WO2016101877A1 - 通讯设备金属外壳及其制备方法 - Google Patents
通讯设备金属外壳及其制备方法 Download PDFInfo
- Publication number
- WO2016101877A1 WO2016101877A1 PCT/CN2015/098301 CN2015098301W WO2016101877A1 WO 2016101877 A1 WO2016101877 A1 WO 2016101877A1 CN 2015098301 W CN2015098301 W CN 2015098301W WO 2016101877 A1 WO2016101877 A1 WO 2016101877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- metal
- metal substrate
- communication device
- etching
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/04—Metal casings
Definitions
- the invention relates to a metal casing of a communication device and a preparation method thereof.
- metal casings are more aesthetically pleasing, more textured, and more resistant to scratches and abrasions, so they are from the manufacturer. From the user's point of view, the large-scale use of metal casing has become a trend in the future.
- the electronic communication device can only be designed with a non-metallic outer casing, or a metal outer casing needs to be partitioned with a non-metal material at the antenna, thereby making the electronic communication device The design is extremely limited.
- a slit is generally formed on the metal casing of the corresponding part of the antenna inside the device to ensure the normal operation of the antenna.
- the strength of the metal casing slit is low and easy to damage and deform, and a plastic support member is required to be joined at the bottom of the metal casing by the process to prevent deformation and increase strength.
- the slit width is extremely small, it can be covered by the surface decorative layer such as anodization, micro-arc oxidation, electrophoresis, and spray coating, so that the slit of the outer casing is invisible to the naked eye, so that the appearance of the outer casing is displayed as an all-metal texture. Because the slit is made of non-metal material, the antenna of the electronic communication device is designed at the slit to allow electromagnetic waves to pass through without shielding the antenna radiation.
- the adhesive has a certain thickness, which is not suitable for complex shape regions, and the seamless combination of metal and resin cannot be realized.
- the insert molding process has weak bonding force, and the gap between the slits of some processed slit regions is small. This process does not guarantee the bonding force of the plastic to the slit area.
- the object of the present invention is to overcome the problem of weak bonding force between the plastic support layer and the metal substrate, and to provide a metal casing for a communication device having a high bonding force between the plastic support layer and the metal substrate and having an integrated appearance effect and a preparation method thereof.
- the inventors of the present invention have unexpectedly discovered that by the technique of the present invention, a unique three-dimensional pore structure can be formed on the surface of the metal, and the resin can be directly injected into the hole to obtain a product with good bonding force, without adding extra groups to generate heat release.
- the reaction, the resin is also not particularly required, and the scope of application is broader, thereby completing the present invention.
- the present invention provides a metal casing for a communication device, wherein the metal casing of the communication device comprises: a metal substrate provided with at least one slit, an anodized film layer at least on the inner surface of the metal substrate, formed at the anode a plastic support layer on the oxide film layer, wherein the anodized film layer comprises: a barrier layer in contact with the metal substrate and containing a barrier layer micropores, the barrier layer micropores having a pore diameter of 10 nm to 800 ⁇ m, located outside the barrier layer a surface, and a loose layer containing loose pores therein, the pores of the porous layer having a pore diameter of 10 nm to 800 ⁇ m.
- the invention also provides a method for preparing a metal casing of a communication device, wherein the method comprises the following steps,
- the roughening treatment comprising: immersing the metal substrate formed with the anodized film layer in an etching solution for etching treatment, wherein The etching solution has a H + concentration of 0.55-5.5 mol/L, and the etching solution contains at least one of a chloride ion and a phosphate ion;
- the resin is injection molded on the surface of the metal substrate after the roughening treatment to form a plastic support layer.
- the invention also provides a metal casing for a communication device prepared by the above method.
- the metal substrate having the slit is anodized, further subjected to roughening treatment, and a unique three-dimensional pore structure is formed on the surface of the metal substrate, and then in the metal matrix.
- the surface molding resin forms a plastic support layer, and the resin can be directly injected into the hole, thereby significantly increasing the bonding force between the plastic support layer and the metal substrate, and improving the strength of the metal case; and further filling the slit through the plastic support layer.
- the bonding force between the plastic support layer and the metal substrate can be further improved.
- the plastic support layer obtained by injection molding can support the metal substrate to prevent the metal matrix from being deformed during the surface decoration process, thereby ensuring the uniformity of the appearance of the metal casing after the surface decoration process, and forming an integrated appearance. Effect.
- the metal casing of the communication device comprises: a metal substrate provided with at least one slit, an anodized film layer at least on the inner surface of the metal substrate, and a plastic support layer formed on the anodized film layer, wherein the anode
- the oxide film layer comprises: a barrier layer contacting the metal substrate and having a barrier layer micropore therein, located on the outer surface of the barrier layer, And a loose layer containing the loose layer micropores, wherein the pores of the barrier layer have a pore diameter of 10 nm to 800 ⁇ m, and the pores of the porous layer pores have a pore diameter of 10 nm to 800 ⁇ m.
- the metal casing of the communication device comprises: a metal substrate having more than one slit, an anodized film layer at least on the inner surface of the metal substrate, and a plastic formed on the anodized film layer. a support layer; wherein the anodized film layer comprises a barrier layer in contact with the metal substrate and a loose layer on the outer surface of the barrier layer, the loose layer contains a loose layer of micropores, and the pores of the porous layer have a pore diameter of 10 nm -800 ⁇ m, the barrier layer contains barrier micropores, and the pores of the barrier layer have a pore diameter of 10 nm to 800 ⁇ m
- the communication device may be, for example, a mobile phone, a tablet computer, a notebook computer or a Bluetooth headset.
- the inner surface of the metal substrate is defined as a surface of the metal substrate facing the inside of the communication device when it is used in a communication device. It will be understood that the outer surface of the metal substrate is defined as the surface of the metal substrate that faces the outside when it is used in a communication device.
- the material of the metal substrate may be various metals commonly used in communication equipment in the art, such as aluminum, aluminum alloy, stainless steel or titanium alloy, etc., according to some embodiments of the present invention,
- the metal collective material is made of aluminum or aluminum alloy.
- the thickness of the metal substrate is not particularly limited, and those skilled in the art can appropriately select according to a specific communication device.
- the metal substrate may have a thickness of 0.2 to 2 mm, and according to some embodiments of the invention, the metal substrate has a thickness of 0.5 to 1 mm.
- the slit is used to ensure signal transmission between the antenna and the outside world to realize communication.
- the slit width may be from 15 to 500 ⁇ m, and according to some embodiments of the present invention, the slit width is from 15 to 200 ⁇ m.
- the slit length may be 0.1-500 mm.
- the slit length is 10-150 mm; the spacing between adjacent slits may be 0.1-10 mm, according to the present invention.
- the spacing between adjacent slits may be between 0.3 and 1.6 mm.
- the number of slits is not particularly limited as long as communication can be realized.
- the number of slits may be 1-200, according to some embodiments of the present invention, slits The number of bars can be 5-50.
- the shape of the slit may be a straight line, a curved shape, a square wave line shape or a zigzag line shape, and according to some embodiments of the present invention, the shape of the slit is a straight line.
- the pores of the loose layer micropores and the barrier micropores are each independently from 10 nm to 800 ⁇ m.
- the pores of the loose layer and the pores of the barrier layer are each Independently from 10 nm to 500 ⁇ m, according to some embodiments of the present invention, the pores of the porous layer have a pore diameter of from 10 nm to 100 ⁇ m, and the pores of the barrier layer have a pore diameter of from 10 nm to 200 ⁇ m.
- the pores of the porous layer have a pore diameter of 10 nm to 500 ⁇ m
- the pores of the barrier layer have a pore diameter of 10 nm to 500 ⁇ m
- the pores of the porous layer have a pore diameter of 10 nm to 100 ⁇ m.
- the pore size of the barrier micropores is from 10 nm to 200 ⁇ m.
- the porous layer micropores and the barrier layer micropores communicate with each other, whereby the bonding force of the resin and the alloy can be further improved.
- the thickness of the loose layer is from 100 nm to 100 ⁇ m. According to some embodiments of the present invention, the thickness of the loose layer is 1-50 ⁇ m; the thickness of the barrier layer is 50 nm-5 ⁇ m, according to the present invention. In some embodiments of the invention, the barrier layer has a thickness of 50-500 nm.
- the anodized film layer has a higher bonding force with the metal substrate. Further, when the thickness of the loose layer and the barrier layer is larger or smaller than the above range, the bonding force of the plastic support layer to the metal substrate may be insufficient.
- the metal substrate further includes an etching layer in contact with the barrier layer, the etching layer containing a metal etching hole having a pore diameter of 10 nm to 1 mm; some embodiments according to the present invention
- the metal etching hole has a pore diameter of 10 nm to 800 ⁇ m; according to some embodiments of the present invention, the metal etching hole has a pore diameter of 10 nm to 600 ⁇ m.
- the loose layer micropores, the barrier layer micropores, and the metal corrosion holes communicate with each other, thereby increasing the depth of the injection molding resin into the metal substrate, and further improving the combination of the resin and the alloy. Force, and more conducive to molding.
- the etching layer has a thickness of 10 nm to 200 ⁇ m. According to some embodiments of the present invention, the etching layer has a thickness of 10 nm to 100 ⁇ m, wherein the etching layer has no obvious boundary with other metal substrates, and is corroded.
- the thickness of the layer may refer to the depth of corrosion of the hole in the metal substrate. Corrosion holes are formed on the surface of the metal substrate to improve the bonding force between the resin and the metal, without damaging the performance of the alloy body, optimizing the surface structure of the metal substrate, improving the filling degree of the molten resin on the surface of the metal substrate, and ensuring melting in a general injection molding process.
- the resin can penetrate the metal corrosion hole of this depth, not only does not reduce the bonding area of the resin and the metal substrate, and there is no gap in the metal corrosion hole, thereby further improving the bonding force between the resin and the metal.
- the plastic support layer fills the porous layer micropores and the barrier micropores on the anodized film layer and is combined with the metal substrate.
- the plastic support layer fills the porous layer micropores on the anodized film layer, the barrier micropores, and the metal etching holes on the etching layer and is bonded to the metal substrate.
- the plastic support layer may not enter, partially enter or fully enter the slit (ie, the plastic support layer does not fill the slit, or the plastic support layer fills the chamber) Part of the slit, Or the plastic support layer fills the slit).
- the plastic support layer at least fills a portion of the slit, according to some embodiments of the invention, the plastic A support layer fills the slit.
- the thickness of the plastic support layer may be a conventional thickness in the art, for example, the thickness of the plastic support layer (to exclude the thickness of the plastic layer extending into the slit) may be 0.1-2 mm. According to some embodiments of the invention, the support layer has a thickness of 0.1-1.2 mm.
- the metal housing of the communication device may further comprise a decorative layer on the outer surface of the metal substrate.
- the decorative layer may be a decorative layer formed by one or more of electrophoresis, micro-arc oxidation, anodization, hard anode, and spray coating.
- the thickness of the decorative layer is not particularly limited and may be a conventional thickness in the art.
- the decorative layer may have a thickness of 5 to 50 ⁇ m.
- the invention also provides a method for preparing a metal casing of the above communication device, wherein the method comprises the following steps: 1) providing a metal substrate, the metal substrate is provided with at least one slit; 2) anodizing the metal substrate a metal substrate having at least an anodized film layer formed on the inner surface thereof; 3) a roughening treatment on the metal substrate on which the anodized film layer is formed, the roughening treatment comprising: forming the anodized film layer
- the metal substrate is immersed in the etching solution for etching treatment, wherein the etching solution has a H + concentration of 0.55-5.5 mol/L, and the etching solution contains at least one of a chloride ion and a phosphate ion; 4)
- the resin is injection molded on the surface of the metal substrate after the roughening treatment to form a plastic support layer.
