WO2022055062A1 - 레이저 가공 시스템 및 방법 - Google Patents

레이저 가공 시스템 및 방법 Download PDF

Info

Publication number
WO2022055062A1
WO2022055062A1 PCT/KR2021/004300 KR2021004300W WO2022055062A1 WO 2022055062 A1 WO2022055062 A1 WO 2022055062A1 KR 2021004300 W KR2021004300 W KR 2021004300W WO 2022055062 A1 WO2022055062 A1 WO 2022055062A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
bessel beam
laser
focal line
optical unit
Prior art date
Application number
PCT/KR2021/004300
Other languages
English (en)
French (fr)
Inventor
심상원
황도연
남유진
류상길
유성주
최민환
Original Assignee
주식회사 필옵틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 필옵틱스 filed Critical 주식회사 필옵틱스
Priority to EP21783385.4A priority Critical patent/EP3991905A4/en
Priority to US17/595,764 priority patent/US20220314364A1/en
Priority to CN202180003139.XA priority patent/CN114667196A/zh
Priority to JP2023515646A priority patent/JP2023552942A/ja
Publication of WO2022055062A1 publication Critical patent/WO2022055062A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0734Shaping the laser spot into an annular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • B23K26/0821Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head using multifaceted mirrors, e.g. polygonal mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • Lasers are widely used when processing such as cutting a workpiece (object to be processed) or forming a hole.
  • an optical element such as a lens is used to form a laser beam of a desired shape to be suitable for a processing operation, and the formed laser beam is irradiated to a workpiece.
  • a laser beam can be efficiently used for machining operations such as cutting a brittle material that is difficult to process, such as a transparent glass substrate, or drilling a hole.
  • a crack is generated in the workpiece by the laser and the crack is propagated, thereby cutting the workpiece. Accordingly, there is a problem that cracks may be generated non-uniformly and the cut surface may be uneven.
  • One aspect of the present invention is to provide a system and method capable of processing a workpiece at high speed using a laser beam.
  • Laser processing system a laser unit for emitting a laser beam; an optical unit disposed in the traveling path of the laser beam and emitting the incident laser beam as a Bessel beam; a stage on which a workpiece to be processed using the Bessel beam emitted from the optical unit is mounted; and a control unit for controlling the operation of the laser unit, the optical unit, and the stage, wherein the optical unit positions a focal line of the emitted Bessel beam on the workpiece, and a focus located on the workpiece The line is moved by a predetermined range.
  • the optical unit may maintain an angle between the focal line of the outgoing Bessel beam and the processing surface of the workpiece in a range of 80 to 100 degrees.
  • the optical unit includes a first optical unit for modulating the incident laser beam into a Bessel beam, and a second optical unit for moving a focal line of the exiting Bessel beam in a direction crossing the focal line on the workpiece.
  • the second optical unit may include a scanner for moving a path of the Bessel beam passing through the first optical unit, and a focusing lens for positioning a focal line of the Bessel beam emitted from the scanner on the workpiece.
  • the diameter of the Bessel beam incident to the scanner may be 3 to 30 mm.
  • the focal length of the focusing lens may be 10 to 300 mm.
  • a distance at which the focal line of the Bessel beam emitted from the scanner is moved on the workpiece may be 1 ⁇ m to 30 mm.
  • the laser processing method is a method of processing a workpiece by irradiating a laser beam, and modulating a laser beam having a circular cross-section perpendicular to the traveling direction of the laser beam into an annular Bessel beam step; and a processing step of irradiating the Bessel beam to the workpiece so that the focal line of the Bessel beam is positioned on the workpiece; In the processing step, the focal line of the Bessel beam positioned on the workpiece is moved .
  • the machining step is a step of setting a machining path corresponding to the shape to be machined on the work piece, and the set machining path is a first path through which the focal line of the Bessel beam moves and a second path through which the work piece moves. separating, and machining the workpiece along the machining path by moving the focal line of the vessel beam to the first path and simultaneously moving the workpiece to the second path.
  • an angle between the focal line of the Bessel beam and the processing surface of the workpiece may be maintained in a range of 80 to 100 degrees.
  • a distance at which the focal line of the Bessel beam positioned on the workpiece is moved on the workpiece may be 1 ⁇ m to 30 mm.
  • the processing step may include a scanning step of moving the path of the reflected Bessel beam by adjusting the angle of a mirror positioned in the traveling path of the Bessel beam, and a focusing step of focusing the reflected Bessel beam on the workpiece.
  • the workpiece can be processed at high speed.
  • processing can be performed regardless of the size of the workpiece.
  • FIG. 1 is a schematic diagram of a laser processing system according to an embodiment of the present invention.
  • FIG 3 is a view showing a state of being scanned through the optical unit of the laser processing system according to an embodiment of the present invention.
  • FIG. 5 is a view illustrating a process in which a workpiece is processed through a laser processing method according to an embodiment of the present invention.
  • front and rear are named based on the traveling direction of the beam, and the direction approaching the workpiece is defined as “rear”.
  • FIG. 1 is a schematic diagram of a laser processing system according to an embodiment of the present invention.
  • a laser processing system 10 includes a laser unit 100 , an optical unit 200 , a stage 300 , and a control unit 400 .
  • the laser beam LB emitted from the laser unit 100 is modulated into a Bessel beam BB form through the optical unit 200 , and the Bessel beam BB is fixed to the stage 300 .
  • the processed object 50 is irradiated to process the object 50 .
  • the Bessel beam BB irradiated to the workpiece 50 can process the workpiece 50 at high speed while scanning a predetermined range of the workpiece 50 .
  • the stage 300 is simultaneously driven while the Bessel beam BB is scanned by the controller 400 , high-speed and precise machining is possible.
  • the laser unit 100 is configured to emit a laser beam LB for processing the workpiece 50 , and may generate laser light having a pulse and emit it in the form of a beam.
  • the emitted laser beam LB may have a pulse (eg, ultra-short pulse) or a burst pulse having a wavelength, energy, and duration suitable for processing the workpiece 50 .
  • the laser beam LB may have a circular shape or a Gaussian beam shape (a cross section perpendicular to the traveling direction) when viewed in the traveling direction.
  • the workpiece 50 may have a flat plate shape, and may be, for example, a transparent glass substrate.
  • the to-be-processed object 50 is not limited to a transparent glass substrate, and may include all of various materials such as an opaque substrate, a metal material, and a semiconductor wafer.
  • Figure 2 is a view showing an optical unit of the laser processing system according to an embodiment of the present invention
  • Figure 3 is a view showing a state of being scanned through the optical unit of the laser processing system according to an embodiment of the present invention
  • FIG. 4 is an enlarged view of part IV of FIG. 3 .
  • the optical unit 200 is disposed in the traveling path of the laser beam LB emitted from the laser unit 100 and is configured to emit the incident laser beam LB as the Bessel beam BB. According to an embodiment of the present invention, the optical unit 200 positions the focal line FL of the exiting Bessel beam BB on the workpiece 50 , while the focal line FL positioned on the workpiece 50 . It may be configured to move by this predetermined range. Referring to FIGS. 3 and 4 , in the present specification, the 'focus line FL' refers to a condensing length or depth of focus of a Bessel beam incident on a workpiece.
  • the optical unit 200 may include a first optical unit 210 and a second optical unit 220 .
  • the first optical unit 210 is an optical unit that modulates the laser beam LB into the Bessel beam BB, and the first optical element 211 and the second optical element disposed behind the first optical element 211 . (212).
  • the first optical element 211 may be a diffractive element for modulating the laser beam LB into the Bessel beam BB, and may be, for example, a conical prism or an axicon lens. Therefore, the laser beam LB is diffracted while passing through the first optical element 211 (viewed in the beam traveling direction or a cross section perpendicular to the beam traveling direction) into an annular (ring-shaped) Bessel beam BB. can be tampered with.
  • the first optical element 211 is not limited to a conical prism or an axicon lens, and various optical elements capable of modulating the laser beam LB into the Bessel beam BB may be used.
  • the area of the Bessel beam BL is adjusted to be suitable for processing the workpiece 50 .
  • a second optical element 212 capable of limiting enlargement may be provided at the rear of the first optical element 211 . That is, the second optical element 212 may be an optical element for parallelly advancing the optical axis of the Bessel beam BL emitted from the first optical element 211 , for example, a collimating lens or a collimating lens ( collimating lenses). After the optical axes of the Bessel beam BB passing through the second optical element 212 are arranged in parallel, they may be incident on the second optical unit 220 .
