WO2016101462A1 - 掩模板清洁装置及其掩模板清洁方法 - Google Patents

掩模板清洁装置及其掩模板清洁方法 Download PDF

Info

Publication number
WO2016101462A1
WO2016101462A1 PCT/CN2015/077368 CN2015077368W WO2016101462A1 WO 2016101462 A1 WO2016101462 A1 WO 2016101462A1 CN 2015077368 W CN2015077368 W CN 2015077368W WO 2016101462 A1 WO2016101462 A1 WO 2016101462A1
Authority
WO
WIPO (PCT)
Prior art keywords
dry ice
mask
ice particles
cleaning
particle group
Prior art date
Application number
PCT/CN2015/077368
Other languages
English (en)
French (fr)
Inventor
江元铭
张鹏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/904,221 priority Critical patent/US9636718B2/en
Publication of WO2016101462A1 publication Critical patent/WO2016101462A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0021Cleaning by methods not provided for in a single other subclass or a single group in this subclass by liquid gases or supercritical fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
    • B08B7/026Using sound waves
    • B08B7/028Using ultrasounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • B24C1/086Descaling; Removing coating films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks

Definitions

  • Embodiments of the present invention relate to a reticle cleaning apparatus and a reticle cleaning method thereof.
  • OLED organic light emitting diode
  • a vacuum film deposition process is often used in combination with a mask process to form a patterned film layer.
  • an organic electroluminescent material of red 11, green 12, and blue 13 is sequentially deposited on the surface of the substrate 10 by a side by side displacement using a mask 100.
  • the generated contaminants are adsorbed on the mask 100 and may cause clogging at the opening of the mask 100.
  • shifting process the occurrence of repetitive defects and unevenness in film formation unevenness is caused.
  • the commonly used mask cleaning methods include: wet chemical immersion, dry suction, dry physical adhesion, dry plasma ash cleaning, and the like.
  • the dry suction method utilizes a physical pumping method to remove contaminants adhering to the surface of the mask by using a gas flow; dry physical adhesion is a pollution by attaching a physical or chemical adhesive sheet to the surface of the mask. The object is removed by adhesion.
  • dry plasma ashing cleaning uses high-energy plasma to ash the surface of the mask.
  • This method can remove organic pollutants and fine dust, but it is difficult to remove large inorganic pollutants, but also in ash. It is easy to damage the surface of the mask during the process.
  • the wet chemical liquid immersion method is to immerse the pollutants on the surface of the mask plate with an organic chemical solution, but this method easily leaves the liquid medicine at the slit of the mask plate, causing corrosion to the mask plate and reducing the service life of the mask plate. It also requires manpower and material resources to perform regular maintenance and maintenance on the cleaning device immersed in the wet chemical solution. At the same time, the use of waste solutions during the process also causes environmental pollution.
  • Embodiments of the present invention provide a reticle cleaning apparatus and a reticle cleaning method thereof, which are capable of removing contaminants on a reticle without increasing a contaminated medium and damaging the surface of the reticle.
  • an embodiment of the present invention provides a mask cleaning method comprising: placing the mask on a stage; and drying the ice particles comprising a plurality of dry ice particles at a cleaning time of 340 m/s ⁇ A velocity of 1000 m/s is sprayed toward the surface of the mask, wherein the plurality of dry ice particles strike the surface of the mask to remove contaminants on the surface of the mask.
  • embodiments of the present invention provide a mask cleaning apparatus including: a chamber configured to accommodate the mask; and a dry ice blasting apparatus configured to face the reticle at 340 m/s to 1000 m/ The velocity of s ejects a population of dry ice particles comprising a plurality of dry ice particles that impinge on the surface of the mask to remove contaminants on the surface of the mask.
  • FIG. 1 is a schematic view showing a manufacturing process of fabricating an OLED in the prior art
  • FIG. 2 is a schematic diagram of a mask cleaning process according to an embodiment of the present invention.
  • 3a-3c are schematic diagrams showing a partial structure of a portion of a reticle cleaning process according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a mask cleaning apparatus according to an embodiment of the present invention.
  • the embodiment of the present invention provides a mask cleaning method, as shown in FIG. 2, which may include:
  • the dry ice particle group (mainly including the high density dry ice particles 101) is The ejection speed of 340 m/s to 1000 m/s is ejected toward the surface of the mask sheet 100, and the dry ice particles 101 in the dry ice particle group collide with the surface of the mask sheet 100 to remove contaminants on the surface of the mask sheet, where the above-described ejection Speeds include end values of 340 m/s and 1000 m/s.
  • the spray speed of the dry ice particles 101 is less than 340 m/s, since the impact force is too small, the force of hitting the pollutants 102 is weak, and after the cracks of the pollutants 102, the dry ice particles 101 that may just enter the cracks are sublimated. The gas cannot exert a force on the crack to enlarge it, thereby causing the contaminant 102 to be removed.
  • the speed is more than 1000 m/s, although the impact force on the contaminant 102 is increased, the mask 100 is also damaged at the same time.
  • the above-mentioned pollutants can be effectively carried out. Remove.
  • the first, exemplary cleaning process may be as shown in FIG. 3a (a partial view at A in FIG. 2), under the continuous impact of the high speed (speed close to the speed of sound 340 m/s) of the dry ice particles 101, The surface temperature of the contaminant 102 attached to the mask 100 drops sharply, and cracks appear on the surface embrittlement.
  • FIG. 3b a portion of the dry ice particles 101 subsequently striking the mask enters the crack, expanding the crack, reducing the adhesion of the contaminant 102; another portion of the dry ice particles 101 to the contaminant as shown in FIG. 3c
  • the surface of 102 is further impacted such that the contaminants 102 in which the cracks are present eventually fall off the surface of the reticle 100, ultimately achieving the effect of cleaning the reticle 100.
  • a person skilled in the art can set the cleaning time T and the size of the dry ice particles 101 according to the type of contaminant attached to the surface of the mask 100. For example, when the contaminant attached to the mask 100 is a minute contaminant, the size of the dry ice particles 101 can be reduced and the cleaning time T can be reduced. When the volume of the contaminant 102 is large and the viscosity is large, the volume of the dry ice particles 101 can be increased, and the cleaning time T can be increased.
  • the dry ice particles 101 may have a particle diameter of from 1 ⁇ m to 100 ⁇ m.
  • the particle size of the dry ice particles 101 is less than 1 ⁇ m, the strength of the impact of the contaminants 102 is weak, and the effect of removing contaminants is not satisfactory.
  • the particle diameter of the dry ice particles 101 is larger than 100 ⁇ m, although the impact strength against the contaminants 102 is increased, the effect of removing contaminants at the slits is not satisfactory.
  • Embodiments of the present invention provide a method for cleaning a mask, comprising: placing a dry ice particle group at a speed of 340 m/s to 1000 m/s in a cleaning time T after the mask is placed on a bearing surface of the stage.
  • the surface of the mask is sprayed, and the dry ice particles in the dry ice particle group are applied to the mask
  • the surface is impacted.
  • the impact force does not cause damage to the surface of the mask, and the surface temperature of the contaminant attached to the mask plate drops sharply, and the surface is embrittled. And cracks appear.
  • the mask since the dry ice particles are not corrosive, the mask is not corroded, and the dry ice particles after the impact are rapidly sublimated to carbon dioxide, so that no contaminating medium is generated. Therefore, the cleaning effect of the mask can be improved, the production cost can be reduced, and industrial pollution can be reduced without increasing the contaminated medium and damaging the surface of the mask.
  • the mask 100 is placed on the stage 20 in the chamber 01.
