WO2016098966A1 - 레이저를 이용한 3차원 패터닝 방법 - Google Patents

레이저를 이용한 3차원 패터닝 방법 Download PDF

Info

Publication number
WO2016098966A1
WO2016098966A1 PCT/KR2015/005090 KR2015005090W WO2016098966A1 WO 2016098966 A1 WO2016098966 A1 WO 2016098966A1 KR 2015005090 W KR2015005090 W KR 2015005090W WO 2016098966 A1 WO2016098966 A1 WO 2016098966A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan path
laser
laser beam
scan
energy
Prior art date
Application number
PCT/KR2015/005090
Other languages
English (en)
French (fr)
Inventor
박종갑
김보람
허준규
김도훈
Original Assignee
에이피시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이피시스템 주식회사 filed Critical 에이피시스템 주식회사
Priority to JP2017550438A priority Critical patent/JP6616841B2/ja
Priority to CN201580067949.6A priority patent/CN107004780B/zh
Publication of WO2016098966A1 publication Critical patent/WO2016098966A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention is to form a pattern consisting of a three-dimensional structure on the object to be processed using a laser, to set the unit processing area on the object to be processed, and to specify a scan path for the laser beam to move on the unit processing area It relates to a three-dimensional patterning method using a laser to prevent the accumulation of thermal energy on the object to be processed by performing the processing of each unit processing area by setting the step pitch interval.
  • Lasers are used in the manufacture of semiconductor devices such as thin film deposition and annealing processes, or in the processing of tools and devices required for semiconductor device manufacturing processes.
  • a metal shadow mask used in a vacuum deposition process is intended to be manufactured using a laser.
  • the metal shadow mask has a plurality of circular holes or a tapered three-dimensional hole structure.
  • the mask is arranged on a substrate, and a light emitting layer having a desired pattern is deposited on a specific region on the substrate, thereby forming a semiconductor device such as an organic EL. To manufacture.
  • the prior art includes a first irradiation step of irradiating a laser beam to a substrate while transferring a laser beam along a first closed curve provided corresponding to a shape of a mask hole, and disposed inside the first closed curve and having an inner area greater than the first closed curve.
  • the second irradiation step of irradiating the laser beam to the substrate while transferring the laser beam along this small second closed curve is to produce a mask using the laser.
  • the first irradiation step of irradiating a laser beam having a first energy to a position where a mask hole is formed on the substrate and the laser beam is irradiated a laser beam having a second energy less than the first energy in the first irradiation step
  • the second investigation step is to investigate the same location.
  • the relative moving direction of the laser beam is three times for each closed curve, when the number of closed curves is three times (+ X direction movement (direction change 1)-> (-) Y direction movement (direction change 2)-> (-) X direction movement (direction change 4)-> (+) Y direction movement (direction change 3)
  • a total of four turnovers are required, and the turnover increases in proportion to the number of closed curves.
  • the number of three-dimensional structure is about eight million, in proportion to the change of the direction of movement of the laser beam of tens of millions to hundreds of millions, The total travel distance is very large, which causes a decrease in productivity.
  • the processing of one unit three-dimensional structure is completed, the processing of the next unit three-dimensional structure arranged adjacently is made, so that the laser processing for the minute local area (unit three-dimensional structure) without the down time It will be done continuously. This accumulates thermal energy by the laser beam in the minute local region, and generates burrs on the processing surface and the bottom surface, which makes it difficult to process the precision pattern.
  • the present invention has been made to solve the above problems, by setting a unit processing area on the object to be processed, and by setting the scan path to move the laser beam on the unit processing area at a specific step pitch interval processing of each unit processing area
  • the purpose of the present invention is to provide a three-dimensional patterning method using a laser for preventing the accumulation of thermal energy on the object to be processed.
  • the present invention provides a three-dimensional patterning method on a workpiece by using a laser, the method comprising: a first step of setting a unit processing area on the workpiece, and a laser beam processing the unit Starting at one boundary of the area, traveling along the first scan path, and machining the three-dimensional structure contained within the unit area until the other boundary of the unit area is reached.
  • a laser beam processing the unit Starting at one boundary of the area, traveling along the first scan path, and machining the three-dimensional structure contained within the unit area until the other boundary of the unit area is reached.
  • the third step of changing the direction of the laser beam to the next step and moving the second laser path by the step pitch, and repeating the second step and the third step.
  • / f, v relative speed of the workpiece and the laser beam by the operation of the drive unit
  • f pulse frequency of the laser source applied to the workpiece]
  • the energy intensity is set for each pulse of the laser source even in one scan path, or determined by a combination of two or more of them.
  • the three-dimensional structure by setting the 1, ..., n-th scan path and the 1, ..., m-th scan path perpendicular to the scan path.
  • the setting of the energy cumulative distribution for each energy region may be performed by a change in energy intensity for each overlapping number of the scan paths or a pulse of a laser source that moves the scan paths, or in addition, for the energy areas.
  • the step pitch in the direction change from the n-1 th scan path to the n th scan path is equal to or smaller than the size of the laser beam of the n-1 th scan path.
  • the n-th scan path and the n-th scan path move the laser beam in the same direction or in the opposite direction.
  • the present invention is to form a pattern consisting of a three-dimensional structure on the object to be processed using a laser, to set the unit processing area on the object to be processed, and to specify a scan path for the laser beam to move on the unit processing area
  • the processing for the entire unit processing area as a result has the following effects.
  • one three-dimensional structure includes several scan paths, processing of all the scan paths included in the three-dimensional structure is completed in order to complete the processing of the three-dimensional structure. It is possible to prevent the accumulation of thermal energy on the object to be processed by intermittently processing with the rest time, thereby protecting the object and forming a fine three-dimensional structure.
  • the unit processing area is set equal to the size of the object to be processed with a large area, so that a large area processing without a stitching phenomenon is possible.
  • the present invention can significantly reduce the number of turnovers occurring during machining (move the scan path and turn and move to the next step), and the productivity is improved by repeating a relatively simple machining procedure.
  • the laser used in the present invention can suppress burrs on the surface of the workpiece by using an ultra-short pulse laser between tens of femtoseconds and hundreds of picoseconds, thereby making it possible to pattern fine three-dimensional structures. .
  • the effect of the tapered three-dimensional structure is easy to form through the control of the total cumulative distribution of energy for each specific scan path or energy region have.
  • Figure 6-Schematic diagram for implementing a tapered three-dimensional structure through the control of the machining depth according to the present invention energy accumulation distribution setting according to the scan path.
  • the present invention is to form a pattern consisting of a three-dimensional structure on the object to be processed using a laser, to set a unit processing area on the object to be processed, and to scan the path of the laser beam is moved on the unit processing area By setting a specific step pitch interval, the processing of each unit processing area is performed to prevent heat energy from accumulating on the object to be processed.
  • the laser used in the present invention can suppress burrs on the surface of the workpiece by using an ultra short pulse laser between tens of femtoseconds and hundreds of picoseconds, so that patterning of fine three-dimensional structures is possible. It is.
  • FIG. 2 is a schematic diagram of a method for three-dimensional patterning of a workpiece using a laser according to the present invention
  • Figure 3 is a schematic diagram of a method for controlling the processing depth by the overlap rate of the laser beam according to the present invention.
  • 4 is a schematic diagram of controlling the processing depth due to the overlapping number of scan paths according to the present invention
  • FIG. 5 differently sets energy for each pulse of a laser source moving relative to each scan path according to the present invention.
  • Figure 6 is a schematic diagram for setting the tapered three-dimensional structure through the control of the machining depth according to the present invention (energy accumulation distribution setting according to the scan path)
  • a first step of setting a unit processing area on the workpiece, and the laser beam is the unit processing area Starting at one boundary, moving along the first scan path, and machining the three-dimensional structure included in the unit processing area until the other boundary of the unit processing area is reached.
  • the laser beam is redirected to the next step and moved by the step pitch.
  • the fourth step is performed to process the entire unit processing area. Is done.
  • the object to be processed in the present invention may be a metal shadow mask used in a vacuum deposition process or any object that can be processed with a laser during the production of an organic EL or an organic semiconductor device.
  • a via hole formed in a PCB or a case in which a three-dimensional pattern is formed in a specific region on a semiconductor substrate may be used.
  • the three-dimensional structure in the present invention means to be processed in an intaglio form on the surface of the workpiece, a single three-dimensional structure may be formed on the workpiece, a plurality of three-dimensional structures of the same or different types It may be formed as a dog. Such a three-dimensional structure may be formed while forming a specific pattern. In the present invention, this three-dimensional structure pattern is referred to as a three-dimensional structure for convenience.
  • the unit processing region in the present invention means a region in which a three-dimensional structure or a three-dimensional structure pattern can be formed on a workpiece by one setting of the patterning device according to the present invention, or the experimenter A specific area may be arbitrarily designated and set as the unit processing area.
  • the unit processing area may include one or more three-dimensional structure, it is preferable to set the size of the unit processing area large in consideration of the processing speed.
  • the unit processing region may be formed in singular or plural, and when the processing of the unit processing region is completed, the formation of the three-dimensional structure pattern on the workpiece is completed.
  • a method of three-dimensional patterning of a workpiece by using a laser according to the present invention is to first set a unit processing area on the workpiece (first step).
  • the unit processing region may include a singular or plural three-dimensional structure, and is set as a virtual region on the workpiece.
  • the length of the unit processing region refers to the length that the laser beam can move along one scan path without changing direction, and the width thereof is generally formed by the changed step pitch, which will be described later.
  • the entire processing area of the three-dimensional structure (three-dimensional structure pattern) is included in the unit processing area, so that the entire processing is completed without dividing the processing area several times.
  • the scanner device it is possible to eliminate the stitching problem caused by dividing the entire workpiece into several divided regions.
  • the unit processing area equal to the size of the large object to be processed, it is possible to process a large object to be processed without stitching phenomenon.
  • the laser beam starts at one boundary of the unit processing region and moves along the first scan path and is included in the unit processing region until it reaches the other boundary of the unit processing region.
  • the machining of the three-dimensional structure is performed (second step).
  • the first scan path is set from one boundary of the unit processing region set on the workpiece to the other boundary, and the three-dimensional structure (or three-dimensional structure pattern) included in the unit processing region while the laser beam moves accordingly. Machining is carried out on all or part of.
  • the laser beam When the laser beam reaches the other boundary of the unit processing area while the laser beam moves along the first scan path, the laser beam is redirected to the next step, and the step pitch is increased by the step pitch. It moves to the second scan path (step 3).
  • the laser when the laser beam reaches the other boundary of the unit processing area, the laser is turned off, the direction of the laser beam is switched, and the second scan path is moved after the set step pitch is moved. Will be set. At this time, the laser is turned on again.
  • the step pitch refers to a distance between adjacent scan paths.
  • the step pitch is a distance between the first scan path and the second scan path, and moves the second scan path from the center of the laser beam that moves the first scan path. It means the distance to the center of the laser beam.
  • the first scan path and the second scan path may be in the same direction or may be set in opposite directions as shown in FIG. 2. That is, the moving direction of the laser beam may be set to the reverse. That is, the n-1 th scan path and the n th scan path may be set to move the laser beam in the same direction or in the opposite direction, and the present invention is not limited thereto.
  • the plurality of scan paths may be set in a specific direction or in the opposite direction. And combinations thereof.
  • the step pitch in changing the direction from the first scan path to the second scan path is formed to be equal to or smaller than the size of the laser beam of the first scan path, so that a uniform pattern is processed. That is, the step pitch in the direction change from the n-1 th scan path to the n th scan path is characterized by being equal to or smaller than the size of the laser beam of the n-1 th scan path.
