WO2021157714A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2021157714A1
WO2021157714A1 PCT/JP2021/004392 JP2021004392W WO2021157714A1 WO 2021157714 A1 WO2021157714 A1 WO 2021157714A1 JP 2021004392 W JP2021004392 W JP 2021004392W WO 2021157714 A1 WO2021157714 A1 WO 2021157714A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
support substrate
wave device
piezoelectric layer
film
Prior art date
Application number
PCT/JP2021/004392
Other languages
English (en)
French (fr)
Inventor
英樹 岩本
克也 大門
木村 哲也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021576191A priority Critical patent/JPWO2021157714A1/ja
Priority to CN202180011353.XA priority patent/CN115023896A/zh
Publication of WO2021157714A1 publication Critical patent/WO2021157714A1/ja
Priority to US17/875,496 priority patent/US20220368305A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence

Definitions

  • the present invention generally relates to an elastic wave device, and more particularly to an elastic wave device including an IDT (Interdigital Transducer) electrode.
  • IDT Interdigital Transducer
  • Patent Document 1 describes a conventional elastic wave device.
  • the elastic wave device described in Patent Document 1 includes a hypersonic support substrate (support substrate), a piezoelectric film (piezoelectric layer), and an IDT electrode.
  • the IDT electrode is formed on one surface of the piezoelectric film.
  • the conventional elastic wave device described in Patent Document 1 has a problem that spurious in a higher-order mode may occur in a band on the higher frequency side than the excitation mode used for obtaining characteristics. This degrades the characteristics of the device.
  • the present invention has been made in view of the above points, and an object of the present invention is to reduce spurious in a higher-order mode generated in a band on the higher frequency side than the excitation mode used for obtaining characteristics.
  • the purpose is to provide a capable elastic wave device.
  • the elastic wave device includes a support substrate, a piezoelectric layer, and an IDT electrode.
  • the piezoelectric layer is provided on the support substrate in the thickness direction of the support substrate.
  • the IDT electrode is provided on the piezoelectric layer and has a plurality of electrode fingers. The crossing width of the plurality of electrode fingers is 5 ⁇ or less.
  • the elastic wave device According to the elastic wave device according to the above aspect of the present invention, it is possible to reduce the spurious of the higher-order mode generated in the band on the higher frequency side than the excitation mode used for obtaining the characteristics.
  • FIG. 1 is a front view of the elastic wave device according to the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line X1-X1 of FIG. 1 in the elastic wave device of the same as above.
  • FIG. 3 is a graph showing the phase characteristics of the high-order mode of the elastic wave device of the above.
  • FIG. 4A is a graph showing the impedance characteristics when the cross width is 5 ⁇ in the elastic wave device of the same as above.
  • FIG. 4B is a graph showing the impedance characteristics when the cross width is 4 ⁇ in the elastic wave device of the same as above.
  • FIG. 4C is a graph showing the impedance characteristics when the cross width is 3 ⁇ in the elastic wave device of the same as above.
  • FIG. 5A is a graph showing the impedance characteristics when the cross width is 2 ⁇ in the elastic wave device of the same as above.
  • FIG. 5B is a graph showing the impedance characteristics when the cross width is 1 ⁇ in the elastic wave device of the same as above.
  • FIG. 6 is a cross-sectional view of the elastic wave device according to the first modification of the embodiment.
  • FIG. 7 is a cross-sectional view of the elastic wave device according to the second modification of the embodiment.
  • FIG. 8 is a graph showing the phase characteristics of the elastic wave device of the comparative example.
  • FIG. 9 is a graph showing the phase characteristics of the higher-order mode in the elastic wave device of the comparative example.
  • FIG. 10 is a graph showing impedance characteristics when the cross width is 6 ⁇ in the elastic wave device of the comparative example.
  • FIG. 1, FIG. 2, FIG. 6 and FIG. 7 referred to in the following embodiments and the like are schematic views, and the size and thickness ratios of the respective components in the drawings are not necessarily the actual dimensional ratios. It does not always reflect.
  • the elastic wave device 1 includes a support substrate 2, a piezoelectric layer 3, a low sound velocity film 4, a high sound velocity film 5, and an IDT (Interdigital Transducer) electrode 6. And. Further, the elastic wave device 1 further includes two reflectors 7, a wiring portion 8, and a protective film (not shown).
  • the elastic wave device 1 includes one IDT electrode 6, but the number of IDT electrodes 6 is not limited to one and may be plural.
  • the elastic wave device 1 includes a plurality of IDT electrodes 6, for example, a plurality of elastic surface wave resonators including the plurality of IDT electrodes 6 may be electrically connected to form a band-passing type filter. ..
  • the support substrate 2 has a first main surface 21 and a second main surface 22 facing each other.
  • the first main surface 21 and the second main surface 22 face each other in the thickness direction (first direction D1) of the support substrate 2.
  • the support substrate 2 has, for example, a rectangular shape.
  • the support substrate 2 is not limited to a rectangular shape, and may be, for example, a square shape.
  • the sound velocity of the bulk wave propagating in the support substrate 2 is faster than the sound velocity of the elastic wave propagating in the piezoelectric layer 3.
  • the bulk wave propagating on the support substrate 2 is the lowest sound velocity bulk wave among the plurality of bulk waves propagating on the support substrate 2.
  • the support substrate 2 is, for example, a silicon substrate.
  • the thickness of the support substrate 2 is preferably 10 ⁇ ( ⁇ : wavelength of elastic wave determined by the electrode finger pitch P1) or more and 180 ⁇ m or less, and as an example, it is 120 ⁇ m.
  • the plane orientation of the first main surface 21 of the support substrate 2 is, for example, the (100) plane, but is not limited to this, for example, the (110) plane, the (111) plane, and the like. It may be.
  • the propagation direction of the elastic wave can be set without being restricted by the surface direction of the first main surface 21 of the support substrate 2.
  • the material of the support substrate 2 is not limited to silicon.
  • the support substrate 2 is made of silicon, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, sapphire, lithium tantalate, lithium niobate, crystal, alumina, zirconia, cozilite, mulite, steatite, forsterite, magnesia and diamond. It suffices to contain at least one material selected from the group.
  • the piezoelectric layer 3 is provided on the support substrate 2 as shown in FIG. "The piezoelectric layer 3 is provided on the support substrate 2" means that the piezoelectric layer 3 is directly provided on the support substrate 2 without interposing another layer, and that the piezoelectric layer 3 is provided on the support substrate 2 via another layer.
  • the case where the piezoelectric layer 3 is indirectly provided on the support substrate 2 includes the case where the piezoelectric layer 3 is indirectly provided on the support substrate 2.
  • the piezoelectric layer 3 is indirectly provided on the support substrate 2. More specifically, the piezoelectric layer 3 is placed on the first main surface 21 side of the support substrate 2 via the low sound velocity film 4 and the high sound velocity film 5 in the thickness direction of the support substrate 2 (first direction D1). It is provided.
  • the piezoelectric layer 3 has a first main surface 31 and a second main surface 32. The first main surface 31 and the second main surface 32 face each other in the thickness direction (first direction D1) of the support substrate 2.
  • the piezoelectric layer 3 is formed of, for example, a ⁇ ° Y-cut X-propagated LiTaO 3 piezoelectric single crystal.
  • the ⁇ ° Y-cut X-propagation LiTaO 3 piezoelectric single crystal has the X-axis as the central axis in the direction from the Y-axis to the Z-axis when the three crystal axes of the LiTaO 3 piezoelectric single crystal are the X-axis, the Y-axis, and the Z-axis.
  • ⁇ and ⁇ ⁇ 180 ⁇ n are synonymous.
  • n is a natural number.
  • the piezoelectric layer 3 is not limited to the ⁇ ° Y-cut X-propagated LiTaO 3 piezoelectric single crystal, and may be, for example, ⁇ ° Y-cut X-propagated LiTaO 3 piezoelectric ceramics.
  • the thickness of the piezoelectric layer 3 is 3.5 ⁇ or less, for example, when the wavelength of the elastic wave determined by the electrode finger pitch P1 (see FIG. 1) of the IDT electrode 6 is ⁇ .
  • the Q value of the elastic wave device 1 becomes high.
  • the TCF Tempo Coefficient of Frequency
  • the thickness of the piezoelectric layer 3 is 1.5 ⁇ or less, the sound velocity of elastic waves can be easily adjusted.
  • the thickness of the piezoelectric layer 3 is 0.2 ⁇ (400 nm).
  • the thickness of the piezoelectric layer 3 is not limited to 3.5 ⁇ or less, and may be larger than 3.5 ⁇ .
  • the Q value becomes high as described above, but a higher-order mode occurs.
  • a low sound velocity film 4 and a high sound velocity film 5 are provided so as to reduce the higher-order mode even if the thickness of the piezoelectric layer 3 is 3.5 ⁇ or less.
  • the mode of the elastic wave propagating in the piezoelectric layer 3 there is a longitudinal wave, an SH wave, an SV wave, or a mode in which these are combined.
  • a mode containing SH waves as a main component is used as a main mode.
  • the higher-order mode is a spurious mode generated on the higher frequency side than the main mode of the elastic wave propagating in the piezoelectric layer 3.
  • the mode of the elastic wave propagating in the piezoelectric layer 3 is "the mode mainly composed of SH waves is the main mode" is determined by, for example, the parameters of the piezoelectric layer 3 (material, oiler angle, thickness, etc.).
  • the material of the piezoelectric layer 3 is not limited to lithium tantalate (LiTaO 3 ), and is, for example, lithium niobate (LiNbO 3 ), zinc oxide (ZnO), aluminum nitride (AlN), or lead zirconate titanate (lead zirconate titanate). It may be PZT).
  • the piezoelectric layer 3 is made of, for example, a Y-cut X-propagated LiNbO 3 piezoelectric single crystal or a piezoelectric ceramic
  • the elastic wave device 1 uses a love wave as an elastic wave to set a mode in which an SH wave is the main component. It can be used as the main mode.
  • the single crystal material and cut angle of the piezoelectric layer 3 may be appropriately determined according to, for example, the required specifications of the filter (passing characteristics, attenuation characteristics, temperature characteristics, filter characteristics such as bandwidth) and the like. ..
  • bass velocity film 4 is provided on the support substrate 2 as shown in FIG. "The bass velocity film 4 is provided on the support substrate 2" means that the bass velocity film 4 is directly provided on the support substrate 2 without interposing another layer, and that the bass velocity film 4 is provided on the support substrate 2 via another layer.
  • the case where the bass sound film 4 is indirectly provided on the support substrate 2 includes the case where the sound velocity film 4 is indirectly provided on the support substrate 2.
  • the bass velocity film 4 is provided between the support substrate 2 and the piezoelectric layer 3 in the thickness direction of the support substrate 2 (first direction D1). More specifically, the low sound velocity film 4 is formed on the first main surface 21 side of the support substrate 2 via the high sound velocity film 5.
  • the bass velocity film 4 is a film in which the sound velocity of the bulk wave propagating in the bass velocity film 4 is lower than the sound velocity of the bulk wave propagating in the piezoelectric layer 3.
  • the bass sound film 4 is provided between the support substrate 2 and the piezoelectric layer 3, the sound velocity of the elastic wave is lowered.
