WO2020122005A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2020122005A1
WO2020122005A1 PCT/JP2019/048053 JP2019048053W WO2020122005A1 WO 2020122005 A1 WO2020122005 A1 WO 2020122005A1 JP 2019048053 W JP2019048053 W JP 2019048053W WO 2020122005 A1 WO2020122005 A1 WO 2020122005A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
acoustic velocity
piezoelectric layer
elastic wave
dielectric film
Prior art date
Application number
PCT/JP2019/048053
Other languages
English (en)
French (fr)
Inventor
康政 谷口
克也 大門
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020560094A priority Critical patent/JPWO2020122005A1/ja
Priority to CN201980081386.4A priority patent/CN113169725A/zh
Publication of WO2020122005A1 publication Critical patent/WO2020122005A1/ja
Priority to US17/340,182 priority patent/US11942921B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an acoustic wave device. More specifically, the present invention relates to an acoustic wave device including a dielectric film and a low acoustic velocity film.
  • the elastic wave device described in Patent Document 1 has a high sonic velocity support substrate as a high sonic velocity member.
  • a low acoustic velocity film having a relatively low acoustic velocity is laminated on a high acoustic velocity support substrate.
  • a piezoelectric film is laminated on the low acoustic velocity film.
  • An IDT electrode is laminated on the upper surface of this piezoelectric film.
  • a dielectric film is laminated so as to cover the IDT electrode.
  • An object of the present invention is to provide an elastic wave device capable of reducing the loss of elastic wave energy.
  • An elastic wave device includes a piezoelectric layer, an IDT electrode, a high acoustic velocity member, a low acoustic velocity film, and a dielectric film.
  • the IDT electrode is formed on the piezoelectric layer.
  • the high acoustic velocity member is located on the opposite side of the IDT electrode with the piezoelectric layer sandwiched therebetween.
  • the acoustic velocity of the bulk wave propagating in the piezoelectric layer is higher than the acoustic velocity of the elastic wave propagating in the piezoelectric layer.
  • the low acoustic velocity film is provided between the high acoustic velocity member and the piezoelectric layer.
  • the acoustic velocity of the bulk wave propagating in the piezoelectric layer is lower than the acoustic velocity of the bulk wave propagating in the piezoelectric layer.
  • the dielectric film is formed on the piezoelectric layer so as to cover the IDT electrode. Young's modulus of the dielectric film is larger than that of the low acoustic velocity film.
  • loss of elastic wave energy can be reduced.
  • FIG. 1 is a sectional view of an elastic wave device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a Q characteristic of the above elastic wave device.
  • FIG. 3 is a sectional view of an elastic wave device according to Modification 1 of the embodiment of the present invention.
  • an acoustic wave device 1 includes a high acoustic velocity member 2, a low acoustic velocity film 3, a piezoelectric layer 4, an IDT (Interdigital Transducer) electrode 5, a dielectric film 6, and Is equipped with.
  • the high sonic velocity member 2, the low sonic velocity film 3, the piezoelectric layer 4, the IDT electrode 5, and the dielectric film 6 are laminated in this order in the first direction D1.
  • the high sound speed member 2 is located on the opposite side of the IDT electrode 5 with the piezoelectric layer 4 interposed therebetween, as shown in FIG.
  • the high sound velocity member 2 is a high sound velocity support substrate 21 supporting the low sound velocity film 3, the piezoelectric layer 4, the IDT electrode 5, and the dielectric film 6.
  • the acoustic velocity of the bulk wave propagating in the high acoustic velocity support substrate 21 is higher than the acoustic velocity of the elastic wave propagating in the piezoelectric layer 4.
  • the shape of the high sonic support substrate 21 (high sonic speed member 2) in plan view (the outer peripheral shape when the high sonic speed support substrate 21 is viewed from the first direction D1) is a rectangular shape, but is not limited to a rectangular shape. It may have a square shape.
  • the material of the high sound velocity support substrate 21 is, for example, silicon.
  • the thickness of the high acoustic velocity support substrate 21 is, for example, 120 ⁇ m.
  • the material of the high sonic support substrate 21 is not limited to silicon, but silicon carbide, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, sapphire, lithium tantalate (LiTaO 3 ), lithium niobate (LiNbO 3 ), or Piezoelectric materials such as quartz, various ceramics such as alumina, zirconia, cordierite, mullite, steatite, or forsterite, or magnesia, diamond, or materials containing the above materials as main components, or of the above materials A material containing a mixture as a main component may be used.
  • (2.2) Low sonic velocity film The low sonic velocity film 3 is provided between the high sonic velocity member 2 and the piezoelectric layer 4 as shown in FIG.
  • the acoustic velocity of the bulk wave propagating in the low acoustic velocity film 3 is lower than the acoustic velocity of the bulk wave propagating in the piezoelectric layer 4. Since the low acoustic velocity film 3 is provided between the high acoustic velocity member 2 and the piezoelectric layer 4, the acoustic velocity of the elastic wave is reduced.
  • the elastic wave concentrates energy in the medium of low acoustic velocity.
  • the effect of confining the elastic wave energy in the piezoelectric layer 4 and the IDT electrode 5 in which the elastic wave is excited can be enhanced.
  • the loss can be reduced and the Q value can be increased as compared with the case where the low acoustic velocity film 3 is not provided.
  • the material of the low acoustic velocity film 3 is, for example, silicon oxide.
  • the thickness of the low acoustic velocity film 3 is, for example, 2.0 ⁇ or less, where ⁇ is the wavelength of the elastic wave determined by the electrode finger period of the IDT electrode 5.
  • the material of the low acoustic velocity film 3 is not limited to silicon oxide, but glass, silicon oxynitride, tantalum oxide, a compound of fluorine, carbon, or boron added to silicon oxide, or a material containing each of the above materials as a main component. May be
  • the frequency temperature characteristic can be improved as compared with the case where the low sonic film 3 is not included.
  • the elastic constant of lithium tantalate has a negative temperature characteristic
  • the elastic constant of silicon oxide has a positive temperature characteristic. Therefore, in the acoustic wave device 1, the absolute value of TCF (Temperature Coefficient of Frequency) can be reduced.
  • an adhesion layer may be provided between the low acoustic velocity film 3 and the piezoelectric layer 4. As a result, it is possible to suppress peeling between the low acoustic velocity film 3 and the piezoelectric layer 4.
  • the material of the adhesion layer is, for example, resin (epoxy resin, polyimide resin, etc.), metal or the like.
  • a dielectric film may be provided between the low acoustic velocity film 3 and the piezoelectric layer 4 or below the low acoustic velocity film 3.
  • the piezoelectric layer 4 is formed on the low acoustic velocity film 3.