  • the stage 20 for placing the mask 100 is moved by the transport device 201 to move the mask 100 to a preset cleaning position.
  • the conveyor 201 can be a conveyor belt that is moved to a predetermined cleaning position as it rotates in the direction of the arrow.
  • the preset cleaning position may be set according to different cleaning methods, which is not limited by the embodiment of the present invention.
  • the preset cleaning position can be placed at the center of the chamber 01.
  • the conveying device 201 moves the center position of the mask 100 to the preset cleaning position (the center position of the chamber 01)
  • the movement is stopped.
  • the mask 100 is initially cleaned with dry ice particles 101 until the cleaning time T ends.
  • the transfer device 201 then moves the mask 100 out of the chamber 01.
  • the above method is simple to operate and easy to implement.
  • the preset cleaning position may also be set to the position of the corresponding head 202.
  • the conveying device 201 can adopt a mode of variable speed transmission. First, the mask plate 100 is first moved into the chamber 01 to the predetermined cleaning position at a relatively high speed. Then, moving forward at a slower speed during the cleaning process, the dry ice particles 101 begin to clean the mask 100 until the cleaning is finished. Thus, the respective positions of the surface to be cleaned of the mask 100 pass through the above-mentioned preset cleaning position, and are cleaned by the dry ice particles 101 ejected from the head 202. When the cleaning process is over, pass The delivery device 201 in turn moves the mask 100 out of the chamber 01 at a relatively fast rate.
  • the cleaning method using the above-described shift transmission although the manipulation is relatively complicated, can save the time of the cleaning process, and is sprayed from the head 202 since the respective positions of the surface to be cleaned of the mask 100 pass through the above-mentioned preset cleaning position.
  • the dry ice granules 101 are cleaned, so that the cleaning effect can be improved.
  • the gas having a pressure of 1.97 ⁇ 10 ⁇ 3 PA to 9.7 ⁇ 10 5 PA is used.
  • the dry ice particle group is applied so that the dry ice particle group ejected from the head 202 can be ejected toward the surface of the mask 100 at a speed of 340 m/s to 1000 m/s. Further, the dry ice particles 101 in the dry ice particle group clean the contaminants 102 on the surface of the mask 100.
  • the above gas having a pressure of 1.97 ⁇ 10 -3 PA to 9.7 ⁇ 10 5 PA can be prepared by the pressure member 212. It should be noted that the above gas may select a gas that does not affect the physical and chemical properties of the dry ice particle group, the mask 100, and the cleaning device, for example, air, an inert gas, or the like.
  • the feed rate of the dry ice particle group ejected from the head 202 can be set. 6.18 ⁇ 10 -9 kg / min ⁇ 0.6kg / min. In this way, it is possible to increase the contact probability of the dry ice particles 101 with the contaminants 102 while providing the dry ice particles 101 sufficient to cover the entire mask 100 during the cleaning time T, thereby improving the cleaning efficiency.
  • air may be input through an air inlet 203 provided in the chamber 01 (eg, the top).
  • air inlet 203 provided in the chamber 01 (eg, the top).
  • ultrasonic waves having a frequency of 1 K to 100 KHz are supplied to the mask sheet 100. Since the ultrasonic waves can cause the surface of the mask 100 to be cleaned to vibrate, the contaminants 102 falling off the surface of the mask 100 are prevented from falling again on the surface of the mask 100.
  • the frequency of the ultrasonic waves is less than 1 KHz, since the energy of the ultrasonic waves is small, the surface of the mask plate 100 cannot be shaken.
  • the frequency of the ultrasonic waves is larger than 100 KHz, since the input ultrasonic waves have too much energy, the surface of the mask 100 is excessively shaken, which may cause deformation of the mask 100.
  • ultrasonic waves can be delivered to the mask panel 100 by the ultrasonic generation source 09.
  • the contaminants 102 off the surface of the mask 100 and converted by the dry ice particles 101 Carbon dioxide is collected.
  • collection can be performed through an air outlet 204 disposed at the top of the chamber 01. In this way, the contaminant 102 in the free state in the chamber 01 is cleaned to prevent it from falling again onto the surface of the cleaned mask 100, resulting in a reduction in the cleaning effect.
  • step S104 to step S106 can be performed simultaneously with step S103.
  • the air transported through the air inlet 203 can be transmitted to the mask 100 through the ultrasonic generating source 09 to be separated from the surface of the mask 100.
  • the contaminant 102 is carried away from the surface of the mask 100 to prevent it from falling again onto the surface of the cleaned mask 100.
  • the contaminants 102 in the free state in the chamber 01 and the carbon dioxide converted by the dry ice particles 101 are collected through the air outlet 204.
  • the chamber 01 is prevented from being contaminated by the contaminants 102 in a free state, and the cleaning effect of the mask 100 is lowered.
  • the number of maintenance of the chamber 01 can be reduced, so that the cost can be reduced.
  • the embodiment of the present invention provides a mask cleaning device, as shown in FIG. 4, which may include a chamber 01 and a dry ice blasting device 02.
  • the chamber 01 is used to house the mask 100.
  • the dry ice blasting apparatus 02 is configured to eject a dry ice particle group toward the reticle 100 at a speed of 340 m/s to 1000 m/s, and dry ice particles 101 in the dry ice particle group perform a surface of the reticle 100 Impact.
  • the dry ice blasting apparatus 02 is connected to the top 202 of the chamber 01 for supplying the dry ice particle group in the dry ice blasting apparatus 02 to the chamber 01 at an injection speed of 340 m/s to 1000 m/s during the cleaning time T, The dry ice particles 101 in the dry ice particle group hit the surface of the mask 100.
  • the above injection speed includes end values of 340 m/s and 1000 m/s.
  • the impact force of the pollutant 102 is weak due to the impact force being too small. After the crack of the pollutant 102 occurs, the dry ice particle 101 which may just enter the crack will sublime into a gas, and cannot Apply a force to the crack to enlarge it. As a result, the contaminant 102 cannot be removed.
  • the ejection speed is more than 1000 m/s, although the impact force against the contaminants 102 is increased, the mask 100 is also damaged at the same time.
  • those skilled in the art can set the cleaning time T and the size of the dry ice particles 101 according to the type of contaminants attached to the surface of the mask 100.
  • the contaminant attached to the mask 100 is a minute contaminant
  • the size of the dry ice particles 101 can be reduced and the cleaning time T can be reduced.
  • the volume of the contaminant 102 is large and the viscosity is large, the volume of the contaminant can be increased, and the cleaning time T can be increased.
  • the dry ice particles 101 may have a particle diameter of from 1 ⁇ m to 100 ⁇ m.
  • the particle size of the dry ice particles 101 is less than 1 ⁇ m, the strength of the impact of the contaminants 102 is weak, and the effect of removing contaminants is not satisfactory.
  • the particle diameter of the dry ice particles 101 is larger than 100 ⁇ m, although the impact strength against the contaminants 102 is increased, the effect of removing contaminants at the slits is not satisfactory.
  • the feed rate of the dry ice blasting apparatus 02 to the dry sheet particle group supplied to the mask sheet 100 is 6.18 ⁇ 10 -9 kg / min to 0.6 kg / min. In this way, it is possible to increase the contact probability of the dry ice particles 101 with the contaminants 102 while providing the dry ice particles 101 sufficient to cover the entire mask 100 during the cleaning time T, thereby improving the cleaning efficiency.
  • the above dry ice blasting apparatus 02 may include a dry ice conveying passage 211, a spray head 202, and a pressure member 212.
  • the dry ice conveying passage 211 is for accommodating the dry ice particle group; wherein, in the case where the dry ice particle 101 has a particle diameter of 1 ⁇ m to 100 ⁇ m, the dry ice conveying passage 211 has a diameter of 1 mm to 3 mm.
  • the head of the head 202 is located in the chamber 01, and the connecting portion of the head 202 is connected to the dry ice conveying passage 211;