  • Elastic waves have the property that energy is concentrated in a medium that is essentially low sound velocity. Therefore, it is possible to enhance the effect of confining the energy of the elastic wave in the piezoelectric layer 3 and in the IDT electrode 6 in which the elastic wave is excited. As a result, the loss can be reduced and the Q value of the elastic wave device 1 can be increased as compared with the case where the bass velocity film 4 is not provided.
  • the material of the bass velocity film 4 is, for example, silicon oxide.
  • the material of the bass velocity film 4 is not limited to silicon oxide, and is, for example, glass, silicon nitride, tantalum oxide, a compound obtained by adding fluorine, carbon, or boron to silicon oxide, or each of the above materials as a main component. It may be a material to be used.
  • the temperature characteristics can be improved.
  • the elastic constant of lithium tantalate has a negative temperature characteristic, and silicon oxide has a positive temperature characteristic. Therefore, in the elastic wave device 1, the absolute value of TCF can be reduced.
  • the thickness of the bass velocity film 4 is preferably 2.0 ⁇ or less, where ⁇ is the wavelength of the elastic wave determined by the above-mentioned electrode finger pitch P1.
  • is the wavelength of the elastic wave determined by the above-mentioned electrode finger pitch P1.
  • the thickness of the bass velocity film 4 is 0.2 ⁇ (400 nm).
  • the elastic wave device 1 may include, for example, an adhesion layer interposed between the bass velocity film 4 and the piezoelectric layer 3.
  • the adhesion layer is made of, for example, a resin (epoxy resin, polyimide resin, etc.), a metal, or the like.
  • the elastic wave device 1 is not limited to the close contact layer, and is provided with a dielectric film either between the low sound velocity film 4 and the piezoelectric layer 3, above the piezoelectric layer 3, or below the low sound velocity film 4. May be good.
  • the hypersonic film 5 is provided between the support substrate 2 and the low sound velocity film 4 in the thickness direction (first direction D1) of the support substrate 2. ing.
  • the hypersonic film 5 is provided on the support substrate 2.
  • the hypersonic film 5 is provided on the support substrate 2 means that the hypersonic film 5 is directly provided on the support substrate 2 without interposing another layer, and that the hypersonic film 5 is provided on the support substrate 2 via another layer. Including the case where the hypersonic film 5 is indirectly provided on the support substrate 2.
  • the hypersonic film 5 is a film in which the sound velocity of the bulk wave propagating in the hypersonic film 5 is higher than the sound velocity of the elastic wave propagating in the piezoelectric layer 3.
  • the thickness of the hypersonic film 5 is, for example, 200 nm, 300 nm, 400 nm, and 600 nm.
  • the thickness of the hypersonic film 5 is 0.3 ⁇ (600 nm).
  • the thicker the treble speed film 5 is, the more desirable it is.
  • the hypersonic film 5 functions to prevent the energy of the elastic wave in the main mode from leaking to the structure below the hypersonic film 5.
  • the energy of the elastic wave in the main mode is distributed throughout the piezoelectric layer 3 and the bass film 4, and the bass film of the treble film 5 is distributed. It is also distributed on a part of the 4 side, and is not distributed on the support substrate 2.
  • the mechanism by which the elastic wave is confined by the high-pitched sound film 5 is the same as that of the love wave type surface wave, which is a non-leakage SH wave. Realize, p. 26-28.
  • the above mechanism is different from the mechanism of confining elastic waves using a Bragg reflector with an acoustic multilayer film.
  • the material of the hypersonic film 5 is, for example, silicon nitride.
  • the material of the treble speed film 5 is not limited to silicon nitride, but is diamond-like carbon, aluminum nitride, aluminum oxide, silicon carbide, silicon, sapphire, piezoelectric material (lithium tantalate, lithium niobate, or crystal), alumina. , Zirconia, Cojilite, Murite, Steatite, Forsterite, Magnesia, and Diamond may be at least one material selected from the group.
  • the material of the hypersonic film 5 may be a material containing any of the above-mentioned materials as a main component, or a material containing a mixture containing any of the above-mentioned materials as a main component.
  • the IDT electrode 6 is provided on the piezoelectric layer 3 as shown in FIGS. 1 and 2. More specifically, the IDT electrode 6 is formed on the first main surface 31 of the piezoelectric layer 3 in the thickness direction (first direction D1) of the support substrate 2.
  • the IDT electrode 6 has two electrodes 61 as shown in FIG. In other words, the IDT electrode 6 has two bus bars 62 and two sets of electrode fingers 63. More specifically, the IDT electrode 6 has a first electrode 61A and a second electrode 61B. Each of the first electrode 61A and the second electrode 61B has conductivity. The first electrode 61A and the second electrode 61B are separated from each other and are electrically insulated from each other.
  • the first electrode 61A has a comb shape in a plan view from the thickness direction (first direction D1) of the support substrate 2.
  • the first electrode 61A has a first bus bar 62A and a plurality of first electrode fingers 63A.
  • the first bus bar 62A is a conductor portion for making a plurality of first electrode fingers 63A have the same potential (equal potential).
  • the second electrode 61B has a comb shape in a plan view from the thickness direction (first direction D1) of the support substrate 2.
  • the second electrode 61B has a second bus bar 62B and a plurality of second electrode fingers 63B.
  • the second bus bar 62B is a conductor portion for making a plurality of second electrode fingers 63B have the same potential (equal potential).
  • the first bus bar 62A and the second bus bar 62B face each other in the third direction D3.
  • the plurality of first electrode fingers 63A are connected to the first bus bar 62A and extend to the second bus bar 62B side.
  • the plurality of first electrode fingers 63A are formed integrally with the first bus bar 62A and are separated from the second bus bar 62B.
  • the plurality of second electrode fingers 63B are connected to the second bus bar 62B and extend to the first bus bar 62A side.
  • the plurality of second electrode fingers 63B are formed integrally with the second bus bar 62B and are separated from the first bus bar 62A.
  • the IDT electrode 6 is, for example, a normal type IDT electrode. Hereinafter, the IDT electrode 6 will be described in more detail.
  • the first bus bar 62A and the second bus bar 62B of the IDT electrode 6 have a long shape with the second direction D2 as the longitudinal direction.
  • the first bus bar 62A and the second bus bar 62B face each other in the third direction D3.
  • the second direction D2 is a direction orthogonal to the thickness direction (first direction D1) of the support substrate 2.
  • the third direction D3 is a direction orthogonal to both the thickness direction (first direction D1) of the support substrate 2 and the second direction D2.
  • the plurality of first electrode fingers 63A are connected to the first bus bar 62A and extend toward the second bus bar 62B.
  • the plurality of first electrode fingers 63A extend from the first bus bar 62A along the third direction D3.
  • the tips of the plurality of first electrode fingers 63A and the second bus bar 62B are separated from each other.
  • the plurality of first electrode fingers 63A have the same length and crossing width W1.
  • the plurality of second electrode fingers 63B are connected to the second bus bar 62B and extend toward the first bus bar 62A.
  • the plurality of second electrode fingers 63B extend from the second bus bar 62B along the third direction D3.
  • the tips of the plurality of second electrode fingers 63B and the first bus bar 62A are separated from each other.
  • the plurality of second electrode fingers 63B have the same length and crossing width W1.
  • the length and the crossing width W1 of the plurality of second electrode fingers 63B are the same as the length and the crossing width W1 of the plurality of first electrode fingers 63A, respectively.
  • a plurality of first electrode fingers 63A and a plurality of second electrode fingers 63B are alternately arranged one by one in the second direction D2 so as to be separated from each other. Therefore, the adjacent first electrode finger 63A and the second electrode finger 63B are separated by a distance S1.
  • a plurality of first electrode fingers 63A and a plurality of second electrode fingers 63B are separated from each other in the second direction D2.
  • the configuration may be such that the plurality of first electrode fingers 63A and the plurality of second electrode fingers 63B are not alternately arranged at a distance from each other.
  • the plurality of first electrode fingers 63A and the plurality of second electrode fingers 63B are interleaved with each other.
  • the "crossing width" means the length at which the first electrode finger 63A and the second electrode finger 63B overlap when viewed from the elastic wave propagation direction. That is, the IDT electrode 6 has an intersecting region defined by the plurality of first electrode fingers 63A and the plurality of second electrode fingers 63B.
  • the intersecting region is the region between the envelope at the tips of the plurality of first electrode fingers 63A and the envelope at the tips of the plurality of second electrode fingers 63B.
  • the IDT electrode 6 excites an elastic wave in the piezoelectric layer 3 in the intersecting region.
  • the IDT electrode 6 is not limited to a normal IDT electrode, and may be, for example, an IDT electrode to which apodization weighting is applied, or an inclined IDT electrode.
  • the crossing width increases from one end in the propagation direction of the elastic wave toward the center, and decreases as the crossing width approaches from the center to the other end in the propagation direction of the elastic wave.
  • the electrode finger pitch P1 of the IDT electrode 6 is the distance between the center lines of two adjacent first electrode fingers 63A among the plurality of first electrode fingers 63A, or the plurality of second electrode fingers. It is defined by the distance between the center lines of two adjacent second electrode fingers 63B of 63B. The distance between the center lines of two adjacent second electrode fingers 63B is the same as the distance between the center lines of two adjacent first electrode fingers 63A.
  • the logarithm of the first electrode finger 63A and the second electrode finger 63B is 100 as an example. That is, the IDT electrode 6 has 100 first electrode fingers 63A and 100 second electrode fingers 63B as an example.
  • the material of the IDT electrode 6 is aluminum (Al), copper (Cu), platinum (Pt), gold (Au), silver (Ag), titanium (Ti), nickel (Ni), chromium (Cr), molybdenum (Mo). ), Tungsten (W), or an appropriate metal material such as an alloy mainly composed of any of these metals. Further, the IDT electrode 6 may have a structure in which a plurality of metal films made of these metals or alloys are laminated.
  • the two reflectors 7 are provided on the piezoelectric layer 3 as shown in FIG. More specifically, the two reflectors 7 are formed on the first main surface 31 of the piezoelectric layer 3 in the thickness direction (first direction D1) of the support substrate 2. Each of the two reflectors 7 is conductive.
  • the two reflectors 7 are located on one side and the other side of the IDT electrode 6 in the direction along the propagation direction of the elastic wave of the elastic wave device 1 (second direction D2). In other words, in the second direction D2, the IDT electrode 6 is located between the two reflectors 7.
  • Each reflector 7 is, for example, a short-circuit grating. Each reflector 7 reflects elastic waves.
  • Each of the two reflectors 7 has a plurality of electrode fingers 71, one ends of the plurality of electrode fingers 71 are short-circuited, and the other ends are short-circuited.
  • the number of electrode fingers is 20 as an example.
  • each reflector 7 is aluminum (Al), copper (Cu), platinum (Pt), gold (Au), silver (Ag), titanium (Ti), nickel (Ni), chromium (Cr), molybdenum ( It is an appropriate metal material such as Mo), tungsten (W), or an alloy mainly composed of any of these metals. Further, each reflector 7 may have a structure in which a plurality of metal films made of these metals or alloys are laminated.