  • “formed on the low sonic film 3” means that the film is formed directly on the low sonic film 3 or indirectly formed on the low sonic film 3. including.
  • the material of the piezoelectric layer 4 is, for example, lithium tantalate.
  • the material of the piezoelectric layer 4 is not limited to lithium tantalate, but may be lithium niobate, zinc oxide (ZnO), aluminum nitride (AlN), or lead zirconate titanate (PZT).
  • the thickness (film thickness) of the piezoelectric layer 4 is 3.5 ⁇ or less, where ⁇ is the wavelength of the elastic wave determined by the electrode finger period of the IDT electrode 5.
  • is the wavelength of the elastic wave determined by the electrode finger period of the IDT electrode 5.
  • the Q value becomes high.
  • the thickness of the piezoelectric layer 4 is 2.5 ⁇ or less, the frequency temperature characteristic is improved.
  • the thickness of the piezoelectric layer 4 is 1.5 ⁇ or less, the sound velocity can be easily adjusted.
  • the IDT electrode 5 is formed on the piezoelectric layer 4.
  • the term "formed on the piezoelectric layer 4" as used herein means that it is formed directly on the piezoelectric layer 4 or indirectly formed on the piezoelectric layer 4. including.
  • the IDT electrode 5 includes a plurality of electrode fingers and two bus bars.
  • the plurality of electrode fingers are arranged side by side in the second direction D2 intersecting (orthogonal to) the first direction D1.
  • the two bus bars are formed in an elongated shape having the second direction D2 as a longitudinal direction, and are electrically connected to the plurality of electrode fingers.
  • the plurality of electrode fingers include a plurality of first electrode fingers and a plurality of second electrode fingers.
  • the plurality of first electrode fingers are electrically connected to the first busbar of the two busbars.
  • the plurality of second electrode fingers are electrically connected to the second bus bar of the two bus bars.
  • the material of the IDT electrode 5 is, for example, aluminum (Al).
  • the material of the IDT electrode 5 is not limited to aluminum, but copper (Cu), platinum (Pt), gold (Au), silver (Ag), titanium (Ti), nickel (Ni), chromium (Cr), molybdenum. It may be (Mo), tungsten (W), tantalum (Ta), magnesium (Mg), iron (Fe), or an alloy mainly containing any of these metals.
  • the IDT electrode 5 may have a structure in which a plurality of metal films made of these metals or alloys are laminated.
  • an adhesion layer is provided between the piezoelectric layer 4 and the IDT electrode 5.
  • the material of the adhesion layer is titanium, for example. Thereby, peeling between the piezoelectric layer 4 and the IDT electrode 5 can be suppressed.
  • the material of the adhesion layer is not limited to titanium, and may be resin (epoxy resin, polyimide resin, etc.) or metal other than titanium.
  • the dielectric film 6 is formed on the piezoelectric layer 4 so as to cover the IDT electrode 5.
  • the term "formed on the piezoelectric layer 4" as used herein means that it is formed directly on the piezoelectric layer 4 or indirectly formed on the piezoelectric layer 4. including.
  • the dielectric film 6 is a protective film that protects the IDT electrode 5, and is formed with a constant thickness (film thickness) along the shape of the IDT electrode 5.
  • the dielectric film 6 has electrical insulation.
  • the material of the dielectric film 6 is, for example, silicon oxide. That is, in this embodiment, the material of the dielectric film 6 and the material of the low acoustic velocity film 3 are the same.
  • the material of the dielectric film 6 is not limited to silicon oxide, and may be silicon nitride, for example, or an appropriate insulating material other than silicon oxide and silicon nitride.
  • FIG. 2 is a graph showing the relationship between the frequency and the Q value in the elastic wave device 1 according to the embodiment.
  • the horizontal axis represents frequency and the vertical axis represents Q value.
  • the solid line a1 shows the characteristics when the Young's modulus of the dielectric film 6 is larger than the Young's modulus of the low acoustic velocity film 3, and the Young's modulus of the dielectric film 6 and the Young's modulus of the low acoustic velocity film 3 are The characteristic in the same case is shown by the broken line b1.
  • the characteristic when the Young's modulus of the dielectric film 6 is smaller than the Young's modulus of the low acoustic velocity film 3 is shown by a one-dot chain line c1.
  • the Q value varies depending on the Young's modulus of the dielectric film 6 as described above.
  • the elastic wave device 1 not only the elastic wave energy concentrates on the piezoelectric layer 4, but also the dielectric film 6.
  • the viscous loss of the dielectric film 6 greatly contributes to the loss of elastic wave energy. Therefore, in order to reduce the loss of elastic wave energy, it is preferable to reduce the viscosity loss of the dielectric film 6 as much as possible.
  • the larger the Young's modulus the smaller the viscous loss. Therefore, in order to reduce the loss of elastic wave energy, it is preferable to make the Young's modulus of the dielectric film 6 as large as possible.
  • the low acoustic velocity film 3 is a film in which the acoustic velocity of the bulk wave propagating in the piezoelectric layer 4 is slower than the acoustic velocity of the bulk wave propagating in the piezoelectric layer 4, and the acoustic velocity is made smaller than that of the piezoelectric layer 4.
  • the Young's modulus of the low acoustic velocity film 3 is preferably smaller than the Young's modulus of the piezoelectric layer 4.
  • the Young's modulus of the dielectric film 6 is made larger than the Young's modulus of the low acoustic velocity film 3, the loss of elastic wave energy can be reduced (improved).
  • the low acoustic velocity film 3 and the dielectric film 6 are formed by sputtering.
  • the Young's modulus of the low acoustic velocity film 3 and the dielectric film 6 can be controlled by changing the degree of vacuum in the chamber of the sputtering apparatus.
  • the degree of vacuum in the chamber is set to 0.5 Pa or more and 1.0 Pa or less so that the Young's modulus is smaller than that of the dielectric film 6. 3 can be formed into a film.
  • the degree of vacuum in the chamber is set to 0.04 Pa or more and 0.1 Pa or less so that the dielectric film having a Young's modulus larger than that of the low acoustic velocity film 3 is formed.
  • 6 can be formed into a film. That is, by increasing the degree of vacuum (decreasing the ultimate pressure of the residual gas in the chamber), impurities during film formation are reduced, and a film with high atomic purity and density can be obtained, so that the Young's modulus is increased and the viscosity is increased. It is a film with low loss. That is, in the acoustic wave device 1 according to the embodiment, the Young's modulus of the dielectric film 6 can be made larger than that of the low acoustic velocity film 3 by adjusting the degree of vacuum in the chamber.
