WO2016002980A1 - 고속 레이저 가공 광학계 시스템 및 이를 이용한 고속 레이저 가공 방법 - Google Patents

고속 레이저 가공 광학계 시스템 및 이를 이용한 고속 레이저 가공 방법 Download PDF

Info

Publication number
WO2016002980A1
WO2016002980A1 PCT/KR2014/005798 KR2014005798W WO2016002980A1 WO 2016002980 A1 WO2016002980 A1 WO 2016002980A1 KR 2014005798 W KR2014005798 W KR 2014005798W WO 2016002980 A1 WO2016002980 A1 WO 2016002980A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
high speed
laser
processing
optical element
Prior art date
Application number
PCT/KR2014/005798
Other languages
English (en)
French (fr)
Inventor
이천재
임하나
박훈
Original Assignee
주식회사 코윈디에스티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코윈디에스티 filed Critical 주식회사 코윈디에스티
Publication of WO2016002980A1 publication Critical patent/WO2016002980A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms

Definitions

  • Embodiments of the present invention relate to a high speed laser processing optical system and a high speed laser processing method using the same.
  • FIG. 1 is a view for explaining a laser processing method using a scanner according to the prior art.
  • a conventional laser processing optical system includes a beam expander 120, an x-axis driving motor 130, an x-axis mirror 135, a y-axis driving motor 145, and a y-axis mirror ( 140, and a lens 150.
  • the laser beam 110 is introduced through a beam expander 120, and the x-axis is driven by the x-axis driving motor 130. It is transmitted to the machining member 160 by the y-axis mirror 140 driven by the mirror 135 and the y-axis drive motor 145.
  • the machining position on the machining member 160 is determined by controlling the x-axis mirror 135 and the y-axis mirror 140 using the x-axis driving motor 130 and the y-axis driving motor 145.
  • the driving delay occurs due to the On / Off control of the laser and the movement of the position while the motor is moved to the machining position during the control and driving of the x-axis driving motor 130 and the y-axis driving motor 145.
  • the processing speed was low, and it was difficult to secure a processing speed that could be applied to mass production.
  • the present invention has been made to solve the above-described problems, and the present invention intends to implement high-speed machining by interlocking a high-speed scanner and a stage by dividing a plurality of beams according to a processing speed magnification using a diffractive optical element and controlling beam profiles and intensities. .
  • the present invention is to enable a plurality of laser beams branched from the diffractive optical element can be continuously processed in accordance with the driving of the stage in conjunction with the high-speed scanner.
  • the present invention enables a variety of processing with a single processing optical system for a variety of processing members such as solar cell wafers, Roy glass, semiconductors and display substrates, so that a large number of split beams at the time of processing a solar cell wafer It can be used for texturing without the use of hydrofluoric acid on the surface, and by realizing the line beam with diffractive optical elements and processing the glass surface at high speed through high-speed scanning elements, high-speed annealing effects can be achieved. It is possible to increase the energy efficiency by enabling the optical system for the line beam, and to improve the productivity through high-speed processing during patterning and marking of the semiconductor and display substrate.
  • the high speed laser processing optical system for solving the above problems includes a laser light source for irradiating a laser beam; A diffractive optical element for controlling at least one of the processing size, shape, and distribution of the laser beam; A high speed scanner moving in a first direction and processing a laser beam by controlling the laser beam controlled by the diffractive optical element; And a stage on which the processing member is mounted to move in a second direction different from the first direction.
  • the diffractive optical element is a liquid crystal on silicon (LCoS), deformable mirror (DM), digital mirror divice (DMD), diffractive optical elements (DOE) and acoustic optic difflactor (AOD) It can be configured as either.
  • LCD liquid crystal on silicon
  • DM deformable mirror
  • DMD digital mirror divice
  • DOE diffractive optical elements
  • AOD acoustic optic difflactor
  • the diffractive optical element may control the laser beam to form a line laser beam in which the laser beam is divided into a plurality and arranged.
  • the diffractive optical element may arrange the plurality of laser beams at a predetermined interval or a predetermined interval of a user.
  • the diffractive optical element varies the phase and the amplification value of the laser beam, the number, shape, number of focal length and focal length of the laser beam, At least one of the shape and the position may be controlled.
  • the high speed scanner may include a high speed driving unit for rotating the mirror at high speed, and may process the laser beam reflected from the mirror by irradiating the processing member.
  • the first direction and the second direction may be perpendicular to each other.
  • a computer terminal for controlling the laser light source, the diffractive optical element, the stage and the high-speed scanner may further include.
  • a shock mitigation device for mitigating heat and physical shock generated when a laser beam is applied to the diffractive optical element may further include.
  • a high speed laser processing method using a high speed laser processing optical system includes a first step of irradiating a laser beam with a laser light source; A second step of diffractive optical elements controlling at least one of the processing size, shape and distribution of the laser beam; A third step of moving a high speed scanner in a first direction and irradiating the laser beam controlled by the diffractive optical element to process a machining member; And a fourth step in which the stage is mounted with the processing member and moved in a second direction different from the first direction.
  • the diffractive optical element may control the laser beam to form a line laser beam in which the laser beam is divided into a plurality of arrays.
  • the diffractive optical element may arrange the plurality of laser beams at regular intervals.
  • the diffractive optical element may control at least one of the number, shape, shape, and position of the laser beam by varying a phase and an amplification value of the laser beam. Can be.
  • the second step may further include the step of mitigating the heat and physical shock generated when the laser beam is applied to the diffractive optical element by the impact mitigating device.
  • a plurality of beams may be divided according to a processing speed magnification by using a diffractive optical element, and the beam profile and intensity may be controlled to implement high speed processing by interlocking a high speed scanner and a stage.
  • the moving speed of the high speed scanner and the number of branches of the laser beam can be improved. Multiplying speed can be improved.
  • various processing members such as solar cell wafers, Roy glass, semiconductors and display substrates can be variously processed by one processing optical system, so that a plurality of divisions can be performed during processing of the solar cell wafers.
  • driving the beam at high speed to enable texturing without the use of hydrofluoric acid on the surface and by implementing a line beam with diffractive optical elements and processing the glass surface at high speed through a high speed scanning device, high speed annealing
  • high speed annealing By enabling the effect without expensive optical system for line beam, it is possible to improve energy efficiency and improve productivity through high-speed processing during patterning and marking processing of semiconductor and display substrate.
  • FIG. 1 is a view for explaining a laser processing method using a scanner according to the prior art.
  • FIG. 2 is a block diagram of a high speed laser processing optical system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a laser processing method using a diffraction optical system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a high speed laser processing optical system according to an embodiment of the present invention.