  • the n ⁇ 1 th scan pitch and the n th scan pitch may be set differently according to the shape of the 3D structure.
  • the scan pitch v / f (v: the relative speed of the workpiece and the laser beam by the operation of the drive unit, f: the pulse frequency of the laser source applied on the workpiece), the workpiece and the pulse laser Considering the relative speed of the beam and the pulse frequency, it means the interval between successive pulse laser beams.
  • This step pitch serves as a reference for setting the overlap rate of the laser beam, which will be described later.
  • the overlap rate of the laser beam increases, which affects the setting of the processing depth of the three-dimensional structure. Get mad.
  • step 4 machining of the entire unit processing area is performed.
  • the laser beam is moved along the set first scan path, thereby processing the three-dimensional structure formed on the first scan path.
  • the laser beam moves by the step pitch and moves along the second scan path to reach the boundary on the first unit processing area.
  • the nth scan path is set, and when the laser beam movement is completed and reaches a boundary of the unit processing area, machining of the 3D structure or the 3D structure pattern included in the unit processing area is performed. Will be completed.
  • the present invention is to form a pattern consisting of a three-dimensional structure on the object to be processed using a laser, to set a unit processing area on the object to be processed, the laser beam is moved on the unit processing area By setting the scan path at a specific step pitch interval, processing of each unit processing area is performed to prevent heat energy from accumulating on the object to be processed, thereby protecting the object to be processed and forming a fine pattern.
  • one 3D structure included in the processing area includes a plurality of scan paths, so that processing of all the scan paths included in the 3D structure is completed in order to complete the processing of one 3D structure.
  • processing the structure is made intermittently with a rest time to prevent the accumulation of thermal energy on the object to be processed, it is possible to protect the object and to form a fine three-dimensional structure.
  • the processing depth corresponding to each scan path when the laser beam is moved along the scan path, it is possible to set the processing depth corresponding to each scan path. That is, the machining depth of the first scan path may be set to a certain value, the machining depth of the second scan path may be set to another value, and the machining depth of the nth scan path may be different from each other or at the center of the scan path. It can also be set symmetrically. This can be variously set according to the shape of the three-dimensional structure, the setting of the processing depth can be implemented by controlling the energy accumulation distribution of the laser beam.
  • the setting of the processing depth according to the overlap ratio of the laser beam is a method of setting the relative speed of the beam differently for each scan path, while fixing the pulse frequency value of the laser source unit, and fixing the relative speed value of the beam. For example, there is a method of setting pulse frequency values differently for each scan path.
  • the overlapping degree of the laser beam to set the processing depth, the deeper the processing depth of the three-dimensional structure is set to increase the overlap rate of the laser beam.
  • 3 is a schematic view of controlling the processing depth by the degree of overlap of the laser beam, to control the overlap rate of the laser beam for each scan path to form a three-dimensional structure having a depth.
  • the setting of the processing depth may be controlled by the number of overlaps of the scan path. That is, the depth of processing of the three-dimensional structure can be set by controlling the energy accumulation distribution depending on how many times the laser beam is moved on the same scan path.
  • both the relative speed and the pulse frequency value of the laser beam are fixed (that is, the scan pitch is constant), and the number of overlapping scan paths is selectively set in the scan path in the unit processing area.
  • FIG. 4 is a schematic diagram of controlling the processing depth by the overlapping number of scan paths, and forming a three-dimensional structure having a depth by controlling the overlapping number of the laser beam for each scan path.
  • the setting of the processing depth may be determined by setting an energy intensity for each scan path or setting an energy intensity for each pulse of a laser source even in one scan path or a combination of the two. That is, the depth of processing of the three-dimensional structure can be set by controlling the energy accumulation distribution according to the control of the energy intensity of the laser beam on the same scan path.
  • the energy intensity varies for each pulse of the laser source during the relative position movement along each scan path.
  • the energy intensity is set differently for each scan path.
  • FIG. 5 is a schematic diagram of controlling the processing depth by differently setting the energy intensity for each pulse of the laser source moving relative position along each scan path, the depth by controlling the intensity of the energy of the laser beam along each scan path To form a three-dimensional structure.
  • any one of the overlap rate of the laser beam moving the scan path, the number of overlap of the scan path, and the energy intensity of the laser beam moving the scan path, or two or more of these May be determined by a combination.
  • the 3D structure is formed by setting the 1, ..., n-th scan path (first direction) and the 1, ..., m-th scan path (second direction) perpendicular to the scan path. can do.
  • the machining depths of the n-th scan path in the first direction in the first direction and the m-th scan path in the first and second directions in the second direction are equally set. In this way, the depth of cut is set for all remaining scan paths.
  • route is set to the same or larger value.
  • the machining depth is set in the same way for the remaining scan paths.
  • the energy accumulation distribution allocated to the second energy region is set to a value equal to or greater than the energy accumulation distribution allocated to the first energy region, and in such a manner, the allocation of energy accumulation to the remaining energy regions is sequential. It is set to a value.
  • the energy cumulative distribution setting for each energy region is performed by the overlapping number of the scan paths or the change in the energy intensity of the laser beam moving along the scan paths.
  • FIG. 7 illustrates a case in which an energy accumulation distribution for an energy region is controlled by the overlapping number of scan paths, and in a state in which a relative speed, pulse frequency, and pulse energy value of a fixed value laser beam are set, the first energy region A specific overlapping frequency of the scan path for the difference region of the second and second energy regions is set.
  • the taper-shaped three-dimensional structure is set to the overlapping frequency greater than or equal to the overlapping frequency for the difference region of the second energy region and the third energy region, and the above energy accumulation distribution is controlled for all remaining energy regions. To form.
  • FIG. 8 illustrates a case in which an energy accumulation distribution is controlled for each energy region by a change in energy intensity for each pulse of a laser source moving along the scan path, and the intensity level of pulse energy for each energy region is set to the same value. To set. That is, the pulse energy intensity of the same waveform is set for the first scan path and the nth scan path.
  • the intensity of the energy is determined.
  • the overlapping frequency of the scan path may be sequentially set, or the energy intensity may be sequentially set for each pulse of the laser source that moves the scan path, and the cumulative energy distribution may be set for each energy region.
  • the present invention facilitates the formation of the three-dimensional structure by setting the processing depth for the scan path, and the formation of the tapered three-dimensional structure through the control of the total cumulative distribution of energy for each specific scan path or energy region It is to facilitate.
  • FIG. 9 is a schematic diagram of a three-dimensional patterning apparatus using a laser according to the present invention
  • Figures 10 and 11 is an embodiment of the beam branching means in the optical portion of the three-dimensional patterning apparatus using a laser according to the present invention
  • 12 is a schematic diagram showing an area to be processed on a workpiece to be processed by using a combination of an optical portion and a driving portion by a beam diverging means in the three-dimensional patterning apparatus using a laser according to the present invention.
  • a three-dimensional patterning apparatus using a laser in the three-dimensional patterning device to be processed by using a laser, the source unit for supplying a pulsed laser beam, the energy of the laser beam Optical unit for forming a specific distribution on the surface of the workpiece, and a driving unit for relatively moving the position of the laser beam to a specific position of the three-dimensional structure on the surface of the workpiece to form a three-dimensional structure pattern And controlling the relative position of the laser beam and the three-dimensional structure, and controlling the intensity of the pulse energy of the laser beam, the presence / absence of pulses, and the overlap of the laser beams in a specific processing area to determine the total energy accumulation distribution. It is largely composed of a control unit.
  • the source portion is a tool for processing to supply a laser beam, preferably a pulsed laser beam having a pulse width between tens of femtoseconds and hundreds of picoseconds, to suppress burrs on the surface of the workpiece. It is possible to pattern the microscopic three-dimensional structure.
  • the optical unit is used to form energy of the laser beam in a specific distribution on the surface of the workpiece, and includes a homogenizer optical system for homogenizing the energy distribution of a laser beam spot. .
  • the homogenizer optical system may include a beam homogenizer optical system including a diffractive optical element (DOE) or a refrctive optical element (ROE), and may include an imaging mask made of chromium or a dielectric material. , projection lenses or f-sin lenses.
  • DOE diffractive optical element
  • ROE refrctive optical element
  • the optical unit may further include beam splitting means for performing a simultaneous machining process by a plurality of diverged laser beams, and the beam splitting means may be a DOE (diffractive optical element) or a beam split optical system. Can be used.
  • DOE diffractive optical element
  • FIG. 10 illustrates an embodiment using a beam diverging means, which uses a DOE (diffractive optical element).
  • the homogenizer optical system, a mask, an f-sin lens, and the like may be used to branch a homogenized laser beam to simultaneously process the same. To do that. In other words, productivity can be improved by enabling machining processes in multiple scan paths at the same time.
  • FIG. 11 shows a beam split optical system as another embodiment of the beam splitting means, which irradiates a workpiece with a plurality of beams branched by the transmission and reflectance of the laser beam.
  • the driving unit relatively moves a position of the laser beam on a surface of the workpiece to a specific position of the three-dimensional structure to form a three-dimensional structure (or a three-dimensional structure pattern). Allow the location to move.
  • the drive unit may include a scanner including one or more galvano mirrors to change the absolute position of the laser beam on the stationary workpiece.
  • the driving unit is formed of a workpiece stage feeder or a roll-to-roll feeder for linear movement of one or more axes, thereby changing the absolute position of the workpiece with respect to the stationary beam, Alternatively, both the absolute position change of the laser beam and the position change of the substrate may be operated in conjunction. That is, the galvano mirror, the workpiece stage feeder, and the roll-to-roll feeder can be used in combination with each other as necessary.
  • the optical unit may be used by combining the driving unit and the beam branching means for performing a simultaneous machining process by a plurality of branched beams.
  • FIG. 12 is a view showing an area to be processed on an object to be processed by using a combination of an optical part and a driving part by a beam diverging means, and in one embodiment, three branched beams (a branched first beam and a branched second beam). , The third beam diverged) allows the machining process to proceed simultaneously.
  • Such a beam branching means and a drive unit can be large-area processed by a simple method, even if the unit processing area is set to the same size as the size of the object to be processed, thereby improving its productivity, and having no large stitching phenomenon. It is possible to form a fine three-dimensional structure of.
  • the energy controller controls the relative position of the laser beam and the three-dimensional structure, and accumulates total energy by controlling the intensity of the pulse energy of the laser beam, the presence / absence of pulses, and the overlap of the laser beam in a specific processing region. To determine the distribution.
  • a three-dimensional structure (which may include a taper shape) that is arbitrarily disposed on the surface of the object to be processed is precisely processed at a predetermined position by the motion of a stage or a scanner. It is.
  • a patterning device may be configured to be configured in a multi header to improve productivity.
  • two or more optical parts are provided for the same source part so that two or more laser beams are irradiated to the object to be processed, or a plurality of driving parts are provided to control the movement of the laser beam or the object to be different.
  • the laser beam may be irradiated to the unit processing area so that laser processing may be simultaneously performed.
  • the unit processing area may be divided by the number of the corresponding headers, and at the same time, the processing of a plurality of unit processing areas may be performed to further increase productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 레이저를 이용하여 피가공대상물에 3차원 구조물로 이루어진 패턴을 형성하기 위한 것으로서, 레이저를 이용하여 피가공대상물에 3차원 패터닝을 하는 방법에 있어서, 상기 피가공대상물 상에 단위 가공영역을 설정하는 제1단계와, 레이저 빔이 상기 단위 가공영역의 한 경계에서 시작하여, 1번째 스캔경로(scan path)를 따라 이동해가며, 상기 단위 가공영역의 다른 쪽 경계에 도달할 때까지, 상기 단위 가공영역 내에 포함되는 3차원 구조물에 대한 가공이 이루어지는 제2단계와, 상기 레이저 빔을 다음 스텝(step)으로 방향을 전환하고, 스텝피치(step pitch)만큼 이동시켜 2번째 스캔경로로 이동시키는 제3단계 및 상기 제2단계 및 제3단계를 반복수행하여 n번째 스캔경로를 따라 레이저 빔의 이동이 완료되면 단위 가공영역 전체에 대한 가공이 이루어지는 제4단계를 포함한다.