  • the acoustic wave device 1 includes the piezoelectric layer 4, the IDT electrode 5, the high acoustic velocity member 2, the low acoustic velocity film 3, and the dielectric film 6. I have it.
  • the IDT electrode 5 is formed on the piezoelectric layer 4.
  • the high acoustic velocity member 2 is located on the opposite side of the IDT electrode 5 with the piezoelectric layer 4 interposed therebetween. In the high acoustic velocity member 2, the acoustic velocity of the bulk wave propagating in the piezoelectric layer 4 is higher than the acoustic velocity of the elastic wave propagating in the piezoelectric layer 4.
  • the low acoustic velocity film 3 is provided between the high acoustic velocity member 2 and the piezoelectric layer 4.
  • the acoustic velocity of the bulk wave propagating in the piezoelectric layer 4 is lower than the acoustic velocity of the bulk wave propagating in the piezoelectric layer 4.
  • the dielectric film 6 is formed on the piezoelectric layer 4 so as to cover the IDT electrode 5. In this acoustic wave device 1, the Young's modulus of the dielectric film 6 is larger than that of the low acoustic velocity film 3.
  • the IDT electrode 5 In the structure in which the IDT electrode 5 is covered with the dielectric film 6, not only the elastic wave energy concentrates on the piezoelectric layer 4, but also the dielectric film 6. Therefore, by increasing the Young's modulus of the dielectric film 6 as much as possible, the viscosity loss of the dielectric film 6 can be reduced, and thus the loss of elastic wave energy can be reduced. At this time, the smaller Young's modulus of the low acoustic velocity film 3 can further reduce the loss. Therefore, when the Young's modulus of the dielectric film 6 is larger than that of the low acoustic velocity film 3, the loss can be further reduced.
  • the material of the dielectric film 6 is silicon oxide.
  • the frequency-temperature characteristic can be improved as compared with the case where the material of the dielectric film 6 is not silicon oxide.
  • the material of the low acoustic velocity film 3 is silicon oxide. Therefore, the frequency-temperature characteristic can be improved as compared with the case where the material of the low acoustic velocity film 3 is not silicon oxide.
  • the material of the dielectric film 6 and the material of the low acoustic velocity film 3 are the same. This has the advantage that the Young's modulus of the dielectric film 6 can be adjusted more easily than when the material of the dielectric film 6 is different from the material of the low acoustic velocity film 3.
  • the high acoustic velocity member 2 is the high acoustic velocity support substrate 21 in which the acoustic velocity of the bulk wave propagating is higher than the acoustic velocity of the elastic wave propagating in the piezoelectric layer 4. Thereby, the Q value of the acoustic wave device 1 can be increased.
  • the acoustic wave device 1 according to the embodiment has a three-layer structure including the high acoustic velocity support substrate 21, the low acoustic velocity film 3, and the piezoelectric layer 4, whereas the acoustic wave device 1A according to the modified example 1 has a four-layer structure. The two are different in this respect.
  • the configuration of the acoustic wave device 1A having a four-layer structure will be described with reference to FIG.
  • the same components as those of the elastic wave device 1 according to the embodiment are denoted by the same reference numerals and the description thereof will be omitted.
  • an elastic wave device 1A includes a high sonic velocity member 2A, a low sonic velocity film 3, a piezoelectric layer 4, an IDT electrode 5, and a dielectric film 6.
  • the high sound velocity member 2A includes a support substrate 22 and a high sound velocity film 23. That is, the acoustic wave device 1A further includes the support substrate 22.
  • the high sound velocity film 23 is formed on the support substrate 22.
  • the term “formed on the support substrate 22 ” includes the case where it is formed directly on the support substrate 22 and the case where it is formed indirectly on the support substrate 22.
  • the acoustic velocity of the bulk wave propagating in the high acoustic velocity film 23 is higher than that of the elastic wave propagating in the piezoelectric layer 4.
  • the acoustic wave device 1A may include an adhesion layer, a dielectric film, and the like in addition to the high sound velocity film 23, the low sound velocity film 3, the piezoelectric layer 4, and the dielectric film 6.
  • the material of the support substrate 22 is, for example, silicon.
  • the material of the support substrate 22 is not limited to silicon, but a piezoelectric substance such as sapphire, lithium tantalate, lithium niobate, or quartz, alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, or mullite. , Various ceramics such as steatite or forsterite, dielectrics such as glass, semiconductors such as gallium nitride, resins and the like.
  • the high sound velocity film 23 is formed on the support substrate 22.
  • the high sonic velocity film 23 functions to prevent the acoustic wave from being leaked to the structure below the high sonic velocity film 23 by confining the elastic wave in the portion where the piezoelectric layer 4 and the low sonic velocity film 3 are laminated.
  • the thickness of the high sonic velocity film 23 the thicker it is, the more desirable it is in terms of the function of confining the elastic wave in the piezoelectric layer 4 and the low sonic velocity film 3.
  • the elastic wave energy of a specific mode used to obtain the characteristics of the filter or the resonator is distributed over the piezoelectric layer 4 and the low sonic film 3, and the high sonic film is formed. It is distributed to a part of the low acoustic velocity film 3 side of 23, but is not distributed to the support substrate 22.
  • the mechanism of confining the elastic wave by the high sonic film 23 is the same mechanism as the case of the Love wave type surface wave which is a non-leakage SH wave. For example, see the document “Introduction to Surface Acoustic Wave Device Simulation Technology”, Kenya Hashimoto, Realize, p. 26-28. The above mechanism is different from the mechanism for confining elastic waves using a Bragg reflector with an acoustic multilayer.
  • the material of the high sound velocity film 23 is, for example, diamond-like carbon, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, quartz, alumina, zirconia, cordierite, mullite, steer. It is at least one material selected from the group consisting of tight, forsterite, magnesia, and diamond.
  • the Young's modulus of the dielectric film 6 is set to be larger than the Young's modulus of the low acoustic velocity film 3.
  • the viscous loss of the body film 6 can be reduced, and thus the loss of elastic wave energy can be reduced.
  • the Q value can be increased.
  • the material of the dielectric film 6 and the material of the low acoustic velocity film 3 are the same, but if the Young's modulus of the dielectric film 6 is larger than the Young's modulus of the low acoustic velocity film 3.
  • the material of the dielectric film 6 and the material of the low acoustic velocity film 3 may be different. However, if the material of the dielectric film 6 and the material of the low acoustic velocity film 3 are the same, the Young's modulus of the dielectric film 6 can be adjusted by simply changing the pressure, temperature, etc. There is an advantage that it is easy to do.
  • the dielectric film 6 is formed along the shape of the IDT electrode 5, and the thickness (film thickness) of the dielectric film 6 is constant over the entire surface of the piezoelectric layer 4.