  • each reflector 7 and the IDT electrode 6 are set to the same material and the same thickness, each reflector 7 and the IDT electrode 6 are formed in the same process at the time of manufacturing the elastic wave device 1. can do.
  • each reflector 7 is a short-circuit grating, but each reflector 7 is not limited to a short-circuit grading, and is, for example, an open grating, a positive / negative reflection type grating, or It may be a grating in which a short-circuit grating and an open grating are combined.
  • the wiring section 8 is provided on the piezoelectric layer 3 as shown in FIG. More specifically, the wiring portion 8 is formed on the first main surface 31 of the piezoelectric layer 3 in the thickness direction (first direction D1) of the support substrate 2.
  • the wiring portion 8 has conductivity.
  • the wiring unit 8 includes a first wiring unit 81 and a second wiring unit 82.
  • the first wiring portion 81 is connected to the first bus bar 62A of the IDT electrode 6.
  • the second wiring portion 82 is connected to the second bus bar 62B of the IDT electrode 6.
  • the first wiring portion 81 and the second wiring portion 82 are separated from each other and are electrically insulated from each other.
  • the first wiring portion 81 extends from the first bus bar 62A to the side opposite to the side of the plurality of first electrode fingers 63A.
  • the first wiring portion 81 may be formed so as to partially overlap with the first bus bar 62A in the thickness direction of the support substrate 2 (first direction D1), or may be formed of the same material and the same thickness as the first bus bar 62A.
  • the bus bar 62A may be formed integrally with the first bus bar 62A.
  • the second wiring portion 82 extends from the second bus bar 62B to the side opposite to the side of the plurality of second electrode fingers 63B.
  • the second wiring portion 82 may be formed so as to partially overlap the second bus bar 62B in the thickness direction of the support substrate 2 (first direction D1), or may be formed of the same material and the same thickness as the second bus bar 62B. Now, it may be formed integrally with the second bus bar 62B.
  • the material of the wiring portion 8 is aluminum (Al), copper (Cu), platinum (Pt), gold (Au), silver (Ag), titanium (Ti), nickel (Ni), chromium (Cr), molybdenum (Mo). ), Titanium (W), or an appropriate metal material such as an alloy mainly composed of any of these metals. Further, the wiring portion 8 may have a structure in which a plurality of metal films made of these metals or alloys are laminated.
  • Protective film A protective film (not shown) is formed on the piezoelectric layer 3.
  • the protective film covers the IDT electrode 6, each reflector 7, and the wiring portion 8 on the first main surface 31 of the piezoelectric layer 3, and a part of the first main surface 31 of the piezoelectric layer 3.
  • the material of the protective film is, for example, silicon oxide.
  • the material of the protective layer is not limited to silicon oxide, and may be, for example, silicon nitride.
  • the protective film is not limited to a single-layer structure, and may have, for example, a multi-layer structure having two or more layers.
  • the elastic wave device of the comparative example will be described.
  • the higher-order mode does not occur as shown in the characteristic A2 of FIG.
  • the piezoelectric layer is thinner than the piezoelectric substrate and the structure is such that the support substrate and the piezoelectric layer are laminated, a higher-order mode is generated as shown in the characteristic A1 of FIG.
  • the higher-order mode is a spurious mode generated on the higher frequency side than the main mode of the elastic wave propagating in the piezoelectric layer 3.
  • the higher-order mode is small in the range where the thickness of the piezoelectric layer is larger than 10 ⁇ .
  • the higher-order mode occurs in the range where the thickness of the piezoelectric layer is 10 ⁇ or less.
  • the thickness of the piezoelectric layer is 5 ⁇ or less, the higher-order mode becomes larger.
  • the thickness of the piezoelectric layer is 1 ⁇ or less, the phase approaches 90 ° and the characteristics of the elastic wave device are significantly deteriorated.
  • the crossing width W1 of the plurality of electrode fingers 63 is set to 5 ⁇ or less. ing.
  • the phase characteristics of the higher-order mode can be improved as shown in FIG.
  • FIG. 3 is a graph showing the phase characteristics of the higher-order mode with respect to the intersection width W1. In the range where the intersection width W1 is 5 ⁇ or less, the higher-order mode becomes smaller as the intersection width W1 becomes smaller.
  • the conditions of the elastic wave device 1 for obtaining the characteristics of FIG. 3 are as follows.
  • the thickness of the IDT electrode 6 is 0.05 ⁇
  • the thickness of the piezoelectric layer 3 is 0.2 ⁇
  • the thickness of the hypersonic film 4 is 0.2 ⁇
  • the thickness of the hypersonic film 5 is 0.3 ⁇ .
  • the material of the IDT electrode 6 is aluminum
  • the material of the piezoelectric layer 3 is lithium tantalate
  • the material of the low sound velocity film 4 is silicon oxide
  • the material of the high sound velocity film 5 is silicon nitride
  • the material of the support substrate 2 is silicon.
  • the crossing width W1 of the plurality of electrode fingers 63 is preferably 2 ⁇ or less.
  • the spurious in the transverse mode can be reduced as shown in FIGS. 5A and 5B. That is, the transverse mode can be suppressed.
  • FIG. 5A shows the impedance when the intersection width W1 is 2 ⁇ .
  • FIG. 5B shows the impedance when the intersection width W1 is 1 ⁇ .
  • intersection width W1 when the intersection width W1 is larger than 2 ⁇ , a peak due to the transverse mode occurs in the frequency band between the antiresonance frequency and the resonance frequency, as shown in FIGS. 4A to 4C. Further, even when the intersection width W1 is larger than 5 ⁇ , a peak due to the transverse mode occurs in the frequency band between the antiresonance frequency and the resonance frequency, as shown in FIG.
  • the cross width W1 of the plurality of electrode fingers 63 of the IDT electrode 6 is 5 ⁇ or less.
  • the cross width W1 of the plurality of electrode fingers 63 of the IDT electrode 6 is 2 ⁇ or less. As a result, the transverse mode can be suppressed.
  • a bass velocity film 4 is provided between the support substrate 2 and the piezoelectric layer 3 in the thickness direction of the support substrate 2 (first direction D1). Thereby, the Q value of the elastic wave device 1 can be improved.
  • a hypersonic film 5 is provided between the support substrate 2 and the low sound velocity film 4 in the thickness direction of the support substrate 2 (first direction D1). Thereby, the Q value of the elastic wave device 1 can be further improved.
  • the elastic wave device 1a does not have to include the hypersonic film 5.
  • the elastic wave device 1a includes a support substrate 2, a piezoelectric layer 3, a bass velocity film 4, and an IDT electrode 6 as in the elastic wave device 1 according to the embodiment.
  • the support substrate 2 is a hypersonic support substrate. Thereby, the Q value of the elastic wave device 1 can be further improved.
  • the piezoelectric layer 3 may be provided directly on the support substrate 2. That is, the elastic wave device 1b does not have to include the low sound velocity film 4 and the high sound velocity film 5.
  • the elastic wave device 1b includes a support substrate 2, a piezoelectric layer 3, and an IDT electrode 6 as in the elastic wave device 1 according to the embodiment.
  • the elastic wave device 1a according to the modification 1 and the elastic wave device 1b according to the modification 2 also have the same effect as the elastic wave device 1 according to the embodiment.
  • the elastic wave device 1 may include an adhesion layer, a dielectric film, and the like as films other than the hypersonic film 5, the low sound velocity film 4, and the piezoelectric layer 3.
  • the elastic wave device 1 is connected to the first terminal connected to the first bus bar 62A via the first wiring portion 81 of the wiring portion 8 and to the second bus bar 62B via the second wiring portion 82 of the wiring portion 8. It may further include a connected second terminal. Further, the elastic wave device 1 may further include two third wiring portions connected to each of the two reflectors 7. In this case, each of the two reflectors 7 may be connected to the third terminal via at least the third wiring portion.
  • a plurality of external connection terminals including the first terminal, the second terminal, and the third terminal are electrodes for electrically connecting the circuit board, the mounting board for the package (submount board), and the like in the elastic wave device 1. Is.
  • the elastic wave device 1 may further include a plurality of dummy terminals that are not electrically connected to the IDT electrode 6.
  • the plurality of dummy terminals are terminals for increasing the parallelism of the elastic wave device 1 with respect to a circuit board, a mounting board, or the like, and are different from terminals intended for electrical connection. That is, the dummy terminal is a terminal for suppressing the elastic wave device 1 from being mounted at an angle with respect to the circuit board, the mounting board, etc., and the number and arrangement of external connection terminals and the outer peripheral shape of the elastic wave device 1. It is not always necessary to provide it depending on the situation.
  • the first terminal is formed integrally with the first wiring portion 81, for example, with the same material and the same thickness as the first wiring portion 81.
  • the second terminal is formed integrally with the second wiring portion 82, for example, with the same material and the same thickness as the second wiring portion 82.
  • the third terminal is formed integrally with the third wiring portion, for example, with the same material and the same thickness as the third wiring portion.
  • the third wiring portion is formed of, for example, the same material and the same thickness as the first wiring portion 81 and the second wiring portion 82.
  • the elastic wave device (1; 1a; 1b) includes a support substrate (2), a piezoelectric layer (3), and an IDT electrode (6).
  • the piezoelectric layer (3) is provided on the support substrate (2) in the thickness direction (first direction D1) of the support substrate (2).
  • the IDT electrode (6) is provided on the piezoelectric layer (3).
  • the IDT electrode (6) has a plurality of electrode fingers (63).
  • the crossing width (W1) of the plurality of electrode fingers (63) is 5 ⁇ or less.
  • the cross width (W1) of the plurality of electrode fingers (63) of the IDT electrode (6) is 5 ⁇ or less.
  • the crossing width (W1) of the plurality of electrode fingers (63) is 2 ⁇ or less.
  • the cross width (W1) of the plurality of electrode fingers (63) of the IDT electrode (6) is 2 ⁇ or less. As a result, the transverse mode can be suppressed.
  • the elastic wave device (1; 1a) according to the third aspect further includes a bass velocity film (4) in the first or second aspect.
  • the sound velocity of the bulk wave propagating in the bass velocity film (4) is lower than the sound velocity of the bulk wave propagating in the piezoelectric layer (3).
  • the bass velocity film (4) is provided between the support substrate (2) and the piezoelectric layer (3) in the thickness direction (first direction D1) of the support substrate (2).
  • the Q value of the elastic wave device (1; 1a) can be improved.
  • the elastic wave device (1) according to the fourth aspect further includes a hypersonic film (5) in the third aspect.
  • the sound velocity of the bulk wave propagating in the hypersonic film (5) is higher than the sound velocity of the elastic wave propagating in the piezoelectric layer (3).
  • the hypersonic film (5) is provided between the support substrate (2) and the low sound velocity film (4) in the thickness direction (first direction D1) of the support substrate (2).
  • the Q value of the elastic wave device (1) can be further improved.
  • the support substrate (2) is a hypersonic support substrate.
  • the sound velocity of the bulk wave propagating in the hypersonic support substrate is higher than the sound velocity of the elastic wave propagating in the piezoelectric layer (3).
  • the Q value of the elastic wave device (1a) can be further improved.
  • the piezoelectric layer (3) is lithium tantalate.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