  • the pressure member 212 is configured to supply a gas having a pressure of 1.97 ⁇ 10 ⁇ 3 PA to 9.7 ⁇ 10 5 PA to the dry ice conveying passage 211, and the density of the dry ice particles 101 is 1.4 g/cm 3 to 1.6 g/cm.
  • the dry ice particle group of 3 is such that the dry ice particles 101 can strike the surface of the mask 100 at a speed of 340 m/s to 1000 m/s, and the mask 100 is cleaned.
  • Embodiments of the present invention provide a reticle cleaning apparatus that can include a chamber for accommodating a reticle and a dry ice blasting apparatus.
  • the dry ice blasting apparatus is for ejecting a dry ice particle group toward the reticle at a speed of 340 m/s to 1000 m/s, and dry ice particles in the dry ice particle group hit a surface of the reticle.
  • the impact force does not cause damage to the surface of the mask, and the surface temperature of the contaminant attached to the mask plate drops sharply, making the surface fragile Cracks appeared.
  • the mask since the dry ice particles are not corrosive, the mask is not corroded, and the dry ice particles after the impact are rapidly sublimated to carbon dioxide, so that no contaminating medium is generated. Therefore, the cleaning effect of the mask can be improved, the production cost can be reduced, and industrial pollution can be reduced without increasing the contaminated medium and damaging the surface of the mask.
  • the mask cleaning device may further include a blowing member 04 and an ultrasonic generation source 09.
  • the blowing member 04 is connected to the air inlet 203 of the chamber 01 (for example, the top), and is capable of blowing air to the surface of the mask 100 to prevent the surface of the mask 100 from being cleaned by the dry ice particles 101.
  • the detached contaminants 102 fall again on the surface of the mask 100, resulting in a reduction in the cleaning effect.
  • the ultrasonic generation source 09 can deliver ultrasonic waves having a frequency of 1 K to 100 KHz to the mask sheet 100. Since the ultrasonic waves can cause the surface of the mask 100 to be cleaned to vibrate, the contaminants 102 falling off the surface of the mask 100 are prevented from falling again on the surface of the mask 100. Among them, on the one hand, when the frequency of the ultrasonic waves is less than 1 KHz, since the energy of the ultrasonic waves is small, the surface of the mask plate 100 cannot be shaken.
  • the ultrasonic generating source 09 may be disposed inside the chamber 01 as shown in FIG. 4 or may be disposed outside the chamber 01 through the air inlet 203 to transmit ultrasonic waves to the mask 100. This example does not limit this.
  • the reticle cleaning apparatus may further include an absorbing member 05 coupled to the air outlet 204 of the chamber 01 (eg, the top), capable of displacing the contaminants 102 off the surface of the reticle 100 and converted by the dry ice particles 101. Carbon dioxide is collected. In this way, the contaminant 102 in the free state in the chamber 01 is cleaned to prevent it from falling again onto the surface of the cleaned mask 100, resulting in a reduction in the cleaning effect. In addition, contamination inside the chamber 01 can also be reduced, and the pollutants 102 collected in the suction member 05 can be uniformly treated to prevent the pollutant 102 from adversely affecting the environment.
  • an absorbing member 05 coupled to the air outlet 204 of the chamber 01 (eg, the top), capable of displacing the contaminants 102 off the surface of the reticle 100 and converted by the dry ice particles 101. Carbon dioxide is collected. In this way, the contaminant 102 in the free state in the chamber 01 is cleaned to prevent it from falling again onto the surface of the cleaned mask 100
  • the dry ice blasting apparatus 02 and the blowing member 04 and the absorbing member 05 can operate simultaneously during the cleaning time T.
  • the air and ultrasonic waves transported through the air inlet 203 can carry away the contaminants 102 from the surface of the mask 100 away from the surface of the mask 100, preventing It falls again onto the surface of the cleaned mask 100.
  • the contaminants 102 in the free state in the chamber 01 and the carbon dioxide converted by the dry ice particles 101 are collected through the air outlet 204.
  • the chamber 01 is prevented from being contaminated by the contaminants 102 in a free state, and the cleaning effect of the mask 100 is lowered.
  • the number of maintenance of the chamber 01 can be reduced, so that the cost can be reduced.
  • the reticle cleaning apparatus may further include a stage 20 for carrying the mask 100, and a transfer device 201 for moving the stage 20 in the chamber 01.
  • the conveying device 201 may be a conveyor belt, and when it is rotated in the direction of the arrow, the mask 100 on the stage 20 is moved to a preset cleaning position.
  • the preset cleaning position may be set according to different cleaning methods, which is not limited by the embodiment of the present invention.
  • the preset cleaning position can be set to the center position of the chamber 01.
  • the conveying device 201 moves the center position of the mask 100 to the preset cleaning position (the center position of the chamber 01)
  • the movement is stopped.
  • the dry ice particles 101 begin to clean the mask 100 until the cleaning time T ends.
  • the transfer device 201 then removes the mask 100 from the chamber 01.
  • the above method is simple to operate and easy to implement.
  • the preset cleaning position can also be set to the position of the corresponding head 202.
  • the conveying device 201 can adopt a mode of variable speed transmission. First, the mask plate 100 is first moved into the chamber 01 to the predetermined cleaning position at a relatively high speed. Then, during the cleaning process, moving forward at a slower speed, the dry ice particles 101 begin to clean the mask 100 until the end of cleaning. Thus, the respective positions of the surface to be cleaned of the mask 100 pass through the above-mentioned preset cleaning position, and are cleaned by the dry ice particles 101 ejected from the head 202. When the cleaning process is complete, the conveyor 201 again moves the mask 100 out of the chamber 01 at a faster rate.
  • the cleaning method using the above-described shift transmission although the manipulation is relatively complicated, can save the time of the cleaning process, and is sprayed from the head 202 since the respective positions of the surface to be cleaned of the mask 100 pass through the above-mentioned preset cleaning position.
  • the dry ice granules 101 are cleaned, so that the cleaning effect can be improved.
  • the dry ice preparation device 06 can include a storage liquid The storage chamber 07 of carbon dioxide and the air inlet chamber 08 for supplying compressed air to the storage chamber 07 to convert the liquid carbon dioxide into dry ice particles 101.
  • the discharge port of the storage chamber 07 is connected to the dry ice blasting device 02; the air pressure inlet plenum 08 of the storage chamber 07 is connected to the air inlet.
  • An exemplary automated cleaning process may be: first, the air pressure inlet chamber 08 will deliver compressed air into the storage chamber 07, which converts the liquid carbon dioxide into dry ice particles 101 under the action of compressed air. Then, the storage chamber 07 delivers the dry ice particles 101 to the dry ice blasting apparatus 02. Next, the dry ice blasting apparatus 02 sprays the dry ice particle group to the surface of the reticle 100 at a speed of 340 m/s to 1000 m/s, and the dry ice granule 101 cleans the reticle 100.
  • the blowing member 04 blows air through the air inlet 203 to the mask plate 100 after being hit by the dry ice particles 101, and transmits ultrasonic waves having a frequency of 1 K to 100 KHz to prevent the cleaning of the dry ice particles 101 from being masked.
  • the contaminants 102 that have fallen off the surface of the template 100 fall again on the surface of the mask 100.
  • the suction member 05 collects the contaminants 102 off the surface of the mask 100 and the carbon dioxide converted by the dry ice particles 101 through the air outlet 204. Thereby the cleaning effect is further improved and the contamination inside the chamber 01 is reduced. In this way, in the case where the working parameters of the respective devices are set well, the entire cleaning process does not require manual operation by the operator, thereby improving the efficiency of the cleaning process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning In General (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