  • a high speed laser processing optical system includes a laser light source 210, a diffractive optical element 220, a high speed scanner 230, a stage 240 and a computer. It is configured to include a terminal 250.
  • the computer terminal 250 may control the laser light source 210, the diffractive optical element 220, the high speed scanner 230, and the stage 240.
  • the laser light source 210 irradiates a laser beam, and under the control of the computer terminal 250, the diffractive optical element 220 is at least one of the processing size, shape, and distribution of the laser beam emitted from the laser light source 210. To control.
  • the diffractive optical element 220 may be configured of any one of a liquid crystal on silicon (LCoS), a deformable mirror (DM), a digital mirror divice (DMD), a diffractive optical element (DOE), and an acoustic optic difflactor (AOD).
  • LCD liquid crystal on silicon
  • DM deformable mirror
  • DMD digital mirror divice
  • DOE diffractive optical element
  • AOD acoustic optic difflactor
  • the intensity of output light can be controlled by modulating the phase of incident light
  • the DM Deformable mirror
  • a piezo motor capable of controlling the phase and amplitude of the laser beam a material capable of changing the phase and amplitude according to a voltage or a control factor may be included in the lower portion of the reflective material to change the shape of incident light.
  • the diffractive optical element may transmit the incident laser to the next optical element in the form of reflection or transmission of phase and amplitude.
  • the diffractive optical element 220 varies the phase and amplification values of the laser beam, so that at least one of the number, shape, shape, and position of the laser beam, the focal length, and the focal point is at least. Either one can be controlled.
  • the diffractive optical element 220 may control the laser beam to divide the laser beam into a plurality of pieces, and arrange the divided laser beams in a line, wherein the plurality of laser beams are designated by a user. Can be arranged at intervals or at regular intervals.
  • the diffractive optical element may generate a diffraction of the laser beam at a predetermined angle to divide the beam into a plurality of pieces, and control the phase and amplitude to uniformly control the intensity of each divided beam.
  • the diffractive optical element may control the phase to make a plurality of focal values of the beam.
  • the shape and shape of the laser beam can be determined according to the machining process (Spot, Line, Scribing, Cutting).
  • a shock absorbing device 225 may further include a shock absorbing device 225.
  • the impact mitigation device 225 may mitigate heat and physical shock generated when a laser beam is applied to the diffractive optical element 220.
  • the high speed scanner 230 irradiates the laser beam controlled by the diffractive optical element 220.
  • the high-speed scanner 230 moves in the first direction A and may process the processing member 241 by irradiating the laser beam controlled by the diffractive optical element 220, and processing the processing member 241 may include a solar cell wafer, Roy glass, a semiconductor and a display substrate.
  • the high speed scanner 230 may include a high speed driver that rotates the mirror at high speed, and may be configured to irradiate and process the laser beam reflected from the mirror to the processing member 241.
  • the laser beam 215 is divided into a plurality of diffractive optical elements 220 and arranged in a row at regular intervals, and the high speed scanner 230 irradiates the arranged laser beam 215 through the lens 235.
  • the processing member 241 may be processed, wherein the lens 235 may be composed of an optical element for focusing a laser beam on the processing member from a telecentric, f-theta lens or other scanner.
  • the stage 240 mounts the processing member 241 and may move in the second direction B.
  • the second direction B is a direction different from the first direction A, which is a moving direction of the high speed scanner 230, and more specifically, the second direction B is in the first direction A.
  • FIG. It may correspond to a vertical direction with respect to.
  • the diffractive optical element 220 by using the diffractive optical element 220, a plurality of beams are divided according to the processing speed magnification, and the beam profile and the intensity are controlled to implement the high speed machining by interlocking the high speed scanner 230 and the stage 240. have.
  • the high speed scanner 230 since a plurality of laser beams branched from the diffractive optical element 220 may be continuously processed in accordance with the driving of the stage 240 interlocked with the high speed scanner 230, the high speed scanner 230 may be used.
  • the processing speed can be improved by multiplying the moving speed by and the number of branches of the laser beam, and the size restriction of the processing member can be eliminated by providing a plurality of diffractive optical elements and a high speed scanner as necessary.
  • the present invention it is possible to process a variety of processing members such as solar cell wafers, Roy glass, semiconductors and display substrates, the surface processing at a high speed during the processing of the solar cell wafer texturing without the use of hydrofluoric acid (texturing) It is possible to improve the energy efficiency by implementing the line beam without implementing the expensive line beam optical system at the time of annealing during the processing of the roy glass, and high-speed processing during the patterning and marking of the processing of semiconductor and display substrate It is possible to improve productivity through.
  • processing members such as solar cell wafers, Roy glass, semiconductors and display substrates
  • FIG. 3 is a flowchart illustrating a laser processing method using a diffraction optical system according to an embodiment of the present invention.
  • the laser light source irradiates a laser beam (S410).
  • the user may control the laser light source through a computer terminal to irradiate a laser beam.
  • the diffractive optical element controls at least one of the processing size, shape, and distribution of the laser beam (S420).
  • the diffractive optical element may control at least one of the number, shape, shape, and position of the laser beam by varying the phase and amplification value of the laser beam under the control of the computer terminal.
  • the diffractive optical element may control the laser beam to divide the laser beam into a plurality, and arrange the divided laser beams in a row, wherein the plurality of laser beams may be arranged at regular intervals. have.
  • the shape and shape of the laser beam can be determined according to the machining process (Spot, Line, Scribing, Cutting).
  • a shock absorbing device is generated when the laser beam is applied to the diffractive optical element. Heat and physical shock can be alleviated.
  • the high speed scanner moves in the first direction, and the processing member is processed by irradiating the laser beam controlled by the diffractive optical element (S430).
  • the high speed scanner may process the processing member by irradiating the laser beam controlled by the diffractive optical element while moving in the first direction.
  • the laser beam is divided into a plurality and arranged in a row at regular intervals, and the high speed scanner can process the processed member by irradiating the arranged laser beam through a lens.
  • the stage on which the processing member is mounted can move in the second direction.
  • the second direction may be different from the first direction in which the high-speed scanner moves, and more specifically, the second direction may correspond to a direction perpendicular to the first direction.
  • a plurality of beams may be divided according to a processing speed magnification using a diffractive optical element, and a beam profile and an intensity may be controlled to implement a high speed machining by interlocking a high speed scanner and a stage.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