特性を得るために用いられる励振モードよりも高周波側の帯域に発生する、高次モードのスプリアスを低減させる。弾性波装置(1)は、支持基板と、圧電体層(3)と、IDT電極(6)とを備える。圧電体層(3)は、支持基板に設けられている。IDT電極(6)は、圧電体層(3)に設けられており、複数の電極指(63)を有する。複数の電極指(63)の交差幅(W1)は、5λ以下である。

Description

弾性波装置
 本発明は、一般に弾性波装置に関し、より詳細には、IDT(Interdigital Transducer)電極を備える弾性波装置に関する。
 特許文献1には、従来の弾性波装置が記載されている。特許文献1に記載された弾性波装置は、高音速支持基板(支持基板)と、圧電膜(圧電体層)と、IDT電極とを備える。特許文献1に記載された弾性波装置では、IDT電極は、圧電膜の一方面に形成されている。
国際公開第2012/086639号
 ところで、特許文献1に記載された従来の弾性波装置では、特性を得るために用いられる励振モードよりも高周波側の帯域に、高次モードのスプリアスが発生するおそれがあるという問題がある。これにより、デバイスの特性が劣化する。
 本発明は上記の点に鑑みてなされた発明であり、本発明の目的は、特性を得るために用いられる励振モードよりも高周波側の帯域に発生する、高次モードのスプリアスを低減させることができる弾性波装置を提供することにある。
 本発明の一態様に係る弾性波装置は、支持基板と、圧電体層と、IDT電極とを備える。前記圧電体層は、前記支持基板の厚さ方向において前記支持基板に設けられている。前記IDT電極は、前記圧電体層上に設けられており、複数の電極指を有する。前記複数の電極指の交差幅は、5λ以下である。
 本発明の上記態様に係る弾性波装置によれば、特性を得るために用いられる励振モードよりも高周波側の帯域に発生する、高次モードのスプリアスを低減させることができる。
図1は、実施形態に係る弾性波装置の正面図である。 図2は、同上の弾性波装置における図1のX1-X1線断面図である。 図3は、同上の弾性波装置の高次モードの位相特性を示すグラフである。 図4Aは、同上の弾性波装置において交差幅が5λである場合のインピーダンス特性を示すグラフである。図4Bは、同上の弾性波装置において交差幅が4λである場合のインピーダンス特性を示すグラフである。図4Cは、同上の弾性波装置において交差幅が3λである場合のインピーダンス特性を示すグラフである。 図5Aは、同上の弾性波装置において交差幅が2λである場合のインピーダンス特性を示すグラフである。図5Bは、同上の弾性波装置において交差幅が1λである場合のインピーダンス特性を示すグラフである。 図6は、実施形態の変形例1に係る弾性波装置の断面図である。 図7は、実施形態の変形例2に係る弾性波装置の断面図である。 図8は、比較例の弾性波装置の位相特性を示すグラフである。 図9は、比較例の弾性波装置における高次モードの位相特性を示すグラフである。 図10は、比較例の弾性波装置において交差幅が6λである場合のインピーダンス特性を示すグラフである。
 以下、実施形態に係る弾性波装置について、図面を参照して説明する。以下の実施形態等において参照する図1、図2、図6及び図7は、模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比は、必ずしも実際の寸法比を反映しているとは限らない。
 (実施形態)
 (1)弾性波装置
 実施形態に係る弾性波装置の全体構成について、図面を参照して説明する。
 実施形態に係る弾性波装置1は、図1及び図2に示すように、支持基板2と、圧電体層3と、低音速膜4と、高音速膜5と、IDT(Interdigital Transducer)電極6とを備える。また、弾性波装置1は、2つの反射器7と、配線部8と、保護膜(図示せず)とを更に備える。
 弾性波装置1は、図1の例では、1つのIDT電極6を備えるが、IDT電極6の数は1つに限らず、複数であってもよい。弾性波装置1は、複数のIDT電極6を備える場合、例えば、複数のIDT電極6を含む複数の弾性表面波共振子が電気的に接続されて帯域通過型のフィルタが構成されていてもよい。
 (2)弾性波装置の各構成要素
 以下、実施形態に係る弾性波装置1の各構成要素について、図面を参照して説明する。
 (2.1)支持基板
 支持基板2は、図2に示すように、互いに対向する第1主面21及び第2主面22を有する。第1主面21と第2主面22とは、支持基板2の厚さ方向(第1方向D1)において対向する。支持基板2の厚さ方向(第1方向D1)からの平面視で、支持基板2は、例えば長方形状である。なお、支持基板2は、長方形状であることに限らず、例えば正方形状であってもよい。
 支持基板2では、圧電体層3を伝搬する弾性波の音速よりも、支持基板2を伝搬するバルク波の音速が高速である。ここにおいて、支持基板2を伝搬するバルク波は、支持基板2を伝搬する複数のバルク波のうち最も低音速なバルク波である。
 支持基板2は、例えば、シリコン基板である。支持基板2の厚さは、10λ(λ:電極指ピッチP1により定まる弾性波の波長)以上180μm以下が好適であり、一例として、例えば、120μmである。支持基板2がシリコン基板の場合、支持基板2の第1主面21の面方位は、例えば、(100)面であるが、これに限らず、例えば、(110)面、(111)面等であってもよい。弾性波の伝搬方位は、支持基板2の第1主面21の面方位に制約されずに設定することができる。
 支持基板2の材料は、シリコンに限定されない。支持基板2は、シリコン、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、サファイア、タンタル酸リチウム、ニオブ酸リチウム、水晶、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト、マグネシア及びダイヤモンドからなる群から選択される少なくとも1種の材料を含んでいればよい。
 (2.2)圧電体層
 圧電体層3は、図2に示すように、支持基板2に設けられている。「圧電体層3が支持基板2に設けられている」とは、他の層を介さずに圧電体層3が支持基板2に直接的に設けられている場合と、他の層を介して圧電体層3が支持基板2に間接的に設けられている場合と、を含む。
 図2の例では、圧電体層3は、支持基板2に間接的に設けられている。より詳細には、圧電体層3は、支持基板2の厚さ方向(第1方向D1)において、低音速膜4及び高音速膜5を介して、支持基板2の第1主面21側に設けられている。圧電体層3は、第1主面31及び第2主面32を有する。第1主面31及び第2主面32は、支持基板2の厚さ方向(第1方向D1)において対向する。
 圧電体層3は、例えば、Γ°YカットX伝搬LiTaO圧電単結晶から形成されている。Γ°YカットX伝搬LiTaO圧電単結晶は、LiTaO圧電単結晶の3つの結晶軸をX軸、Y軸、Z軸とした場合に、X軸を中心軸としてY軸からZ軸方向にθ°回転した後のZ軸を法線とする面で切断したLiTaO単結晶であって、X軸方向に弾性表面波が伝搬する単結晶である。圧電体層3のカット角は、カット角をΓ[°]、圧電体層3のオイラー角を(φ,θ,ψ)をすると、θ=Γ+90°である。ただし、Γと、Γ±180×nは同義である。ここにおいて、nは、自然数である。圧電体層3は、Γ°YカットX伝搬LiTaO圧電単結晶に限定されず、例えば、Γ°YカットX伝搬LiTaO圧電セラミックスであってもよい。
 圧電体層3の厚さは、例えば、IDT電極6の電極指ピッチP1(図1参照)で定まる弾性波の波長をλとしたときに、3.5λ以下である。圧電体層3の厚さが3.5λ以下である場合、弾性波装置1のQ値が高くなる。また、圧電体層3の厚さを2.5λ以下とすることで、TCF(Temperature Coefficient of Frequency)を小さくすることができる。さらに、圧電体層3の厚さを1.5λ以下とすることで、弾性波の音速の調整が容易になる。例えば、弾性波の波長λが2μmである場合、圧電体層3の厚さは0.2λ(400nm)である。なお、圧電体層3の厚さは、3.5λ以下であることに限定されず、3.5λより大きくてもよい。
 ところで、圧電体層3の厚さが3.5λ以下である場合、上述したようにQ値が高くなるが、高次モードが発生する。弾性波装置1では、圧電体層3の厚さが3.5λ以下であっても、高次モードを低減させるように、低音速膜4及び高音速膜5が設けられている。