Description

레이저를 이용한 3차원 패터닝 방법
본 발명은 레이저를 이용하여 피가공대상물에 3차원 구조물로 이루어진 패턴을 형성하기 위한 것으로서, 피가공대상물 상에 단위 가공영역을 설정하고, 그 단위 가공영역 상에 레이저 빔이 이동하는 스캔경로를 특정 스텝피치 간격으로 설정하여 각 단위 가공영역의 가공을 수행하여, 피가공대상물에 열에너지가 누적되는 것을 방지하기 위한 레이저를 이용한 3차원 패터닝 방법에 관한 것이다.
레이저는 박막 증착이나 어닐링 공정과 같은 반도체 소자의 직접 제조시에 활용되거나, 반도체 소자 제조 공정에 필요한 도구나 장치의 가공 등에 활용되고 있다.
본 발명에서는 유기EL이나 유기 반도체 소자 등의 제조시에, 진공 증착 공정에서 사용되는 메탈 쉐도우 마스크를 레이저를 이용하여 제조하고자 하는 것이다.
이러한 메탈 쉐도우 마스크는 다수의 원형 홀이나 테이퍼진 형태의 3차원 홀 구조를 가지는 것으로서, 기판에 상기 마스크를 정렬시키고, 원하는 패턴의 발광층을 기판 상의 특정 영역에 증착하여, 유기EL과 같은 반도체 소자를 제조하는 것이다.
종래의 레이저를 이용한 마스크 가공 방법에 관한 기술로서, 대한민국특허청 등록번호 10-1267220호 "레이저를 이용한 마스크 제조방법"이 있다.
상기 종래기술은 마스크 홀의 형상에 대응하게 마련된 제1폐곡선을 따라 레이저빔을 이송시키면서 기판에 레이저빔을 조사하는 제1조사단계와, 상기 제1폐곡선의 내부에 배치되며 상기 제1폐곡선보다 내부 면적이 작은 제2폐곡선을 따라 레이저빔을 이송시키면서 기판에 레이저빔을 조사하는 제2조사단계로 구성되어, 레이저를 이용하여 마스크를 제조하는 것이다.
또한, 기판상에서 마스크 홀이 형성된 위치에 제1에너지를 가진 레이저빔을 조사하는 제1조사단계와, 상기 제1에너지보다 작은 제2에너지를 가진 레이저빔을 상기 제1조사단계에서 레이저빔이 조사된 동일한 위치에 조사하는 제2조사단계로 이루어진 것이다.
그러나, 상기의 종래 기술은 각 마스크 홀에 따라, 상기의 제1폐곡선과 제2폐곡선을 반복 수행하여야 하며, 가공 깊이의 조절을 단순히 레이저의 출력에너지의 세기만으로 조절할 수 있도록 하여, 정밀한 패턴의 가공이 어려운 면이 있다.
도 1을 참조하여 상기 종래기술을 상세히 설명하면, 하나의 3차원 구조물(마스크 홀)을 가공하기 위해서는, 각각의 폐곡선에 대해 레이저 빔의 상대 이동 방향은, 폐곡선의 수가 3회인 경우에, (+)X방향 이동(방향 전환 1)->(-)Y방향 이동(방향 전환 2)->(-)X방향 이동(방향 전환 4)->(+)Y방향 이동(방향 전환 3)을 포함하게 되어 총 4번의 방향 전환이 요구된되며, 상기 방향 전환은 폐곡선의 개수에 비례하여 증가하게 된다.
일반적으로 UHD급 해상도의 AMOLED의 미세 메탈 쉐도우 마스크(FMM)를 제작할 경우, 3차원 구조물의 개수는 약 팔백만개 수준으로, 이에 비례하여 수 천만~수 억회의 레이저 빔의 이동 방향 전환이 필요하여, 총 이동 거리가 매우 크게 되어 생산성 저하의 원인이 되고 있다.
또한, 하나의 단위 3차원 구조물에 대한 가공이 완료된 이후에, 인접하여 배열된 다음 단위 3차원 구조물에 대한 가공이 이루어지게 되므로, 미세한 국부 영역(단위 3차원 구조물)에 대한 레이저 가공이 휴지 시간없이 연속적으로 이루어지게 된다. 이는 미세 국부 영역에 레이저 빔에 의한 열 에너지가 누적되어, 가공 표면과 밑면에 버(burr)를 발생시켜, 정밀 패턴의 가공이 어려운 단점이 있다.
본 발명은 상기 문제점을 해결하기 위한 것으로서, 피가공대상물 상에 단위 가공영역을 설정하고, 그 단위 가공영역 상에 레이저 빔이 이동하는 스캔경로를 특정 스텝피치 간격으로 설정하여 각 단위 가공영역의 가공을 수행하여, 피가공대상물에 열에너지가 누적되는 것을 방지하기 위한 레이저를 이용한 3차원 패터닝 방법의 제공을 그 목적으로 한다.
본 발명은 상기 목적을 달성하기 위해서, 레이저를 이용하여 피가공대상물에 3차원 패터닝을 하는 방법에 있어서, 상기 피가공대상물 상에 단위 가공영역을 설정하는 제1단계와, 레이저 빔이 상기 단위 가공영역의 한 경계에서 시작하여, 1번째 스캔경로(scan path)를 따라 이동해가며, 상기 단위 가공영역의 다른 쪽 경계에 도달할 때까지, 상기 단위 가공영역 내에 포함되는 3차원 구조물에 대한 가공이 이루어지는 제2단계와, 상기 레이저 빔을 다음 스텝(step)으로 방향을 전환하고, 스텝피치(step pitch)만큼 이동시켜 2번째 스캔경로로 이동시키는 제3단계 및 상기 제2단계 및 제3단계를 반복수행하여 n번째 스캔경로를 따라 레이저 빔의 이동이 완료되면 단위 가공영역 전체에 대한 가공이 이루어지는 제4단계를 포함하는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법을 기술적 요지로 한다.
또한, 상기 레이저를 이용한 3차원 패터닝 방법은, 각 스캔경로에 대응하여 가공깊이를 설정하는 것이 바람직하다.
여기에서, 상기 가공깊이의 설정은, 상기 스캔경로를 이동하는 레이저 빔의 오버랩률(overlap rate)[오버랩률=(레이저 빔의 크기 - 스캔피치)/레이저 빔의 크기 x 100, 스캔피치=v/f, v : 구동부의 동작에 의한 피가공대상물과 레이저 빔의 상대 속도, f : 피가공대상물에 인가되는 레이저 소스의 펄스 진동수], 상기 스캔경로의 중첩회수 및 상기 스캔경로 별로 에너지 강도를 설정하거나 하나의 스캔경로 내에서도 레이저 소스의 펄스 별로 에너지 강도를 설정하거나, 이들 중 둘 이상의 조합에 의해 결정되는 것이 바람직하다.
한편, 상기 1,...,n번째 스캔경로와, 상기 스캔경로에 수직하는 1,...,m번째 스캔경로를 설정하여, 3차원 구조물을 형성하는 것이 바람직하다.
또한, 상기 스캔경로에 따라 에너지 누적 분포를 순차적인 강도로 설정하여 테이퍼 형상의 3차원 구조물을 형성하는 것이 바람직하다.
또한, 상기 단위 가공영역에 포함된 3차원 구조물 영역 상에 다수개의 에너지 영역을 설정하여, 에너지 영역별로 에너지 누적 분포를 순차적인 강도로 설정하여 가공깊이를 설정하는 것이 바람직하다.
구체적으로는, 상기 에너지 영역별로 에너지 누적 분포의 설정은, 상기 스캔경로의 중첩회수 또는 상기 스캔경로를 이동하는 레이저 소스의 펄스 별로 에너지 강도의 변화에 의해 이루어지거나, 또한, 상기 에너지 영역별로 에너지 누적 분포의 설정은, 상기 스캔경로의 중첩회수를 순차적으로 설정하거나, 상기 스캔경로를 이동하는 레이저 소스의 펄스 별로 에너지 강도를 순차적으로 설정하여 테이퍼 형상의 3차원 구조물을 형성하는 것이 바람직하다.
또한, n-1번째 스캔경로에서 n번째 스캔경로로의 방향 전환시 스텝피치는, n-1번째 스캔경로의 레이저 빔의 크기보다 같거나 작은 것이 바람직하다.
또한, n-1번째 스캔경로와 n번째 스캔경로는, 같은 방향 또는 반대 방향으로 레이저 빔이 이동하는 것이 바람직하다.
또한, n-1번째 스캔피치와 n번째 스캔피치는, 3차원 구조물의 형태에 따라 다르게 설정되는 것(스캔피치=v/f, v : 구동부의 동작에 의한 피가공대상물과 레이저 빔의 상대 속도, f : 피가공대상물 위에 인가되는 레이저 소스의 펄스 진동수)이 바람직하다.
본 발명은 레이저를 이용하여 피가공대상물에 3차원 구조물로 이루어진 패턴을 형성하기 위한 것으로서, 피가공대상물 상에 단위 가공영역을 설정하고, 그 단위 가공영역 상에 레이저 빔이 이동하는 스캔경로를 특정 스텝피치 간격으로 설정하여 스캔경로 별로 가공이 이루어지게 함으로써 결과적으로 각 단위 가공영역 전체에 대한 가공이 이루어지도록 하는 것으로서, 다음과 같은 효과가 있다.
1)열에너지 누적 방지 효과
본 발명은 하나의 3차원 구조물이 여러 개의 스캔경로를 포함하고 있어서, 3차원 구조물에 대한 가공이 모두 완료되기 위해서는, 그에 포함된 모든 스캔경로에 대한 가공이 이루어지게 되므로, 하나의 3차원 구조물에 대한 가공이 휴지 시간을 갖고 간헐적으로 이루어지도록 하여 피가공대상물에 열에너지가 누적되는 것을 방지하여, 피가공대상물을 보호하고 미세 3차원 구조물의 형성이 가능한 효과가 있다.
2)스티칭 제거 효과
단위 가공영역을 설정함에 있어서, 상기 단위 가공영역 내에 3차원 구조물(3차원 구조물 패턴)의 전체 영역이 포함되도록 설정함으로써, 가공영역을 여러 번에 걸쳐 나누지 않고도 전체 가공이 완료되게 된다. 따라서, 종래의 스캐너 장치를 이용하여 전체 가공물을 여러 개의 분할영역으로 나누어 가공함으로 인해 발생하는 스티칭 발생 문제를 제거할 수 있는 효과가 있다.
3)대면적 생산 효과
본 발명은 단위 가공영역을 대면적의 피가공대상물의 크기와 동일하게 설정하여 스티칭 현상없는 대면적 가공이 가능한 효과가 있다.
4)생산성 효과
본 발명은 가공 중에 발생하는 방향전환의 횟수를 현저히 줄일 수 있고(스캔경로를 이동하며 가공->다음 스텝으로 방향 전환 및 이동), 비교적 단순한 가공 절차를 반복 수행함으로서 생산성 향상의 효가가 있다.