본 발명은 고속 레이저 가공 광학계 시스템 및 이를 이용한 고속 레이저 가공 방법에 관한 것으로, 본 발명의 일실시예에 따른 고속 레이저 가공 광학계 시스템은 레이저 빔을 조사하는 레이저 광원; 상기 레이저 빔의 가공 크기, 형상 및 분포 중에서 적어도 어느 하나를 제어하는 회절 광학 소자; 제1 방향으로 이동하며, 상기 회절 광학 소자에서 제어된 상기 레이저 빔을 조사하여 가공 부재를 가공하는 고속 스캐너; 및 상기 가공 부재가 탑재되어, 상기 제1 방향과 상이한 제2 방향으로 이동하는 스테이지;를 포함한다.

Description

고속 레이저 가공 광학계 시스템 및 이를 이용한 고속 레이저 가공 방법
본 발명의 실시예는 고속 레이저 가공 광학계 시스템 및 이를 이용한 고속 레이저 가공 방법에 관한 것이다.
최근에는 레이저 광학계를 이용하여 가공물을 가공하는 기술이 널리 사용되고 있다.
도 1은 종래 기술에 따른 스캐너를 이용한 레이저 가공 방법을 설명하기 위한 도면이다.
도 1에 도시된 바와 같이 종래의 레이저 가공 광학계는 광 확장부(Beam expander: 120), x축 구동 모터(130), x축 미러(135), y축 구동 모터(145), y축 미러(140), 렌즈(150)를 포함하여 구성된다.
종래 기술에 따른 레이저 가공 광학계는 레이저 빔(110)이 광 확장부(Beam expander: 120)를 통해 유입되고, 상기 유입된 레이저 빔(110)이 x축 구동 모터(130)에 의해 구동되는 x축 미러(135)와 y축 구동 모터(145)에 의해 구동되는 y축 미러(140)에 의해 가공 부재(160)로 전달된다.
즉, x축 구동 모터(130)와 y축 구동 모터(145)를 이용해 x축 미러(135)와 y축 미러(140)를 제어하여 가공 부재(160) 상의 가공 위치를 결정한다.
그러나, 종래 기술에 따르면 x축 구동 모터(130)와 y축 구동 모터(145)의 제어와 구동 시에 가공 위치로 모터를 이동하는 동안 Laser의 On/Off 제어와 위치 이동에 따른 구동 딜레이가 발생하여 가공 속도가 느려 양산에 적용이 가능한 수준의 가공 속도의 확보가 어려운 문제점이 있었다.
본 발명은 전술한 문제를 해결하기 위해 안출된 것으로서, 회절 광학 소자를 이용해 다수의 빔을 가공 속도 배율에 맞게 분할하고 빔 프로파일 및 세기를 제어하여 고속 스캐너와 스테이지를 연동하여 고속 가공을 구현하고자 한다.
또한, 본 발명은 회절 광학 소자에서 분기된 다수의 레이저 빔이 고속 스캐너와 연동되는 스테이지의 구동에 맞춰 연속적으로 가공이 가능하도록 하고자 한다.
또한, 본 발명은 태양전지 웨이퍼, 로이 유리, 반도체 및 디스플레이 기판 등의 다양한 가공 부재에 대하여 하나의 가공 광학계로 다양한 가공이 가능하도록 하여, 태양전지 웨이퍼의 가공 시에 다수의 분할된 빔을 고속으로 구동하여 표면에 불산을 사용하지 않고도 텍스쳐링(texturing)이 가능하도록 할 수 있고, 회절 광학소자로 라인빔을 구현하여 고속 스캐닝 소자를 통해 고속으로 유리 표면 가공함으로서, 고속 어닐링(annealing)효과를 고가의 라인빔용 광학계를 구현하지 않고도 가능하게 하여 에너지 효율을 높이고, 반도체 및 디스플레이 기판의 가공의 패터닝 및 마킹 시에 고속 가공을 통해 생산성을 향상시키고자 한다.
전술한 문제를 해결하기 위한 본 실시예에 따른 고속 레이저 가공 광학계 시스템은 레이저 빔을 조사하는 레이저 광원; 상기 레이저 빔의 가공 크기, 형상 및 분포 중에서 적어도 어느 하나를 제어하는 회절 광학 소자; 제1 방향으로 이동하며, 상기 회절 광학 소자에서 제어된 상기 레이저 빔을 조사하여 가공 부재를 가공하는 고속 스캐너; 및 상기 가공 부재가 탑재되어, 상기 제1 방향과 상이한 제2 방향으로 이동하는 스테이지;를 포함한다.
본 발명의 다른 일실시예에 따르면, 상기 회절 광학 소자는 LCoS(Liquid Crystal on Silicon), DM(Deformable mirror), DMD(Digital mirror divice), DOE(diffractive optical elements) 및 AOD(acousto optic difflactor) 중에서 어느 하나로 구성될 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 회절 광학 소자는 상기 레이저 빔을 제어하여 상기 레이저 빔을 다수 개로 분할하여 배열한 라인 레이저 빔을 형성할 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 