 弾性波装置1では、圧電体層3を伝搬する弾性波のモードとして、縦波、SH波、若しくはSV波、又はこれらが複合したモードが存在する。弾性波装置1では、SH波を主成分とするモードをメインモードとして使用している。高次モードとは、圧電体層3を伝搬する弾性波のメインモードよりも高周波数側に発生するスプリアスモードのことである。圧電体層3を伝搬する弾性波のモードが「SH波を主成分とするモードをメインモード」であるか否かについては、例えば、圧電体層3のパラメータ(材料、オイラー角及び厚さ等)、IDT電極6のパラメータ(材料、厚さ及び電極指ピッチ等)、低音速膜4のパラメータ(材料、厚さ等)、高音速膜5のパラメータ(材料、厚さ等)等のパラメータを用いて、有限要素法により変位分布を解析し、ひずみを解析することにより、確認することができる。圧電体層3のオイラー角は、分析により求めることができる。
 圧電体層3の材料は、タンタル酸リチウム(LiTaO)に限定されず、例えば、ニオブ酸リチウム(LiNbO)、酸化亜鉛(ZnO)、窒化アルミニウム(AlN)、又はチタン酸ジルコン酸鉛鉛(PZT)であってもよい。圧電体層3が、例えば、YカットX伝搬LiNbO圧電単結晶又は圧電セラミックスからなる場合、弾性波装置1は、ラブ波を弾性波として利用することにより、SH波を主成分とするモードをメインモードとして使用することができる。なお、圧電体層3の単結晶材料、カット角については、例えば、フィルタの要求仕様(通過特性、減衰特性、温度特性及び帯域幅等のフィルタ特性)等に応じて、適宜、決定すればよい。
 (2.3)低音速膜
 低音速膜4は、図2に示すように、支持基板2に設けられている。「低音速膜4が支持基板2に設けられている」とは、他の層を介さずに低音速膜4が支持基板2に直接的に設けられている場合と、他の層を介して低音速膜4が支持基板2に間接的に設けられている場合と、を含む。
 図2の例では、低音速膜4は、支持基板2の厚さ方向(第1方向D1)において、支持基板2と圧電体層3との間に設けられている。より詳細には、低音速膜4は、高音速膜5を介して、支持基板2の第1主面21側に形成されている。低音速膜4は、圧電体層3を伝搬するバルク波の音速よりも、低音速膜4を伝搬するバルク波の音速が低速となる膜である。
 低音速膜4が支持基板2と圧電体層3との間に設けられていることにより、弾性波の音速が低下する。弾性波は、本質的に低音速な媒質にエネルギーが集中するという性質を有する。したがって、圧電体層3内及び弾性波が励振されているIDT電極6内への弾性波のエネルギーの閉じ込め効果を高めることができる。その結果、低音速膜4が設けられていない場合に比べて、損失を低減し、弾性波装置1のQ値を高めることができる。
 低音速膜4の材料は、例えば、酸化ケイ素である。なお、低音速膜4の材料は、酸化ケイ素に限定されず、例えば、ガラス、酸窒化ケイ素、酸化タンタル、酸化ケイ素にフッ素、炭素、若しくはホウ素を加えた化合物、又は、上記各材料を主成分とする材料であってもよい。
 低音速膜4が酸化ケイ素の場合、温度特性を改善することができる。タンタル酸リチウムの弾性定数は負の温度特性を有し、酸化ケイ素は正の温度特性を有する。したがって、弾性波装置1では、TCFの絶対値を小さくすることができる。
 低音速膜4の厚さは、上述の電極指ピッチP1で定まる弾性波の波長をλとすると、2.0λ以下であることが好ましい。例えば、弾性波の波長λが2μmである場合、低音速膜4の厚さは、0.2λ(400nm)である。低音速膜4の厚さを2.0λ以下とすることにより、膜応力を低減させることができ、その結果、弾性波装置1の製造時に支持基板2の元になるシリコンウェハの反りを低減させることができ、良品率の向上及び特性の安定化が可能となる。
 また、弾性波装置1では、例えば低音速膜4と圧電体層3との間に介在する密着層を備えてもよい。これにより、低音速膜4と圧電体層3との密着性を向上させることができる。密着層は、例えば、樹脂(エポキシ樹脂、ポリイミド樹脂等)、金属等からなる。また、弾性波装置1は、密着層に限らず、誘電体膜を、低音速膜4と圧電体層3との間、圧電体層3上、又は低音速膜4下のいずれかに備えてもよい。
 (2.4)高音速膜
 高音速膜5は、図2に示すように、支持基板2の厚さ方向(第1方向D1)において、支持基板2と低音速膜4との間に設けられている。図2の例では、高音速膜5は、支持基板2に設けられている。「高音速膜5が支持基板2に設けられている」とは、他の層を介さずに高音速膜5が支持基板2に直接的に設けられている場合と、他の層を介して高音速膜5が支持基板2に間接的に設けられている場合と、を含む。
 高音速膜5は、圧電体層3を伝搬する弾性波の音速よりも、高音速膜5を伝搬するバルク波の音速が高速となる膜である。高音速膜5の厚さは、例えば200nm、300nm、400nm、600nmである。例えば、弾性波の波長λが2μmである場合、高音速膜5の厚さは、0.3λ(600nm)である。高音速膜5の厚さに関しては、弾性波を圧電体層3及び低音速膜4に閉じ込める機能を高音速膜5が有するため、高音速膜5の厚さは厚いほど望ましい。
 高音速膜5は、メインモードの弾性波のエネルギーが高音速膜5より下の構造に漏れることを抑制するように機能する。弾性波装置1では、高音速膜5の厚さが十分に厚い場合、メインモードの弾性波のエネルギーは圧電体層3及び低音速膜4の全体に分布し、高音速膜5の低音速膜4側の一部にも分布し、支持基板2には分布しないことになる。高音速膜5により弾性波を閉じ込めるメカニズムは非漏洩なSH波であるラブ波型の表面波の場合と同様のメカニズムであり、例えば、文献「弾性表面波デバイスシミュレーション技術入門」、橋本研也、リアライズ社、p.26-28に記載されている。上記メカニズムは、音響多層膜によるブラッグ反射器を用いて弾性波を閉じ込めるメカニズムとは異なる。
 高音速膜5の材料は、例えば、窒化ケイ素である。なお、高音速膜5の材料は、窒化ケイ素に限定されず、ダイヤモンドライクカーボン、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、シリコン、サファイア、圧電体(タンタル酸リチウム、ニオブ酸リチウム、又は水晶)、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト、マグネシア、及びダイヤモンドからなる群から選択される少なくとも1種の材料であってもよい。高音速膜5の材料は、上述したいずれかの材料を主成分とする材料、又は、上述したいずれかの材料を含む混合物を主成分とする材料であってもよい。
 (2.5)IDT電極
 IDT電極6は、図1及び図2に示すように、圧電体層3に設けられている。より詳細には、IDT電極6は、支持基板2の厚さ方向(第1方向D1)において、圧電体層3の第1主面31上に形成されている。
 IDT電極6は、図1に示すように、2つの電極61を有する。言い換えると、IDT電極6は、2つのバスバー62と、2組の電極指63とを有する。より詳細には、IDT電極6は、第1電極61Aと、第2電極61Bとを有する。第1電極61A及び第2電極61Bの各々は、導電性を有する。第1電極61A及び第2電極61Bは、互いに離れており、互いに電気的に絶縁されている。
 第1電極61Aは、支持基板2の厚さ方向(第1方向D1)からの平面視で櫛形状である。第1電極61Aは、第1バスバー62Aと、複数の第1電極指63Aとを有する。第1バスバー62Aは、複数の第1電極指63Aを同じ電位(等電位)にするための導体部である。
 第2電極61Bは、支持基板2の厚さ方向(第1方向D1)からの平面視で櫛形状である。第2電極61Bは、第2バスバー62Bと、複数の第2電極指63Bとを有する。第2バスバー62Bは、複数の第2電極指63Bを同じ電位(等電位)にするための導体部である。IDT電極6では、第3方向D3において、第1バスバー62Aと第2バスバー62Bとが互いに対向する。
 複数の第1電極指63Aは、第1バスバー62Aに接続されており、第2バスバー62B側に延びている。複数の第1電極指63Aは、第1バスバー62Aと一体に形成されており、第2バスバー62Bとは離れている。
 複数の第2電極指63Bは、第2バスバー62Bに接続されており、第1バスバー62A側に延びている。複数の第2電極指63Bは、第2バスバー62Bと一体に形成されており、第1バスバー62Aとは離れている。
 IDT電極6は、例えば、正規型のIDT電極である。以下、IDT電極6について、より詳細に説明する。
 IDT電極6の第1バスバー62A及び第2バスバー62Bは、第2方向D2を長手方向とする長尺状である。IDT電極6では、第1バスバー62Aと第2バスバー62Bとは、第3方向D3において対向する。第2方向D2は、支持基板2の厚さ方向(第1方向D1)に直交する方向である。第3方向D3は、支持基板2の厚さ方向(第1方向D1)と第2方向D2との両方に直交する方向である。
