WO2023084681A1 - レーザ加工システム、レーザ加工方法、及び電子デバイスの製造方法 - Google Patents

レーザ加工システム、レーザ加工方法、及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2023084681A1
WO2023084681A1 PCT/JP2021/041508 JP2021041508W WO2023084681A1 WO 2023084681 A1 WO2023084681 A1 WO 2023084681A1 JP 2021041508 W JP2021041508 W JP 2021041508W WO 2023084681 A1 WO2023084681 A1 WO 2023084681A1
Authority
WO
WIPO (PCT)
Prior art keywords
divergence
pulsed laser
laser
processing system
laser processing
Prior art date
Application number
PCT/JP2021/041508
Other languages
English (en)
French (fr)
Inventor
康文 川筋
理 若林
章義 鈴木
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to PCT/JP2021/041508 priority Critical patent/WO2023084681A1/ja
Publication of WO2023084681A1 publication Critical patent/WO2023084681A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing

Definitions

  • the present disclosure relates to a laser processing system, a laser processing method, and an electronic device manufacturing method.
  • a KrF excimer laser device that outputs laser light with a wavelength of about 248 nm and an ArF excimer laser device that outputs laser light with a wavelength of about 193 nm are used.
  • the excimer laser beams output from the KrF and ArF excimer laser devices have pulse widths of several tens of nanoseconds and short wavelengths of about 248 nm and about 193 nm. be able to. Chemical bonds in polymeric materials can be broken by excimer laser light with photon energy higher than the bond energy. Therefore, it is known that the excimer laser beam enables non-heating processing of polymer materials, resulting in a beautiful processed shape. It is also known that materials such as glass and ceramics have high absorptance for excimer laser light, and therefore even materials that are difficult to process with laser light in the visible or infrared region can be processed with excimer laser light.
  • a laser processing system includes a laser device that outputs pulsed laser light, a first beam divergence in a first direction of the pulsed laser light, and a second direction that intersects the first direction.
  • a second beam divergence a divergence adjuster for adjusting the divergence adjuster, a measuring device for measuring the first and second beam divergence of the pulsed laser light that has passed through the divergence adjuster, and the pulsed laser light that has passed through the measuring device a diffractive optical element for splitting; and a processor for controlling a divergence adjuster so that the first and second beam divergence approaches respective target values based on the measurement result of the first and second beam divergence by the measuring instrument. , including.
  • a laser processing method includes outputting pulsed laser light from a laser device, and performing a first beam divergence in a first direction of the pulsed laser light and a second beam divergence crossing the first direction.
  • a second beam divergence in the direction of and a pulsed laser beam is made incident on a divergence adjuster that adjusts the divergence adjuster to measure the first and second beam divergence of the pulsed laser light that has passed through the divergence adjuster with a measuring instrument.
  • the divergence adjuster Based on the measurement results of the first and second beam divergence by the instrument, the divergence adjuster is controlled so that the first and second beam divergence approaches respective target values, and the pulsed laser light that has passed through the measuring instrument is adjusted. It includes branching with a diffractive optical element and irradiating the workpiece.
  • an electronic device manufacturing method includes a laser device that outputs pulsed laser light, a first beam divergence in a first direction of the pulsed laser light, and a crossing of the first direction. a second beam divergence in a second direction; A divergence adjuster is operated so that the first and second beam divergence approaches respective target values based on the results of measurement of the first and second beam divergence by the diffractive optical element that splits the pulsed laser beam and the measuring instrument.
  • a laser processing system including a processor for controlling laser processing of the interposer substrate to fabricate the interposer; coupling the interposer and the integrated circuit chip to electrically connect each other; coupling the interposer and the circuit board to each other; Including electrically connecting.
  • FIG. 1 schematically shows the configuration of a laser processing system in a comparative example.
  • FIG. 2 shows a beam cross section perpendicular to the optical path axis of the pulsed laser light output from the output coupling mirror.
  • FIG. 3 shows a cross section of branched light of pulsed laser light incident on a workpiece in a comparative example.
  • FIG. 4 schematically shows the configuration of the laser processing system in the first embodiment.
  • FIG. 5 shows a beam cross-section of pulsed laser light measured by an image sensor included in the measuring instrument, together with its light intensity distribution in the V and H directions.
  • FIG. 6 is a flow chart showing a laser processing method according to the first embodiment.
  • FIG. 6 is a flow chart showing a laser processing method according to the first embodiment.
  • FIG. 7 is a flowchart showing the details of the process of calculating control parameters.
  • FIG. 8 is a flow chart showing details of processing for feedback control of beam divergence and beam pointing.
  • FIG. 9 shows a cross section of branched light of pulsed laser light incident on a workpiece in the first embodiment.
  • FIG. 10 schematically shows the configuration of a laser processing system in a modified example.
  • FIG. 11 schematically shows the configuration of a laser processing system in the second embodiment.
  • FIG. 12 is a plan view of the mask in the second embodiment.
  • FIG. 13 schematically shows the configuration of a laser processing system according to the third embodiment.
  • FIG. 14 is a plan view of the mask in the third embodiment.
  • FIG. 15 schematically shows a first example of a divergence adjuster.
  • FIG. 16 schematically shows a first example of a divergence adjuster.
  • FIG. 17 shows the principle by which the beam divergence is adjusted in the first example.
  • FIG. 18 schematically shows a second example of a divergence adjuster.
  • FIG. 19 schematically shows a second example of a divergence adjuster.
  • FIG. 20 shows the principle by which the beam divergence is adjusted in the second example.
  • FIG. 21 schematically shows a third example of a divergence adjuster.
  • FIG. 22 schematically shows a third example of a divergence adjuster.
  • FIG. 23 schematically shows a fourth example of a divergence adjuster.
  • FIG. 24 schematically shows a fourth example of a divergence adjuster.
  • FIG. 25 schematically shows a fifth example of a divergence adjuster.
  • FIG. 25 schematically shows a fifth example of a divergence adjuster.
  • FIG. 26 schematically shows a sixth example of a divergence adjuster.
  • FIG. 27 schematically shows a first example of an improved laser device.
  • FIG. 28 schematically shows a second example of an improved laser device.
  • FIG. 29 schematically shows a third example of an improved laser device.
  • Figure 30 schematically shows a fourth example of an improved laser device.
  • FIG. 31 schematically shows the configuration of an electronic device.
  • FIG. 32 is a flow chart showing a method of manufacturing an electronic device.
  • Laser processing system in which mask 65 is placed in the optical path of the light branched by diffractive optical element 63 and the image of mask 65 is transferred to workpiece SUB 3.1 Configuration and operation 3.2 Function 4. 4. Laser processing system for causing light that has passed through the mask 61 to enter the diffractive optical element 63 4.1 Configuration and operation 4.2 Action 5. 5.
  • Laser Apparatus 6.1 Laser Apparatus 1e with Attitude Controllable Optical Resonator 6.2 Laser Device 1f with Unstable Cavity 6.3 Laser device 1g including amplifier PA 6.4 Laser Device 1h Including Solid-State Lasers 6.4.1 Configuration 6.4.2 Operation7. others
  • FIG. 1 schematically shows the configuration of a laser processing system in a comparative example.
  • the comparative examples of the present disclosure are forms known by the applicant to be known only by the applicant, and not known examples to which the applicant admits.
  • a laser processing system includes a laser device 1 and a laser processing device 5 .
  • the laser device 1 is a gas laser device that outputs an ultraviolet pulse laser beam Out.
  • the laser device 1 includes a laser chamber 10 , a power supply 12 , a rear mirror 14 , an output coupling mirror 15 , a monitor module 16 and a shutter 19 . These components are housed in the first housing 100 .
  • the rear mirror 14 and the output coupling mirror 15 constitute an optical resonator.
  • a laser chamber 10 is arranged in the optical path of the optical resonator.
  • a laser chamber 10 is provided with windows 10a and 10b.
  • the laser chamber 10 internally includes a pair of discharge electrodes 11a and 11b.
  • the laser chamber 10 is filled with a laser gas containing, for example, argon gas or krypton gas as a rare gas, fluorine gas as a halogen gas, and neon gas as a buffer gas.
  • the rear mirror 14 is composed of a highly reflective mirror, and the output coupling mirror 15 is composed of a partially reflective mirror.
  • a pulsed laser beam Out is output from the output coupling mirror 15 .
  • Monitor module 16 includes a beam splitter 17 and an optical sensor 18 .
  • the beam splitter 17 is positioned on the optical path of the pulsed laser beam Out output from the output coupling mirror 15 .
  • the optical sensor 18 is positioned on the optical path of the pulsed laser beam Out reflected by the beam splitter 17 .
  • the shutter 19 is positioned on the optical path of the pulsed laser beam Out transmitted through the beam splitter 17 .
  • the shutter 19 is configured to switch between passing and blocking the pulsed laser beam Out to the laser processing device 5 .
  • the laser device 1 further includes a laser control processor 13.
  • the laser control processor 13 is a processing device including a memory 13a storing a control program and a CPU (central processing unit) 13b for executing the control program.
  • Laser control processor 13 is specially configured or programmed to perform the various processes contained in this disclosure.
  • the laser processing apparatus 5 includes an irradiation optical system 50 a , a frame 50 b , an XYZ stage 501 and a laser processing processor 53 .
  • the irradiation optical system 50a and the XYZ stage 501 are fixed to the frame 50b.
  • a workpiece SUB is supported on a table 502 of an XYZ stage 501 .
  • the mutually orthogonal X and Y directions are parallel to the surface of the workpiece SUB.
  • the Z direction is perpendicular to the surface of the workpiece SUB and parallel to the traveling direction of the pulsed laser beam Out incident on the surface of the workpiece SUB.
  • a coordinate system defined by coordinate axes in the X, Y, and Z directions is defined as an XYZ coordinate system.
  • the workpiece SUB is, for example, an interposer substrate for manufacturing an interposer IP that relays an integrated circuit chip IC and a circuit substrate CS, which will be described later with reference to FIG.
  • the interposer substrate is made of, for example, an electrically insulating material such as polymer material or glass material.
  • the irradiation optical system 50a includes high reflection mirrors 51a, 51b, and 51c, an attenuator 52, a diffractive optical element 63, and a condensing optical system 67.
  • the high reflection mirrors 51 a , 51 b and 51 c , the attenuator 52 and the diffractive optical element 63 are housed in the second housing 500 .
  • the condensing optical system 67 also serves as a window of the second housing 500 .
  • the second housing 500 is connected to the first housing 100 via the optical path tube 200 .
  • a pulsed laser beam Out output from the laser device 1 passes through the optical path tube 200 and enters the second housing 500 .
  • the high reflection mirror 51a is located in the optical path of the pulsed laser beam Out that has passed through the optical path tube 200 .
  • the attenuator 52 is positioned in the optical path of the pulsed laser beam Out reflected by the high reflection mirror 51a.
  • Attenuator 52 includes two partially reflecting mirrors 52a and 52b and rotating stages 52c and 52d.
  • the rotary stages 52c and 52d are configured to change the transmittance of the attenuator 52 by changing the incident angle of the pulsed laser beam Out with respect to the partial reflection mirrors 52a and 52b, respectively.
  • the high reflection mirror 51b is positioned on the optical path of the pulse laser beam Out transmitted through the attenuator 52, and the high reflection mirror 51c is positioned on the optical path of the pulse laser beam Out reflected by the high reflection mirror 51b.
  • the diffractive optical element 63 is positioned on the optical path of the pulsed laser beam Out reflected by the high reflection mirror 51c.
  • the diffractive optical element 63 has a large number of irregularities on its surface, and is configured to diffract the transmitted pulsed laser beam Out, thereby branching it into a plurality of optical paths.
  • the condensing optical system 67 is positioned on the optical path of the pulsed laser beam Out transmitted through the diffractive optical element 63 .
  • the condensing optical system 67 converges the branched beams of the pulsed laser beam Out branched by the diffractive optical element 63 .
  • the collection optics 67 have a focal length f 67 .
  • the condensing optical system 67 is desirably composed of an F.theta.
  • the laser processing processor 53 is a processing device including a memory 53a storing a control program and a CPU 53b executing the control program.
  • Laser processing processor 53 is specially configured or programmed to perform various processes contained in this disclosure.
  • the laser control processor 13 receives the data of the target pulse energy Et and the trigger signal from the laser processing processor 53 .
  • the laser control processor 13 sets the voltage of the power supply 12 based on the target pulse energy Et and transmits a trigger signal to the power supply 12 .
  • the power supply device 12 When the power supply device 12 receives a trigger signal from the laser control processor 13, it generates a pulsed high voltage and applies it between the discharge electrodes 11a and 11b.
  • the light generated within the laser chamber 10 is emitted outside the laser chamber 10 through the windows 10a and 10b.
  • the light emitted from the window 10 a of the laser chamber 10 is reflected by the rear mirror 14 with high reflectance and returned to the laser chamber 10 .
  • the output coupling mirror 15 transmits and outputs part of the light emitted from the window 10 b of the laser chamber 10 and reflects the other part back to the laser chamber 10 .
  • the light emitted from the laser chamber 10 reciprocates between the rear mirror 14 and the output coupling mirror 15, and is amplified every time it passes through the discharge space between the discharge electrodes 11a and 11b.
  • a pulsed laser beam Out generated by laser oscillation in this manner is output from the output coupling mirror 15 .
  • FIG. 2 shows a beam cross section perpendicular to the optical path axis of the pulsed laser beam Out output from the output coupling mirror 15.
  • FIG. FIG. 2 corresponds to a cross-sectional view taken along line II-II of FIG.
  • the beam cross section of the pulse laser light Out corresponds to the shape of the discharge space between the discharge electrodes 11a and 11b, and has a substantially rectangular shape elongated in the discharge direction between the discharge electrodes 11a and 11b.
  • the L direction be the traveling direction of the pulse laser beam Out.
  • the V direction be a direction perpendicular to the L direction and parallel to the long side of the beam cross section of the pulsed laser beam Out.
  • the H direction be a direction perpendicular to both the L direction and the V direction.
  • the H direction is parallel to the short side of the beam cross section of the pulsed laser beam Out.
  • the V direction and H direction respectively correspond to the first and second directions in this disclosure.
  • a coordinate system defined by coordinate axes in the L direction, the V direction, and the H direction is referred to as an LVH coordinate system.
  • the LVH coordinate system is defined with reference to the pulsed laser beam Out
  • the relationship between the LVH coordinate system and the XYZ coordinate system described with reference to FIG. 1 changes, and , the LVH coordinate system itself is inverted.
  • the pulse laser beam Out is reflected at right angles by the high reflection mirror 51a
  • the traveling direction of the pulse laser beam Out rotates around the H axis at right angles.
  • each of the L and V directions rotates perpendicular to the XYZ coordinate system, and the V direction is reversed.
  • the L direction, V direction, and H direction do not change depending on the projection optical system 68 described later.
  • the monitor module 16 detects the pulse energy of the pulsed laser beam Out output from the output coupling mirror 15.
  • the monitor module 16 sends the detected pulse energy data to the laser control processor 13 .
  • the laser control processor 13 feedback-controls the set voltage of the power supply 12 based on the pulse energy data received from the monitor module 16 and the target pulse energy Et data received from the laser processing processor 53 .
  • the XYZ stage 501 is adjusted so that the workpiece SUB is positioned at a focal distance f67 from the condensing optical system 67 .
  • a pulsed laser beam Out output from the laser device 1 passes through the optical path tube 200 and enters the laser processing device 5 .
  • the pulsed laser beam Out is reflected by the high reflection mirror 51a, transmitted through the attenuator 52, and then sequentially reflected by the high reflection mirrors 51b and 51c.
  • the laser processing processor 53 sets a target value for the transmittance of the attenuator 52, and controls the rotary stages 52c and 52d based on the target value.
  • the pulsed laser beam Out reflected by the high reflection mirror 51c is split into a plurality of optical paths by the diffractive optical element 63, and each of the split beams is focused on the surface of the workpiece SUB by the focusing optical system 67.
  • the workpiece SUB is irradiated with the branched light of the pulse laser beam Out, the surface of the workpiece SUB is ablated and laser-processed.
  • FIG. 3 shows a cross section of the branched light Out1 of the pulse laser light Out incident on the workpiece SUB in the comparative example.
  • the branched beam Out1 of the pulsed laser beam Out branched by the diffractive optical element 63 is incident on the surface of the workpiece SUB at positions corresponding to the vertices of the square lattice.
  • the shape and arrangement of the branched light Out1 differ depending on the design of the diffractive optical element 63.
  • FIG. A large number of fine holes can be formed in the workpiece SUB by irradiating the workpiece SUB with a large number of narrow branched beams Out1 respectively condensed by the condensing optical system 67 . This hole may be a through hole penetrating the workpiece SUB.
  • the cross-sectional shape of the branched light Out1 condensed by the condensing optical system 67 may not conform to the design of the diffractive optical element 63.
  • the diffractive optical element 63 is designed so that the cross-sectional shape of the branched light Out1 is a perfect circle, as shown in FIG. It can be oval. In this case, there is a possibility that desired laser processing cannot be achieved.
  • the cross-sectional shape of the branched beam Out1 incident on the workpiece SUB is adjusted to a desired shape. bring closer.
  • FIG. 4 schematically shows the configuration of the laser processing system in the first embodiment.
  • the laser processing device 5a included in the laser processing system includes an actuator 51d, a divergence adjuster 54, a measuring instrument 55, and a shutter 59 in addition to the components shown in FIG. include.
  • the divergence adjuster 54 is configured to be able to adjust the beam divergence BDV in the V direction and the beam divergence BDH in the H direction of the pulse laser light Out. A specific configuration of the divergence adjuster 54 will be described later with reference to FIGS. 15 to 26.
  • the actuator 51d is attached to the high reflection mirror 51c, and is configured to be able to change the attitude of the high reflection mirror 51c. By changing the attitude of the high reflection mirror 51c, the traveling direction of the pulse laser beam Out reflected by the high reflection mirror 51c is changed.
  • the beam pointings BPV and BPH are adjusted by adjusting the traveling direction of the pulsed laser beam Out.
  • a beam steering device is composed of the high reflection mirror 51c and the actuator 51d.
  • the beam steering device may be placed at any position on the optical path of the pulsed laser beam Out between the inside of the optical path tube 200 and the measuring device 55, but more preferably between the divergence adjuster 54 and the measuring device 55. is placed in the optical path of the pulsed laser beam Out.
  • Measuring device 55 includes beam splitter 56 , convex lens 57 , and image sensor 58 .
  • the beam splitter 56 is positioned in the optical path of the pulsed laser light Out that has passed through both the divergence adjuster 54 and the beam steering device.
  • the convex lens 57 is positioned on the optical path of the pulsed laser beam Out reflected by the beam splitter 56 .
  • Convex lens 57 has a focal length f 57 .
  • Focal length f 57 may be greater than focal length f 67 of collection optics 67 .
  • the image sensor 58 is positioned on the focal plane of the convex lens 57 on the optical path of the pulsed laser beam Out that has passed through the convex lens 57 .
  • the convex lens 57 may be a combined lens with a focal length of f57 , which is a combination of a concave lens and a convex lens.
  • the measuring device 55 is configured to be able to measure beam divergence BDV and BDH and beam pointing BPV and BPH of the pulsed laser light Out that has passed through both the divergence adjuster 54 and the beam steering device. Measurement of beam divergence BDV and BDH and beam pointing BPV and BPH will be described later with reference to FIG.
  • the shutter 59 is positioned on the optical path of the pulsed laser beam Out that has passed through the beam splitter 56 .
  • the shutter 59 is configured to switch between passing and blocking the pulsed laser beam Out to the diffractive optical element 63 and the workpiece SUB.
  • FIG. 5 shows the beam cross-section S 58 of the pulsed laser beam Out measured by the image sensor 58 included in the measuring instrument 55, together with its light intensity distribution in the V and H directions.
  • 1/e of the peak value Imax of the light intensity I The full width in the V direction of the portion having the light intensity I of 2 or more is the spot diameter D CV in the V direction, and the full width in the H direction of the portion is the spot diameter D CH in the H direction. and Alternatively, instead of 1/e 2 , half value or 1/e may be used. Note that e is Napier's number.
  • spot diameter is the diameter of the beam cross-section at the focal position.
  • a beam waist diameter which will be described later, is the diameter of the beam cross section at the beam waist position, and may differ from the spot diameter.
  • beam divergence is defined as the beam width at the focal position divided by the focal length.
  • the beam divergence BDV and BDH in the V and H directions are given by the following equations.
  • BDV DCV / f57
  • BDH DCH / f57
  • Beam divergence BDV and BDH correspond to first and second beam divergence in the present disclosure, respectively.
  • beam pointings BPV and BPH are defined as the central positions in the V and H directions of the beam cross-section at the focus position.
  • the center position may be, for example, the center position of the light intensity distribution in each of the V and H directions, or the center position of each of the spot diameters DCV and DCH .
  • FIG. 6 is a flow chart showing the laser processing method according to the first embodiment.
  • the step-and-repeat laser processing is performed by the laser processing processor 53 controlling the laser processing device 5a as follows.
  • the laser processing processor 53 shifts the position of the workpiece SUB in the X direction and the Control in the Y direction.
  • the laser processing processor 53 calculates various control parameters. Details of S100 will be described later with reference to FIG.
  • the laser processing processor 53 closes the shutter 59, transmits a trigger signal to the laser device 1, and starts adjusted oscillation.
  • the laser processing processor 53 feedback-controls the beam divergence BDV and BDH and the beam pointing BPV and BPH.
  • beam divergence and beam pointing may be abbreviated as BD and BP, respectively. Details of S120 will be described later with reference to FIG.
  • the laser processing processor 53 determines whether the beam divergence BDV and BDH and the beam pointing BPV and BPH are OK. This determination is made based on the result of the process of S120 shown in FIG.
  • the laser processing processor 53 proceeds to S140. If not OK (S130: NO), the laser processing processor 53 returns the process to S120.
  • the laser processing processor 53 ends the adjustment oscillation and opens the shutter 59. In this way, the pulsed laser beam Out is blocked until the measurement results of the beam divergence BDV and BDH and the beam pointing BPV and BPH are within the allowable range.
  • the laser processing processor 53 controls the position of the workpiece SUB in the Z direction so that the workpiece SUB is positioned on the focal plane of the condensing optical system 67.
  • the laser processing processor 53 starts irradiating the current processing area with the pulsed laser beam Out.
  • the laser processing processor 53 feedback-controls the beam divergence BDV and BDH and the beam pointing BPV and BPH.
  • the processing of S180 is the same as the processing of S120, and details thereof will be described later with reference to FIG.