- the method of preparing a metal casing of a communication device may include the following steps: 1) providing a metal substrate having more than one slit formed therein; 2) performing an anode on the metal substrate Oxidizing to obtain a metal substrate having an anodized film layer on the surface; 3) roughening the metal substrate having an anodized film layer on the surface, the roughening treatment comprising: metal containing the anodized film layer on the surface
- the substrate is immersed in an etching solution for etching, wherein the etching solution has a H + concentration of 0.55-5.5 mol/L, and the etching solution contains chloride ions and/or phosphate ions; 4) after coarsening
- the surface of the metal substrate after the treatment is injection molded with a resin to form a plastic support layer.
- the material of the metal substrate may be various metals commonly used in communication equipment in the art, such as one of aluminum alloy, stainless steel and zinc alloy, according to some embodiments of the present invention,
- the metal substrate is made of aluminum or an aluminum alloy.
- the thickness of the metal substrate is not particularly limited, and those skilled in the art can appropriately select according to a specific communication device.
- the metal substrate may have a thickness of 0.2 to 2 mm, and according to some embodiments of the invention, the metal substrate has a thickness of 0.5 to 1 mm.
- the slit width may be 15-500 ⁇ m, according to some embodiments of the invention, the slit width is 15-200 ⁇ m; the slit length may be 0.1-500 mm, according to some embodiments of the invention, the slit length It is 10-150 mm; the spacing between adjacent slits may be 0.1-10 mm, and according to some embodiments of the invention, the spacing between adjacent slits is 0.3-1.6 mm.
- the number and shape of the slits are not particularly limited as long as communication can be realized.
- the number of slits may be 1-200. According to some embodiments of the present invention, the number of slits is 5-50; the shape of the slit may be linear, curved, square wave or zigzag. According to some embodiments of the invention, the shape of the slit is linear.
- the width of the slit when the width of the slit is within the above range, it may be covered by a decorative layer formed by a subsequent surface decoration process.
- the slit may be formed by cutting on the metal substrate; the cutting method is not particularly limited, and as long as the slit formed satisfies the above requirements, the field may be used.
- the conventional method may be selected from one of laser cutting, electron beam cutting, water cutting, and wire cutting.
- the specific operations and conditions are commonly used in the prior art.
- the laser cutting conditions are: power of 20-500 W, cutting speed of 10-5000 mm. /s, the laser frequency is 0.5-5 kHz, and the output wavelength is 250-1064 nm.
- the slit width formed by the above laser cutting method is usually from 10 to 500 ⁇ m.
- the electron beam cutting method is: in an environment with a degree of vacuum of 10 -3 -10 -4 Pa, a current of 5-10 mA, and a power density of 10 6 -10 8 W/cm 2 Cutting under the conditions.
- the slit width formed by the above electron beam cutting method is usually from 5 to 80 ⁇ m.
- the conditions of the wire processing are: feed rate: 2-15 mm/min; peak current: 0.8-1.8 A; machining voltage: 70-90 V; pulse width: 2-6 ⁇ s; pulse pitch: 6-30 ⁇ s.
- the metal substrate on which the slit is opened is anodized.
- the bonding strength of the plastic support layer obtained by injection molding to the metal substrate can be remarkably improved.
- the metal substrate is anodized to obtain a metal substrate having an anodized film layer formed thereon (ie, a metal substrate having an anodized film layer on the surface); the anodization is well known to those skilled in the art.
- Anodizing technology the metal substrate can be used as an anode in a sulfuric acid solution having a concentration of 10-30% by weight, The electrolysis is carried out at a temperature of 10 to 30 ° C at a voltage of 10 V to 100 V for 1 to 40 minutes, and the thickness of the anodized film layer formed may be 500 nm to 20 ⁇ m.
- the metal substrate may be included as an anode in a concentration of 10-30 wt% H2SO4, and electrolyzed at a temperature of 10-30 ° C at a voltage of 10 V-100 V for 1-40 min to obtain an anode having a thickness of 500 nm to 20 ⁇ m.
- an anodizing apparatus employs a known anodizing apparatus such as an anodizing bath.
- the metal substrate may be pretreated prior to anodizing the metal substrate.
- the pretreatment is a pretreatment process performed on a metal surface commonly used by those skilled in the art, and generally includes mechanical grinding or grinding to remove foreign matter on the surface, and then degreasing and cleaning the processing oil adhered to the metal surface.
- the pre-treatment includes sanding the metal surface, for example, by first using a 100-400 mesh sandpaper or placing it into a polishing machine to polish the metal surface to produce micron-sized apertures. Then, the steps of degreasing, first water washing, alkali etching, second water washing, neutralization, third water washing, etc.
- the metal is cleaned in ultrasonic waves by various solvents commonly used by those skilled in the art, and the cleaning time is 0.5-2 h, and the removal is performed. Oil stain on the metal surface; then the metal is placed in an acid/alkaline aqueous solution and the metal surface is washed under ultrasonic conditions.
- the solvent may be ethanol or acetone.
- the acid/alkaline aqueous solution is various acid/alkaline aqueous solutions commonly used by those skilled in the art, and may be, for example, hydrochloric acid, sulfuric acid, sodium hydroxide, potassium hydroxide or the like.
- the metal is degreased with anhydrous ethanol, washed with water, and then immersed in an aqueous solution of 30-70 g/L of sodium hydroxide at a temperature of 40-80 ° C for alkali etching, and taken out after 1 to 5 minutes.
- Rinse with deionized water neutralize with 10-30% HNO 3 , remove the residual alkaline solution on the surface, rinse with deionized water, and pre-treat to form micron-scale on the surface of the metal substrate.
- the roughening treatment comprises: immersing the metal substrate having the anodized film layer on the surface in an etching solution for etching treatment.
- the etching solution has a H+ concentration of 0.55-5.5 mol/L, and the etching solution contains chloride ions and/or phosphate ions (ie, the etching solution contains chloride ions and phosphate ions). At least one of them).
- the roughening treatment etches a metal substrate having an anodized film layer by using an etching solution, which can form a large etching hole on the surface of the metal substrate under the anodized film layer.
- the reconstituted hole is etched, and in the subsequent molding process, the resin composition enters the metal corrosion hole of the metal substrate surface during the injection molding process, thereby forming a good bond with the metal substrate after the resin layer is formed.
- the single acidic solution can be an aqueous solution of hydrochloric acid, phosphoric acid, etc., which can uniformly distribute the metal corrosion holes on the surface of the metal substrate, and has a uniform pore size, and can combine the resin layer and the metal substrate. Better performance, better tensile strength, and better integration of metal composites.
- the above hydrochloric acid aqueous solution may have a concentration by mass of hydrochloric acid of 2 to 20% by weight.
- the concentration of hydrochloric acid is 5 to 18% by weight, and according to some embodiments of the present invention, the mass percentage of hydrochloric acid Concentration is 5 ⁇ 15 wt%; the mass concentration of phosphoric acid in the aqueous phosphoric acid solution may be 3 to 40 wt%, and according to some embodiments of the present invention, the mass concentration of phosphoric acid in the aqueous phosphoric acid solution is 5 to 30 wt%, according to some embodiments of the present invention, The mass percentage of phosphoric acid is 5 to 20% by weight.
- the complex solution may be a mixed solution of a soluble acid and a soluble salt, for example, an aqueous solution of hydrochloric acid and a chloride (for example, sodium chloride), and the concentration of hydrochloric acid in an aqueous solution of hydrochloric acid and chloride may be 2 to 20% by weight, and the concentration of the chloride may be
- the aqueous solution of phosphoric acid and phosphate may be from 1 to 20% by weight, wherein the concentration of phosphoric acid may be from 3 to 30% by weight, and the concentration of phosphate may be from 1 to 20% by weight.
- the specific manner of immersing the metal substrate in the etching solution for etching treatment is not particularly known, and various immersion treatment methods well known to those skilled in the art may be employed, for example, all or Partially immersed, etc., may be immersed in multiple pieces or immersed in one piece.
- the temperature immersed in the etching solution is 18-35 ° C, according to some embodiments of the present invention, immersed in an etching solution The temperature is 20-30 ° C.
- the time of treatment in the etchant is 1-60 min.
- the time of immersion in the etching solution is 1-30 min.
- the thickness of the etching layer and the structure of the metal etching hole can be further optimized by performing the etching treatment under the above conditions.
- the present invention is not limited to the number of times of immersion.
- the immersing of the obtained metal substrate containing the anodized film layer in the etching solution comprises treating the metal substrate repeatedly into the etching solution repeatedly.
- the treatment time for each immersion in the etching solution is 1-10 min, and each time it is immersed in the etching solution, it is washed with deionized water, and the number of times of immersion may be 2 to 10 times.
- the cleaning may be carried out by placing the metal substrate in a washing tank for 1 to 5 minutes, or placing it in a washing tank for 1 to 5 minutes.
- the inner surface of the roughened metal substrate is injection molded.
- the conditions of the injection molding may be conditions conventionally used in the art.
- the conditions of the injection molding include: a mold temperature of 50-300 ° C, a nozzle temperature of 200-450 ° C, and a dwell time of 1-50 s.
- the injection pressure is 50-300 MPa
- the injection time is 1-30 s
- the delay time is 1-30 s
- the cooling time is 1-60 s.
- the plastic support layer obtained by the injection molding may not enter, partially enter or fully enter the slit (that is, the plastic support layer does not fill the slit, or A plastic support layer fills a portion of the slit or the plastic support layer fills the slit).
- all of the plastic support layers obtained by injection molding enter the slit (ie, the plastic support layer is filled Said slit).
- the material used in the injection molding may be a resin conventionally used in the art, for example, may be selected from the group consisting of polyethylene, polypropylene, polyacetal, polystyrene, modified polyphenylene ether, polyparaphenylene. Ethylene glycol dicarboxylate, polybutylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, polyimide, polyamideimide, polyetherimide, polysulfone, In polyether sulfone, polyether ketone, polyether ether magnesium, polycarbonate, polyamide and acrylonitrile-butadiene-styrene copolymer One or more.
- a resin conventionally used in the art for example, may be selected from the group consisting of polyethylene, polypropylene, polyacetal, polystyrene, modified polyphenylene ether, polyparaphenylene. Ethylene glycol dicarboxylate, polybutylene terephthalate,
- the material used in the injection molding is a mixture of resin and glass fiber.
- the resin is selected from the group consisting of polyethylene terephthalate, polyphenylene sulfide, polycarbonate, and polyamide; and the weight of the resin is
- the glass fiber content is from 1 to 50% by weight, and according to some embodiments of the invention, the glass fiber is present in an amount of from 5 to 30% by weight.
- the thickness of the plastic support layer can be appropriately selected by those skilled in the art according to the needs of product design, for example, may be 0.1-2 mm, according to some embodiments of the present invention, the plastic support The thickness of the layer is from 0.1 to 1.2 mm.
- the support of the metal base by the plastic support layer can prevent the slit from being deformed in the surface decoration process.
- a decorative layer is formed on the outer surface of the metal substrate in accordance with some embodiments of the present invention.
- the decorative layer can be carried out by conventional methods and conditions in the art, for example, the decorative layer can be formed by one or more of electrophoresis, micro-arc oxidation, anodization, hard anode, and spray coating.
- the thickness of the above decorative layer may vary over a wide range, and according to some embodiments of the present invention, the decorative layer has a thickness of 5 to 60 ⁇ m.
- the decorative layer may be an existing decorative layer of various electronic product casings, for example, one of an aluminum oxide layer, an epoxy resin coating, and an acrylic resin coating.