  • the first optical element 211 and the second optical element 212 described above are appropriately selected or adjusted for respective optical properties, arrangement intervals, etc., thereby forming the second optical element 212 .
  • the diameter of the Bessel beam BB passing through and incident on the second optical unit 220 (or the scanner 221 ) may be in the range of 3 to 30 mm.
  • the second optical unit 220 is configured to move the focal line FL of the emitted Bessel beam BB on the workpiece 50 , and may include a scanner 221 and a focusing lens 222 .
  • the focal line FL of the exiting Bessel beam BB may be located on the workpiece 50, and the focal line FL is It can be moved in a direction crossing the focal line FL while maintaining a position on the workpiece 50 . Accordingly, the workpiece 50 while scanning the Bessel beam BB by a predetermined range on the workpiece 50 . (50) can be processed.
  • the scanner 221 may move the path of the Bessel beam BB passing through the first optical unit 210 .
  • the scanner 221 may continuously change the optical axis direction of the incident Bessel beam BB within a predetermined angular range, and may scan the emitted Bessel beam BB within a predetermined area range. .
  • the scanner 221 may include a plurality of mirrors whose angles are adjusted. Accordingly, the Bessel beam BB incident to the scanner 221 is reflected by the plurality of mirrors, and the reflection angle of the Bessel beam BB reflected by adjusting the angles of the mirrors may be adjusted.
  • the scanner 221 may include at least two mirrors each rotatable along rotation axes arranged in at least two axial directions, and may be configured as, for example, a galvano mirror.
  • the configuration of the scanner 221 is not limited to the galvanometer, and may include various devices capable of scanning the emitted Bessel beam BB within a predetermined area range.
  • the Bessel beam BB whose path is changed through the scanner 221 may be focused on the workpiece 50 by the focusing lens 222 .
  • the focusing lens 222 may be disposed between the scanner 221 and the workpiece 50 , and the focal line FL of the Bessel beam BB emitted from the scanner 221 is positioned on the workpiece 50 . can do it As will be described later, the focusing lens 222 may maintain the focal line FL of the Bessel beam BB perpendicular to the processing surface BL of the workpiece as much as possible.
  • the Bessel beam BB is focused by the focusing lens 222 , and the focal line FL of the Bessel beam BB is positioned on the processing surface BL of the workpiece 50 .
  • the focal length of the focusing lens 222 may be configured in the range of 10 ⁇ 300mm. Accordingly, the workpiece 50 may be processed while being spaced apart by a distance corresponding to the focal length of the focusing lens 222 .
  • the Bessel beam positioned on the workpiece 50 in a state in which the focal line FL of the Bessel beam BB emitted from the optical unit 200 is positioned on the workpiece 50, the Bessel beam positioned on the workpiece 50 ( By moving the focal line FL of the BB, a predetermined range of the workpiece 50 can be scanned. At this time, the state in which the focal line FL of the Bessel beam BB is positioned on the workpiece 50 may be maintained, and the focal line FL of the Bessel beam BB is positioned on the workpiece 50 ( or on the surface to be processed) may be in the range of 1 ⁇ m to 30 mm.
  • the movement distance is a movement distance in one direction (eg, the x-axis direction or the y-axis direction in FIG.
  • the Bessel beam BB moves in two axial directions (x-axis and y-axis direction)
  • the Bessel beam BB moves within a predetermined range on the x and y axes of the workpiece 50 . It can be processed while scanning.
  • the angle ⁇ between the focal line FL of the Bessel beam BB positioned on the workpiece 50 and the processing surface BL of the workpiece may be close to 90 degrees. . More specifically, according to an embodiment of the present invention, while the focal line FL of the Bessel beam BB is moved (scanning) in a predetermined range on the workpiece 50, the focal line FL of the Bessel beam BB is An angle ⁇ formed with the processing surface BL of the workpiece may be maintained in a range of 80 to 100 degrees.
  • the focal line FL of the Bessel beam BB is scanned on the processing surface BL of the workpiece by the scanner 221
  • the focal line FL of the Vessel beam BB is the processing surface ( BL) and the angle ⁇ may be maintained in the range of 80 to 100 degrees.
  • the Bessel beam BB passing through the focusing lens 222 is incident at an angle close to vertical with respect to the processing surface BL of the workpiece, and an angle deviating from the vertical can be maintained in a range of 10 degrees or less.
  • the Bessel beam BB generated by the first optical element 211 which is a diffraction element, causes an interference effect in a predetermined processing position and area, and uniformly has its characteristics. Maintaining it will affect the processing quality. Therefore, for excellent and uniform processing quality, it is important how perpendicular the interference beam (Bessel beam) incident on the processing surface of the workpiece 50 is maintained.
  • the focal line FL of the Bessel beam BB located on the workpiece 50 scans the processing surface of the workpiece, while the angle ⁇ formed with the processing surface BL of the workpiece. ) can be maintained in the range of 80 to 100 degrees, so it is possible to maintain excellent and uniform processing quality while proceeding with high-speed processing.
  • the workpiece 50 may be fixed to the stage 300 . That is, the stage 300 is a part on which the workpiece 50 is mounted to fix the position of the workpiece 50 .
  • the laser unit 100 , the optical unit 200 , and the stage 300 may be controlled through the controller 400 .
  • the controller 400 may adjust the wavelength, energy, and duration of the pulse of the laser beam LB generated by the laser unit 100 to match the characteristics of the workpiece 50 .
  • the controller 400 may drive the scanner 221 to move the Bessel beam BB incident on the workpiece 50 .
  • the controller 400 controls the scanner 221 so that the focal line FL of the Bessel beam BB moves in at least two axes (x-axis and y-axis) directions on the processing surface BL. can be driven
  • the control unit 400 may include a driving means ( For example, a drive motor) can be controlled. Through this, the focal line FL of the Bessel beam BB is moved along the x-axis and the y-axis on the processing surface BL, so that a predetermined range can be scanned.
  • control unit 400 may move the stage 300 to which the workpiece 50 is fixed.
  • the controller 400 may drive the stage 300 simultaneously with driving the scanner 221 .
  • the control unit 400 rotates the mirror at a high speed in a predetermined angle range so that the angle of the mirror of the scanner 221 is continuously adjusted, and simultaneously rotates the stage 300 on at least two axes (x-axis and y-axis). direction can be driven at low speed.
  • the stage 300 has a slow response (compared to the scanner), is driven at a low speed, and may have a wide processing area, whereas the scanner 221 is responsive (compared to the stage) and driven at a high speed and narrow processing can have an area.
  • 5 is a view illustrating a process in which a workpiece is processed through a laser processing method according to an embodiment of the present invention. 5 shows a process of machining an exemplary shape, showing that the machining process proceeds from the left to the right.
  • the first processing path PL1 and the stage 300 are driven by driving the scanner 221 in order to process the final processing path PL of the rectangular shape in the workpiece 50 .
  • Through the second processing path PL2 may proceed simultaneously. That is, when only the stage 300 is moved for the final machining path PL in the form of a square, even when a control signal is transmitted to the stage 300 from the control unit 400 (refer to FIG. 1 ), responsiveness and movement speed (acceleration), etc. Due to the limitation of , the machining quality may be deteriorated in an area such as a corner of the rectangular final machining path PL.
  • control unit 400 controls the stage 300 moving in a wide processing area while moving a relatively narrow processing area while moving the scanner 221 with fast responsiveness and moving speed (acceleration). ) (for example, a mirror that pivots about the rotation axis), it is possible to machine the final machining path PL with improved quality while reducing machining time.
  • the control unit 400 transmits an electrical control signal transmitted to the stage 300 and the scanner 221 to the high-frequency component through a filter. and low-frequency components.
  • the high-frequency component may be a signal of the first processing path PL1 that is a high-speed movement path, and may be transmitted to the scanner 221 .
  • the low-frequency component may be a signal of the second processing path PL2 that is a low-speed movement path, and may be transmitted to the stage 300 .
  • the first processing path PL1 through the scanner 221 and the stage 300 through The second machining path PL2 may be coupled to process the final machining path PL.
  • the scanner 221 and the stage 300 are synchronized and controlled at the same time, processing can be performed without being limited to a field of view (FOV) of the scanner 221 . Therefore, according to the embodiment of the present invention, by synchronizing and controlling the stage 300 and the scanner 221 at the same time, it is possible to precisely process the workpiece regardless of the size of the workpiece.
  • FOV field of view
  • the workpiece 50 such as a glass substrate can be precisely processed.
  • the workpiece 50 can be processed at high speed.
  • a precise shape can be machined, and machining time can be saved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