  • the laser processing processor 53 irradiates the current processing area with the pulse laser beam Out of the irradiation pulse number n determined in S100, and then terminates irradiation of the current processing area with the pulse laser beam Out.
  • the laser processing processor 53 determines whether the beam divergence BDV and BDH and the beam pointing BPV and BPH are OK. If the beam divergence BDV and BDH and the beam pointing BPV and BPH are OK (S200: YES), the laser processing processor 53 proceeds to S210. If not OK (S200: NO), the laser processing processor 53 returns the process to S110.
  • the laser processing processor 53 determines whether or not irradiation of all processing areas of the workpiece SUB has been completed. When the irradiation of all the processing areas is completed (S210: YES), the laser processing processor 53 ends the processing of this flowchart. If unprocessed areas remain (S210: NO), the laser processing processor 53 proceeds to S220.
  • the laser processing processor 53 controls the position of the workpiece SUB in the X and Y directions so that the next processing area is processed with the pulse laser beam Out. After S220, the laser processing processor 53 returns the process to S160.
  • FIG. 7 is a flowchart showing the details of the process of calculating control parameters. The processing shown in FIG. 7 corresponds to the subroutine of S100 shown in FIG.
  • the laser processing processor 53 reads the target spot diameter Dt on the workpiece SUB from the memory 53a.
  • the target spot diameter Dt is a target value for the spot diameter in the V direction and the spot diameter in the H direction.
  • the case where the same target spot diameter Dt is used in the V direction and the H direction will be described, but different target spot diameters may be used.
  • the laser processing processor 53 reads the target fluence Ft from the memory 53a.
  • the fluence is the energy density of the pulsed laser beam Out on the surface of the workpiece SUB.
  • the laser processing processor 53 reads the irradiation pulse number n and repetition frequency Rf in one processing area from the memory 53a.
  • various data are read from the memory 53a, but data received from a computer device (not shown) may be read, or data input by an operator may be read.
  • the laser processing processor 53 calculates the target divergence BDt by the following formula.
  • BDt Dt/f 67
  • Target divergence BDt is the target value of beam divergence BDV and BDH.
  • the same target value is set for the V direction and the H direction here, different target values may be set.
  • the beam divergence BDV and BDH in the V direction and the H direction of the pulsed laser beam Out that has passed through the divergence adjuster 54 are larger than the difference in the beam divergence in the V direction and the H direction of the pulsed laser beam Out entering the divergence adjuster 54 . It is desirable that the difference between the target values of is small.
  • the beam divergence in the V direction and the H direction of the pulsed laser beam Out entering the divergence adjuster 54 corresponds to the third and fourth beam divergence in the present disclosure.
  • the laser processing processor 53 calculates the target pulse energy Et by the following formula.
  • Et Ft P S/T
  • P is the number of machining points in one machining area.
  • S is the area of the beam cross section of one processing point at the focal position of the condensing optical system 67, and is given by the following formula using the target spot diameter Dt.
  • S ⁇ (Dt/2) 2
  • T is the transmittance of the optical system in the laser processing device 5a and is given by the following equation.
  • T Ta ⁇ To
  • Ta is the transmittance of the attenuator 52
  • To is the transmittance of the optical elements other than the attenuator 52 .
  • the laser processing processor 53 ends the processing of this flowchart and returns to the processing shown in FIG.
  • FIG. 8 is a flow chart showing details of processing for feedback control of beam divergence BDV and BDH and beam pointing BPV and BPH. The processing shown in FIG. 8 corresponds to the subroutines of S120 and S180 shown in FIG.
  • the laser processing processor 53 measures the beam divergence BDV and BDH in the V direction and the H direction and the beam pointing BPV and BPH in the V direction and the H direction using the measuring instrument 55.
  • the laser processing processor 53 calculates differences ⁇ BDV, ⁇ BDH, ⁇ BPV, and ⁇ BPH between the beam divergence BDV and BDH and the beam pointing BPV and BPH and their target values using the following equations.
  • the laser processing processor 53 determines whether the differences ⁇ BDV, ⁇ BDH, ⁇ BPV, and ⁇ BPH are equal to or less than their respective thresholds. If all of the differences ⁇ BDV, ⁇ BDH, ⁇ BPV, and ⁇ BPH are equal to or less than their respective threshold values (S123: YES), the laser processing processor 53 proceeds to S124. If any of the differences ⁇ BDV, ⁇ BDH, ⁇ BPV, and ⁇ BPH exceeds the threshold (S123: NO), the laser processing processor 53 proceeds to S125.
  • the laser processing processor 53 stores in the memory 53a a flag indicating that the beam divergence BDV and BDH and the beam pointing BPV and BPH are OK.
  • the laser processing processor 53 stores in the memory 53a a flag indicating that one of the beam divergence BDV and BDH and the beam pointing BPV and BPH is NG.
  • these flags are read out and determined.
  • the laser processing processor 53 controls the divergence adjuster 54 and the beam steering device so that the differences ⁇ BDV, ⁇ BDH, ⁇ BPV, and ⁇ BPH approach zero. After S126, the laser processing processor 53 ends the processing of this flowchart and returns to the processing shown in FIG.
  • the laser processing system measures the beam divergence BDV in the V direction and the beam divergence BDH in the H direction of the pulsed laser beam Out output from the laser device 1. It includes a divergence adjuster 54 to adjust.
  • the beam divergence BDV and BDH of the pulsed laser beam Out that has passed through the divergence adjuster 54 is measured by the measuring device 55 .
  • the laser processing processor 53 controls the divergence adjuster 54 based on the measurement result by the measuring device 55 so that the beam divergence BDV and BDH approach their respective target values.
  • the pulsed laser beam Out that has passed through the measuring device 55 is branched by the diffraction optical element 63 .
  • the cross-sectional shape of the branched light that is branched by the diffractive optical element 63 and enters the workpiece SUB can be brought closer to a desired shape. Further, even when the beam divergence of the pulsed laser beam Out output from the laser device 1 changes due to changes in the temperature of the optical elements included in the laser device 1 or wear of the discharge electrodes 11a and 11b, the diffraction optics The beam divergence BDV and BDH of the pulsed laser beam Out entering the element 63 is stabilized by the divergence adjuster 54 . As a result, the cross-sectional shape of the branched light irradiated to the workpiece SUB is stabilized, and the shape of the hole machined in the workpiece SUB is stabilized.
  • the difference in the beam divergence in the V direction and the H direction of the pulsed laser beam Out entering the divergence adjuster 54 is greater than the V of the pulsed laser beam Out that has passed through the divergence adjuster 54
  • the difference between target values of beam divergence BDV and BDH in the direction and H direction is small. According to this, the dimensional difference between the long side and the short side in the cross-sectional shape of the branched light irradiated to the workpiece SUB is reduced.
  • FIG. 9 shows a cross section of the branched light Out2 of the pulsed laser light Out incident on the workpiece SUB in the first embodiment.
  • the cross-sectional shape of the branched light Out2 that irradiates the workpiece SUB becomes nearly circular.
  • the shape of the hole machined in the workpiece SUB may become nearly circular.
  • the laser processing system further includes a beam steering device that adjusts the traveling direction of the pulsed laser beam Out.
  • the beam steering device is composed of an actuator 51 d and a high reflection mirror 51 c and is arranged in the optical path of the pulsed laser beam Out between the laser device 1 and the diffractive optical element 63 .
  • the beam pointing BPV and BPH of the pulsed laser beam Out that has passed through the beam steering device are measured by the measuring instrument 55 .
  • the laser processing processor 53 controls the beam steering device based on the measurement result by the measuring instrument 55 so that the beam pointing BPV and BPH approach target values. According to this, a desired position of the workpiece SUB can be irradiated with the branched light Out2.
  • the beam steering device Even when the beam pointing of the pulse laser beam Out output from the laser device 1 changes due to changes in the temperature of the optical elements included in the laser device 1 or wear of the discharge electrodes 11a and 11b, the diffraction optics The beam pointings BPV and BPH of the pulsed laser light Out entering the element 63 are stabilized by the beam steering device. As a result, the position of the branched light Out2 irradiated to the workpiece SUB is stabilized, and the position of the hole machined in the workpiece SUB is stabilized.
  • the laser processing system further includes the shutter 59 capable of switching between passage and blocking of the pulsed laser beam Out.
  • the shutter 59 is arranged on the optical path of the pulsed laser beam Out that has passed through the measuring instrument 55 .
  • the laser processing processor 53 controls the shutter 59 so that the pulsed laser beam Out is blocked until the measurement results of the beam divergence BDV and BDH by the measuring device 55 are within respective allowable ranges including respective target values. According to this, since the workpiece SUB is machined after the measurement result falls within the allowable range, high machining accuracy can be obtained.
  • the laser processing system further includes a condensing optical system 67 arranged on the optical path of the pulsed laser beam Out that has passed through the diffractive optical element 63 .
  • Workpiece SUB is positioned at the focal plane of condensing optics 67 . According to this, the branched light beams branched by the diffractive optical element 63 can be collected to perform fine processing.
  • the laser device 1 included in the laser processing system includes an optical resonator housed in the first housing 100 .
  • the divergence adjuster 54 and the diffractive optical element 63 are housed in the second housing 500 . According to this, since the beam divergence BDV and BDH are adjusted in the laser processing device 5a, even if the beam divergence of the pulsed laser beam Out output from the laser device 1 changes, the branched light irradiated to the workpiece SUB can be stabilized. Otherwise, the first embodiment is the same as the comparative example.
  • FIG. 10 schematically shows the configuration of a laser processing system in a modification.
  • a divergence adjuster 20 and a measuring device 21 are included in the laser device 1b, and these components are accommodated in the first housing 100 together with the optical resonator.
  • the laser processing device 5b may not include the divergence adjuster 54.
  • the configuration of the divergence adjuster 20 is similar to the configuration of the divergence adjuster 54, and will be described later with reference to FIGS. 15-26.
  • Measuring instrument 21 includes beam splitter 22 , convex lens 23 , and image sensor 24 .
  • the beam splitter 22 is positioned on the optical path of the pulsed laser beam Out that has passed through the divergence adjuster 20 .
  • the convex lens 23 is positioned on the optical path of the pulsed laser beam Out reflected by the beam splitter 22 .
  • the convex lens 23 has a focal length f23 .
  • Focal length f 23 may be greater than focal length f 67 of collection optics 67 .
  • the image sensor 24 is positioned on the focal plane of the convex lens 23 on the optical path of the pulsed laser beam Out that has passed through the convex lens 23 .
  • the convex lens 23 may be a combined lens having a focal length of f23 , which is a combination of a concave lens and a convex lens.
  • the measuring instrument 21 is configured to be able to measure beam divergence BDV and BDH.
  • the laser control processor 13 feedback-controls the divergence controller 20 based on the beam divergence BDV and BDH measured by the measuring device 21 and the calculated target divergence BDt.
  • the laser processing processor 53 feedback-controls the actuator 51d based on the beam pointing BPV and BPH measured by the measuring instrument 55 and the target values BPVt and BPHt of the beam pointing BPV and BPH obtained by calculation.
  • the beam divergence BDV and BDH are measured and controlled in the laser device 1b, and the beam pointing BPV and BPH are measured and controlled in the laser processing device 5b. 9 differs from that described with reference to FIG. Other points may be the same as those described with reference to FIGS.
  • laser processing may be performed while confirming that the beam divergence BDV and BDH measured by the measuring device 55 are OK.
  • Adjustment oscillation may be performed when any one of the beam divergence BDV and BDH measured by the measuring device 55 is NG.
  • the measuring device 21 may be removed from the configuration of FIG.
  • the divergence adjuster 20 may be controlled based on the beam divergence BDV and BDH measured by the measuring device 55 .
  • the laser device 1b included in the laser processing system includes the optical resonator and the divergence adjuster 20 housed in the first housing 100.
  • FIG. The diffractive optical element 63 is housed in the second housing 500 .
  • the pulsed laser beam Out whose beam divergence BDV and BDH are adjusted is output from the laser device 1b, so that the configuration of the laser processing device 5b can be suppressed from being complicated. Otherwise, the variant is similar to that described with reference to FIGS. 4-9.
  • FIG. 11 shows a laser processing system according to the second embodiment. schematically shows the configuration of In the second embodiment, the laser processing apparatus 5c included in the laser processing system includes a condensing optical system 64 instead of the condensing optical system 67 shown in FIG. 68 and .
  • the condensing optical system 64 is arranged inside the second housing 500 on the optical path of the pulsed laser beam Out that has passed through the diffractive optical element 63, and has a focal length f64 .
  • the condensing optical system 64 is similar to the condensing optical system 67 described with reference to FIG.
  • FIG. 12 is a plan view of the mask 65 in the second embodiment.
  • Mask 65 has a number of circular openings M1, each having a diameter of Dm. Each opening M1 is desirably circular.
  • the branched beams of the pulsed laser beam Out branched by the diffractive optical element 63 pass through the condensing optical system 64, so that the cross section S65 of the branched beams at the position of the mask 65 overlaps with the position of the aperture M1. Each is condensed.
  • the alignment of the cross-section S 65 of the split light and the aperture M1 is adjusted by a beam steering device.
  • the diameter of each branched light cross section S 65 is adjusted by the divergence adjuster 54 so as to approach the target spot diameter Dt.
  • the target spot diameter Dt is set so as to satisfy Equation 1 below. Dm ⁇ Dt ⁇ K Dm Formula 1
  • K is preferably 1.1 or more and 1.4 or less.
  • the projection optical system 68 is positioned on the optical path of the pulsed laser beam Out that has passed through the mask 65, and includes first and second lenses 68a and 68b.
  • the second lens 68b also serves as a window of the second housing 500.
  • FIG. A projection optical system 68 projects the image of the mask 65 onto the workpiece SUB.
  • the beam diameter of each of the branched lights on the workpiece SUB is obtained by multiplying the diameter Dm of each of the apertures M1 of the mask 65 by the magnification of the projection optical system 68.
  • the laser processing system includes a condensing optical system 64 arranged in the optical path of the pulsed laser beam Out that has passed through the diffractive optical element 63, and a condensing optical system 64 and includes a mask 65 having a plurality of apertures, and a projection optical system 68 arranged in the optical path of the pulsed laser beam Out that has passed through the mask 65 .
  • the image of the mask 65 can be projected onto the workpiece SUB by the projection optical system 68, and the cross-sectional shape of the branched light of the pulse laser beam Out irradiated onto the workpiece SUB can be approximated to a desired shape. be able to.
  • the cross-sectional shape of the branched light of the pulse laser beam Out irradiated to the workpiece SUV is the same as that of the first embodiment.
  • the shape can be closer to a perfect circle than the form.
  • the light condensing system 64 divides the branched light beams so that the cross sections of the plurality of branched beams of the pulsed laser beam Out branched by the diffractive optical element 63 overlap the plurality of apertures M1. converge respectively. According to this, since each of the branched lights split by the diffractive optical element 63 is condensed at the position of the aperture M1 of the mask 65 by the condensing optical system 64, the loss of light in the mask 65 is reduced, and the light is utilized. Efficiency can be improved.
  • each of the branched beams split by the diffractive optical element 63 is converged on the mask 65 by the condensing optical system 64 .
  • the shape of the spot can be made close to the shape of the opening M1 of the mask 65, and the light utilization efficiency can be improved.
  • the beam pointing BPV and BPH of the pulsed laser beam Out incident on the diffractive optical element 63 the position of the branched beam incident on the mask 65 can be stabilized and the light utilization efficiency can be improved.
  • the second embodiment is similar to the first embodiment.
  • FIG. 13 schematically shows the configuration of a laser processing system according to the third embodiment.
  • a laser processing device 5d included in the laser processing system includes a condenser lens 60, a mask 61, and a collimator optical system 62 in addition to the components shown in FIG.
  • the condenser lens 60 is positioned in the optical path of the pulsed laser beam Out between the shutter 59 and the diffractive optical element 63, and has a focal length f60 .
  • the condensing lens 60 is not limited to one lens, and may include a plurality of lenses.
  • FIG. 14 is a plan view of mask 61 in the third embodiment.
  • the mask 61 has one circular opening M2, and the diameter of the opening M2 is Dm.
  • the aperture M2 is preferably circular.
  • the pulsed laser beam Out is condensed at the position of the mask 61 by the condensing lens 60 .
  • the beam steering device is controlled such that the cross section S61 of the pulsed laser beam Out on the mask 61 matches the position of the aperture M2.
  • the divergence adjuster 54 is controlled so that the diameter of the cross section S61 approaches the target spot diameter Dt.
  • the target spot diameter Dt is set so as to satisfy Equation 1 above.
  • the mask 61 may be placed inside a vacuum chamber 61a having windows between the condenser lens 60 and the collimator optics 62, respectively.
  • a refrigerant jacket (not shown) may be attached to the mask 61 in order to prevent the mask 61 from becoming hot.
  • a high melting point metal such as tungsten or molybdenum may be used as the material of the mask 61.
  • the collimator optical system 62 is positioned on the optical path of the pulsed laser beam Out that has passed through the mask 61 .
  • the collimator optical system 62 has a focal length f 62 and the mask 61 is positioned at the front focal point of the collimator optical system 62 .
  • the collimator optical system 62 emits the pulsed laser beam Out that has passed through the aperture M2 of the mask 61 as parallel light, and makes it enter the diffractive optical element 63 .
  • the collimator optical system 62, the diffractive optical element 63, and the condensing optical system 67 project the image of the mask 61 onto a plurality of positions on the workpiece SUB.
  • the beam diameter of each of the branched lights on the workpiece SUB is the diameter Dm of the aperture M2 of the mask 61, the projection optical system composed of the collimator optical system 62, the diffractive optical element 63, and the condensing optical system 67. Multiplied by the magnification.
  • the laser processing system is arranged in the optical path of the pulsed laser beam Out that has passed through the measuring instrument 55, and includes the condenser lens 60 that collects the pulsed laser beam Out. , a mask 61 arranged on the optical path of the pulsed laser beam Out that has passed through the condenser lens 60, and a collimator optical system 62 arranged on the optical path of the pulsed laser beam Out between the mask 61 and the diffractive optical element 63. include.
  • the pulsed laser beam Out that has passed through the condenser lens 60 can be focused on the opening M2 of the mask 61, so alignment of the focusing position of the pulsed laser beam Out is facilitated.
  • the mask 61 is positioned at the focal point of the condenser lens 60 . This makes it easier to align the mask 61 and the condenser lens 60 .
  • the laser processing system includes the condensing optical system 67 arranged in the optical path of the pulsed laser beam Out that has passed through the diffractive optical element 63, and the collimator optical system 62 and the diffractive optical element
  • the image of the mask 61 is projected onto a plurality of positions on the workpiece SUB by the 63 and the condensing optical system 67 . According to this, the image of the mask 61 is projected onto the workpiece SUB, so that the cross-sectional shape of the branched light of the pulse laser beam Out irradiated onto the workpiece SUB can be approximated to a desired shape.
  • the cross-sectional shape of the branched light of the pulse laser beam Out irradiated to the workpiece SUV is the same as that of the first embodiment.
  • the shape can be closer to a perfect circle than the form.
  • FIG. 15 is a view of the divergence adjuster 541 viewed in the -V direction
  • FIG. 16 is a view viewed in the -H direction.
  • the divergence adjuster 541 includes two sets of cylindrical lenses.
  • the two sets of cylindrical lenses include one set of concave lens 541a and convex lens 541b and one set of concave lens 541c and convex lens 541d.
  • the concave lenses 541a and 541c are fixed by holders 541e and 541g, respectively.
  • Convex lenses 541b and 541d are supported by holders 541f and 541h, respectively.
  • the holders 541f and 541h include protrusions 541n and 541o, respectively, and are movable parallel to the L direction by linear stages 541i and 541j, respectively.
  • a linear stage 541i includes a plunger 541k and a micrometer 541p.
  • a protrusion 541n of the holder 541f is sandwiched between the plunger 541k and the micrometer 541p.
  • the plunger 541k incorporates a spring (not shown).
  • the micrometer 541p is configured such that the tip portion contacting the protrusion 541n expands and contracts in parallel with the L direction in response to a control signal from the laser processing processor 53 or the laser control processor 13 .
  • the protrusion 541n of the holder 541f is pressed by the plunger 541k or the micrometer 541p, and the holder 541f moves in the arrow A1 direction together with the convex lens 541b.
  • a linear stage 541j includes a plunger 541m and a micrometer 541q.
  • the configuration for the linear stage 541j to move the convex lens 541d in the arrow A2 direction is similar to that of the linear stage 541i.
  • the concave lens 541a and the convex lens 541b each have a focal axis parallel to the H direction. When these focal axes coincide, the concave lens 541a and the convex lens 541b transmit the pulse laser beam Out without changing the beam divergence angle in the V direction as indicated by the dashed line in FIG. When the convex lens 541b is moved in the direction of the arrow A1, the beam divergence angle in the V direction is adjusted to the positive direction as indicated by the one-dot chain line in FIG. It can be adjusted in the negative direction.
  • the concave lens 541c and the convex lens 541d each have a focal axis parallel to the V direction. When these focal axes coincide, the concave lens 541c and the convex lens 541d transmit the pulse laser beam Out without changing the beam divergence angle in the H direction, as indicated by the dashed line in FIG. When the convex lens 541d is moved in the direction of the arrow A2, the beam divergence angle in the H direction is adjusted to the positive direction as indicated by the one-dot chain line in FIG. It can be adjusted in the negative direction.
  • the divergence adjuster 541 is configured to adjust the beam divergence angles in the V and H directions. According to this, the beam divergence BDV and BDH in the V direction and the H direction can be controlled independently of each other.
  • FIG. 17 shows the principle by which the beam divergence BDV and BDH are adjusted in the first example.
  • FIG. 17 shows how the pulsed laser beam Out that has passed through the divergence adjuster 541 is transmitted through the convex lens 57 included in the measuring device 55 and condensed.
  • the pulsed laser beam Out that has passed through the divergence adjuster 541 is parallel light, the position F at a focal distance f57 from the convex lens 57 is the narrowest beam waist position. Become.
  • the minimum value of the beam divergence BDV and BDH depends on the beam width DW at the beam waist position W.
  • the beam width DW at the beam waist position W is given by Equation 2 below.
  • is the wavelength of the pulsed laser beam Out
  • M 2 is the M square value of the pulsed laser beam Out
  • NA is the numerical aperture of the convex lens 57 .
  • FW is the distance from the convex lens 57 to the beam waist position W
  • DL is the beam diameter given by the full width of the beam cross section of the pulsed laser beam Out incident on the convex lens 57 .
  • NA is given by (1/2) DL / FW .
  • the beam width DW which is the full width of the beam cross section at the beam waist position W, is proportional to the M square value of the pulsed laser beam Out and proportional to FW / DL .
