WO2016099330A1 - Датчик водорода в газовых средах - Google Patents

Датчик водорода в газовых средах Download PDF

Info

Publication number
WO2016099330A1
WO2016099330A1 PCT/RU2015/000791 RU2015000791W WO2016099330A1 WO 2016099330 A1 WO2016099330 A1 WO 2016099330A1 RU 2015000791 W RU2015000791 W RU 2015000791W WO 2016099330 A1 WO2016099330 A1 WO 2016099330A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
hydrogen
ceramic
sensing element
housing
Prior art date
Application number
PCT/RU2015/000791
Other languages
English (en)
French (fr)
Inventor
Петр Никифорович МАРТЫНОВ
Михаил Ефимович ЧЕРНОВ
Алексей Николаевич СТОРОЖЕНКО
Василий Михайлович ШЕЛЕМЕТЬЕВ
Роман Петрович САДОВНИЧИЙ
Original Assignee
Открытое Акционерное Общество "Акмэ-Инжиниринг"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Акмэ-Инжиниринг" filed Critical Открытое Акционерное Общество "Акмэ-Инжиниринг"
Priority to CA2971160A priority Critical patent/CA2971160A1/en
Priority to MYPI2017702214A priority patent/MY195048A/en
Priority to BR112017013045-9A priority patent/BR112017013045B1/pt
Priority to KR1020177019581A priority patent/KR102278286B1/ko
Priority to EA201650104A priority patent/EA032157B1/ru
Priority to JP2017532102A priority patent/JP6777633B2/ja
Priority to US15/536,349 priority patent/US20170322175A1/en
Priority to CN201580076099.6A priority patent/CN107295809A/zh
Priority to EP15870438.7A priority patent/EP3236250A4/en
Publication of WO2016099330A1 publication Critical patent/WO2016099330A1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • G01N27/4076Reference electrodes or reference mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4078Means for sealing the sensor element in a housing