5)버(burr) 억제 효과
본 발명에 사용되는 레이저는 수십 펨토 초에서 수백 피코 초 사이의 초단 펄스 레이저의 사용으로 피가공대상물의 표면에서의 버(burr)를 억제할 수 있어, 미세 3차원 구조물의 패터닝이 가능한 효과가 있다.
6)테이퍼 형상 구현의 용이성 효과
특히, 상기 스캔경로에 대해 가공깊이를 설정하여 3차원 구조물의 형성이 용이하도록 하였으며, 특정 스캔경로 또는 에너지 영역 별로 에너지의 총 누적 분포 제어를 통해 테이퍼 형상의 3차원 구조물의 형성이 용이한 효과가 있다.
도 1 - 종래 기술에 따른 레이저를 이용한 가공방법에 대한 모식도.
도 2 - 본 발명에 따른 레이저를 이용하여 피가공대상물에 3차원 패터닝을 하는 방법에 대한 모식도.
도 3 - 본 발명에 따른 레이저 빔의 오버랩률에 의한 가공깊이를 제어하는 방법에 대한 모식도.
도 4 - 본 발명에 따른 스캔경로의 중첩회수에 의한 가공깊이를 제어하는 것에 대한 모식도.
도 5 - 본 발명에 따른 각 스캔경로를 따라 상대 위치 이동하는 레이저 소스의 펄스 별로 에너지를 다르게 설정함에 의한 가공깊이를 제어하는 것에 대한 모식도.
도 6 - 본 발명에 따른 가공깊이의 제어를 통한 테이퍼 형상의 3차원 구조물을 구현하는 방법에 대한 모식도(스캔경로에 따른 에너지 누적 분포 설정).
도 7 - 본 발명에 따른 가공깊이의 제어를 통한 테이퍼 형상의 3차원 구조물을 구현하는 방법에 대한 모식도(스캔경로의 중첩회수에 의해 에너지 영역에 대한 에너지 누적 분포를 제어하는 경우).
도 8 - 본 발명에 따른 가공깊이의 제어를 통한 테이퍼 형상의 3차원 구조물을 구현하는 방법에 대한 모식도(스캔경로 별로 펄스 에너지의 강도를 가변하여 에너지 누적 분포를 제어하는 경우).
도 9 - 본 발명에 따른 레이저를 이용한 3차원 패터닝 장치에 대한 모식도.
도 10, 도 11 - 본 발명에 따른 레이저를 이용한 3차원 패터닝 장치의 광학부에 있어서, 빔 분기 수단의 실시예.
도 12 - 본 발명에 따른 레이저를 이용한 3차원 패터닝 장치에 있어서, 빔 분기 수단에 의한 광학부와 구동부를 조합 사용에 의한 피가공대상물에 가공되는 영역을 표시한 모식도.
본 발명은 레이저를 이용하여 피가공대상물에 3차원 구조물로 이루어진 패턴을 형성하기 위한 것으로서, 상기 피가공대상물 상에 단위 가공영역을 설정하고, 그 단위 가공영역 상에 레이저 빔이 이동하는 스캔경로를 특정 스텝피치 간격으로 설정하여 각 단위 가공영역의 가공을 수행하여, 피가공대상물에 열에너지가 누적되는 것을 방지한 것이다.
또한, 본 발명에 사용되는 레이저는 수십 펨토 초에서 수백 피코 초 사이의 초단 펄스 레이저의 사용으로 피가공대상물의 표면에서의 버(burr)를 억제할 수 있어, 미세 3차원 구조물의 패터닝이 가능하도록 한 것이다.
특히, 상기 스캔경로에 대해 가공깊이를 설정하여 3차원 구조물의 형성이 용이하도록 하였으며, 특정 스캔경로 또는 에너지 영역별로 에너지의 총 누적 분포 제어를 통해 테이퍼 형상의 3차원 구조물의 형성이 용이하도록 한 것이다.
이하에서는 첨부된 도면을 참조하여 본 발명에 대해 상세히 설명하고자 한다. 도 2는 본 발명에 따른 레이저를 이용하여 피가공대상물에 3차원 패터닝을 하는 방법에 대한 모식도이고, 도 3은 본 발명에 따른 레이저 빔의 오버랩률에 의한 가공깊이를 제어하는 방법에 대한 모식도이고, 도 4는 본 발명에 따른 스캔경로의 중첩회수에 의한 가공깊이를 제어하는 것에 대한 모식도이고, 도 5는 본 발명에 따른 각 스캔경로를 따라 상대 위치 이동하는 레이저 소스의 펄스 별로 에너지를 다르게 설정함에 의한 가공깊이를 제어하는 것에 대한 모식도이고, 도 6은 본 발명에 따른 가공깊이의 제어를 통한 테이퍼 형상의 3차원 구조물을 구현하는 방법에 대한 모식도(스캔경로에 따른 에너지 누적 분포 설정)이고, 도 7은 본 발명에 따른 가공깊이의 제어를 통한 테이퍼 형상의 3차원 구조물을 구현하는 방법에 대한 모식도(스캔경로의 중첩회수에 의해 에너지 영역에 대한 에너지 누적 분포를 제어하는 경우)이며, 도 8은 본 발명에 따른 가공깊이의 제어를 통한 테이퍼 형상의 3차원 구조물을 구현하는 방법에 대한 모식도(스캔경로 별로 펄스 에너지의 강도를 가변하여 에너지 누적 분포를 제어하는 경우)이다.
도시된 바와 같이, 본 발명에 따른 레이저를 이용하여 피가공대상물에 3차원 패터닝을 하는 방법에 있어서, 상기 피가공대상물 상에 단위 가공영역을 설정하는 제1단계와, 레이저 빔이 상기 단위 가공영역의 한 경계에서 시작하여, 1번째 스캔경로(scan path)를 따라 이동해가며, 상기 단위 가공영역의 다른 쪽 경계에 도달할 때까지, 상기 단위 가공영역 내에 포함된 3차원 구조물에 대한 가공이 이루어지는 제2단계와, 상기 제2단계의 가공 후, 상기 레이저 빔을 2번째 스캔경로로 이동시키기 위해, 상기 레이저 빔을 다음 스텝(step)으로 방향을 전환하고, 스텝피치(step pitch)만큼 이동시키는 제3단계 및 상기 제2단계 및 제3단계를 반복수행하여 n번째 스캔경로를 따라 레이저 빔의 이동이 완료되면 단위 가공영역 전체에 대한 가공이 이루어지는 제4단계로 크게 이루어진다.
본 발명에서의 피가공대상물은 일반적으로 유기EL이나 유기 반도체 소자 등의 제조시에, 진공 증착 공정에서 사용되는 메탈 쉐도우 마스크이나, 레이저로 가공할 수 있는 어떠한 대상물이든 상관없다. 특히, 반도체 소자의 패키징에 있어서, PCB에 형성되는 비아홀(via hole)이나, 반도체 기판 상의 특정 영역에 3차원의 패턴을 형성하고자 하는 경우 등 다양하게 활용될 수 있다.
그리고, 본 발명에서의 3차원 구조물은 피가공대상물의 표면에서 음각 형태로 가공되는 것을 의미하며, 피가공대상물 상에 단일의 3차원 구조물이 형성될 수도 있으며, 동종 또는 이종의 3차원 구조물이 복수 개로 형성될 수도 있다. 이러한 3차원 구조물은 특정 패턴을 이루면서 형성될 수도 있으며, 본 발명에서는 이를 3차원 구조물 패턴이라고 하며, 편의상 3차원 구조물이라고 기술할 때도 있다.
또한, 본 발명에서의 단위 가공영역은 본 발명에 따른 패터닝 장치의 한 번 셋팅으로 피가공대상물 상에 3차원 구조물 또는 3차원 구조물 패턴을 형성할 수 있는 영역을 의미하거나, 실험자가 피가공대상물 상의 특정 영역을 임의로 지정하여 단위 가공영역으로 설정할 수도 있다. 이러한 단위 가공영역은 1개 또는 그 이상의 3차원 구조물을 포함할 수 있으며, 가공속도를 고려하여 상기 단위 가공영역의 크기를 크게 설정하는 것이 바람직하다.
이러한 단위 가공영역은 단수 개 또는 복수 개로 형성될 수 있으며, 단위 가공영역의 가공이 완료되면 피가공대상물에 3차원 구조물 패턴의 형성이 완료되는 것이다.
도 2에 도시된 바와 같이, 본 발명에 따른 레이저를 이용하여 피가공대상물에 3차원 패터닝을 하는 방법은, 먼저, 상기 피가공대상물 상에 단위 가공영역을 설정하는 것이다(제1단계).
상기 단위 가공영역은 3차원 구조물을 단수 또는 복수 개로 포함할 수 있으며, 상기 피가공대상물 상에서의 가상의 영역으로 설정된다.
구체적으로는, 단위 가공영역의 길이는 레이저 빔이 하나의 스캔경로를 따라 방향전환을 하지 않고 이동할 수 있는 길이를 말하며, 그 폭은 후술할 방향전환된 스텝피치만큼 형성되는 것이 일반적이다.
이러한 상기 단위 가공영역을 설정함에 있어서, 단위 가공영역 내에 3차원 구조물(3차원 구조물 패턴)의 전체 영역이 포함되도록 설정함으로써, 가공영역을 여러 번에 걸쳐 나누지 않고도 전체 가공이 완료되게 되어, 종래의 스캐너 장치를 이용하여 전체 가공물을 여러 개의 분할 영역으로 나누어 가공함으로 인해 발생하는 스티칭 발생 문제를 제거할 수 있는 것이다.
또한 상기 단위 가공영역을 대면적의 피가공대상물의 크기와 동일하게 설정하여 스티칭 현상없는 대면적의 피가공대상물의 가공이 가능하게 된다.
그 다음, 레이저 빔이 상기 단위 가공영역의 한 경계에서 시작하여, 1번째 스캔경로(scan path)를 따라 이동해가며, 상기 단위 가공영역의 다른 쪽 경계에 도달할 때까지, 상기 단위 가공영역 내에 포함된 3차원 구조물에 대한 가공이 이루어지는 것이다(제2단계).
즉, 피가공대상물 상에 설정된 단위 가공영역의 한 경계에서 다른 쪽 경계까지 1번째 스캔경로를 설정하고, 이를 따라 레이저 빔이 이동하면서 단위 가공영역 내에 포함되는 3차원 구조물(또는 3차원 구조물 패턴)에 대한 부분 또는 전체에 대한 가공이 수행되는 것이다.
그리고, 1번째 스캔경로를 따라 레이저 빔이 이동하면서 단위 가공영역의 다른 쪽 경계에 레이저 빔이 도달하게 되면, 상기 레이저 빔을 다음 스텝(step)으로 방향을 전환시키고, 스텝피치(step pitch)만큼 이동시켜 2번째 스캔경로로 이동시키게 된다(제3단계).