회절 광학 소자는 상기 다수 개의 레이저 빔을 사용자의 지정 간격 또는 일정한 간격으로 배열할 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 회절 광학 소자는 상기 레이저 빔의 위상 및 증폭 값을 가변하여, 상기 레이저 빔의 개수, 초점 거리(focal length) 및 초점(focal point)의 수, 형태, 형상 및 위치 중에서 적어도 어느 하나를 제어할 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 고속 스캐너는 미러를 고속 회전시키는 고속 구동부를 포함하여, 상기 미러에서 반사되는 상기 레이저 빔을 상기 가공 부재로 조사하여 가공할 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 제1 방향과 상기 제2 방향은 상호 수직일 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 레이저 광원, 상기 회절 광학 소자, 상기 스테이지 및 상기 고속 스캐너를 제어하는 컴퓨터 단말;을 더 포함할 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 회절 광학 소자에 레이저 빔이 인가될 때 발생하는 열과 물리적 충격을 완화해주는 충격 완화 장치;를 더 포함할 수 있다.
본 발명의 일실시예에 따른 고속 레이저 가공 광학계 시스템을 이용한 고속 레이저 가공 방법은, 레이저 광원이 레이저 빔을 조사하는 제1 단계; 회절 광학 소자가 상기 레이저 빔의 가공 크기, 형상 및 분포 중에서 적어도 어느 하나를 제어하는 제2 단계; 고속 스캐너가 제1 방향으로 이동하며, 상기 회절 광학 소자에서 제어된 상기 레이저 빔을 조사하여 가공 부재를 가공하는 제3 단계; 및 스테이지가 상기 가공 부재가 탑재되어, 상기 제1 방향과 상이한 제2 방향으로 이동하는 제4 단계;를 포함한다.
본 발명의 다른 일실시예에 따르면, 상기 제2 단계는 상기 회절 광학 소자가 상기 레이저 빔을 제어하여 상기 레이저 빔을 다수 개로 분할하여 배열한 라인 레이저 빔을 형성할 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 제2 단계는 상기 회절 광학 소자가 상기 다수 개의 레이저 빔을 일정한 간격으로 배열할 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 제2 단계는 상기 회절 광학 소자가 상기 레이저 빔의 위상 및 증폭 값을 가변하여, 상기 레이저 빔의 개수, 형태, 형상 및 위치 중에서 적어도 어느 하나를 제어할 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 제2 단계는 충격 완화 장치가 상기 회절 광학 소자에 레이저 빔이 인가될 때 발생하는 열과 물리적 충격을 완화하는 단계;를 더 포함할 수 있다.
본 발명의 실시예에 따르면 회절 광학 소자를 이용해 다수의 빔을 가공 속도 배율에 맞게 분할하고 빔 프로파일 및 세기를 제어하여 고속 스캐너와 스테이지를 연동하여 고속 가공을 구현할 수 있다.
또한, 본 발명의 실시예에 따르면, 회절 광학 소자에서 분기된 다수의 레이저 빔이 고속 스캐너와 연동되는 스테이지의 구동에 맞춰 연속적으로 가공이 가능하므로, 고속 스캐너의 이동 속도와 레이저 빔의 분기 수를 곱한 만큼 가공 속도를 향상시킬 수 있다.
또한, 본 발명의 실시예에 따르면, 태양전지 웨이퍼, 로이 유리, 반도체 및 디스플레이 기판 등의 다양한 가공 부재에 대하여 하나의 가공 광학계로 다양한 가공이 가능하도록 하여, 태양전지 웨이퍼의 가공 시에 다수의 분할된 빔을 고속으로 구동하여 표면에 불산을 사용하지 않고도 텍스쳐링(texturing)이 가능하도록 할 수 있고, 회절 광학소자로 라인빔을 구현하여 고속 스캐닝 소자를 통해 고속으로 유리 표면 가공함으로서, 고속 어닐링(annealing)효과를 고가의 라인빔용 광학계를 구현하지 않고도 가능하게 하여 에너지 효율을 높이고, 반도체 및 디스플레이 기판의 가공의 패터닝 및 마킹 시에 고속 가공을 통해 생산성을 향상시킬 수 있다.
도 1은 종래 기술에 따른 스캐너를 이용한 레이저 가공 방법을 설명하기 위한 도면이다.
도 2는 본 발명의 일실시예에 따른 고속 레이저 가공 광학계 시스템의 구성도이다.
도 3은 본 발명의 일실시예에 따른 회절 광학계 시스템을 이용한 레이저 가공 방법을 설명하기 위한 흐름도이다.