  • the thickness of the dielectric film 6 does not have to be constant.
  • the dielectric film 6 may have a constant thickness from the main surface of the piezoelectric layer 4 on the IDT electrode 5 side. The film 6 may be formed.
  • the Young's modulus of the low acoustic velocity film 3 and the dielectric film 6 is controlled by changing the degree of vacuum in the chamber.
  • the Young's modulus of the low acoustic velocity film 3 and the dielectric film 6 may be controlled by changing the temperature in the chamber, or the low acoustic velocity may be changed by changing both the vacuum degree and the temperature in the chamber.
  • the Young's modulus of the film 3 and the dielectric film 6 may be controlled.
  • the Young's modulus of the low acoustic velocity film 3 and the dielectric film 6 may be controlled under conditions other than the degree of vacuum and temperature in the chamber.
  • the acoustic wave device (1; 1A) includes a piezoelectric layer (4), an IDT electrode (5), a high acoustic velocity member (2; 2A), a low acoustic velocity film (3), and a dielectric layer.
  • the IDT electrode (5) is formed on the piezoelectric layer (4).
  • the high sound velocity member (2; 2A) is located on the opposite side of the IDT electrode (5) with the piezoelectric layer (4) interposed therebetween.
  • the acoustic velocity of the bulk wave propagating in the piezoelectric layer (4) is higher than the acoustic velocity of the elastic wave propagating in the piezoelectric layer (4).
  • the low acoustic velocity film (3) is provided between the high acoustic velocity member (2; 2A) and the piezoelectric layer (4).
  • the acoustic velocity of the bulk wave propagating in the piezoelectric layer (4) is lower than the acoustic velocity of the bulk wave propagating in the piezoelectric layer (4).
  • the dielectric film (6) is formed on the piezoelectric layer (4) so as to cover the IDT electrode (5).
  • the Young's modulus of the dielectric film (6) is larger than that of the low acoustic velocity film (3).
  • the loss of elastic wave energy can be reduced as compared with the case where the Young's modulus of the dielectric film (6) is less than or equal to the Young's modulus of the low acoustic velocity film (3).
  • the material of the dielectric film (6) is silicon oxide.
  • the frequency-temperature characteristic can be improved as compared with the case where the material of the dielectric film (6) is not silicon oxide.
  • the material of the low acoustic velocity film (3) is silicon oxide.
  • the frequency-temperature characteristic can be improved as compared with the case where the material of the low acoustic velocity film (3) is not silicon oxide.
  • the material of the dielectric film (6) and the material of the low sonic velocity film (3) are the same.
  • the Young's modulus of the dielectric film (6) can be easily adjusted as compared with the case where the material of the dielectric film (6) and the material of the low acoustic velocity film (3) are different.
  • the high acoustic velocity member (2) is higher than the acoustic velocity of the acoustic wave propagating through the piezoelectric layer (4).
  • This is a high acoustic velocity support substrate (21) in which the acoustic velocity of the propagating bulk wave is high.
  • the Q value of the acoustic wave device (1) can be increased.
  • the elastic wave device (1A) according to the sixth aspect further includes a support substrate (22) in any one of the first to fourth aspects.
  • the high acoustic velocity member (2A) is formed on the support substrate (22), and the acoustic velocity of the bulk wave propagating through the piezoelectric layer (4) is higher than the acoustic velocity of the elastic wave propagating through the piezoelectric layer (4). )including.