- the decorative layer may be formed by an anodizing method
- the anodizing condition may be a condition known in the art, for example, sulfuric acid having a concentration of 150-210 g/L may be used as a bath, and the voltage may be It is 10-15V, the current density is 1-2A/dm 2 , the temperature is 10-22°C, the anodizing time is 20-60min, and the concentration of the sealing bath (component such as NiSO 4 aqueous solution) is 1-10g/L.
- the sealing temperature is 50-95 ° C, and the sealing time is 10-50 min.
- the thickness of the decorative layer formed by the above anodizing method is usually 10 to 30 ⁇ m.
- the metal substrate may be pretreated prior to positive oxidation of the metal substrate to form a decorative layer.
- the pretreatment is the same as the pretreatment in the step of obtaining a metal substrate having an anodized film layer on the surface by anodization, and will not be described herein.
- the decorative layer may also be formed by a micro-arc oxidation method, which may be a condition known in the art, for example, a pH of 6-12 and a voltage of 0-800V.
- the current density is 1-10 A/dm 2
- the temperature is 15-60 ° C
- the time is 10-60 min
- the sealing liquid is water
- the sealing temperature is 70-90 ° C
- the sealing time is 1-10 min.
- the thickness of the decorative layer formed by the above micro-arc oxidation method is usually from 10 to 50 ⁇ m.
- the decorative layer may also be formed by electrophoresis, which may be a condition known in the art, for example, may be: cathodic electrophoresis: voltage is 20-60 V, pH is 4-6, temperature is 15-30 ° C, time is 20-60s; anodic electrophoresis: voltage is 40-100V, pH is 6-8, temperature is 15-30 ° C, time is 40-90s; baking temperature is 120-200 ° C, baking time is 30-60min.
- the thickness of the decorative layer formed by the above electrophoresis method is usually 5 to 35 ⁇ m.
- the decorative layer may also be formed by spraying, and the spraying conditions may be conditions known in the art, for example, may be: electrostatic high pressure: 60-90 kV; electrostatic current: 10-20 ⁇ A; flow rate pressure: 0.3-0.55Mpa; atomization pressure: 0.33-0.45Mpa; conveying speed: 4.5-5.5m/min; curing temperature: 150-220°C; curing time: 2-120min.
- Aluminum alloy (purchased from Dongguan Gangxiang Metal Materials Co., Ltd., grade 6063, thickness 0.8mm) was cut into a size of 15 mm ⁇ 80 mm as a metal substrate.
- the laser drilling machine (model LSF20 laser drilling machine manufactured by Huagong Laser) performs slit processing on a metal substrate (in which slits are 9 and the shape is linear), and the slit width is 50 ⁇ m.
- the slit length is 10 mm and the spacing between adjacent slits is 0.6 mm.
- the laser processing power was 20 W, the speed was 50 mm/s, the frequency was 20 kHz, and the wavelength was 1064 nm, and the metal substrate A11 having the slit was obtained.
- Pretreatment The metal substrate A11 is degreased and cleaned, and then subjected to alkali etching treatment in a solution having a sodium hydroxide content of 40 g/L at 60 ° C for 10 s, washed with water and then neutralized with a HNO 3 content of about 6 wt%. Neutralization in the tank for 30s, and then washed with water to obtain a pretreated metal matrix A12;
- Anodizing The above-mentioned metal substrate A12 was placed as an anode in an H 2 SO 4 anodizing bath containing a concentration of about 20 wt%, electrolyzed at 15 V, 18 ° C for 5 min, and baked at 80 ° C for 20 min to obtain an anodized metal matrix A13. .
- the cross section of the roughened metal substrate A14 was observed by a metallographic microscope, and a loose layer of 6.5-7.5 ⁇ m thick, a barrier layer of 80-100 nm thick and an etching layer of 20 nm-35 ⁇ m were obtained on the surface of the aluminum alloy sheet.
- the pore size of the porous layer in the loose layer was measured by SEM field emission scanning electron microscope to be 15-800 nm; the pore size of the barrier layer in the barrier layer was 15-600 nm; the pore diameter of the corrosion hole of the aluminum alloy in the corrosion layer It is 40 nm to 80 ⁇ m. It can also be observed that there are three layers of three-dimensional pore structure on the surface of the treated aluminum alloy, loose pores and blocking The layer micropores and the aluminum alloy corrosion holes communicate with each other.
- the above metal substrate A14 was placed in a mold, and a polyphenylene sulfide resin (PPS) having 20% by weight of glass fibers was used for injection molding on the surface of the metal substrate (injection conditions were: mold temperature of 90 ° C, nozzle temperature of 280 ° C, and protection).
- injection conditions were: mold temperature of 90 ° C, nozzle temperature of 280 ° C, and protection).
- the pressing time was 30 s
- the injection pressure was 140 MPa
- the injection time was 5 s
- the delay time was 5 s
- the cooling time was 15 s.
- a plastic layer (thickness of 1 mm) was formed, thereby obtaining a metal substrate A15 incorporating a plastic layer in which the plastic layer was filled.
- the metal substrate A15 is degreased and cleaned, and then alkali-etched for 10 s in a solution having a sodium hydroxide content of 40 g/L at 60 ° C, washed with water and then neutralized with a HNO 3 content of about 6 wt%. Neutralization in the tank for 30s, and then washed with water to obtain a pretreated metal matrix A15;
- the above pretreated metal substrate A15 was immersed in an electrolytic cell containing an aqueous solution of H 2 SO 4 having a concentration of 180 g/L, using a metal substrate A15 as an anode and a stainless steel plate as a cathode at a voltage of 15 V, current density. It is anodized for 1 min at 1 A/dm 2 and at a temperature of 19 ° C. After anodizing, it is taken out and ultrasonically cleaned to avoid the influence of acid in the slit on subsequent coloration. At this point, the slit is completely covered by the decorative layer and is invisible to the naked eye.
- the anodized metal substrate A15 was immersed in an acid dye solution (purchased from Okuno Industry Co., Ltd., model TAC BLACK-SLH) for 10 min, and the acid dye solution concentration was 5 g/L, and the pH was 5.5.
- the temperature of the dyeing solution was 50 ° C, and it was taken out and cleaned after completion.
- Aluminum alloy (purchased from Dongguan Gangxiang Metal Materials Co., Ltd., grade 6063, thickness 0.8mm) was cut into a size of 15 mm ⁇ 80 mm as a metal substrate.
- the laser drilling machine (model LSF20 laser drilling machine manufactured by Huagong Laser) performs slit processing on a metal substrate (in which slits are 9 and the shape is linear), and the slit width is 15 ⁇ m.
- the slit length is 10 mm and the spacing between adjacent slits is 1.6 mm.
- the laser processing power was 15 W, the speed was 200 mm/s, the frequency was 30 kHz, and the wavelength was 1064 nm, and the metal substrate A21 having the slit was obtained.
- Pretreatment The metal substrate A21 is degreased and cleaned, and then subjected to alkali etching treatment in a solution having a sodium hydroxide content of 40 g/L at 60 ° C for 10 s, washed with water and then neutralized with a HNO 3 content of about 6 wt%. Neutralization in the tank for 30s, and then washed with water to obtain a pretreated metal matrix A22;
- Anodizing The above-mentioned metal substrate A22 was placed as an anode in an H 2 SO 4 anodizing bath containing a concentration of about 20 wt%, electrolyzed at 15 V, 18 ° C for 5 min, and baked at 80 ° C for 20 min to obtain an anodized metal matrix A23. .
- the pore size of the porous layer in the loose layer is 15 nm-1 ⁇ m; the pore size of the barrier layer in the barrier layer is 16-800 nm; and the pore diameter of the aluminum alloy etching hole in the etching layer is 40 nm-90 ⁇ m. It can also be observed that there are three layers of three-dimensional pore structure on the surface of the treated aluminum alloy, and the loose layer micropores, the barrier micropores and the aluminum alloy corrosion holes communicate with each other.
- the above metal substrate A24 was placed in a mold, and a polyphenylene sulfide resin having 20% by weight of glass fibers was used for injection molding on the surface of the metal substrate (injection conditions were: mold temperature 110 ° C, nozzle temperature 260 ° C, holding time 30 s)
- injection conditions were: mold temperature 110 ° C, nozzle temperature 260 ° C, holding time 30 s
- the injection pressure was 120 MPa
- the injection time was 10 s
- the delay time was 10 s
- the cooling time was 10 s
- a decorative layer of 20 ⁇ m was obtained in the same manner as in the step 5) of Example 1, to finally obtain a metal casing A26 of a communication device having a flat decorative layer.
- Aluminum alloy (purchased from Dongguan Gangxiang Metal Materials Co., Ltd., grade 6063, thickness 1mm) was cut into a metal matrix of 15 mm ⁇ 80 mm.
- the laser drilling machine (model LSF20 laser drilling machine manufactured by Huagong Laser) performs slit processing on a metal substrate (in which slits are 9 and the shape is linear), and the slit width is 30 ⁇ m.
- the slit length is 10 mm and the spacing between adjacent slits is 0.3 mm.
- the laser processing power was 18 W, the speed was 50 mm/s, the frequency was 20 kHz, and the wavelength was 1064 nm, and the metal substrate A31 having the slit was obtained.
- Pretreatment Degreasing and cleaning the metal substrate A31, and then alkali etching it in a solution with a sodium hydroxide content of 40 g/L at 60 ° C for 10 s, washing with water and placing a neutralization of HNO 3 content of about 6 wt%. Neutralization in the tank for 30s, and then washed with water to obtain a pretreated metal matrix A32;
- Anodizing The above-mentioned metal substrate A32 was placed as an anode in an H 2 SO 4 anodizing bath containing a concentration of about 20 wt%, electrolyzed at 15 V for 15 min at 18 ° C, and baked at 80 ° C for 20 min to obtain an anodized metal matrix A33. .
- the surface of the aluminum alloy sheet after electrolysis was measured in the same manner as in Example 1 to obtain a loose layer of 6-6.5 ⁇ m thick, a barrier layer of 80-110 nm thick, and an etching layer of 20 nm-40 ⁇ m.
- the pore size of the porous layer in the loose layer is about 20 nm-1 ⁇ m; the pore size of the barrier layer in the barrier layer is about 18-800 nm; and the pore size of the corrosion hole of the aluminum alloy in the etching layer is about 50 nm-120 ⁇ m. It can also be observed that there are three layers of three-dimensional pore structure on the surface of the treated aluminum alloy, and the loose layer micropores, the barrier micropores and the aluminum alloy corrosion holes communicate with each other.
- the above metal substrate A34 was placed in a mold, and a polyphenylene sulfide resin having 20% by weight of glass fibers was used for injection molding on the surface of the metal substrate (injection conditions were: mold temperature 130 ° C, nozzle temperature 280 ° C, holding time 40 s)
- injection conditions were: mold temperature 130 ° C, nozzle temperature 280 ° C, holding time 40 s
- the injection pressure was 200 MPa
- the injection time was 5 s
- the delay time was 5 s
- the cooling time was 15 s
- a plastic layer thickness of 1.2 mm
- a decorative layer of 20 ⁇ m was obtained in the same manner as in the step 5) of Example 1, to finally obtain a metal casing A36 of a communication device having a flat decorative layer.
- the metal shell of the communication device was prepared in the same manner as in Example 1, except that the roughening treatment was to prepare 500 ml of 10 wt% hydrochloric acid in a beaker, and the temperature was raised to 25 ° C in a 25 ° C constant temperature bath, and the obtained aluminum alloy sheet 10PCS was obtained. Immerse in it, take it out after 2 minutes, soak it in a beaker containing water for 2 minutes, add a blisters to the cycle with one etching bubble, and cycle it 5 times. After the last water soak, put the aluminum alloy piece into 80. The oven was dried in a °C oven to obtain a metal substrate A44.