즉, 단위 가공영역의 다른 쪽 경계에 레이저 빔이 도달하게 되면, 레이저를 오프(off)시키고, 레이저 빔의 방향을 전환하고, 설정된 스텝피치(step pitch)만큼 이동시킨 후, 2번째 스캔경로를 설정하게 된다. 이때 레이저가 다시 온(on)되게 된다.
상기 스텝피치는 인접하는 스캔경로 간의 거리를 의미하는 것으로서, 예컨대, 1번째 스캔경로와 2번째 스캔경로 사이의 거리로, 1번째 스캔경로를 이동하는 레이저 빔의 중심에서 2번째 스캔경로를 이동하는 레이저 빔의 중심까지의 거리를 의미한다.
여기에서, 1번째 스캔경로와 2번째 스캔경로는 같은 방향일 수도 있으며, 도 2에 도시된 바와 같이, 반대 방향으로 설정될 수도 있다. 즉, 레이저 빔의 이동방향이 반대로 설정될 수 있다. 즉, n-1번째 스캔경로와 n번째 스캔경로는 같은 방향 또는 반대 방향으로 레이저 빔이 이동하도록 설정할 수 있으며, 이에 한정하지 않고, 복수 회의 스캔경로는 특정 방향으로, 또는 그 반대 방향으로 설정되거나, 이들의 조합으로 설정될 수 있다.
또한, 1번째 스캔경로에서 2번째 스캔경로로의 방향 전환시 스텝피치는, 1번째 스캔경로의 레이저 빔의 크기보다 같거나 작게 형성되어, 균일한 패턴의 가공이 이루어지도록 한다. 즉, n-1번째 스캔경로에서 n번째 스캔경로로의 방향 전환시 스텝피치는, n-1번째 스캔경로의 레이저 빔의 크기보다 같거나 작은 것을 특징으로 한다.
또한, n-1번째 스캔피치와 n번째 스캔피치는, 3차원 구조물의 형태에 따라 다르게 설정될 수도 있다. 여기에서, 상기 스캔피치=v/f(v : 구동부의 동작에 의한 피가공대상물과 레이저 빔의 상대 속도, f : 피가공대상물 위에 인가되는 레이저 소스의 펄스 진동수)로, 피가공대상물과 펄스 레이저 빔의 상대 속도와 펄스 진동수를 고려하여, 연속되는 펄스 레이저 빔 간의 간격을 의미한다.
이러한 스텝피치는 후술할 레이저 빔의 오버랩률(overlap rate)을 설정하는 기준이 되어, 상기 스캔피치의 간격이 좁을수록 레이저 빔의 오버랩률이 증가하게 되며, 이는 3차원 구조물의 가공깊이 설정에 영향을 미치게 된다.
그 다음, 상기 제1단계 및 제2단계를 반복수행하여, n번째 스캔경로를 따라 레이저 빔의 이동이 완료되면 단위 가공영역 전체에 대한 가공이 이루어지게 된다(제4단계).
도 2에 도시된 바와 같이, 설정된 1번째 스캔경로를 따라 레이저 빔이 이동하면서, 1번째 스캔경로 상에 형성된 3차원 구조물에 대한 가공이 이루어지게 된다. 그리고, 레이저 빔이 단위 가공영역 상의 다른 쪽 경계에 도달하면, 다음 스텝으로의 방향 전환 후, 스텝피치만큼 이동하여 2번째 스캔경로를 따라 레이저 빔이 이동하여 처음 단위 가공영역 상의 경계에 도달하게 된다. 다시 이를 반복하여, n번째 스캔경로를 설정하고, 이를 따라 레이저 빔의 이동이 완료되어 단위 가공영역의 어느 경계에 도달하게 되면, 단위 가공영역에 포함된 3차원 구조물 또는 3차원 구조물 패턴에 대한 가공이 완료되게 되는 것이다.
이에 의해 가공 중에 발생하는 레이저 빔의 방향전환의 횟수를 현저히 줄일 수 있고(스캔경로를 이동하며 가공->다음 스텝으로 방향전환 및 이동), 비교적 단순한 가공절차를 반복수행하여 가공이 이루어지게 되므로, 생산성이 향상되게 된다.
이와 같이, 본 발명은 레이저를 이용하여 피가공대상물에 3차원 구조물로 이루어진 패턴을 형성하기 위한 것으로서, 상기 피가공대상물 상에 단위 가공영역을 설정하고, 그 단위 가공영역 상에 레이저 빔이 이동하는 스캔경로를 특정 스텝피치 간격으로 설정하여 각 단위 가공영역의 가공을 수행하여, 피가공대상물에 열에너지가 누적되는 것을 방지하여, 피가공대상물을 보호하고, 미세 패턴의 형성이 가능하도록 한 것이다.
또한 가공영역 내에 포함되는 하나의 3차원 구조물이 여러 개의 스캔경로를 포함하고 있어서, 하나의 3차원 구조물에 대한 가공이 모두 완료되기 위해서는 그에 포함된 모든 스캔경로에 대한 가공이 이루어지게 되므로, 3차원 구조물에 대한 가공이 휴지 시간을 갖고 간헐적으로 이루어지도록 하여 피가공대상물에 열에너지가 누적되는 것을 방지하여, 피가공대상물을 보호하고 미세 3차원 구조물의 형성이 가능하게 된다.
한편, 상기 스캔경로를 따라 레이저 빔이 이동할 때에, 각 스캔경로에 대응하여 가공깊이를 설정할 수 있다. 즉, 1번째 스캔경로의 가공깊이를 얼마로 설정하고, 2번째 스캔경로의 가공깊이는 또 다른 값으로 설정할 수 있으며, n번째 스캔경로의 가공깊이를 각각 다르게 또는 가장 가운데에 존재하는 스캔경로에 대칭적으로 설정할 수도 있다. 이는 3차원 구조물의 형태에 따라 다양하게 설정될 수 있으며, 이러한 가공깊이의 설정은 레이저 빔의 에너지 누적 분포를 제어함으로써 구현될 수 있다.
첫번째, 가공깊이를 설정하는 방법으로서, 상기 스캔경로를 이동하는 레이저 빔의 오버랩률(overlap rate)[오버랩률=(레이저 빔의 크기 - 스캔피치)/레이저 빔의 크기 x 100, 스캔피치=v/f, v : 구동부의 동작에 의한 피가공대상물과 레이저 빔의 상대 속도, f : 피가공대상물 위에 인가되는 레이저 소스의 펄스 진동수]에 의해 제어된다.
상기 레이저 빔의 오버랩률에 따른 가공깊이의 설정은 , 레이저 소스부의 펄스 진동수(pulse frequency) 값을 고정한 채, 빔의 상대 속도를 스캔경로 별로 다르게 설정하는 방법과, 빔의 상대 속도 값을 고정한 채, 펄스 진동수 값을 스캔경로 별로 다르게 설정하는 방법이 있다.
즉, 상기 레이저 빔의 오버랩률은 레이저 빔의 크기에 따른 스캔피치의 제어에 의해 설정될 수 있으며, 스캔피치=v/f에서, 빔의 상대 속도 및 펄스 진동수 값을 조절하여, 각 스캔경로 별로 레이저 빔의 오버랩되는 정도를 제어하여, 가공깊이를 설정하게 하는 것으로서, 3차원 구조물의 가공깊이가 깊을수록 레이저 빔의 오버랩률은 커지도록 설정하게 된다.
도 3은 이러한 레이저 빔의 오버랩 정도에 의한 가공깊이를 제어하는 것에 대한 모식도를 나타낸 것으로서, 각 스캔경로 별로 레이저 빔의 오버랩률을 제어하여 깊이가 있는 3차원 구조물을 형성하는 것이다.
두번째, 상기 가공깊이의 설정은 상기 스캔경로의 중첩회수에 의해 제어될 수 있다. 즉, 동일한 스캔경로 상에서 레이저 빔을 몇 번 이동시키느냐에 따른 에너지 누적 분포를 제어하여 3차원 구조물의 가공깊이를 설정할 수 있는 것이다.
구체적으로는, 각 스캔경로에 대해서 레이저 빔의 상대 속도와 펄스 진동수 값을 모두 고정한 채(즉, 스캔피치는 일정), 단위 가공영역 내의 스캔경로에 선택적으로 스캔경로의 중첩회수를 설정하는 것이다.
도 4는 스캔경로의 중첩회수에 의한 가공깊이를 제어하는 것에 대한 모식도로서, 각 스캔경로 별로 레이저 빔의 중첩회수를 제어하여 깊이가 있는 3차원 구조물을 형성하는 것이다.
세번째, 상기 가공깊이의 설정은 상기 스캔경로 별로 에너지 강도를 설정하거나 하나의 스캔경로 내에서도 레이저 소스의 펄스 별로 에너지 강도를 설정하거나 이 둘의 조합에 의해 결정될 수 있다. 즉, 동일한 스캔경로 상에서 레이저 빔의 에너지의 세기를 조절에 따른 에너지 누적 분포를 제어하여 3차원 구조물의 가공깊이를 설정할 수 있는 것이다.
구체적으로는, 각 스캔경로에 대해 레이저 빔의 상대 속도와 펄스 진동수 값을 모두 고정한 채(즉, 스캔피치는 일정), 각 스캔경로를 따라 상대 위치 이동하는 도중에 레이저 소스의 펄스 별로 에너지 강도를 다르게 설정하거나, 각 스캔경로 별로 에너지 강도를 다르게 설정하는 것이다.
도 5는 각 스캔경로를 따라 상대 위치 이동하는 레이저 소스의 펄스 별로 에너지 강도를 다르게 설정함에 의한 가공깊이를 제어하는 것에 대한 모식도로서, 각 스캔경로를 따라 레이저 빔의 에너지의 강도를 제어하여 깊이가 있는 3차원 구조물을 형성하는 것이다.
상기의 가공깊이를 설정하는 방법에 있어서, 상기 스캔경로를 이동하는 레이저 빔의 오버랩률, 상기 스캔경로의 중첩회수 및 상기 스캔경로를 이동하는 레이저 빔의 에너지 강도 중 어느 하나, 또는 이들 중 둘 이상의 조합에 의해 결정될 수도 있다.
한편, 상기 1,...,n번째 스캔경로(제1방향)와, 상기 스캔경로에 수직하는 1,...,m번째 스캔경로(제2방향)를 설정하여, 3차원 구조물을 형성할 수 있다.
이러한 3차원 구조물을 형성하는 방법으로서, 상기 스캔경로에 따라 에너지 누적 분포를 순차적인 강도로 설정하여 테이퍼 형상의 3차원 구조물을 형성할 수 있는 것이다. 즉, 두 방향으로 스캔경로를 직교하게 설정한 채로 스캔경로에 따라 에너지 누적 분포를 순차적인 강도로 설정하여 테이퍼 형상의 3차원 구조물이 형성될 수 있도록 가공깊이를 구현하는 것이다.
구체적으로는, 도 6에 도시된 바와 같이, 제1방향의 1번째 제1방향의 n번째, 그리고, 제2방향의 1번째, 제2방향의 m번째 스캔경로의 가공깊이를 동일하게 설정하고, 그와 같은 방식으로 나머지 모든 스캔경로에 대한 가공 깊이를 설정하는 것이다.