본 발명의 일 실시예에 따른 레이저 가공 시스템은, 레이저 빔을 방출하는 레이저 유닛; 상기 레이저 빔의 진행 경로에 배치되어 입사되는 상기 레이저 빔이 베셀 빔으로 출사시키는 광학 유닛; 상기 광학 유닛에서 출사되는 베셀 빔으로 가공하는 피가공물이 장착되는 스테이지; 및 상기 레이저 유닛, 상기 광학 유닛, 및 상기 스테이지의 작동을 제어하는 제어부;를 포함하며, 상기 광학 유닛은, 출사되는 베셀 빔의 초점 라인을 상기 피가공물에 위치시키며, 상기 피가공물에 위치된 초점 라인이 소정 범위 이동되도록 구성된다.

Description

레이저 가공 시스템 및 방법
본 발명은 레이저를 이용하여 피가공물을 가공하는 가공 시스템 및 가공 방법에 관한 것이다.
레이저는 피가공물(가공 대상물)을 절단하거나 구멍을 형성하는 등의 가공을 할 때 널리 사용되고 있다.
일반적으로, 레이저를 이용한 가공에서는, 렌즈 등의 광학 소자를 이용하여 가공 작업에 적합하도록 원하는 형태의 레이저 빔으로 성형하고 성형된 레이저 빔을 피가공물에 조사한다.
특히, 투명한 유리 기판과 같이 가공이 어려운 취성 재료를 절단하거나 홀을 천공하는 등의 가공 작업에 레이저 빔이 효율적으로 사용될 수 있다. 다만, 유리 기판의 절단 작업 시에는 레이저에 의하여 피가공물에 크랙이 발생되고 크랙이 전파됨으로써, 피가공물의 절단이 이루어질 수 있다. 이에 따라, 크랙이 불균일하게 생성될 수 있고 절단면이 고르지 못하게 되는 문제가 있다.
또한, 레이저를 이용한 대면적의 유리 기판의 절단에는 정밀한 가공이 어렵고 작업 시간이 많이 소요되므로, 자유 형상 가공에 어려움이 있다.
본 발명의 일 측면은 레이저 빔을 이용하여 피가공물을 고속으로 가공할 수 있는 시스템 및 방법을 제공하고자 한다.
본 발명의 실시예에 따른 레이저 가공 시스템은, 레이저 빔을 방출하는 레이저 유닛; 상기 레이저 빔의 진행 경로에 배치되어 입사되는 상기 레이저 빔이 베셀 빔으로 출사시키는 광학 유닛; 상기 광학 유닛에서 출사되는 베셀 빔으로 가공하는 피가공물이 장착되는 스테이지; 및 상기 레이저 유닛, 상기 광학 유닛, 및 상기 스테이지의 작동을 제어하는 제어부;를 포함하며, 상기 광학 유닛은, 출사되는 베셀 빔의 초점 라인을 상기 피가공물에 위치시키며, 상기 피가공물에 위치된 초점 라인이 소정 범위 이동된다.
상기 광학 유닛은 상기 출사되는 베셀 빔의 초점 라인이 상기 피가공물의 가공면과 이루는 각도를 80~100도 범위로 유지시킬 수 있다.
상기 광학 유닛은, 상기 입사되는 레이저 빔을 베셀 빔으로 변조하는 제 1 광학 유닛, 및 상기 출사되는 베셀 빔의 초점 라인을 상기 피가공물 상에서 상기 초점 라인과 교차하는 방향으로 이동시키는 제 2 광학 유닛을 포함할 수 있다.
상기 제 1 광학 유닛은, 상기 입사되는 레이저 빔을 베셀 빔으로 변조하는 제 1 광학 소자, 및 상기 제 1 광학 소자를 통과한 베셀 빔의 광축을 평행하게 진행시키는 제 2 광학 소자를 포함할 수 있다.
상기 제 2 광학 유닛은, 상기 제 1 광학 유닛을 통과한 베셀 빔의 경로를 이동시키는 스캐너, 및 상기 스캐너에서 출사된 베셀 빔의 초점 라인을 상기 피가공물에 위치시키는 포커싱 렌즈를 포함할 수 있다.
상기 제어부는, 상기 출사된 베셀 빔의 초점 라인이 적어도 두 축 방향으로 이동하도록 상기 스캐너를 구동시키며 동시에 상기 스테이지를 상기 적어도 두 축 방향으로 구동시킬 수 있다.
상기 스캐너로 입사하는 베셀 빔의 직경은 3~30mm 일 수 있다.
상기 포커싱 렌즈의 초점 길이는 10~300mm 일 수 있다.
상기 스캐너에서 출사된 베셀 빔의 초점 라인이 상기 피가공물 상에서 이동되는 거리는 1μm~30mm 일 수 있다.
상기 스캐너는 상기 제어부에 의해 각도가 조절되는 복수의 미러를 포함할 수 있다.
상기 피가공물은 평판 형태일 수 있다.
한편, 본 발명의 실시예에 따른 레이저 가공 방법은, 레이저 빔을 조사하여 피가공물을 가공하는 방법으로서, 레이저 빔의 진행 방향에 수직한 단면이 원형인 레이저 빔을 환형의 베셀 빔으로 변조하는 변조 단계; 및 상기 베셀 빔의 초점 라인이 피가공물에 위치되도록 상기 베셀 빔을 상기 피가공물에 조사하는 가공 단계;를 포함하며, 상기 가공 단계에서, 상기 피가공물에 위치된 상기 베셀 빔의 초점 라인을 이동시킨다.
상기 가공 단계에서, 상기 피가공물을 이동시키는 동시에 상기 베셀 빔의 초점 라인을 이동시킬 수 있다.
상기 가공 단계는, 상기 피가공물을 가공할 형상에 대응되는 가공 경로를 설정하는 단계, 상기 설정된 가공 경로를 상기 베셀 빔의 초점 라인이 이동하는 제 1 경로와 상기 피가공물이 이동하는 제 2 경로로 분리하는 단계, 및 상기 베셀 빔의 초점 라인을 상기 제 1 경로로 이동시키고 동시에 상기 피가공물을 상기 제 2 경로로 이동시켜서, 상기 피가공물을 가공 경로를 따라 가공하는 단계를 포함할 수 있다.
상기 가공 단계에서, 상기 베셀 빔의 초점 라인이 상기 피가공물의 가공면과 이루는 각도를 80~100도 범위로 유지할 수 있다.
상기 가공 단계에서, 상기 피가공물에 위치된 상기 베셀 빔의 초점 라인이 상기 피가공물 상에서 이동되는 거리는 1μm~30mm 일 수 있다.
상기 가공 단계는, 상기 베셀 빔의 진행 경로에 위치된 미러의 각도를 조절하여 반사되는 베셀 빔의 경로를 이동시키는 스캐닝 단계, 및 상기 반사된 베셀 빔을 상기 피가공물에 집속시키는 포커싱 단계를 포함할 수 있다.
상기 스캐닝 단계에서, 상기 미러에 입사하는 베셀 빔의 직경은 3~30mm 일 수 있다.
상기 포커싱 단계에서, 초점 길이는 10~300mm 일 수 있다.
본 발명의 실시예에 따르면, 레이저 빔을 베셀 빔으로 변조함으로써, 피가공물을 정밀하게 가공할 수 있다.
또한, 베셀 빔을 스캐닝하여 조사 영역을 확장함으로써, 피가공물을 고속으로 가공할 수 있다.
또한, 스캐닝되는 베셀 빔이 가공면에 입사되는 각도를 수직에 가깝게 유지시킴으로써, 가공 품질을 향상시킬 수 있다.