- the surface of the aluminum alloy sheet after electrolysis was measured in the same manner as in Example 1 to obtain a loose layer of 6-7 ⁇ m thick, a barrier layer of 80-100 nm thick, and an etching layer of 100 nm-30 ⁇ m.
- the pore size of the porous layer in the loose layer is 15 nm-30 ⁇ m; the pore size of the barrier pore in the barrier layer is 20-800 nm; and the pore diameter of the corrosion hole of the aluminum alloy in the etching layer is 60 nm-100 ⁇ m. It can also be observed that there are three layers of three-dimensional pore structure on the surface of the treated aluminum alloy, and the loose layer micropores, the barrier micropores and the aluminum alloy corrosion holes communicate with each other.
- the plastic layer obtained by injection molding is filled with slits, and finally a metal casing A46 of a communication device having a flat decorative layer is obtained.
- the metal casing of the communication device was prepared in the same manner as in Example 1, except that the time for etching the bubble each time in the roughening treatment was 3 minutes, and the metal substrate A54 was obtained.
- the surface of the electrolytically-treated aluminum alloy sheet was measured in the same manner as in Example 1 to obtain a loose layer of 5-6 ⁇ m thick, a barrier layer of 80-100 nm thick, and an etching layer of 80 nm-50 ⁇ m.
- the pore size of the porous layer in the loose layer is 20 nm-65 ⁇ m; the pore size of the barrier layer in the barrier layer is 25 nm-2 ⁇ m; and the pore diameter of the aluminum alloy etching hole in the etching layer is 50 nm-300 ⁇ m.
- the metal casing of the communication device was prepared in the same manner as in Example 1, except that the etching solution was 15 wt% hydrochloric acid in the roughening treatment to obtain a metal substrate A64.
- the surface of the aluminum alloy sheet after electrolysis was measured in the same manner as in Example 1 to obtain a loose layer of 4.5 to 5.5 ⁇ m thick, a barrier layer of 80-100 nm thick, and an etching layer of 100 nm to 60 ⁇ m.
- the pore size of the porous layer in the loose layer is 20 nm to 70 ⁇ m; the pore diameter of the barrier layer in the barrier layer is 30 nm to 3 ⁇ m; and the pore diameter of the corrosion hole of the aluminum alloy in the etching layer is 50 nm to 400 ⁇ m. It can also be observed that there are three layers of three-dimensional pore structure on the surface of the treated aluminum alloy, and the loose layer micropores, the barrier micropores and the aluminum alloy corrosion holes communicate with each other. In addition, the plastic layer obtained by injection molding is filled with slits, and finally a metal casing A66 of a communication device having a flat decorative layer is obtained.
- Example 1 The procedure of Example 1 was carried out except that the anodizing and roughening treatment steps were not carried out to obtain a metal substrate D14 to which a plastic layer was bonded, which was not surface-modified due to shedding after injection molding.
- the method of the first embodiment is carried out, except that the anodizing step is not performed, the metal substrate D24 combined with the plastic layer is obtained, and the surface decorative layer is formed by an anodizing method to obtain a metal shell D25 of the communication device, and the surface of the decorative layer is flat.
- the acid is caused during the surface decoration process, resulting in a different color of the surface decoration layer.
- the method of the first embodiment is carried out, except that the roughening treatment step is not performed, the metal substrate D34 combined with the plastic layer is obtained, and the surface decorative layer is formed by anodization to obtain the metal shell D35 of the communication device, and the surface of the decorative layer is flat.
- the acid is caused during the surface decoration process, resulting in a different color of the surface decorative layer.
- the metal substrates (A14, A24, A34, A44, A54, A64, D24, and D34) were obtained in the same manner as in Examples 1-6 and Comparative Examples 2-3, and were allowed to stand in a universal material testing machine after standing for 24 hours.
- the tensile test of the product was carried out in accordance with the tensile test method of the metal material of GBT 228.1-2010.
- the average shear force in the test results was regarded as the binding force between the aluminum alloy and the resin.
- Table 1 The test results are shown in Table 1:
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laminated Bodies (AREA)
Abstract
提供了通讯设备金属外壳及其制备方法,该通讯设备金属外壳包括:设置有至少一条狭缝的金属基体,至少位于金属基体内表面的阳极氧化膜层,形成于阳极氧化膜层上的塑料支撑层,其中,阳极氧化膜层包括:与金属基体接触,且其中含有阻挡层微孔的阻挡层,所述阻挡层微孔的孔径为10nm-800μm,以及位于阻挡层外表面,且其中含有疏松层微孔的疏松层,所述疏松层微孔的孔径为10nm-800μm。
Description
本发明涉及通讯设备金属外壳及其制备方法。
对于手机、平板电脑、笔记本电脑等类似的便携式电子通讯设备,与塑胶外壳相比,金属外壳具有更加美观,更具质感,同时耐磨耐划伤等性能更加优越的特点,因此无论是从厂商还是用户的角度,大面积采用金属外壳已成为今后的发展趋势。但是在现有技术中,由于电磁波不能穿透金属,因此电子通讯设备在设计时只能采用非金属外壳,或采用金属外壳时需要在天线处用非金属材质进行隔断,从而使得电子通讯设备在外观设计上受到极大的限制。
现有技术中,为实现在采用金属外壳的前提下,保证通讯设备的正常通讯,通常采用在设备内部的天线所对应部位的金属外壳上开设狭缝,保证天线能正常工作。但金属外壳狭缝处强度低易损坏变形,需通过工艺在金属外壳底部结合一层塑胶支撑件,起到防止变形、增加强度的作用。由于狭缝宽度极小,所以可以通过阳极氧化、微弧氧化、电泳和喷涂等表面装饰层的覆盖,实现外壳狭缝处肉眼不可见,从而使该外壳外观显示为全金属质感。又因为狭缝处为非金属材质,将电子通讯设备天线设计在狭缝处,可使电磁波通过,不会屏蔽天线辐射。
目前将金属和树脂相结合的方法主要有两种,一种是利用胶粘剂,通过化学胶粘剂分别与金属和树脂作用,从而将两者结合到一起。第二种就是在模具内装入预先准备的异材质嵌件后注入树脂,熔融的材料与嵌件结合固化,制成一体化产品(即常见的嵌件成型,insert molding)。但是,采用胶粘剂的方法,由于胶粘剂的耐酸耐碱性能差,产品无法进行后续的表面装饰。同时胶粘剂有一定的厚度,对于复杂形状区域不适用,无法实现金属与树脂的无缝结合,而嵌件成型工艺,结合力较弱,且所加工的有些狭缝区域缝之间的间隙很小,该工艺无法保证塑料与狭缝区域的结合力。