  • the Q value of the acoustic wave device (1A) can be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性波エネルギーのロスを低減することができる弾性波装置を提供する。弾性波装置(1)では、IDT電極(5)は、圧電体層(4)上に形成されている。高音速部材(2)は、圧電体層(4)を挟んでIDT電極(5)とは反対側に位置している。高音速部材(2)では、圧電体層(4)を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である。低音速膜(3)は、高音速部材(2)と圧電体層(4)との間に設けられている。低音速膜(3)では、圧電体層(4)を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である。誘電体膜(6)は、IDT電極(5)を覆うように圧電体層(4)上に形成されている。弾性波装置(1)では、誘電体膜(6)のヤング率が低音速膜(3)のヤング率よりも大きい。

Description

弾性波装置
 本発明は、弾性波装置に関する。より詳細には、本発明は、誘電体膜及び低音速膜を備える弾性波装置に関する。
 従来、IDT電極を覆うように誘電体膜が積層されている弾性波装置が知られている(例えば、特許文献1参照)。
 特許文献1に記載の弾性波装置は、高音速部材としての高音速支持基板を有する。高音速支持基板上に、音速が相対的に低い低音速膜が積層されている。また、低音速膜上に圧電膜が積層されている。この圧電膜の上面にIDT電極が積層されている。さらに、IDT電極を覆うように誘電体膜が積層されている。
国際公開2017/043427号
 特許文献1に記載の弾性波装置では、弾性波エネルギーが圧電膜(圧電体層)に集中するだけでなく、誘電体膜にも集中するため、弾性波エネルギーのロスが大きくなる場合があった。
 本発明の目的は、弾性波エネルギーのロスを低減することができる弾性波装置を提供することにある。
 本発明の一態様に係る弾性波装置は、圧電体層と、IDT電極と、高音速部材と、低音速膜と、誘電体膜と、を備える。前記IDT電極は、前記圧電体層上に形成されている。前記高音速部材は、前記圧電体層を挟んで前記IDT電極とは反対側に位置している。前記高音速部材では、前記圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である。前記低音速膜は、前記高音速部材と前記圧電体層との間に設けられている。前記低音速膜では、前記圧電体層を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である。前記誘電体膜は、前記IDT電極を覆うように前記圧電体層上に形成されている。前記誘電体膜のヤング率が前記低音速膜のヤング率よりも大きい。
 本発明によれば、弾性波エネルギーのロスを低減することができる。
図1は、本発明の一実施形態に係る弾性波装置の断面図である。 図2は、同上の弾性波装置のQ特性を示す図である。 図3は、本発明の一実施形態の変形例1に係る弾性波装置の断面図である。
 以下、実施形態に係る弾性波装置について、図面を参照して説明する。下記の実施形態等において参照する図1及び図3は、いずれも模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
 (実施形態)
 (1)弾性波装置の全体構成
 まず、実施形態に係る弾性波装置1の全体構成について、図1を参照して説明する。
 実施形態に係る弾性波装置1は、図1に示すように、高音速部材2と、低音速膜3と、圧電体層4と、IDT(Interdigital Transducer)電極5と、誘電体膜6と、を備えている。高音速部材2、低音速膜3、圧電体層4、IDT電極5、及び誘電体膜6は、第1方向D1においてこの順番で積層されている。
 (2)弾性波装置の各構成要素
 次に、実施形態に係る弾性波装置1の各構成要素について、図1を参照して説明する。
 (2.1)高音速部材
 高音速部材2は、図1に示すように、圧電体層4を挟んでIDT電極5とは反対側に位置している。高音速部材2は、低音速膜3、圧電体層4、IDT電極5、及び誘電体膜6を支持している高音速支持基板21である。高音速支持基板21では、圧電体層4を伝搬する弾性波の音速よりも、高音速支持基板21を伝搬するバルク波の音速が高速である。
 高音速支持基板21(高音速部材2)の平面視の形状(高音速支持基板21を第1方向D1から見たときの外周形状)は、長方形状であるが、長方形状に限らず、例えば正方形状であってもよい。高音速支持基板21の材料は、例えばシリコンである。高音速支持基板21の厚さは、例えば120μmである。なお、高音速支持基板21の材料は、シリコンに限らず、シリコンカーバイド、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、サファイア、リチウムタンタレート(LiTaO)、リチウムニオベイト(LiNbO)、若しくは水晶等の圧電体、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、若しくはフォルステライト等の各種セラミック、若しくは、マグネシア、ダイヤモンド、又は、上記各材料を主成分とする材料、又は、上記各材料の混合物を主成分とする材料であってもよい。
 (2.2)低音速膜
 低音速膜3は、図1に示すように、高音速部材2と圧電体層4との間に設けられている。低音速膜3では、圧電体層4を伝搬するバルク波の音速よりも、低音速膜3を伝搬するバルク波の音速が低速である。低音速膜3が高音速部材2と圧電体層4との間に設けられていることにより、弾性波の音速が低下する。弾性波は本質的に低音速な媒質にエネルギーが集中する。したがって、圧電体層4内及び弾性波が励振されているIDT電極5内への弾性波エネルギーの閉じ込め効果を高めることができる。その結果、低音速膜3が設けられていない場合に比べて、損失を低減し、Q値を高めることができる。
 低音速膜3の材料は、例えば酸化ケイ素である。低音速膜3の厚さは、IDT電極5の電極指周期で定まる弾性波の波長をλとすると、例えば、2.0λ以下である。なお、低音速膜3の材料は、酸化ケイ素に限らず、ガラス、酸窒化ケイ素、酸化タンタル、酸化ケイ素にフッ素、炭素、若しくはホウ素を加えた化合物、又は、上記各材料を主成分とする材料であってもよい。
 低音速膜3の材料が酸化ケイ素の場合、低音速膜3を含んでいない場合と比べて、周波数温度特性を改善することができる。リチウムタンタレートの弾性定数は負の温度特性を有し、酸化ケイ素の弾性定数は正の温度特性を有する。したがって、弾性波装置1では、TCF(Temperature Coefficient of Frequency)の絶対値を小さくすることができる。
 なお、低音速膜3と圧電体層4との間に密着層が設けられていてもよい。これにより、低音速膜3と圧電体層4との間で剥離が生じるのを抑制することができる。密着層の材料は、例えば、樹脂(エポキシ樹脂、ポリイミド樹脂等)、金属等である。また、密着層に限らず、低音速膜3と圧電体層4との間、又は低音速膜3下に誘電体膜が設けられていてもよい。
 (2.3)圧電体層
 圧電体層4は、低音速膜3上に形成されている。ここでいう「低音速膜3上に形成されている」とは、低音速膜3上に直接的に形成されている場合と、低音速膜3上に間接的に形成されている場合と、を含む。圧電体層4の材料は、例えばリチウムタンタレートである。なお、圧電体層4の材料は、リチウムタンタレートに限らず、リチウムニオベイト、酸化亜鉛(ZnO)、窒化アルミニウム(AlN)、又は、チタン酸ジルコン酸鉛(PZT)であってもよい。
 圧電体層4の厚さ(膜厚)は、IDT電極5の電極指周期で定まる弾性波の波長をλとすると、3.5λ以下である。圧電体層4の厚さが3.5λ以下である場合、Q値が高くなる。また、圧電体層4の厚さを2.5λ以下とすることで、周波数温度特性が良くなる。さらに、圧電体層4の厚さを1.5λ以下とすることで、音速の調整が容易になる。
 (2.4)IDT電極
 IDT電極5は、圧電体層4上に形成されている。ここでいう「圧電体層4上に形成されている」とは、圧電体層4上に直接的に形成されている場合と、圧電体層4上に間接的に形成されている場合と、を含む。
 IDT電極5は、複数の電極指と、2つのバスバーと、を含む。複数の電極指は、第1方向D1と交差(直交)する第2方向D2に並んで配置されている。2つのバスバーは、第2方向D2を長手方向とする長尺状に形成されており、複数の電極指と電気的に接続されている。より詳細には、複数の電極指は、複数の第1電極指と、複数の第2電極指と、を有する。複数の第1電極指は、2つのバスバーのうちの第1バスバーと電気的に接続されている。複数の第2電極指は、2つのバスバーのうちの第2バスバーと電気的に接続されている。