이하에서는 첨부한 도면을 참조하여 바람직한 본 발명의 일실시예에 대해서 상세히 설명한다. 다만, 실시형태를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 상세한 설명은 생략한다. 또한, 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다.
도 2는 본 발명의 일실시예에 따른 고속 레이저 가공 광학계 시스템의 구성도이다.
도 2를 참조하여 본 발명의 일실시예에 따른 고속 레이저 가공 광학계 시스템의 구성을 설명하기로 한다.
도 2에 도시된 바와 같이, 본 발명의 본 발명의 일실시예에 따른 고속 레이저 가공 광학계 시스템은 레이저 광원(210), 회절 광학 소자(220), 고속 스캐너(230), 스테이지(240) 및 컴퓨터 단말(250)을 포함하여 구성된다.
컴퓨터 단말(250)은 레이저 광원(210), 회절 광학 소자(220), 고속 스캐너(230) 및 스테이지(240)를 제어할 수 있다.
레이저 광원(210)은 레이저 빔을 조사하고, 컴퓨터 단말(250)의 제어에 의해 회절 광학 소자(220)는 상기 레이저 광원(210)으로부터 출사되는 레이저 빔의 가공 크기, 형상 및 분포 중에서 적어도 어느 하나를 제어한다.
이때, 상기 회절 광학 소자(220)는 LCoS(Liquid Crystal on Silicon), DM(Deformable mirror), DMD(Digital mirror divice), DOE(diffractive optical elements) 및 AOD(acousto optic difflactor) 중에서 어느 하나로 구성될 수 있다.
예를 들어, 상기 회절 광학 소자(220)로 LCoS(Liquid Crystal on Silicon)를 사용하면 입사광의 위상을 변조하여 출력광의 강도를 제어할 수 있으며, 상기 회절 광학 소자(220)로 DM(Deformable mirror)을 사용하는 경우에는 반사 소재의 하부에 레이저 빔의 위상과 진폭을 제어할 수 있는 피에조 모터, 전압 또는 제어 인자에 따라 위상과 진폭을 가변시킬 수 있는 물질이 포함되어 입사광의 형태를 변경할 수 있다.
또한, 회절 광학 소자는 입사되는 레이저를 위상과 진폭을 반사 또는 투과 형태로 다음 광학 소자에 전달할 수 있다.
따라서, 상기 회절 광학 소자(220)는 상기 레이저 빔의 위상 및 증폭 값을 가변하여, 상기 레이저 빔의 개수, 초점 거리(focal length) 및 초점(focal point)의 수, 형태, 형상 및 위치 중에서 적어도 어느 하나를 제어할 수 있다.
보다 구체적으로, 상기 회절 광학 소자(220)는 상기 레이저 빔을 제어하여, 레이저 빔을 다수 개로 분할하고, 상기 분할된 레이저 빔을 일렬로 배열할 수 있으며, 이때 상기 다수 개의 레이저 빔을 사용자의 지정 간격 또는 일정한 간격으로 배열할 수 있다.
또한, 이때 회절 광학 소자는 레이저 빔을 일정 각도로 회절을 발생시켜 빔을 다수 개로 분할하며 위상과 진폭을 제어하여 각 분할된 빔의 세기를 균일하게 제어할 수 있다.
한편, 회절 광학 소자는 위상을 제어하여 빔의 초점 값을 다수 개로 만들 수 도 있다.
한편, 상기 레이저 빔의 형상과 형태는 가공 공정(Spot, Line, Scribing, Cutting)에 따라 결정될 수 있다.
또한, 본 발명의 일실시예에 따르면 충격 완화 장치(225)를 더 포함할 수 있다.
충격 완화 장치(225)는 상기 회절 광학 소자(220)에 레이저 빔이 인가될 때 발생하는 열과 물리적 충격을 완화할 수 있다.
고속 스캐너(230)는 상기 회절 광학 소자(220)에서 제어된 상기 레이저 빔을 조사한다.
이때, 고속 스캐너(230)는 제1 방향(A)으로 이동하며, 상기 회절 광학 소자(220)에서 제어된 상기 레이저 빔을 조사하여 가공 부재(241)를 가공할 수 있으며, 상기 가공되는 가공 부재(241)로는 태양전지 웨이퍼, 로이 유리, 반도체 및 디스플레이 기판 등이 있을 수 있다.
또한, 고속 스캐너(230)는 미러를 고속 회전시키는 고속 구동부를 포함하여, 상기 미러에서 반사되는 상기 레이저 빔을 상기 가공 부재(241)로 조사하여 가공하도록 구성될 수 있다.
따라서, 회절 광학 소자(220)에서 레이저 빔(215)이 다수 개로 분할되어 일정한 간격으로 일렬로 배열되고, 고속 스캐너(230)는 렌즈(235)를 통해 상기 배열된 레이저 빔(215)을 조사하여 가공 부재(241)를 가공할 수 있으며, 이때 상기 렌즈(235)는 텔레센트릭, f-theta(세타) 렌즈 또는 기타 스캐너로부터 가공 부재에 레이저 빔을 집속시키는 광학소자로 구성될 수 있다.