Definitions

  • the device relates to measuring equipment and can be used in energy, metallurgy, and the chemical industry to determine the concentration of hydrogen in gaseous media over a wide range of temperatures and pressures.
  • the sensor includes a housing hermetically connected using metal with a solid electrolyte oxygen sensor.
  • a solid electrolyte oxygen sensor consists of a ceramic insulator closed at the bottom with a plug of solid electrolyte, a porous platinum electrode deposited on the outside of the plug, a liquid metal oxide reference electrode placed on the inside of the plug, and a thermocouple-current lead fixed to the lid that covers the ceramic insulator on top .
  • a selective membrane made in the form of a corrugated glass is welded to the lower part of the body. Between the selective membrane and the plug of solid electrolyte, a tablet of porous electrical insulating oxide is installed.
  • a disadvantage of the known device is the relatively low tightness of the internal cavity of the ceramic sensing element, arising due to oxygen leaks through the gap between the central core and the potential pickup sheath, which leads to 5 oxidation of the reference electrode and reducing the resource and reliability of the device as a whole.
  • the sensor includes an electrochemical oxygen cell based on a solid electrolyte from stabilized zirconia, a liquid metal reference electrode from a Bi + Bi203 mixture, 15 measuring platinum electrode, which is placed in a sealed chamber filled with water vapor.
  • the hydrogen sensor includes a selective membrane, porous insulating ceramics and a housing, inside of which there is a potential pickup, a ceramic sensitive element made of solid 5 electrolyte, in the cavity of which a reference electrode is placed, a porous platinum electrode deposited on the outer surface of the ceramic sensor, a silica cloth and a connecting material, a cork having a hole and overlapping the cross section of the cavity of the ceramic sensor, a pressure seal located tightly inside the case above the ceramic sensitive element, potential stripper in the form of a double-sheathed cable passing through the central opening of the pressure seal, bushing.
  • the housing cavity between the pressure seal and the ceramic sensing element is sealed.
  • the ceramic sensing element is made in the form of a cylindrical element conjugated between each other and a part of a sphere located in the lower part of the cylindrical element.
  • the upper part of the outer cylindrical surface of the ceramic sensing element is hermetically connected to the inner side surface of the housing
  • the reference electrode is located in the cavity formed by the inner surface of the ceramic sensing element and the surface of the tube, and occupies at least part of it.
  • the outer spherical part of the ceramic sensing element is coated with a layer of a porous platinum electrode.
  • a sleeve made in the form of a tube is connected to the lower part of the housing from the side of the protruding part of the ceramic sensing element.
  • the lower end of the sleeve has a bottom with a Central hole, to which is attached a selective membrane made of at least one tube. Lower free end 5 of the selective membrane is hermetically sealed with a plug.
  • the cavity bounded by the inner surface of the sleeve, the connecting material, the outer part of the ceramic sensitive element protruding outside the housing and the inner surface of the selective membrane is sealed.
  • the internal cavity of the sleeve between the protruding portion of the ceramic sensing element and the bottom of the sleeve is filled with silica fabric.
  • Porous insulating ceramic is made in the form of a cylinder and placed with an annular gap with respect to the inner surface of the selective membrane.
  • a disadvantage of the known device is relatively low.
  • the objective of the invention is to increase the stability and reliability of the readings of the hydrogen sensor, as well as the resource and reliability of its operation in a wide range of parameters of the gas working environment.
  • the technical result consists in increasing the accuracy of the readings of the hydrogen sensor by ensuring the tightness of the internal cavity of the ceramic sensitive element and maintaining a stable working temperature on the sensitive part of the working element due to the presence of 5 constant reliable heating and thermal insulation, preventing heat leakage, and also in the elimination of oxidation of the reference sensor electrode.
  • a sensor design includes a hydrogen-permeable membrane made of at least one tube equipped with a measuring platinum electrode at the top and a housing with a potential pickup and a ceramic sensitive element made of solid electrolyte inside.
  • a reference electrode is placed in the cavity of the ceramic sensing element.
  • the working element is located hermetically inside the housing above the sensitive element. Potential stripper goes through
  • the Central hole of the working element, and the lower part of the working element, and the sensitive element is made in the form of a cylindrical element and a bottom located in the lower part of the cylindrical element.
  • the upper part of the potential stripper is sealed and contains a seal with a tight fit
  • the outer cylindrical surface of the sensing element is hermetically connected to the inner side surface of the housing.
  • the reference electrode is located in the internal cavity of the sensing element. The end of the central core of the potential stripper is brought into the volume of the reference electrode, while electrical contact between
  • the metal housing of the sensor is made in the form of a tube and is connected to the upper part of the sensor by means of a sealant.
  • the sealant is a glass metal consisting of silicon oxide (Si0 2 ) - 45 + 55 wt.%, Alumina ( ⁇ 1 2 0 ⁇ ) ⁇ réelle - 4 + 6 wt.%, Boron oxide ( ⁇ 2 0 3 ) - 18 + 22 wt.
  • the sensor is characterized in that it is additionally equipped with a heater with thermal insulation, which serves to heat and maintain a stable operating temperature on the sensitive part of the working element, as well as in that a steam-hydrogen chamber consisting of a corrosion-resistant steel is welded to the casing, the details of which are made of corrosion-resistant steel from a nickel body and a thin-walled hydrogen-permeable membrane made of a thin-walled nickel tube.