  • the beam width DW at the beam waist position W can be reduced by reducing the M square value of the pulsed laser beam Out. It is valid.
  • the beam divergence BDV and BDH can be minimized by adjusting the divergence angle of the pulsed laser beam Out and bringing the beam waist position W closer to the focus position F.
  • FIG. 18 is a view of the divergence adjuster 542 in the -V direction
  • FIG. 19 is a view in the -H direction.
  • divergence adjuster 542 includes two beam expanders.
  • one of the two beam expanders consists of a pair of similar prisms 542a and 542b and the other consists of a pair of similar prisms 542c and 542d.
  • Each of the prisms 542a and 542b constituting one beam expander receives the pulsed laser beam Out from one side surface parallel to the V direction and emits the pulsed laser beam Out from the other side surface parallel to the V direction.
  • the prisms 542a and 542b are configured to be rotatable about axes parallel to the V direction by rotary stages 542e and 542f, respectively. As shown in FIG. 18, by rotating the prisms 542a and 542b in opposite directions so that the angles of incidence of the pulsed laser beam Out on the prisms 542a and 542b are equal, the beam of the pulsed laser beam Out passing through the beam expander in the H direction is Width can be adjusted.
  • Each of the prisms 542c and 542d constituting the other beam expander receives the pulsed laser beam Out from one side surface parallel to the H direction and emits the pulsed laser beam Out from the other side surface parallel to the H direction.
  • the prisms 542c and 542d are configured to be rotatable around axes parallel to the H direction by rotary stages 542g and 542h, respectively. As shown in FIG. 19, by rotating the prisms 542c and 542d in opposite directions so that the angles of incidence of the pulsed laser beam Out on the prisms 542c and 542d are equal, the V-direction beam of the pulsed laser beam Out passing through the beam expander is expanded. Width can be adjusted.
  • Each of the two beam expanders is not limited to being composed of two prisms, and may be composed of a zoom lens.
  • a zoom lens may be configured by a combination of three or more cylindrical lenses. One zoom lens may adjust the beam width in the V direction and another zoom lens may adjust the beam width in the H direction.
  • the divergence adjuster 542 is configured to adjust the beam widths in the V and H directions. Also in this example, the beam divergence BDV and BDH in the V and H directions can be controlled independently of each other.
  • FIG. 20 shows the principle by which the beam divergence BDV and BDH are adjusted in the second example.
  • FIG. 20 shows how the pulsed laser beam Out that has passed through the divergence adjuster 542 is transmitted through the convex lens 57 included in the measuring device 55 and condensed.
  • the divergence adjuster 542 changes the beam width without changing the divergence angle of the pulsed laser beam Out, the beam waist position and the M-square value do not change. Since the beam diameter D L of the incident pulsed laser beam Out changes, F W /D L shown in Equation 2 changes. Thereby, the beam width DW at the beam waist position W can be changed to adjust the beam divergence BDV and BDH.
  • the beam diameter D of the pulsed laser beam Out incident on the convex lens 57 can be changed even if the beam waist position W is not the same.
  • L the beam width at position F can be changed.
  • FIG. 21 and 22 schematically show a third example of a divergence adjuster.
  • 21 is a view of the divergence adjuster 543 in the -V direction
  • FIG. 22 is a view in the -H direction.
  • the divergence adjuster 543 includes a variable slit 543a, first and second cylindrical convex lenses 543d and 543b, and a collimator lens 543e. The positional relationship of these optical elements may be fixed with respect to each other.
  • variable slit 543a The opening width of the variable slit 543a in the V direction is adjusted by an actuator 543f, and the opening width in the H direction is adjusted by an actuator 543g.
  • the variable slit 543a passes portions of the pulsed laser beam Out incident on the divergence adjuster 543 corresponding to the respective aperture widths in the V and H directions, and cuts off portions exceeding these aperture widths. It is possible to adjust the beam width in each of the direction and the H direction.
  • the variable slit 543a may be able to adjust the beam width in either the V direction or the H direction.
  • the first and second cylindrical convex lenses 543d and 543b are arranged on the optical path of the pulsed laser beam Out that has passed through the variable slit 543a.
  • the back focal axis of the first cylindrical convex lens 543d is parallel to the H direction and positioned at the front focal position F of the collimator lens 543e.
  • the back focal axis of the second cylindrical convex lens 543b is parallel to the V direction and positioned at the front focal point F of the collimator lens 543e.
  • the focal length f 543d of the first cylindrical convex lens 543d is set longer than the focal length f 543b of the second cylindrical convex lens 543b .
  • the collimator lens 543e is positioned on the optical path of the pulsed laser beam Out that has passed through the first and second cylindrical convex lenses 543d and 543b.
  • Collimator lens 543e has a focal length f 543e .
  • the collimator lens 543e may be composed of a spherical convex lens, or may be composed of a double-sided cylindrical convex lens having a focal axis in the V direction and a focal axis in the H direction. Also, the configuration is not limited to one lens, and may include a plurality of lenses. Thereby, the collimator lens 543e collimates the pulsed laser beam Out condensed by the first and second cylindrical convex lenses 543d and 543b.
  • the divergence adjuster 543 includes first and second cylindrical convex lenses 543d and 543b that converge the pulsed laser beam Out in the V direction and the H direction, respectively. , and a collimator lens 543e for collimating the pulsed laser beam Out condensed by the first and second cylindrical convex lenses 543d and 543b.
  • the beam cross section on the workpiece SUB becomes a transfer image of the beam cross section at the position F of the front focal point of the collimator lens 543e. Therefore, by using the first and second cylindrical convex lenses 543d and 543b to approximate the beam cross section at the position F to a perfect circle, the beam cross section at the workpiece SUB can be approximated to a perfect circle.
  • the beam diameter in the V direction and the beam diameter in the H direction at the focus position F are the same. It is desirable to determine the focal lengths f 1 543d and f 543b of the first and second cylindrical convex lenses 543d and 543b as follows. Specifically, it is calculated as follows.
  • D LV be the beam diameter in the V direction of the pulsed laser beam Out incident on the divergence adjuster 543
  • M 2 V the M square value in the V direction .
  • ftV ⁇ *Dt* DLV / ( ⁇ M2V ) Equation 3
  • the focal length ftH of the second cylindrical convex lens 543b is expressed by the following equation.
  • ft H ⁇ Dt ⁇ D LH /( ⁇ M 2 H ) Equation 4
  • the divergence adjuster 543 blocks part of the pulsed laser beam Out entering the first and second cylindrical convex lenses 543d and 543b to A variable slit 543a is included to adjust the beam width in either direction. Thereby, the shape of the beam cross section in the workpiece SUB can be finely adjusted.
  • FIG. 23 is a view of the divergence adjuster 544 in the -V direction
  • FIG. 24 is a view in the -H direction.
  • divergence adjuster 544 does not include variable slit 543a, and first and second cylindrical convex lenses 544d and 544b are movable parallel to the L direction by linear stages 544j and 544i, respectively. It differs from the third example in that For other points, the description regarding the first and second cylindrical convex lenses 543d and 543b and the collimator lens 543e in the third example is the same as the first and second cylindrical convex lenses 544d and 544b and the collimator lens in the fourth example. The description of lens 544e also applies.
  • the configuration for moving the first and second cylindrical convex lenses 544d and 544b by the linear stages 544j and 544i is the same as the configuration for moving the cylindrical convex lenses 541d and 541b in the first example.
  • Linear stages 544j and 544i correspond to first and second linear stages, respectively, in this disclosure.
  • the divergence adjuster 544 is a linear stage that moves the first and second cylindrical convex lenses 544d and 544b along the traveling direction of the pulse laser beam Out. 544j and 544i. According to this, by changing the beam waist position inside the divergence adjuster 544 and changing the beam cross section at the focal point position F, the shape of the beam cross section on the workpiece SUB can be finely adjusted.
  • a variable slit 543a similar to the third example may be further provided, and fine adjustment by the variable slit 543a may be added.
  • FIG. 25 schematically shows a fifth example of a divergence adjuster.
  • the divergence adjuster 545 is composed of an optical pulse stretcher that branches the optical path of the pulsed laser beam Out.
  • the optical pulse stretcher includes beam splitter 545a, concave mirrors 545b-545e, and actuator 545f.
  • the beam splitter 545a is arranged in the optical path of the pulsed laser beam Out entering the divergence adjuster 545 as the beam B11.
  • the reflectivity of the beam splitter 545a is, for example, 60%.
  • Concave mirrors 545b, 545c, 545d, and 545e are spherical mirrors and are arranged in this order in the optical path of the beam B21 reflected by the beam splitter 545a.
  • the concave mirrors 545b to 545e form a loop-shaped delay optical path.
  • the actuator 545f is configured to change the attitude of the concave mirror 545e.
  • Beam splitter 545a transmits part of beam B11 as beam B12 and reflects another part as beam B21.
  • the concave mirrors 545b to 545e sequentially reflect the beam B21 to enter the beam splitter 545a.
  • Beam splitter 545a reflects part of beam B21 as beam B22 and transmits another part as beam B31.
  • the concave mirrors 545b to 545e sequentially reflect the beam B31 to enter the beam splitter 545a.
  • Beam splitter 545a reflects a portion of beam B31 as beam B32.
  • beams B12, B22, and B32 are output from the divergence adjuster 545.
  • the concave mirrors 545b to 545e are intentionally misaligned so that the beams B12, B22, and B32 diverge as beams shifted in the H direction.
  • the actuator 545f finely adjusts the amount of deviation of the beams B12, B22, and B32 in the H direction by changing the attitude of the concave mirror 545e.
  • the divergence adjuster 545 adjusts the beam divergence BDH in the H direction of the pulsed laser light Out including the beams B12, B22, and B32.
  • the optical path length of the delay optical path composed of the concave mirrors 545b to 545e longer than the temporal coherence length of the pulse laser beam Out.
  • the concave mirrors 545b to 545e form an image of the beam B11 on the beam splitter 545a as an inverted image as the beam B21 between the concave mirrors 545c and 545d, and then form an image again when the beam B21 is incident on the beam splitter 545a. It is desirable that the images are arranged so as to form an erect image.
  • the focal lengths of the concave mirrors 545b to 545e are all the same f 545
  • the optical path length of the delay optical path is eight times f 545 .
  • the divergence adjuster 545 includes an optical pulse stretcher configured to branch the optical path of the pulsed laser beam Out in the H direction. According to this, not only can the beam divergence BDH be adjusted, but also the pulse time width can be expanded at the same time.
  • FIG. 26 schematically shows a sixth example of a divergence adjuster.
  • beam splitter 546a, concave mirrors 546b to 546e, and actuator 546f included in divergence adjuster 546 have the same configuration as beam splitter 545a, concave mirrors 545b to 545e, and actuator 545f in the fifth example. have
  • Concave mirrors 546b-546e are intentionally misaligned so that beams B12, B22, and B32 output from divergence adjuster 546 diverge as beams that are offset from each other in the V direction.
  • the actuator 546f finely adjusts the amount of deviation of the beams B12, B22, and B32 in the V direction by changing the posture of the concave mirror 546e. In this manner, the divergence adjuster 546 adjusts the beam divergence BDV in the V direction of the pulsed laser light Out including the beams B12, B22, and B32. Otherwise, the sixth example is similar to the fifth example.
  • the divergence adjuster 545 in the fifth example and the divergence adjuster 546 in the sixth example in the optical path of the pulsed laser beam Out, it is possible to adjust the beam divergence BDV and BDH in both the H direction and the V direction. .
  • FIG. 27 schematically shows a first example of an improved laser device.
  • a laser device 1e shown in FIG. 27 includes a measuring device 21 in addition to the configuration of the laser device 1 shown in FIGS.
  • the laser device 1e includes a rear mirror 14e with an actuator 14g.
  • the rear mirror 14e and the output coupling mirror 15 constitute an optical resonator.
  • the configuration of the measuring instrument 21 is similar to that described with reference to FIG.
  • the actuator 14g is configured to be able to change the attitude of the rear mirror 14e around axes parallel to each of the V direction and the H direction.
  • the laser control processor 13 feedback-controls the actuator 14g so that the beam divergence BDV and BDH measured by the measuring instrument 21 are reduced.
  • the laser control processor 13 feedback-controls the actuator 14g so that the beam divergence BDV and BDH measured by the measuring instrument 21 are reduced.
  • each of the rear mirror 14e and the output coupling mirror 15 may be rotatable around axes parallel to the V direction and the H direction. Thereby, not only the beam divergence BDV and BDH but also the beam pointing BPV and BPH can be adjusted.
  • the measuring instrument 21 can measure both the beam divergence BDV and BDH and the beam pointing BPV and BPH, and the laser control processor 13 controls the beam divergence BDV and BDH and the beam pointing BPV and BPH measured by the measuring instrument 21 to desired values.
  • the postures of the rear mirror 14e and the output coupling mirror 15 may be feedback-controlled so that
  • the laser device 1e may be the same as the laser device 1 in other respects.
  • the laser device 1e may include a divergence adjuster 20 as in the case of the laser device 1b.
  • FIG. 28 schematically shows a second example of an improved laser device.
  • the laser device 1f shown in FIG. 28 includes a concave mirror 14f and a convex mirror 15f that constitute an unstable resonator instead of the rear mirror 14 and the output coupling mirror 15. It differs from the laser device 1 shown in FIG.
  • the concave mirror 14f and the convex mirror 15f are spherical mirrors and arranged so that their focal positions match.
  • the magnification of these mirrors is, for example, 5 times or more and 10 times or less.
  • the convex mirror 15f is positioned so as to partially block the optical path of the light emitted from the window 10b.
  • a part of the light emitted from the window 10b of the laser chamber 10 is reflected by the convex mirror 15f, spreads gradually, passes through the discharge space between the discharge electrodes 11a and 11b, and enters the concave mirror 14f.
  • the light reflected by the concave mirror 14f passes through the discharge space between the discharge electrodes 11a and 11b as parallel light.
  • a part of it is output as the pulsed laser beam Out without being incident on the convex mirror 15f.
  • the number of spatial transverse modes of the pulsed laser beam Out to be output is reduced, and the pulsed laser beam Out close to a single transverse mode can be generated.
  • the adjustment range of the beam divergence BDV and BDH by the divergence adjuster 54 can be widened.
  • a smaller hole can be machined.
  • the concave mirror 14f and the convex mirror 15f may each be a cylindrical mirror having a focal axis parallel to the H direction. It is desirable that the focal axes of the concave mirror 14f and the convex mirror 15f match.
  • the concave mirror 14f and the convex mirror 15f are unstable resonators in the V direction and stable resonators in the H direction.
  • the number of spatial transverse modes in the V direction is reduced, and can be made approximately the same as the number of spatial transverse modes in the H direction, making it possible to reduce the beam divergence BDV in the V direction. Therefore, the adjustment range of the beam divergence BDV in the V direction by the divergence adjuster 54 can be widened.
  • the orientation of one or both of the concave mirror 14f and the convex mirror 15f may be controlled.
  • the laser device 1f may be the same as the laser device 1 in other respects.
  • the laser device 1f may include a divergence adjuster 20 as in the case of the laser device 1b.
  • FIG. 29 schematically shows a third example of an improved laser device.
  • the laser device 1g shown in FIG. 29 differs from the laser device 1 shown in FIGS.
  • the laser chamber 10, power supply device 12, rear mirror 14, and output coupling mirror 15 constitute a master oscillator MO.
  • Amplifier PA includes laser chamber 30 and power supply 32 .
  • the configurations of the laser chamber 30 and power supply 32 may be the same as those of the laser chamber 10 and power supply 12 .
  • the amplifier PA may not contain an optical resonator.
  • the amplifier PA is configured to amplify the pulsed laser light output from the master oscillator MO.
  • the power supply device is arranged so that the timing at which the pulsed laser light output from the master oscillator MO is incident on the amplifier PA is synchronized with the timing at which the power supply device 32 generates a high voltage to generate a discharge inside the laser chamber 30.
  • the time difference between the trigger signals applied to 12 and 32 respectively is set.
  • the laser control processor 13 feedback-controls the set voltages set in the power supply devices 12 and 32 based on the pulse energy data measured by the monitor module 16 .
  • the pulsed laser beam Out having sufficiently high pulse energy for laser processing can be output from the laser device 1g.
  • an unstable resonator similar to that in the second example may be used as the optical resonator included in the master oscillator MO.
  • the attitude of one or both of the rear mirror 14 and the output coupling mirror 15 may be controlled.
  • the laser device 1g may be the same as the laser device 1 in other respects. Also, the laser device 1g may be provided with a divergence adjuster 20 in the same manner as the laser device 1b.
  • FIG. 30 schematically shows a fourth example of an improved laser device.
  • Laser device 1h shown in FIG. 30 differs from laser device 1g shown in FIG. 29 in that the master oscillator MO includes a solid-state laser.
  • the laser device 1 h includes a master oscillator MO, an amplifier PA, and a monitor module 16 .
  • the master oscillator MO contains a solid-state laser and the amplifier PA contains an excimer laser.
  • the master oscillator MO includes a semiconductor laser 160, a titanium sapphire amplifier 171, a wavelength conversion system 172, a pumping laser 173, and a solid state laser control processor 130.
  • the semiconductor laser 160 is a distributed feedback semiconductor laser that outputs CW laser light with a wavelength of approximately 773.6 nm, and is configured such that the oscillation wavelength can be changed by changing the set temperature of the semiconductor.
  • Titanium-sapphire amplifier 171 is an amplifier containing a titanium-sapphire crystal.
  • the pumping laser 173 is a laser device that outputs the second harmonic of a YLF (yttrium lithium fluoride) laser to excite the titanium sapphire crystal of the titanium sapphire amplifier 171 .
  • YLF yttrium lithium fluoride
  • the wavelength conversion system 172 is a system that includes an LBO (lithium triborate) crystal and a KBBF (potassium beryllium fluoroborate) crystal and outputs the fourth harmonic of incident light.
  • the wavelength of the fourth harmonic is approximately 193.4 nm, which is approximately equal to the oscillation wavelength of the ArF excimer laser device.
  • the solid-state laser control processor 130 is a processing device that includes a memory 130a storing a control program and a CPU 130b that executes the control program. Solid-state laser control processor 130 is specially configured or programmed to perform various processes contained in this disclosure.
  • Amplifier PA is an ArF excimer laser device including laser chamber 30 , power supply 32 , concave mirror 34 and convex mirror 35 .
  • the configurations of the laser chamber 30 and the power supply device 32 included in the amplifier PA are the same as the corresponding configurations in the laser device 1g described with reference to FIG.
  • the convex mirror 35 is arranged in the optical path of the pulsed laser light that is output from the master oscillator MO and passed through the laser chamber 30 .
  • the concave mirror 34 is arranged in the optical path of the pulsed laser light that has been reflected by the convex mirror 35 and passed through the laser chamber 30 again.
  • the configurations of the monitor module 16 and the laser control processor 13 are similar to the corresponding configurations in the laser device 1 shown in FIGS. 1, 4, 11 and 13.
  • the semiconductor laser 160 outputs a CW laser beam with a wavelength of approximately 773.6 nm, and the titanium-sapphire amplifier 171 pulses and amplifies this laser beam and outputs it.
  • the wavelength conversion system 172 converts the pulsed laser light with a wavelength of approximately 773.6 nm into pulsed laser light with a wavelength of approximately 193.4 nm and outputs it toward the amplifier PA.
  • the pulsed laser light that has entered the amplifier PA passes through the discharge space in the laser chamber 30 , is reflected by the convex mirror 35 , and is given a beam divergence angle according to the curvature of the convex mirror 35 .
  • This pulsed laser light passes through the discharge space in the laser chamber 30 again.
  • the pulsed laser light that has been reflected by the convex mirror 35 and passed through the laser chamber 30 is reflected by the concave mirror 34 and returned to substantially parallel light.
  • This pulsed laser beam passes through the discharge space in the laser chamber 30 once more, passes through the monitor module 16, and is emitted to the outside of the laser device 1h as the pulsed laser beam Out.
  • a high voltage is applied to the electrodes 30a and 30b so that discharge starts in the discharge space within the laser chamber 30 when the pulsed laser light is incident on the laser chamber 30 from the master oscillator MO.
  • the pulsed laser light has its beam width expanded by the convex mirror 35 and concave mirror 34, is amplified while passing through the discharge space three times, and is output to the outside of the laser device 1h.
  • the beam divergence BDV and BDH in the V and H directions can be reduced. It becomes possible.
  • the beam divergence BDV and BDH adjustment range of the divergence adjuster 54 can be widened. Moreover, compared with the case where the laser device 1 is used, a smaller hole can be machined.
  • the optical resonator included in the amplifier PA is composed of the concave mirror 34 and the convex mirror 35 has been described, but the optical resonator may be a Fabry-Perot resonator or a ring resonator. good.
  • the combination of the master oscillator MO that outputs a pulsed laser beam having a wavelength of approximately 193.4 nm and the ArF excimer laser device that amplifies the wavelength component of approximately 193.4 nm has been described.
  • a combination of a master oscillator MO that outputs pulsed laser light having a wavelength of 4 nm and a KrF excimer laser device that amplifies a wavelength component of about 248.4 nm may be used.
  • the laser device 1h may be the same as the laser device 1. Also, the laser device 1h may be provided with a divergence adjuster 20 in the same manner as the laser device 1b.
  • FIG. 31 schematically shows the configuration of an electronic device.
  • the electronic device shown in FIG. 31 includes an integrated circuit chip IC, an interposer IP, and a circuit board CS.
  • An integrated circuit chip IC is, for example, a chip in which an integrated circuit (not shown) is formed on a silicon substrate.
  • the integrated circuit chip IC is provided with a plurality of bumps ICB electrically connected to the integrated circuit.
  • the interposer IP has an insulating substrate with a plurality of through holes (not shown) formed therein, and each through hole is provided with a conductor (not shown) that electrically connects the front and back sides of the substrate.
  • a plurality of lands (not shown) each connected to the bump ICB are formed on one surface of the interposer IP, and each land is electrically connected to one of the conductors in the through holes.
  • a plurality of bumps IPB are provided on the other surface of the interposer IP, and each of the bumps IPB is electrically connected to one of the conductors in the through holes.
  • a plurality of lands (not shown) connected to the bumps IPB are formed on one surface of the circuit board CS.
  • the circuit board CS has a plurality of terminals electrically connected to these lands.
  • FIG. 32 is a flow chart showing a method of manufacturing an electronic device.
  • laser processing and wiring formation of the interposer substrate that constitutes the interposer IP are performed.
  • Laser processing of the interposer substrate includes formation of through-holes by irradiating the interposer substrate with the pulsed laser beam Out.
  • Wiring formation includes formation of a conductive film on the inner wall surface of the through hole formed in the interposer substrate.
  • An interposer IP is manufactured through such steps.
  • coupling between the interposer IP and the integrated circuit chip IC is performed. This process includes, for example, placing the bump ICB of the integrated circuit chip IC on the land of the interposer IP and electrically connecting the bump ICB and the land.
  • coupling between the interposer IP and the circuit board CS is performed. This process includes, for example, placing the bumps IPB of the interposer IP on the lands of the circuit board CS and electrically connecting the bumps IPB and the lands.