 複数の第1電極指63Aは、第1バスバー62Aに接続されており、第2バスバー62Bに向かって延びている。ここにおいて、複数の第1電極指63Aは、第1バスバー62Aから第3方向D3に沿って延びている。複数の第1電極指63Aの先端と第2バスバー62Bとは離れている。例えば、複数の第1電極指63Aは、互いの長さ及び交差幅W1が同じである。
 複数の第2電極指63Bは、第2バスバー62Bに接続されており、第1バスバー62Aに向かって延びている。ここにおいて、複数の第2電極指63Bは、第2バスバー62Bから第3方向D3に沿って延びている。複数の第2電極指63Bの先端と第1バスバー62Aとは離れている。例えば、複数の第2電極指63Bは、互いの長さ及び交差幅W1が同じである。図1の例では、複数の第2電極指63Bの長さ及び交差幅W1は、複数の第1電極指63Aの長さ及び交差幅W1とそれぞれ同じである。
 IDT電極6では、複数の第1電極指63Aと複数の第2電極指63Bとが、第2方向D2において、1本ずつ交互に互いに離隔して並んでいる。したがって、隣り合う第1電極指63Aと第2電極指63Bとは、距離S1で離れている。複数の第1電極指63Aと複数の第2電極指63Bとを含む一群の電極指63は、複数の第1電極指63Aと複数の第2電極指63Bとが、第2方向D2において、離隔して並んでいる構成であればよく、複数の第1電極指63Aと複数の第2電極指63Bとが交互に互いに離隔して並んでいない構成であってもよい。例えば、第1電極指63Aと第2電極指63Bとが1本ずつ離隔して並んでいる領域と、第1電極指63A又は第2電極指63Bが第2方向D2において2つ並んでいる領域と、とが混在してもよい。
 複数の第1電極指63Aと複数の第2電極指63Bとは、互いに間挿しあっている。ここで、「交差幅」とは、弾性波伝搬方向からみて、第1電極指63Aと第2電極指63Bとが重なっている長さをいう。つまり、IDT電極6は、複数の第1電極指63Aと複数の第2電極指63Bとで規定される交差領域を有する。交差領域は、複数の第1電極指63Aの先端の包絡線と複数の第2電極指63Bの先端の包絡線との間の領域である。IDT電極6は、交差領域において、圧電体層3に弾性波を励振する。
 なお、IDT電極6は、正規型のIDT電極であることに限らず、例えば、アポダイズ重み付けが施されているIDT電極であってもよいし、傾斜IDT電極であってもよい。アポダイズ重み付けが施されているIDT電極では、弾性波の伝搬方向の一端部から中央に近づくにつれて交差幅が大きくなり、弾性波の伝搬方向の中央から他端部に近づくにつれて交差幅が小さくなる。
 IDT電極6の電極指ピッチP1は、図1に示すように、複数の第1電極指63Aのうち隣り合う2つの第1電極指63Aの中心線間の距離、又は、複数の第2電極指63Bのうち隣り合う2つの第2電極指63Bの中心線間の距離で定義される。隣り合う2つの第2電極指63Bの中心線間の距離は、隣り合う2つの第1電極指63Aの中心線間の距離と同じである。
 実施形態に係る弾性波装置1のIDT電極6では、第1電極指63Aと第2電極指63Bとの対数は、一例として100である。つまり、IDT電極6は、一例として、100本の第1電極指63Aと、100本の第2電極指63Bとを有する。
 IDT電極6の材料は、アルミニウム(Al)、銅(Cu)、白金(Pt)、金(Au)、銀(Ag)、チタン(Ti)、ニッケル(Ni)、クロム(Cr)、モリブデン(Mo)、若しくはタングステン(W)、又はこれらの金属のいずれかを主体とする合金等の適宜の金属材料である。また、IDT電極6は、これらの金属又は合金からなる複数の金属膜を積層した構造を有してもよい。
 (2.6)反射器
 2つの反射器7は、図1に示すように、圧電体層3に設けられている。より詳細には、2つの反射器7は、支持基板2の厚さ方向(第1方向D1)において、圧電体層3の第1主面31上に形成されている。2つの反射器7の各々は、導電性を有する。
 2つの反射器7は、弾性波装置1の弾性波の伝搬方向に沿った方向(第2方向D2)においてIDT電極6の一方側及び他方側のそれぞれに1つずつ位置している。言い換えると、第2方向D2において、IDT電極6は、2つの反射器7の間に位置している。各反射器7は、例えば、短絡グレーティングである。各反射器7は、弾性波を反射する。
 2つの反射器7の各々は、複数の電極指71を有し、複数の電極指71の一端同士が短絡されており、他端同士が短絡されている。2つの反射器7の各々では、電極指の数は、一例として20である。
 各反射器7の材料は、アルミニウム(Al)、銅(Cu)、白金(Pt)、金(Au)、銀(Ag)、チタン(Ti)、ニッケル(Ni)、クロム(Cr)、モリブデン(Mo)、若しくはタングステン(W)、又はこれらの金属のいずれかを主体とする合金等の適宜の金属材料である。また、各反射器7は、これらの金属又は合金からなる複数の金属膜を積層した構造を有してもよい。
 弾性波装置1では、各反射器7とIDT電極6とが同じ材料で同じ厚さに設定されている場合、弾性波装置1の製造時に各反射器7とIDT電極6とを同じ工程で形成することができる。
 なお、実施形態に係る弾性波装置1では、各反射器7が短絡グレーティングであるが、各反射器7は、短絡グレーディングであることに限らず、例えば、開放グレーティング、正負反射型グレーティング、又は、短絡グレーティングと開放グレーティングとが組み合わされたグレーティングであってもよい。
 (2.7)配線部
 配線部8は、図1に示すように、圧電体層3に設けられている。より詳細には、配線部8は、支持基板2の厚さ方向(第1方向D1)において、圧電体層3の第1主面31上に形成されている。配線部8は、導電性を有する。
 配線部8は、第1配線部81と、第2配線部82とを含む。第1配線部81は、IDT電極6の第1バスバー62Aに接続されている。第2配線部82は、IDT電極6の第2バスバー62Bに接続されている。第1配線部81と第2配線部82とは、互いに離れており、互いに電気的に絶縁されている。
 第1配線部81は、第1バスバー62Aから複数の第1電極指63A側とは反対側へ延びている。第1配線部81は、支持基板2の厚さ方向(第1方向D1)において第1バスバー62Aと一部重複するように形成されていてもよいし、第1バスバー62Aと同じ材料かつ同じ厚さで第1バスバー62Aと一体に形成されていてもよい。
 第2配線部82は、第2バスバー62Bから複数の第2電極指63B側とは反対側へ延びている。第2配線部82は、支持基板2の厚さ方向(第1方向D1)において第2バスバー62Bと一部重複するように形成されていてもよいし、第2バスバー62Bと同じ材料かつ同じ厚さで第2バスバー62Bと一体に形成されていてもよい。
 配線部8の材料は、アルミニウム(Al)、銅(Cu)、白金(Pt)、金(Au)、銀(Ag)、チタン(Ti)、ニッケル(Ni)、クロム(Cr)、モリブデン(Mo)、若しくはタングステン(W)、又はこれらの金属のいずれかを主体とする合金等の適宜の金属材料である。また、配線部8は、これらの金属又は合金からなる複数の金属膜を積層した構造を有してもよい。
 (2.8)保護膜
 図示しない保護膜は、圧電体層3上に形成されている。保護膜は、圧電体層3の第1主面31上のIDT電極6、各反射器7及び配線部8と、圧電体層3の第1主面31の一部と、を覆っている。
 保護膜の材料は、例えば酸化ケイ素である。なお、保護層の材料は、酸化ケイ素であることに限らず、例えば窒化ケイ素であってもよい。保護膜は、単層構造に限らず、例えば、2層以上の多層構造であってもよい。
 (3)弾性波装置の特性
 以下、実施形態に係る弾性波装置1の特性について、比較例の弾性波装置と比較しながら、図面を参照して説明する。
 まず、比較例の弾性波装置について説明する。圧電体層が圧電基板である場合、図8の特性A2に示すように、高次モードは発生しない。一方、圧電体層が圧電基板よりも薄く、支持基板と圧電体層との積層構造の場合、図8の特性A1に示すように、高次モードが発生する。高次モードとは、上述したように、圧電体層3を伝搬する弾性波のメインモードよりも高周波数側に発生するスプリアスモードのことである。
 支持基板と圧電体層との積層構造の場合、図9に示すように、圧電体層の厚さが10λより大きい範囲では、高次モードが小さい。圧電体層の厚さが10λ以下の範囲において、高次モードが発生する。圧電体層の厚さが5λ以下になると、高次モードが大きくなる。圧電体層の厚さが1λ以下では、位相が90°に近づき、弾性波装置の特性が大幅に劣化する。
 そこで、圧電体層が10λ以下である場合であっても、高次モードを小さくするために、実施形態に係る弾性波装置1では、複数の電極指63の交差幅W1は、5λ以下とされている。交差幅W1が5λ以下である場合、図3に示すように、高次モードの位相特性を向上させることができる。図3は、交差幅W1に対する高次モードの位相特性を示すグラフである。交差幅W1が5λ以下の範囲において、交差幅W1が小さくなるにつれて、高次モードが小さくなっている。