 IDT電極5の材料は、例えばアルミニウム(Al)である。なお、IDT電極5の材料は、アルミニウムに限らず、銅(Cu)、白金(Pt)、金(Au)、銀(Ag)、チタン(Ti)、ニッケル(Ni)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、マグネシウム(Mg)、鉄(Fe)、又は、これらの金属のいずれかを主体とする合金等であってもよい。また、IDT電極5は、これらの金属又は合金からなる複数の金属膜を積層した構造を有していてもよい。
 本実施形態では、圧電体層4とIDT電極5との間に密着層が設けられている。密着層の材料は、例えばチタンである。これにより、圧電体層4とIDT電極5との間で剥離が生じるのを抑制することができる。なお、密着層の材料は、チタンに限らず、樹脂(エポキシ樹脂、ポリイミド樹脂等)、又は、チタン以外の金属等であってもよい。
 (2.5)誘電体膜
 誘電体膜6は、IDT電極5を覆うように圧電体層4上に形成されている。ここでいう「圧電体層4上に形成されている」とは、圧電体層4上に直接的に形成されている場合と、圧電体層4上に間接的に形成されている場合と、を含む。本実施形態では、誘電体膜6は、IDT電極5を保護する保護膜であり、IDT電極5の形状に沿って一定の厚さ(膜厚)で形成されている。誘電体膜6は、電気絶縁性を有している。誘電体膜6の材料は、例えば酸化ケイ素である。つまり、本実施形態では、誘電体膜6の材料と低音速膜3の材料とが同一である。なお、誘電体膜6の材料は、酸化ケイ素に限らず、例えば窒化ケイ素であってもよいし、酸化ケイ素及び窒化ケイ素以外の適宜の絶縁性材料であってもよい。
 (3)弾性波装置の特性
 次に、実施形態に係る弾性波装置1の特性について、図2を参照して説明する。
 図2は、実施形態に係る弾性波装置1における周波数とQ値との関係を示すグラフである。図2では、横軸が周波数を示し、縦軸がQ値を示している。また、図2では、誘電体膜6のヤング率が低音速膜3のヤング率よりも大きい場合の特性を実線a1で示し、誘電体膜6のヤング率と低音速膜3のヤング率とが同程度の場合の特性を破線b1で示している。さらに、図2では、誘電体膜6のヤング率が低音速膜3のヤング率よりも小さい場合の特性を一点鎖線c1で示している。
 図2から、誘電体膜6のヤング率が低音速膜3のヤング率よりも小さい場合(一点鎖線c1)のQ値が最も悪く、誘電体膜6のヤング率が低音速膜3のヤング率よりも大きい場合(実線a1)のQ値が最もよいことが分かる。つまり、誘電体膜6のヤング率を低音速膜3のヤング率よりも大きくすることで、弾性波装置1のQ値を改善することができる。
 実施形態に係る弾性波装置1のように、IDT電極5を覆う誘電体膜6を備えている場合には、上述したように、誘電体膜6のヤング率によってQ値が変動する。このような弾性波装置1では、弾性波エネルギーが圧電体層4に集中するだけでなく、誘電体膜6にも集中する。そして、誘電体膜6の粘性損失が弾性波エネルギーのロスに大きく寄与する。したがって、弾性波エネルギーのロスを小さくするためには、誘電体膜6の粘性損失をできるだけ小さくすることが好ましい。ここで、ヤング率が大きくなるほど粘性損失が小さくなるため、弾性波エネルギーのロスを小さくするためには、誘電体膜6のヤング率をできるだけ大きくすることが好ましい。
 一方、低音速膜3は、上述したように、圧電体層4を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速となる膜であり、圧電体層4よりも音速を小さくする必要がある。そのため、低音速膜3のヤング率は、圧電体層4のヤング率よりも小さくすることが好ましい。
 したがって、この場合には、誘電体膜6のヤング率は、低音速膜3のヤング率よりも大きくすることで、弾性波エネルギーのロスを低減(改善)することができる。
 (4)成膜条件
 以下、実施形態に係る弾性波装置1の低音速膜3及び誘電体膜6の成膜条件について説明する。
 実施形態に係る弾性波装置1では、例えば、スパッタリングによって低音速膜3及び誘電体膜6を成膜する。この場合において、スパッタ装置のチャンバー内の真空度を変えることにより、低音速膜3及び誘電体膜6のヤング率を制御することができる。例えば、低音速膜3を成膜する場合には、チャンバー内の真空度を0.5Pa以上で、かつ1.0Pa以下にすることにより、誘電体膜6に比べてヤング率の小さい低音速膜3を成膜することができる。また、誘電体膜6を成膜する場合には、チャンバー内の真空度を0.04Pa以上で、かつ0.1Pa以下にすることにより、低音速膜3に比べてヤング率の大きい誘電体膜6を成膜することができる。すなわち、真空度を大きく(チャンバー内の残留気体の到達圧力を小さく)することにより成膜中の不純物が減り、原子の純度・緻密度の高い膜が得られるため、ヤング率が大きくなり且つ粘性損失の小さい膜となる。つまり、実施形態に係る弾性波装置1では、チャンバー内の真空度を調節することにより、誘電体膜6のヤング率を低音速膜3のヤング率よりも大きくすることができる。
 (5)効果
 以上説明したように、実施形態に係る弾性波装置1は、圧電体層4と、IDT電極5と、高音速部材2と、低音速膜3と、誘電体膜6と、を備えている。IDT電極5は、圧電体層4上に形成されている。高音速部材2は、圧電体層4を挟んでIDT電極5とは反対側に位置している。高音速部材2では、圧電体層4を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である。低音速膜3は、高音速部材2と圧電体層4との間に設けられている。低音速膜3では、圧電体層4を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である。誘電体膜6は、IDT電極5を覆うように圧電体層4上に形成されている。この弾性波装置1では、誘電体膜6のヤング率が低音速膜3のヤング率よりも大きい。
 IDT電極5を誘電体膜6で覆う構造では、弾性波エネルギーが圧電体層4に集中するだけでなく、誘電体膜6にも集中する。そのため、誘電体膜6のヤング率をできるだけ大きくすることで、誘電体膜6の粘性損失を小さくすることができ、これにより弾性波エネルギーのロスを低減することができる。このとき、低音速膜3のヤング率は小さい方が更にロスを低減することができる。従って、誘電体膜6のヤング率が、低音速膜3のヤング率よりも大きい場合に、ロスをより低減できる。
 実施形態に係る弾性波装置1では、誘電体膜6の材料が酸化ケイ素である。これにより、誘電体膜6の材料が酸化ケイ素でない場合と比べて、周波数温度特性を改善することができる。
 実施形態に係る弾性波装置1では、低音速膜3の材料が酸化ケイ素である。これにより、低音速膜3の材料が酸化ケイ素でない場合と比べて、周波数温度特性を改善することができる。
 実施形態に係る弾性波装置1では、誘電体膜6の材料と低音速膜3の材料とが同一である。これにより、誘電体膜6の材料と低音速膜3の材料とが異なる場合と比べて、誘電体膜6のヤング率の調整がしやすいという利点がある。
 実施形態に係る弾性波装置1では、高音速部材2は、圧電体層4を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速支持基板21である。これにより、弾性波装置1のQ値を高めることができる。
 (6)変形例
 上述の実施形態は、本発明の様々な実施形態の一つに過ぎない。上述の実施形態は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。以下、上述の実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
 (6.1)変形例1
 実施形態に係る弾性波装置1は、高音速支持基板21、低音速膜3及び圧電体層4を有する3層構造であるのに対して、変形例1に係る弾性波装置1Aは4層構造であり、この点で両者は相違している。以下、4層構造の弾性波装置1Aの構成について、図3を参照して説明する。なお、変形例1に係る弾性波装置1Aにおいて、実施形態に係る弾性波装置1と同様の構成については同一の符号を付して説明を省略する。