Abstract

レーザ加工システムは、パルスレーザ光を出力するレーザ装置と、パルスレーザ光の第1の方向の第1のビームダイバージェンスと、第1の方向と交差する第2の方向の第2のビームダイバージェンスと、を調節するダイバージェンス調節器と、ダイバージェンス調節器を通過したパルスレーザ光の第1及び第2のビームダイバージェンスを計測する計測器と、計測器を通過したパルスレーザ光を分岐させる回折光学素子と、計測器による第1及び第2のビームダイバージェンスの計測結果に基づいて、第1及び第2のビームダイバージェンスがそれぞれの目標値に近づくようにダイバージェンス調節器を制御するプロセッサと、を含む。

Description

レーザ加工システム、レーザ加工方法、及び電子デバイスの製造方法
 本開示は、レーザ加工システム、レーザ加工方法、及び電子デバイスの製造方法に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。例えば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、ならびに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrF及びArFエキシマレーザ装置からそれぞれ出力されるエキシマレーザ光は、パルス幅が数10nsであって、波長は約248nm及び約193nmと短いことから、高分子材料やガラス材料等の直接加工にも用いることができる。
 高分子材料における化学結合は、結合エネルギーよりも高いフォトンエネルギーをもつエキシマレーザ光によって切断することができる。そのため、エキシマレーザ光によって高分子材料の非加熱加工が可能となり、加工形状が綺麗になることが知られている。
 また、ガラスやセラミックス等はエキシマレーザ光に対する吸収率が高いので、可視あるいは赤外領域のレーザ光では加工することが難しい材料であっても、エキシマレーザ光により加工できることが知られている。
特表2018-501115号公報
概要
 本開示の1つの観点において、レーザ加工システムは、パルスレーザ光を出力するレーザ装置と、パルスレーザ光の第1の方向の第1のビームダイバージェンスと、第1の方向と交差する第2の方向の第2のビームダイバージェンスと、を調節するダイバージェンス調節器と、ダイバージェンス調節器を通過したパルスレーザ光の第1及び第2のビームダイバージェンスを計測する計測器と、計測器を通過したパルスレーザ光を分岐させる回折光学素子と、計測器による第1及び第2のビームダイバージェンスの計測結果に基づいて、第1及び第2のビームダイバージェンスがそれぞれの目標値に近づくようにダイバージェンス調節器を制御するプロセッサと、を含む。
 本開示の他の1つの観点において、レーザ加工方法は、レーザ装置からパルスレーザ光を出力させ、パルスレーザ光の第1の方向の第1のビームダイバージェンスと、第1の方向と交差する第2の方向の第2のビームダイバージェンスと、を調節するダイバージェンス調節器にパルスレーザ光を入射させ、ダイバージェンス調節器を通過したパルスレーザ光の第1及び第2のビームダイバージェンスを計測器により計測し、計測器による第1及び第2のビームダイバージェンスの計測結果に基づいて、第1及び第2のビームダイバージェンスがそれぞれの目標値に近づくようにダイバージェンス調節器を制御し、計測器を通過したパルスレーザ光を回折光学素子により分岐させ、被加工物に照射することを含む。
 本開示の他の1つの観点において、電子デバイスの製造方法は、パルスレーザ光を出力するレーザ装置と、パルスレーザ光の第1の方向の第1のビームダイバージェンスと、第1の方向と交差する第2の方向の第2のビームダイバージェンスと、を調節するダイバージェンス調節器と、ダイバージェンス調節器を通過したパルスレーザ光の第1及び第2のビームダイバージェンスを計測する計測器と、計測器を通過したパルスレーザ光を分岐させる回折光学素子と、計測器による第1及び第2のビームダイバージェンスの計測結果に基づいて、第1及び第2のビームダイバージェンスがそれぞれの目標値に近づくようにダイバージェンス調節器を制御するプロセッサと、を含むレーザ加工システムによりインターポーザ基板をレーザ加工してインターポーザを作製し、インターポーザと集積回路チップとを結合させて互いに電気的に接続し、インターポーザと回路基板とを結合させて互いに電気的に接続することを含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例におけるレーザ加工システムの構成を概略的に示す。 図2は、出力結合ミラーから出力されたパルスレーザ光の光路軸に垂直なビーム断面を示す。 図3は、比較例において被加工物に入射するパルスレーザ光の分岐光の断面を示す。 図4は、第1の実施形態におけるレーザ加工システムの構成を概略的に示す。 図5は、計測器に含まれるイメージセンサで計測されるパルスレーザ光のビーム断面を、そのV方向及びH方向の光強度分布とともに示す。 図6は、第1の実施形態におけるレーザ加工方法を示すフローチャートである。 図7は、制御パラメータを計算する処理の詳細を示すフローチャートである。 図8は、ビームダイバージェンスとビームポインティングとをフィードバック制御する処理の詳細を示すフローチャートである。 図9は、第1の実施形態において被加工物に入射するパルスレーザ光の分岐光の断面を示す。 図10は、変形例におけるレーザ加工システムの構成を概略的に示す。 図11は、第2の実施形態におけるレーザ加工システムの構成を概略的に示す。 図12は、第2の実施形態におけるマスクの平面図である。 図13は、第3の実施形態におけるレーザ加工システムの構成を概略的に示す。 図14は、第3の実施形態におけるマスクの平面図である。 図15は、ダイバージェンス調節器の第1の例を概略的に示す。 図16は、ダイバージェンス調節器の第1の例を概略的に示す。 図17は、第1の例においてビームダイバージェンスが調節される原理を示す。 図18は、ダイバージェンス調節器の第2の例を概略的に示す。 図19は、ダイバージェンス調節器の第2の例を概略的に示す。 図20は、第2の例においてビームダイバージェンスが調節される原理を示す。 図21は、ダイバージェンス調節器の第3の例を概略的に示す。 図22は、ダイバージェンス調節器の第3の例を概略的に示す。 図23は、ダイバージェンス調節器の第4の例を概略的に示す。 図24は、ダイバージェンス調節器の第4の例を概略的に示す。 図25は、ダイバージェンス調節器の第5の例を概略的に示す。 図26は、ダイバージェンス調節器の第6の例を概略的に示す。 図27は、改善されたレーザ装置の第1の例を概略的に示す。 図28は、改善されたレーザ装置の第2の例を概略的に示す。 図29は、改善されたレーザ装置の第3の例を概略的に示す。 図30は、改善されたレーザ装置の第4の例を概略的に示す。 図31は、電子デバイスの構成を模式的に示す。 図32は、電子デバイスの製造方法を示すフローチャートである。
実施形態
<内容>
1.比較例に係るレーザ加工システム
 1.1 構成
  1.1.1 レーザ装置1の構成
  1.1.2 レーザ加工装置5の構成
 1.2 動作
  1.2.1 レーザ装置1の動作
  1.2.2 レーザ加工装置5の動作
 1.3 比較例の課題
2.ダイバージェンス調節器54を含むレーザ加工システム
 2.1 構成
 2.2 動作
  2.2.1 メインフロー
  2.2.2 制御パラメータの計算
  2.2.3 ビームダイバージェンスBDV及びBDHとビームポインティングBPV及びBPHとのフィードバック制御
 2.3 作用
 2.4 レーザ装置1bがダイバージェンス調節器20を含むレーザ加工システム
  2.4.1 構成
  2.4.2 動作
  2.4.3 作用
3.回折光学素子63による分岐光の光路にマスク65を配置し、マスク65の像を被加工物SUBに転写するレーザ加工システム
 3.1 構成及び動作
 3.2 作用
4.マスク61を通過した光を回折光学素子63に入射させるレーザ加工システム
 4.1 構成及び動作
 4.2 作用
5.ダイバージェンス調節器の詳細
 5.1 ビーム拡がり角を調節するダイバージェンス調節器541
  5.1.1 構成及び動作
  5.1.2 作用
 5.2 ビーム幅を調節するダイバージェンス調節器542
  5.2.1 構成及び動作
  5.2.2 作用
 5.3 一旦集光するとともにスリットで微調整するダイバージェンス調節器543
  5.3.1 構成及び動作
  5.3.2 作用
 5.4 一旦集光するとともにレンズ位置で微調整するダイバージェンス調節器544
  5.4.1 構成及び動作
  5.4.2 作用
 5.5 H方向にミスアライメントした光学パルスストレッチャーを含むダイバージェンス調節器545
  5.5.1 構成及び動作
  5.5.2 作用
 5.6 V方向にミスアライメントした光学パルスストレッチャーを含むダイバージェンス調節器546
6.改善されたレーザ装置
 6.1 光共振器を姿勢制御可能なレーザ装置1e
 6.2 不安定共振器を含むレーザ装置1f
 6.3 増幅器PAを含むレーザ装置1g
 6.4 固体レーザを含むレーザ装置1h
  6.4.1 構成
  6.4.2 動作
7.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.比較例に係るレーザ加工システム
 1.1 構成
 図1は、比較例におけるレーザ加工システムの構成を概略的に示す。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。レーザ加工システムは、レーザ装置1と、レーザ加工装置5と、を含む。
  1.1.1 レーザ装置1の構成
 レーザ装置1は、紫外線のパルスレーザ光Outを出力するガスレーザ装置である。レーザ装置1は、レーザチャンバ10と、電源装置12と、リアミラー14と、出力結合ミラー15と、モニタモジュール16と、シャッター19と、を含む。これらの構成要素は第1の筐体100に収容されている。リアミラー14及び出力結合ミラー15は光共振器を構成する。
 レーザチャンバ10は、光共振器の光路に配置されている。レーザチャンバ10にはウインドウ10a及び10bが設けられている。レーザチャンバ10は、一対の放電電極11a及び11bを内部に備えている。レーザチャンバ10には、例えばレアガスとしてアルゴンガス又はクリプトンガス、ハロゲンガスとしてフッ素ガス、バッファガスとしてネオンガス等を含むレーザガスが封入される。
 リアミラー14は高反射ミラーで構成され、出力結合ミラー15は、部分反射ミラーで構成されている。出力結合ミラー15からパルスレーザ光Outが出力される。
 モニタモジュール16は、ビームスプリッタ17と、光センサ18と、を含む。ビームスプリッタ17は、出力結合ミラー15から出力されたパルスレーザ光Outの光路に位置する。光センサ18は、ビームスプリッタ17によって反射されたパルスレーザ光Outの光路に位置する。
 シャッター19は、ビームスプリッタ17を透過したパルスレーザ光Outの光路に位置する。シャッター19は、レーザ加工装置5へのパルスレーザ光Outの通過と遮断とを切り替え可能に構成されている。
 レーザ装置1は、レーザ制御プロセッサ13をさらに含む。レーザ制御プロセッサ13は、制御プログラムが記憶されたメモリ13aと、制御プログラムを実行するCPU(central processing unit)13bと、を含む処理装置である。レーザ制御プロセッサ13は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。
  1.1.2 レーザ加工装置5の構成
 レーザ加工装置5は、照射光学システム50aと、フレーム50bと、XYZステージ501と、レーザ加工プロセッサ53と、を含む。
 フレーム50bに、照射光学システム50aとXYZステージ501とが固定される。XYZステージ501のテーブル502に被加工物SUBが支持される。
 図1において、互いに直交するX方向及びY方向は被加工物SUBの表面に平行な方向である。Z方向は被加工物SUBの表面に垂直で、被加工物SUBの表面に入射するパルスレーザ光Outの進行方向と平行な方向である。X方向、Y方向、及びZ方向の座標軸で規定される座標系をXYZ座標系とする。
 被加工物SUBは、例えば、図31を参照しながら後述する集積回路チップICと回路基板CSとを中継するインターポーザIPを製造するためのインターポーザ基板である。インターポーザ基板は、例えば、高分子材料、ガラス材料などの電気絶縁材料で構成される。
 照射光学システム50aは、高反射ミラー51a、51b、及び51cと、アッテネータ52と、回折光学素子63と、集光光学系67と、を含む。高反射ミラー51a、51b、及び51cと、アッテネータ52と、回折光学素子63とは、第2の筐体500に収容されている。集光光学系67は、第2の筐体500のウインドウを兼ねている。第2の筐体500は、光路管200を介して第1の筐体100と接続されている。レーザ装置1から出力されたパルスレーザ光Outは、光路管200の内部を通過して第2の筐体500に入射する。
 高反射ミラー51aは、光路管200の内部を通過したパルスレーザ光Outの光路に位置する。アッテネータ52は、高反射ミラー51aによって反射されたパルスレーザ光Outの光路に位置する。アッテネータ52は、2枚の部分反射ミラー52a及び52bと回転ステージ52c及び52dとを含む。回転ステージ52c及び52dは、それぞれ部分反射ミラー52a及び52bに対するパルスレーザ光Outの入射角を変更することにより、アッテネータ52の透過率を変更可能に構成されている。
 高反射ミラー51bは、アッテネータ52を透過した前記パルスレーザ光Outの光路に位置し、高反射ミラー51cは、高反射ミラー51bによって反射されたパルスレーザ光Outの光路に位置する。
 回折光学素子63は、高反射ミラー51cによって反射されたパルスレーザ光Outの光路に位置する。回折光学素子63は、表面に多数の凹凸を有し、透過するパルスレーザ光Outを回折させることにより複数の光路に分岐させるように構成されている。
 集光光学系67は、回折光学素子63を透過したパルスレーザ光Outの光路に位置する。集光光学系67は、回折光学素子63によって分岐されたパルスレーザ光Outの分岐光をそれぞれ集光する。集光光学系67は焦点距離f67を有する。集光光学系67は、パルスレーザ光Outの分岐光が同一平面上に集光するように、Fθレンズで構成されることが望ましい。
 レーザ加工プロセッサ53は、制御プログラムが記憶されたメモリ53aと、制御プログラムを実行するCPU53bと、を含む処理装置である。レーザ加工プロセッサ53は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。
 1.2 動作
  1.2.1 レーザ装置1の動作
 レーザ装置1において、レーザ制御プロセッサ13は、レーザ加工プロセッサ53から目標パルスエネルギーEtのデータ及びトリガ信号を受信する。レーザ制御プロセッサ13は、目標パルスエネルギーEtに基づいて電源装置12の電圧を設定し、トリガ信号を電源装置12に伝送する。
 電源装置12は、レーザ制御プロセッサ13からトリガ信号を受信すると、パルス状の高電圧を生成して放電電極11a及び11bの間に印加する。
 放電電極11a及び11bの間に高電圧が印加されると、放電電極11a及び11bの間に放電が起こる。この放電のエネルギーにより、レーザチャンバ10内のレーザガスが励起されて高エネルギー準位に移行する。励起されたレーザガスが、その後、低エネルギー準位に移行するとき、そのエネルギー準位差に応じた波長の光を放出する。
 レーザチャンバ10内で発生した光は、ウインドウ10a及び10bを介してレーザチャンバ10の外部に出射する。レーザチャンバ10のウインドウ10aから出射した光は、リアミラー14によって高い反射率で反射されてレーザチャンバ10に戻される。
 出力結合ミラー15は、レーザチャンバ10のウインドウ10bから出射した光のうちの一部を透過させて出力し、他の一部を反射してレーザチャンバ10に戻す。
 このようにして、レーザチャンバ10から出射した光は、リアミラー14と出力結合ミラー15との間で往復し、放電電極11a及び11bの間の放電空間を通過する度に増幅される。こうしてレーザ発振して生成されたパルスレーザ光Outが出力結合ミラー15から出力される。
 図2は、出力結合ミラー15から出力されたパルスレーザ光Outの光路軸に垂直なビーム断面を示す。図2は、図1のII-II線における断面図に相当する。パルスレーザ光Outのビーム断面は、放電電極11a及び11bの間の放電空間の形状に対応し、放電電極11a及び11bの間の放電方向に長いほぼ長方形の形状を有する。
 L方向をパルスレーザ光Outの進行方向とする。V方向をL方向に垂直であってパルスレーザ光Outのビーム断面の長辺に平行な方向とする。H方向をL方向とV方向との両方に垂直な方向とする。H方向はパルスレーザ光Outのビーム断面の短辺に平行である。V方向及びH方向はそれぞれ本開示における第1及び第2の方向に相当する。L方向、V方向、及びH方向の座標軸で規定される座標系をLVH座標系とする。
 LVH座標系はパルスレーザ光Outを基準として定義されているので、パルスレーザ光Outが反射されると、LVH座標系と図1を参照しながら説明したXYZ座標系との関係が変化し、且つ、LVH座標系そのものが反転する。例えば、パルスレーザ光Outが高反射ミラー51aによって直角に反射された場合、パルスレーザ光Outの進行方向はH軸周りに直角に回転する。この場合、L方向及びV方向の各々がXYZ座標系に対して直角に回転し、さらに、V方向は逆向きになる。但し、L方向、V方向、及びH方向は、後述の投影光学系68によっては変化しないものとする。
 図1を再び参照し、モニタモジュール16は、出力結合ミラー15から出力されたパルスレーザ光Outのパルスエネルギーを検出する。モニタモジュール16は、検出したパルスエネルギーのデータをレーザ制御プロセッサ13に送信する。
 レーザ制御プロセッサ13は、モニタモジュール16から受信したパルスエネルギーのデータと、レーザ加工プロセッサ53から受信した目標パルスエネルギーEtのデータとに基づいて、電源装置12の設定電圧をフィードバック制御する。
  1.2.2 レーザ加工装置5の動作
 XYZステージ501は、集光光学系67から焦点距離f67の位置に被加工物SUBが位置するように調節される。
 レーザ装置1から出力されたパルスレーザ光Outは、光路管200の内部を通過してレーザ加工装置5に入射する。パルスレーザ光Outは、高反射ミラー51aによって反射され、アッテネータ52を透過した後、高反射ミラー51b及び51cによって順次反射される。レーザ加工プロセッサ53は、アッテネータ52の透過率の目標値を設定し、その目標値に基づいて回転ステージ52c及び52dを制御する。
 高反射ミラー51cによって反射されたパルスレーザ光Outは、回折光学素子63によって複数の光路に分岐され、分岐光の各々が集光光学系67によって被加工物SUBの表面に集光される。被加工物SUBにパルスレーザ光Outの分岐光が照射されると、被加工物SUBの表面がアブレーションし、レーザ加工される。
 1.3 比較例の課題
 図3は、比較例において被加工物SUBに入射するパルスレーザ光Outの分岐光Out1の断面を示す。図3に示される例において、回折光学素子63によって分岐されたパルスレーザ光Outの分岐光Out1は、被加工物SUBの表面において正方格子の各頂点に相当する位置に入射する。分岐光Out1の形状及び配列は回折光学素子63の設計によって異なる。集光光学系67によってそれぞれ集光された多数の細い分岐光Out1を被加工物SUBに照射することで、被加工物SUBに多数の微細な穴を形成することができる。この穴は被加工物SUBを貫通する貫通孔でもよい。
 しかしながら、集光光学系67によって集光された分岐光Out1の断面形状が、回折光学素子63の設計の通りにならないことがある。例えば、分岐光Out1の断面形状が真円形となるように回折光学素子63が設計されていても、図3に示されるように被加工物SUBにおいてはH方向よりもV方向に長い長円形あるいは楕円形となることがある。この場合、所望のレーザ加工が実現できない可能性がある。
 以下に説明する実施形態においては、回折光学素子63に入射するパルスレーザ光OutのビームダイバージェンスBDV及びBDHを制御することにより、被加工物SUBに入射する分岐光Out1の断面形状を所望の形状に近づける。
2.ダイバージェンス調節器54を含むレーザ加工システム
 2.1 構成
 図4は、第1の実施形態におけるレーザ加工システムの構成を概略的に示す。第1の実施形態において、レーザ加工システムに含まれるレーザ加工装置5aは、図1に示される構成要素の他に、アクチュエータ51dと、ダイバージェンス調節器54と、計測器55と、シャッター59と、を含む。
 ダイバージェンス調節器54は、パルスレーザ光OutのV方向のビームダイバージェンスBDVと、H方向のビームダイバージェンスBDHと、を調節可能に構成されている。ダイバージェンス調節器54の具体的構成については図15~図26を参照しながら後述する。図4に示される例では、ダイバージェンス調節器54はアッテネータ52と高反射ミラー51bとの間に配置されているが、ダイバージェンス調節器54は高反射ミラー51aと計測器55との間のパルスレーザ光Outの光路の任意の位置に配置されてもよい。
 アクチュエータ51dは、高反射ミラー51cに取り付けられており、高反射ミラー51cの姿勢を変更可能に構成されている。高反射ミラー51cの姿勢を変更することで、高反射ミラー51cによって反射されるパルスレーザ光Outの進行方向が変化する。パルスレーザ光Outの進行方向が調節されることで、ビームポインティングBPV及びBPHが調節される。高反射ミラー51cとアクチュエータ51dとで、ビームステアリング装置が構成される。ビームステアリング装置は光路管200の内部と計測器55との間のパルスレーザ光Outの光路の任意の位置に配置されてもよいが、より望ましくは、ダイバージェンス調節器54と計測器55との間のパルスレーザ光Outの光路に配置される。
 計測器55は、ビームスプリッタ56と、凸レンズ57と、イメージセンサ58と、を含む。ビームスプリッタ56は、ダイバージェンス調節器54及びビームステアリング装置の両方を通過したパルスレーザ光Outの光路に位置する。凸レンズ57は、ビームスプリッタ56によって反射されたパルスレーザ光Outの光路に位置する。凸レンズ57は焦点距離f57を有する。焦点距離f57は集光光学系67の焦点距離f67より大きくてもよい。イメージセンサ58は、凸レンズ57を通過したパルスレーザ光Outの光路であって凸レンズ57の焦点面に位置する。ここで、凸レンズ57は、凹レンズ及び凸レンズを組み合わせた焦点距離f57の組み合わせレンズであってもよい。計測器55は、ダイバージェンス調節器54及びビームステアリング装置の両方を通過したパルスレーザ光OutのビームダイバージェンスBDV及びBDH及びビームポインティングBPV及びBPHを計測可能に構成されている。ビームダイバージェンスBDV及びBDH及びビームポインティングBPV及びBPHの計測については図5を参照しながら後述する。
 シャッター59は、ビームスプリッタ56を透過したパルスレーザ光Outの光路に位置する。シャッター59は、回折光学素子63及び被加工物SUBへのパルスレーザ光Outの通過と遮断とを切り替え可能に構成されている。
 図5は、計測器55に含まれるイメージセンサ58で計測されるパルスレーザ光Outのビーム断面S58を、そのV方向及びH方向の光強度分布とともに示す。光強度Iのピーク値Imaxの1/e以上の光強度Iを有する部分のV方向の全幅をV方向のスポット径DCVとし、当該部分のH方向の全幅をH方向のスポット径DCHとする。あるいは、1/eの代わりに、半値又は1/eが用いられてもよい。なお、eはネイピア数である。本開示において、スポット径とは焦点位置におけるビーム断面の直径である。後述のビームウェスト径はビームウェスト位置におけるビーム断面の直径であり、スポット径とは異なる場合がある。
 本開示において、ビームダイバージェンスは、焦点位置におけるビーム幅を焦点距離で除算した値と定義する。V方向及びH方向のビームダイバージェンスBDV及びBDHは、以下の式で与えられる。
   BDV=DCV/f57
   BDH=DCH/f57
 ビームダイバージェンスBDV及びBDHは、それぞれ本開示における第1及び第2のビームダイバージェンスに相当する。
 本開示において、ビームポインティングBPV及びBPHは、焦点位置におけるビーム断面のV方向及びH方向の中央位置と定義する。中央位置は、例えば、V方向及びH方向の各々の光強度分布の重心位置でもよいし、スポット径DCV及びDCHの各々の中心位置でもよい。
 2.2 動作
  2.2.1 メインフロー
 図6は、第1の実施形態におけるレーザ加工方法を示すフローチャートである。レーザ加工プロセッサ53が以下のようにレーザ加工装置5aを制御することにより、ステップアンドリピート方式によるレーザ加工が行われる。
 S90において、レーザ加工プロセッサ53は、パルスレーザ光Outが照射されたときに被加工物SUBの最初の加工エリアがパルスレーザ光Outで加工されるように、被加工物SUBの位置をX方向及びY方向に制御する。
 S100において、レーザ加工プロセッサ53は、各種制御パラメータを計算する。S100の詳細については図7を参照しながら後述する。
 S110において、レーザ加工プロセッサ53は、シャッター59を閉じ、レーザ装置1にトリガ信号を送信して調整発振を開始する。
 S120において、レーザ加工プロセッサ53は、ビームダイバージェンスBDV及びBDHとビームポインティングBPV及びBPHとをフィードバック制御する。図6においてビームダイバージェンスとビームポインティングとをそれぞれBD及びBPと略称することがある。S120の詳細については図8を参照しながら後述する。
 S130において、レーザ加工プロセッサ53は、ビームダイバージェンスBDV及びBDHとビームポインティングBPV及びBPHとがOKであるか否かを判定する。この判定は、図8に示されるS120の処理の結果に基づいて行われる。
 ビームダイバージェンスBDV及びBDHとビームポインティングBPV及びBPHとがOKである場合(S130:YES)、レーザ加工プロセッサ53は、S140に処理を進める。OKではない場合(S130:NO)、レーザ加工プロセッサ53は、S120に処理を戻す。
 S140において、レーザ加工プロセッサ53は、調整発振を終了し、シャッター59を開く。このように、ビームダイバージェンスBDV及びBDHとビームポインティングBPV及びBPHとの計測結果が許容範囲内となるまでパルスレーザ光Outが遮断される。
 S160において、レーザ加工プロセッサ53は、集光光学系67の焦点面に被加工物SUBが位置するように、被加工物SUBの位置をZ方向に制御する。
 S170において、レーザ加工プロセッサ53は、現在の加工エリアへのパルスレーザ光Outの照射を開始させる。
 S180において、レーザ加工プロセッサ53は、ビームダイバージェンスBDV及びBDHとビームポインティングBPV及びBPHとをフィードバック制御する。S180の処理はS120の処理と同様であり、その詳細については図8を参照しながら後述する。
 S190において、レーザ加工プロセッサ53は、S100で定められた照射パルス数nのパルスレーザ光Outを現在の加工エリアに照射したら、現在の加工エリアへのパルスレーザ光Outの照射を終了させる。
 S200において、レーザ加工プロセッサ53は、ビームダイバージェンスBDV及びBDHとビームポインティングBPV及びBPHとがOKであるか否かを判定する。
 ビームダイバージェンスBDV及びBDHとビームポインティングBPV及びBPHとがOKである場合(S200:YES)、レーザ加工プロセッサ53は、S210に処理を進める。OKではない場合(S200:NO)、レーザ加工プロセッサ53は、S110に処理を戻す。
 S210において、レーザ加工プロセッサ53は、被加工物SUBの全加工エリアへの照射が終了したか否かを判定する。全加工エリアへの照射が終了した場合(S210:YES)、レーザ加工プロセッサ53は、本フローチャートの処理を終了する。未加工エリアが残っている場合(S210:NO)、レーザ加工プロセッサ53は、S220に処理を進める。
 S220において、レーザ加工プロセッサ53は、次の加工エリアがパルスレーザ光Outで加工されるように、被加工物SUBの位置をX方向及びY方向に制御する。S220の後、レーザ加工プロセッサ53は、S160に処理を戻す。
  2.2.2 制御パラメータの計算
 図7は、制御パラメータを計算する処理の詳細を示すフローチャートである。図7に示される処理は、図6に示されるS100のサブルーチンに相当する。