 なお、図3の特性を得る弾性波装置1の条件は以下のとおりである。IDT電極6の厚さが0.05λ、圧電体層3の厚さが0.2λ、低音速膜4の厚さが0.2λ、高音速膜5の厚さが0.3λである。IDT電極6の材料がアルミニウム、圧電体層3の材料がタンタル酸リチウム、低音速膜4の材料が酸化シリコン、高音速膜5の材料が窒化シリコン、支持基板2の材料がシリコンである。
 ところで、複数の電極指63の交差幅W1は2λ以下であることが好ましい。交差幅W1が2λ以下である場合、図5A及び図5Bに示すように、横モードによるスプリアスを小さくすることができる。つまり、横モードを抑制することができる。図5Aは、交差幅W1が2λである場合のインピーダンスを示す。図5Bは、交差幅W1が1λである場合のインピーダンスを示す。
 一方、交差幅W1が2λより大きい場合、図4A~図4Cに示すように、反共振周波数と共振周波数との間の周波数帯に横モードに起因するピークが発生する。また、交差幅W1が5λより大きい場合も、図10に示すように、反共振周波数と共振周波数との間の周波数帯に横モードに起因するピークが発生する。
 (4)効果
 実施形態に係る弾性波装置1では、IDT電極6の複数の電極指63の交差幅W1が5λ以下である。これにより、弾性波装置1がフィルタに用いられる場合に、フィルタの通過帯域の高周波側の帯域に発生する高次モードのスプリアスを低減させることができる。特性を得るために用いられる励振モードよりも高周波側の帯域に発生する、高次モードのスプリアスを低減させることができる。
 実施形態に係る弾性波装置1では、IDT電極6の複数の電極指63の交差幅W1が2λ以下である。これにより、横モードを抑制することができる。
 実施形態に係る弾性波装置1では、支持基板2の厚さ方向(第1方向D1)において、支持基板2と圧電体層3との間に低音速膜4が設けられている。これにより、弾性波装置1のQ値を向上させることができる。
 実施形態に係る弾性波装置1では、支持基板2の厚さ方向(第1方向D1)において、支持基板2と低音速膜4との間に高音速膜5が設けられている。これにより、弾性波装置1のQ値を更に向上させることができる。
 (5)変形例
 以下、実施形態の変形例について説明する。
 実施形態の変形例1として、図6に示すように、弾性波装置1aは、高音速膜5を備えなくてもよい。一方、弾性波装置1aは、実施形態に係る弾性波装置1と同様、支持基板2と、圧電体層3と、低音速膜4と、IDT電極6とを備える。
 変形例1に係る弾性波装置1aでは、支持基板2が高音速支持基板である。これにより、弾性波装置1のQ値を更に向上させることができる。
 実施形態の変形例2として、図7に示すように、弾性波装置1bでは、圧電体層3は、支持基板2に直接設けられていてもよい。つまり、弾性波装置1bは、低音速膜4及び高音速膜5を備えなくてもよい。一方、弾性波装置1bは、実施形態に係る弾性波装置1と同様、支持基板2と、圧電体層3と、IDT電極6とを備える。
 上記の変形例1に係る弾性波装置1a及び変形例2に係る弾性波装置1bにおいても、実施形態に係る弾性波装置1と同様の効果を奏する。
 なお、弾性波装置1は、高音速膜5、低音速膜4及び圧電体層3以外の他の膜として密着層、誘電体膜等を備えてもよい。
 なお、弾性波装置1は、配線部8の第1配線部81を介して第1バスバー62Aに接続された第1端子と、配線部8の第2配線部82を介して第2バスバー62Bに接続された第2端子とを更に備えてもよい。また、弾性波装置1は、2つの反射器7の各々に1つずつ接続された2つの第3配線部を更に備えてもよい。この場合、2つの反射器7の各々は、少なくとも第3配線部を介して第3端子と接続されていてもよい。第1端子と第2端子と第3端子とを含む複数の外部接続端子は、弾性波装置1において、回路基板、パッケージ用の実装基板(サブマウント基板)等と電気的に接続するための電極である。また、弾性波装置1は、IDT電極6には電気的に接続されていない複数のダミー端子を更に備えてもよい。複数のダミー端子は、回路基板、実装基板等に対する弾性波装置1の平行度を高めるための端子であり、電気的接続を目的とした端子とは異なる。つまり、ダミー端子は、弾性波装置1が回路基板、実装基板等に対して傾いて実装されるのを抑制するための端子であり、外部接続端子の数及び配置、弾性波装置1の外周形状等によっては必ずしも設ける必要はない。
 第1端子は、例えば、第1配線部81と同じ材料かつ同じ厚さで第1配線部81と一体に形成されている。第2端子は、例えば、第2配線部82と同じ材料かつ同じ厚さで第2配線部82と一体に形成されている。第3端子は、例えば、第3配線部と同じ材料かつ同じ厚さで第3配線部と一体に形成されている。第3配線部は、例えば、第1配線部81及び第2配線部82と同じ材料かつ同じ厚さで形成されている。
 以上説明した実施形態及び変形例は、本発明の様々な実施形態及び変形例の一部に過ぎない。また、実施形態及び変形例は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
 (態様)
 本明細書には、以下の態様が開示されている。
 第1の態様に係る弾性波装置(1;1a;1b)は、支持基板(2)と、圧電体層(3)と、IDT電極(6)とを備える。圧電体層(3)は、支持基板(2)の厚さ方向(第1方向D1)において、支持基板(2)に設けられている。IDT電極(6)は、圧電体層(3)上に設けられている。IDT電極(6)は、複数の電極指(63)を有する。複数の電極指(63)の交差幅(W1)は、5λ以下である。
 第1の態様に係る弾性波装置(1)では、IDT電極(6)の複数の電極指(63)の交差幅(W1)が5λ以下である。これにより、弾性波装置(1)がフィルタに用いられる場合に、フィルタの通過帯域の高周波側の帯域に発生する高次モードのスプリアスを低減させることができる。特性を得るために用いられる励振モードよりも高周波側の帯域に発生する、高次モードのスプリアスを低減させることができる。
 第2の態様に係る弾性波装置(1;1a;1b)では、第1の態様において、複数の電極指(63)の交差幅(W1)は、2λ以下である。
 第2の態様に係る弾性波装置(1;1a;1b)では、IDT電極(6)の複数の電極指(63)の交差幅(W1)が2λ以下である。これにより、横モードを抑制することができる。
 第3の態様に係る弾性波装置(1;1a)は、第1又は2の態様において、低音速膜(4)を更に備える。低音速膜(4)では、圧電体層(3)を伝搬するバルク波の音速よりも、低音速膜(4)を伝搬するバルク波の音速が低速である。低音速膜(4)は、支持基板(2)の厚さ方向(第1方向D1)において、支持基板(2)と圧電体層(3)との間に設けられている。
 第3の態様に係る弾性波装置(1;1a)によれば、弾性波装置(1;1a)のQ値を向上させることができる。
 第4の態様に係る弾性波装置(1)は、第3の態様において、高音速膜(5)を更に備える。高音速膜(5)では、圧電体層(3)を伝搬する弾性波の音速よりも、高音速膜(5)を伝搬するバルク波の音速が高速である。高音速膜(5)は、支持基板(2)の厚さ方向(第1方向D1)において、支持基板(2)と低音速膜(4)との間に設けられている。
 第4の態様に係る弾性波装置(1)によれば、弾性波装置(1)のQ値を更に向上させることができる。
 第5の態様に係る弾性波装置(1a)では、第3の態様において、支持基板(2)は、高音速支持基板である。高音速支持基板では、圧電体層(3)を伝搬する弾性波の音速よりも、高音速支持基板を伝搬するバルク波の音速が高速である。
 第5の態様に係る弾性波装置(1a)によれば、弾性波装置(1a)のQ値を更に向上させることができる。
 第6の態様に係る弾性波装置(1;1a;1b)では、第1~5の態様のいずれか1つにおいて、圧電体層(3)は、タンタル酸リチウムである。
 1,1a,1b 弾性波装置
 2 支持基板
 21 第1主面
 22 第2主面
 3 圧電体層
 31 第1主面
 32 第2主面
 4 低音速膜
 5 高音速膜
 6 IDT電極
 61 電極
 61A 第1電極
 61B 第2電極
 62 バスバー
 62A 第1バスバー
 62B 第2バスバー
 63 電極指
 63A 第1電極指
 63B 第2電極指
 7 反射器
 71 電極指
 8 配線部
 81 第1配線部
 82 第2配線部
 P1 電極指ピッチ
 W1 交差幅
 A1,A2 特性
 D1 第1方向(厚さ方向)
 D2 第2方向
 D3 第3方向