  • a heater with thermal insulation which serves to heat and maintain a stable operating temperature on the sensitive part of the working element
  • a steam-hydrogen chamber consisting of a corrosion-resistant steel is welded to the casing, the details of which are made of corrosion-resistant steel from a nickel body and a thin-walled hydrogen-permeable membrane made of a thin-walled nickel tube.
  • Figure 1 presents a longitudinal axial section of the sensor, General view.
  • Fig. 2 shows a longitudinal axial section of the working element of the sensor.
  • Fig.3 shows a longitudinal axial section of the sensor element of the sensor.
  • the hydrogen sensor includes a reference electrode 1 with the central conductor 2 of the potential pickup 3 immersed in it, located at the bottom of the ceramic sensing element 4, connected by means of a glass 5 to the metal housing 6 of the sensing element 7, located inside the steam-water chamber 8.
  • the presented positions are included in the composition of the working element 9 having a bottom with a central hole to which hydrogen is permeable membrane 10, made of at least one tube provided in the upper part of the measuring ritelnym platinum electrode 11.
  • the operating member is located in a metal housing 12 whose leakproofness 5 is provided by the presence of a seal 3 and a nut 14.
  • a heater 15 with thermal insulation 16 are used to heat and maintain a stable operating temperature on the sensitive part of the working element.
  • Thermal insulation 16 fills the annular cavity between the inner surface of the wall of the heater 15 and the outer surface of the housing of the sensor for the hydrogen content in the gas 12.
  • the ceramic sensing element 4 is located in the lower part of the sensor and is made in the form of a cylindrical part and a bottom conjugated between each other.
  • the outer cylindrical surface of the ceramic 15 of the sensing element 4 is hermetically connected to the inner side surface of the metal housing 12.
  • the reference electrode 1 is located in the inner cavity of the ceramic sensing element 4.
  • the housing 12 is made in the form of a tube connected to a metal housing 20 of the sensing element 7.
  • Sealant 3 is a glass metal consisting of silicon oxide (Si0 2 ) - 50 wt.%, Aluminum oxide (A1 2 0 3 ) - 5 wt.%, Boron oxide ( ⁇ 2 0 3 ) - May 20. %, titanium oxide (Ti0 2 ) - May 10. %, sodium oxide (Na 2 0) - 12 wt.%, potassium oxide (K 2 0) - May 1. % and magnesium oxide (MgO) - May 2. %
  • Sealant is necessary to prevent oxygen from entering the internal cavity of the sensor and change the properties of the ' reference electrode 1.
  • the principle of operation of the hydrogen sensor is based on the use of the electrochemical method for determining the oxygen concentration using an oxygen sensor from a solid oxide electrolyte.
  • oxygen sensors are equipped with a chamber with a constant pressure of water vapor 8 and a hydrogen-permeable membrane 10.
  • the hydrogen contained in the medium through the membrane of the hydrogen sensor reversibly diffuses into the hydrogen 5 cameras 8 to the measuring platinum electrode 11, changing the emf of the sensor.
  • the emf of the sensor arises due to the difference in the partial pressures of oxygen on the electrodes of the galvanic concentration element (GCE), the circuit of which can be represented as Me - ES - solid oxide electrolyte - IE - ⁇ 2 0, ⁇ 2 - ⁇ -membrane - controlled medium.
  • GCE galvanic concentration element
  • GCE includes a ceramic sensitive element (CFC) 4 of solid oxide electrolyte, a reference electrode (ES) 1 and a measuring platinum electrode (IPE) 1 1.
  • CFC ceramic sensitive element
  • ES reference electrode
  • IPE measuring platinum electrode
  • ChSDC partially stabilized zirconia
  • a porous platinum-based composite coating 25 is best suited, which provides rapid catalytic oxidation of hydrogen on its surface.
  • the special composition and method of applying such a coating to the raw material of the ceramic material of coke with subsequent annealing makes it possible to obtain a highly porous working electrode 30 ⁇ m thick with good adhesion to ceramic.
  • the hydrogen chamber 8 is located in the chamber between the measuring platinum electrode 1 1 and the ceramic sensitive element 4 and functions as a converter of the thermodynamic potential of hydrogen into the oxidizing potential of the steam-hydrogen mixture on platinum electrode 11.
  • the most suitable material for the hydrogen membrane 10 is nickel in terms of hydrogen permeability and corrosion resistance in CBT.
  • the sensor can be manufactured on an industrial scale and does not require special equipment for its production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Устройство относится к измерительной технике и может быть использовано в энергетике, металлургии, химической промышленности для определения концентрации водорода в газовых средах в широком интервале температур и давлений. Датчик водорода в газовых средах включает рабочий элемент плотно прилегающей посредством уплотнителя к верхней части корпуса датчика. Дополнительная герметичность обеспечена гайкой. Нижняя часть корпуса датчика оконтуривается изоляцией обеспечивающей плотный контакт с нагревателем, обеспечивающим температурный режим рабочей среды, подаваемой на водородопроницаемую мембрану пароводяной камеры. Через измерительный платиновый электрод, вплотную примыкающий к нижней части керамического чувствительного элемента, герметично соединенного ситаллом с металлическим корпусом чувствительного элемента, возмущение, вносимое измерительным потоком, передается на центральную жилу потенциалосъемника. Эталонный электрод расположен во внутренней полости керамического чувствительного элемента. Наружная часть днища керамического чувствительного элемента покрыта слоем пористого платинового электрода. Конец центральной жилы потенциалосъемника выведен в объем эталонного электрода. Технический результат состоит в повышении ресурса и надежности работы датчика водорода в широком диапазоне параметров рабочей среды, посредством обеспечения герметичности внутренней полости керамического чувствительного элемента и поддержания температурного режима рабочей среды на входе датчика.