또한, 베셀 빔과 피가공물의 이동을 각각 동시에 제어함으로써, 정밀한 형상을 가공할 수 있으며 가공 시간을 절약할 수 있다.
또한, 스캐너와 스테이지 간의 동기화 기술을 통하여 피가공물의 크기에 구애받지 않고 가공할 수 있다.
도 1은 본 발명의 실시예에 따른 레이저 가공 시스템의 개략도이다.
도 2는 본 발명의 실시예에 따른 레이저 가공 시스템 중 광학 유닛을 도시한 도면이다.
도 3은 본 발명의 실시예에 따른 레이저 가공 시스템 중 광학 유닛을 통해 스캐닝되는 모습을 도시한 도면이다.
도 4는 도 3의 Ⅳ 부분을 확대한 도면이다.
도 5는 본 발명의 실시예에 따른 레이저 가공 방법을 통해 피가공물이 가공되는 과정을 도시한 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 만 아니라, 다른 부재를 사이에 두고 "간접적으로 연결"된 것도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서, "전방" 및 "후방"은 빔의 진행 방향을 기준으로 명명한 것으로, 피가공물에 접근하는 방향을 "후방"으로 정의한다.
도 1은 본 발명의 실시예에 따른 레이저 가공 시스템의 개략도이다.
도 1을 참조하면, 본 발명의 실시예에 따른 레이저 가공 시스템(10)은 레이저 유닛(100), 광학 유닛(200), 스테이지(300), 및 제어부(400)를 포함한다.
레이저 가공 시스템(10)은 레이저 유닛(100)에서 방출되는 레이저 빔(LB)이 광학 유닛(200)을 통해 베셀 빔(BB) 형태로 변조되며, 베셀 빔(BB)이 스테이지(300)에 고정된 피가공물(50)에 조사되어 피가공물(50)을 가공한다. 이 때, 본 발명의 실시예에 따르면, 피가공물(50)에 조사되는 베셀 빔(BB)은 피가공물(50)의 소정 범위를 스캐닝 하면서 피가공물(50)을 고속으로 가공할 수 있다. 또한, 제어부(400)에 의하여, 베셀 빔(BB)이 스캐닝 됨과 동시에 스테이지(300)가 함께 구동됨으로써, 고속이면서 정밀한 가공이 가능하다. 이하, 본 발명의 실시예에 따른 레이저 가공 시스템(10)의 각 구성들을 상세히 설명한다.
레이저 유닛(100)은 피가공물(50)을 가공하기 위한 레이저 빔(LB)을 방출하는 구성으로, 펄스를 갖는 레이저 광을 생성하여 빔 형태로 방출할 수 있다. 이 때, 방출되는 레이저 빔(LB)은 피가공물(50)을 가공하기에 적합한 파장, 에너지, 및 지속시간을 갖는 펄스(예를 들어, 극초단 펄스) 또는 버스트 펄스를 가질 수 있다. 또한, 레이저 빔(LB)은 진행 방향으로 보았을 때 (진행 방향에 수직한 단면이) 원형 형태 또는 가우시안 빔 형태를 가질 수 있다.
여기서 피가공물(50)은 평판 형태를 가질 수 있으며, 예를 들어 투명한 유리 기판일 수 있다. 그러나, 피가공물(50)이 투명한 유리 기판에 한정되는 것은 아니며 불투명한 기판, 금속 재료, 반도체 웨이퍼 등 다양한 재료를 모두 포함할 수 있다.
도 2는 본 발명의 실시예에 따른 레이저 가공 시스템 중 광학 유닛을 도시한 도면이고, 도 3은 본 발명의 실시예에 따른 레이저 가공 시스템 중 광학 유닛을 통해 스캐닝되는 모습을 도시한 도면이다. 또한, 도 4는 도 3의 Ⅳ 부분을 확대한 도면이다.
광학 유닛(200)은 레이저 유닛(100)에서 방출되는 레이저 빔(LB)의 진행 경로에 배치되어, 입사되는 레이저 빔(LB)을 베셀 빔(BB)으로 출사시키는 구성이다. 본 발명의 실시예에 따르면, 광학 유닛(200)은 출사되는 베셀 빔(BB)의 초점 라인(FL)을 피가공물(50)에 위치시키면서, 피가공물(50)에 위치된 초점 라인(FL)이 소정 범위만큼 이동되도록 구성될 수 있다. 도 3 및 도 4을 참조하면, 본 명세서에서 '초점 라인(FL)'은 피가공물에 입사하는 베셀 빔의 집광 길이 또는 초점 심도(depth of focus)를 의미한다.
도 1 및 도 2를 참조하면, 광학 유닛(200)은 제 1 광학 유닛(210) 및 제 2 광학 유닛(220)을 포함할 수 있다.
제 1 광학 유닛(210)은 레이저 빔(LB)을 베셀 빔(BB)으로 변조하는 광학 유닛으로, 제 1 광학 소자(211) 및 제 1 광학 소자(211)의 후방에 배치된 제 2 광학 소자(212)를 포함할 수 있다.
제 1 광학 소자(211)는 레이저 빔(LB)을 베셀 빔(BB)으로 변조하기 위한 회절 소자일 수 있으며, 예컨대 원뿔형 프리즘 또는 액시콘 렌즈(axicon lens)일 수 있다. 따라서, 레이저 빔(LB)은 제 1 광학 소자(211)를 통과하면서 회절되면서, (빔 진행 방향으로 보았을 때, 또는 빔 진행 방향에 수직한 단면이) 환형(링형)의 베셀 빔(BB)으로 변조될 수 있다. 그러나, 제 1 광학 소자(211)는 원뿔형 프리즘 또는 액시콘 렌즈에 한정되는 것은 아니며, 레이저 빔(LB)을 베셀 빔(BB)으로 변조할 수 있는 다양한 광학 소자가 이용될 수 있다.
도 2를 참조하면, 레이저 빔(LB)이 제 1 광학 소자(211)를 통과하여 베셀 빔(BL)으로 변조된 후, 피가공물(50)의 가공에 적합하도록 베셀 빔(BL)의 영역이 확대되는 것을 제한할 수 있는 제 2 광학 소자(212)가 제 1 광학 소자(211)의 후방에 구비될 수 있다. 즉, 제 2 광학 소자(212)는 제 1 광학 소자(211)에서 출사된 베셀 빔(BL)의 광축을 평행하게 진행시키기 위한 광학 소자일 수 있으며, 예를 들어, 시준 렌즈 또는 콜리메이팅 렌즈(collimating lens)일 수 있다. 제 2 광학 소자(212)를 통과한 베셀 빔(BB)의 광축이 평행하게 배열된 후, 제 2 광학 유닛(220)으로 입사될 수 있다.
본 발명의 실시예에 따르면, 전술한 제 1 광학 소자(211) 및 제 2 광학 소자(212)는 각각의 광학 성질, 배치 간격 등이 적절하게 선택 또는 조정됨으로써, 제 2 광학 소자(212)를 통과하여 제 2 광학 유닛(220)(또는 스캐너(221))에 입사하는 베셀 빔(BB)의 직경은 3~30mm 범위일 수 있다.