스테이지(240)는 상기 가공 부재(241)를 탑재하며, 제2 방향(B)으로 이동할 수 있다. 이때, 상기 제2 방향(B)은 상기 고속 스캐너(230)의 이동 방향인 제1 방향(A)과 상이한 방향으로서, 보다 구체적으로 상기 제2 방향(B)은 상기 제1 방향(A)에 대하여 수직 방향에 해당할 수 있다.
따라서, 본 발명에 따르면 회절 광학 소자(220)를 이용해 다수의 빔을 가공 속도 배율에 맞게 분할하고 빔 프로파일 및 세기를 제어하여 고속 스캐너(230)와 스테이지(240)를 연동하여 고속 가공을 구현할 수 있다.
보다 구체적으로, 본 발명에 따르면 회절 광학 소자(220)에서 분기된 다수의 레이저 빔이 고속 스캐너(230)와 연동되는 스테이지(240)의 구동에 맞춰 연속적으로 가공이 가능하므로, 고속 스캐너(230)의 이동 속도와 레이저 빔의 분기 수를 곱한 만큼 가공 속도를 향상시킬 수 있고 필요에 따라 다수개의 회절 광학 소자와 고속 스캐너를 구비하여 가공 부재의 크기 제약을 없앨 수 있다.
또한, 본 발명에 따르면 태양전지 웨이퍼, 로이 유리, 반도체 및 디스플레이 기판 등의 다양한 가공 부재에 대하여 가공이 가능하여, 태양전지 웨이퍼의 가공 시에 고속으로 표면을 가공하여 불산을 사용하지 않고도 텍스쳐링(texturing)이 가능하고, 로이 유리의 가공 시에는 어닐링(annealing) 시의 고가의 라인빔용 광학계를 구현하지 않고도 라인빔을 구현하여 에너지 효율을 높이고, 반도체 및 디스플레이 기판의 가공의 패터닝 및 마킹 시에 고속 가공을 통한 생산성의 향상이 가능하다.
도 3은 본 발명의 일실시예에 따른 회절 광학계 시스템을 이용한 레이저 가공 방법을 설명하기 위한 흐름도이다.
도 3을 참조하여 본 발명의 일실시예에 따른 회절 광학계 시스템을 이용한 레이저 가공 방법을 설명하기로 한다.
먼저, 레이저 광원이 레이저 빔을 조사한다(S410).
이때, 사용자는 컴퓨터 단말을 통해 상기 레이저 광원을 제어하여 레이저 빔을 조사하도록 할 수 있다.
이후, 회절 광학 소자가 상기 레이저 빔의 가공 크기, 형상 및 분포 중에서 적어도 어느 하나를 제어한다(S420).
이때, 회절 광학 소자는 컴퓨터 단말의 제어에 의해 상기 레이저 빔의 위상 및 증폭 값을 가변하여, 상기 레이저 빔의 개수, 형태, 형상 및 위치 중에서 적어도 어느 하나를 제어할 수 있다.
보다 구체적으로, 상기 회절 광학 소자는 상기 레이저 빔을 제어하여 상기 레이저 빔을 다수 개로 분할하고, 상기 분할된 레이저 빔을 일렬로 배열할 수 있으며, 이때 상기 다수 개의 레이저 빔을 일정한 간격으로 배열할 수 있다.
한편, 상기 레이저 빔의 형상과 형태는 가공 공정(Spot, Line, Scribing, Cutting)에 따라 결정될 수 있다.
또한, 상기 레이저의 빔이 회절 광학 소자로 입사되는 동안 회절 광학 소자에 가해지는 레이저 빔의 에너지에 의해 소자의 손상을 방지하기 위하여, 충격 완화 장치가 상기 회절 광학 소자에 레이저 빔이 인가될 때 발생하는 열과 물리적 충격을 완화할 수 있다.
이후에는 고속 스캐너가 제1 방향으로 이동하며, 상기 회절 광학 소자에서 제어된 상기 레이저 빔을 조사하여 가공 부재를 가공한다(S430).
즉, 고속 스캐너는 제1 방향으로 이동하며 상기 회절 광학 소자에서 제어된 상기 레이저 빔을 조사하여 가공 부재를 가공할 수 있다.
따라서, 회절 광학 소자에서 레이저 빔이 다수 개로 분할되어 일정한 간격으로 일렬로 배열되고, 고속 스캐너는 렌즈를 통해 상기 배열된 레이저 빔을 조사하여 가공 부재를 가공할 수 있다.
또한, 가공 부재를 탑재한 스테이지가 제2 방향으로 이동할 수 있다.
이때, 상기 제2 방향은 상기 고속 스캐너가 이동하는 제1 방향과는 상이한 방향으로서, 보다 구체적으로 상기 제2 방향은 상기 제1 방향에 대하여 수직 방향에 해당할 수 있다.
따라서, 본 발명에 따르면 회절 광학 소자를 이용해 다수의 빔을 가공 속도 배율에 맞게 분할하고 빔 프로파일 및 세기를 제어하여 고속 스캐너와 스테이지를 연동하여 고속 가공을 구현할 수 있다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 전술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (14)