一种掩模板清洁装置以及掩模板清洁方法。该掩模板清洁方法包括:将掩模板(100)放置在载物台(20)上;以及在清洁时间内,将包括多个干冰颗粒(101)的干冰颗粒群以340m/s-1000m/s的速度朝所述掩模板的表面进行喷射,干冰颗粒撞击所述掩模板的表面从而去除所述掩模板的表面的污染物。所述掩模板清洁装置以及掩模板清洁方法能够在不增加污染杂质、不损伤掩模板表面的情况下,去除掩模板上的污染物。

Description

掩模板清洁装置及其掩模板清洁方法 技术领域
本发明的实施例涉及一种掩模板清洁装置及其掩模板清洁方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示装置作为一种主动发光显示装置,因其具有自发光、快速响应、宽视角和可制作在柔性衬底上等特点而越来越多地被应用于高性能显示领域当中。
在OLED的制备过程中,常采用真空蒸镀工艺结合掩模工艺形成图案化的薄膜层。如图1所示,利用掩模板100,通过步进式(side by side)位移在基板10的表面依次蒸镀上红色11、绿色12以及蓝色13的有机电致发光材料。在此过程中,产生的污染物会吸附在掩模板100上,并可能造成掩模板100开口处的堵塞。这样在上述移位的过程中将导致重复性缺陷以及成膜不均的不良现象的产生。
现有技术中,为了解决上述掩模板污染的问题,一般采用的掩模板清洁方法包括:湿式药液浸泡、干式吸集、干式物理性粘附、干式等离子灰化清洁等。其中,干式吸集,是利用物理性抽气方式,利用气流去除掩模板表面附着的污染物;干式物理性粘附,是利用物理性或化学性粘板,将掩模板表面附着的污染物粘附去除。然而上述方式均难以清洁微小、有粘性以及在边角细缝处的污染物,其清洁效果有限。而干式等离子灰化清洁,则是利用高能量等离子,对掩模板表面污染物进行灰化,该方法能够去除有机污染物与细小粉尘,但很难去除较大的无机污染物,而且在灰化过程中容易对掩模板表面造成损伤。此外,湿式药液浸泡方法,是将掩模板表面的污染物利用有机药液浸泡去除,但此法容易在掩模板细缝处残留药液,对掩模板造成腐蚀,降低掩模板的使用寿命。并且还需要耗费人力、物力对采用湿式药液浸泡的清洁装置进行定期的保养与维护。与此同时,采用在该方法的过程中还会产生废弃溶液对环境造成污染。
发明内容
本发明的实施例提供一种掩模板清洁装置及其掩模板清洁方法,能够在不增加污染介质,不损伤掩模板表面的情况下,去除掩模板上的污染物。
一方面,本发明的实施例提供一种掩模板清洁方法,包括:将所述掩模板放置在承载台上;以及在清洁时间内,将包括多个干冰颗粒的干冰颗粒群以340m/s~1000m/s的速度朝着所述掩模板的表面进行喷射,其中所述多个干冰颗粒撞击所述掩模板的表面从而去除所述掩模板的表面上的污染物。
另一方面,本发明的实施例提供一种掩模板清洁装置,包括:腔室,构造为容纳所述掩模板;以及干冰喷射设备,构造为朝着所述掩模板以340m/s~1000m/s的速度喷射出包括多个干冰颗粒的干冰颗粒群,所述干冰颗粒撞击所述掩模板的表面从而去除所述掩模板的表面上的污染物。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为现有技术中制作OLED的制作过程示意图;
图2为本发明实施例提供的一种掩模板清洁过程示意图;
图3a-图3c为本发明实施例提供的一种掩模板清洁过程中各个阶段的A局部结构示意图;
图4为本发明实施例提供的掩模板清洁装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种掩模板清洁方法,如图2所示,可以包括:
在清洁时间T内,将干冰颗粒群(主要包括高密度的干冰颗粒101)以 340m/s~1000m/s的喷射速度朝着掩模板100的表面进行喷射,干冰颗粒群中的干冰颗粒101对掩模板100的表面进行撞击从而去除掩模板表面上的污染物,这里,上述喷射速度包括端值340m/s和1000m/s。一方面,当干冰颗粒101的喷射速度小于340m/s时,由于撞击力度过小,撞击污染物102的力度弱小,在污染物102出现裂缝后,可能刚进入裂缝的干冰颗粒101就会升华成气体,而无法对裂缝施加作用力使其扩大,从而造成污染物102无法去除。另一方面,当速度大于1000m/s时,虽然其对污染物102的撞击力度增大,但是与此同时也会对掩模板100造成损伤。例如,对于由铁镍合金构成的掩模板100,当其表面附着的污染物为有机污染物时,干冰颗粒群的喷射速度为340m/s~1000m/s时,能够有效的对上述污染物进行去除。
需要说明的是,第一、示例性的清洁过程可以为,如图3a所示(图2中A处的局部视图),在干冰颗粒101的高速(速度接近音速340m/s)连续撞击下,附着于掩模板100上的污染物102表面温度骤降,其表面脆化出现裂缝。接下来,如图3b所示,后续撞击掩模板的一部分干冰颗粒101进入上述裂缝中,将该裂缝扩大,降低了污染物102的附着力;如图3c所示另一部分干冰颗粒101对污染物102的表面进行进一步的撞击,从而使得存在裂缝的污染物102最终从掩模板100的表面脱落,最终达到清洁掩模板100的效果。
第二、本领域技术人员可以根据附着于掩模板100表面的污染物的类型,设定清洁时间T以及干冰颗粒101的大小。例如,当附着于掩模板100的污染物为微小污染物时,可以减小干冰颗粒101的大小以及减小清洁时间T。当污染物102的体积较大且粘性较大时,可以增大干冰颗粒101的体积,并增加清洁时间T。
示例性地,干冰颗粒101的粒径可以为1μm~100μm。一方面,当干冰颗粒101的粒径小于1μm时,撞击污染物102的力度弱小,去除污染物的效果不理想。另一方面,当干冰颗粒101的粒径大于100μm时,虽然其对污染物102的撞击力度增大,但是对狭缝处的污染物去除效果不理想。
本发明实施例提供一种掩模板的清洁方法,包括将掩模板放置于载物台的承载面后,在清洁时间T内,将干冰颗粒群以340m/s~1000m/s的速度朝着所述掩模板的表面进行喷射,所述干冰颗粒群中的干冰颗粒对所述掩模板 的表面进行撞击。示例性地,在干冰颗粒以340m/s~1000m/s速度的连续撞击下,撞击力度不会造成掩模板表面的损伤,而附着于掩模板上的污染物表面温度骤降,其表面脆化而出现裂缝。接下来,后续撞击于掩模板的一部分干冰颗粒进入上述裂缝中,干冰颗粒迅速升华为气体,气体的体积是原干冰颗粒体积的大约700倍,因此迅速增大的气体体积能够将该裂缝进一步扩大,降低了污染物的附着力;另一部分干冰颗粒对污染物的表面进行进一步的撞击,以使得碎裂的污染物最终从掩模板的表面脱落,最终达到清洁掩模板的效果。通过上述方法能够有效的去除微小、有粘性以及在边角细缝处的污染物。此外,由于干冰颗粒不具有腐蚀性因此不会对掩模板进行腐蚀,并且撞击后的干冰颗粒会迅速升华为二氧化碳,因此不会产生污染介质。从而能够在不增加污染介质,不损伤掩模板表面的情况下,提升掩模板的清洁效果,降低生产成本,减小工业污染。