 S101において、レーザ加工プロセッサ53は、被加工物SUBにおける目標スポット径Dtをメモリ53aから読み込む。目標スポット径Dtは、V方向のスポット径及びH方向のスポット径の目標値である。ここではV方向とH方向とで同じ目標スポット径Dtが用いられる場合について説明するが、異なる目標スポット径が用いられてもよい。
 S102において、レーザ加工プロセッサ53は、目標フルーエンスFtをメモリ53aから読み込む。フルーエンスとは、被加工物SUBの表面におけるパルスレーザ光Outのエネルギー密度である。
 S103において、レーザ加工プロセッサ53は、1つの加工エリア内の照射パルス数n及び繰り返し周波数Rfをメモリ53aから読み込む。S101~S103において、各種データをメモリ53aから読み込むものとしたが、図示しないコンピューター装置から受信したデータを読み込んでもよいし、オペレータが入力したデータを読み込んでもよい。
 S104において、レーザ加工プロセッサ53は、目標ダイバージェンスBDtを次の式により計算する。
   BDt=Dt/f67
目標ダイバージェンスBDtはビームダイバージェンスBDV及びBDHの目標値である。ここではV方向とH方向とで同じ目標値を設定する場合について説明するが、異なる目標値が設定されてもよい。但し、ダイバージェンス調節器54に入射するパルスレーザ光OutのV方向及びH方向のビームダイバージェンスの差よりも、ダイバージェンス調節器54を通過したパルスレーザ光OutのV方向及びH方向のビームダイバージェンスBDV及びBDHの目標値の差が小さいことが望ましい。ダイバージェンス調節器54に入射するパルスレーザ光OutのV方向及びH方向のビームダイバージェンスは、本開示における第3及び第4のビームダイバージェンスに相当する。
 S105において、レーザ加工プロセッサ53は、目標パルスエネルギーEtを次の式により計算する。
   Et=Ft・P・S/T
ここで、Pは1つの加工エリア内の加工点の個数である。Sは集光光学系67の焦点位置における1つの加工点のビーム断面の面積であり、目標スポット径Dtを用いて以下の式で与えられる。
   S=π(Dt/2)
Tはレーザ加工装置5aにおける光学系の透過率であり、次の式で与えられる。
   T=Ta・To
ここで、Taはアッテネータ52の透過率であり、Toはアッテネータ52以外の光学素子の透過率である。
 S105の後、レーザ加工プロセッサ53は、本フローチャートの処理を終了し、図6に示される処理に戻る。
  2.2.3 ビームダイバージェンスBDV及びBDHとビームポインティングBPV及びBPHとのフィードバック制御
 図8は、ビームダイバージェンスBDV及びBDHとビームポインティングBPV及びBPHとをフィードバック制御する処理の詳細を示すフローチャートである。図8に示される処理は、図6に示されるS120及びS180のサブルーチンに相当する。
 S121において、レーザ加工プロセッサ53は、V方向及びH方向のビームダイバージェンスBDV及びBDHと、V方向及びH方向のビームポインティングBPV及びBPHとを計測器55により計測する。
 S122において、レーザ加工プロセッサ53は、ビームダイバージェンスBDV及びBDH、及びビームポインティングBPV及びBPHと、それらの目標値との差ΔBDV、ΔBDH、ΔBPV、及びΔBPHを以下の式により計算する。
   ΔBDV=BDV-BDt
   ΔBDH=BDH-BDt
   ΔBPV=BPV-BPVt
   ΔBPH=BPH-BPHt
BPVt及びBPHtは、それぞれビームポインティングBPV及びBPHの目標値である。
 S123において、レーザ加工プロセッサ53は、差ΔBDV、ΔBDH、ΔBPV、及びΔBPHがそれぞれの閾値以下であるか否かを判定する。差ΔBDV、ΔBDH、ΔBPV、及びΔBPHのすべてがそれぞれの閾値以下である場合(S123:YES)、レーザ加工プロセッサ53は、S124に処理を進める。差ΔBDV、ΔBDH、ΔBPV、及びΔBPHのいずれかがその閾値を超えている場合(S123:NO)、レーザ加工プロセッサ53は、S125に処理を進める。
 S124において、レーザ加工プロセッサ53は、ビームダイバージェンスBDV及びBDHとビームポインティングBPV及びBPHとがOKであることを示すフラグをメモリ53aに記憶する。
 S125において、レーザ加工プロセッサ53は、ビームダイバージェンスBDV及びBDHとビームポインティングBPV及びBPHとのいずれかがNGであることを示すフラグをメモリ53aに記憶する。
 図6に示されるS130及びS200においては、これらのフラグが読み出されて判定が行われる。
 S124又はS125の後、S126において、レーザ加工プロセッサ53は、差ΔBDV、ΔBDH、ΔBPV、及びΔBPHが0に近づくように、ダイバージェンス調節器54及びビームステアリング装置を制御する。
 S126の後、レーザ加工プロセッサ53は、本フローチャートの処理を終了し、図6に示される処理に戻る。
 2.3 作用
 (1)第1の実施形態によれば、レーザ加工システムは、レーザ装置1から出力されたパルスレーザ光OutのV方向のビームダイバージェンスBDVと、H方向のビームダイバージェンスBDHと、を調節するダイバージェンス調節器54を含む。ダイバージェンス調節器54を通過したパルスレーザ光OutのビームダイバージェンスBDV及びBDHは計測器55によって計測される。レーザ加工プロセッサ53は、計測器55による計測結果に基づいて、ビームダイバージェンスBDV及びBDHがそれぞれの目標値に近づくようにダイバージェンス調節器54を制御する。計測器55を通過したパルスレーザ光Outは回折光学素子63によって分岐される。これによれば、回折光学素子63によって分岐されて被加工物SUBに入射する分岐光の断面形状を所望の形状に近づけることができる。
 また、レーザ装置1に含まれる光学素子の温度が変化したり放電電極11a及び11bが消耗したりして、レーザ装置1から出力されるパルスレーザ光Outのビームダイバージェンスが変化した場合でも、回折光学素子63に入射するパルスレーザ光OutのビームダイバージェンスBDV及びBDHはダイバージェンス調節器54によって安定化される。これにより、被加工物SUBに照射される分岐光の断面形状が安定化し、被加工物SUBに加工される穴の形状が安定化する。
 (2)第1の実施形態によれば、ダイバージェンス調節器54に入射するパルスレーザ光OutのV方向及びH方向のビームダイバージェンスの差よりも、ダイバージェンス調節器54を通過したパルスレーザ光OutのV方向及びH方向のビームダイバージェンスBDV及びBDHの目標値の差が小さい。これによれば、被加工物SUBに照射される分岐光の断面形状における長辺と短辺の寸法差が小さくなる。
 図9は、第1の実施形態において被加工物SUBに入射するパルスレーザ光Outの分岐光Out2の断面を示す。V方向とH方向とで同じ目標スポット径Dtが設定された場合、被加工物SUBに照射される分岐光Out2の断面形状が円形に近くなる。これにより、被加工物SUBに加工される穴の形状が円形に近くなる可能性がある。
 (3)第1の実施形態によれば、レーザ加工システムは、パルスレーザ光Outの進行方向を調節するビームステアリング装置をさらに含む。ビームステアリング装置はアクチュエータ51d及び高反射ミラー51cで構成され、レーザ装置1と回折光学素子63との間のパルスレーザ光Outの光路に配置される。ビームステアリング装置を通過したパルスレーザ光OutのビームポインティングBPV及びBPHが計測器55によって計測される。レーザ加工プロセッサ53は、計測器55による計測結果に基づいて、ビームポインティングBPV及びBPHが目標値に近づくようにビームステアリング装置を制御する。これによれば、分岐光Out2を被加工物SUBの所望の位置に照射し得る。また、レーザ装置1に含まれる光学素子の温度が変化したり放電電極11a及び11bが消耗したりして、レーザ装置1から出力されるパルスレーザ光Outのビームポインティングが変化した場合でも、回折光学素子63に入射するパルスレーザ光OutのビームポインティングBPV及びBPHはビームステアリング装置によって安定化される。これにより、被加工物SUBに照射される分岐光Out2の位置が安定化し、被加工物SUBに加工される穴の位置が安定化する。
 (4)第1の実施形態によれば、レーザ加工システムは、パルスレーザ光Outの通過と遮断とを切り替え可能に構成されたシャッター59をさらに含む。シャッター59は、計測器55を通過したパルスレーザ光Outの光路に配置される。レーザ加工プロセッサ53は、計測器55によるビームダイバージェンスBDV及びBDHの計測結果がそれぞれの目標値を含むそれぞれの許容範囲内となるまでパルスレーザ光Outが遮断されるようにシャッター59を制御する。これによれば、計測結果が許容範囲内となった後で被加工物SUBを加工するので、高い加工精度を得ることができる。
 (5)第1の実施形態によれば、レーザ加工システムは、回折光学素子63を通過したパルスレーザ光Outの光路に配置された集光光学系67をさらに含む。被加工物SUBは、集光光学系67の焦点面に位置する。これによれば、回折光学素子63によって分岐された分岐光をそれぞれ集光して微細な加工を行うことができる。
 (6)第1の実施形態によれば、レーザ加工システムに含まれるレーザ装置1は、第1の筐体100に収容された光共振器を含む。ダイバージェンス調節器54及び回折光学素子63は、第2の筐体500に収容されている。これによれば、レーザ加工装置5aにおいてビームダイバージェンスBDV及びBDHを調節するので、レーザ装置1から出力されるパルスレーザ光Outのビームダイバージェンスが変化した場合でも、被加工物SUBに照射される分岐光の断面形状が安定化し得る。
 他の点については、第1の実施形態は比較例と同様である。
 2.4 レーザ装置1bがダイバージェンス調節器20を含むレーザ加工システム
  2.4.1 構成
 図10は、変形例におけるレーザ加工システムの構成を概略的に示す。図10において、ダイバージェンス調節器20及び計測器21がレーザ装置1bに含まれ、これらの構成要素は、光共振器とともに第1の筐体100に収容されている。レーザ加工装置5bは、ダイバージェンス調節器54を含まなくてもよい。
 ダイバージェンス調節器20の構成は、ダイバージェンス調節器54の構成と同様であり、図15~図26を参照しながら後述する。
 計測器21は、ビームスプリッタ22と、凸レンズ23と、イメージセンサ24と、を含む。ビームスプリッタ22は、ダイバージェンス調節器20を通過したパルスレーザ光Outの光路に位置する。凸レンズ23は、ビームスプリッタ22によって反射されたパルスレーザ光Outの光路に位置する。凸レンズ23は焦点距離f23を有する。焦点距離f23は集光光学系67の焦点距離f67より大きくてもよい。イメージセンサ24は、凸レンズ23を通過したパルスレーザ光Outの光路であって凸レンズ23の焦点面に位置する。ここで、凸レンズ23は、凹レンズ及び凸レンズを組み合わせた焦点距離f23の組み合わせレンズであってもよい。計測器21は、ビームダイバージェンスBDV及びBDHを計測可能に構成されている。
  2.4.2 動作
 レーザ制御プロセッサ13は、計測器21によって計測されたビームダイバージェンスBDV及びBDHと、計算によって求められた目標ダイバージェンスBDtと、に基づいてダイバージェンス調節器20をフィードバック制御する。
 レーザ加工プロセッサ53は、計測器55によって計測されたビームポインティングBPV及びBPHと、計算によって求められたビームポインティングBPV及びBPHの目標値BPVt及びBPHtと、に基づいてアクチュエータ51dをフィードバック制御する。
 このように、変形例においては、ビームダイバージェンスBDV及びBDHの計測及び制御がレーザ装置1bにおいて行われ、ビームポインティングBPV及びBPHの計測及び制御がレーザ加工装置5bにおいて行われる点で、図4~図9を参照しながら説明したものと異なる。他の点については図4~図9を参照しながら説明したものと同様でよい。
 計測器55ではビームダイバージェンスBDV及びBDHも計測できるので、計測器55で計測されるビームダイバージェンスBDV及びBDHがOKであることを確認しながらレーザ加工が行われてもよい。計測器55で計測されるビームダイバージェンスBDV及びBDHのいずれかがNGである場合に調整発振が行われてもよい。
 さらに別の変形例として、図10の構成から計測器21が取り除かれてもよい。計測器55で計測されるビームダイバージェンスBDV及びBDHに基づいて、ダイバージェンス調節器20が制御されてもよい。
  2.4.3 作用
 (7)変形例によれば、レーザ加工システムに含まれるレーザ装置1bは、第1の筐体100に収容された光共振器及びダイバージェンス調節器20を含む。回折光学素子63は、第2の筐体500に収容されている。これによれば、ビームダイバージェンスBDV及びBDHが調節されたパルスレーザ光Outがレーザ装置1bから出力されるので、レーザ加工装置5bの構成が複雑化することを抑制し得る。
 他の点については、変形例は図4~図9を参照しながら説明したものと同様である。
3.回折光学素子63による分岐光の光路にマスク65を配置し、マスク65の像を被加工物SUBに転写するレーザ加工システム
 3.1 構成及び動作
 図11は、第2の実施形態におけるレーザ加工システムの構成を概略的に示す。第2の実施形態において、レーザ加工システムに含まれるレーザ加工装置5cは、図4に示される集光光学系67の代わりに、集光光学系64を含み、さらに、マスク65と、投影光学系68と、を含む。
 集光光学系64は、回折光学素子63を透過したパルスレーザ光Outの光路であって第2の筐体500の内部に配置されており、焦点距離f64を有する。他の点については、集光光学系64は図4を参照しながら説明した集光光学系67と同様である。
 マスク65は、集光光学系64を通過したパルスレーザ光Outの光路であって集光光学系64の焦点面に位置する。
 図12は、第2の実施形態におけるマスク65の平面図である。マスク65は、多数の円形の開口M1を有し、開口M1の各々の直径はDmである。開口M1の各々は真円形であることが望ましい。回折光学素子63によって分岐されたパルスレーザ光Outの分岐光は、集光光学系64を通過することにより、マスク65の位置における分岐光の断面S65がそれぞれ開口M1の位置に重なるように、それぞれ集光される。分岐光の断面S65と開口M1との位置合わせは、ビームステアリング装置によって調節される。分岐光の断面S65の各々の直径は、目標スポット径Dtに近づくようにダイバージェンス調節器54によって調節される。目標スポット径Dtは、以下の式1を満たすように設定される。
   Dm≦Dt≦K・Dm ・・・式1
ここで、Kは1.1以上、1.4以下が好ましい。
 図11を再び参照し、投影光学系68は、マスク65を通過したパルスレーザ光Outの光路に位置し、第1及び第2のレンズ68a及び68bを含む。第2のレンズ68bは第2の筐体500のウインドウを兼ねている。投影光学系68は、マスク65の像を被加工物SUBに投影する。被加工物SUBにおける分岐光の各々のビーム径は、マスク65の開口M1の各々の直径Dmに投影光学系68の倍率を乗算したものとなる。
 3.2 作用
 (8)第2の実施形態によれば、レーザ加工システムは、回折光学素子63を通過したパルスレーザ光Outの光路に配置された集光光学系64と、集光光学系64の焦点面に配置され、複数の開口を有するマスク65と、マスク65を通過したパルスレーザ光Outの光路に配置された投影光学系68と、を含む。これによれば、マスク65の像を投影光学系68によって被加工物SUBに投影することができ、被加工物SUBに照射されるパルスレーザ光Outの分岐光の断面形状を所望の形状に近づけることができる。また、第2の実施形態によれば、マスク65の開口M1の形状を真円形とすることによって、被加工物SUVに照射されるパルスレーザ光Outの分岐光の断面形状を、第1の実施形態よりも真円形に近い形状とすることができる。
 (9)第2の実施形態によれば、集光光学系64は、回折光学素子63によって分岐したパルスレーザ光Outの複数の分岐光の断面がそれぞれ複数の開口M1に重なるように分岐光をそれぞれ集光する。これによれば、回折光学素子63によって分岐された分岐光の各々を集光光学系64によってマスク65の開口M1の位置に集光するので、マスク65における光の損失を低減し、光の利用効率を向上することができる。
 また、回折光学素子63に入射するパルスレーザ光OutのビームダイバージェンスBDV及びBDHを制御することで、回折光学素子63によって分岐された分岐光の各々が集光光学系64によってマスク65に集光されたときのスポット形状を、マスク65の開口M1の形状に近づけることができ、光の利用効率を向上することができる。
 また、回折光学素子63に入射するパルスレーザ光OutのビームポインティングBPV及びBPHを制御することで、マスク65に入射する分岐光の位置を安定化し、光の利用効率を向上することができる。
 他の点については、第2の実施形態は第1の実施形態と同様である。
4.マスク61を通過した光を回折光学素子63に入射させるレーザ加工システム
 4.1 構成及び動作
 図13は、第3の実施形態におけるレーザ加工システムの構成を概略的に示す。第3の実施形態において、レーザ加工システムに含まれるレーザ加工装置5dは、図4に示される構成要素の他に、集光レンズ60と、マスク61と、コリメータ光学系62と、を含む。
 集光レンズ60は、シャッター59と回折光学素子63との間のパルスレーザ光Outの光路に位置し、焦点距離f60を有する。集光レンズ60は1枚のレンズで構成される場合に限られず、複数のレンズを含んでもよい。
 マスク61は、集光レンズ60を通過したパルスレーザ光Outの光路であって集光レンズ60の焦点に位置する。
 図14は、第3の実施形態におけるマスク61の平面図である。マスク61は、1つの円形の開口M2を有し、開口M2の直径はDmである。開口M2は真円形であることが望ましい。パルスレーザ光Outは、集光レンズ60によってマスク61の位置に集光される。マスク61におけるパルスレーザ光Outの断面S61が開口M2の位置に一致するように、ビームステアリング装置が制御される。断面S61の直径が目標スポット径Dtに近づくようにダイバージェンス調節器54が制御される。目標スポット径Dtは、上述の式1を満たすように設定される。
 図13を再び参照し、マスク61の開口にパルスレーザ光Outが集光されると、マスク61が空気中にある場合にはマスク61の開口でプラズマが生成されてブレークダウンする可能性がある。そこで、マスク61は、集光レンズ60との間及びコリメータ光学系62との間の各々にウインドウを有する真空チャンバ61aの内部に配置されてもよい。
 また、マスク61が高温になることを抑制するため、マスク61に図示しない冷媒ジャケットが取り付けられてもよい。また、マスク61の材料として、タングステン、モリブデン等の高融点金属が用いられてもよい。
 コリメータ光学系62は、マスク61を通過したパルスレーザ光Outの光路に位置する。コリメータ光学系62は焦点距離f62を有し、コリメータ光学系62の前側焦点にマスク61が位置する。コリメータ光学系62は、マスク61の開口M2を通過したパルスレーザ光Outを平行光として出射し、回折光学素子63に入射させる。コリメータ光学系62と、回折光学素子63と、集光光学系67とで、マスク61の像を被加工物SUBの複数の位置に投影する。被加工物SUBにおける分岐光の各々のビーム径は、マスク61の開口M2の直径Dmに、コリメータ光学系62と、回折光学素子63と、集光光学系67とで構成される投影光学系の倍率を乗算したものとなる。
 4.2 作用
 (10)第3の実施形態によれば、レーザ加工システムは、計測器55を通過したパルスレーザ光Outの光路に配置され、パルスレーザ光Outを集光する集光レンズ60と、集光レンズ60を通過したパルスレーザ光Outの光路に配置されたマスク61と、マスク61と回折光学素子63との間のパルスレーザ光Outの光路に配置されたコリメータ光学系62と、を含む。これによれば、集光レンズ60を通過したパルスレーザ光Outをマスク61の開口M2に集光すればよいので、パルスレーザ光Outの集光位置の位置合わせが容易となる。
 (11)第3の実施形態によれば、マスク61は、集光レンズ60の焦点に位置する。これによれば、マスク61と集光レンズ60との位置合わせがより容易となる。
 (12)第3の実施形態によれば、レーザ加工システムは、回折光学素子63を通過したパルスレーザ光Outの光路に配置された集光光学系67を含み、コリメータ光学系62と回折光学素子63と集光光学系67とでマスク61の像を被加工物SUBの複数の位置に投影する。これによれば、被加工物SUBにはマスク61の像が投影されるので、被加工物SUBに照射されるパルスレーザ光Outの分岐光の断面形状を所望の形状に近づけることができる。また、第3の実施形態によれば、マスク61の開口M2の形状を真円形とすることによって、被加工物SUVに照射されるパルスレーザ光Outの分岐光の断面形状を、第1の実施形態よりも真円形に近い形状とすることができる。
5.ダイバージェンス調節器の詳細
 図15~図26を参照しながら、ダイバージェンス調節器の詳細について説明する。以下に説明するダイバージェンス調節器の各々は、図4、図11、又は図13を参照しながら説明したダイバージェンス調節器54、あるいは図10を参照しながら説明したダイバージェンス調節器20として用いることができる。
 5.1 ビーム拡がり角を調節するダイバージェンス調節器541
  5.1.1 構成及び動作
 図15及び図16は、ダイバージェンス調節器の第1の例を概略的に示す。図15はダイバージェンス調節器541を-V方向に見た図であり、図16は-H方向に見た図である。
 第1の例において、ダイバージェンス調節器541は、2組のシリンドリカルレンズを含む。2組のシリンドリカルレンズは、1組の凹レンズ541a及び凸レンズ541bと、1組の凹レンズ541c及び凸レンズ541dと、を含む。
 凹レンズ541a及び541cはそれぞれホルダ541e及び541gによって固定されている。凸レンズ541b及び541dはそれぞれホルダ541f及び541hによって支持されている。ホルダ541f及び541hは、それぞれ突起部541n及び541oを含み、それぞれリニアステージ541i及び541jによってL方向と平行に移動可能となっている。
 リニアステージ541iは、プランジャー541k及びマイクロメータ541pを含む。プランジャー541kとマイクロメータ541pとの間に、ホルダ541fの突起部541nが挟まれている。プランジャー541kは、図示しないバネを内蔵している。マイクロメータ541pは、レーザ加工プロセッサ53あるいはレーザ制御プロセッサ13からの制御信号に応じて、突起部541nに接する先端部がL方向と平行に伸縮するように構成されている。マイクロメータ541pの先端部の伸縮に応じて、ホルダ541fの突起部541nがプランジャー541k又はマイクロメータ541pによって押圧され、ホルダ541fが凸レンズ541bとともに矢印A1方向に移動する。
 リニアステージ541jは、プランジャー541m及びマイクロメータ541qを含む。リニアステージ541jが凸レンズ541dを矢印A2方向に移動させるための構成はリニアステージ541iと同様である。
 凹レンズ541a及び凸レンズ541bは、それぞれH方向に平行な焦点軸を有する。これらの焦点軸が一致する場合には、凹レンズ541a及び凸レンズ541bは、図16に破線で示されるようにV方向のビーム拡がり角を変化させずにパルスレーザ光Outを透過させる。凸レンズ541bを矢印A1方向に移動させると、図16に一点鎖線で示されるようにV方向のビーム拡がり角を正方向に調節したり、二点鎖線で示されるようにV方向のビーム拡がり角を負方向に調節したりすることができる。
 凹レンズ541c及び凸レンズ541dは、それぞれV方向に平行な焦点軸を有する。これらの焦点軸が一致する場合には、凹レンズ541c及び凸レンズ541dは、図15に破線で示されるようにH方向のビーム拡がり角を変化させずにパルスレーザ光Outを透過させる。凸レンズ541dを矢印A2方向に移動させると、図15に一点鎖線で示されるようにH方向のビーム拡がり角を正方向に調節したり、二点鎖線で示されるようにH方向のビーム拡がり角を負方向に調節したりすることができる。
  5.1.2 作用
 (13)第1の例によれば、ダイバージェンス調節器541は、V方向及びH方向のビーム拡がり角を調節するように構成されている。これによれば、V方向及びH方向のビームダイバージェンスBDV及びBDHを互いに独立に制御することができる。
 図17は、第1の例においてビームダイバージェンスBDV及びBDHが調節される原理を示す。図17は、ダイバージェンス調節器541を通過したパルスレーザ光Outが、計測器55に含まれる凸レンズ57を透過して集光される様子を示している。図17に破線で示されるように、ダイバージェンス調節器541を通過したパルスレーザ光Outが平行光である場合には、凸レンズ57から焦点距離f57の位置Fが、ビームが最も細いビームウェスト位置となる。一方、図17に一点鎖線で示されるように、ダイバージェンス調節器541を通過したパルスレーザ光Outが正の拡がり角を有する場合には、凸レンズ57から焦点距離f57よりも遠い位置Wが、ビームが最も細いビームウェスト位置となる。このようにパルスレーザ光Outの拡がり角を変更することで、ビームウェスト位置をずらす結果、焦点の位置Fにおけるビーム幅を変化させ、ビームダイバージェンスBDV及びBDHを調節できる。
 第1の例においてビームダイバージェンスBDV及びBDHを調節する場合、ビームダイバージェンスBDV及びBDHの最小値はビームウェスト位置Wにおけるビーム幅Dに依存する。ビームウェスト位置Wにおけるビーム幅Dは、以下の式2で与えられる。
   D=(4/π)λM/NA={(8/π)(F/D)}・λM ・・・式2
ここで、λはパルスレーザ光Outの波長であり、Mはパルスレーザ光OutのMスクエア値であり、NAは凸レンズ57の開口数である。また、Fは凸レンズ57からビームウェスト位置Wまでの距離であり、Dは凸レンズ57に入射するパルスレーザ光Outのビーム断面の全幅で与えられるビーム径である。なお、開口数NAは(1/2)D/Fで与えられる。
 式2からわかるように、ビームウェスト位置Wにおけるビーム断面の全幅であるビーム幅Dは、パルスレーザ光OutのMスクエア値に比例するとともに、F/Dに比例する。
 第1の例においてビームダイバージェンスBDV及びBDHの調節範囲を広くとるためには、例えば、パルスレーザ光OutのMスクエア値を小さくすることで、ビームウェスト位置Wにおけるビーム幅Dを小さくすることが有効である。パルスレーザ光Outの拡がり角を調節し、ビームウェスト位置Wを焦点の位置Fに近づけることで、ビームダイバージェンスBDV及びBDHを最小化することができる。
 5.2 ビーム幅を調節するダイバージェンス調節器542
  5.2.1 構成及び動作
 図18及び図19は、ダイバージェンス調節器の第2の例を概略的に示す。図18はダイバージェンス調節器542を-V方向に見た図であり、図19は-H方向に見た図である。
 第2の例において、ダイバージェンス調節器542は、2つのビームエキスパンダを含む。例えば、2つのビームエキスパンダのうちの一方は1組の相似形のプリズム542a及び542bで構成され、他方は1組の相似形のプリズム542c及び542dで構成される。
 一方のビームエキスパンダを構成するプリズム542a及び542bの各々は、V方向に平行な1つの側面からパルスレーザ光Outが入射し、V方向に平行な他の1つの側面からパルスレーザ光Outが出射するように配置されており、プリズム542a及び542bは、それぞれ回転ステージ542e及び542fによってV方向に平行な軸周りに回転可能に構成されている。図18に示されるように、プリズム542a及び542bに対するパルスレーザ光Outの入射角が等しくなるように、互いに逆方向に回転させることで、ビームエキスパンダを通過するパルスレーザ光OutのH方向のビーム幅を調節することができる。
 他方のビームエキスパンダを構成するプリズム542c及び542dの各々は、H方向に平行な1つの側面からパルスレーザ光Outが入射し、H方向に平行な他の1つの側面からパルスレーザ光Outが出射するように配置されており、プリズム542c及び542dは、それぞれ回転ステージ542g及び542hによってH方向に平行な軸周りに回転可能に構成されている。図19に示されるように、プリズム542c及び542dに対するパルスレーザ光Outの入射角が等しくなるように、互いに逆方向に回転させることで、ビームエキスパンダを通過するパルスレーザ光OutのV方向のビーム幅を調節することができる。