  1. 레이저 빔을 조사하는 레이저 광원;
    상기 레이저 빔의 가공 크기, 형상 및 분포 중에서 적어도 어느 하나를 제어하는 회절 광학 소자;
    제1 방향으로 이동하며, 상기 회절 광학 소자에서 제어된 상기 레이저 빔을 조사하여 가공 부재를 가공하는 고속 스캐너; 및
    상기 가공 부재가 탑재되어, 상기 제1 방향과 상이한 제2 방향으로 이동하는 스테이지;
    를 포함하는 고속 레이저 가공 광학계 시스템.
  2. 청구항 1에 있어서,
    상기 회절 광학 소자는,
    LCoS(Liquid Crystal on Silicon), DM(Deformable mirror), DMD(Digital mirror divice), DOE(diffractive optical elements) 및 AOD(acousto optic difflactor) 중에서 어느 하나인 고속 레이저 가공 광학계 시스템.
  3. 청구항 1에 있어서,
    상기 회절 광학 소자는,
    상기 레이저 빔을 제어하여 상기 레이저 빔을 다수 개로 분할하여 배열한 라인 레이저 빔을 형성하는 고속 레이저 가공 광학계 시스템.
  4. 청구항 2에 있어서,
    상기 회절 광학 소자는,
    상기 다수 개의 레이저 빔을 사용자의 지정 간격 또는 일정한 간격으로 배열하는 고속 레이저 가공 광학계 시스템.
  5. 청구항 1에 있어서,
    상기 회절 광학 소자는,
    상기 레이저 빔의 위상 및 증폭 값을 가변하여, 상기 레이저 빔의 개수, 초점 거리(focal length) 및 초점(focal point)의 수, 형태, 형상 및 위치 중에서 적어도 어느 하나를 제어하는 고속 레이저 가공 광학계 시스템.
  6. 청구항 1에 있어서,
    상기 고속 스캐너는,
    미러를 고속 회전시키는 고속 구동부를 포함하여, 상기 미러에서 반사되는 상기 레이저 빔을 상기 가공 부재로 조사하여 가공하는 고속 레이저 가공 광학계 시스템.
  7. 청구항 1에 있어서,
    상기 제1 방향과 상기 제2 방향은,
    상호 수직인 고속 레이저 가공 광학계 시스템.
  8. 청구항 1에 있어서,
    상기 레이저 광원, 상기 회절 광학 소자, 상기 스테이지 및 상기 고속 스캐너를 제어하는 컴퓨터 단말;
    을 더 포함하는 고속 레이저 가공 광학계 시스템.
  9. 청구항 1에 있어서,
    상기 회절 광학 소자에 레이저 빔이 인가될 때 발생하는 열과 물리적 충격을 완화해주는 충격 완화 장치;
    를 더 포함하는 고속 레이저 가공 광학계 시스템.
  10. 레이저 광원이 레이저 빔을 조사하는 제1 단계;
    회절 광학 소자가 상기 레이저 빔의 가공 크기, 형상 및 분포 중에서 적어도 어느 하나를 제어하는 제2 단계;
    고속 스캐너가 제1 방향으로 이동하며, 상기 회절 광학 소자에서 제어된 상기 레이저 빔을 조사하여 가공 부재를 가공하는 제3 단계; 및
    스테이지가 상기 가공 부재가 탑재되어, 상기 제1 방향과 상이한 제2 방향으로 이동하는 제4 단계;
    를 포함하는 고속 레이저 가공 광학계 시스템을 이용한 고속 레이저 가공 방법.
  11. 청구항 10에 있어서,
    상기 제2 단계는,
    상기 회절 광학 소자가 상기 레이저 빔을 제어하여 상기 레이저 빔을 다수 개로 분할하여 배열한 라인 레이저 빔을 형성하는 고속 레이저 가공 광학계 시스템을 이용한 고속 레이저 가공 방법.
  12. 청구항 11에 있어서,
    상기 제2 단계는,
    상기 회절 광학 소자가 상기 다수 개의 레이저 빔을 일정한 간격으로 배열하는 고속 레이저 가공 광학계 시스템을 이용한 고속 레이저 가공 방법.
  13. 청구항 10에 있어서,
    상기 제2 단계는,
    상기 회절 광학 소자가 상기 레이저 빔의 위상 및 증폭 값을 가변하여, 상기 레이저 빔의 개수, 형태, 형상 및 위치 중에서 적어도 어느 하나를 제어하는 고속 레이저 가공 광학계 시스템을 이용한 고속 레이저 가공 방법.
  14. 청구항 10에 있어서,
    상기 제2 단계는,
    충격 완화 장치가 상기 회절 광학 소자에 레이저 빔이 인가될 때 발생하는 열과 물리적 충격을 완화하는 단계;
    를 더 포함하는 고속 레이저 가공 광학계 시스템을 이용한 고속 레이저 가공 방법.
PCT/KR2014/005798 2014-06-30 2014-06-30 고속 레이저 가공 광학계 시스템 및 이를 이용한 고속 레이저 가공 방법 WO2016002980A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140080677A KR20160002468A (ko) 2014-06-30 2014-06-30 고속 레이저 가공 광학계 시스템 및 이를 이용한 고속 레이저 가공 방법
KR10-2014-0080677 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002980A1 true WO2016002980A1 (ko) 2016-01-07