제 2 광학 유닛(220)은 출사되는 베셀 빔(BB)의 초점 라인(FL)을 피가공물(50) 상에서 이동시키기 위한 구성으로, 스캐너(221) 및 포커싱 렌즈(222)를 포함할 수 있다. 본 발명의 실시예에 따르면, 제 2 광학 유닛(220)을 통해, 출사되는 베셀 빔(BB)의 초점 라인(FL)이 피가공물(50) 상에 위치될 수 있고, 초점 라인(FL)이 피가공물(50) 상에 위치된 상태를 유지하면서 초점 라인(FL)과 교차하는 방향으로 이동될 수 있다, 이에 따라, 피가공물(50) 상에서 소정 범위만큼 베셀 빔(BB)을 스캐닝 하면서 피가공물(50)을 가공할 수 있다.
도 2를 참조하면, 스캐너(221)는 제 1 광학 유닛(210)을 통과한 베셀 빔(BB)의 경로를 이동시킬 수 있다. 보다 상세히, 스캐너(221)는 입사되는 베셀 빔(BB)의 광축 방향을 소정 각도 범위 내에서 연속적으로 변경시킬 수 있으며, 이를 통해 출사되는 베셀 빔(BB)을 소정 영역 범위 내에서 스캐닝 할 수 있다.
본 발명의 실시예에 따르면, 스캐너(221)는 각도가 조절되는 복수의 미러를 포함할 수 있다. 이에 따라, 스캐너(221)로 입사되는 베셀 빔(BB)이 복수의 미러에서 반사되고, 미러의 각도를 조절함으로써 반사되는 베셀 빔(BB)은 반사 각도가 조절될 수 있다. 예를 들어, 스캐너(221)는 적어도 두 축 방향으로 배열된 회전축을 따라 각각 회전 가능한 적어도 두 개의 미러를 포함할 수 있으며, 예를 들어 갈바노미러(Galvano Mirror)로 구성될 수 있다. 그러나 스캐너(221)의 구성이 갈바노미러에 한정되는 것은 아니며, 출사되는 베셀 빔(BB)을 소정 영역 범위 내에서 스캐닝할 수 있는 다양한 장치로 구성될 수 있다.
스캐너(221)를 통해 경로가 변경된 베셀 빔(BB)은 포커싱 렌즈(222)에 의하여 피가공물(50)에 집속될 수 있다. 포커싱 렌즈(222)는 스캐너(221)와 피가공물(50)의 사이에 배치될 수 있으며, 스캐너(221)에서 출사된 베셀 빔(BB)의 초점 라인(FL)을 피가공물(50)에 위치시킬 수 있다. 후술하겠지만, 포커싱 렌즈(222)는 베셀 빔(BB)의 초점 라인(FL)을 최대한 피가공물의 가공면(BL)에 수직하게 유지시킬 수 있다.
도 2 내지 도 4를 참조하면, 포커싱 렌즈(222)에 의해 베셀 빔(BB)이 집속되어, 베셀 빔(BB)의 초점 라인(FL)이 피가공물(50)의 가공면(BL)에 위치될 수 있다. 본 발명의 실시예에 따르면, 포커싱 렌즈(222)의 초점 길이는 10~300mm 범위로 구성될 수 있다. 이에 따라, 피가공물(50)은 포커싱 렌즈(222)의 초점 길이에 대응되는 거리만큼 이격되게 위치되어 가공될 수 있다.
도 2 내지 도 4에서 피가공물(50)의 가공면을 도면부호 BL로 표시하여 도시하였다. 여기서 가공면(BL)은 피가공물(50)의 가공이 시작되는 외측면을 의미하는 것은 아니며, 피가공물(50)에서 가공되는 부분 중 임의의 지점을 포함하는 가상의 면을 의미한다. 피가공물(50)은 소정의 두께를 가질 수 있는데, 가공 방식에 따라 피가공물(50)에 위치되는 베셀 빔(BB)의 초점 라인(FL)은 피가공물(50)의 두께 전체에 걸쳐 위치될 수도 있고, 피가공물(50)의 두께의 일부에만 위치될 수도 있다.
본 발명의 실시예에 따르면, 광학 유닛(200)에서 출사된 베셀 빔(BB)의 초점 라인(FL)을 피가공물(50)에 위치시킨 상태에서, 피가공물(50)에 위치된 베셀 빔(BB)의 초점 라인(FL)을 이동시킴으로써, 피가공물(50)의 소정 범위를 스캐닝할 수 있다. 이 때, 베셀 빔(BB)의 초점 라인(FL)이 피가공물(50) 상에 위치된 상태가 유지될 수 있고, 베셀 빔(BB)의 초점 라인(FL)이 피가공물(50) 상에서(또는 피가공면 상에서) 이동되는 거리는 1μm~30mm 범위일 수 있다. 여기서, 이동 거리는 일 방향(예를 들어, 도 5에서 x축 방향 또는 y축 방향)으로의 이동 거리이다. 예컨대, 베셀 빔(BB)의 초점 라인(FL)이 두 축 방향(x축 및 y축 방향)으로 이동하는 경우, 베셀 빔(BB)은 피가공물(50)의 x, y축 상의 소정 범위를 스캐닝 하면서 가공할 수 있다.
도 3 및 도 4를 참조하면, 피가공물(50)에 위치된 베셀 빔(BB)의 초점 라인(FL)이 피가공물의 가공면(BL)과 이루는 각도(θ)가 90도에 가까울 수 있다. 보다 상세하게는 본 발명의 실시예에 따르면, 베셀 빔(BB)의 초점 라인(FL)이 피가공물(50) 상에서 소정 범위 이동(스캐닝)되는 동안, 베셀 빔(BB)의 초점 라인(FL)이 피가공물의 가공면(BL)과 이루는 각도(θ)가 80~100도 범위로 유지될 수 있다.
즉, 스캐너(221)에 의하여 베셀 빔(BB)의 초점 라인(FL)이 피가공물의 가공면(BL) 상에서 스캐닝 되지만, 베셀 빔(BB)의 초점 라인(FL)이 피가공물의 가공면(BL)과 이루는 각도(θ)는 80~100도 범위가 유지될 수 있다. 다시 말해, 포커싱 렌즈(222)를 통과한 베셀 빔(BB)이 피가공물의 가공면(BL)에 대하여 수직에 가까운 각도로 입사되는데, 수직에서 벗어난 각도가 10도 이하의 범위로 유지될 수 있다. 본 발명의 실시예에 따른 레이저 가공 시스템(10)에서는, 회절 소자인 제 1 광학 소자(211)에 의해 발생된 베셀 빔(BB)이 소정의 가공 위치와 영역에서 간섭 효과를 일으키며 그 특성을 균일하게 유지하는 것이 가공 품질에 영향을 주게 된다. 따라서, 우수하고 균일한 가공 품질을 위해서는 피가공물(50)의 가공면에 입사되는 간섭 빔(베셀 빔)이 얼마나 수직한 정도가 유지되느냐가 중요하다. 본 발명의 실시예에 따르면, 피가공물(50)에 위치된 베셀 빔(BB)의 초점 라인(FL)이 피가공물의 가공면을 스캐닝 하면서도, 피가공물의 가공면(BL)과 이루는 각도(θ)가 80~100도 범위로 유지될 수 있기 때문에, 고속 가공을 진행하면서도 우수하고 균일한 가공 품질을 유지할 수 있다.