 2つのビームエキスパンダの各々は、2つのプリズムで構成される場合に限られず、ズームレンズによって構成されてもよい。ズームレンズは、3枚以上のシリンドリカルレンズの組み合わせによって構成されてもよい。1つのズームレンズがV方向のビーム幅を調節し、他の1つのズームレンズがH方向のビーム幅を調節してもよい。
  5.2.2 作用
 (14)第2の例によれば、ダイバージェンス調節器542は、V方向及びH方向のビーム幅を調節するように構成されている。この例においても、V方向及びH方向のビームダイバージェンスBDV及びBDHを互いに独立に制御することができる。
 図20は、第2の例においてビームダイバージェンスBDV及びBDHが調節される原理を示す。図20は、ダイバージェンス調節器542を通過したパルスレーザ光Outが、計測器55に含まれる凸レンズ57を透過して集光される様子を示している。図20に示されるように、ダイバージェンス調節器542がパルスレーザ光Outの拡がり角を変えずにビーム幅を変化させると、ビームウェスト位置は変化せず、Mスクエア値も変化しないが、凸レンズ57に入射するパルスレーザ光Outのビーム径Dが変化するので、式2に示されるF/Dが変化する。これにより、ビームウェスト位置Wにおけるビーム幅Dを変化させ、ビームダイバージェンスBDV及びBDHを調節できる。なお、図20ではビームウェスト位置Wが凸レンズ57の焦点の位置Fと一致する場合を示しているが、ビームウェスト位置W以外であっても、凸レンズ57に入射するパルスレーザ光Outのビーム径Dを変えることで位置Fにおけるビーム幅を変えることができる。
 5.3 一旦集光するとともにスリットで微調整するダイバージェンス調節器543
  5.3.1 構成及び動作
 図21及び図22は、ダイバージェンス調節器の第3の例を概略的に示す。図21はダイバージェンス調節器543を-V方向に見た図であり、図22は-H方向に見た図である。
 第3の例において、ダイバージェンス調節器543は、可変スリット543aと、第1及び第2のシリンドリカル凸レンズ543d及び543bと、コリメータレンズ543eと、を含む。これらの光学素子の位置関係は互いに固定されていてもよい。
 可変スリット543aのV方向の開口幅はアクチュエータ543fによって調節され、H方向の開口幅はアクチュエータ543gによって調節されるように構成されている。可変スリット543aは、ダイバージェンス調節器543に入射したパルスレーザ光OutのうちのV方向及びH方向それぞれの開口幅に相当する部分を通過させ、これらの開口幅を超える部分を遮断することにより、V方向及びH方向それぞれのビーム幅を調節可能となっている。可変スリット543aは、V方向及びH方向のいずれかのビーム幅を調節可能となっていてもよい。
 第1及び第2のシリンドリカル凸レンズ543d及び543bは、可変スリット543aを通過したパルスレーザ光Outの光路に配置されている。第1のシリンドリカル凸レンズ543dの後側焦点軸はH方向に平行であり、且つコリメータレンズ543eの前側焦点の位置Fに位置する。第2のシリンドリカル凸レンズ543bの後側焦点軸はV方向に平行であり、且つコリメータレンズ543eの前側焦点の位置Fに位置する。これにより、第1及び第2のシリンドリカル凸レンズ543d及び543bは、パルスレーザ光OutをV方向及びH方向においてそれぞれ集光する。
 エキシマレーザ装置においては、H方向のMスクエア値よりもV方向のMスクエア値が大きいため、第2のシリンドリカル凸レンズ543bの焦点距離f543bよりも、第1のシリンドリカル凸レンズ543dの焦点距離f543dを小さくすることで、位置FにおけるV方向のビーム径とH方向のビーム径とを近づけることができる。
 コリメータレンズ543eは、第1及び第2のシリンドリカル凸レンズ543d及び543bを通過したパルスレーザ光Outの光路に位置する。コリメータレンズ543eは焦点距離f543eを有する。コリメータレンズ543eは、球面凸レンズで構成されてもよいし、V方向の焦点軸とH方向の焦点軸とを有する両面シリンドリカル凸レンズで構成されてもよい。また、1枚のレンズで構成される場合に限られず、複数のレンズを含んでもよい。これにより、コリメータレンズ543eは、第1及び第2のシリンドリカル凸レンズ543d及び543bによって集光されたパルスレーザ光Outをコリメートする。
  5.3.2 作用
 (15)第3の例によれば、ダイバージェンス調節器543は、パルスレーザ光OutをV方向及びH方向においてそれぞれ集光する第1及び第2のシリンドリカル凸レンズ543d及び543bと、第1及び第2のシリンドリカル凸レンズ543d及び543bによって集光されたパルスレーザ光Outをコリメートするコリメータレンズ543eと、を含む。これによれば、被加工物SUBにおけるビーム断面は、コリメータレンズ543eの前側焦点の位置Fにおけるビーム断面の転写像となる。このため、第1及び第2のシリンドリカル凸レンズ543d及び543bを用いて位置Fにおけるビーム断面を真円形に近づけることで、被加工物SUBにおけるビーム断面を真円形に近づけることができる。
 ダイバージェンス調節器543に入射するパルスレーザ光OutのV方向及びH方向のMスクエア値が予めわかっている場合には、焦点の位置FにおけるV方向のビーム径とH方向のビーム径が同じになるように、第1及び第2のシリンドリカル凸レンズ543d及び543bの焦点距離f543d及びf543bを決定することが望ましい。具体的には以下のように計算される。
 図21及び図22に示される構成において、ビームウェスト位置Wが焦点の位置Fに一致すると仮定する。式2において、ビームウェスト位置Wにおけるビーム幅Dを目標スポット径Dtに置き換え、ビームウェスト位置Wまでの距離Fをシリンドリカル凸レンズの焦点距離ftに置き換えると、シリンドリカル凸レンズの焦点距離ftは次の式で求められる。
   ft=π・Dt・D/(λM
 より詳しくは、ダイバージェンス調節器543に入射するパルスレーザ光OutのV方向のビーム径をDLVとし、V方向のMスクエア値をM とすると、第1のシリンドリカル凸レンズ543dの焦点距離ftは以下の式3で求められる。
   ft=π・Dt・DLV/(λM ) ・・・式3
 ダイバージェンス調節器543に入射するパルスレーザ光OutのH方向のビーム径をDLHとし、H方向のMスクエア値をM とすると、第2のシリンドリカル凸レンズ543bの焦点距離ftは以下の式4で求められる。
   ft=π・Dt・DLH/(λM ) ・・・式4
 (16)第3の例によれば、ダイバージェンス調節器543は、第1及び第2のシリンドリカル凸レンズ543d及び543bに入射するパルスレーザ光Outの一部を遮断することでV方向及びH方向のいずれかの方向のビーム幅を調節する可変スリット543aを含む。これにより、被加工物SUBにおけるビーム断面の形状を微調整することができる。
 5.4 一旦集光するとともにレンズ位置で微調整するダイバージェンス調節器544
  5.4.1 構成及び動作
 図23及び図24は、ダイバージェンス調節器の第4の例を概略的に示す。図23はダイバージェンス調節器544を-V方向に見た図であり、図24は-H方向に見た図である。
 第4の例において、ダイバージェンス調節器544は、可変スリット543aを含んでいない点と、第1及び第2のシリンドリカル凸レンズ544d及び544bがそれぞれリニアステージ544j及び544iによってL方向と平行に移動可能となっている点で、第3の例と異なる。他の点については、第3の例における第1及び第2のシリンドリカル凸レンズ543d及び543b、及びコリメータレンズ543eに関する説明が、第4の例における第1及び第2のシリンドリカル凸レンズ544d及び544b、及びコリメータレンズ544eの説明にも当てはまる。
 第1及び第2のシリンドリカル凸レンズ544d及び544bをリニアステージ544j及び544iによって移動させる構成は、第1の例においてシリンドリカル凸レンズ541d及び541bをそれぞれ移動させる構成と同様である。リニアステージ544j及び544iはそれぞれ本開示における第1及び第2のリニアステージに相当する。
  5.4.2 作用
 (17)第4の例によれば、ダイバージェンス調節器544は、第1及び第2のシリンドリカル凸レンズ544d及び544bをパルスレーザ光Outの進行方向に沿ってそれぞれ移動させるリニアステージ544j及び544iを含む。これによれば、ダイバージェンス調節器544の内部におけるビームウェスト位置を変更し、焦点の位置Fでのビーム断面を変更することにより、被加工物SUBにおけるビーム断面の形状を微調整することができる。
 第4の例において、第3の例と同様の可変スリット543aをさらに備えて、可変スリット543aによる微調整が加えられてもよい。
 5.5 H方向にミスアライメントした光学パルスストレッチャーを含むダイバージェンス調節器545
  5.5.1 構成及び動作
 図25は、ダイバージェンス調節器の第5の例を概略的に示す。第5の例において、ダイバージェンス調節器545は、パルスレーザ光Outの光路を分岐させる光学パルスストレッチャーにより構成されている。光学パルスストレッチャーは、ビームスプリッタ545aと、凹面ミラー545b~545eと、アクチュエータ545fと、を含む。
 ビームスプリッタ545aは、ビームB11としてダイバージェンス調節器545に入射するパルスレーザ光Outの光路に配置されている。ビームスプリッタ545aの反射率は例えば60%である。
 凹面ミラー545b、545c、545d、及び545eは球面ミラーであり、ビームスプリッタ545aによって反射されたビームB21の光路にこの順で配置されている。凹面ミラー545b~545eはループ状の遅延光路を構成している。
 アクチュエータ545fは、凹面ミラー545eの姿勢を変更可能に構成されている。
 ビームスプリッタ545aは、ビームB11の一部をビームB12として透過させ、他の一部をビームB21として反射する。凹面ミラー545b~545eは、ビームB21を順次反射してビームスプリッタ545aに入射させる。
 ビームスプリッタ545aは、ビームB21の一部をビームB22として反射し、他の一部をビームB31として透過させる。凹面ミラー545b~545eは、ビームB31を順次反射してビームスプリッタ545aに入射させる。
 ビームスプリッタ545aは、ビームB31の一部をビームB32として反射する。
 このようにして、ビームB12、B22、及びB32がダイバージェンス調節器545から出力される。このとき、ビームB12、B22、及びB32が互いにH方向にずれたビームとして分岐するように、凹面ミラー545b~545eが意図的にミスアライメントして配置される。
 アクチュエータ545fは、凹面ミラー545eの姿勢を変更することにより、ビームB12、B22、及びB32のH方向のずれ量を微調整する。
 このようにして、ダイバージェンス調節器545は、ビームB12、B22、及びB32を含むパルスレーザ光OutのH方向のビームダイバージェンスBDHを調節する。
 ビームB12、B22、及びB32が互いに干渉しないように、凹面ミラー545b~545eで構成される遅延光路の光路長は、パルスレーザ光Outの時間的コヒーレント長よりも長く設定されることが望ましい。
 また、凹面ミラー545b~545eは、ビームスプリッタ545aにおけるビームB11の像が、ビームB21として凹面ミラー545c及び545dの間で倒立像として一旦結像し、ビームスプリッタ545aに入射するときに再度結像することで正立像となるように配置されることが望ましい。ここで、凹面ミラー545b~545eの焦点距離がすべて同じf545である場合、遅延光路の光路長はf545の8倍となる。
  5.5.2 作用
 (18)第5の例によれば、ダイバージェンス調節器545は、H方向にパルスレーザ光Outの光路を分岐させるように構成された光学パルスストレッチャーを含む。これによれば、ビームダイバージェンスBDHを調節できるだけでなく、パルス時間幅を伸長することも同時にできる。
 5.6 V方向にミスアライメントした光学パルスストレッチャーを含むダイバージェンス調節器546
 図26は、ダイバージェンス調節器の第6の例を概略的に示す。第6の例において、ダイバージェンス調節器546に含まれるビームスプリッタ546a、凹面ミラー546b~546e、及びアクチュエータ546fは、第5の例におけるビームスプリッタ545a、凹面ミラー545b~545e、及びアクチュエータ545fと同様の構成を有する。
 第6の例が第5の例と違う点は以下の通りである。
 凹面ミラー546b~546eは、ダイバージェンス調節器546から出力されるビームB12、B22、及びB32が互いにV方向にずれたビームとして分岐するように、意図的にミスアライメントして配置される。
 アクチュエータ546fは、凹面ミラー546eの姿勢を変更することにより、ビームB12、B22、及びB32のV方向のずれ量を微調整する。
 このようにして、ダイバージェンス調節器546は、ビームB12、B22、及びB32を含むパルスレーザ光OutのV方向のビームダイバージェンスBDVを調節する。
 他の点については、第6の例は第5の例と同様である。
 第5の例におけるダイバージェンス調節器545と第6の例におけるダイバージェンス調節器546とをパルスレーザ光Outの光路に配置することで、H方向とV方向との両方のビームダイバージェンスBDV及びBDHを調節できる。
6.改善されたレーザ装置
 図27~図30を参照しながら、改善されたレーザ装置について説明する。ビームダイバージェンスBDV及びBDHの調節範囲を広くとるためには、レーザ装置1の代わりに、以下に説明する改善されたレーザ装置のいずれかを使用するのが望ましい。
 6.1 光共振器を姿勢制御可能なレーザ装置1e
 図27は、改善されたレーザ装置の第1の例を概略的に示す。図27に示されるレーザ装置1eは、図1、図4、図11、及び図13に示されるレーザ装置1の構成に加えて、計測器21を含む。さらに、レーザ装置1eは、リアミラー14の代わりに、アクチュエータ14gを備えたリアミラー14eを含む。リアミラー14e及び出力結合ミラー15が光共振器を構成する。
 計測器21の構成は、図10を参照しながら説明したものと同様である。
 アクチュエータ14gは、リアミラー14eの姿勢をV方向及びH方向の各々に平行な軸周りに変更可能に構成されている。
 レーザ制御プロセッサ13は、計測器21によって計測されるビームダイバージェンスBDV及びBDHが小さくなるようにアクチュエータ14gをフィードバック制御する。これにより、レーザ装置1eの構成要素の温度が変化した場合でも、リアミラー14e及び出力結合ミラー15のアライメントずれによってビームダイバージェンスBDV及びBDHが大きくなることを抑制し得る。このようなレーザ装置1eを用いることにより、ダイバージェンス調節器54によるビームダイバージェンスBDV及びBDHの調節範囲を広くとることができる。
 図27においては、リアミラー14eをV方向及びH方向の各々に平行な軸周りに回転可能にした場合について説明したが、リアミラー14eの代わりに出力結合ミラー15をV方向及びH方向の各々に平行な軸周りに回転可能にしてもよい。
 また、リアミラー14e及び出力結合ミラー15の各々をV方向及びH方向に平行な軸周りに回転可能にしてもよい。これによれば、ビームダイバージェンスBDV及びBDHだけでなくビームポインティングBPV及びBPHも調節することができる。計測器21はビームダイバージェンスBDV及びBDH及びビームポインティングBPV及びBPHの両方を計測可能とし、レーザ制御プロセッサ13は、計測器21によって計測されるビームダイバージェンスBDV及びBDH及びビームポインティングBPV及びBPHが所望の値となるようにリアミラー14e及び出力結合ミラー15の姿勢をフィードバック制御してもよい。
 他の点については、レーザ装置1eはレーザ装置1と同様でよい。また、レーザ装置1eにおいて、レーザ装置1bと同様にダイバージェンス調節器20を備えてもよい。
 6.2 不安定共振器を含むレーザ装置1f
 図28は、改善されたレーザ装置の第2の例を概略的に示す。図28に示されるレーザ装置1fは、リアミラー14及び出力結合ミラー15の代わりに、不安定共振器を構成する凹面ミラー14f及び凸面ミラー15fを含む点で、図1、図4、図11、及び図13に示されるレーザ装置1と異なる。
 凹面ミラー14f及び凸面ミラー15fは、それぞれ球面ミラーであって、焦点の位置が一致するように配置される。これらのミラーの拡大率は、例えば5倍以上、10倍以下である。凸面ミラー15fは、ウインドウ10bから出射した光の光路の一部を塞ぐように位置している。
 レーザチャンバ10のウインドウ10bから出射した光の一部は凸面ミラー15fによって反射され、次第に拡がりながら放電電極11a及び11bの間の放電空間を通り、凹面ミラー14fに入射する。
 凹面ミラー14fによって反射された光は平行光として放電電極11a及び11bの間の放電空間を通り、その一部は凸面ミラー15fに入射して再度凹面ミラー14fに向かって反射されるが、他の一部は凸面ミラー15fに入射せずにパルスレーザ光Outとして出力される。
 第2の例によれば、出力されるパルスレーザ光Outの空間横モード数が小さくなり、シングル横モードに近いパルスレーザ光Outが生成され得る。これによりV方向及びH方向のビームダイバージェンスBDV及びBDHを小さくすることが可能となる。このようなレーザ装置1fを用いることにより、ダイバージェンス調節器54によるビームダイバージェンスBDV及びBDHの調節範囲を広くとることができる。また、レーザ装置1を用いた場合と比べて小さい穴の加工ができる。
 凹面ミラー14f及び凸面ミラー15fは、それぞれH方向と平行な焦点軸を有するシリンドリカルミラーであってもよい。凹面ミラー14f及び凸面ミラー15fの焦点軸は一致していることが望ましい。この場合、凹面ミラー14f及び凸面ミラー15fは、V方向には不安定共振器であり、H方向には安定共振器となる。これにより、V方向の空間横モード数は小さくなり、H方向の空間横モード数と同程度とすることができ、V方向のビームダイバージェンスBDVを小さくすることが可能となる。従って、ダイバージェンス調節器54によるV方向のビームダイバージェンスBDVの調節範囲を広くとることができる。また、レーザ装置1を用いた場合と比べて小さい穴の加工ができる。また、球面ミラーを用いた場合と比べて共振器ロスを減らし、高いエネルギーを有するパルスレーザ光Outを出力することができる。
 第2の例において、第1の例と同様に、凹面ミラー14f及び凸面ミラー15fの一方又は両方の姿勢を制御してもよい。
 他の点については、レーザ装置1fはレーザ装置1と同様でよい。また、レーザ装置1fにおいて、レーザ装置1bと同様にダイバージェンス調節器20を備えてもよい。
 6.3 増幅器PAを含むレーザ装置1g
 図29は、改善されたレーザ装置の第3の例を概略的に示す。図29に示されるレーザ装置1gは、出力結合ミラー15とモニタモジュール16との間に増幅器PAを含む点で、図1、図4、図11、及び図13に示されるレーザ装置1と異なる。
 レーザチャンバ10、電源装置12、リアミラー14、及び出力結合ミラー15は、マスターオシレータMOを構成する。増幅器PAは、レーザチャンバ30及び電源装置32を含む。レーザチャンバ30及び電源装置32の構成は、レーザチャンバ10及び電源装置12と同様でよい。増幅器PAは光共振器を含まなくてもよい。
 増幅器PAは、マスターオシレータMOから出力されたパルスレーザ光を増幅するように構成されている。マスターオシレータMOから出力されたパルスレーザ光が増幅器PAに入射するタイミングと、電源装置32が高電圧を発生させることでレーザチャンバ30の内部に放電が発生するタイミングとが同期するように、電源装置12及び32にそれぞれ与えられるトリガ信号の時間差が設定される。レーザ制御プロセッサ13は、モニタモジュール16によって計測されたパルスエネルギーのデータに基づいて、電源装置12及び32にそれぞれ設定される設定電圧をフィードバック制御する。
 第3の例によれば、レーザ加工に十分な高いパルスエネルギーを有するパルスレーザ光Outをレーザ装置1gから出力することができる。
 第3の例において、マスターオシレータMOに含まれる光共振器として第2の例と同様の不安定共振器が用いられてもよい。
 第3の例において、第1の例と同様に、リアミラー14及び出力結合ミラー15の一方又は両方の姿勢を制御してもよい。
 他の点については、レーザ装置1gはレーザ装置1と同様でよい。また、レーザ装置1gにおいて、レーザ装置1bと同様にダイバージェンス調節器20を備えてもよい。
 6.4 固体レーザを含むレーザ装置1h
 図30は、改善されたレーザ装置の第4の例を概略的に示す。図30に示されるレーザ装置1hは、マスターオシレータMOが固体レーザを含む点で、図29に示されるレーザ装置1gと異なる。
  6.4.1 構成
 レーザ装置1hは、マスターオシレータMOと、増幅器PAと、モニタモジュール16と、を含む。マスターオシレータMOは固体レーザを含み、増幅器PAはエキシマレーザを含む。
 マスターオシレータMOは、半導体レーザ160と、チタンサファイヤ増幅器171と、波長変換システム172と、ポンピングレーザ173と、固体レーザ制御プロセッサ130と、を含む。
 半導体レーザ160は、波長約773.6nmのCWレーザ光を出力する分布帰還型半導体レーザであり、半導体の設定温度を変更することによって発振波長を変更可能に構成されている。
 チタンサファイヤ増幅器171は、チタンサファイヤ結晶を含む増幅器である。
 ポンピングレーザ173は、チタンサファイヤ増幅器171のチタンサファイヤ結晶を励起するために、YLF(yttrium lithium fluoride)レーザの第2高調波を出力するレーザ装置である。
 波長変換システム172は、LBO(lithium triborate)結晶とKBBF(Potassium beryllium fluoroborate)結晶とを含み、入射光の第4高調波を出力するシステムである。第4高調波の波長は約193.4nmであり、ArFエキシマレーザ装置の発振波長とほぼ等しい。
 固体レーザ制御プロセッサ130は、制御プログラムが記憶されたメモリ130aと、制御プログラムを実行するCPU130bと、を含む処理装置である。固体レーザ制御プロセッサ130は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。
 増幅器PAは、レーザチャンバ30と、電源装置32と、凹面ミラー34と、凸面ミラー35と、を含むArFエキシマレーザ装置である。増幅器PAに含まれるレーザチャンバ30及び電源装置32の構成は、図29を参照しながら説明したレーザ装置1gにおいて対応する構成と同様である。
 凸面ミラー35は、マスターオシレータMOから出力されてレーザチャンバ30を通過したパルスレーザ光の光路に配置されている。
 凹面ミラー34は、凸面ミラー35によって反射されてレーザチャンバ30をふたたび通過したパルスレーザ光の光路に配置されている。
 モニタモジュール16及びレーザ制御プロセッサ13の構成は、図1、図4、図11、及び図13に示されるレーザ装置1において対応する構成と同様である。
  6.4.2 動作
 マスターオシレータMOにおいて、半導体レーザ160は、波長約773.6nmのCWレーザ光を出力し、チタンサファイヤ増幅器171は、このレーザ光をパルス化するとともに増幅して出力する。波長変換システム172は、波長約773.6nmのパルスレーザ光を波長約193.4nmのパルスレーザ光に変換して増幅器PAに向けて出力する。
 増幅器PAに入射したパルスレーザ光は、レーザチャンバ30内の放電空間を通過した後、凸面ミラー35によって反射されるとともに、凸面ミラー35の曲率に応じたビーム拡がり角を与えられる。このパルスレーザ光は、レーザチャンバ30内の放電空間をふたたび通過する。
 凸面ミラー35によって反射されてレーザチャンバ30を通過したパルスレーザ光は、凹面ミラー34によって反射されるとともに、ほぼ平行光に戻される。このパルスレーザ光はレーザチャンバ30内の放電空間をさらに1回通過し、モニタモジュール16を経てパルスレーザ光Outとしてレーザ装置1hの外部に出射する。
 マスターオシレータMOからレーザチャンバ30にパルスレーザ光が入射するときにレーザチャンバ30内の放電空間で放電が開始するように、電極30a及び30bに高電圧が印加される。パルスレーザ光は、凸面ミラー35及び凹面ミラー34によってビーム幅を拡大され、放電空間を3回通過する間に増幅されて、レーザ装置1hの外部に出力される。
 第4の例によれば、固体レーザを含むマスターオシレータMOから出力されるシングル横モードのパルスレーザ光を増幅して出力するので、V方向及びH方向のビームダイバージェンスBDV及びBDHを小さくすることが可能となる。このようなレーザ装置1hを用いることにより、ダイバージェンス調節器54によるビームダイバージェンスBDV及びBDHの調節範囲を広くとることができる。また、レーザ装置1を用いた場合と比べて小さい穴の加工ができる。
 第4の例において、増幅器PAに含まれる光共振器を凹面ミラー34及び凸面ミラー35で構成する場合について説明したが、光共振器はファブリ・ペロー型の共振器でもよいし、リング共振器でもよい。
 第4の例において、約193.4nmの波長を有するパルスレーザ光を出力するマスターオシレータMOと、約193.4nmの波長成分を増幅するArFエキシマレーザ装置との組み合わせについて説明したが、約248.4nmの波長を有するパルスレーザ光を出力するマスターオシレータMOと、約248.4nmの波長成分を増幅するKrFエキシマレーザ装置との組み合わせが用いられてもよい。
 他の点については、レーザ装置1hはレーザ装置1と同様でよい。また、レーザ装置1hにおいて、レーザ装置1bと同様にダイバージェンス調節器20を備えてもよい。
7.その他
 図31は、電子デバイスの構成を模式的に示す。図31に示される電子デバイスは、集積回路チップICと、インターポーザIPと、回路基板CSと、を含む。
 集積回路チップICは、例えば図示しない集積回路がシリコン基板に形成されたチップである。集積回路チップICには、集積回路に電気的に接続される複数のバンプICBが設けられている。
 インターポーザIPは、図示しない複数の貫通孔が形成された絶縁性の基板を備え、それぞれの貫通孔内に当該基板の表裏を電気的に接続する図示しない導電体が設けられている。インターポーザIPの一方の面にはバンプICBとそれぞれ接続される図示しない複数のランドが形成され、ランドの各々は貫通孔内の導電体のいずれかと電気的に接続されている。インターポーザIPの他方の面には複数のバンプIPBが設けられ、バンプIPBの各々は貫通孔内の導電体のいずれかと電気的に接続されている。
 回路基板CSの一方の面には、バンプIPBとそれぞれ接続される図示しない複数のランドが形成されている。回路基板CSは、これらのランドとそれぞれ電気的に接続される複数の端子を備えている。
 図32は、電子デバイスの製造方法を示すフローチャートである。
 S1において、インターポーザIPを構成するインターポーザ基板のレーザ加工及び配線形成が行われる。インターポーザ基板のレーザ加工は、インターポーザ基板にパルスレーザ光Outを照射することによる貫通孔の形成を含む。配線形成は、インターポーザ基板に形成された貫通孔の内側の壁面への導電膜の形成を含む。このような工程を経てインターポーザIPが作製される。
 S2において、インターポーザIPと集積回路チップICとの結合が行われる。この工程は、例えば、集積回路チップICのバンプICBをインターポーザIPのランド上に配置して、バンプICBとランドとを電気的に接続することを含む。
 S3において、インターポーザIPと回路基板CSとの結合が行われる。この工程は、例えば、インターポーザIPのバンプIPBを回路基板CSのランド上に配置して、バンプIPBとランドとを電気的に接続することを含む。
 上記の説明は、制限ではなく単なる例示を意図している。従って、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
 本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。たとえば、「含む」、「有する」、「備える」、「具備する」などの用語は、「記載されたもの以外の構成要素の存在を除外しない」と解釈されるべきである。また、修飾語「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきであり、さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (20)

