されていない部分を有する。IDT電極38B,38D,38F,38Hは、接続配線37の第2の配線部分37bにより接続されている。図12に示すように、IDT電極38C,38E,38Gは、第1の配線部分37aにより接続されている。
 図13に示すように、第1の配線部分37a上に絶縁膜32が積層されており、絶縁膜32上に第2の配線部分37bが積層されている。平面視において、IDT電極38C,38E,38Gに直接接続されていない第1のグラウンド配線35aと重なる位置には、絶縁膜32を介してホット側の配線34aが設けられている。それによって、第2の実施形態と同様に、第1,第2のグラウンド配線35a,35b及びホット側の配線34a,34bを設けるために必要な面積を小さくすることができる。よって、小型化を図ることができる。
 IDT電極38B,38D,38F,38Hは、接続配線37の第2の配線部分37bにより接続されている。図12に示すように、IDT電極38B,38D,38F,38Hを接続する第1の導電膜の部分は形成されていない。このように、接続配線37が第1の配線部分37aを有していても、第1の導電膜の面積を小さくすることができる。従って、IDT電極のサージ破壊を生じ難くすることができ、通過帯域内においてリップルが生じ難い。
 図14は、本発明の第4の実施形態に係る弾性波装置の回路図である。
 本実施形態の弾性波装置40は、第1の帯域通過型フィルタ41aと、第1の帯域通過型フィルタ41aと通過帯域が異なる第2の帯域通過型フィルタ41bとを有するデュプレクサである。上記以外の点では、第4の実施形態は第1の実施形態と同様の構成を有する。
 弾性波装置40は、圧電膜上に設けられているアンテナ端子44a、入力端子13及び出力端子44bを有する。アンテナ端子44aは、アンテナに接続される。アンテナ端子44aは、入力端子及び出力端子の機能を有する。入力端子13から入力された信号は、アンテナ端子44aから出力される。アンテナ端子44aから入力された信号は、出力端子44bから出力される。アンテナ端子44aとグラウンド電位との間には、インピーダンス調整用のインダクタLが接続されている。
 第1の帯域通過型フィルタ41aは、ラダー型フィルタである。入力端子13とアンテナ端子44aとの間には、直列腕共振子S1~S5が互いに直列に接続されている。上記以外の点では、第1の帯域通過型フィルタ41aは、第1の実施形態の弾性波装置1と同様の構成を有するラダー型フィルタである。
 第2の帯域通過型フィルタ41bは、縦結合共振子型弾性波フィルタ41b1及び特性調整用の共振子46a~46dを有する。縦結合共振子型弾性波フィルタ41b1は、第2の実施形態の弾性波装置21と同様の構成を有する。アンテナ端子44aと縦結合共振子型弾性波フィルタ41b1との間には、共振子46a,46bが互いに直列に接続されている。共振子46aと共振子46bとの間の接続点とグラウンド電位との間には、共振子46cが接続されている。縦結合共振子型弾性波フィルタ41b1の出力端とグラウンド電位との間には、共振子46dが接続されている。
 本実施形態においても、第1の実施形態及び第2の実施形態と同様の効果を得ることができる。なお、第1,第2の帯域通過型フィルタは、例えば、いずれもラダー型フィルタであってもよく、いずれも縦結合共振子型弾性波フィルタであってもよい。
 1…弾性波装置
 2…支持基板
 3…接合膜
 4…高音速膜
 5…低音速膜
 6…圧電膜
 7…積層体
 8…IDT電極
 8a1,8b1…第1,第2の電極指
 8a2,8b2…第1,第2のバスバー
 8a3,8b3…第1,第2のダミー電極
 9…反射器
 12…保護膜
 13…入力端子
 14…出力端子
 15…グラウンド端子
 17…接続配線
 21…弾性波装置
 22…絶縁膜
 24a…ホット側の配線
 25a,25b…第1,第2のグラウンド配線
 27…接続配線
 27a,27b…第1,第2の接続配線
 28A~28E…IDT電極
 28Aa~28Ea…第1の端部
 28Ab~28Eb…第2の端部
 29…反射器
 31…弾性波装置
 32…絶縁膜
 34a,34b…ホット側の配線
 35a,35b…第1,第2のグラウンド配線
 37…接続配線
 37a,37b…第1,第2の配線部分
 38A~38I…IDT電極
 38Aa~38Ia…第1の端部
 38Ab~38Ib…第2の端部
 39…反射器
 40…弾性波装置
 41a,41b…第1,第2の帯域通過型フィルタ
 41b1…縦結合共振子型弾性波フィルタ
 44a…アンテナ端子
 44b…出力端子
 46a~46d…共振子
 54…高音速基板
 61…弾性波装置
 67…接続配線
 67a,67b…第1,第2の配線部分
 78…IDT電極
 78a1,78b1…第1,第2の電極指
 78a2,78b2…第1,第2のバスバー
 78a3,78b3…第1,第2のダミー電極
 L…インダクタ
 S1~S5…直列腕共振子
 P1~P4…並列腕共振子