본 발명의 실시예에 따르면, 피가공물(50)은 스테이지(300)에 고정될 수 있다. 즉, 스테이지(300)는 피가공물(50)이 장착되어 피가공물(50)을 위치 고정시키는 부분이다.
도 1을 참조하면, 전술한 레이저 유닛(100), 광학 유닛(200), 및 스테이지(300)는 제어부(400)를 통해 제어될 수 있다.
제어부(400)는 레이저 유닛(100)에서 생성하는 레이저 빔(LB)의 파장, 에너지, 및 펄스의 지속시간 등을 피가공물(50)에 특성에 맞도록 조절할 수 있다.
또한, 제어부(400)는 피가공물(50)에 입사되는 베셀 빔(BB)을 이동시킬 수 있도록 스캐너(221)를 구동시킬 수 있다. 본 발명의 실시예에 따르면, 제어부(400)는 베셀 빔(BB)의 초점 라인(FL)이 가공면(BL) 상에서 적어도 두 축(x축 및 y축) 방향으로 이동하도록 스캐너(221)를 구동시킬 수 있다. 예를 들어, 스캐너(221)가 적어도 두 축 방향으로 배열된 회전축을 중심으로 피벗 회전하는 복수의 미러를 포함하는 경우, 제어부(400)는 복수의 미러 각각을 소정 각도 범위로 회전시키는 구동 수단(예컨대 구동 모터)을 제어할 수 있다. 이를 통해, 베셀 빔(BB)의 초점 라인(FL)이 가공면(BL) 상에서 x축 및 y축을 따라 이동됨으로써, 소정 범위를 스캐닝 할 수 있다.
또한, 제어부(400)는 피가공물(50)이 고정된 스테이지(300)를 이동시킬 수 있다. 본 발명의 실시예에 따르면, 제어부(400)는 스캐너(221)의 구동과 동시에 스테이지(300)를 구동시킬 수 있다. 예를 들어, 제어부(400)는 스캐너(221)의 미러의 각도가 연속적으로 조절되도록 미러를 소정 각도 범위에서 고속으로 회전 시킴과 동시에, 스테이지(300)를 적어도 두 축(x축 및 y축) 방향으로 저속으로 구동시킬 수 있다. 여기서, 스테이지(300)는 (스캐너에 비해) 응답성이 느리고 저속으로 구동되며 넓은 가공 영역을 가질 수 있음에 비해, 스캐너(221)는 (스테이지에 비해) 응답성이 빠르고 고속으로 구동되며 좁은 가공 영역을 가질 수 있다. 따라서, 본 발명의 실시예는 스테이지(300)와 스캐너(221)를 동시에 제어함으로써, 스테이지(300) 만을 이동시켜서 피가공물을 가공하는 종래의 방식에 비해, 보다 정밀한 가공이 가능하며 가공 시간을 절약할 수 있다. 또한, 스테이지(300)와 스캐너(221)를 동기화하여 동시에 제어함으로써, 피가공물의 크기에 구애받지 않고 가공할 수 있다.
이하, 전술한 본 발명의 실시예에 따른 레이저 가공 시스템을 이용하여 피가공물을 가공하는 방법을 설명한다.
도 5는 본 발명의 실시예에 따른 레이저 가공 방법을 통해 피가공물이 가공되는 과정을 도시한 도면이다. 도 5에서는 예시적인 형상을 가공하는 과정을 도시한 것으로, 좌측에서 우측 방향으로 가공 과정이 진행됨을 도시하였다.
도 5를 참조하면, 피가공물(50)에서의 사각형 형태의 최종 가공 경로(PL)를 가공하기 위하여, 스캐너(221)의 구동을 통한 제 1 가공 경로(PL1)와 스테이지(300)의 구동을 통한 제 2 가공 경로(PL2)가 동시에 진행될 수 있다. 즉, 사각형 형태의 최종 가공 경로(PL)을 위하여 스테이지(300) 만을 이동시킬 경우에는, 제어부(400, 도 1 참조)에서 스테이지(300)로 제어 신호를 전달하더라도 응답성과 이동 속도(가속도) 등의 한계로 인하여, 사각형 최종 가공 경로(PL)의 모서리와 같은 영역은 가공 품질이 저하될 수 있다. 그러나, 본 발명의 실시예에 따르면, 제어부(400)에서 넓은 가공 영역을 이동하는 스테이지(300)를 제어함과 동시에 상대적으로 좁은 가공 영역을 이동하면서 응답성과 이동 속도(가속도)가 빠른 스캐너(221)(예를 들어, 회전축을 중심으로 피벗 회전하는 미러)를 제어함으로써, 가공 시간을 줄이면서도 품질이 향상된 최종 가공 경로(PL)를 가공할 수 있다.
예를 들어, x축 및 y축의 2차원의 최종 가공 경로(PL)를 구현하기 위하여, 제어부(400)에서 스테이지(300) 및 스캐너(221)에 전달하는 전기적인 제어 신호를 필터를 통해 고주파 성분과 저주파 성분으로 분리할 수 있다. 여기서, 고주파 성분은 고속 이동 경로인 제 1 가공 경로(PL1)의 신호가 될 수 있으며, 스캐너(221)로 전달될 수 있다. 또한, 저주파 성분은 저속 이동 경로인 제 2 가공 경로(PL2)의 신호가 될 수 있으며, 스테이지(300)로 전달될 수 있다. 이와 같이, 본 발명의 실시예에 따르면, 제어부(400)에서 스캐너(221)와 스테이지(300)를 동시에 제어함으로써, 스캐너(221)를 통한 제 1 가공 경로(PL1)와 스테이지(300)를 통한 제 2 가공 경로(PL2)가 결합되어 최종 가공 경로(PL)를 가공할 수 있다.
한편, 스캐너(221)와 스테이지(300)가 동기화되어 동시에 제어됨으로써, 스캐너(221)의 시야(FOV: Field Of View)에 한정되지 않고 가공할 수 있다. 따라서, 본 발명의 실시예에 따르면, 스테이지(300)와 스캐너(221)를 동기화하여 동시에 제어함으로써, 피가공물의 크기에 구애받지 않고 정밀하게 가공할 수 있다.
이상 설명한 바와 같이, 본 발명의 실시예에 따르면, 레이저 빔(LB)을 베셀 빔(BB)으로 변조함으로써, 유리 기판과 같은 피가공물(50)을 정밀하게 가공할 수 있다. 이 때, 피가공물(50)에 조사되는 베셀 빔(BB)을 스캐닝하여 조사 영역을 확장함으로써, 피가공물(50)을 고속으로 가공할 수 있다. 또한, 베셀 빔(BB)과 피가공물(50)의 이동을 각각 동시에 제어함으로써, 정밀한 형상을 가공할 수 있으며, 가공 시간을 절약할 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
(부호의 설명)
10 레이저 가공 시스템 50 피가공물
100 레이저 유닛 200 광학 유닛
210 제 1 광학 유닛 211 제 1 광학 소자
212 제 2 광학 소자 220 제 2 광학 유닛
221 스캐너 222 포커싱 렌즈
300 스테이지 400 제어부