Description

Описание изобретения
Датчик водорода в газовых средах Область техники.
Устройство относится к измерительной технике и может быть использовано в энергетике, металлургии, химической промышленности для определения концентрации водорода в газовых средах в широком интервале температур и давлений.
Предшествующий уровень техники.
Известен электрохимический датчик концентрации водорода в газовых и жидких средах (Патент на изобретение РФ N<> 2120624, МПК G01N27/417 «Электрохимический датчик концентрации водорода в газовых и жидких средах», опубл. 20.10.1998).
Датчик включает корпус, герметично соединенный с помощью металла с твердоэлектролитным датчиком кислорода. Твердоэлектролитный датчик кислорода состоит из керамического изолятора, закрытого в нижней части пробкой из твердого электролита, пористого платинового электрода, нанесенного на внешнюю сторону пробки, жидкого металлооксидного эталонного электрода, размещенного с внутренней стороны пробки, термопары-токоподвода, закрепленного в крышке, закрывающей сверху керамический изолятор. К нижней части корпуса приварена селективная мембрана, выполненная в виде гофрированного стакана. Между селективной мембранной и пробкой твердого электролита установлена таблетка из пористого электроизоляционного оксида.
Недостатком известного устройства является относительно низкая герметичность внутренней полости керамического чувствительного элемента, возникающая из-за натечек кислорода через зазор между центральной жилой и оболочкой потенциалосъемника, что приводит к 5 окислению эталонного электрода и снижению ресурса и надежности работы устройства в целом.
Известен электрохимический датчик концентрации водорода в жидкостях и газах (Дмитриев И.Г., Орлов В.Л., Шматко Б.А. Электрохимический датчик водорода в жидкостях и газах // Сб. тезисов ю докладов Межотраслевой конференции «Теплофизика-91». Обнинск, 1993.
С.134-136).
Датчик включает электрохимическую кислородную ячейку на базе твердого электролита из стабилизированного диоксида циркония, жидкометаллического электрода сравнения из смеси Bi+Bi203, 15 измерительного платинового электрода, который помещен в герметичную камеру, заполненную водным паром.
Недостатками известного технического решения являются:
- относительно низкая надежность и малый ресурс работы устройства из-за сложности конфигурации датчика;
20 - относительно низкая термическая и коррозийная стойкость твердоэлектролитического датчика кислорода к парам воды;
- относительно высокая инерционность устройства и недостаточная чувствительность из-за сложности стабилизации парциального давления паров воды в измерительной камере;
25 - относительно низкая точность измерения концентрации водорода, которая является следствием сложного поддержания стабильности температуры и трубопроводов.
Наиболее близким по технической сущности к заявляемому устройству является датчик водорода в жидких и газовых средах (Патент на изобретение зо РФ Ν° 2379672, МПК GO 1 N27/417« Датчик водорода в жидких и газовых средах», опубл. 20.01.2008).
Датчик водорода включает селективную мембрану, пористую электроизоляционную керамику и корпус, внутри которого расположен потенциалосъемник, керамический чувствительный элемент из твердого 5 электролита, в полости которого размещен эталонный электрод, пористый платиновый электрод, нанесенный на наружную поверхность керамического чувствительного элемента, кремнеземной тканью и соединительным материалом, пробкой, имеющей отверстие и перекрывающий поперечное сечение полости керамического чувствительного элемента, гермовводом, ю расположенном герметично внутри корпуса над керамическим чувствительным элементом, потенциалосъемником в виде двухоболочечного кабеля, проходящего через центральное отверстие гермоввода, цилиндрической втулкой. Полость корпуса между гермовводом и керамическим чувствительным элементом является герметичной.
15 Керамический чувствительный элемент выполнен в виде сопряженных между собой цилиндрического элемента и части сферы, расположенной в нижней части цилиндрического элемента. Верхняя часть наружной цилиндрической поверхности керамического чувствительного элемента герметично соединена с внутренней боковой поверхностью корпуса
20 посредством соединительного материала. Эталонный электрод расположен в полости, образованной внутренней поверхностью керамического чувствительного элемента и поверхностью пробки, и занимает, по меньшей мере, ее часть. Наружная сферическая часть керамического чувствительного элемента покрыта слоем пористого платинового электрода. Конец