发明内容
本发明的目的在于克服塑料支撑层与金属基体结合力弱的问题,提供一种塑料支撑层与金属基体结合力高,且具有外观一体化效果的通讯设备金属外壳及其制备方法。
本发明的发明人意外发现,通过本发明的技术能在金属表面形成独特的立体孔洞结构,树脂可直接注塑至孔洞内,即可得到结合力良好的产品,不需增加额外基团产生放热反应,对树脂也没有特殊要求,适用范围更广,由此完成了本发明。
也即,本发明提供了一种通讯设备金属外壳,其中,该通讯设备金属外壳包括:设置有至少一条狭缝的金属基体,至少位于所述金属基体内表面的阳极氧化膜层,形成于阳极氧化膜层上的塑料支撑层,其中,阳极氧化膜层包括:与金属基体接触,且其中含有阻挡层微孔的阻挡层,所述阻挡层微孔的孔径为10nm-800μm,位于阻挡层外表面,且其中含有疏松层微孔的疏松层,所述疏松层微孔的孔径为10nm-800μm。
本发明还提供一种通讯设备金属外壳的制备方法,其中,该方法包括以下步骤,
1)提供金属基体,所述金属基体上开设有至少一条狭缝;
2)对所述金属基体进行阳极氧化,得到至少内表面形成有阳极氧化膜层的金属基体;
3)对所述形成有阳极氧化膜层的金属基体进行粗化处理,所述粗化处理包括:将所述形成有阳极氧化膜层的金属基体浸入刻蚀液中进行刻蚀处理,其中,所述刻蚀液中H+浓度为0.55-5.5mol/L,且所述蚀刻液中含有氯离子和磷酸根离子中的至少一种;
4)在经过粗化处理后的金属基体内表面注塑树脂,形成塑料支撑层。
本发明还提供一种通过上述方法制备而得到的通讯设备金属外壳。
根据本发明的通讯设备金属外壳的制备方法,通过将开设有狭缝的金属基体进行阳极氧化后,进一步进行粗化处理,在金属基体内表面形成独特的立体孔洞结构,然后再在金属基体内表面注塑树脂形成塑料支撑层,树脂可直接注塑至孔洞内,由此能够显著提高塑料支撑层与金属基体的结合力,提高金属外壳的强度;进而通过所述塑料支撑层填充所述狭缝,能够更进一步地提高塑料支撑层与金属基体的结合力。另外,注塑得到的塑料支撑层能够对金属基体提供支撑,防止在表面装饰过程中,金属基体发生变形,由此能够在表面装饰工艺后,能够保证金属外壳外观上的平整一致性,形成外观一体化的效果。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明提供的通讯设备金属外壳该包括:设置有至少一条狭缝的金属基体,至少位于所述金属基体内表面的阳极氧化膜层,形成于阳极氧化膜层上的塑料支撑层,其中,阳极氧化膜层包括:与金属基体接触,且其中含有阻挡层微孔的阻挡层,位于阻挡层外表面,
且其中含有疏松层微孔的疏松层,其中,所述阻挡层微孔的孔径为10nm-800μm,所述疏松层微孔的孔径为10nm-800μm。换句话说,本发明提供的通讯设备金属外壳该包括:具有一条以上狭缝的金属基体、至少位于所述金属基体的内表面的阳极氧化膜层及形成于所述阳极氧化膜层上的塑料支撑层;其中,所述阳极氧化膜层包括与金属基体接触的阻挡层及位于阻挡层外表面的疏松层,所述疏松层中含有疏松层微孔,所述疏松层微孔的孔径为10nm-800μm,所述阻挡层中含有阻挡层微孔,所述阻挡层微孔的孔径为10nm-800μm
根据本发明的实施例,所述通讯设备例如可以为:手机、平板电脑、笔记本电脑或蓝牙耳机等。
本发明中,所述金属基体的内表面定义为将其用于通讯设备中时,金属基体朝向通讯设备内部的表面。可以理解的是,金属基体的外表面定义为将其用于通讯设备中时,金属基体朝向外界的表面。
根据本发明的实施例,所述金属基体的材质可以为本领域通常用于通讯设备的各种金属,例如可以为铝、铝合金、不锈钢或钛合金等,根据本发明的一些实施例,所述金属集体的材质为铝材质或铝合金材质。
根据本发明的实施例,所述金属基体的厚度没有特别的限定,本领域技术人员可以根据具体的通讯设备适当地进行选择。例如所述金属基体的厚度可以为0.2-2mm,根据本发明的一些实施例,所述金属基体的厚度为0.5-1mm。
根据本发明的实施例,所述狭缝用于保证天线与外界的信号传输,实现通讯。对于上述狭缝,狭缝宽度可以为15-500μm,根据本发明的一些实施例,狭缝宽度为15-200μm。
根据本发明的实施例,狭缝长度可以为0.1-500mm,根据本发明的一些实施例,狭缝长度为10-150mm;相邻两条狭缝之间的间距可以为0.1-10mm,根据本发明的一些实施例,相邻两条狭缝之间的间距可以为0.3-1.6mm。另外,狭缝的条数没有特别的限定,只要能够实现通讯即可,根据本发明的一些实施例,狭缝的条数可以为1-200条,根据本发明的一些实施例,狭缝的条数可以为5-50条。
根据本发明的实施例,所述狭缝的形状可以为直线形、曲线形、方波线形或锯齿线形,根据本发明的一些实施例,所述狭缝的形状为直线形。
根据本发明的实施例,对于上述狭缝的具体宽度、间距、长度、条数和形状,本领域技术人员可通过实际需要实现的通讯信号类别及频率等条件在上述范围内进行调整,具体调整方法是本领域公知的,在本发明中不再赘述。
根据本发明的一些实施例,所述疏松层微孔和所述阻挡层微孔的孔径各自独立地为10nm-800μm。根据本发明的另一些实施例,所述疏松层微孔和所述阻挡层微孔的孔径各自
独立地为10nm-500μm,根据本发明的一些实施例,所述疏松层微孔的孔径为10nm-100μm,所述阻挡层微孔的孔径为10nm-200μm。也就是说,所述疏松层微孔的孔径为10nm-500μm,所述阻挡层微孔的孔径为10nm-500μm;根据本发明的一些实施例,所述疏松层微孔的孔径为10nm-100μm,所述阻挡层微孔的孔径为10nm-200μm。另外,根据本发明的一些实施例,所述疏松层微孔及阻挡层微孔相互连通,由此能够进一步提高树脂与合金的结合力。
根据本发明的实施例,所述疏松层的厚度为100nm-100μm,根据本发明的一些实施例,所述疏松层的厚度为1-50μm;所述阻挡层的厚度为50nm-5μm,根据本发明的一些实施例,所述阻挡层的厚度为50-500nm。通过使所述疏松层和阻挡层的厚度在上述范围内,所述阳极氧化膜层与金属基体也能具有更高的结合力,同时也能优化腐蚀复杂孔洞结构的空间,便于在金属基体表面造出结构更优的蚀刻孔。通过使所述疏松层的厚度在上述范围内,所述阳极氧化膜层与金属基体具有更高的结合力。此外,所述疏松层和阻挡层的厚度大于或小于上述范围时,所述塑料支撑层与金属基体的结合力有可能不够。
根据本发明的实施例,所述金属基体还包括与阻挡层接触的腐蚀层,所述腐蚀层中含有金属腐蚀孔,所述金属腐蚀孔的孔径为10nm-1mm;根据本发明的一些实施例,所述金属腐蚀孔的孔径为10nm-800μm;根据本发明的一些实施例,所述金属腐蚀孔的孔径为10nm-600μm。另外,根据本发明的一些实施例,所述疏松层微孔、阻挡层微孔及金属腐蚀孔相互连通,由此能够增加注塑树脂进入到金属基体的深度,更进一步地提高树脂与合金的结合力,且更有利于成型。
根据本发明的实施例,所述腐蚀层的厚度为10nm-200μm,根据本发明的一些实施例,所述腐蚀层的厚度为10nm-100μm,其中,腐蚀层与其他金属基体没有明显界限,腐蚀层的厚度可以指在金属基体上腐蚀造孔的深度。在金属基体表面造出腐蚀孔,提高树脂与金属结合力,同时不损坏合金体性能,优化金属基体表面结构,提高熔融的树脂对金属基体表面的填充度,能保证一般的注塑工艺中熔融的树脂能渗透满此深度的金属腐蚀孔,不仅不降低树脂与金属基体的结合面积,且金属腐蚀孔中也不存在间隙等,进一步提高树脂与金属的结合力。
为了提高塑料支撑层和金属基体的结合力,根据本发明的一些实施例,所述塑料支撑层填充所述阳极氧化膜层上的疏松层微孔和阻挡层微孔并与所述金属基体结合。
根据本发明的一些实施例,所述塑料支撑层填充所述阳极氧化膜层上的疏松层微孔、阻挡层微孔以及所述腐蚀层上的金属腐蚀孔并与所述金属基体结合。
根据本发明的实施例,所述塑料支撑层可以不进入、部分进入或全部进入到所述狭缝中(也即所述塑料支撑层不填充所述狭缝,或者所述塑料支撑层填充所述狭缝的一部分,
或者所述塑料支撑层填充满所述狭缝)。为进一步提高所述塑料支撑层与所述金属基体的结合力,根据本发明的一些实施例,所述塑料支撑层至少填充所述狭缝的一部分,根据本发明的一些实施例,所述塑料支撑层填充满所述狭缝。
根据本发明的实施例,所述塑料支撑层的厚度可以本领域的常规厚度,例如所述塑料支撑层的厚度(为不包括伸入到狭缝中的塑料层的厚度)可以为0.1-2mm,根据本发明的一些实施例,支撑层的厚度为0.1-1.2mm。
根据本发明的实施例,所述通讯设备金属外壳还可以包括位于金属基体外表面的装饰层。
根据本发明的实施例,上述装饰层可以为通过电泳、微弧氧化、阳极氧化、硬质阳极和喷涂中的一种或多种形成的装饰层。
根据本发明的实施例,对所述装饰层的厚度没有特别的限定,可以为本领域的常规厚度。例如所述装饰层的厚度可以为5-50μm。
本发明还提供了上述通讯设备金属外壳的制备方法,其中,该方法包括以下步骤:1)提供金属基体,所述金属基体上开设有至少一条狭缝;2)对所述金属基体进行阳极氧化,得到至少内表面形成有阳极氧化膜层的金属基体;3)对所述形成有阳极氧化膜层的金属基体进行粗化处理,所述粗化处理包括:将所述形成阳极氧化膜层的金属基体浸入刻蚀液中进行刻蚀处理,其中,所述刻蚀液中H+浓度为0.55-5.5mol/L,且所述蚀刻液中含有氯离子和磷酸根离子中的至少一种;4)在经过所述粗化处理后的金属基体内表面注塑树脂,形成塑料支撑层。
换句话说,根据本发明实施例的制备通讯设备金属外壳的方法可以包括以下步骤:1)提供金属基体,所述金属基体上开设有一条以上的狭缝;2)对所述金属基体进行阳极氧化,得到表面含有阳极氧化膜层的金属基体;3)对所述表面含有阳极氧化膜层的金属基体进行粗化处理,所述粗化处理包括:将所述表面含有阳极氧化膜层的金属基体浸入刻蚀液中进行刻蚀处理,其中,所述刻蚀液中H+浓度为0.55-5.5mol/L,所述蚀刻液中含有氯离子和/或磷酸根离子;4)在经过粗化处理后的金属基体内表面注塑树脂,形成塑料支撑层。
根据本发明的实施例,所述金属基体的材质可以为本领域通常用于通讯设备的各种金属,例如可以为铝合金、不锈钢和锌合金中的一种,根据本发明的一些实施例,所述金属基体的材质为铝或铝合金。
根据本发明的实施例,所述金属基体的厚度没有特别的限定,本领域技术人员可以根据具体的通讯设备适当地进行选择。例如所述金属基体的厚度可以为0.2-2mm,根据本发明的一些实施例,所述金属基体的厚度为0.5-1mm。
根据本发明的实施例,需要在所述金属外壳的金属基体上开设一条以上的狭缝以保证天线与外界的信号传输,实现通讯。对于上述狭缝,狭缝宽度可以为15-500μm,根据本发明的一些实施例,狭缝宽度为15-200μm;狭缝长度可以为0.1-500mm,根据本发明的一些实施例,狭缝长度为10-150mm;相邻两条狭缝之间的间距可以为0.1-10mm,根据本发明的一些实施例,相邻两条狭缝之间的间距为0.3-1.6mm。另外,狭缝的条数和形状没有特别的限定,只要能够实现通讯即可。例如狭缝的条数可以为1-200条,根据本发明的一些实施例,狭缝的条数为5-50条;狭缝的形状可以为直线形、曲线形、方波线形或锯齿线形,根据本发明的一些实施例,狭缝的形状为直线形。
并且,对于上述狭缝的具体宽度、间距、长度、条数和形状,本领域技术人员可通过实际需要实现的通讯信号类别及频率等条件在上述范围内进行调整,具体调整方法是本领域公知的,在本发明中不再赘述。
根据本发明的实施例,所述狭缝的宽度在上述范围内时,可以通过后续的表面装饰工序所形成的装饰层所覆盖。
根据本发明的实施例,可以通过在所述金属基体上进行切割,形成所述狭缝;所述切割方法没有特别的限定,只要形成的所述狭缝满足上述要求即可,可以使用本领域常规的方法。例如,所述切割方法可选自激光切割、电子束切割、水切割和线切割中的一种。
根据本发明的实施例,采用上述各种方法进行切割时,其具体操作和条件是现有技术中常用的,例如,所述激光切割条件为:功率为20-500W,切割速度为10-5000mm/s,激光频率为0.5-5kHz,输出波长为250-1064nm。通过上述激光切割的方法形成的狭缝宽度通常在10-500μm。
根据本发明的实施例,所述电子束切割方法为:在真空度为10-3-10-4Pa的环境中,在电流为5-10mA,功率密度为106-108W/cm2的条件下进行切割。通过上述电子束切割的方法形成的狭缝宽度通常在5-80μm。
根据本发明的实施例,所述线加工的条件为:进给速度:2-15mm/min;峰值电流:0.8-1.8A;加工电压:70-90V;脉冲宽度:2-6μs;脉冲间距:6-30μs。