Claims (13)

  1.  圧電膜を有する弾性波装置であって、
     前記圧電膜を伝搬するメインモードの弾性波音速よりも、伝搬するバルク波音速が高速である高音速部材と、
     前記高音速部材上に直接または間接に積層されている前記圧電膜と、
     前記圧電膜上に設けられている第1の導電膜と、
     前記圧電膜上及び前記第1の導電膜の少なくとも一部の上に設けられている第2の導電膜と、
    を備え、
     前記圧電膜上には、電極指とバスバーとを有する複数のIDT電極が設けられており、前記第1の導電膜により、前記複数のIDT電極の少なくとも前記電極指が構成されており、
     前記第2の導電膜により、前記複数のIDT電極間を接続している接続配線の少なくとも一部が構成されている、弾性波装置。
  2.  前記高音速部材上に前記圧電膜が直接積層されている、請求項1に記載の弾性波装置。
  3.  前記高音速部材と前記圧電膜との間に密着層が形成されている、請求項1に記載の弾性波装置。
  4.  前記高音速部材上に積層されており、前記圧電膜を伝搬するメインモードの弾性波音速よりも、伝搬するバルク波音速が低速である低音速膜をさらに備え、前記圧電膜が、前記高音速部材上に、前記低音速膜を介して間接に積層されている、請求項1に記載の弾性波装置。
  5.  前記接続配線の全てが前記第2の導電膜からなる、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記接続配線が、前記第1の導電膜からなる第1の配線部分を有し、前記第1の配線部分が、前記IDT電極間を接続しており、
     前記第1の配線部分の上に設けられている絶縁膜をさらに備え、
     前記第2の導電膜の一部が前記絶縁膜上に設けられている、請求項1~4のいずれか1項に記載の弾性波装置。
  7.  前記第1の導電膜により前記電極指及び前記バスバーが構成されている、請求項1~6のいずれか1項に記載の弾性波装置。
  8.  前記第1の導電膜により前記電極指が構成されており、前記バスバーが前記第2の導電膜からなり、かつ前記バスバーが前記電極指の端部に重なっている、請求項1~6のいずれか1項に記載の弾性波装置。
  9.  前記高音速部材が高音速膜からなり、
     前記高音速膜の、前記低音速膜が設けられている面とは反対側の面に設けられている支持基板をさらに備える、請求項1~8のいずれか1項に記載の弾性波装置。
  10.  前記高音速部材が、高音速基板からなる、請求項1~8のいずれか1項に記載の弾性波装置。
  11.  直列腕共振子及び並列腕共振子を有するラダー型フィルタであって、
     前記直列腕共振子及び前記並列腕共振子の内の少なくとも一方が前記複数のIDT電極を有する、請求項1~10のいずれか1項に記載の弾性波装置。
  12.  縦結合共振子型弾性波フィルタである、請求項1~10のいずれか1項に記載の弾性波装置。
  13.  第1の帯域通過型フィルタ及び前記第1の帯域通過型フィルタと通過帯域が異なる第2の帯域通過型フィルタを有するデュプレクサであって、
     前記第1の帯域通過型フィルタ及び前記第2の帯域通過型フィルタの内の少なくとも一方が、請求項1~12に記載の弾性波装置である、弾性波装置。
PCT/JP2015/081771 2014-12-25 2015-11-11 弾性波装置 WO2016103953A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016566022A JPWO2016103953A1 (ja) 2014-12-25 2015-11-11 弾性波装置
KR1020177017163A KR20170086628A (ko) 2014-12-25 2015-11-11 탄성파 장치
CN201580065140.XA CN107005225B (zh) 2014-12-25 2015-11-11 弹性波装置
DE112015005769.2T DE112015005769T5 (de) 2014-12-25 2015-11-11 Vorrichtung für elastische Wellen
KR1020197010690A KR20190042107A (ko) 2014-12-25 2015-11-11 탄성파 장치
US15/596,079 US10256793B2 (en) 2014-12-25 2017-05-16 Elastic wave detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-262899 2014-12-25
JP2014262899 2014-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/596,079 Continuation US10256793B2 (en) 2014-12-25 2017-05-16 Elastic wave detection