Claims (19)

  1. 레이저 빔을 방출하는 레이저 유닛;
    상기 레이저 빔의 진행 경로에 배치되어 입사되는 상기 레이저 빔이 베셀 빔으로 출사시키는 광학 유닛;
    상기 광학 유닛에서 출사되는 베셀 빔으로 가공하는 피가공물이 장착되는 스테이지; 및
    상기 레이저 유닛, 상기 광학 유닛, 및 상기 스테이지의 작동을 제어하는 제어부;
    를 포함하며,
    상기 광학 유닛은,
    출사되는 베셀 빔의 초점 라인을 상기 피가공물에 위치시키며, 상기 피가공물에 위치된 초점 라인이 소정 범위 이동되도록 구성되는, 레이저 가공 시스템.
  2. 제 1 항에 있어서,
    상기 광학 유닛은
    상기 출사되는 베셀 빔의 초점 라인이 상기 피가공물의 가공면과 이루는 각도를 80~100도 범위로 유지시키는, 레이저 가공 시스템.
  3. 제 1 항에 있어서,
    상기 광학 유닛은,
    상기 입사되는 레이저 빔을 베셀 빔으로 변조하는 제 1 광학 유닛, 및
    상기 출사되는 베셀 빔의 초점 라인을 상기 피가공물 상에서 상기 초점 라인과 교차하는 방향으로 이동시키는 제 2 광학 유닛을 포함하는, 레이저 가공 시스템.
  4. 제 3 항에 있어서,
    상기 제 1 광학 유닛은,
    상기 입사되는 레이저 빔을 베셀 빔으로 변조하는 제 1 광학 소자, 및
    상기 제 1 광학 소자를 통과한 베셀 빔의 광축을 평행하게 진행시키는 제 2 광학 소자를 포함하는, 레이저 가공 시스템.
  5. 제 3 항에 있어서,
    상기 제 2 광학 유닛은,
    상기 제 1 광학 유닛을 통과한 베셀 빔의 경로를 이동시키는 스캐너, 및
    상기 스캐너에서 출사된 베셀 빔의 초점 라인을 상기 피가공물에 위치시키는 포커싱 렌즈를 포함하는, 레이저 가공 시스템.
  6. 제 5 항에 있어서,
    상기 제어부는,
    상기 출사된 베셀 빔의 초점 라인이 적어도 두 축 방향으로 이동하도록 상기 스캐너를 구동시키며 동시에 상기 스테이지를 상기 적어도 두 축 방향으로 구동시키는, 레이저 가공 시스템.
  7. 제 5 항에 있어서,
    상기 스캐너로 입사하는 베셀 빔의 직경은 3~30mm 인, 레이저 가공 시스템.
  8. 제 5 항에 있어서,
    상기 포커싱 렌즈의 초점 길이는 10~300mm 인, 레이저 가공 시스템.
  9. 제 5 항에 있어서,
    상기 스캐너에서 출사된 베셀 빔의 초점 라인이 상기 피가공물 상에서 이동되는 거리는 1μm~30mm 인, 레이저 가공 시스템.
  10. 제 5 항에 있어서,
    상기 스캐너는
    상기 제어부에 의해 각도가 조절되는 복수의 미러를 포함하는, 레이저 가공 시스템.
  11. 제 1 항에 있어서,
    상기 피가공물은 평판 형태인, 레이저 가공 시스템.
  12. 레이저 빔을 조사하여 피가공물을 가공하는 방법으로서,
    레이저 빔의 진행 방향에 수직한 단면이 원형인 레이저 빔을 환형의 베셀 빔으로 변조하는 변조 단계; 및
    상기 베셀 빔의 초점 라인이 피가공물에 위치되도록 상기 베셀 빔을 상기 피가공물에 조사하는 가공 단계;
    를 포함하며,
    상기 가공 단계에서, 상기 피가공물에 위치된 상기 베셀 빔의 초점 라인을 이동시키는, 레이저 가공 방법.
  13. 제 12 항에 있어서,
    상기 가공 단계에서,
    상기 피가공물을 이동시키는 동시에 상기 베셀 빔의 초점 라인을 이동시키는, 레이저 가공 방법.
  14. 제 12 항에 있어서,
    상기 가공 단계는,
    상기 피가공물을 가공할 형상에 대응되는 가공 경로를 설정하는 단계,
    상기 설정된 가공 경로를 상기 베셀 빔의 초점 라인이 이동하는 제 1 경로와 상기 피가공물이 이동하는 제 2 경로로 분리하는 단계, 및
    상기 베셀 빔의 초점 라인을 상기 제 1 경로로 이동시키고 동시에 상기 피가공물을 상기 제 2 경로로 이동시켜서, 상기 피가공물을 가공 경로를 따라 가공하는 단계를 포함하는, 레이저 가공 방법.
  15. 제 12 항에 있어서,
    상기 가공 단계에서,
    상기 베셀 빔의 초점 라인이 상기 피가공물의 가공면과 이루는 각도를 80~100도 범위로 유지하는, 레이저 가공 방법.
  16. 제 12 항에 있어서,
    상기 가공 단계에서,
    상기 피가공물에 위치된 상기 베셀 빔의 초점 라인이 상기 피가공물 상에서 이동되는 거리는 1μm~30mm 인, 레이저 가공 시스템.
  17. 제 12 항에 있어서,
    상기 가공 단계는,
    상기 베셀 빔의 진행 경로에 위치된 미러의 각도를 조절하여 반사되는 베셀 빔의 경로를 이동시키는 스캐닝 단계, 및
    상기 반사된 베셀 빔을 상기 피가공물에 집속시키는 포커싱 단계를 포함하는, 레이저 가공 방법.
  18. 제 17 항에 있어서,
    상기 스캐닝 단계에서, 상기 미러에 입사하는 베셀 빔의 직경은 3~30mm 인, 레이저 가공 방법.
  19. 제 17 항에 있어서,
    상기 포커싱 단계에서, 초점 길이는 10~300mm 인, 레이저 가공 방법.
PCT/KR2021/004300 2020-09-08 2021-04-06 레이저 가공 시스템 및 방법 WO2022055062A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21783385.4A EP3991905A4 (en) 2020-09-08 2021-04-06 LASER TREATMENT SYSTEM AND METHOD
US17/595,764 US20220314364A1 (en) 2020-09-08 2021-04-06 Laser processing system and method thereof
CN202180003139.XA CN114667196A (zh) 2020-09-08 2021-04-06 激光加工系统及其方法
JP2023515646A JP2023552942A (ja) 2020-09-08 2021-04-06 レーザ加工システムおよび方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0114708 2020-09-08
KR1020200114708A KR102375235B1 (ko) 2020-09-08 2020-09-08 레이저 가공 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2022055062A1 true WO2022055062A1 (ko) 2022-03-17