根据本发明的实施例,在所述金属基体上开设所述狭缝后,将开设有所述狭缝的金属基体进行阳极氧化。通过进行阳极氧化,并结合后续的粗化处理,能够显著提高注塑得到的塑料支撑层与所述金属基体的结合力。
根据本发明的实施例,将所述金属基体通过阳极氧化得到表面形成有阳极氧化膜层的金属基体(即表面含有阳极氧化膜层的金属基体);所述阳极氧化为本领域技术人员公知的阳极氧化技术,可以将所述金属基体作为阳极放入浓度为10-30wt%的硫酸溶液中,在
10-30℃的温度下于10V-100V电压下电解1-40min,形成的阳极氧化膜层的厚度可以为500nm-20μm。或者说,可以包括将所述金属基材作为阳极放入10-30wt%浓度H2SO4中,在温度为10-30℃下于10V-100V电压下电解1-40min得表面含有500nm-20μm厚的阳极氧化膜层的金属基体,阳极氧化的设备采用公知的阳极氧化设备,例如阳极氧化槽。
根据本发明的实施例,在将所述金属基体进行阳极氧化之前,可以先对所述金属基体进行前处理。所述前处理为本领域技术人员常用的对金属表面进行的前处理工序,一般包括进行机械打磨或研磨去除表面明显的异物,然后对金属表面粘附的加工油等进行脱脂、清洗。根据本发明的一些实施例,前处理包括对金属表面进行打磨,例如可以为:先采用100-400目的砂纸或者将其放入抛光机内对金属表面打磨使产生微米级的小孔。然后依次进行除油、第一水洗、碱蚀、第二水洗、中和、第三水洗等步骤,用本领域技术人员常用的各种溶剂在超声波中清洗该金属,清洗时间0.5-2h,去除金属表面的油污;然后将金属置于酸/碱性水溶液中,超声波条件下洗涤金属表面。所述溶剂可以为乙醇或丙酮。所述酸/碱性水溶液为本领域技术人员常用的各种酸/碱性水溶液,例如:可以为盐酸、硫酸、氢氧化钠、氢氧化钾等。在本发明的一些实施例中,用无水乙醇将金属除油后水洗擦拭干净后再浸入30-70g/L、温度40-80℃的氢氧化钠水溶液中进行碱蚀,1~5min后取出用去离子水冲洗干净,后用10-30%的HNO3进行中和,除去表面残留的碱性溶液,再用去离子水冲洗干净,经过前处理可以在金属基材的表面形成微米级的小孔,所述小孔的直径为1-10微米。
根据本发明的实施例,步骤3)中,所述粗化处理包括:将所述表面含有阳极氧化膜层的金属基体浸入刻蚀液中进行刻蚀处理。根据本发明的实施例,所述刻蚀液中H+浓度为0.55-5.5mol/L,所述蚀刻液中含有氯离子和/或磷酸根离子(即蚀刻液中含有氯离子和磷酸根离子中的至少一种)。
根据本发明的实施例,所述粗化处理通过采用刻蚀液对具有阳极氧化膜层的金属基体进行腐蚀,其可以在阳极氧化膜层下的金属基体表面形成大的腐蚀孔,通过这种腐蚀再造孔,在后续的成型过程中,树脂组合物在注塑过程中进入金属基体表面金属腐蚀孔中,从而在形成树脂层后与金属基体形成良好的结合。
根据本发明的实施例,所述刻蚀液为[H+]=0.55-5.5mol/L的含有氯离子和/或磷酸根离子的酸或者盐溶液。可以为单一酸性溶液,也可以为复合溶液,单一酸性溶液可以为盐酸、磷酸等的水溶液,能够使金属腐蚀孔在金属基体表面均匀分布,并且孔径均匀,能够使树脂层与金属基材的结合性能更佳,具有更佳的抗拉伸强度,使得金属复合体的一体化结合更好。上述盐酸水溶液中盐酸的质量百分浓度可以为2~20wt%,根据本发明的一些实施例,盐酸的质量百分浓度为5~18wt%,根据本发明的一些实施例,盐酸的质量百分浓度为5~
15wt%;磷酸水溶液中磷酸的质量百分浓度可以为3~40wt%,根据本发明的一些实施例,磷酸水溶液中磷酸的质量百分浓度为5~30wt%,根据本发明的一些实施例,磷酸的质量百分浓度为5~20wt%。复合溶液可以为可溶性酸和可溶性盐的混合溶液,例如盐酸和氯化物(例如为氯化钠)的水溶液,盐酸和氯化物的水溶液中盐酸的浓度可以为2~20wt%,氯化物的浓度可以为1~20wt%,也可以为磷酸和磷酸盐的水溶液,其中,磷酸的浓度可以为3wt~30wt%,磷酸盐的浓度可以为1~20wt%。
根据本发明的实施例,在粗化处理中,将金属基体浸入刻蚀液中进行刻蚀处理的具体方式没有特别相知,可以采用本领域技术人员公知的各种浸入处理的方式,例如全部或者部分浸入等,可以多片浸入也可以一片浸入,根据本发明的一些实施例,浸入刻蚀液中处理的温度为18-35℃,根据本发明的一些实施例,浸入刻蚀液中处理的温度为20-30℃,根据本发明的一些实施例,浸入刻蚀液中处理的时间为1-60min,根据本发明的一些实施例,浸入刻蚀液中处理的时间为1-30min。通过在上述条件下进行刻蚀处理,可以进一步优化腐蚀层的厚度和金属腐蚀孔的结构。
此外,对于浸入的次数本发明也没有限制,根据本发明的一些实施例,将所得含有阳极氧化膜层的金属基体浸入刻蚀液中处理包括将金属基体反复多次浸入刻蚀液中处理,每次浸入刻蚀液中处理的时间为1-10min,每次浸入刻蚀液中处理后用去离子水洗净,浸入的次数可以为2到10次。洗净可以是将金属基体放入水洗槽中清洗1到5min,或者放入水洗槽中放置1到5min。
根据本发明的实施例,在对金属基体进行粗化处理后,对粗化处理后的金属基体内表面进行注塑。所述注塑的条件可以为本领域常规使用的条件,根据本发明的一些实施例,所述注塑的条件包括:模温50-300℃,喷嘴温度200-450℃,保压时间1-50s,射出压力50-300MPa,射出时间1-30s,延迟时间1-30s,冷却时间1-60s。
根据本发明的实施例,通过所述注塑所得到的塑料支撑层可以不进入、部分进入或全部进入到所述狭缝中(也即所述塑料支撑层不填充所述狭缝,或者所述塑料支撑层填充所述狭缝的一部分,或者所述塑料支撑层填充满所述狭缝)。为进一步提高所述塑料支撑层与所述金属基体的结合力,根据本发明的一些实施例,注塑所得到的塑料支撑层全部进入到所述狭缝中(即所述塑料支撑层填充满所述狭缝)。
根据本发明的实施例,所述注塑时采用的材料可以为本领域常规使用的树脂,例如可选自聚乙烯、聚丙烯、聚缩醛、聚苯乙烯、改性聚苯醚、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇、聚苯硫醚、聚酰亚胺、聚酰胺酰亚胺、聚醚酰亚胺、聚砜、聚醚砜、聚醚酮、聚醚醚镁、聚碳酸酯、聚酰胺和丙烯腈-丁二烯-苯乙烯共聚物中的
一种或多种。
根据本发明的实施例,为了进一步提高得到的金属外壳的力学强度,根据本发明的一些实施例,所述注塑时采用的材料为树脂与玻璃纤维的混合物。根据本发明的一些实施例,上述混合物中,所述树脂选自聚对苯二甲酸乙二醇酯、聚苯硫醚、聚碳酸酯、聚酰胺中的一种;以所述树脂的重量为基准,所述玻璃纤维的含量为1-50重量%,根据本发明的一些实施例,所述玻璃纤维的含量为5-30重量%。
根据本发明的实施例,对于所述塑料支撑层的厚度,本领域技术人员根据产品设计的需要可以适当地进行选择,例如可以为0.1-2mm,根据本发明的一些实施例,所述塑料支撑层的厚度为0.1-1.2mm。
根据本发明的实施例,通过上述塑料支撑层对金属基体的支撑,能够防止在表面装饰工序中狭缝发生变形。
为了提高金属外壳的美观程度,根据本发明的一些实施例,在金属基体外表面形成装饰层。所述装饰层可以采用本领域的常规方法和条件进行,例如可以通过电泳、微弧氧化、阳极氧化、硬质阳极和喷涂中的一种或多种形成所述装饰层。
根据本发明的实施例,对于上述装饰层的厚度可在较大范围内变动,根据本发明的一些实施例,所述装饰层的厚度为5-60μm。装饰层可以为现有的各种电子产品外壳装饰层,例如可以为氧化铝层、环氧树脂涂层、丙烯酸树脂涂层中的一种。
根据本发明的实施例,可采用阳极氧化方法形成所述装饰层,所述阳极氧化条件可以本领域所公知的条件,例如可以为:以浓度为150-210g/L的硫酸作为槽液,电压为10-15V,电流密度为1-2A/dm2,温度为10-22℃,阳极氧化时间为20-60min,封孔槽液(成分例如为NiSO4水溶液)浓度为1-10g/L,封孔温度为50-95℃,封孔时间为10-50min。通过上述阳极氧化方法形成的装饰层厚度通常为10-30μm。
根据本发明的实施例,在将所述金属基体进行阳氧化形成装饰层之前,可以先对所述金属基体进行前处理。所述前处理与上述通过阳极氧化得到表面含有阳极氧化膜层的金属基体步骤中的前处理相同,在此不再赘述。
根据本发明的实施例,也可通过微弧氧化方法形成所述装饰层,所述微弧氧化条件可以本领域所公知的条件,例如可以为:pH为6-12,电压为0-800V,电流密度为1-10A/dm2,温度为15-60℃,时间为10-60min,封孔槽液为水,封孔温度为70-90℃,封孔时间为1-10min。通过上述微弧氧化方法形成的装饰层厚度通常为10-50μm。
根据本发明的实施例,也可通过电泳形成所述装饰层,所述电泳条件可以本领域所公知的条件,例如可以为:阴极电泳:电压为20-60V,pH为4-6,温度为15-30℃,时间为
20-60s;阳极电泳:电压为40-100V,pH为6-8,温度为15-30℃,时间为40-90s;烘烤温度为120-200℃,烘烤时间为30-60min。通过上述电泳方法形成的装饰层厚度通常为5-35μm。
根据本发明的实施例,也可通过喷涂形成所述装饰层,所述喷涂条件可以本领域所公知的条件,例如可以为:静电高压:60-90kV;静电电流:10-20μA;流速压力:0.3-0.55Mpa;雾化压力:0.33-0.45Mpa;输送速度:4.5-5.5m/min;固化温度:150-220℃;固化时间:2-120min。
以下将通过实施例对本发明进行详细描述,但本发明并不仅限于下述实施例。
实施例1
1)形成狭缝
将铝合金(购于东莞市港祥金属材料有限公司公司,牌号为6063,厚度为0.8mm)切割为15mm×80mm的尺寸作为金属基体。采用激光打孔机(华工激光生产的型号为LSF20激光打孔机)在金属基体上进行狭缝加工(其中,狭缝为9条,形状为直线形),所述狭缝宽度为50μm,狭缝长度为10mm,相邻狭缝间距为0.6mm。激光加工功率为20W,速度为50mm/s,频率为20kHz,波长为1064nm,得到开设有狭缝的金属基体A11。
2)阳极氧化
前处理:对金属基体A11进行除油清洗,然后将其在60℃氢氧化钠含量为40g/L的溶液中碱蚀处理10s,清水洗净后放入HNO3含量约为6wt%的中和槽中中和30s,后用清水洗净,得到经过前处理的金属基体A12;
阳极氧化:将上述金属基体A12作为阳极放入含有20wt%左右浓度的H2SO4阳极氧化槽中,于15V电压、18℃下电解5min,80℃烘20min,得到阳极氧化后的金属基体A13。
3)粗化处理
在烧杯中配制5wt%的盐酸和10wt%的氯化钠混合溶液500ml,放入25℃恒温槽中升温至25℃,将上述所得金属基体A13浸入其中,2min后将其取出,放入装有水的烧杯中浸泡2min,以一次刻蚀液浸泡加一次水浸泡为一个循环,如此循环5次,最后一次水浸泡后,将铝合金片放入80℃烘箱中烘干,得到金属基体A14。
采用金相显微镜观察经过粗化处理的金属基体A14的截面,测得铝合金片表面制得6.5-7.5μm厚的疏松层,80-100nm厚的阻挡层和20nm-35μm的腐蚀层。
采用SEM场发射扫描电子显微镜测得疏松层中疏松层微孔的孔径为15-800nm;通过观察截面得阻挡层中阻挡层微孔的孔径为15-600nm;腐蚀层中铝合金腐蚀孔的孔径为40nm-80μm。也可以观察到处理后的铝合金表面存在三层立体孔结构,疏松层微孔、阻挡
层微孔及铝合金腐蚀孔相互连通。
4)注塑
将上述金属基体A14放入模具中,采用有20重量%的玻璃纤维的聚苯硫醚树脂(PPS)在金属基体内表面进行注塑(注塑条件为:模温90℃,喷嘴温度280℃,保压时间30s,射出压力140MPa,射出时间5s,延迟时间5s,冷却时间15s),形成塑料层(厚度为1mm),从而得到结合有塑料层的金属基体A15,其中,塑料层填充满狭缝。
5)采用阳极氧化方法形成表面装饰层
前处理:对金属基体A15进行除油清洗,然后将其在60℃氢氧化钠含量为40g/L的溶液中碱蚀处理10s,清水洗净后放入HNO3含量约为6wt%的中和槽中中和30s,后用清水洗净,得到经过前处理的金属基体A15;
阳极氧化:将上述经过前处理的金属基体A15浸入盛有浓度为180g/L的H2SO4水溶液的电解槽中,以金属基体A15作为阳极,不锈钢板作为阴极,在电压为15V,电流密度为1A/dm2、温度为19℃的条件下阳极氧化40min,完成阳极氧化后取出并超声波清洗干净,避免狭缝内藏酸影响后续着色。此时,狭缝完全被装饰层填充覆盖,肉眼不可见。
将上述经过阳极氧化的金属基体A15浸入酸性染液(购自奥野制业工业株式会社,型号为TAC BLACK-SLH)中染色10min,该酸性染液浓度为5g/L,pH值为5.5,所述染液的温度为50℃,完成后取出并清洗干净。