  1.  パルスレーザ光を出力するレーザ装置と、
     前記パルスレーザ光の第1の方向の第1のビームダイバージェンスと、前記第1の方向と交差する第2の方向の第2のビームダイバージェンスと、を調節するダイバージェンス調節器と、
     前記ダイバージェンス調節器を通過した前記パルスレーザ光の前記第1及び第2のビームダイバージェンスを計測する計測器と、
     前記計測器を通過した前記パルスレーザ光を分岐させる回折光学素子と、
     前記計測器による前記第1及び第2のビームダイバージェンスの計測結果に基づいて、前記第1及び第2のビームダイバージェンスがそれぞれの目標値に近づくように前記ダイバージェンス調節器を制御するプロセッサと、
    を含む、レーザ加工システム。
  2.  請求項1に記載のレーザ加工システムであって、
     前記ダイバージェンス調節器に入射する前記パルスレーザ光の前記第1の方向の第3のビームダイバージェンスと前記第2の方向の第4のビームダイバージェンスとの差よりも、前記第1及び第2のビームダイバージェンスの前記目標値の差が小さい、
    レーザ加工システム。
  3.  請求項1に記載のレーザ加工システムであって、
     前記レーザ装置と前記回折光学素子との間の前記パルスレーザ光の光路に配置され、前記パルスレーザ光の進行方向を調節するビームステアリング装置をさらに含み、
     前記計測器は、前記ビームステアリング装置を通過した前記パルスレーザ光のビームポインティングをさらに計測し、
     前記プロセッサは、前記計測器による前記ビームポインティングの計測結果に基づいて、前記ビームポインティングがその目標値に近づくように前記ビームステアリング装置を制御する、
    レーザ加工システム。
  4.  請求項1に記載のレーザ加工システムであって、
     前記計測器を通過した前記パルスレーザ光の光路に配置され、前記パルスレーザ光の通過と遮断とを切り替え可能に構成されたシャッターをさらに含み、
     前記プロセッサは、前記計測器による前記第1及び第2のビームダイバージェンスの計測結果がそれぞれの前記目標値を含むそれぞれの許容範囲内となるまで前記パルスレーザ光が遮断されるように前記シャッターを制御する、
    レーザ加工システム。
  5.  請求項1に記載のレーザ加工システムであって、
     前記回折光学素子を通過した前記パルスレーザ光の光路に配置された集光光学系をさらに含み、
     前記集光光学系の焦点面に被加工物が配置される、
    レーザ加工システム。
  6.  請求項1に記載のレーザ加工システムであって、
     前記レーザ装置は第1の筐体に収容された光共振器を含み、
     前記ダイバージェンス調節器及び前記回折光学素子は第2の筐体に収容された、
    レーザ加工システム。
  7.  請求項1に記載のレーザ加工システムであって、
     前記レーザ装置は、第1の筐体に収容された光共振器及び前記ダイバージェンス調節器を含み、
     前記回折光学素子は第2の筐体に収容された、
    レーザ加工システム。
  8.  請求項1に記載のレーザ加工システムであって、
     前記回折光学素子を通過した前記パルスレーザ光の光路に配置された集光光学系と、
     前記集光光学系の焦点面に配置され、複数の開口を有するマスクと、
     前記マスクを通過した前記パルスレーザ光の光路に配置された投影光学系と、
    をさらに含む、レーザ加工システム。
  9.  請求項8に記載のレーザ加工システムであって、
     前記集光光学系は、前記回折光学素子によって分岐した前記パルスレーザ光の複数の分岐光の断面がそれぞれ前記複数の開口に重なるように前記分岐光をそれぞれ集光する、
    レーザ加工システム。
  10.  請求項1に記載のレーザ加工システムであって、
     前記計測器を通過した前記パルスレーザ光の光路に配置され、前記パルスレーザ光を集光する集光レンズと、
     前記集光レンズを通過した前記パルスレーザ光の光路に配置されたマスクと、
     前記マスクと前記回折光学素子との間の前記パルスレーザ光の光路に配置されたコリメータ光学系と、
    をさらに含む、
    レーザ加工システム。
  11.  請求項10に記載のレーザ加工システムであって、
     前記マスクは、前記集光レンズの焦点に位置する、
    レーザ加工システム。
  12.  請求項10に記載のレーザ加工システムであって、
     前記回折光学素子を通過した前記パルスレーザ光の光路に配置された集光光学系をさらに含み、
     前記コリメータ光学系と前記回折光学素子と前記集光光学系とで前記マスクの像を被加工物の複数の位置に投影する、
    レーザ加工システム。
  13.  請求項1に記載のレーザ加工システムであって、
     前記ダイバージェンス調節器は、前記第1及び第2の方向のビーム拡がり角を調節するように構成された、
    レーザ加工システム。
  14.  請求項1に記載のレーザ加工システムであって、
     前記ダイバージェンス調節器は、前記第1及び第2の方向のビーム幅を調節するように構成された、
    レーザ加工システム。
  15.  請求項1に記載のレーザ加工システムであって、
     前記ダイバージェンス調節器は、
      前記パルスレーザ光を前記第1及び第2の方向においてそれぞれ集光する第1及び第2のシリンドリカル凸レンズと、
      前記第1及び第2のシリンドリカル凸レンズによって集光された前記パルスレーザ光をコリメートするコリメータレンズと、
    を含む、レーザ加工システム。
  16.  請求項15に記載のレーザ加工システムであって、
     前記ダイバージェンス調節器は、前記第1及び第2のシリンドリカル凸レンズに入射する前記パルスレーザ光の一部を遮断することで前記第1及び第2の方向のいずれかの方向のビーム幅を調節する可変スリットをさらに含む、
    レーザ加工システム。
  17.  請求項15に記載のレーザ加工システムであって、
     前記ダイバージェンス調節器は、前記第1及び第2のシリンドリカル凸レンズを前記パルスレーザ光の進行方向に沿ってそれぞれ移動させる第1及び第2のリニアステージをさらに含む、
    レーザ加工システム。
  18.  請求項1に記載のレーザ加工システムであって、
     前記ダイバージェンス調節器は、前記第1及び第2の方向のいずれかに前記パルスレーザ光の光路を分岐させるように構成された光学パルスストレッチャーを含む、
    レーザ加工システム。
  19.  レーザ装置からパルスレーザ光を出力させ、
     前記パルスレーザ光の第1の方向の第1のビームダイバージェンスと、前記第1の方向と交差する第2の方向の第2のビームダイバージェンスと、を調節するダイバージェンス調節器に前記パルスレーザ光を入射させ、
     前記ダイバージェンス調節器を通過した前記パルスレーザ光の前記第1及び第2のビームダイバージェンスを計測器により計測し、
     前記計測器による前記第1及び第2のビームダイバージェンスの計測結果に基づいて、前記第1及び第2のビームダイバージェンスがそれぞれの目標値に近づくように前記ダイバージェンス調節器を制御し、
     前記計測器を通過した前記パルスレーザ光を回折光学素子により分岐させ、被加工物に照射する
    ことを含む、レーザ加工方法。
  20.  電子デバイスの製造方法であって、
     パルスレーザ光を出力するレーザ装置と、
     前記パルスレーザ光の第1の方向の第1のビームダイバージェンスと、前記第1の方向と交差する第2の方向の第2のビームダイバージェンスと、を調節するダイバージェンス調節器と、
     前記ダイバージェンス調節器を通過した前記パルスレーザ光の前記第1及び第2のビームダイバージェンスを計測する計測器と、
     前記計測器を通過した前記パルスレーザ光を分岐させる回折光学素子と、
     前記計測器による前記第1及び第2のビームダイバージェンスの計測結果に基づいて、前記第1及び第2のビームダイバージェンスがそれぞれの目標値に近づくように前記ダイバージェンス調節器を制御するプロセッサと、
    を含むレーザ加工システムによりインターポーザ基板をレーザ加工してインターポーザを作製し、
     前記インターポーザと集積回路チップとを結合させて互いに電気的に接続し、
     前記インターポーザと回路基板とを結合させて互いに電気的に接続する
    ことを含む、電子デバイスの製造方法。
PCT/JP2021/041508 2021-11-11 2021-11-11 レーザ加工システム、レーザ加工方法、及び電子デバイスの製造方法 WO2023084681A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041508 WO2023084681A1 (ja) 2021-11-11 2021-11-11 レーザ加工システム、レーザ加工方法、及び電子デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041508 WO2023084681A1 (ja) 2021-11-11 2021-11-11 レーザ加工システム、レーザ加工方法、及び電子デバイスの製造方法