25 центральной жилы потенциалосъемника, обращенный в сторону керамического чувствительного элемента, выведен через отверстие в пробке в объем эталонного электрода. Обеспечен электрический контакт между эталонным электродом и нижней частью центральной жилы потенциалосъемника. Часть керамического чувствительного элемента зо выступает за пределы корпуса. Втулка, выполненная в виде трубки, соединена с нижней частью корпуса со стороны выступающей части керамического чувствительного элемента. Нижний конец втулки имеет дно с центральным отверстием, к которому прикреплена селективная мембрана, выполненная, по меньшей мере, из одной трубки. Нижний свободный конец 5 селективной мембраны герметично закрыт заглушкой. Полость, ограниченная внутренней поверхностью втулки, соединительным материалом, внешней выступающей за пределы корпус частью керамического чувствительного элемента и внутренней поверхностью селективной мембраны, герметична. Внутренняя полость втулки между ю выступающей частью керамического чувствительного элемента и дном втулки заполнена кремнеземной тканью. Пористая электроизоляционная керамика выполнена в виде цилиндра и размещена с кольцевым зазором по отношению к внутренней поверхности селективной мембраны.
Недостатком известного устройства является относительно низкая
15 герметичность внутренней полости керамического чувствительного элемента, что может привести к натечкам во внутреннюю полость кислорода через зазор между центральной жилой и оболочкой потенциалосъемника, и в конечном результате к окислению эталонного электрода и снижению ресурса и надежности работы устройства в целом. Так же, вследствие отсутствия
20 надежной герметизации верхней части потенциалосъмника, возможно попадание влаги внутрь изоляции двухоболочечного кабеля, что приводит к уменьшению сопротивления центральной жилой и оболочкой кабеля и, как следствие, к потере полезного сигнала и искажению показаний датчика.
25 Раскрытие изобретения.
Задача изобретения заключается в повышении стабильности и достоверности показаний датчика водорода, а также ресурса и надежности его работы в широком диапазоне параметров газовой рабочей среды.
Технический результат,
зо Технический результат состоит в повышении точности показаний датчика водорода за счет обеспечения герметичности внутренней полости керамического чувствительного элемента и поддержания стабильной рабочей температуры на чувствительной части рабочего элемента вследствие наличия 5 постоянного надежного подогрева и теплоизоляции, препятствующий утечки тепла, а также в исключении окисления эталонного электрода датчика.
Для решения поставленной задачи предложена конструкция датчика, включающего водородопроницаемую мембрану, выполненную, по меньшей мере, из одной трубки, снабженной в верхней части измерительным ю платиновым электродом, и корпус, внутри которого расположен потенциалосъемник, керамический чувствительный элемент из твердого электролита. В полости керамического чувствительного элемента размещен электрод сравнения. Рабочий элемент расположен герметично внутри корпуса над чувствительным элементом. Потенциалосъемник проходит через
15 центральное отверстие рабочего элемента, и нижнюю часть рабочего элемента, причем чувствительный элемент выполнен в виде сопряженных между собой цилиндрического элемента и днища, расположенного в нижней части цилиндрического элемента. Верхняя часть потенциалосъемника выполнена герметичной и содержит уплотнитель с плотно прилегающей
20 гайкой. Наружная цилиндрическая поверхность чувствительного элемента герметично соединена с внутренней боковой поверхностью корпуса. Эталонный электрод расположен во внутренней полости чувствительного элемента. Конец центральной жилы потенциалосъемника выведен в объем электрода сравнения, при этом обеспечен электрический контакт между
25 электродом сравнения и нижней частью центральной жилы потенциалосъемника. Металлический корпус чувствительного элемента выполнен в виде трубки и соединен с верхней частью чувствительного элемента посредством герметика. Герметик представляет собой ситалл, состоящий из оксида кремния (Si02) - 45+55 мас.%, оксида алюминия (А120з) зо - 4+6 мас.%, оксида бора (В203) - 18+22 мас.%, оксида титана (Т 2) - 9+12 мас.%, оксида натрия (Na20) - 12+15 мас.%, оксида калия (К20) - 1+2 мас.% и оксида магния (MgO) - 2+3 мас.%.
При этом герметик заполняет кольцевую полость между внутренней поверхностью стенки металлического корпуса чувствительного элемента и 5 верхней втулки и наружной поверхностью керамического чувствительного элемента.
Датчик отличается тем, что дополнительно снабжен нагревателем с теплоизоляцией, служащей для нагрева и поддержания стабильной рабочей температуры на чувствительной части рабочего элемента, а также тем, что к ю корпусу чувствительного элемента, детали которого изготавливаются из коррозионно-стойкой стали, приваривается пароводородная камера, состоящая из никелевого корпуса и тонкостенной водородопроницаемой мембраны, изготовленной из тонкостенной никелевой трубки. Конструкция датчика позволяет повысить стабильность и достоверность показаний 15 датчика водорода, а также ресурс и надежность его работы в широком диапазоне параметров рабочей среды.
Краткое описание чертежей.
Сущность изобретения поясняется чертежами.
На фиг.1 представлено продольное осевое сечение датчика, общий вид. 20 На фиг.2 представлено продольное осевое сечение рабочего элемента датчика.
На фиг.З представлено продольное осевое сечение чувствительного элемента датчика.
Осуществление изобретения.
25 Датчик водорода включает электрод сравнения 1 с погруженной в нее центральной жилой 2 потенциалосъемника 3, размещенный в нижней части керамического чувствительного элемента 4, соединенного с помощью ситалла 5 с металлическим корпусом 6 чувствительного элемента 7, расположенного внутри пароводяной камеры 8. Представленные позиции зо входят в состав рабочего элемента 9 имеющего дно с центральным отверстием, к которому прикреплена водород опроницаемая мембрана 10, выполненная, по меньшей мере, из одной трубки, снабженной в верхней части измерительным платиновым электродом 11. Рабочий элемент располагается в металлическом корпусе 12, герметичность которого 5 обеспечивается наличием уплотнителя 3 и гайкой 14. Нагреватель 15 с теплоизоляцией 16 служат для нагрева и поддержания стабильной рабочей температуры на чувствительной части рабочего элемента.
Теплоизоляция 16 заполняет кольцевую полость между внутренней поверхностью стенки нагревателя 15 и наружной поверхностью корпуса ю датчика содержания водорода в газе 12.
Керамический чувствительный элемент 4 расположен в нижней части датчика и выполнен в виде сопряженных между собой цилиндрической части и донышка.
Наружная цилиндрическая поверхность керамического 15 чувствительного элемента 4 герметично соединена с внутренней боковой поверхностью металлического корпуса 12.
Электрод сравнения 1 расположен во внутренней полости керамического чувствительного элемента 4.
Корпус 12, выполнен в виде трубки, соединенной с металлическим 20 корпусом чувствительного элемента 7.
Герметик 3 представляет собой ситалл, состоящий из оксида кремния (Si02) - 50 мас.%, оксида алюминия (А1203) - 5 мас.%, оксида бора (В203) - 20 мае. %, оксида титана (Ti02) - 10 мае. %, оксида натрия (Na20) - 12 мас.%, оксида калия (К20) - 1 мае. % и оксида магния (MgO) - 2 мае. %.
25 Герметик необходим для предотвращения попадания кислорода из воздуха во внутреннюю полость датчика и изменения свойств ' электрода сравнения 1.
Принцип действия датчика водорода основан на использовании электрохимического метода определения концентрации кислорода с зо использованием сенсора кислорода из твердого оксидного электролита. Для измерения концентрации водорода в газовой среде сенсоры кислорода дооснащены камерой с постоянным давлением паров воды 8 и водородопроницаемой мембраной 10. Водород, содержащийся в среде, через мембрану сенсора водорода обратимо диффундирует внутрь пароводородной 5 камеры 8 к измерительному платиновому электроду 11 , изменяя ЭДС датчика. ЭДС датчика возникает за счет разности парциальных давлений кислорода на электродах гальванического концентрационного элемента (ГКЭ), схема которого может быть представлена в виде Me - ЭС - твердооксидный электролит - ИЭ - Н20, Н2 - Н-мембрана - контролируемая ю среда.
ГКЭ включает керамический чувствительный элемент (КЧЭ) 4 из твердого оксидного электролита, электрод сравнения (ЭС) 1 и измерительный платиновый электрод (ИПЭ) 1 1.
В качестве твердого оксидного электролита выбран материал на
15 основе частично стабилизированного диоксида циркония (ЧСДЦ). ЧСДЦ обладает высокими термомеханическими свойствами. Доля ионной проводимости в диапазоне температур от 300 до 400 °С может быть до 0,95, а в диапазоне температур от 400 до 500 °С составляет не менее 0,97. Стойкость к термоударам превышает 20 °С/с.
20 В качестве электрода сравнения 1 используется Bi - Bi203 в силу стабильности его термодинамических свойств.
В роли измерительного (рабочего) электрода 11 наилучшим образом подходит пористое композитное покрытие на основе платины, 25 обеспечивающее быстрое каталитическое окисление водорода на его поверхности. Специальный состав и методика нанесения такого покрытия на сырец керамического материала КЧЭ с последующим отжигом позволяет получить высокопористый рабочий электрод толщиной 30 мкм с хорошей адгезией к керамике.
зо Пароводородная камера 8 располагается в камере между измерительным платиновым электродом 1 1 и керамическим чувствительным элементом 4 и функционирует как преобразователь термодинамического потенциала водорода в окислительный потенциал пароводородной смеси на платиновом электроде 11. Наиболее подходящим материалом для водородной мембраны 10 является никель по водородной проницаемости и коррозионной стойкости в СВТ.
Промышленная применимость.
Датчик может быть изготовлен в промышленных масштабах и не требует для своего производства специального оборудования.