然后在封孔剂(NiSO4水溶液,浓度为10g/L)中浸渍20min,温度为95℃,完成封孔后用90℃的纯水清洗干净,并在60℃条件下烘烤15min。得到厚度为20μm的装饰层。最终得到具有表面平整装饰层的通讯设备金属外壳A16。
实施例2
1)形成狭缝
将铝合金(购于东莞市港祥金属材料有限公司公司,牌号为6063,厚度为0.8mm)切割为15mm×80mm的尺寸作为金属基体。采用激光打孔机(华工激光生产的型号为LSF20激光打孔机)在金属基体上进行狭缝加工(其中,狭缝为9条,形状为直线形),所述狭缝宽度为15μm,狭缝长度为10mm,相邻狭缝间距为1.6mm。激光加工功率为15W,速度为200mm/s,频率为30kHz,波长为1064nm,得到开设有狭缝的金属基体A21。
2)阳极氧化
前处理:对金属基体A21进行除油清洗,然后将其在60℃氢氧化钠含量为40g/L的溶液中碱蚀处理10s,清水洗净后放入HNO3含量约为6wt%的中和槽中中和30s,后用清水
洗净,得到经过前处理的金属基体A22;
阳极氧化:将上述金属基体A22作为阳极放入含有20wt%左右浓度的H2SO4阳极氧化槽中,于15V电压、18℃下电解5min,80℃烘20min,得到阳极氧化后的金属基体A23。
3)粗化处理
在烧杯中配制5wt%的盐酸和10wt%的氯化钠混合溶液500ml,放入25℃恒温槽中升温至25℃,将上述所得金属基体A23浸入其中,10min后将其取出,再放入装有水的烧杯中浸泡2min后,将铝合金放入80℃烘箱中烘干,得到金属基体A24。采用与实施例1相同的方法测得经过电解后的铝合金片表面制得6-7μm厚的疏松层,85-100nm厚的阻挡层和20nm-40μm的腐蚀层。疏松层中疏松层微孔的孔径为15nm-1μm;阻挡层中阻挡层微孔的孔径为16-800nm;腐蚀层中铝合金腐蚀孔的孔径为40nm-90μm。也可以观察到处理后的铝合金表面存在三层立体孔结构,疏松层微孔、阻挡层微孔及铝合金腐蚀孔相互连通。
4)注塑
将上述金属基体A24放入模具中,采用有20重量%的玻璃纤维的聚苯硫醚树脂在金属基体内表面进行注塑(注塑条件为:模温110℃,喷嘴温度260℃,保压时间30s,射出压力120MPa,射出时间10s,延迟时间10s,冷却时间10s),形成塑料层(厚度为0.8mm),从而得到结合有塑料层的金属基体A25,其中,塑料层填充满狭缝。
5)采用与实施例1步骤5)相同的方法得到20μm的装饰层,最终得到具有表面平整装饰层的通讯设备金属外壳A26。
实施例3
1)形成狭缝
将铝合金(购于东莞市港祥金属材料有限公司公司,牌号为6063,厚度为1mm)切割为15mm×80mm的尺寸作为金属基体。采用激光打孔机(华工激光生产的型号为LSF20激光打孔机)在金属基体上进行狭缝加工(其中,狭缝为9条,形状为直线形),所述狭缝宽度为30μm,狭缝长度为10mm,相邻狭缝间距为0.3mm。激光加工功率为18W,速度为50mm/s,频率为20kHz,波长为1064nm,得到开设有狭缝的金属基体A31。
2)阳极氧化
前处理:对金属基体A31进行除油清洗,然后将其在60℃氢氧化钠含量为40g/L的溶液中碱蚀处理10s,清水洗净后放入HNO3含量约为6wt%的中和槽中中和30s,后用清水洗净,得到经过前处理的金属基体A32;
阳极氧化:将上述金属基体A32作为阳极放入含有20wt%左右浓度的H2SO4阳极氧化
槽中,于15V电压、18℃下电解5min,80℃烘20min,得到阳极氧化后的金属基体A33。
3)粗化处理
在烧杯中配制10wt%的H3PO4溶液500ml,放入25℃恒温槽中升温至25℃,将上述所得金属基体A33浸入其中,2min后将其取出,放入装有水的烧杯中浸泡2min,以一次刻蚀液泡加一次水泡为一个循环,如此循环2次,最后一次水浸泡后,将铝合金片放入80℃烘箱中烘干,得到金属基体A34。采用与实施例1相同的方法测得经过电解后的铝合金片表面制得6-6.5μm厚的疏松层,80-110nm厚的阻挡层和20nm-40μm的腐蚀层。疏松层中疏松层微孔的孔径为20nm-1μm左右;阻挡层中阻挡层微孔的孔径为18-800nm左右;腐蚀层中铝合金腐蚀孔的孔径为50nm-120μm左右。也可以观察到处理后的铝合金表面存在三层立体孔结构,疏松层微孔、阻挡层微孔及铝合金腐蚀孔相互连通。
4)注塑
将上述金属基体A34放入模具中,采用有20重量%的玻璃纤维的聚苯硫醚树脂在金属基体内表面进行注塑(注塑条件为:模温130℃,喷嘴温度280℃,保压时间40s,射出压力200MPa,射出时间5s,延迟时间5s,冷却时间15s),形成塑料层(厚度为1.2mm),从而得到结合有塑料层的金属基体A35,其中,塑料层填充满狭缝。
5)采用与实施例1步骤5)相同的方法得到20μm的装饰层,最终得到具有表面平整装饰层的通讯设备金属外壳A36。
实施例4
采用与实施例1相同的方法制备通讯设备金属外壳,不同的是粗化处理为在烧杯中配制10wt%的盐酸500ml,放入25℃恒温槽中升温至25℃,将前述所得铝合金片10PCS浸入其中,2min后将其取出,放入装有水的烧杯中浸泡2min,以一次刻蚀液泡加一次水泡为一个循环,如此循环5次,最后一次水浸泡后,将铝合金片放入80℃烘箱中烘干,得到金属基体A44。采用与实施例1相同的方法测得经过电解后的铝合金片表面制得6-7μm厚的疏松层,80-100nm厚的阻挡层和100nm-30μm的腐蚀层。疏松层中疏松层微孔的孔径为15nm-30μm;阻挡层中阻挡层微孔的孔径为20-800nm;腐蚀层中铝合金腐蚀孔的孔径为60nm-100μm。也可以观察到处理后的铝合金表面存在三层立体孔结构,疏松层微孔、阻挡层微孔及铝合金腐蚀孔相互连通。另外,注塑得到的塑料层填充满狭缝,且最终得到具有表面平整装饰层的通讯设备金属外壳A46。
实施例5
采用与实施例1相同的方法制备通讯设备金属外壳,不同的是粗化处理中每次刻蚀液泡的时间为3min,得到金属基体A54。采用与实施例1相同的方法测得经过电解后的铝合金片表面制得5-6μm厚的疏松层,80-100nm厚的阻挡层和80nm-50μm的腐蚀层。疏松层中疏松层微孔的孔径为20nm-65μm;阻挡层中阻挡层微孔的孔径为25nm-2μm;腐蚀层中铝合金腐蚀孔的孔径为50nm-300μm。也可以观察到处理后的铝合金表面存在三层立体孔结构,疏松层微孔、阻挡层微孔及铝合金腐蚀孔相互连通。另外,注塑得到的塑料层填充满狭缝,且最终得到具有表面平整装饰层的通讯设备金属外壳A56。
实施例6
采用与实施例1相同的方法制备通讯设备金属外壳,不同的是粗化处理中刻蚀液为15wt%的盐酸,得到金属基体A64。采用与实施例1相同的方法测得经过电解后的铝合金片表面制得4.5-5.5μm厚的疏松层,80-100nm厚的阻挡层和100nm-60μm的腐蚀层。疏松层中疏松层微孔的孔径为20nm-70μm;阻挡层中阻挡层微孔的孔径为30nm-3μm;腐蚀层中铝合金腐蚀孔的孔径为50nm-400μm。也可以观察到处理后的铝合金表面存在三层立体孔结构,疏松层微孔、阻挡层微孔及铝合金腐蚀孔相互连通。另外,注塑得到的塑料层填充满狭缝,且最终得到具有表面平整装饰层的通讯设备金属外壳A66。
对比例1
按照实施例1的方法进行,不同的是未进行阳极氧化和粗化处理步骤,得到结合有塑料层的金属基体D14,由于注塑后脱落,而没有进行表面修饰。
对比例2
按照实施例1的方法进行,不同的是未进行阳极氧化步骤,得到结合有塑料层的金属基体D24,进而通过阳极氧化方法形成表面装饰层,得到通讯设备金属外壳D25,其装饰层表面平整,不过由于树脂与金属结合力较差,表面装饰过程中造成藏酸,导致表面装饰层异色。
对比例3
按照实施例1的方法进行,不同的是未进行粗化处理步骤,得到结合有塑料层的金属基体D34,进而通过阳极氧化方法形成表面装饰层,得到通讯设备金属外壳D35,其装饰层表面平整,不过由于结合力较差,表面装饰过程中造成藏酸,导致表面装饰层异色。
测试例1
将按照实施例1-6以及对比例2-3相同的方法得到金属基体(A14、A24、A34、A44、A54、A64、D24和D34)静置24h后,将其固定于万能材料试验机中按照GBT 228.1-2010金属材料拉伸试验的方法进行产品拉伸测试,测试结果中平均剪切力视为铝合金与树脂之间的结合力的大小。测试结果如表1所示:
表1
样品 | 结合力(MPa) |
A14 | 15.48 |
A24 | 16.09 |
A34 | 16.38 |
A44 | 13.47 |
A54 | 12.64 |
A64 | 12.08 |
D24 | 6.25 |
D34 | 3.07 |
通过上述实施例、对比例和表1可知,通过本发明的方法,能够显著提供塑料支撑层与金属基体的结合力,提高金属外壳的强度;另外,注塑得到的塑料支撑层能够对金属基体提供支撑,防止在表面装饰过程中,金属基体发生变形,由此能够在表面装饰工艺后,能够保证金属外壳外观上的平整一致性,形成外观一体化的效果。
以上详细描述了本发明的一些实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
Claims (30)
- 一种通讯设备金属外壳,其特征在于,所述通讯设备金属外壳包括:金属基体,所述金属基体上设置有至少一条狭缝;阳极氧化膜层,所述阳极氧化膜层至少位于所述金属基体的内表面;塑料支撑层,所述塑料支撑层形成于所述阳极氧化膜层上;其中,所述阳极氧化膜层包括:阻挡层,所述阻挡层与所述金属基体接触,且所述阻挡层中含有阻挡层微孔,所述阻挡层微孔的孔径为10nm-800μm;疏松层,所述疏松层位于所述阻挡层外表面,且所述疏松层中含有疏松层微孔,所述疏松层微孔的孔径为10nm-800μm。
- 根据权利要求1所述的通讯设备金属外壳,其特征在于,所述疏松层微孔和所述阻挡层微孔的孔径各自独立地为10nm-500μm。
- 根据权利要求2所述的通讯设备金属外壳,其特征在于,所述疏松层微孔的孔径为10nm-100μm,所述阻挡层微孔的孔径为10nm-200μm。
- 根据权利要求1-3中任一项所述的通讯设备金属外壳,其特征在于,所述疏松层的厚度为100nm-100μm,所述阻挡层的厚度为50nm-5μm。
- 根据权利要求1-4中任一项所述的通讯设备金属外壳,其特征在于,所述疏松层微孔及阻挡层微孔相互连通。
- 根据权利要求1-5中任一项所述的通讯设备金属外壳,其特征在于,所述塑料支撑层填充所述阳极氧化膜层上的疏松层微孔和阻挡层微孔并与所述金属基体结合。
- 根据权利要求1-6中任意一项所述的通讯设备金属外壳,其特征在于,所述金属基体进一步包括:腐蚀层,所述腐蚀层与所述阻挡层接触,所述腐蚀层中含有金属腐蚀孔。
- 根据权利要求7所述的通讯设备金属外壳,其特征在于,所述金属腐蚀孔的孔径为10nm-1mm。
- 根据权利要求7或8所述的通讯设备金属外壳,其特征在于,所述金属腐蚀孔的孔径为10nm-800μm。
- 根据权利要求7-9中任一项所述的通讯设备金属外壳,其特征在于,所述金属腐蚀孔的孔径为10nm-600μm。
- 根据权利要求7-10中任一项所述的通讯设备金属外壳,其特征在于,所述腐蚀层的厚度为10nm-200μm。
- 根据权利要求7-11中任一项所述的通讯设备金属外壳,其特征在于,所述疏松层微孔、阻挡层微孔及金属腐蚀孔相互连通。
- 根据权利要求7-12中任一项所述的通讯设备金属外壳,其特征在于,所述塑料支撑层填充所述阳极氧化膜层上的疏松层微孔、阻挡层微孔以及所述腐蚀层上的金属腐蚀孔并与所述金属基体结合。
- 根据权利要求1-13中任一项所述的通讯设备金属外壳,其特征在于,所述狭缝宽度为15-500μm,狭缝长度为0.1-500mm,相邻两条狭缝之间的间距为0.1-10mm。
- 根据权利要求1-14中任一项所述的通讯设备金属外壳,其特征在于,所述塑料支撑层至少填充所述狭缝的一部分。
- 根据权利要求1-15中任一项所述的通讯设备金属外壳,其特征在于,所述金属基体为铝合金基材或铝基材。
- 根据权利要求1-16中任一项所述的通讯设备金属外壳,其特征在于,进一步包括:装饰层,所述装饰层形成于所述金属基体外表面上。
- 一种通讯设备金属外壳的制备方法,其特征在于,包括:1)提供金属基体,所述金属基体上开设有至少一条狭缝;2)对所述金属基体进行阳极氧化,得到至少内表面形成有阳极氧化膜层的金属基体;3)对所述形成有阳极氧化膜层的金属基体进行粗化处理,所述粗化处理包括:将所述形成阳极氧化膜层的金属基体浸入刻蚀液中进行刻蚀处理,其中,所述刻蚀液中H+浓度为0.55-5.5mol/L,且所述蚀刻液中含有氯离子和磷酸根离子中的至少一种;4)在经过所述粗化处理后的金属基体内表面注塑树脂,形成塑料支撑层。