Publications (1)

Publication Number Publication Date
WO2016103953A1 true WO2016103953A1 (ja) 2016-06-30

Family

ID=56149987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081771 WO2016103953A1 (ja) 2014-12-25 2015-11-11 弾性波装置

Country Status (6)

Country Link
US (1) US10256793B2 (ja)
JP (1) JPWO2016103953A1 (ja)
KR (2) KR20190042107A (ja)
CN (1) CN107005225B (ja)
DE (1) DE112015005769T5 (ja)
WO (1) WO2016103953A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088093A1 (ja) * 2016-11-11 2018-05-17 信越化学工業株式会社 複合基板、表面弾性波デバイスおよび複合基板の製造方法
WO2019031202A1 (ja) * 2017-08-09 2019-02-14 株式会社村田製作所 弾性波装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
JPWO2018163841A1 (ja) * 2017-03-09 2019-11-21 株式会社村田製作所 弾性波装置、弾性波装置パッケージ、マルチプレクサ、高周波フロントエンド回路及び通信装置
JPWO2021157714A1 (ja) * 2020-02-06 2021-08-12
KR20210113329A (ko) 2019-03-11 2021-09-15 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
JP2022050573A (ja) * 2017-02-14 2022-03-30 京セラ株式会社 弾性波素子
JP7055503B1 (ja) 2020-12-30 2022-04-18 三安ジャパンテクノロジー株式会社 弾性波デバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031201A1 (ja) * 2017-08-09 2019-02-14 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置
JP6743981B2 (ja) * 2017-09-27 2020-08-19 株式会社村田製作所 弾性波フィルタ装置
JP2019091978A (ja) * 2017-11-13 2019-06-13 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
CN111758219A (zh) * 2018-03-14 2020-10-09 株式会社村田制作所 弹性波装置
DE102019204755A1 (de) 2018-04-18 2019-10-24 Skyworks Solutions, Inc. Akustikwellenvorrichtung mit mehrschichtigem piezoelektrischem substrat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643818A (en) * 1979-09-17 1981-04-22 Hitachi Ltd Surface elastic wave device and its manufacture
JP2000183679A (ja) * 1998-12-21 2000-06-30 Oki Electric Ind Co Ltd 梯子型弾性表面波フィルタ
JP2002290182A (ja) * 2001-03-27 2002-10-04 Sumitomo Electric Ind Ltd 表面弾性波素子用基板の製造方法
JP2009182407A (ja) * 2008-01-29 2009-08-13 Fujitsu Media Device Kk 弾性波デバイス及びその製造方法
WO2012086639A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531985B1 (en) * 1991-09-12 1999-02-24 Matsushita Electric Industrial Co., Ltd. Electro-acoustic hybrid integrated circuit and manufacturing method thereof
US7547627B2 (en) * 2004-11-29 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2008035546A1 (en) * 2006-09-21 2008-03-27 Murata Manufacturing Co., Ltd. Elastic boundary wave device
CN101569100A (zh) * 2006-12-25 2009-10-28 株式会社村田制作所 弹性边界波装置
EP2131493A4 (en) 2007-05-29 2011-07-20 Murata Manufacturing Co ACOUSTIC WAVE DISCHARGE FILTER
JP5341006B2 (ja) * 2010-03-30 2013-11-13 新科實業有限公司 弾性表面波装置
CN103201953B (zh) * 2010-11-09 2015-09-16 株式会社村田制作所 弹性波滤波器装置
WO2013047433A1 (ja) * 2011-09-30 2013-04-04 株式会社村田製作所 弾性波装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643818A (en) * 1979-09-17 1981-04-22 Hitachi Ltd Surface elastic wave device and its manufacture
JP2000183679A (ja) * 1998-12-21 2000-06-30 Oki Electric Ind Co Ltd 梯子型弾性表面波フィルタ
JP2002290182A (ja) * 2001-03-27 2002-10-04 Sumitomo Electric Ind Ltd 表面弾性波素子用基板の製造方法
JP2009182407A (ja) * 2008-01-29 2009-08-13 Fujitsu Media Device Kk 弾性波デバイス及びその製造方法
WO2012086639A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190075924A (ko) * 2016-11-11 2019-07-01 신에쓰 가가꾸 고교 가부시끼가이샤 복합 기판, 표면탄성파 디바이스 및 복합 기판의 제조 방법
JPWO2018088093A1 (ja) * 2016-11-11 2019-09-26 信越化学工業株式会社 複合基板、表面弾性波デバイスおよび複合基板の製造方法
WO2018088093A1 (ja) * 2016-11-11 2018-05-17 信越化学工業株式会社 複合基板、表面弾性波デバイスおよび複合基板の製造方法
US11800805B2 (en) 2016-11-11 2023-10-24 Shin-Etsu Chemical Co., Ltd. Composite substrate, surface acoustic wave device, and method for manufacturing composite substrate
KR102433349B1 (ko) * 2016-11-11 2022-08-16 신에쓰 가가꾸 고교 가부시끼가이샤 복합 기판, 표면탄성파 디바이스 및 복합 기판의 제조 방법
JP2022050573A (ja) * 2017-02-14 2022-03-30 京セラ株式会社 弾性波素子
JP7393443B2 (ja) 2017-02-14 2023-12-06 京セラ株式会社 弾性波素子
JPWO2018163841A1 (ja) * 2017-03-09 2019-11-21 株式会社村田製作所 弾性波装置、弾性波装置パッケージ、マルチプレクサ、高周波フロントエンド回路及び通信装置
US11588467B2 (en) 2017-03-09 2023-02-21 Murata Manufacturing Co., Ltd. Acoustic wave device, acoustic wave device package, multiplexer, radio-frequency front-end circuit, and communication device
DE112018004076B4 (de) 2017-08-09 2022-09-29 Murata Manufacturing Co., Ltd. Schallwellenvorrichtung, Multiplexer, Hochfrequenz-Frontend-Schaltung und Kommunikationsvorrichtung
US11552616B2 (en) 2017-08-09 2023-01-10 Murata Manufacturing Co., Ltd. Acoustic wave device, multiplexer, radio-frequency front end circuit, and communication device
JPWO2019031202A1 (ja) * 2017-08-09 2020-07-02 株式会社村田製作所 弾性波装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2019031202A1 (ja) * 2017-08-09 2019-02-14 株式会社村田製作所 弾性波装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
KR20210113329A (ko) 2019-03-11 2021-09-15 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
WO2021157714A1 (ja) * 2020-02-06 2021-08-12 株式会社村田製作所 弾性波装置
JPWO2021157714A1 (ja) * 2020-02-06 2021-08-12
JP7055503B1 (ja) 2020-12-30 2022-04-18 三安ジャパンテクノロジー株式会社 弾性波デバイス
JP2022104867A (ja) * 2020-12-30 2022-07-12 三安ジャパンテクノロジー株式会社 弾性波デバイス