Publications (1)

Publication Number Publication Date
WO2023084681A1 true WO2023084681A1 (ja) 2023-05-19

Family

ID=86335356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041508 WO2023084681A1 (ja) 2021-11-11 2021-11-11 レーザ加工システム、レーザ加工方法、及び電子デバイスの製造方法

Country Status (1)

Country Link
WO (1) WO2023084681A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092855A1 (ja) * 2013-12-16 2015-06-25 ギガフォトン株式会社 レーザ装置
JP2016047547A (ja) * 2014-08-28 2016-04-07 株式会社ディスコ レーザー加工装置
JP2017208445A (ja) * 2016-05-18 2017-11-24 株式会社ディスコ レーザー加工装置及びレーザー加工方法
JP2018501115A (ja) * 2014-12-17 2018-01-18 エイピー系▲統▼股▲フン▼有限公司Ap Systems Inc. レーザーを用いた3次元パターニング方法
JP2018511829A (ja) * 2015-03-17 2018-04-26 エイピー系▲統▼股▲フン▼有限公司Ap Systems Inc. レーザーパターニングを用いたシャドーマスクの製造装置およびレーザーパターニングを用いたシャドーマスクの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092855A1 (ja) * 2013-12-16 2015-06-25 ギガフォトン株式会社 レーザ装置
JP2016047547A (ja) * 2014-08-28 2016-04-07 株式会社ディスコ レーザー加工装置
JP2018501115A (ja) * 2014-12-17 2018-01-18 エイピー系▲統▼股▲フン▼有限公司Ap Systems Inc. レーザーを用いた3次元パターニング方法
JP2018511829A (ja) * 2015-03-17 2018-04-26 エイピー系▲統▼股▲フン▼有限公司Ap Systems Inc. レーザーパターニングを用いたシャドーマスクの製造装置およびレーザーパターニングを用いたシャドーマスクの製造方法
JP2017208445A (ja) * 2016-05-18 2017-11-24 株式会社ディスコ レーザー加工装置及びレーザー加工方法

Similar Documents

Publication Publication Date Title
US8399870B2 (en) Extreme ultraviolet light source device and control method for extreme ultraviolet light source device
JP6762364B2 (ja) レーザシステム
US10074958B2 (en) Laser system
JP2012199425A (ja) マスタオシレータ、レーザシステム、およびレーザ生成方法
JP3325350B2 (ja) レーザ露光装置及び半導体装置の製造方法
JPWO2014119199A1 (ja) レーザ装置及び極端紫外光生成装置
US9966721B2 (en) Laser system
WO2023084681A1 (ja) レーザ加工システム、レーザ加工方法、及び電子デバイスの製造方法
US20230352900A1 (en) Laser apparatus and method of manufacturing electronic device
CN111226359A (zh) 激光照射系统和电子器件的制造方法
US11604416B2 (en) Laser processing method and laser processing system
WO2020174582A1 (ja) 狭帯域化モジュール、ガスレーザ装置、及び電子デバイスの製造方法
US20220131328A1 (en) Optical pulse stretcher, laser device, and electronic device manufacturing method
WO2021186698A1 (ja) 露光システム、レーザ制御パラメータの作成方法、及び電子デバイスの製造方法
US20240103336A1 (en) Laser processing device, laser processing method, and electronic device manufacturing method
JP2023507272A (ja) Duvレーザアライメントを改善するためのメトロロジ
US20240136787A1 (en) Gas laser device and electronic device manufacturing method
JP2002283083A (ja) レーザ加工装置
WO2023152805A1 (ja) レーザ装置、光路調整方法、及び電子デバイスの製造方法
US20230098685A1 (en) Exposure system, exposure method, and electronic device manufacturing method
WO2023026501A1 (ja) ガスレーザ装置、及び電子デバイスの製造方法
WO2017046860A1 (ja) レーザシステム
US20240079844A1 (en) Laser device, laser oscillation method, and electronic device manufacturing method
US20220385030A1 (en) Narrowed-line gas laser apparatus and method for manufacturing electronic devices
US20210288459A1 (en) Laser system and electronic device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964036

Country of ref document: EP

Kind code of ref document: A1