- 根据权利要求18所述的方法,其特征在于,所述狭缝宽度为15-500μm,所述狭缝长度为0.1-500mm,相邻两条所述狭缝之间的间距为0.1-10mm。
- 根据权利要求18或19所述的方法,其特征在于,步骤1)中,通过在所述金属基体上进行切割,形成所述狭缝;所述切割方法选自激光切割、电子束切割、水切割或线切割中的一种。
- 根据权利要求18-20中任一项所述的方法,其特征在于,所述阳极氧化包括:将所述金属基体作为阳极放入浓度为10-30wt%的硫酸溶液中,在10-30℃的温度下于10V-100V电压下电解1-40min。
- 根据权利要求18-21中任一项所述的方法,其特征在于,所述阳极氧化膜层的厚度为500nm-20μm。
- 根据权利要求18-22中任一项所述的方法,其特征在于,步骤3)中,所述刻蚀处理的温度为18-35℃。
- 根据权利要求18-23中任一项所述的方法,其特征在于,步骤3)中,所述刻蚀处理的时间为1-60min。
- 根据权利要求18-24中任一项所述的方法,其特征在于,步骤3)中,将所述形成有阳极氧化膜层的金属基体浸入刻蚀液中的次数为2-10次,每次浸入刻蚀液中的时间为2-10min,每次浸入刻蚀液中后用水洗净。
- 根据权利要求18-25中任一项所述的方法,其特征在于,步骤4)中,所述注塑的 条件包括:模温50-300℃,喷嘴温度200-450℃,保压时间1-50s,射出压力50-300MPa,射出时间1-30s,延迟时间1-30s,冷却时间1-60s。
- 根据权利要求18-26中任一项所述的方法,其特征在于,所述金属基体为铝合金基材或铝基材。
- 根据权利要求18-27中任一项所述的方法,其特征在于,进一步包括:在注塑后的金属基体的外表面上形成装饰层。
- 根据权利要求28所述的方法,其特征在于所述装饰层通过电泳、微弧氧化、阳极氧化、硬质阳极和喷涂中的一种或多种形成。
- 一种通讯设备金属外壳,其特征在于,是通过权利要求18-29中任一项所述的方法制备得到的。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410835901.2 | 2014-12-26 | ||
CN201410835901.2A CN105530789A (zh) | 2014-12-26 | 2014-12-26 | 一种通讯设备金属外壳及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016101877A1 true WO2016101877A1 (zh) | 2016-06-30 |
Family
ID=55772673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/098301 WO2016101877A1 (zh) | 2014-12-26 | 2015-12-22 | 通讯设备金属外壳及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105530789A (zh) |
WO (1) | WO2016101877A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021141575A1 (en) * | 2020-01-07 | 2021-07-15 | Hewlett-Packard Development Company, L.P. | Covers for electronic devices |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108265323B (zh) * | 2016-12-30 | 2019-11-05 | 比亚迪股份有限公司 | 铝合金壳体及其制备方法和个人电子设备 |
CN108265322B (zh) * | 2016-12-30 | 2019-10-08 | 比亚迪股份有限公司 | 铝合金壳体及其制备方法和个人电子设备 |
CN108265321B (zh) * | 2016-12-30 | 2019-11-08 | 比亚迪股份有限公司 | 铝合金壳体及其制备方法和个人电子设备 |
WO2019024655A1 (zh) * | 2017-07-31 | 2019-02-07 | Oppo广东移动通信有限公司 | 电子设备、手机及其终端壳体 |
CN111619171B (zh) * | 2020-05-28 | 2022-07-05 | 富联裕展科技(深圳)有限公司 | 金属制品及其制备方法和金属复合体及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060055084A1 (en) * | 2002-12-16 | 2006-03-16 | Corona International Corporation | Composite of aluminium material and synthetic resin molding and process for producing the same |
CN101578019A (zh) * | 2008-05-09 | 2009-11-11 | 富准精密工业(深圳)有限公司 | 电子装置壳体及其制造方法 |
CN101670647A (zh) * | 2008-09-10 | 2010-03-17 | 晟铭电子科技股份有限公司 | 热塑性或热固性物质嵌入金属材的方法 |
CN102448262A (zh) * | 2010-10-09 | 2012-05-09 | 广达电脑股份有限公司 | 电子装置机壳结构及其制造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8975540B2 (en) * | 2011-12-19 | 2015-03-10 | Htc Corporation | Electronic deviceswith support frames and mechanically-bonded plastic and methods for forming such electronic devices |
CN104780241B (zh) * | 2012-02-24 | 2018-06-26 | 比亚迪股份有限公司 | 一种手机壳体 |
CN103448201B (zh) * | 2012-05-28 | 2016-03-30 | 比亚迪股份有限公司 | 一种金属树脂复合体的制备方法及其制备的金属树脂复合体 |
CN103451701B (zh) * | 2012-05-28 | 2015-08-26 | 比亚迪股份有限公司 | 一种表面处理的金属及其表面处理的方法和金属树脂复合体及其制备方法 |
CN202738321U (zh) * | 2012-08-18 | 2013-02-13 | 佛山市臻至五金制品有限公司 | 一种手机、计算机类电子产品的钣金外壳 |
-
2014
- 2014-12-26 CN CN201410835901.2A patent/CN105530789A/zh active Pending
-
2015
- 2015-12-22 WO PCT/CN2015/098301 patent/WO2016101877A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060055084A1 (en) * | 2002-12-16 | 2006-03-16 | Corona International Corporation | Composite of aluminium material and synthetic resin molding and process for producing the same |
CN101578019A (zh) * | 2008-05-09 | 2009-11-11 | 富准精密工业(深圳)有限公司 | 电子装置壳体及其制造方法 |
CN101670647A (zh) * | 2008-09-10 | 2010-03-17 | 晟铭电子科技股份有限公司 | 热塑性或热固性物质嵌入金属材的方法 |
CN102448262A (zh) * | 2010-10-09 | 2012-05-09 | 广达电脑股份有限公司 | 电子装置机壳结构及其制造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021141575A1 (en) * | 2020-01-07 | 2021-07-15 | Hewlett-Packard Development Company, L.P. | Covers for electronic devices |
TWI759918B (zh) * | 2020-01-07 | 2022-04-01 | 美商惠普發展公司有限責任合夥企業 | 用於電子裝置之殼蓋及其製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105530789A (zh) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016101877A1 (zh) | 通讯设备金属外壳及其制备方法 | |
WO2016101879A1 (zh) | 通讯设备金属外壳及其制备方法 | |
TWI655074B (zh) | 一種金屬樹脂複合體及其製備方法和用途 | |
CN109121331B (zh) | 通讯设备金属外壳及其制备方法 | |
KR101909889B1 (ko) | 안테나 그루브를 갖는 전자 제품 금속 쉘 및 그 제조방법 | |
WO2017166957A1 (zh) | 具有陶瓷面板的金属壳体及其制备方法和应用 | |
EP2817948B1 (en) | Shell, preparing method and application thereof in electronic product | |
WO2016101874A1 (zh) | 通讯设备金属外壳及其制备方法 | |
CN108570703B (zh) | 基于钨片表面纳米化的钨/铜层状复合材料制备方法 | |
US9819076B2 (en) | Intenna manufacturing method having capability to improve plating reliability | |
KR102148308B1 (ko) | 이종 접합형 수지 금속 복합재의 제조방법 | |
TW201323189A (zh) | 金屬與塑膠的複合體的製備方法及複合體 | |
KR20200043454A (ko) | 3d 유리-금속 복합체, 이의 제조방법 및 전자제품 | |
JP2014046599A (ja) | 金属・樹脂複合体製造用金属部材及びその製造方法 | |
KR20190087502A (ko) | 케이싱, 이의 제조방법 및 전자제품 | |
TWI475132B (zh) | 表面處理的金屬、金屬樹脂複合體及其製備方法 | |
CN113046806A (zh) | 钛合金的处理方法、钛合金与树脂结合体的制备方法及制品 | |
JP6352087B2 (ja) | 表面処理アルミニウム材及びその製造方法 | |
WO2016101873A1 (zh) | 通讯设备金属外壳 | |
CN112359358A (zh) | 纯铜及铜合金的表面ceo处理液、ceo处理工艺及其工艺应用 | |
JP2005060772A (ja) | フレキシブルプリント基板の製法およびそれに用いられる回路用基材 | |
CN111139508B (zh) | 化成液、化成方法及阳极箔 | |
KR100576385B1 (ko) | 압연동 적층판의 제조방법 | |
KR100777176B1 (ko) | 마그네슘을 주성분으로 하는 금속체의 표면 처리 방법 | |
JP5373477B2 (ja) | めっき処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15871945 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15871945 Country of ref document: EP Kind code of ref document: A1 |