以下,对上述掩模板清洁方法进行详细的描述。
S101、将掩模板100放置于腔室01中的载物台20上。
S102、通过传送装置201移动用于放置掩模板100的载物台20,以将掩模板100移动至预设清洁位置。如图2所示,该传送装置201可以为传送带,当其沿着箭头方向进行转动时,位于载物台20上的掩模板100被移动至预设清洁位置。
其中,该预设清洁位置可以根据清洁方式的不同进行设定,本发明的实施例对此不作限制。例如,在一个实施例中,可以将预设清洁位置设置于腔室01的中心位置。当传送装置201将掩模板100的中心位置移动至该预设清洁位置(腔室01的中心位置)后停止移动。开始利用干冰颗粒101对掩模板100进行清洁,直至清洁时间T结束。然后,传送装置201将掩模板100移出该腔室01。上述方法操作简单,易于实现。
或者,在另一个实施例中,还可以将预设清洁位置设置于对应喷头202的位置。传送装置201可以采用变速传送的方式,首先,以较快的速度将掩模板100先进入腔室01的一侧移动至该预设清洁位置。然后,在清洁过程中以较缓慢的速度向前移动,干冰颗粒101开始对掩模板100进行清洁,直至清洁结束。这样掩模板100的待清洁表面的各个位置均经过上述预设清洁位置处,并被从喷头202喷射出的干冰颗粒101清洁。当清洁过程结束后,传 送装置201又采用较快的速度将掩模板100移出腔室01。这样一来,采用上述变速传送的清洁方式,虽然操控相对复杂,但是可以节省清洁工序的时间,并且由于掩模板100的待清洁表面的各个位置均经过上述预设清洁位置,被从喷头202喷射出的干冰颗粒101清洁,因此能够提升清洁效果。
S103、在清洁时间T内,当干冰颗粒群中的干冰颗粒101的密度为1.4g/cm3~1.6g/cm3时,将压强为1.97×10-3PA~9.7×105PA的气体作用于干冰颗粒群,以使得从喷头202喷出的干冰颗粒群能够以340m/s~1000m/s的速度朝着掩模板100的表面进行喷射。进而干冰颗粒群中的干冰颗粒101对掩模板100表面的污染物102进行清洁。具体的,上述压强为1.97×10-3PA~9.7×105PA的气体可以由压力部件212进行制备。需要说明的是,上述气体可以选择不会对干冰颗粒群、掩模板100以及清洁设备的物理、化学性质产生影响的气体,例如,空气、惰性气体等。
其中,在上述清洁时间T内,当干冰颗粒群中的干冰颗粒101的密度为1.4g/cm3~1.6g/cm3时,可以设定从喷头202喷射出的干冰颗粒群的馈送率为6.18×10-9kg/min~0.6kg/min。这样一来,能够在清洁时间T内,提供足够覆盖整个掩模板100的干冰颗粒101的同时,提高干冰颗粒101与污染物102的接触几率,从而能够提高清洁效率。
S104、向被干冰颗粒101撞击后的掩模板100的表面吹风。示例性地,可以通过设置于腔室01(例如顶部)的进风口203将空气输入。从而防止在干冰颗粒101的清洁作用下,从掩模板100表面脱落的污染物102再次落在掩模板100的表面,而导致清洁效果的降低。
S105、在所述干冰颗粒101撞击掩模板100的同时,向掩模板100输送频率为1K~100K赫兹的超声波。由于超声波能够使得被清洁后的掩模板100的表面发生震动,从而避免从掩模板100表面脱落的污染物102再次落在掩模板100的表面。其中,一方面,当超声波的频率小于1K赫兹时,由于超声波的能量较小,无法使得掩模板100的表面发生震动。另一方面,当超声波的频率大于100K赫兹时,由于输入的超声波具有的能量太大,导致掩模板100的表面震动过于剧烈,从而可能会引起掩模板100的变形。示例性地,可以通过超声波发生源09向掩模板100输送超声波。
S106、对脱离掩模板100表面的污染物102以及由干冰颗粒101转换的 二氧化碳进行收集。示例性地,可以通过设置于腔室01顶部的出风口204进行收集。这样一来,对腔室01中处于游离状态的污染物102进行清洁,防止其再次落入清洁后的掩模板100的表面,造成清洁效果的降低。
需要说明的是,本发明的实施例对上述步骤S104至步骤S106的先后顺序不做限制。示例性地,可以将步骤S104至步骤S106与步骤S103同时进行。这样一来,在干冰颗粒101对掩模板100进行清洗的过程中,可以通过进风口203输送的空气,并通过上述超声波发生源09向掩模板100输送超声波,以将脱离于掩模板100表面的污染物102带离至远离掩模板100的表面,防止其再次落入清洁后的掩模板100的表面。在此情况下,通过出风口204将腔室01中处于游离状态的污染物102以及由干冰颗粒101转换的二氧化碳进行收集。以避免腔室01被游离状态的污染物102污染,而降低掩模板100的清洁效果。此外,还可以减少对腔室01的保养次数,从而能够降低成本。
此外,本领域技术人员还可以根据实际需要只进行步骤S104,或只进行步骤S105。
本发明实施例提供一种掩模板清洁装置,如图4所示,可以包括:腔室01以及干冰喷射设备02。
其中,所述腔室01用于容纳掩模板100。
所述干冰喷射设备02用于朝着所述掩模板100以340m/s~1000m/s的速度喷射出干冰颗粒群,所述干冰颗粒群中的干冰颗粒101对所述掩模板100的表面进行撞击。所述干冰喷射设备02与腔室01顶部的202相连接,用于在清洁时间T内,将干冰喷射设备02内的干冰颗粒群以340m/s~1000m/s的喷射速度供给腔室01,所述干冰颗粒群中的干冰颗粒101撞击掩模板100的表面。其中,上述喷射速度包括端值340m/s和1000m/s。一方面,当喷射速度小于340m/s时,由于撞击力度过小,撞击污染物102的力度弱小,在污染物102出现裂缝后,可能刚进入裂缝的干冰颗粒101就会升华成气体,而无法对裂缝施加作用力使其扩大。从而造成污染物102无法去除。另一方面,当喷射速度大于1000m/s时,虽然其对污染物102的撞击力度增大,但是与此同时也会对掩模板100造成损伤。
需要说明的是,第一、本领域技术人员可以根据附着于掩模板100表面的污染物的类型,对清洁时间T以及干冰颗粒101的大小进行设定。例如, 当附着于掩模板100的污染物为微小污染物时,可以将减小干冰颗粒101的大小以及减小清洁时间T。当污染物102的体积较大且粘性较大时,可以增大污染物的体积,并增加清洁时间T。
示例性地,干冰颗粒101的粒径可以为1μm~100μm。一方面,当干冰颗粒101的粒径小于1μm时,撞击污染物102的力度弱小,去除污染物的效果不理想。另一方面,当干冰颗粒101的粒径大于100μm时,虽然其对污染物102的撞击力度增大,但是对狭缝处的污染物去除效果不理想。
第二、干冰喷射设备02向掩模板100供给干冰颗粒群的馈送率为6.18×10-9kg/min~0.6kg/min。这样一来,能够在清洁时间T内,提供足够覆盖整个掩模板100的干冰颗粒101的同时,提高干冰颗粒101与污染物102的接触几率,从而能够提高清洁效率。