Claims (6)

  1.  支持基板と、
     前記支持基板の厚さ方向において前記支持基板に設けられている圧電体層と、
     前記圧電体層上に設けられており、複数の電極指を有するIDT電極と、を備え、
     前記複数の電極指の交差幅は、5λ以下である、
     弾性波装置。
  2.  前記複数の電極指の前記交差幅は、2λ以下である、
     請求項1に記載の弾性波装置。
  3.  前記圧電体層を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である低音速膜を更に備え、
     前記低音速膜は、前記支持基板の前記厚さ方向において、前記支持基板と前記圧電体層との間に設けられている、
     請求項1又は2に記載の弾性波装置。
  4.  前記圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速膜を更に備え、
     前記高音速膜は、前記支持基板の前記厚さ方向において、前記支持基板と前記低音速膜との間に設けられている、
     請求項3に記載の弾性波装置。
  5.  前記支持基板は、前記圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速支持基板である、
     請求項3に記載の弾性波装置。
  6.  前記圧電体層は、タンタル酸リチウムである、
     請求項1~5のいずれか1項に記載の弾性波装置。
PCT/JP2021/004392 2020-02-06 2021-02-05 弾性波装置 WO2021157714A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021576191A JPWO2021157714A1 (ja) 2020-02-06 2021-02-05
CN202180011353.XA CN115023896A (zh) 2020-02-06 2021-02-05 弹性波装置
US17/875,496 US20220368305A1 (en) 2020-02-06 2022-07-28 Acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-019048 2020-02-06
JP2020019048 2020-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/875,496 Continuation US20220368305A1 (en) 2020-02-06 2022-07-28 Acoustic wave device

Publications (1)

Publication Number Publication Date
WO2021157714A1 true WO2021157714A1 (ja) 2021-08-12

Family

ID=77200017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004392 WO2021157714A1 (ja) 2020-02-06 2021-02-05 弾性波装置

Country Status (4)

Country Link
US (1) US20220368305A1 (ja)
JP (1) JPWO2021157714A1 (ja)
CN (1) CN115023896A (ja)
WO (1) WO2021157714A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116528A1 (ja) * 2018-12-06 2020-06-11 株式会社村田製作所 弾性波装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198709A1 (ja) * 2014-06-27 2015-12-30 株式会社村田製作所 ラダー型フィルタ
WO2016103953A1 (ja) * 2014-12-25 2016-06-30 株式会社村田製作所 弾性波装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254835A (ja) * 1994-03-15 1995-10-03 Murata Mfg Co Ltd 弾性表面波共振子フィルタ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198709A1 (ja) * 2014-06-27 2015-12-30 株式会社村田製作所 ラダー型フィルタ
WO2016103953A1 (ja) * 2014-12-25 2016-06-30 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
US20220368305A1 (en) 2022-11-17
CN115023896A (zh) 2022-09-06
JPWO2021157714A1 (ja) 2021-08-12

Similar Documents

Publication Publication Date Title
US9276558B2 (en) Surface acoustic wave device including a confinement layer
US8710713B2 (en) Boundary acoustic wave device
JP7231015B2 (ja) 弾性波装置
JP7014319B2 (ja) 弾性波装置
US11799443B2 (en) Acoustic wave device
US11646713B2 (en) Acoustic wave device
US11689180B2 (en) Acoustic wave device
US20220345108A1 (en) Acoustic wave device
US20220247377A1 (en) Acoustic wave device
WO2020122005A1 (ja) 弾性波装置
WO2021157714A1 (ja) 弾性波装置
US20220407493A1 (en) Acoustic wave device
WO2021177340A1 (ja) 弾性波装置
WO2021002382A1 (ja) 弾性波装置
WO2021117581A1 (ja) 弾性波装置
WO2024080205A1 (ja) フィルタ装置
WO2024117050A1 (ja) 弾性波装置及びフィルタ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021576191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750819

Country of ref document: EP

Kind code of ref document: A1