예컨대, 제1방향의 1번째(=제1방향 n번째=제2방향 1번째=제2방향 m번째)의 스캔경로의 가공깊이보다, 제1방향의 2번째(=제1방향 n-1번째=제2방향 2번째=제2방향 m-1번째)의 스캔경로의 가공깊이를 같거나 더 큰 값으로 설정하는 것이다. 나머지 스캔경로에 대해서서도 가공깊이는 동일한 방식으로 설정한다.
또한, 테이퍼 형상의 3차원 구조물을 형성하는 또 다른 방법으로서, 상기 단위 가공영역에 포함된 3차원 구조물 영역 상에 다수개의 에너지 영역을 설정하여, 에너지 영역별로 에너지 누적 분포를 순차적인 강도로 설정하여 테이퍼 형상의 3차가공깊이를 설정할 수도 있다.
구체적으로는 제2에너지 영역에 할당되는 에너지 누적분포는 제1에너지 영역에 할당되는 에너지 누적분포보다 크거나 같은 값으로 설정하고, 그와 같은 방식으로 나머지 에너지 영역에 대한 에너지 누적의 할당은 순차적인 값으로 설정된다.
이러한 에너지 영역별로 에너지 누적 분포의 설정은, 상기 스캔경로의 중첩회수 또는 상기 스캔경로를 이동하는 레이저 빔의 에너지 강도의 변화에 의해 이루어지게 된다.
도 7은 스캔경로의 중첩회수에 의해 에너지 영역에 대한 에너지 누적 분포가 제어되는 경우를 나타낸 것으로서, 고정 값의 레이저 빔의 상대 속도, 펄스 진동수, 그리고 펄스 에너지 값이 설정된 상태에서, 제1에너지 영역과 제2에너지 영역의 차집합 영역에 대한 스캔경로의 특정 중첩회수를 설정하는 것이다.
그리고, 제2에너지 영역과 제3에너지 영역의 차집합 영역에 대해 상기 중첩회수보다 크거나 같은 중첩회수로 설정하고, 나머지 모든 에너지 영역에 대해 위와 같은 에너지 누적 분포를 제어하여 테이퍼 형상의 3차원 구조물을 형성하는 것이다.
도 8은 상기 스캔경로를 이동하는 레이저 소스의 펄스 별로 에너지 강도의 변화에 의해 각 에너지 영역에 대해 에너지 누적 분포가 제어되는 경우를 나타낸 것으로서, 각 에너지 영역에 대해 펄스 에너지의 강도 수준을 동일한 값으로 설정하는 것이다. 즉, 1번째 스캔경로와 n번째 스캔경로에 대해 동일한 파형의 펄스 에너지 강도를 설정하는 것이다.
도 8에 도시된 바와 같이, 2번째(=n-1번째) 스캔경로의 펄스 에너지의 파형은 1번째(=n번째) 스캔경로의 펄스 에너지의 파형과 비교해, 각 에너지 영역에 대응하여 각 펄스 에너지의 강도가 결정되는 것이다.
여기에서, 상기 스캔경로의 중첩회수를 순차적으로 설정하거나, 상기 스캔경로를 이동하는 레이저 소스의 펄스 별로 에너지 강도를 순차적으로 설정하여 에너지 영역별로 에너지 누적 분포를 순차적인 강도로 설정할 수 있다.
이와 같이, 본 발명은 상기 스캔경로에 대해 가공깊이를 설정하여 3차원 구조물의 형성이 용이하도록 하였으며, 특정 스캔경로 또는 에너지 영역별로 에너지의 총 누적 분포 제어를 통해 테이퍼 형상의 3차원 구조물의 형성이 용이하도록 한 것이다.
이하에서는 상기의 레이저를 이용한 3차원 패터닝 방법을 실현시키기 위한 레이저를 이용한 3차원 패터닝 장치에 대해 설명하고자 한다. 도 9는 본 발명에 따른 레이저를 이용한 3차원 패터닝 장치에 대한 모식도이고, 도 10 및 도 11은 본 발명에 따른 레이저를 이용한 3차원 패터닝 장치의 광학부에 있어서, 빔 분기 수단의 실시예를 나타낸 것이며, 도 12는 본 발명에 따른 레이저를 이용한 3차원 패터닝 장치에 있어서, 빔 분기 수단에 의한 광학부와 구동부를 조합 사용에 의한 피가공대상물에 가공되는 영역을 표시한 모식도이다.
도시된 바와 같이, 본 발명에 따른 레이저를 이용한 3차원 패터닝 장치는, 레이저를 이용하여 피가공대상물에 3차원 패터닝을 하는 장치에 있어서, 펄스 레이저 빔을 공급하는 소스부와, 상기 레이저 빔의 에너지를 상기 피가공대상물의 표면 상에 특정 분포로 형성시키기 위한 광학부와, 3차원 구조물 패턴의 형성을 위해 상기 피가공대상물의 표면 상에서 레이저 빔의 위치를 3차원 구조물의 특정 위치로 상대 이동시키는 구동부 및 상기 레이저 빔과 상기 3차원 구조물의 상대적 위치를 제어하고, 특정 가공영역에서 레이저 빔의 펄스 에너지의 세기, 펄스의 온/오프 유무, 레이저 빔의 오버랩을 제어하여 총 에너지 누적 분포를 결정하는 에너지제어부로 크게 구성된다.
상기 소스부는 가공을 위한 툴로써, 레이저 빔, 바람직하게는 수십 펨토 초에서 수백 피코초 사이의 펄스 폭을 갖는 펄스 레이저 빔을 공급하도록 하여, 피가공대상물의 표면에서의 버(burr)를 억제할 수 있어, 미세 3차원 구조물의 패터닝이 가능하도록 한 것이다.
상기 광학부는 상기 레이저 빔의 에너지를 상기 피가공대상물의 표면 상에 특정 분포로 형성시키기 위한 것으로서, 레이저 빔 스팟(spot)의 에너지 분포를 균질화시키기 위한 호모지나이저(homogenizer) 광학계를 포함하여 사용한다.
여기에서, 상기 호모지나이저 광학계는 DOE(diffractive optical element) 또는 ROE(refrctive optical element)를 포함하는 빔 호모지나이저 광학계를 포함할 수 있고, 크롬 또는 유전체 재료로 만들어지는 이미징 마스크를 포함할 수도 있으며, projection 렌즈 또는 f-sin 렌즈를 포함할 수 있다.
또한, 상기 광학부는 분기된 다수의 레이저 빔에 의한 동시 가공 프로세스를 수행하기 위한 빔 분기 수단을 더 구비할 수 있으며, 상기 빔 분기 수단으로는 DOE(diffractive optical element) 또는 빔 스플릿(beam split) 광학계를 사용할 수 있다.
도 10은 빔 분기 수단을 사용한 일실시예로, DOE(diffractive optical element)를 사용한 것으로서, 호모지나이저 광학계 및 마스크, f-sin 렌즈 등을 사용하여 균질화된 레이저 빔을 분기하여 동시 가공 프로세스가 가능하도록 하는 것이다. 즉, 동시에 다수개의 스캔경로에서의 가공 프로세스가 가능하도록 하여 생산성을 향상시킨 것이다.
도 11은 빔 분기 수단의 다른 실시예로 빔 스플릿(beam split) 광학계를 도시한 것으로서, 레이저 빔의 투과, 반사율에 의한 분기된 다수의 빔을 피가공대상물에 조사시키는 것이다.
그리고, 상기 구동부는 3차원 구조물(또는 3차원 구조물 패턴)의 형성을 위해 상기 피가공대상물의 표면 상에서 레이저 빔의 위치를 3차원 구조물의 특정 위치로 상대 이동시키는 것으로서, 피가공대상물 또는 레이저 빔의 위치를 이동시킬 수 있도록 한다.
여기에서, 상기 구동부는 1개 이상의 갈바노 미러를 포함하는 스캐너를 포함하여 정지된 피가공대상물 상에 레이저 빔의 절대 위치를 변경시킬 수 있도록 한다.
또한, 상기 구동부는 1축 이상의 직선운동을 하는 피가공대상물 스테이지 이송장치 또는 롤투롤(Roll-to-Roll) 이송장치로 형성되어, 정지된 빔에 대해 피가공대상물의 절대 위치를 변경시키거나, 또는 레이저 빔의 절대 위치 변경과 기판의 위치 변경 둘 다를 연동하여 동작시킬 수 있도록 한다. 즉, 상기 갈바노 미러와 피가공대상물 스테이지 이송장치 및 롤투롤 이송장치는 필요에 의해 서로 조합하여 사용할 수 있다.
여기에서, 상기 광학부는, 분기된 다수의 빔에 의한 동시 가공 프로세스를 수행하기 위한 빔 분기 수단과 상기 구동부를 조합하여 사용할 수 있다.
도 12는 빔 분기 수단에 의한 광학부와 구동부를 조합 사용에 의한 피가공대상물에 가공되는 영역을 표시한 것으로서, 일실시예로 3개로 분기된 빔(분기된 1번째 빔, 분기된 2번째 빔, 분기된 3번째 빔)에 의해 동시에 가공 프로세스가 진행되도록 한다.
이러한 빔 분기 수단 및 구동부의 구성은, 단위 가공영역을 피가공대상물의 크기와 동일한 정도로 대면적으로 설정함에도 간단한 방법으로 대면적 가공이 가능하여 그 생산성을 향상시킬 수 있으며, 스티칭 현상이 없는 대면적의 미세 3차원 구조물의 형성이 가능하게 된다.
그리고, 상기 에너지제어부는 상기 레이저 빔과 상기 3차원 구조물의 상대적 위치를 제어하고, 특정 가공영역에서 레이저 빔의 펄스 에너지의 세기, 펄스의 온/오프 유무, 레이저 빔의 오버랩을 제어하여 총 에너지 누적 분포를 결정하는 것이다.
이와 같이, 초단 펄스 레이저와 적절한 광학계를 이용하여, 피가공대상물의 표면에 임의적으로 배치되는 3차원 구조물(테이퍼 형태가 포함될 수 있음)을 스테이지 또는 스캐너의 모션(motion)으로 정해진 위치에서 정확하게 가공되도록 하는 것이다.
이러한 패터닝 장치의 일부 구성요소를 다수 개 구성하여 멀티 헤더(multi header)로 구성되도록 하여, 생산성을 향상시키도록 할 수 있다.
구체적으로는, 동일한 소스부에 대해 두개 이상의 광학부를 구비하여 피가공대상물에 조사되는 레이저 빔이 두개 이상되도록 하거나, 다수개의 구동부를 구비하여 레이저 빔 또는 피가공대상물의 움직임을 제어하여 하여, 각기 다른 단위 가공영역으로 레이저 빔이 조사되도록 하여 레이저 가공이 동시에 이루어지도록 할 수 있다.
즉, 멀티 헤더 시스템의 경우, 상기 단위 가공영역은 해당 헤더의 개수만큼 분할되도록 하여, 동시에 다수의 단위 가공영역의 가공이 이루어지도록 하여 생산성을 더욱 높일 수 있도록 한다.