第三、上述干冰喷射设备02可以包括:干冰输送通道211、喷头202以及压力部件212。
其中,所述干冰输送通道211用于容纳干冰颗粒群;其中,在所述干冰颗粒101的粒径为1μm~100μm的情况下,所述干冰输送通道211的管径为1mm~3mm。
所述喷头202的头部位于腔室01中,所述喷头202的连接部与所述干冰输送通道211相连接;
所述压力部件212,用于向干冰输送通道211提供压强为1.97×10-3PA~9.7×105PA的气体作用于所述干冰颗粒101的密度为1.4g/cm3~1.6g/cm3的所述干冰颗粒群,以使得干冰颗粒101可以以340m/s~1000m/s的速度撞击掩模板100表面,对该掩模板100进行清洁。
本发明实施例提供一种掩模板清洁装置,可以包括用于容纳掩模板的腔室以及干冰喷射设备。所述干冰喷射设备用于朝着所述掩模板以340m/s~1000m/s的速度喷射出干冰颗粒群,所述干冰颗粒群中的干冰颗粒撞击掩模板的表面。示例性地,在干冰颗粒以340m/s~1000m/s的速度连续撞击下,撞击力度不会造成掩模板表面的损伤,而附着于掩模板上的污染物表面温度骤降,使其表面脆化出现裂缝。接下来,后续撞击于掩模板的一部分干冰颗粒进入上述裂缝中,干冰颗粒迅速升华为气体,气体的体积是原干冰颗粒体积的大约700倍,因此迅速增大的气体体积能够将该裂缝进一步扩大, 降低了污染物的附着力;另一部分干冰颗粒对污染物的表面进行进一步的撞击,以使得碎裂的污染物最终从掩模板的表面脱落,最终达到清洁掩模板的效果。通过上述清洁装置能够有效的去除微小、有粘性以及在边角细缝处的污染物。此外,由于干冰颗粒不具有腐蚀性因此不会对掩模板进行腐蚀,并且撞击后的干冰颗粒会迅速升华为二氧化碳,因此不会产生污染介质。从而能够在不增加污染介质,不损伤掩模板表面的情况下,提升掩模板的清洁效果,降低生产成本,减小工业污染。
为了更好的提升清洁效果,该掩模板清洁装置还可以包括吹送部件04以及超声波发生源09。
示例性地,吹送部件04与所述腔室01(例如顶部)的进风口203相连接,能够向被掩模板100的表面吹风,从而防止在干冰颗粒101的清洁作用下,从掩模板100表面脱落的污染物102再次落在掩模板100的表面,而导致清洁效果的降低。
在所述干冰颗粒101撞击所述掩模板100的同时,该超声波发生源09可以向掩模板100输送频率为1K~100K赫兹的超声波。由于超声波能够使得被清洁后的掩模板100的表面发生震动,从而避免从掩模板100表面脱落的污染物102再次落在掩模板100的表面。其中,一方面,当超声波的频率小于1K赫兹时,由于超声波的能量较小,无法使得掩模板100的表面发生震动。另一方面,当超声波的频率大于100K赫兹时,由于输入的超声波具有的能量太大,导致掩模板100的表面震动过于剧烈,从而可能会引起掩模板100的变形。需要说明的是,上述超声波发生源09可以如图4所示,设置于腔室01的内部,或者设置于腔室01的外部通过进风口203,将超声波输送至掩模板100,本发明的实施例对此不做限制。
此外,该掩模板清洁装置还可以包括与所述腔室01(例如顶部)的出风口204相连接的吸集部件05,能够对脱离掩模板100表面的污染物102以及由干冰颗粒101转换的二氧化碳进行收集。这样一来,对腔室01中处于游离状态的污染物102进行清洁,防止其再次落入清洁后的掩模板100的表面,造成清洁效果的降低。此外,还可以减小腔室01内部的污染,并且能够对收集至吸集部件05中的污染物102进行统一处理,避免了污染物102对环境造成不利的影响。
需要说明的是,在清洁时间T内,上述干冰喷射设备02以及吹送部件04和吸集部件05可以同时工作。这样一来,在干冰颗粒101对掩模板100进行清洗的过程中,可以通过进风口203输送的空气和超声波将脱离于掩模板100表面的污染物102带离至远离掩模板100的表面,防止其再次落入清洁后的掩模板100的表面。在此情况下,通过出风口204将腔室01中处于游离状态的污染物102以及由干冰颗粒101转换的二氧化碳进行收集。以避免腔室01被游离状态的污染物102污染,而降低掩模板100的清洁效果。此外,还可以减少对腔室01的保养次数,从而能够降低成本。
进一步地,所述掩模板清洁装置还可以包括载物台20,用于承载掩模板100,以及传送装置201,用于在腔室01中移动载物台20。
需要说明的是,该传送装置201可以为传送带,当其沿着箭头方向进行转动时,位于载物台20上的掩模板100被移动至预设清洁位置。
其中,该预设清洁位置可以根据清洁方式的不同进行设定,本发明的实施例对此不作限制。例如,可以将预设清洁位置设置于腔室01的中心位置。当传送装置201将掩模板100的中心位置移动至该预设清洁位置(腔室01的中心位置)后停止移动。干冰颗粒101开始对掩模板100进行清洁,直至清洁时间T结束。然后,传送装置201将掩模板100移除该腔室01。上述方法操作简单,易于实现。
或者,还可以将预设清洁位置设置于对应喷头202的位置。传送装置201可以采用变速传送的方式,首先,以较快的速度将掩模板100先进入腔室01的一侧移动至该预设清洁位置。然后,在清洁过程中,以较缓慢的速度向前移动,干冰颗粒101开始对掩模板100进行清洁,直至清洁结束。这样掩模板100的待清洁表面的各个位置均经过上述预设清洁位置处,并被从喷头202喷射出的干冰颗粒101清洁。当清洁过程结束后,传送装置201又采用较快的速度将掩模板100移出腔室01。这样一来,采用上述变速传送的清洁方式,虽然操控相对复杂,但是可以节省清洁工序的时间,并且由于掩模板100的待清洁表面的各个位置均经过上述预设清洁位置,被从喷头202喷射出的干冰颗粒101清洁,因此能够提升清洁效果。
进一步地,为了提高生产制备工艺的自动化进程,还可以在上述掩模板清洁装置中设置干冰制备设备06。该干冰制备设备06可以包括用于存储液 态二氧化碳的存储腔07以及用于向存储腔07提供压缩空气,以使得所述液态二氧化碳转换为干冰颗粒101的空气进气室08。
其中,所述存储腔07的出料口连接干冰喷射设备02;所述存储腔07的进气口相连接的空压进气室08。
示例性的自动化清洁过程可以为:首先,空压进气室08将向存储腔07内输送压缩空气,在压缩空气的作用下,将液态二氧化碳转换为干冰颗粒101。然后,存储腔07将干冰颗粒101输送至干冰喷射设备02。接下来,干冰喷射设备02将干冰颗粒群可以以340m/s~1000m/s的速度喷射至掩模板100表面,且干冰颗粒101对该掩模板100进行清洁。在此清洁过程中,吹送部件04通过进风口203向被干冰颗粒101撞击后的掩模板100的吹风和输送频率为1K~100K赫兹的超声波,以防止在干冰颗粒101的清洁作用下,从掩模板100表面脱落的污染物102再次落在掩模板100的表面。同时,吸集部件05通过出风口204对脱离掩模板100表面的污染物102以及由干冰颗粒101转换的二氧化碳进行收集。从而进一步提升清洁效果,并减小腔室01内部的污染。这样一来,在各个设备的工作参数设置好的情况下,整个清洁过程无需操作人员手动操作,从而可以提高清洁过程的效率。