 変形例1に係る弾性波装置1Aは、図3に示すように、高音速部材2Aと、低音速膜3と、圧電体層4と、IDT電極5と、誘電体膜6と、を備えている。高音速部材2Aは、支持基板22と、高音速膜23と、を含む。つまり、弾性波装置1Aは、支持基板22を更に備えている。高音速膜23は、支持基板22上に形成されている。ここでいう「支持基板22上に形成されている」とは、支持基板22上に直接的に形成されている場合と、支持基板22上に間接的に形成されている場合と、を含む。高音速膜23では、圧電体層4を伝搬する弾性波の音速よりも、高音速膜23を伝搬するバルク波の音速が高速である。なお、弾性波装置1Aは、高音速膜23、低音速膜3、圧電体層4及び誘電体膜6以外に、密着層、誘電体膜等を有していてもよい。
 支持基板22の材料は、例えばシリコンである。なお、支持基板22の材料は、シリコンに限らず、サファイア、リチウムタンタレート、リチウムニオベイト、若しくは水晶等の圧電体、アルミナ、マグネシア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、若しくはフォルステライト等の各種セラミック、ガラス等の誘電体、窒化ガリウム等の半導体、樹脂等であってもよい。
 高音速膜23は、支持基板22上に形成されている。高音速膜23は、弾性波を圧電体層4及び低音速膜3が積層されている部分に閉じ込め、高音速膜23より下の構造に漏れないように機能する。高音速膜23の厚さに関しては、弾性波を圧電体層4及び低音速膜3に閉じ込める機能の観点で厚いほど望ましい。
 高音速膜23の厚みが十分に厚い場合、フィルタや共振子の特性を得るために利用する特定のモードの弾性波エネルギーは圧電体層4及び低音速膜3の全体に分布し、高音速膜23の低音速膜3側の一部にも分布するが、支持基板22には分布しないことになる。高音速膜23により弾性波を閉じ込めるメカニズムは非漏洩なSH波であるラブ波型の表面波の場合と同様のメカニズムであり、例えば、文献「弾性表面波デバイスシミュレーション技術入門」、橋本研也、リアライズ社、p.26-28に記載されている。上記メカニズムは、音響多層膜によるブラッグ反射器を用いて弾性波を閉じ込めるメカニズムとは異なる。
 高音速膜23の材料は、例えば、ダイヤモンドライクカーボン、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、シリコン、サファイア、リチウムタンタレート、リチウムニオベイト、水晶、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト、マグネシア、及びダイヤモンドからなる群から選択される少なくとも1種の材料である。
 変形例1に係る弾性波装置1Aによれば、上述の実施形態に係る弾性波装置1と同様に、誘電体膜6のヤング率を低音速膜3のヤング率よりも大きくすることで、誘電体膜6の粘性損失を小さくすることができ、これにより弾性波エネルギーのロスを低減することができる。また、変形例1に係る弾性波装置1Aによれば、Q値を高めることもできる。
 (6.2)その他の変形例
 以下、その他の変形例を列挙する。
 実施形態及び変形例1では、誘電体膜6の材料と低音速膜3の材料とが同一であるが、誘電体膜6のヤング率が低音速膜3のヤング率よりも大きくなっていれば、誘電体膜6の材料と低音速膜3の材料とが異なっていてもよい。ただし、誘電体膜6の材料と低音速膜3の材料とが同一であれば、例えば圧力、温度等を変えるだけで誘電体膜6のヤング率を調整することができ、ヤング率の調整がしやすいという利点がある。
 実施形態及び変形例1では、誘電体膜6がIDT電極5の形状に沿って形成されており、圧電体層4の全面に亘って誘電体膜6の厚み(膜厚)が一定である。これに対して、誘電体膜6の厚みは一定でなくてもよく、例えば、圧電体層4におけるIDT電極5側の主面からの誘電体膜6の厚さが一定となるように誘電体膜6が形成されてもよい。
 実施形態では、チャンバー内の真空度を変えることにより低音速膜3及び誘電体膜6のヤング率を制御している。これに対して、例えば、チャンバー内の温度を変えることにより低音速膜3及び誘電体膜6のヤング率を制御してもよいし、チャンバー内の真空度及び温度の両方を変えることにより低音速膜3及び誘電体膜6のヤング率を制御してもよい。さらに、チャンバー内の真空度及び温度以外の条件で低音速膜3及び誘電体膜6のヤング率を制御してもよい。
 (まとめ)
 以上説明した実施形態等から以下の態様が開示されている。
 第1の態様に係る弾性波装置(1;1A)は、圧電体層(4)と、IDT電極(5)と、高音速部材(2;2A)と、低音速膜(3)と、誘電体膜(6)と、を備える。IDT電極(5)は、圧電体層(4)上に形成されている。高音速部材(2;2A)は、圧電体層(4)を挟んでIDT電極(5)とは反対側に位置している。高音速部材(2;2A)では、圧電体層(4)を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である。低音速膜(3)は、高音速部材(2;2A)と圧電体層(4)との間に設けられている。低音速膜(3)では、圧電体層(4)を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である。誘電体膜(6)は、IDT電極(5)を覆うように圧電体層(4)上に形成されている。弾性波装置(1;1A)では、誘電体膜(6)のヤング率が低音速膜(3)のヤング率よりも大きい。
 この態様によれば、誘電体膜(6)のヤング率が低音速膜(3)のヤング率以下である場合と比べて、弾性波エネルギーのロスを低減することができる。
 第2の態様に係る弾性波装置(1;1A)では、第1の態様において、誘電体膜(6)の材料が酸化ケイ素である。
 この態様によれば、誘電体膜(6)の材料が酸化ケイ素でない場合と比べて、周波数温度特性を改善することができる。
 第3の態様に係る弾性波装置(1;1A)では、第1又は2の態様において、低音速膜(3)の材料が酸化ケイ素である。
 この態様によれば、低音速膜(3)の材料が酸化ケイ素でない場合と比べて、周波数温度特性を改善することができる。
 第4の態様に係る弾性波装置(1;1A)では、第1の態様において、誘電体膜(6)の材料と低音速膜(3)の材料とが同一である。
 この態様によれば、誘電体膜(6)の材料と低音速膜(3)の材料とが異なる場合と比べて、誘電体膜(6)のヤング率の調整がしやすいという利点がある。
 第5の態様に係る弾性波装置(1)では、第1~4の態様のいずれか1つにおいて、高音速部材(2)は、圧電体層(4)を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速支持基板(21)である。
 この態様によれば、弾性波装置(1)のQ値を高めることができる。
 第6の態様に係る弾性波装置(1A)は、第1~4の態様のいずれか1つにおいて、支持基板(22)を更に備える。高音速部材(2A)は、支持基板(22)上に形成されており、圧電体層(4)を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速膜(23)を含む。
 この態様によれば、弾性波装置(1A)のQ値を高めることができる。
1,1A 弾性波装置
2,2A 高音速部材
3 低音速膜
4 圧電体層
5 IDT電極
6 誘電体膜
21 高音速支持基板
22 支持基板
23 高音速膜

Claims (6)

  1.  圧電体層と、
     前記圧電体層上に形成されているIDT電極と、
     前記圧電体層を挟んで前記IDT電極とは反対側に位置しており、前記圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速部材と、
     前記高音速部材と前記圧電体層との間に設けられており、前記圧電体層を伝搬するバルク波の音速よりも伝搬するバルク波の音速が低速である低音速膜と、
     前記IDT電極を覆うように前記圧電体層上に形成されている誘電体膜と、を備え、
     前記誘電体膜のヤング率が前記低音速膜のヤング率よりも大きい、
     弾性波装置。
  2.  前記誘電体膜の材料が酸化ケイ素である、
     請求項1に記載の弾性波装置。
  3.  前記低音速膜の材料が酸化ケイ素である、
     請求項1又は2に記載の弾性波装置。
  4.  前記誘電体膜の材料と前記低音速膜の材料とが同一である、
     請求項1に記載の弾性波装置。
  5.  前記高音速部材は、前記圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速支持基板である、 
    請求項1~4のいずれか1項に記載の弾性波装置。
  6.  支持基板を更に備え、
     前記高音速部材は、前記支持基板上に形成されており、前記圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である高音速膜を含む、
     請求項1~4のいずれか1項に記載の弾性波装置。