Claims

5 Формула изобретения Датчик водорода в газовых средах
1. Датчик водорода в газовых средах, включающий водородопроницаемую мембрану и корпус, внутри которого расположен
10 потенциалосъемник, керамический чувствительный элемент из твердого электролита, в полости которого размещен эталонный электрод, пористый платиновый электрод, нанесенный на наружную поверхность керамического чувствительного элемента, гермоввод, расположенный герметично внутри корпуса над керамическим чувствительным элементом,
15 потенциалосъемником, проходящим через центральное отверстие гермоввода, и нижней втулкой, причем керамический чувствительный элемент выполнен в виде сопряженных между собой цилиндрического элемента и днища, расположенного в нижней части цилиндрического элемента, наружная цилиндрическая поверхность керамического
20 чувствительного элемента герметично соединена с внутренней боковой поверхностью корпуса, эталонный электрод расположен во внутренней полости керамического чувствительного элемента, наружная часть днища керамического чувствительного элемента покрыта слоем пористого платинового электрода, конец центральной жилы потенциалосъемника
25 выведен в объем эталонного электрода, при этом обеспечен электрический контакт между эталонным электродом и нижней частью центральной жилы потенциалосъемника, нижняя втулка, выполненная в виде трубки, соединена с нижней частью корпуса со стороны керамического чувствительного элемента, нижний конец нижней втулки имеет дно с центральным зо отверстием, к которому прикреплена селективная мембрана, выполненная, по меньшей мере, из одной трубки, нижний свободный конец селективной мембраны герметично закрыт заглушкой, а полость, ограниченная внутренней поверхностью нижней втулки, внешней частью днища керамического чувствительного элемента и внутренними поверхностями 5 селективной мембраны и заглушки, выполнена герметичной посредством применения герметика ситалл, отличающийся тем, что дополнительно снабжен нагревателем с теплоизоляцией, служащей для нагрева и поддержания стабильной рабочей температуры на чувствительной части рабочего элемента.
ю
2. Датчик по п. 1, отличающийся тем, что сенсоры кислорода дооснащены камерой с постоянным давлением паров воды и водородопроницаемой мембраной для эффективного измерения концентрации водорода в газовой среде.
3. Датчик по п. 1 , отличающийся тем, что в верху 15 потенциалосъемника установлена верхняя гайка, при этом кольцевая полость между внутренней поверхностью стенки гайки и наружной поверхностью потенциалосъемника заполнена уплотнителем.
4. Датчик по п. 1, отличающийся тем, что к корпусу чувствительного элемента, детали которого изготавливаются из коррозионно-стойкой стали,
20 приваривается пароводородная камера, состоящая из никелевого корпуса и тонкостенной водородопроницаемой мембраны, изготовленной из тонкостенной никелевой трубки.
PCT/RU2015/000791 2014-12-15 2015-11-16 Датчик водорода в газовых средах WO2016099330A1 (ru)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2971160A CA2971160A1 (en) 2014-12-15 2015-11-16 Hydrogen detector for gas media
MYPI2017702214A MY195048A (en) 2014-12-15 2015-11-16 Hydrogen Detector for Gas Media
BR112017013045-9A BR112017013045B1 (pt) 2014-12-15 2015-11-16 Detector de hidrogênio para meios gasosos
KR1020177019581A KR102278286B1 (ko) 2014-12-15 2015-11-16 가스 매체용 수소 검출기
EA201650104A EA032157B1 (ru) 2014-12-15 2015-11-16 Датчик водорода в газовых средах
JP2017532102A JP6777633B2 (ja) 2014-12-15 2015-11-16 気相媒体用水素検出器
US15/536,349 US20170322175A1 (en) 2014-12-15 2015-11-16 Hydrogen Detector for Gas Media
CN201580076099.6A CN107295809A (zh) 2014-12-15 2015-11-16 用于气体介质的氢检测器
EP15870438.7A EP3236250A4 (en) 2014-12-15 2015-11-16 Sensor for sensing hydrogen in gaseous media

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2014150467 2014-12-15
RU2014150467/28A RU2602757C2 (ru) 2014-12-15 2014-12-15 Датчик водорода в газовых средах

Publications (1)

Publication Number Publication Date
WO2016099330A1 true WO2016099330A1 (ru) 2016-06-23

Family

ID=56127046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2015/000791 WO2016099330A1 (ru) 2014-12-15 2015-11-16 Датчик водорода в газовых средах

Country Status (11)

Country Link
US (1) US20170322175A1 (ru)
EP (1) EP3236250A4 (ru)
JP (1) JP6777633B2 (ru)
KR (1) KR102278286B1 (ru)
CN (1) CN107295809A (ru)
BR (1) BR112017013045B1 (ru)
CA (1) CA2971160A1 (ru)
EA (1) EA032157B1 (ru)
MY (1) MY195048A (ru)
RU (1) RU2602757C2 (ru)
WO (1) WO2016099330A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108313972B (zh) * 2018-03-16 2024-03-08 苏州芯镁信电子科技有限公司 一种氢气传感器及其加工方法和用途
CN111579303A (zh) * 2020-05-25 2020-08-25 中国原子能科学研究院 用于液态金属中氢的取样装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2124718C1 (ru) * 1997-06-25 1999-01-10 Научно-исследовательский физико-химический институт им.Л.Я.Карпова Анализатор селективного определения водорода в газах
RU2334979C1 (ru) * 2007-02-01 2008-09-27 Федеральное государственное унитарное предприятие Научно-исследовательский Институт Научно-производственное объединение "Луч" (ФГУП НИИ НПО "Луч") Устройство для измерения содержания водорода в жидкостях и газах
RU2379672C1 (ru) * 2008-09-15 2010-01-20 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Физико-энергетический институт имени А.И. Лейпунского" Датчик водорода в жидких и газовых средах
RU90907U1 (ru) * 2009-09-21 2010-01-20 Общество С Ограниченной Ответственностью "Обнинский Центр Науки И Технологий" Твердоэлектролитный датчик водорода для жидких и газовых сред
RU2490623C1 (ru) * 2012-03-05 2013-08-20 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях
RU2533931C1 (ru) * 2013-06-14 2014-11-27 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Физико-энергетический институт имени А.И. Лейпунского" Твердоэлектролитный датчик концентрации водорода в газовых средах