Also Published As

Publication number Publication date
US20170250674A1 (en) 2017-08-31
CN107005225A (zh) 2017-08-01
KR20190042107A (ko) 2019-04-23
CN107005225B (zh) 2021-06-04
JPWO2016103953A1 (ja) 2017-08-03
DE112015005769T5 (de) 2017-10-19
KR20170086628A (ko) 2017-07-26
US10256793B2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2016103953A1 (ja) 弾性波装置
JP6380558B2 (ja) 弾性波装置
JP6555346B2 (ja) 弾性波フィルタ装置
WO2015033892A1 (ja) 弾性波共振子、弾性波フィルタ装置及びデュプレクサ
KR101514742B1 (ko) 탄성 표면파 장치
JP6573668B2 (ja) 弾性波装置および通信装置
JP4798319B1 (ja) 弾性波装置
WO2015033891A1 (ja) 弾性波共振子、弾性波フィルタ装置及びデュプレクサ
JP6284800B2 (ja) 弾性表面波デバイス及びフィルタ
WO2010116995A1 (ja) 弾性境界波共振子及びラダー型フィルタ
WO2015198709A1 (ja) ラダー型フィルタ
WO2016080444A1 (ja) 弾性波素子、フィルタ素子および通信装置
JP5083469B2 (ja) 弾性表面波装置
JP6233527B2 (ja) ラダー型フィルタ及びデュプレクサ
US11863155B2 (en) Surface acoustic wave element
WO2010125934A1 (ja) 弾性波装置
JP2010252254A (ja) 弾性波フィルタ及び分波器
JP7132841B2 (ja) 弾性表面波素子、分波器および通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566022

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177017163

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015005769

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872522

Country of ref document: EP

Kind code of ref document: A1