Family

ID=55019500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005798 WO2016002980A1 (ko) 2014-06-30 2014-06-30 고속 레이저 가공 광학계 시스템 및 이를 이용한 고속 레이저 가공 방법

Country Status (2)

Country Link
KR (1) KR20160002468A (ko)
WO (1) WO2016002980A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180060830A (ko) * 2016-11-29 2018-06-07 주식회사 이오테크닉스 공간 광 변조기를 이용한 레이저 가공장치
KR102128504B1 (ko) * 2018-01-26 2020-07-08 주식회사 이오테크닉스 관성 무시 가공 장치 및 관성 무시 가공 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100032645A (ko) * 2008-09-18 2010-03-26 주식회사 이오테크닉스 레이저 가공 장치
JP2010167491A (ja) * 2008-12-24 2010-08-05 Toshiba Mach Co Ltd パルスレーザ加工装置
KR20120091487A (ko) * 2010-12-22 2012-08-20 한국기계연구원 레이저 가공 시스템 및 이를 이용한 레이저 가공 방법
JP2014008519A (ja) * 2012-06-29 2014-01-20 Furukawa Co Ltd レーザーパルスによる加工物の製造方法及びレーザー加工装置
KR20140036593A (ko) * 2012-09-17 2014-03-26 삼성디스플레이 주식회사 레이저 가공 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100032645A (ko) * 2008-09-18 2010-03-26 주식회사 이오테크닉스 레이저 가공 장치
JP2010167491A (ja) * 2008-12-24 2010-08-05 Toshiba Mach Co Ltd パルスレーザ加工装置
KR20120091487A (ko) * 2010-12-22 2012-08-20 한국기계연구원 레이저 가공 시스템 및 이를 이용한 레이저 가공 방법
JP2014008519A (ja) * 2012-06-29 2014-01-20 Furukawa Co Ltd レーザーパルスによる加工物の製造方法及びレーザー加工装置
KR20140036593A (ko) * 2012-09-17 2014-03-26 삼성디스플레이 주식회사 레이저 가공 장치

Also Published As

Publication number Publication date
KR20160002468A (ko) 2016-01-08

Similar Documents

Publication Publication Date Title
CN1207764C (zh) 半导体衬底的激光退火方法和装置
US20180345419A1 (en) Method and device for laser processing of transparent materials
WO2022055062A1 (ko) 레이저 가공 시스템 및 방법
KR20110089356A (ko) 레이저-스크라이빙 도구 구조
CN103658978A (zh) 激光加工装置
WO2016199971A1 (ko) 라인 빔 형성 장치
JP6363718B2 (ja) モジュール式レーザ装置
WO2017073907A1 (ko) 다중 초점을 이용한 레이저 가공방법 및 레이저 가공장치
WO2014171649A1 (ko) 웨이퍼의 시닝 방법 및 장치
KR20150044395A (ko) 레이저 스크라이빙 장치용 조절 가능한 공간 필터
WO2016002980A1 (ko) 고속 레이저 가공 광학계 시스템 및 이를 이용한 고속 레이저 가공 방법
WO2017115975A1 (ko) 레이저 가공장치 및 레이저 가공방법
WO2013151350A1 (en) Apparatus and method of manufacturing micro-notches at the edge line portion of scribing wheel using ultrafast laser
WO2017142156A1 (ko) 레이저 가공 장치 및 방법
WO2012148117A2 (ko) 레이저 분할빔을 이용한 선택적 박막 제거장치
WO2017039169A1 (ko) 레이저 가공장치 및 이를 이용한 레이저 가공방법
CN108062006A (zh) 一种自动上下版的直写式丝网制版系统及制版方法
WO2013058471A1 (en) Apparatus and method for manufacturing fine pattern using interferogram of optical axis direction
CN107695544A (zh) 激光打孔方法及装置
CN207534187U (zh) 激光打孔装置
CN109719387B (zh) 激光加工装置和方法、激光封装方法、激光退火方法
WO2017135543A1 (ko) 레이저 빔의 경사각을 이용한 레이저 가공방법
EP1854576B1 (en) Multidirectional electromagnetic wave irradiation system of workpiece and laser material processing system employing it
CN206292527U (zh) Ldi光机系统及其遮光罩
CN105458517A (zh) 晶圆激光划片与裂片方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896818

Country of ref document: EP

Kind code of ref document: A1