以上所述,仅为本发明的实施例,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所附权利要求的保护范围为准。
本申请要求于2014年12月24日递交的中国专利申请第201410817986.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种掩模板清洁方法,包括:
    将所述掩模板放置在载物台上;以及
    在清洁时间内,将包括多个干冰颗粒的干冰颗粒群以340m/s~1000m/s的速度朝着所述掩模板的表面进行喷射,其中所述多个干冰颗粒撞击所述掩模板的表面从而去除所述掩模板的表面上的污染物。
  2. 根据权利要求1所述的掩模板清洁方法,其中在所述清洁时间内,在所述干冰颗粒群中的干冰颗粒的密度为1.4g/cm3~1.6g/cm3的情况下,所述干冰颗粒群的馈送率为6.18×10-9kg/min~0.6kg/min。
  3. 根据权利要求1所述的掩模板清洁方法,其中在所述清洁时间内,在所述干冰颗粒群中的干冰颗粒的密度为1.4g/cm3~1.6g/cm3的情况下,将压强为1.97×10-3PA~9.7×105PA的气体作用于所述干冰颗粒群,所述干冰颗粒群以340m/s~1000m/s的速度朝着所述掩模板的表面进行喷射。
  4. 根据权利要求1所述的掩模板清洁方法,在将包括多个干冰颗粒的干冰颗粒群以340m/s~1000m/s的速度朝着所述掩模板的表面进行喷射之后,还包括:收集脱离所述掩模板的表面的所述污染物以及由所述干冰颗粒转换的二氧化碳。
  5. 根据权利要求1-4中任一项所述的掩模板清洁方法,在将包括多个干冰颗粒的干冰颗粒群以340m/s~1000m/s的速度朝着所述掩模板的表面进行喷射之后且在收集脱离所述掩模板的表面的所述污染物以及由所述干冰颗粒转换的二氧化碳之前,还包括:
    向被所述干冰颗粒撞击后的所述掩模板的表面吹风;和/或,
    在向所述掩模板的表面吹风同时,向所述掩模板输送频率为1K~100K赫兹的超声波。
  6. 根据权利要求1-4中任一项所述的掩模板清洁方法,在将包括多个干冰颗粒的干冰颗粒群以340m/s~1000m/s的速度朝着所述掩模板的表面进行喷射的同时,还包括:
    向被所述掩模板的表面吹风;和/或,
    在向所述掩模板的表面吹风的同时,向所述掩模板输送频率为1K~100K 赫兹的超声波。
  7. 根据权利要求6所述的掩模板清洁方法,在将包括多个干冰颗粒的干冰颗粒群以340m/s~1000m/s的速度朝着所述掩模板的表面进行喷射的同时,还包括:
    收集脱离所述掩模板的表面的所述污染物以及由所述干冰颗粒转换的二氧化碳。
  8. 根据权利要求1所述的掩模板清洁方法,其中所述干冰颗粒的粒径为1μm~100μm。
  9. 根据权利要求1所述的掩模板清洁方法,其中在将包括多个干冰颗粒的干冰颗粒群以340m/s~1000m/s的速度朝着所述掩模板的表面进行喷射的同时,所述掩模板是固定不动的。
  10. 根据权利要求1所述的掩模板清洁方法,其中在将包括多个干冰颗粒的干冰颗粒群以340m/s~1000m/s的速度朝着所述掩模板的表面进行喷射的同时,所述掩模板是移动的。
  11. 一种掩模板清洁装置,包括:
    腔室,构造为容纳所述掩模板;以及
    干冰喷射设备,构造为朝着所述掩模板以340m/s~1000m/s的速度喷射出包括多个干冰颗粒的干冰颗粒群,所述干冰颗粒撞击所述掩模板的表面从而去除所述掩模板的表面上的污染物。
  12. 根据权利要求11所述的掩模板清洁装置,其中所述干冰喷射设备包括:
    干冰输送通道,构造为容纳所述干冰颗粒群;
    喷头,所述喷头的头部位于所述腔室中,所述喷头的连接部与所述干冰输送通道相连接;以及
    压力部件,所述压力部件用于向所述干冰输送通道提供压强为1.97×10-3PA~9.7×105PA的气体作用于所述干冰颗粒的密度为1.4g/cm3~1.6g/cm3的所述干冰颗粒群。
  13. 根据权利要求12所述的掩模板清洁装置,其中在所述干冰颗粒的粒径为1μm~100μm的情况下,所述干冰输送通道的管径为1mm~3mm。
  14. 根据权利要求11所述的掩模板清洁装置,其中所述干冰喷射设备向 所述掩模板供给所述干冰颗粒群的馈送率为6.18×10-9kg/min~0.6kg/min,其中,所述干冰颗粒群中干冰颗粒的密度为1.4g/cm3~1.6g/cm3
  15. 根据权利要求11所述的掩模板清洁装置,还包括:
    吸集部件,与所述腔室的出风口相连接,收集对脱离所述掩模板表面的污染物以及由所述干冰颗粒转换的二氧化碳。
  16. 根据权利要求11-15中任一项所述的掩模板清洁装置,还包括:吹送部件以及超声波发生源;
    其中,所述吹送部件,与所述腔室的进风口相连接,用于向被所述掩模板的表面吹风;和/或,
    所述超声波发生源,用于在所述干冰颗粒撞击所述掩模板的同时,向所述掩模板输送频率为1K~100K赫兹的超声波。
  17. 根据权利要求11所述的掩模板清洁装置,还包括:干冰制备设备,与所述干冰喷射设备相通且构造为向所述干冰喷射设备提供所述干冰颗粒。
  18. 根据权利要求17所述的掩模板清洁装置,其中所述干冰制备设备包括:
    存储腔,用于存储液态二氧化碳;以及
    空气进气室,构造为向所述存储腔提供压缩空气,以使得所述液态二氧化碳转换为所述干冰颗粒;
    其中,所述存储腔的出料口连接所述干冰喷射设备,所述存储腔的进气口连接所述空压进气室。
  19. 根据权利要求11所述的掩模板清洁装置,其中所述腔室中提供有载物台,其上放置有所述掩模板。
  20. 根据权利要求11所述的掩模板清洁装置,其中所述腔室中还提供有传动装置,所述传动装置构造为移动所述载物台。
PCT/CN2015/077368 2014-12-24 2015-04-24 掩模板清洁装置及其掩模板清洁方法 WO2016101462A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/904,221 US9636718B2 (en) 2014-12-24 2015-04-24 Mask cleaning apparatus and mask cleaning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410817986.1 2014-12-24
CN201410817986.1A CN104492761A (zh) 2014-12-24 2014-12-24 一种掩膜版清洁装置及其清洁方法