PCT/JP2019/048053 2018-12-10 2019-12-09 弾性波装置 WO2020122005A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020560094A JPWO2020122005A1 (ja) 2018-12-10 2019-12-09 弾性波装置
CN201980081386.4A CN113169725A (zh) 2018-12-10 2019-12-09 弹性波装置
US17/340,182 US11942921B2 (en) 2018-12-10 2021-06-07 Acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018230836 2018-12-10
JP2018-230836 2018-12-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/340,182 Continuation US11942921B2 (en) 2018-12-10 2021-06-07 Acoustic wave device

Publications (1)

Publication Number Publication Date
WO2020122005A1 true WO2020122005A1 (ja) 2020-06-18

Family

ID=71075638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048053 WO2020122005A1 (ja) 2018-12-10 2019-12-09 弾性波装置

Country Status (4)

Country Link
US (1) US11942921B2 (ja)
JP (1) JPWO2020122005A1 (ja)
CN (1) CN113169725A (ja)
WO (1) WO2020122005A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009976A1 (ja) * 2020-07-09 2022-01-13 株式会社村田製作所 高周波モジュール及び通信装置
WO2022138443A1 (ja) * 2020-12-22 2022-06-30 株式会社村田製作所 弾性波装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117118388B (zh) * 2023-08-21 2024-04-16 天通瑞宏科技有限公司 一种多层复合晶圆及薄膜弹性波器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196894A (ja) * 2000-01-11 2001-07-19 Seiko Epson Corp 表面弾性波素子
JP2008301066A (ja) * 2007-05-30 2008-12-11 Yamajiyu Ceramics:Kk タンタル酸リチウム(lt)又はニオブ酸リチウム(ln)単結晶複合基板
JP2011130006A (ja) * 2009-12-15 2011-06-30 Taiyo Yuden Co Ltd 弾性波素子、通信モジュール、通信装置
JP2012065304A (ja) * 2010-08-16 2012-03-29 Seiko Epson Corp 圧電振動デバイス及びその製造方法、共振周波数の調整方法
WO2017043427A1 (ja) * 2015-09-07 2017-03-16 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
JP2018191112A (ja) * 2017-05-01 2018-11-29 太陽誘電株式会社 弾性波共振器、フィルタおよびマルチプレクサ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2658123B1 (en) * 2010-12-24 2019-02-13 Murata Manufacturing Co., Ltd. Elastic wave device and method for manufacturing the same.
WO2015186661A1 (ja) * 2014-06-04 2015-12-10 株式会社村田製作所 弾性波装置
JP2021180465A (ja) * 2020-05-15 2021-11-18 信越化学工業株式会社 表面弾性波デバイス用複合基板及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196894A (ja) * 2000-01-11 2001-07-19 Seiko Epson Corp 表面弾性波素子
JP2008301066A (ja) * 2007-05-30 2008-12-11 Yamajiyu Ceramics:Kk タンタル酸リチウム(lt)又はニオブ酸リチウム(ln)単結晶複合基板
JP2011130006A (ja) * 2009-12-15 2011-06-30 Taiyo Yuden Co Ltd 弾性波素子、通信モジュール、通信装置
JP2012065304A (ja) * 2010-08-16 2012-03-29 Seiko Epson Corp 圧電振動デバイス及びその製造方法、共振周波数の調整方法
WO2017043427A1 (ja) * 2015-09-07 2017-03-16 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
JP2018191112A (ja) * 2017-05-01 2018-11-29 太陽誘電株式会社 弾性波共振器、フィルタおよびマルチプレクサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009976A1 (ja) * 2020-07-09 2022-01-13 株式会社村田製作所 高周波モジュール及び通信装置
WO2022138443A1 (ja) * 2020-12-22 2022-06-30 株式会社村田製作所 弾性波装置
JP7544151B2 (ja) 2020-12-22 2024-09-03 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
CN113169725A (zh) 2021-07-23
US11942921B2 (en) 2024-03-26
US20210297061A1 (en) 2021-09-23
JPWO2020122005A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
CN110011637B (zh) 弹性波装置
JP4178328B2 (ja) 弾性境界波装置
JP6888691B2 (ja) 弾性波装置
WO2020122005A1 (ja) 弾性波装置
US7411473B2 (en) Elastic boundary wave device
JP7231015B2 (ja) 弾性波装置
JP6813108B2 (ja) 弾性波装置
JPWO2005086345A1 (ja) 弾性境界波装置
JP2008235950A (ja) 弾性境界波装置
JP6874861B2 (ja) 弾性波装置
JP7078000B2 (ja) 弾性波装置
JP7545404B2 (ja) 弾性波装置
JP2020102768A (ja) 弾性波装置、及び電子部品モジュール
WO2021149501A1 (ja) 弾性波装置
JP4001157B2 (ja) 弾性境界波装置
WO2020121976A1 (ja) 弾性波装置
US20220368305A1 (en) Acoustic wave device
US20220123711A1 (en) Acoustic wave device
WO2023162979A1 (ja) 弾性波装置
WO2023003005A1 (ja) 弾性波装置
WO2021117581A1 (ja) 弾性波装置
WO2023003006A1 (ja) 弾性波装置
CN115104256A (zh) 弹性波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560094

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897212

Country of ref document: EP

Kind code of ref document: A1