Claims (14)

  1. 레이저를 이용하여 피가공대상물에 3차원 패터닝을 하는 방법에 있어서,
    상기 피가공대상물 상에 단위 가공영역을 설정하는 제1단계;
    레이저 빔이 상기 단위 가공영역의 한 경계에서 시작하여, 1번째 스캔경로(scan path)를 따라 이동해가며, 상기 단위 가공영역의 다른 쪽 경계에 도달할 때까지, 상기 단위 가공영역 내에 포함되는 3차원 구조물에 대한 가공이 이루어지는 제2단계;
    상기 레이저 빔을 다음 스텝(step)으로 방향을 전환하고, 스텝피치(step pitch)만큼 이동시켜 2번째 스캔경로로 이동시키는 제3단계; 및
    상기 제2단계 및 제3단계를 반복수행하여 n번째 스캔경로를 따라 레이저 빔의 이동이 완료되면 단위 가공영역 전체에 대한 가공이 이루어지는 제4단계;를 포함하는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  2. 제 1항에 있어서, 상기 레이저를 이용한 3차원 패터닝 방법은,
    각 스캔경로에 대응하여 가공깊이를 설정하는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  3. 제 2항에 있어서, 상기 가공깊이의 설정은,
    상기 스캔경로를 이동하는 레이저 빔의 오버랩률(overlap rate)[오버랩률=(레이저 빔의 크기 - 스캔피치)/레이저 빔의 크기 x 100, 스캔피치=v/f, v : 구동부의 동작에 의한 피가공대상물과 레이저 빔의 상대 속도, f : 피가공대상물에 인가되는 레이저 소스의 펄스 진동수]에 의해 결정되는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  4. 제 2항에 있어서, 상기 가공깊이의 설정은,
    상기 스캔경로의 중첩회수에 의해 결정되는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  5. 제 2항에 있어서, 상기 가공깊이의 설정은,
    상기 스캔경로 별로 에너지 강도를 설정 및 하나의 스캔경로내에서도 레이저 소스의 펄스 별로 에너지 강도를 설정하거나 이 둘의 조합에 의해 결정되는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  6. 제 2항에 있어서, 상기 가공깊이의 설정은,
    상기 스캔경로를 이동하는 레이저 빔의 오버랩률(overlap rate)[오버랩률=(레이저 빔의 크기 - 스캔피치)/레이저 빔의 크기 x 100, 스캔피치=v/f, v : 구동부의 동작에 의한 피가공대상물과 레이저 빔의 상대 속도, f : 피가공대상물에 인가되는 레이저 소스의 펄스 진동수];
    상기 스캔경로의 중첩회수; 및
    상기 스캔경로 별로 에너지 강도를 설정하거나 하나의 스캔경로 내에서도 레이저 소스의 펄스 별로 에너지 강도를 설정;
    이들 중 둘 이상의 조합에 의해 결정되는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  7. 제 1항에 있어서, 상기 1,...,n번째 스캔경로와, 상기 스캔경로에 수직하는 1,...,m번째 스캔경로를 설정하여, 3차원 구조물을 형성하는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  8. 제 7항에 있어서, 상기 스캔경로에 따라 에너지 누적 분포를 순차적인 강도로 설정하여 테이퍼 형상의 3차원 구조물을 형성하는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  9. 제 1항에 있어서, 상기 단위 가공영역에 포함된 3차원 구조물 영역 상에 다수개의 에너지 영역을 설정하여, 에너지 영역별로 에너지 누적 분포를 순차적인 강도로 설정하여 가공깊이를 설정하는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  10. 제 9항에 있어서, 상기 에너지 영역별로 에너지 누적 분포의 설정은,
    상기 스캔경로의 중첩회수 또는
    상기 스캔경로를 이동하는 레이저 소스의 펄스 별로 에너지 강도의 변화에 의해 이루어지는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  11. 제 9항에 있어서, 상기 에너지 영역별로 에너지 누적 분포의 설정은,
    상기 스캔경로의 중첩회수를 순차적으로 설정하거나,
    상기 스캔경로를 이동하는 레이저 소스의 펄스 별로 에너지 강도를 순차적으로 설정하여 테이퍼 형상의 3차원 구조물을 형성하는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  12. 제 1항에 있어서, n-1번째 스캔경로에서 n번째 스캔경로로의 방향 전환시 스텝피치는, n-1번째 스캔경로의 레이저 빔의 크기보다 같거나 작은 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  13. 제 1항에 있어서, n-1번째 스캔경로와 n번째 스캔경로는, 같은 방향 또는 반대 방향으로 레이저 빔이 이동하는 것을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
  14. 제 1항에 있어서, n-1번째 스캔피치와 n번째 스캔피치는, 3차원 구조물의 형태에 따라 다르게 설정되는 것(스캔피치=v/f, v : 구동부의 동작에 의한 피가공대상물과 레이저 빔의 상대 속도, f : 피가공대상물 위에 인가되는 레이저 소스의 펄스 진동수)을 특징으로 하는 레이저를 이용한 3차원 패터닝 방법.
PCT/KR2015/005090 2014-12-17 2015-05-21 레이저를 이용한 3차원 패터닝 방법 WO2016098966A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017550438A JP6616841B2 (ja) 2014-12-17 2015-05-21 レーザーを用いた3次元パターニング方法
CN201580067949.6A CN107004780B (zh) 2014-12-17 2015-05-21 利用激光的三维图案化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140182140A KR101582161B1 (ko) 2014-12-17 2014-12-17 레이저를 이용한 3차원 패터닝 방법
KR10-2014-0182140 2014-12-17