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277547A (ja) * 1986-05-26 1987-12-02 Terumo Corp ガスセンサ−
JP2000249681A (ja) * 1999-02-26 2000-09-14 Riken Corp ガスセンサ封止構造体
RU2298176C2 (ru) * 2004-07-23 2007-04-27 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации - Физико-энергетический институт им. А.И. Лейпунского" Твердоэлектролитный датчик концентрации кислорода и способ его изготовления
CN104003621A (zh) 2014-05-23 2014-08-27 南通市中友钢化玻璃制造有限公司 一种导电玻璃纤维的生产工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2124718C1 (ru) * 1997-06-25 1999-01-10 Научно-исследовательский физико-химический институт им.Л.Я.Карпова Анализатор селективного определения водорода в газах
RU2334979C1 (ru) * 2007-02-01 2008-09-27 Федеральное государственное унитарное предприятие Научно-исследовательский Институт Научно-производственное объединение "Луч" (ФГУП НИИ НПО "Луч") Устройство для измерения содержания водорода в жидкостях и газах
RU2379672C1 (ru) * 2008-09-15 2010-01-20 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Физико-энергетический институт имени А.И. Лейпунского" Датчик водорода в жидких и газовых средах
RU90907U1 (ru) * 2009-09-21 2010-01-20 Общество С Ограниченной Ответственностью "Обнинский Центр Науки И Технологий" Твердоэлектролитный датчик водорода для жидких и газовых сред
RU2490623C1 (ru) * 2012-03-05 2013-08-20 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Твердоэлектролитный датчик для потенциометрического измерения концентрации водорода в газовых смесях
RU2533931C1 (ru) * 2013-06-14 2014-11-27 Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Физико-энергетический институт имени А.И. Лейпунского" Твердоэлектролитный датчик концентрации водорода в газовых средах

Also Published As

Publication number Publication date
MY195048A (en) 2023-01-04
EA032157B1 (ru) 2019-04-30
BR112017013045A2 (pt) 2018-01-02
EA201650104A1 (ru) 2017-07-31
RU2602757C2 (ru) 2016-11-20
JP2018503081A (ja) 2018-02-01
US20170322175A1 (en) 2017-11-09
CN107295809A (zh) 2017-10-24
EP3236250A1 (en) 2017-10-25
BR112017013045B1 (pt) 2021-03-30
KR20170102494A (ko) 2017-09-11
CA2971160A1 (en) 2016-06-23
EP3236250A4 (en) 2018-06-20
KR102278286B1 (ko) 2021-07-20
JP6777633B2 (ja) 2020-10-28
RU2014150467A (ru) 2016-07-10

Similar Documents

Publication Publication Date Title
US8152978B2 (en) Apparatus and method for measuring hydrogen concentration in molten metals
SU1142783A1 (ru) Устройство дл анализа газа с гальваническими чейками на твердом электролите
RU90907U1 (ru) Твердоэлектролитный датчик водорода для жидких и газовых сред
RU2379672C1 (ru) Датчик водорода в жидких и газовых средах
RU2602757C2 (ru) Датчик водорода в газовых средах
RU66056U1 (ru) Устройство для измерения содержания водорода в жидкостях и газах
RU2574423C1 (ru) Датчик водорода в жидких и газовых средах
RU2334979C1 (ru) Устройство для измерения содержания водорода в жидкостях и газах
US10962502B2 (en) Hydrogen detector for gas and fluid media
RU2533931C1 (ru) Твердоэлектролитный датчик концентрации водорода в газовых средах
RU2120624C1 (ru) Электрохимический датчик концентрации водорода в газовых и жидких средах
KR100612270B1 (ko) 고온 고압 수화학 환경을 위한 외부기준전극
RU187673U1 (ru) Электрохимический сенсор для измерения водорода в металлическом расплаве
JPS6111642Y2 (ru)
JPH0829379A (ja) 溶融金属中の水素溶解量測定用センサ
SU1075137A1 (ru) Электрохимический датчик кислорода
JP3855010B2 (ja) 金属流体中の酸素濃度測定装置
JPS6041303B2 (ja) 高温高圧環境下に設置できる照合電極及び腐食試験槽
JPH0829378A (ja) 溶融金属中の水素溶解量測定用センサ
JPS61241649A (ja) 参照電極
JPH0829377A (ja) 溶融金属中の水素溶解量測定用センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201650104

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2971160

Country of ref document: CA

Ref document number: 2017532102

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15536349

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201707419

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 20177019581

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015870438

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017013045

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017013045

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170616