Publications (1)

Publication Number Publication Date
WO2016101462A1 true WO2016101462A1 (zh) 2016-06-30

Family

ID=52934262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077368 WO2016101462A1 (zh) 2014-12-24 2015-04-24 掩模板清洁装置及其掩模板清洁方法

Country Status (3)

Country Link
US (1) US9636718B2 (zh)
CN (1) CN104492761A (zh)
WO (1) WO2016101462A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492761A (zh) * 2014-12-24 2015-04-08 京东方科技集团股份有限公司 一种掩膜版清洁装置及其清洁方法
CN107323728B (zh) * 2017-07-31 2019-03-01 京东方科技集团股份有限公司 贴膜设备及贴膜方法
US11358183B2 (en) * 2017-12-20 2022-06-14 Halliburton Energy Services, Inc. Capture and recycling methods for non-aqueous cleaning materials
CN108554936A (zh) * 2018-04-08 2018-09-21 苏州珮凯科技有限公司 半导体8寸晶元薄膜制程的e-max工艺的石英零部件的再生方法
US10719020B2 (en) 2018-06-29 2020-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. Droplet generator and method of servicing extreme ultraviolet radiation source apparatus
CN109107997A (zh) * 2018-09-30 2019-01-01 上海钥熠电子科技有限公司 Oled蒸镀用挡板的干冰清洗装置及其工艺
KR20210010754A (ko) 2019-07-19 2021-01-28 삼성전자주식회사 Euv 레티클 관리 방법 및 그를 포함하는 반도체 소자의 제조 방법
US11294292B2 (en) * 2019-12-30 2022-04-05 Taiwan Semiconductor Manufacturing Co., Ltd. Particle removing assembly and method of cleaning mask for lithography
CN111251197A (zh) * 2020-02-28 2020-06-09 西安深蓝智能机器有限公司 用于管道内端口预留段的便携式喷砂处理装置
CN111534790A (zh) * 2020-04-09 2020-08-14 常州高光半导体材料有限公司 一种金属掩膜版的清洗装置、清洗方法
CN114457343A (zh) * 2022-01-25 2022-05-10 全洋(黄石)材料科技有限公司 一种连续式amoled金属掩膜板自动智能清洗工艺
CN114769219A (zh) * 2022-03-28 2022-07-22 江苏鑫华半导体科技股份有限公司 利用干冰对电子级多晶硅进行清洗的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256222A (ja) * 1994-03-18 1995-10-09 Nikon Corp 基板洗浄装置
JPH09262545A (ja) * 1996-03-29 1997-10-07 Ngk Insulators Ltd 異物除去方法およびその装置
JP2004089944A (ja) * 2002-09-03 2004-03-25 Seiko Epson Corp 洗浄装置、洗浄方法、固体状二酸化炭素の粒子の製造方法
US20110265815A1 (en) * 2010-04-28 2011-11-03 Tokyo Ohka Kogyo Co., Ltd. Method of cleaning support plate
CN102989719A (zh) * 2011-09-12 2013-03-27 株式会社日本显示器东 清洗方法
CN104492761A (zh) * 2014-12-24 2015-04-08 京东方科技集团股份有限公司 一种掩膜版清洁装置及其清洁方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2443788Y (zh) * 2000-09-22 2001-08-22 浙江大学 干冰清洗机
CN100403556C (zh) 2003-04-01 2008-07-16 友达光电股份有限公司 有机发光二极管面板的制作方法
CN1822905A (zh) * 2003-06-06 2006-08-23 P.C.T.系统公司 用兆频声波能量处理基片的方法和设备
JP4166664B2 (ja) * 2003-10-22 2008-10-15 トッキ株式会社 有機el素子製造装置
CN101081395B (zh) * 2006-05-31 2010-12-22 财团法人金属工业研究发展中心 以复合式洁净基板的表面污染物的方法
CN101011814A (zh) * 2007-01-19 2007-08-08 电子科技大学 用干冰微粒喷射技术处理透明导电玻璃表面的方法及装置
CN101338410A (zh) 2007-07-06 2009-01-07 昆山维信诺显示技术有限公司 一种蒸镀工艺用清洁板及采用该清洁板的蒸镀工艺方法
US20090098309A1 (en) 2007-10-15 2009-04-16 Advantech Global, Ltd In-Situ Etching Of Shadow Masks Of A Continuous In-Line Shadow Mask Vapor Deposition System
US20120247504A1 (en) * 2010-10-01 2012-10-04 Waleed Nasr System and Method for Sub-micron Level Cleaning of Surfaces
TW201323102A (zh) 2011-12-15 2013-06-16 Dongwoo Fine Chem Co Ltd 清洗製造有機el裝置的氣相沉積掩模的方法及清洗液
CN103831263A (zh) * 2012-11-23 2014-06-04 上海华虹宏力半导体制造有限公司 工艺腔部品的清洗方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256222A (ja) * 1994-03-18 1995-10-09 Nikon Corp 基板洗浄装置
JPH09262545A (ja) * 1996-03-29 1997-10-07 Ngk Insulators Ltd 異物除去方法およびその装置
JP2004089944A (ja) * 2002-09-03 2004-03-25 Seiko Epson Corp 洗浄装置、洗浄方法、固体状二酸化炭素の粒子の製造方法
US20110265815A1 (en) * 2010-04-28 2011-11-03 Tokyo Ohka Kogyo Co., Ltd. Method of cleaning support plate
CN102989719A (zh) * 2011-09-12 2013-03-27 株式会社日本显示器东 清洗方法
CN104492761A (zh) * 2014-12-24 2015-04-08 京东方科技集团股份有限公司 一种掩膜版清洁装置及其清洁方法

Also Published As

Publication number Publication date
CN104492761A (zh) 2015-04-08
US9636718B2 (en) 2017-05-02
US20160214149A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
WO2016101462A1 (zh) 掩模板清洁装置及其掩模板清洁方法
JP5965326B2 (ja) レーザ切断装置用のドライ・アイス・ベルト洗浄システム
US5125979A (en) Carbon dioxide snow agglomeration and acceleration
US10512949B2 (en) Micro dry ice snow spray type cleaning device
JP6545441B2 (ja) プラズマ・コーティング・プラントにおけるトーチのクリーニング方法及びプラズマ・コーティング・プラント
JP2011042856A (ja) 成膜装置及び成膜方法
KR20100019341A (ko) 연마재 회수 시스템을 갖는 블라스트 가공 방법 및 장치, 박막 태양전지 패널의 가공 방법 및 이에 의해 가공된 박막 태양전지 패널
JP2007098241A (ja) 吸着ノズル洗浄方法及び装置と電子部品実装装置
WO2011039972A1 (ja) 清掃ノズル及びそれを備えた塵埃除去装置
WO2015022732A1 (ja) ノズル、洗浄装置及び洗浄方法
TW201313343A (zh) 使用乾冰的洗淨方法及用於該方法的裝置
JP5461236B2 (ja) 半導体基板の処理装置
JP2012086301A (ja) 半導体製造装置、及び半導体製造方法
KR100770792B1 (ko) 에칭부와 세정부를 겸비한 건식 에쳐
JP2003300030A (ja) 付着物の除去方法及び除去装置
JP2007330947A5 (zh)
JP4932897B2 (ja) ノズル、ドライクリーナ及びドライクリーナシステム
WO2020073192A1 (zh) 超声波清洗机
JP2004041914A (ja) 基板のクリーニング装置および基板の製造方法
JP2010036324A (ja) 薄膜太陽電池パネルのスクライビング方法及び該方法に用いる装置
JP4256510B2 (ja) サンドブラスト加工における被加工物のクリーニングユニット
JP4649642B2 (ja) 粉体回収装置、および粉体回収装置付き成膜装置
JP4946571B2 (ja) 付着物除去方法
JPH03154680A (ja) 除塵方法
JP2006315934A (ja) ガラス基板のカレット除去方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14904221

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/11/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15871538

Country of ref document: EP

Kind code of ref document: A1