Publications (1)

Publication Number Publication Date
WO2016098966A1 true WO2016098966A1 (ko) 2016-06-23

Family

ID=55164785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005090 WO2016098966A1 (ko) 2014-12-17 2015-05-21 레이저를 이용한 3차원 패터닝 방법

Country Status (5)

Country Link
JP (1) JP6616841B2 (ko)
KR (1) KR101582161B1 (ko)
CN (1) CN107004780B (ko)
TW (1) TWI580095B (ko)
WO (1) WO2016098966A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226918A (ja) * 2016-06-24 2017-12-28 エイピー系▲統▼股▲フン▼有限公司Ap Systems Inc. 電鋳めっき法を用いた微細金属マスクの製造方法
JP2019072763A (ja) * 2017-10-11 2019-05-16 エーピー システムズ インコーポレイテッド レーザー加工方法
KR20200068209A (ko) * 2018-12-05 2020-06-15 한양대학교 에리카산학협력단 음각 방식의 패턴 제조 방법 및 그 제조 방법으로 제조된 금속 나노 코팅층

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819105B1 (ko) * 2016-05-31 2018-01-16 (주)솔리드이엔지 3차원 프린팅 시스템 및 방법
JP6649328B2 (ja) * 2017-09-01 2020-02-19 東芝機械株式会社 レーザ加工装置、及び、レーザ加工方法
KR102100361B1 (ko) 2018-08-22 2020-04-13 주식회사 코윈디에스티 금속 마스크 생산 장치
CN111185665A (zh) * 2020-01-21 2020-05-22 武汉铱科赛科技有限公司 一种线路结构蚀刻方法、装置、系统与设备
CN111783795B (zh) * 2020-06-10 2023-12-01 恒通西交智能机器(广东)有限公司 将图像转换为激光扫描路径的方法、装置、设备及介质
WO2023084681A1 (ja) * 2021-11-11 2023-05-19 ギガフォトン株式会社 レーザ加工システム、レーザ加工方法、及び電子デバイスの製造方法
CN114734058B (zh) * 2022-03-31 2024-02-09 西安航天发动机有限公司 一种多激光拼接扫描路径规划方法及多激光拼接扫描方法
KR102495826B1 (ko) * 2022-04-11 2023-02-06 에이피에스머티리얼즈(주) 멀티 레이어 레이저 조사 기반의 마스크 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050047092A (ko) * 2005-02-04 2005-05-19 티디케이가부시기가이샤 레이저 가공 장치, 가공 방법 및 상기 가공 방법을 이용한회로 기판의 제조 방법
JP2007273833A (ja) * 2006-03-31 2007-10-18 Sharp Corp 半導体膜の結晶化装置および結晶化方法
KR20080016691A (ko) * 2005-06-01 2008-02-21 페톤 가부시끼가이샤 레이저 가공장치 및 레이저 가공방법
WO2012173008A1 (ja) * 2011-06-15 2012-12-20 株式会社日本製鋼所 レーザ処理装置およびレーザ処理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107339A (ja) * 1981-12-19 1983-06-27 Takanobu Yamamoto レ−ザ−ビ−ムによる印判彫刻方法
JPH06304769A (ja) * 1993-04-20 1994-11-01 Iida Kogyo Kk レーザ彫刻加工方法
JPH1177340A (ja) * 1997-09-10 1999-03-23 Miyachi Technos Corp マーキング方法
JP3213882B2 (ja) * 1997-03-21 2001-10-02 住友重機械工業株式会社 レーザ加工装置及び加工方法
JP2000006597A (ja) * 1998-06-19 2000-01-11 Naoto Nishida 紙加工品
JP2002336540A (ja) * 2001-05-18 2002-11-26 Yoshiko Kido 麻雀道具製造方法およびこれを用いて製造した麻雀道具
JPWO2003064107A1 (ja) * 2002-02-01 2005-05-26 住友重機械工業株式会社 加工計画方法及び装置
JP2005066653A (ja) * 2003-08-26 2005-03-17 Gijutsu Transfer Service:Kk レーザマーキング装置およびレーザマーキング方法
US7903336B2 (en) * 2005-10-11 2011-03-08 Gsi Group Corporation Optical metrological scale and laser-based manufacturing method therefor
JP4467633B2 (ja) * 2008-03-24 2010-05-26 丸文株式会社 ビーム加工装置、ビーム加工方法およびビーム加工基板
JP4961468B2 (ja) * 2009-10-29 2012-06-27 三星ダイヤモンド工業株式会社 レーザー加工方法、被加工物の分割方法およびレーザー加工装置
KR101267220B1 (ko) 2011-10-06 2013-05-24 주식회사 엘티에스 레이저를 이용한 마스크 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050047092A (ko) * 2005-02-04 2005-05-19 티디케이가부시기가이샤 레이저 가공 장치, 가공 방법 및 상기 가공 방법을 이용한회로 기판의 제조 방법
KR20080016691A (ko) * 2005-06-01 2008-02-21 페톤 가부시끼가이샤 레이저 가공장치 및 레이저 가공방법
JP2007273833A (ja) * 2006-03-31 2007-10-18 Sharp Corp 半導体膜の結晶化装置および結晶化方法
WO2012173008A1 (ja) * 2011-06-15 2012-12-20 株式会社日本製鋼所 レーザ処理装置およびレーザ処理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226918A (ja) * 2016-06-24 2017-12-28 エイピー系▲統▼股▲フン▼有限公司Ap Systems Inc. 電鋳めっき法を用いた微細金属マスクの製造方法
JP2019072763A (ja) * 2017-10-11 2019-05-16 エーピー システムズ インコーポレイテッド レーザー加工方法
JP7246884B2 (ja) 2017-10-11 2023-03-28 エーピーエス ホールディングス コーポレイション レーザー加工方法
KR20200068209A (ko) * 2018-12-05 2020-06-15 한양대학교 에리카산학협력단 음각 방식의 패턴 제조 방법 및 그 제조 방법으로 제조된 금속 나노 코팅층
KR102125148B1 (ko) 2018-12-05 2020-06-19 한양대학교 에리카산학협력단 음각 방식의 패턴 제조 방법 및 그 제조 방법으로 제조된 금속 나노 코팅층

Also Published As

Publication number Publication date
CN107004780B (zh) 2018-12-11
TW201635614A (zh) 2016-10-01
TWI580095B (zh) 2017-04-21
JP6616841B2 (ja) 2019-12-04
CN107004780A (zh) 2017-08-01
JP2018501115A (ja) 2018-01-18
KR101582161B1 (ko) 2016-01-05

Similar Documents

Publication Publication Date Title
WO2016098966A1 (ko) 레이저를 이용한 3차원 패터닝 방법
WO2017026741A1 (ko) 복합 가공 방법을 이용한 섀도우 마스크의 제조방법 및 이에 의해 제조된 섀도우 마스크
WO2016148380A1 (ko) 레이저 패터닝을 이용한 섀도우 마스크의 제조 장치 및 레이저 패터닝을 이용한 섀도우 마스크의 제조 방법
US6809013B2 (en) Laser processing method and apparatus
US8883656B2 (en) Single-shot semiconductor processing system and method having various irradiation patterns
JP3945805B2 (ja) レーザ加工方法、液晶表示装置の製造方法、レーザ加工装置、半導体デバイスの製造方法
JPH11504264A (ja) ステップアンドリピート露光の方法および装置
KR20120101087A (ko) 비주기적인 펄스 순차 측면 고상화를 위한 시스템 및 방법
US8129658B2 (en) Systems for thin film laser scribing devices
WO2017115975A1 (ko) 레이저 가공장치 및 레이저 가공방법
WO2017039169A1 (ko) 레이저 가공장치 및 이를 이용한 레이저 가공방법
WO2022055062A1 (ko) 레이저 가공 시스템 및 방법
US6759625B1 (en) Device for the laser processing of workpieces
US9755190B2 (en) Laser-induced thermal imaging apparatus, method of laser-induced thermal imaging, and manufacturing method of organic light-emitting display apparatus using the method
JP7382453B2 (ja) 不良箇所の除去方法
WO2020189897A1 (ko) 멀티 빔 가공방법 및 멀티 빔 가공장치
TW202002358A (zh) 轉移裝置、使用方法和調整方法
WO2023200066A1 (ko) 멀티 레이어 레이저 조사 기반의 마스크 제조 방법
JP2023545747A (ja) 作業面上にレーザラインを生成する装置
WO2016002980A1 (ko) 고속 레이저 가공 광학계 시스템 및 이를 이용한 고속 레이저 가공 방법
TWI400747B (zh) Laser irradiation method and device
JP7491778B2 (ja) 走査型縮小投影光学系及びこれを用いたレーザ加工装置
JP2008060314A (ja) レーザアニール装置、レーザアニール方法、及び半導体装置の製造方法
JP5348850B2 (ja) ビーム照射装置
WO2021230634A1 (ko) 홀 형성 장치 및 홀 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017550438

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15870134

Country of ref document: EP

Kind code of ref document: A1