Family

ID=80631871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004300 WO2022055062A1 (ko) 2020-09-08 2021-04-06 레이저 가공 시스템 및 방법

Country Status (7)

Country Link
US (1) US20220314364A1 (ko)
EP (1) EP3991905A4 (ko)
JP (1) JP2023552942A (ko)
KR (1) KR102375235B1 (ko)
CN (1) CN114667196A (ko)
TW (1) TWI803934B (ko)
WO (1) WO2022055062A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023219213A1 (ko) * 2022-05-10 2023-11-16 주식회사 필옵틱스 적외선 레이저를 이용한 고속 정밀 관통홀 형성 방법
CN115463905B (zh) * 2022-10-25 2023-11-24 武汉锐科光纤激光技术股份有限公司 一种激光清洗控制系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075996A (ja) * 2008-03-24 2010-04-08 Marubun Corp ビーム加工装置、ビーム加工方法およびビーム加工基板
KR20150118312A (ko) * 2014-04-14 2015-10-22 주식회사 레이저앱스 레이저 절단 및 가공장치와 그 방법
KR20170086594A (ko) * 2014-11-19 2017-07-26 트룸프 레이저-운트 시스템테크닉 게엠베하 빔 정형을 위한 광학 시스템
KR20180065058A (ko) * 2016-12-06 2018-06-18 삼성디스플레이 주식회사 레이저 가공 장치
US10707130B2 (en) * 2018-03-05 2020-07-07 The Chinese University Of Hong Kong Systems and methods for dicing samples using a bessel beam matrix

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0627643B1 (en) * 1993-06-03 1999-05-06 Hamamatsu Photonics K.K. Laser scanning optical system using axicon
CN105081586B (zh) * 2015-09-14 2017-11-21 郑州轻工业学院 一种激光加工方法和装置
LT6428B (lt) * 2015-10-02 2017-07-25 Uab "Altechna R&D" Skaidrių medžiagų lazerinis apdirbimo būdas ir įrenginys
WO2018042414A1 (en) * 2016-08-28 2018-03-08 ACS Motion Control Ltd. Method and system for laser machining of relatively large workpieces
CN106994564B (zh) * 2017-04-27 2019-11-26 东莞市盛雄激光先进装备股份有限公司 一种激光切割装置及其切割方法
JP2022503883A (ja) * 2018-09-28 2022-01-12 コーニング インコーポレイテッド 基板の修正に利用される回転式光源
CN111151873A (zh) * 2018-11-06 2020-05-15 大族激光科技产业集团股份有限公司 一种脆性材料激光切割装置及方法
CN111505831B (zh) * 2020-04-01 2021-06-22 中国科学院西安光学精密机械研究所 一种焦斑焦深可变贝塞尔光束激光加工系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075996A (ja) * 2008-03-24 2010-04-08 Marubun Corp ビーム加工装置、ビーム加工方法およびビーム加工基板
KR20150118312A (ko) * 2014-04-14 2015-10-22 주식회사 레이저앱스 레이저 절단 및 가공장치와 그 방법
KR20170086594A (ko) * 2014-11-19 2017-07-26 트룸프 레이저-운트 시스템테크닉 게엠베하 빔 정형을 위한 광학 시스템
KR20180065058A (ko) * 2016-12-06 2018-06-18 삼성디스플레이 주식회사 레이저 가공 장치
US10707130B2 (en) * 2018-03-05 2020-07-07 The Chinese University Of Hong Kong Systems and methods for dicing samples using a bessel beam matrix

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3991905A4 *

Also Published As

Publication number Publication date
TWI803934B (zh) 2023-06-01
US20220314364A1 (en) 2022-10-06
JP2023552942A (ja) 2023-12-20
EP3991905A4 (en) 2023-01-04
KR102375235B9 (ko) 2022-09-06
EP3991905A1 (en) 2022-05-04
TW202212036A (zh) 2022-04-01
KR102375235B1 (ko) 2022-03-16
KR20220032862A (ko) 2022-03-15
CN114667196A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2022055062A1 (ko) 레이저 가공 시스템 및 방법
US20100252543A1 (en) Laser-scribing tool architecture
WO2012091316A2 (ko) 레이저 가공 장치
JPS6090321A (ja) 装置部品の標示記入方法と装置
JP2008119718A (ja) レーザ加工装置
JP6680773B2 (ja) 平行オフセット部を備えたレーザ加工装置
WO2017039169A1 (ko) 레이저 가공장치 및 이를 이용한 레이저 가공방법
KR20060105577A (ko) 레이저가공기
JP2010212478A (ja) レーザ加工方法およびレーザ加工装置
JP3257157B2 (ja) Co2レーザ穴加工装置及び方法
KR20050111790A (ko) 위치지정 방법, 장치 및 제품
WO2018004123A1 (ko) 레이저 3차원 가공 시스템
WO2013058471A1 (en) Apparatus and method for manufacturing fine pattern using interferogram of optical axis direction
WO2013065947A1 (ko) 2빔 가공이 가능한 레이저 가공 장치 및 방법
JP3114533B2 (ja) レーザ穴あけ加工装置及びレーザ穴あけ加工方法
CN105458517A (zh) 晶圆激光划片与裂片方法及系统
WO2017135543A1 (ko) 레이저 빔의 경사각을 이용한 레이저 가공방법
WO2016002980A1 (ko) 고속 레이저 가공 광학계 시스템 및 이를 이용한 고속 레이저 가공 방법
WO2021137488A1 (ko) 레이저 가공 시스템 및 레이저 가공 방법
WO2017204386A1 (ko) 레이저의 틸팅 조사를 이용한 기판 절단 방법 및 장치
WO2021118327A2 (ko) 이종파장의 레이저 빔을 이용한 레이저 가공 장치 및 그 방법
WO2009145542A2 (ko) 빔단면 변형과 폴리곤미러를 이용한 레이저 표면처리장치 및 그 표면처리방법
WO2023171837A1 (ko) 레이저 빔의 균질도가 향상된 레이저 가공 시스템
WO2021010667A1 (ko) 레이저 드릴링 장치
CN115255689B (zh) 一种用于激光雕刻机的激光器作业的控制方法及装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021783385

Country of ref document: EP

Effective date: 20211015

ENP Entry into the national phase

Ref document number: 2023515646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE