WO2016098763A1 - 透明アンテナ及び透明アンテナ付き表示装置 - Google Patents

透明アンテナ及び透明アンテナ付き表示装置 Download PDF

Info

Publication number
WO2016098763A1
WO2016098763A1 PCT/JP2015/085042 JP2015085042W WO2016098763A1 WO 2016098763 A1 WO2016098763 A1 WO 2016098763A1 JP 2015085042 W JP2015085042 W JP 2015085042W WO 2016098763 A1 WO2016098763 A1 WO 2016098763A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
wiring
lead
main body
transparent
Prior art date
Application number
PCT/JP2015/085042
Other languages
English (en)
French (fr)
Inventor
有史 八代
小川 裕之
杉田 靖博
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/536,487 priority Critical patent/US10910718B2/en
Priority to CN201580068815.6A priority patent/CN107004956B/zh
Publication of WO2016098763A1 publication Critical patent/WO2016098763A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect

Definitions

  • the present invention relates to a transparent antenna and a display device with a transparent antenna.
  • Patent Document 1 Conventionally, an example of a transparent antenna that is attached to a screen of a display and communicates with an external device is described in Patent Document 1 below.
  • This Patent Document 1 includes an insulating sheet-like transparent substrate and an antenna pattern formed in a planar shape on the surface of the transparent substrate, and the conductive portion of the antenna pattern has a mesh structure.
  • the antenna pattern constituting the transparent antenna described in Patent Document 1 described above is made of a conductive thin film having a mesh structure.
  • the wiring resistance is sufficiently low in the antenna pattern made of the conductive thin film having the mesh structure described above.
  • the screen size of the display has been increasing in recent years, so the wiring resistance of the transparent antenna tends to be higher. is there.
  • the wiring resistance of the transparent antenna is increased, the antenna performance of the transparent antenna is deteriorated.
  • the present invention has been completed based on the above situation, and aims to improve antenna performance.
  • the transparent antenna of the present invention includes an antenna main body portion that has a ring shape and generates a magnetic field at the center thereof, and a lead-out wiring portion that is led out from the antenna main body portion, and has a line wider than the line width of the antenna main body portion And a lead-out wiring portion having at least a part of the wide width portion.
  • the lead-out wiring part has at least a part of the wide part that is wider than the line width of the antenna body part, the wiring resistance of the transparent antenna can be reduced. Thereby, the Q value of the transparent antenna is increased, thereby improving the antenna performance.
  • the following configuration is preferable.
  • the antenna main body is formed in a closed annular shape so as to surround the magnetic field generation region where the magnetic field is generated on the center side. In this way, a higher induced electromotive force can be obtained as compared with a case where the antenna main body is formed in an annular shape. Thereby, higher antenna performance can be obtained.
  • the wide portion includes a line width variable wide portion that gradually increases in width as the distance from the antenna main body portion increases.
  • the wide part constituting the lead-out wiring part drawn out from the antenna body part having a closed annular shape includes the line width variable wide part that gradually increases as the distance from the antenna main body part increases. Therefore, as compared with the case where the line width of the wide portion is constant, the wiring resistance can be suitably reduced while maintaining a high induced electromotive force of the antenna body.
  • the antenna main body has four sides so that the planar shape forms a square ring, whereas the variable line width wide portion is one of the sides constituting the antenna main body.
  • the line width variable wide portion includes an inclined wide portion that is inclined with respect to a direction along the side portion constituting the antenna main body portion.
  • the line width variable wide portion in the lead-out wiring portion and the side portion connected to the line width variable wide portion in the antenna main body portion can constitute an additional coil, and a magnetic field generated by the additional coil (reverse this) The direction magnetic field) is opposite to the magnetic field generated in the magnetic field generation region on the center side of the antenna main body, and there is a concern that the antenna performance may be deteriorated due to this.
  • the line width variable wide portion includes an inclined wide portion that is inclined with respect to the direction along the side that constitutes the antenna main body, and therefore the side portion where the line width variable wide portion is connected.
  • the region in which the reverse magnetic field is generated is narrowed, so that the ratio of the reverse magnetic field is relatively low. Thereby, it is possible to suppress the deterioration of the antenna performance caused by the reverse magnetic field.
  • a plurality of the lead-out wiring sections are arranged side by side, and the variable line width wide section included in the plurality of the lead-out wiring sections disposed at the outermost position is the antenna body. It is comprised so that the angle of 14 degree
  • the angle formed by the line width variable wide portion provided in the lead-out wiring portion arranged at the outermost position with respect to the direction orthogonal to the side portion of the antenna body that is continuous with the line width variable wide portion is 14 degrees or more.
  • the whole area of the lead-out wiring part is constituted by the wide part. In this way, the area of the lead-out wiring part is secured larger than when the part of the line width of the lead-out wiring part is the same as the line width of the antenna body part. The resistance is further reduced, thereby further improving the antenna performance.
  • the lead-out wiring part is arranged on the opposite side of the first wiring part from the antenna body part side with respect to the first wiring part and connected to the first wiring part.
  • the first wiring portion has a line width equivalent to that of the antenna body portion, while the second wiring portion is the wide portion.
  • the line width of the first wiring portion connected to the closed annular antenna body portion of the lead-out wiring portion is equal to the line width of the antenna body portion.
  • the second wiring portion arranged on the side opposite to the antenna main body portion side with respect to the first wiring portion and connected to the first wiring portion is a wide portion, and thus is obtained by the first wiring portion.
  • the wiring resistance can be suitably reduced while ensuring a high induced electromotive force. As described above, higher antenna performance can be obtained.
  • the antenna main body has four sides so that the planar shape forms a square ring, and the first wiring portion is connected to one of the sides constituting the antenna main body. And it is extended along the direction orthogonal to the said side part which continues, and the length dimension is comprised so that it may become 21 mm or less.
  • the first wiring part in the lead-out wiring part and the side part connected to the first wiring part in the antenna main body part can constitute an additional coil, and a magnetic field generated by the additional coil (this is a reverse magnetic field).
  • the direction of the magnetic field generated in the magnetic field generation region on the center side of the antenna main body is opposite, and there is a concern that the antenna performance may deteriorate due to this.
  • the first wiring portion is connected to one side portion constituting the antenna main body portion having a square ring shape and extends along a direction orthogonal to the continuous side portion.
  • the reverse magnetic field tends to become stronger.
  • the length dimension of the first wiring portion is larger than 21 mm, the reverse direction is reversed.
  • the region where the reverse magnetic field is generated is sufficiently narrow and the ratio of the reverse magnetic field is sufficiently low. The resulting deterioration in antenna performance can be sufficiently suppressed.
  • the wide part includes a constant line width wide part whose line width is constant.
  • the wide space part that constitutes the second wiring part includes the constant line width constant width part, so that the arrangement space of the transparent antenna can be made compact. This is suitable when a plurality of the transparent antennas are arranged side by side.
  • the plurality of lead-out wiring sections are arranged side by side, and the maximum outer width dimension of the plurality of lead-out wiring sections is equal to or smaller than the maximum outer width dimension of the antenna main body section. Has been. If it does in this way, the arrangement space of the transparent antenna can be made compact. This is suitable when a plurality of the transparent antennas are arranged side by side.
  • the antenna main body and the lead-out wiring are made of a metal film having a mesh shape, and the planar shape is defined by slits patterned on the metal film. In this way, it is possible to reduce the wiring resistance while ensuring the translucency of the transparent antenna.
  • the display device with a transparent antenna of the present invention is arranged in the form of being laminated on the transparent antenna, the transparent antenna substrate on which the transparent antenna is provided, and the transparent antenna substrate.
  • a display panel having a display area capable of displaying an image and a non-display area surrounding the display area, wherein the transparent antenna is disposed at a position overlapping the display area.
  • the following configuration is preferable as an embodiment of the display device with a transparent antenna of the present invention.
  • the transparent antenna substrate is provided with an antenna connection wiring portion that is disposed at a position overlapping the non-display area and connected to the lead-out wiring portion.
  • the antenna connection wiring portion arranged at a position overlapping the non-display area is connected to the lead-out wiring portion.
  • the antenna connection wiring portion is made of a metal film having a light shielding property. It becomes possible. Thereby, the wiring resistance of the transparent antenna can be further reduced.
  • the antenna connection wiring portion includes a short-circuit wiring portion that short-circuits between the two lead-out wiring portions connected to ends of the antenna element wires different from each other. In this way, the two lead-out wiring portions connected to the ends of the different antenna wires are short-circuited by the short-circuit wiring portion, thereby being connected to the two short-circuited lead-out wiring portions, respectively. It is possible to pass a current through the antenna wire. Thereby, a magnetic field can be generated on the center side of the antenna body.
  • antenna performance can be improved.
  • FIG. 1 is a perspective view of a liquid crystal display device according to Embodiment 1 of the present invention.
  • Sectional drawing which shows schematic structure of a liquid crystal display device Front view of liquid crystal display device Top view of transparent antenna Enlarged view of transparent antenna
  • the top view which shows the state where the plane arrangement of the equipment side antenna shifted from the transparent antenna
  • the graph showing the relationship between the Q value of the transparent antenna according to the comparative example and the example 1 and the screen size of the liquid crystal panel
  • comparative experiment 2 a graph showing the relationship between the inclination angle of the wide portion and the ratio of the strength of the reverse magnetic field
  • Comparative Experiment 3 a graph showing the relationship between the Q value of the transparent antenna according to Example 1 and the screen size of the liquid crystal panel when the device-side antenna has three different planar arrangements
  • the top view of the transparent antenna which concerns on Embodiment 2 of this invention
  • comparative experiment 4 a graph showing the relationship between the Q value of the transparent antenna according to the comparative example and Examples 1 and 2 and the screen
  • the top view of the transparent antenna which concerns on Embodiment 5 of this invention The top view of the transparent antenna which concerns on Embodiment 6 of this invention
  • the top view of the transparent antenna which concerns on Embodiment 7 of this invention The top view of the transparent antenna which concerns on Embodiment 8 of this invention
  • the top view of the transparent antenna which concerns on Embodiment 9 of this invention Plan view of a transparent antenna according to Embodiment 10 of the present invention.
  • Plan view of a transparent antenna according to Embodiment 11 of the present invention Plan view of a transparent antenna according to Embodiment 12 of the present invention.
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 10 with a transparent antenna that enables communication with an external device (not shown) by the transparent antenna 17 is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • the liquid crystal display device 10 is provided with a liquid crystal panel (display panel) 11 for displaying an image, an outer side (front side) facing the liquid crystal panel 11, and a transparent antenna 17.
  • the liquid crystal panel 11 and the transparent antenna substrate 12 laminated in a state of facing each other are fixed and integrated with each other by interposing a substantially transparent adhesive layer (not shown) therebetween.
  • a substantially transparent adhesive layer not shown
  • an OCA Optical Clear Adhesive
  • the liquid crystal display device 10 includes a chassis 14 that houses the backlight device 13, a frame 15 that holds the backlight device 13 between the chassis 14, and the liquid crystal panel 11 and the transparent antenna substrate 12 between the frames 15. And a bezel 16 for holding.
  • the liquid crystal display device 10 is used for various electronic devices (not shown) such as an information display, an electronic blackboard, and a television receiver.
  • the screen size of the liquid crystal panel 11 constituting the liquid crystal display device 10 is about 30 to 50 inches, and is generally classified into a medium size to a large size.
  • NFC Near Field Communication
  • the external device that performs short-range wireless communication with the liquid crystal display device 10 include an IC card and a smartphone each including a device-side antenna DA.
  • the user brings an external device such as an IC card or a smartphone close to the transparent antenna 17 according to the display on the liquid crystal display device 10, thereby performing short-range wireless communication between the device-side antenna DA of the external device and the transparent antenna 17. It is possible to do.
  • the outer shape of the device-side antenna DA is illustrated by a one-dot chain line.
  • the liquid crystal panel 11 has a horizontally long rectangular shape (rectangular shape) in a plan view, and a pair of glass substrates excellent in translucency are separated from each other by a predetermined gap. And the liquid crystal is sealed between both substrates.
  • the liquid crystal panel 11 is incorporated in the liquid crystal display device 10 in a posture in which the long side direction coincides with the X-axis direction, the short side direction coincides with the Y-axis direction, and the thickness direction coincides with the Z-axis direction.
  • one substrate array substrate
  • has a switching element for example, TFT
  • a pixel electrode connected to the switching element, and an orientation.
  • the liquid crystal panel 11 has a display area (active area) AA on which the display surface is on the center side of the screen and an image can be displayed, and a frame shape (frame shape) on the outer periphery side of the screen and surrounding the display area AA. ) Forming a non-display area (non-active area) NAA.
  • the display area AA has a horizontally long rectangular shape, while the non-display area NAA has a horizontally long frame shape.
  • the backlight device 13 that supplies light to the liquid crystal panel 11 having such a configuration includes a light source (for example, a cold-cathode tube, an LED, an organic EL, etc.) and an optical device that has an optical function such as conversion into a surface shape emitted from the light source. And at least a member.
  • a light source for example, a cold-cathode tube, an LED, an organic EL, etc.
  • an optical device that has an optical function such as conversion into a surface shape emitted from the light source. And at least a member.
  • the transparent antenna substrate 12 is made of a synthetic resin material such as PET (polyethylene terephthalate), for example, and has an excellent translucency and is almost transparent.
  • PET polyethylene terephthalate
  • the transparent antenna substrate 12 has a sheet shape, and the size and the outer shape of the transparent antenna substrate 12 viewed from the plane are almost the same as those of the liquid crystal panel 11.
  • the transparent antenna 17 is indicated by a broken line. Therefore, as shown in FIG. 4, the transparent antenna substrate 12 overlaps the display overlap area OAA that overlaps the display area AA of the liquid crystal panel 11 in a plane and the non-display area NAA of the liquid crystal panel 11 overlaps in a plane.
  • a non-display overlapping area NOAA On the inside of the transparent antenna substrate 12, that is, on the plate surface on the liquid crystal panel 11 side, a mesh-like metal film is formed, and the mesh-like metal film is patterned. A transparent antenna 17 is formed.
  • the mesh-like metal film is formed in such a manner that a large number of fine meshes (mesh) are regularly arranged in a plane on a light-shielding metal film so that light passing through the mesh is transmitted through the transparent antenna substrate 12. The rate can be secured to a certain extent.
  • a large number of meshes patterned on the mesh-like metal film have individual planar shapes of rhombuses, and the diagonal pitch is, for example, about 0.5 mm.
  • the mesh-like metal film is formed over almost the entire area of the display overlap area OAA on the plate surface of the transparent antenna substrate 12, whereby the antenna forming area where the transparent antenna 17 is formed and the transparent antenna 17 is not formed. It is difficult for a difference in the light transmittance (transparency) in the transparent antenna substrate 12 between the antenna non-formation region. That is, the display overlapping area OAA is a mesh-like metal film forming area.
  • a light shielding film (not shown) is formed almost entirely on the inner plate surface in the non-display overlapping area NOAA of the transparent antenna substrate 12 and the non-structuring antenna connecting wiring section 20 described later is formed.
  • a network metal film (solid metal film) is formed.
  • the network metal film and the non-network metal film are made of a metal material having excellent conductivity, such as copper.
  • the transparent antenna 17 has a planar shape and a wiring pattern defined by inserting slits SL in a mesh metal film formed on the transparent antenna substrate 12.
  • the slit SL is shown in white.
  • the transparent antenna 17 includes an antenna main body 18 that has a ring shape and generates a magnetic field (magnetic field) at the center thereof, and a lead wiring portion 19 that is drawn out from the antenna main body 18.
  • the transparent antenna 17 is located at a position where the antenna body 18 is separated from the boundary position between the display overlap area OAA and the non-display overlap area NOAA on the transparent antenna substrate 12 by a predetermined distance in the Y-axis direction toward the center of the screen of the liquid crystal panel 11.
  • a lead-out wiring portion 19 is disposed between the boundary position and the antenna main body portion 18.
  • the antenna main body 18 is disposed at a substantially central position in the Y-axis direction of the liquid crystal panel 11. For this reason, it can be said that the extended surface distance of the lead-out wiring portion 19 tends to increase as the screen size of the liquid crystal panel 11 increases.
  • the transparent antenna 17 is arranged in the vicinity of the center of the screen of the liquid crystal panel 11 as described above, it is possible for the user to intuitively approach an external device that is a communication target of the transparent antenna 17 to the transparent antenna 17. Excellent convenience.
  • the entire area of the transparent antenna 17 is arranged in the display overlapping area OAA of the transparent antenna substrate 12.
  • an antenna connection wiring portion 20 connected to the lead-out wiring portion 19 of the transparent antenna 17 is provided in the non-display overlapping region NOAA of the transparent antenna substrate 12.
  • the transparent antenna 17 is supplied with power, that is, a current for generating a magnetic field.
  • the antenna body 18 has a closed annular shape surrounding the magnetic field generation area MA where a magnetic field is generated at the center thereof, and the planar shape thereof is a vertically long rectangular shape. .
  • the antenna body 18 has an internal dimension in the long side direction of, for example, about 85.6 mm, and an internal dimension in the short side direction of, for example, about 54 mm.
  • the device-side antenna DA in the external device also has substantially the same outer dimensions as the antenna body 18. Therefore, when the device-side antenna DA is brought close to the antenna body 18 while being in an appropriate plane position (hereinafter referred to as a normal position), the device-side antenna DA is arranged so as to overlap the entire magnetic field generation region MA.
  • the antenna main body 18 is arranged in such a manner that the long side direction coincides with the Y-axis direction and the short side direction coincides with the X-axis direction, and a pair of long side portions 18L extending along the Y-axis direction. And a pair of short sides 18S extending along the X-axis direction.
  • the antenna main body 18 has four side portions 18L and 18S, and a magnetic field can be generated in the magnetic field generation region MA by electromagnetic induction action caused by currents flowing through the four side portions 18L and 18S.
  • the antenna body 18 is formed by arranging a plurality of antenna elements 21 (three in FIG. 4) having a rectangular ring shape in the radial direction with a gap corresponding to the slit SL therebetween.
  • the plurality of antenna strands 21 have a planar shape similar to that of the antenna main body 18, and the closer to the magnetic field generation region MA, the smaller the outer shape and the shorter the surface area (length of each side). On the contrary, the farther from the magnetic field generation area MA, the larger the outer shape and the longer the surface area.
  • the antenna wire 21 close to the magnetic field generation region MA has an outer shape slightly smaller than the adjacent antenna wire 21 on the side far from the magnetic field generation region MA. Is surrounded by the entire circumference. Both ends of each antenna element 21 are arranged on the short side 18S on the lower side (extract wiring part 19 side) shown in FIG. 4 and are connected to different lead wiring parts 19 respectively. Although the innermost antenna element 21 having the shortest surface distance has a gap corresponding to one slit SL between both ends, the intermediate antenna element 21 has three slits SL between both ends.
  • each antenna wire 21 has a line-symmetric shape with respect to the center line along the Y-axis direction.
  • the lead-out wiring part 19 is arranged so as to extend from the boundary position between the display overlapping area OAA and the non-display overlapping area NOAA on the transparent antenna substrate 12 to the antenna main body part 18. It has been searched.
  • a plurality (6 in FIG. 4) of lead-out wiring portions 19 are arranged along the direction intersecting the extending direction (X-axis direction), and the number of the installed wiring wires 19 is the number of antenna wires 21 installed. It is twice as much.
  • the lead wiring portion 19 has an end on the antenna body 18 side (drawing source side) connected to an end portion of the antenna element wire 21, whereas the end on the opposite side (drawing destination side, boundary position side). The part is connected to the antenna connection wiring part 20.
  • the lead wiring portion 19 tends to increase the wiring resistance as its extended surface distance increases. For this reason, as the screen size of the liquid crystal panel 11 is increased, the wiring resistance related to the lead-out wiring portion 19 tends to increase.
  • the antenna connection wiring portion 20 is made of a non-reticulated metal film formed in the non-display overlapping region NOAA of the transparent antenna substrate 12. Therefore, the antenna connection wiring part 20 has a relatively low wiring resistance per unit length or unit area compared to the antenna main body part 18 and the lead-out wiring part 19 constituting the transparent antenna 17 made of a mesh-like metal film. It is said.
  • the antenna connection wiring portion 20 includes a plurality (two in FIG. 4) of short-circuit wiring portions 22 that short-circuit the two lead-out wiring portions 19.
  • the number of short-circuit wiring portions 22 installed is a value obtained by subtracting 2 from the number of lead-out wiring portions 19 installed.
  • Two lead-out wiring sections 19 that are short-circuited by the short-circuit wiring section 22 are connected to different antenna element wires 21.
  • the lead-out wiring portion 19 connected to one end (left side in FIG. 4) of the outermost antenna wire 21 is one end (right side in FIG. 4) of the intermediate antenna wire 21.
  • the lead-out wiring part 19 connected to is short-circuited by the short-circuiting wiring part 22.
  • the lead-out wiring section 19 connected to the other end (left side in FIG. 4) of the intermediate antenna element 21 is connected to one end (right side in FIG. 4) of the innermost antenna element 21.
  • the lead wiring part 19 is connected by a short-circuit wiring part 22.
  • the antenna connection wiring portion 20 includes an input wiring portion (not shown) connected to the lead-out wiring portion 19 connected to the other end (right side in FIG. 4) of the outermost antenna element wire 21; An output wiring portion (not shown) connected to the lead wiring portion 19 connected to one end (left side in FIG. 4) of the innermost antenna element wire 21 is included.
  • the extraction wiring portion 19 and the short-circuit wiring portion 22 are connected. 4 and further to the outermost antenna element wire 21 via the lead-out wiring portion 19 and the short-circuit wiring portion 22, respectively, and then to the output wiring portion. It is supposed to be washed away.
  • the current flows in the counterclockwise direction in FIG. 4 in the antenna main body 18 in this way, a magnetic field toward the front side in the paper of FIG. 4 is generated in the magnetic field generation region MA of the antenna main body 18. ing.
  • the extended surface distance of the lead-out wiring portion 19 tends to increase, and this tendency increases the screen size. It becomes remarkable when it is.
  • the transparent antenna is arranged at the end of the screen of the liquid crystal panel 11, and the lead wiring unit
  • the Q value of the transparent antenna is 8 cm when the length of the lead-out wiring portion is 20 cm.
  • the Q value representing the antenna performance of the transparent antenna is represented by the expression “2 ⁇ fL / R”.
  • L is an inductance (induced electromotive force)
  • R is a wiring resistance
  • f is a resonance frequency. That is, the Q value tends to be proportional to the inductance and inversely proportional to the wiring resistance.
  • the transparent antenna 17 according to the present embodiment has a configuration in which the lead-out wiring portion 19 has a wide portion 23 having a wider line width than the antenna main body portion 18.
  • the configuration in which the lead-out wiring portion 19 has the wide portion 23 can reduce the wiring resistance of the transparent antenna 17, so that the Q value of the transparent antenna 17 is increased, and thus the antenna performance (reception sensitivity) is increased. Etc.) is improved.
  • the wide portion 23 moves away from the antenna body 18 and approaches the boundary position (antenna connection wiring portion 20) between the display overlapping area OAA and the non-display overlapping area NOAA on the transparent antenna substrate 12.
  • the line width is gradually increased.
  • the wide portion 23 is closer to the antenna main body portion 18, and its line width gradually decreases as it moves away from the boundary position between the display overlapping area OAA and the non-display overlapping area NOAA on the transparent antenna substrate 12. It is said that. Therefore, it can be said that the wide portion 23 is a “line width variable wide portion” in which the line width varies depending on the position in the extending direction.
  • the wide portion 23 has a line width that increases continuously and gradually in proportion to the distance from the antenna main body portion 18, and the outer shape of each of the wide portions 23 of the antenna main body portion 18 ⁇ / b> L, It is assumed to have an inclined shape that is linearly inclined with respect to the direction along the 18S (X-axis direction and Y-axis direction). Accordingly, it can be said that the wide portion 23 is an “inclined wide portion” whose outer edge extends while forming an inclined shape.
  • the wide portion 23 constitutes the entire area of the lead wiring portion 19, and the line width of the connection portion (the end portion on the antenna main body portion 18 side) of the antenna main body portion 18 with respect to the antenna element wire 21 is the narrowest, and the antenna The line width of the connection location (the end opposite to the antenna body 18 side) with respect to the connection wiring portion 20 is the largest.
  • the plurality of lead-out wiring portions 19 have substantially the same minimum line width and maximum line width, and the line width change rate is also substantially the same.
  • the maximum outer width dimension in the plurality of lead wiring portion 19 groups arranged along the X-axis direction is set to be larger than the maximum outer width dimension in the antenna main body portion 218.
  • the wide portion 23 provided in the two lead-out wiring portions 19 arranged at the outermost position in the X-axis direction is an antenna main body portion 18 as shown in FIGS.
  • the inclination angle ⁇ formed with respect to the direction orthogonal to the short side portion 18S to be connected, that is, with respect to the Y-axis direction is 14 degrees or more, specifically about 14 degrees to 15 degrees.
  • the inclination angle ⁇ increases toward the outer side in the X-axis direction, and the inclination angle ⁇ decreases toward the center side in the X-axis direction.
  • the mesh of the mesh metal film is not shown, and only the outer shapes of the antenna element wire 21 and the lead-out wiring portion 19 are illustrated.
  • the wide part 23 in the lead-out wiring part 19 and the short side part 18S connected to the wide part 23 in the antenna body part 18 can constitute an additional coil. That is, when the transparent antenna 17 is energized, a current flows from the lead-out wiring portion 19 to the short side portion 18S connected thereto, so that these constitute an additional coil and a region sandwiched between them (hereinafter referred to as a reverse magnetic field).
  • a reverse magnetic field that is opposite to a magnetic field generated in the magnetic field generation region MA on the center side of the antenna body 18 (hereinafter referred to as a normal magnetic field) is generated.
  • the device-side antenna DA of the external device is transparent while being arranged in a plane arrangement that deviates from the normal position with respect to the antenna body 18, specifically, a plane arrangement that extends over the magnetic field generation region MA and the reverse magnetic field generation region OMA.
  • the normal magnetic field generated in the magnetic field generation area MA can only be partially captured by the device-side antenna DA and is generated in the reverse magnetic field generation area OMA.
  • the normal magnetic field is weakened by the reversed magnetic field, and as a result, there is a concern that the induced electromotive force is greatly reduced and the antenna performance is greatly deteriorated.
  • the wide portion 23 is inclined with respect to the direction along the side portions 18 ⁇ / b> L and 18 ⁇ / b> S constituting the antenna main body portion 18.
  • the reverse magnetic field generation region OMA in which the reverse magnetic field is generated becomes narrow, so the ratio of the strength of the reverse magnetic field to the strength of the normal magnetic field Is relatively low.
  • the device-side antenna DA is in a planar arrangement shifted from the normal position with respect to the antenna main body 18, it is possible to suppress deterioration in antenna performance due to a reverse magnetic field.
  • the wide portion 23 has an angle formed with respect to the direction orthogonal to the side portion of the antenna main body portion 18 that extends to the wide portion side portion of 14 degrees or more. Since the ratio of the strength of the reverse magnetic field to the strength of the normal magnetic field is sufficiently low, deterioration of the antenna performance due to the reverse magnetic field can be sufficiently suppressed.
  • Comparative Experiment 1 a transparent antenna having a configuration in which the lead-out wiring portion extends straight along a direction orthogonal to the extending direction of the short side portion of the antenna main body portion and has a constant line width is a comparative example.
  • the transparent antenna 17 having the wide portion 23 described before this paragraph is taken as Example 1, and the liquid crystal panel 11 in which each of the transparent antennas according to the comparative example and Example 1 has various screen sizes is provided.
  • the Q value when used in the display device 10 is measured, and the result is shown in FIG. In FIG.
  • the horizontal axis represents the screen size (unit: “inch”) of the liquid crystal panel 11, and the vertical axis represents the Q value (no unit) of the transparent antenna.
  • the solid line graph represents the experimental result of Example 1
  • the broken line graph represents the experimental result of the comparative example.
  • Each of the transparent antennas according to the comparative example and the first embodiment is configured such that the antenna main body is arranged at the center position in the Y-axis direction of the liquid crystal panel 11 in the liquid crystal panel 11 of the screen size. The extended surface distance of the lead-out wiring portion is increased as the screen size is increased.
  • the Q value of the transparent antenna tends to decrease as the screen size of the liquid crystal panel 11 increases.
  • the reduction rate of the Q value of the transparent antenna is larger than that in the first embodiment.
  • the Q value of the transparent antenna is less than 10 which is a guideline for obtaining a sufficient induced electromotive force, and thus is larger than 32 inches. It becomes difficult to apply to the liquid crystal display device 10 including the liquid crystal panel 11 having a screen size.
  • Example 1 is a graph in which the Q value is always higher than that of the comparative example, and the decrease rate of the Q value of the transparent antenna is smaller than that of the comparative example. Specifically, in Example 1, the Q value is 10 or more even when the screen size of the liquid crystal panel 11 exceeds 32 inches, and the Q value is 10 or more until it exceeds 55 inches.
  • the first embodiment can be applied to the liquid crystal display device 10 including the liquid crystal panel 11 having a screen size of up to 55 inches.
  • the reason why the Q value of the transparent antenna 17 according to the first embodiment has a reduction rate as described above is that the extended surface distance of the lead-out wiring portion 19 increases as the screen size of the liquid crystal panel 11 increases. This is probably because the entire wiring lead 19 is constituted by the wide portion 23, so that the wiring area is sufficiently large and the wiring resistance is sufficiently low.
  • the liquid crystal display device 10 is enlarged, a sufficient induced electromotive force and antenna performance can be obtained while the transparent antenna 17 is disposed near the center position of the screen.
  • the following comparative experiment 2 was performed in order to obtain knowledge about the relationship between the inclination angle ⁇ of the wide portion 23 and the ratio of the strength of the reverse magnetic field generated by the additional coil.
  • the comparative experiment 2 in the transparent antenna 17 having the wide portion 23 according to the first embodiment of the comparative experiment 1 described above, the inclination angle formed by the wide portion 23 constituting the outermost lead wiring portion 19 with respect to the Y-axis direction. While changing ⁇ in the range of 0 to 60 degrees, the ratio of the intensity of the reverse magnetic field by the additional coil to the intensity of the normal magnetic field was measured, and the result is shown in FIG. In FIG.
  • the horizontal axis indicates the inclination angle ⁇ (unit: “degree”) of the wide portion 23 constituting the lead-out wiring portion 19 at the outermost position, and the vertical axis indicates the ratio of the strength of the reverse magnetic field (unit: “%”). ) Respectively.
  • the following comparative experiment 3 was performed in order to obtain knowledge regarding the influence of the reverse magnetic field when the planar position of the device-side antenna DA of the external device deviates from the normal position with respect to the transparent antenna 17.
  • the device-side antenna DA is set to the normal position, and the device-side antenna DA is moved from the normal position to the Y-axis direction.
  • a planar arrangement shifted about 15 mm (a length corresponding to about 17.5% of the long side dimension of the antenna main body 18) on the side opposite to the lead wiring portion 19 side (see the thin dashed line in FIG.
  • the Q value is highest when the device-side antenna DA is in the normal position in the first embodiment.
  • the device-side antenna DA is moved from the normal position in the Y-axis direction to the lead wiring portion 19 side.
  • the Q value when shifted to the opposite side is higher, and the Q value when the device-side antenna DA is shifted from the normal position to the lead-out wiring portion 19 side in the Y-axis direction in the first embodiment is the lowest.
  • the device-side antenna DA when the device-side antenna DA is shifted from the normal position to the side opposite to the lead-out wiring portion 19 side in the Y-axis direction, the device-side antenna DA is shown as shown by a thin dashed line in FIG. Can capture only a part of the normal magnetic field generated in the magnetic field generation region MA, but does not overlap with the reverse magnetic field generation region OMA, and therefore does not capture the reverse magnetic field. That is, in the first embodiment, when the device-side antenna DA is shifted from the normal position to the side opposite to the lead wiring portion 19 side in the Y-axis direction, the device-side antenna DA is not overlapped in the magnetic field generation region MA.
  • the Q value is lowered in comparison with the case where the normal position is set by the amount of the generated normal magnetic field.
  • the device-side antenna DA when the device-side antenna DA is shifted from the normal position to the lead-out wiring portion 19 side in the Y-axis direction in the first embodiment, the device-side antenna DA has a magnetic field as shown by the thick dashed line in FIG. In addition to being able to capture only a part of the normal magnetic field generated in the generation region MA, a reverse magnetic field is captured to overlap the reverse magnetic field generation region OMA.
  • Example 1 when the device-side antenna DA is shifted from the normal position to the lead-out wiring portion 19 side in the Y-axis direction, the normal magnetic field generated in the portion where the device-side antenna DA is not superimposed in the magnetic field generation region MA. In addition to the Q value decreasing, the Q value also decreases for the part where the normal magnetic field is canceled by the reverse magnetic field.
  • the Q value is 10 or more until the screen size of the liquid crystal panel 11 exceeds 55 inches.
  • the Q value becomes 10 when the screen size of the liquid crystal panel 11 exceeds 38 inches.
  • the Q value becomes 10 when the screen size of the liquid crystal panel 11 exceeds 33 inches.
  • the inclination angle ⁇ of the wide portion 23 that constitutes the lead-out wiring portion 19 at the outermost position is about 14 degrees to 15 degrees, and the strength ratio of the reverse magnetic field is about 5%. (See FIG. 8), if the inclination angle ⁇ of the wide portion 23 is less than 14 degrees and the ratio of the strength of the reverse magnetic field exceeds 5%, the Q value is lower than that of the comparative example.
  • the Q value cannot be secured 10 or more. From the above examination, by setting the inclination angle ⁇ of the wide portion 23 to 14 degrees or more, the ratio of the strength of the reverse magnetic field is set to 5% or less, so that the equipment antenna DA captures the reverse magnetic field. In this case, it is possible to sufficiently suppress a decrease in the Q value.
  • the transparent antenna 17 includes the antenna main body 18 that has an annular shape and generates a magnetic field at the center thereof, and the lead-out wiring portion 19 that is drawn out from the antenna main body 18. And a lead-out wiring part 19 having at least a part of the wide part 23 that is wider than the line width of the part 18.
  • the lead-out wiring part 19 has at least a part of the wide part 23 that is wider than the line width of the antenna body part 18, the wiring resistance of the transparent antenna 17 can be reduced. Thereby, the Q value of the transparent antenna 17 is increased, thereby improving the antenna performance.
  • the antenna main body 18 has a closed ring shape surrounding the magnetic field generation region MA where the magnetic field is generated on the center side. In this way, a higher induced electromotive force can be obtained as compared with a case where the antenna main body is formed in an annular shape. Thereby, higher antenna performance can be obtained.
  • the wide portion 23 includes a line width variable wide portion that gradually increases in width as it moves away from the antenna body 18.
  • the wide-width portion 23 constituting the lead-out wiring portion 19 drawn out from the antenna body portion 18 having a closed annular shape is provided with a variable-width-width portion that gradually increases as the distance from the antenna main body portion 18 increases. Since it is included, the wiring resistance can be suitably reduced while maintaining a high induced electromotive force of the antenna body 18 as compared with a case where the line width of the wide portion is constant.
  • the antenna main body 18 has four side portions 18L and 18S so that the planar shape forms a square ring, whereas the variable line width wide portion is one short that forms the antenna main body 18.
  • the line width variable wide portion includes an inclined wide portion that is inclined with respect to the direction along the side portions 18L and 18S constituting the antenna main body portion 18 and is connected to the side portion (side portion) 18S. ing.
  • the line width variable wide portion in the lead-out wiring portion 19 and the short side portion 18S connected to the line width variable wide portion of the antenna body portion 18 can constitute an additional coil, and a magnetic field generated by the additional coil.
  • the line width variable wide portion includes an inclined wide portion that is inclined with respect to the direction along the side portions 18L and 18S constituting the antenna main body portion 18.
  • the region where the reverse magnetic field is generated is narrowed, so that the ratio of the reverse magnetic field is relatively low. Become. Thereby, it is possible to suppress the deterioration of the antenna performance caused by the reverse magnetic field.
  • a plurality of lead wiring portions 19 are arranged side by side, and the variable line width wide portion of the plurality of lead wiring portions 19 that is arranged at the outermost position is the antenna main body portion 18.
  • an angle of 14 degrees or more is formed with respect to a direction orthogonal to the short side portion 18S connected to the variable line width wide portion.
  • the angle formed by the line width variable wide portion of the lead wiring portion 19 arranged at the outermost position with respect to the direction orthogonal to the short side portion 18S connected to the line width variable wide portion of the antenna body is 14 degrees. If it is made smaller than this, the ratio of the reverse magnetic field becomes too high, and there is a possibility that deterioration of the antenna performance cannot be overlooked.
  • the angle formed by the line width variable wide portion of the lead wiring portion 19 arranged at the outermost position with respect to the direction orthogonal to the short side portion 18S connected to the line width variable wide portion of the antenna body is By setting the angle to 14 degrees or more, the region where the reverse magnetic field is generated is sufficiently narrow and the ratio of the reverse magnetic field is sufficiently low, so that the deterioration of the antenna performance due to the reverse magnetic field is sufficiently suppressed. can do.
  • the entire area of the lead-out wiring part 19 is constituted by the wide part 23.
  • the area of the lead-out wiring portion 19 is ensured larger than when a part of the line width of the lead-out wiring portion is made the same as the line width of the antenna main body portion 18.
  • the wiring resistance of 17 is further reduced, and thus the antenna performance is further improved.
  • the antenna main body 18 and the lead-out wiring part 19 are made of a metal film having a mesh shape, and the planar shape is defined by slits patterned into the metal film. In this way, it is possible to reduce the wiring resistance while ensuring the translucency of the transparent antenna 17.
  • the liquid crystal display device (display device with a transparent antenna) 10 is arranged in the form of being laminated on the transparent antenna 17, the transparent antenna substrate 12 on which the transparent antenna 17 is provided, and the transparent antenna substrate 12.
  • the liquid crystal panel (display panel) 11 includes a liquid crystal panel 11 having a display area AA capable of displaying an image and a non-display area NAA surrounding the display area AA. It is arranged at a position overlapping with AA.
  • the transparent antenna 17 disposed at a position overlapping the display area AA of the liquid crystal panel 11. Since it is possible to perform operations such as bringing an external device closer to the transparent antenna 17 based on the image displayed in the display area AA, it is excellent in convenience and the like. Since the antenna performance of the transparent antenna 17 is sufficiently high, communication with an external device or the like can be performed satisfactorily.
  • the transparent antenna substrate 12 is provided with an antenna connection wiring portion 20 that is disposed at a position overlapping the non-display area NAA and connected to the lead-out wiring portion 19.
  • the antenna connection wiring portion 20 is made of a light-shielding metal. It becomes possible to make it the structure which consists of a film
  • the transparent antenna 17 includes a plurality of transparent antennas 17 such that the antenna body 18 has a plurality of antenna wires 21 and the lead-out wiring portions 19 are individually connected to the respective ends of the antenna wires 21.
  • the antenna connection wiring portion 20 includes a short-circuit wiring portion 22 that short-circuits between the two lead-out wiring portions 19 connected to the ends of the different antenna element wires 21. In this way, the two lead-out wiring portions 19 connected to the ends of the different antenna element wires 21 are short-circuited by the short-circuit wiring portion 22, so that the two short-circuited lead-out wiring portions 19 are connected. Thus, it is possible to pass a current through the connected antenna element wires 21. Thereby, a magnetic field can be generated on the center side of the antenna body 18.
  • the lead-out wiring part 119 constituting the transparent antenna 117 includes a first wiring part 24 connected to the antenna main body part 118, and the antenna main body part 118 side with respect to the first wiring part 24.
  • the second wiring portion 25 is arranged on the opposite side to the first wiring portion 24 and is connected to the first wiring portion 24.
  • the 1st wiring part 24 is made into the line
  • a portion that continues to the antenna body portion 118 extends linearly along the Y-axis direction, and the extending direction forms the antenna body portion 118 and continues to the first wiring portion 24.
  • the shape is orthogonal to the short side portion 118S.
  • each of the first wiring parts 24 constituting the lead wiring part 119 arranged at the outermost position and the one arranged at the intermediate position is connected to the second wiring part 25.
  • the portion is bent at a substantially right angle so as to extend along the X-axis direction, and is L-shaped as a whole as viewed in a plane.
  • the reverse magnetic field generation region OMA sandwiched between the first wiring portion 24 and the short side portion 118S connected to the first wiring portion 24 has a rectangular shape with the corners being substantially perpendicular as viewed in a plane.
  • the 1st wiring part 24 is comprised so that the length dimension may be set to 21 mm or less.
  • the dimension about the Y-axis direction in the reverse magnetic field generation region OMA is set to 21 mm or less. That is, the dimension in the Y-axis direction in the reverse magnetic field generation region OMA is substantially equal to the length of the first wiring part 24.
  • the second wiring part 25 is a wide part 123 whose line width is wider than that of the antenna element wire 121 and the first wiring part 24. That is, the lead-out wiring part 119 is configured to partially include the wide part 123.
  • the wide portion 123 constituting the second wiring portion 25 extends linearly along the Y-axis direction, and the line width is constant over the entire length. It can be said that there is.
  • the line width of the wide part 123 constituting the second wiring part 25 is preferably about 4 to 5 times the line width of the antenna element wire 121 and the first wiring part 24.
  • the plurality of second wiring portions 25 arranged along the X-axis direction can have substantially the same line width.
  • the maximum outer width dimension of the plurality of lead-out wiring portions 119 is a group of the plurality of second wiring portions 25 arranged along the X-axis direction. And the width is always constant regardless of the extended surface distance (screen size of the liquid crystal panel).
  • the transparent antenna 117 having the wide portion 123 and the lead-out wiring portion 119 described before this paragraph is used as the second embodiment, and the transparent antenna 117 according to the second embodiment is a liquid crystal having various screen sizes.
  • the Q value when used in a liquid crystal display device having a panel is measured, and the result is shown in FIG. In FIG. 11, the horizontal axis represents the screen size (unit: “inch”) of the liquid crystal panel, and the vertical axis represents the Q value (no unit) of the transparent antenna.
  • the horizontal axis represents the screen size (unit: “inch”) of the liquid crystal panel
  • the vertical axis represents the Q value (no unit) of the transparent antenna.
  • the graph of the comparative example which concerns on the comparative experiment 1 of above-described Embodiment 1, and Example 1 is described collectively.
  • the solid line graph represents the experimental result of Example 2
  • the broken line graph represents the experimental result of the comparative example
  • the two-dot chain line graph represents the experimental result of Example 1.
  • Each of the transparent antennas according to the comparative example and Examples 1 and 2 is configured such that the antenna main body portion is arranged at the center position in the Y-axis direction of the liquid crystal panel in the liquid crystal panel of the screen size. The extended surface distance of the lead-out wiring portion is increased as the screen size is increased.
  • Example 2 is a graph that always has a higher Q value than Comparative Example and Example 1, and the decrease rate of the Q value of the transparent antenna is smaller than that of Comparative Example and Example 1. It is said that. Specifically, in Example 2, the Q value is 10 or more even when the screen size of the liquid crystal panel exceeds 55 inches, and the Q value is about 12 even at 60 inches. Therefore, Example 2 can be applied to a liquid crystal display device including a liquid crystal panel having a screen size of at least 60 inches, and it is presumed that the embodiment 2 can also be applied to a screen size exceeding 60 inches.
  • the Q value of the transparent antenna 117 according to the second embodiment has a reduction rate as described above is that although the extended surface distance of the lead-out wiring portion 119 increases as the screen size of the liquid crystal panel increases, In the lead-out wiring part 119, the line width of the first wiring part 24 connected to the antenna body part 118 having a closed annular shape is equal to the line width of the antenna element wire 121 of the antenna body part 118. Compared to the case where the wiring portion is a wide portion, the magnetic field generated in the magnetic field generation region MA of the antenna main body 118 becomes stronger, and it is considered that a higher induced electromotive force can be obtained.
  • the lead-out wiring part 119 is arranged on the side opposite to the antenna body part 118 side with respect to the first wiring part 24 and the second wiring part 25 connected to the first wiring part 24 is the wide part 123.
  • the wiring resistance is suitably reduced while ensuring the high induced electromotive force obtained by the first wiring portion 24, and thus the Q value of the transparent antenna 117 is high.
  • the following comparative experiment 5 was performed in order to obtain knowledge about the relationship between the length of the first wiring portion 24 constituting the lead-out wiring portion 119 and the ratio of the strength of the reverse magnetic field by the additional coil.
  • the length in the extending direction (Y-axis direction) of the first wiring portion 24 is 10 mm to 200 mm. While changing in the range, the ratio of the intensity of the reverse magnetic field by the additional coil to the intensity of the normal magnetic field was measured, and the result is shown in FIG.
  • the horizontal axis represents the length (unit: “mm”) of the first wiring section 24, and the vertical axis represents the ratio of the intensity of the reverse magnetic field (unit: “%”).
  • the ratio of the strength of the reverse magnetic field due to the additional coil increases rapidly as the length of the first wiring section 24 increases from 10 mm to 40 mm.
  • the ratio of the strength of the reverse magnetic field reaches a peak (about 9.5%).
  • the ratio of the strength of the reverse magnetic field due to the additional coil gradually decreases, and the ratio of the strength of the reverse magnetic field from about 100 mm is almost constant at about 9%. (Saturates).
  • the strength of the reverse magnetic field generated due to the extension of the reverse magnetic field generation region OMA does not increase any more, but the length is in the range of 10 mm to 40 mm. Then, it is considered that the strength of the generated reverse magnetic field rapidly increases with the expansion of the reverse magnetic field generation region OMA.
  • the ratio of the strength of the reverse magnetic field exceeds 5%, whereas when the length of the first wiring portion 24 is 21 mm or less, the reverse magnetic field It can be seen that the strength ratio tends to be 5% or less.
  • the length of the first wiring portion 24 is set to 21 mm or less, and the strength ratio of the reverse magnetic field is set to 5% or less.
  • the strength ratio of the reverse magnetic field is set to 5% or less.
  • the lead-out wiring portion 119 is arranged on the opposite side of the first wiring portion 24 from the antenna main body 118 side with respect to the first wiring portion 24 connected to the antenna main body portion 118.
  • the second wiring portion 25 connected to the first wiring portion 24.
  • the first wiring portion 24 has a line width equivalent to that of the antenna main body 118, whereas the second wiring portion Reference numeral 25 denotes a wide portion 123.
  • the line width of the first wiring portion 24 connected to the antenna body portion 118 having a closed annular shape in the lead-out wiring portion 119 is made equal to the line width of the antenna body portion 118.
  • the magnetic field generated in the magnetic field generation region MA of the antenna main body 118 becomes stronger, and thereby a higher induced electromotive force can be obtained.
  • the second wiring portion 25 arranged on the opposite side of the first wiring portion 24 from the antenna body portion 118 side and continuing to the first wiring portion 24 is a wide portion 123.
  • the wiring resistance can be suitably reduced while securing the high induced electromotive force obtained by the wiring part 24. As described above, higher antenna performance can be obtained.
  • the antenna main body 118 has four sides 118L and 118S so that the planar shape is a square ring, and the first wiring portion 24 is one short side 118S constituting the antenna main body 118. And extending in a direction orthogonal to the continuous short side portion 118S, and the length dimension thereof is 21 mm or less.
  • the first wiring portion 24 in the lead-out wiring portion 119 and the short side portion 118S connected to the first wiring portion 24 in the antenna main body 118 can constitute an additional coil, and a magnetic field generated by the additional coil.
  • the first wiring portion 24 is connected to one short side portion 118S constituting the antenna main body 118 having a square ring shape in plan view, and extends in a direction orthogonal to the continuous short side portion 118S. Therefore, as compared with the case where the first wiring portion is configured to be inclined with respect to the short side portion 118S, the reverse magnetic field tends to become stronger, and the length dimension of the first wiring portion 24 is increased.
  • the length dimension of the first wiring part 24 is set to 21 mm or less, the region where the reverse magnetic field is generated becomes sufficiently narrow and the ratio of the reverse magnetic field becomes sufficiently low. It is possible to sufficiently suppress the deterioration of the antenna performance caused by.
  • the wide portion 123 includes a constant line width wide portion whose line width is constant.
  • the wide space portion 123 constituting the second wiring portion 25 includes the constant line width constant width portion, so that the arrangement space of the transparent antenna 117 can be made compact. . This is suitable when a plurality of the transparent antennas 117 are arranged side by side.
  • the lead-out wiring portion 219 constituting the transparent antenna 217 has a maximum outer width dimension W1 that is substantially the same as the maximum outer width dimension W2 in the antenna main body 218.
  • the lead-out wiring portion 219 has the maximum line width at the end on the antenna connection wiring 220 side. Therefore, the maximum outer width dimension W1 in the plurality of lead wiring part 219 groups arranged along the X-axis direction matches the outer width dimension at the end portion on the antenna connection wiring 220 side.
  • the arrangement space in the X-axis direction in the lead wiring portion 219 group is equivalent to the same arrangement space in the antenna main body portion 218.
  • FIG. 14 when a plurality of transparent antennas 217 are arranged along the X-axis direction in the display area AA of the liquid crystal panel, the transparent antennas 217 can be efficiently arranged. Is done.
  • a plurality of the lead wiring portions 219 are arranged side by side, and the maximum outer width dimension W1 of the plurality of lead wiring portions 219 is the maximum outer width dimension of the antenna main body portion 218. It is configured to be the same as W2. In this way, the arrangement space of the transparent antenna 217 can be made compact. This is suitable when a plurality of the transparent antennas 217 are arranged side by side.
  • the liquid crystal display device 310 includes a touch panel 26 arranged on the front side of the transparent antenna substrate 312, that is, on the opposite side of the liquid crystal panel 311, and the touch panel 26.
  • a cover panel 27 is provided so as to overlap the front side.
  • the touch panel 26 is substantially the same size and shape as viewed from the plane and has a touch panel pattern (not shown) for detecting position information input by the user on the plate surface. It has been.
  • the touch panel pattern provided on the touch panel 26 is preferably a projected capacitive type.
  • the cover panel 27 is made of a plate-like base material made of glass that is substantially transparent and has excellent translucency, and preferably made of tempered glass.
  • the tempered glass used for the cover panel 27 it is preferable to use chemically tempered glass having a chemically strengthened layer on the surface, for example, by subjecting the surface of a plate-shaped glass substrate to chemical tempering treatment. Since the cover panel 27 has high mechanical strength and impact resistance, the touch panel 26, the transparent antenna substrate 312 and the liquid crystal panel 311 arranged on the back side of the cover panel 27 are more reliably damaged or damaged. Can be prevented.
  • a fifth embodiment of the present invention will be described with reference to FIG.
  • the lead-out wiring portion 419 includes a first wiring portion 424 having a variable line width and a second wiring portion 425 having a constant line width.
  • the first wiring portion 424 gradually increases in width as it moves away from the antenna body portion 418 and is inclined with respect to the direction along the side portions 418L and 418S constituting the antenna body portion 418. It has a shape.
  • the first wiring portion 424 is a “wide portion 423” whose line width is wider than the line width of the antenna element wire 421 constituting the antenna main body 418, and the line width depends on the position in the extending direction.
  • the first wiring portion 424 has an inclination angle of 14 degrees or more with respect to the direction orthogonal to the short side portion 418S to be connected in the antenna body 418, that is, the Y-axis direction, specifically 14 degrees to 15 degrees. It is comprised so that it may become.
  • the second wiring portion 425 is a “wide portion 423” in which the line width is made wider than the line width of the antenna element wire 421 constituting the antenna main body portion 418, as described in the second embodiment. Furthermore, a “line width constant wide portion” in which the line width is constant over the entire length.
  • the line widths of the first wiring part 424 and the second wiring part 425 are wider than the line width of the antenna element wire 421 constituting the antenna main body part 418. It can be said that the entire region is the “wide portion 423”. According to such a configuration, in addition to being able to suitably reduce the wiring resistance related to the lead-out wiring part 419, the first wiring part 424 can suitably reduce the ratio of the strength of the reverse magnetic field. In addition, the second wiring portion 425 can make the arrangement space of the transparent antenna 417 compact.
  • Embodiment 6 of the present invention will be described with reference to FIG.
  • the lead-out wiring portion 519 includes a first wiring portion 524 having a constant line width and a second wiring portion 525 having a variable line width.
  • the first wiring portion 524 has a line width substantially the same as the line width of the antenna element wire 521 constituting the antenna main body portion 518 and is constant over the entire length, similar to that described in the second embodiment. “Line width constant part”.
  • the second wiring portion 525 gradually increases in width as it moves away from the antenna body portion 518 and the first wiring portion 524, and in the direction along the side portions 518L and 518S constituting the antenna body portion 518. On the other hand, it is inclined.
  • the second wiring portion 525 is a “wide portion 523” whose line width is wider than the line width of the antenna element wire 521 constituting the antenna body portion 518, and the line width depends on the position in the extending direction. It can be said that it is a “line width variable wide portion” that can be varied and an “inclined wide portion” whose outer edge extends while forming an inclined shape. According to such a configuration, the induced electromotive force of the antenna main body 518 can be improved by the first wiring part 524, and the wiring resistance related to the lead-out wiring part 519 can be suitably reduced by the second wiring part 525. Can do.
  • a seventh embodiment of the present invention will be described with reference to FIG.
  • the lead-out wiring section 619 has a first wiring section 624 whose line width is variable, and a line width change rate and a change rate of the line width from the first wiring section 624. And a small second wiring portion 625.
  • the first wiring portion 624 gradually increases in width as it moves away from the antenna main body 618 and is inclined with respect to the direction along the side portions 618L and 618S constituting the antenna main body 618. ing. That is, the first wiring portion 624 is a “wide portion 623” whose line width is wider than the line width of the antenna element wire 621 constituting the antenna main body 618, and the line width depends on the position in the extending direction.
  • the first wiring portion 624 is configured such that the inclination angle formed with respect to the direction orthogonal to the short side portion 618S to be connected in the antenna body portion 618, that is, the Y-axis direction is, for example, about 20 degrees.
  • the second wiring portion 625 gradually increases in width as it moves away from the antenna main body portion 618 and the first wiring portion 624, and in the direction along the side portions 618L and 618S constituting the antenna main body portion 618. On the other hand, it is inclined.
  • the change rate of the line width in the second wiring part 625 is set to be smaller than the change rate of the line width in the first wiring part 624. Accordingly, the second wiring part 625 is configured such that the inclination angle formed with respect to the Y-axis direction is smaller than the same inclination angle of the first wiring part 624, specifically, for example, about 14 to 15 degrees. Has been. Similar to the first wiring part 624, the second wiring part 626 can be said to be a “wide part 623”, a “line width variable wide part”, and a “inclined wide part”.
  • the ratio of the strength of the reverse magnetic field can be more suitably reduced by the first wiring portion 624 having a larger inclination angle with respect to the Y-axis direction than the lead-out wiring portion 19 described in the first embodiment.
  • the arrangement space of the transparent antenna 617 can be made compact by the second wiring part 625 having a smaller inclination angle with respect to the Y-axis direction than the first wiring part 624.
  • the wide portion 723 constituting the lead-out wiring portion 719 has a curved shape whose outer edge is curved in a substantially arc shape.
  • the wide portion 723 is configured so that the line width gradually increases as the distance from the antenna body 718 increases, but the rate of change thereof is configured to gradually decrease as the distance from the antenna body 718 increases.
  • the area of the reverse magnetic field generation region OMA where the reverse magnetic field is generated is suitably reduced, so that the strength ratio of the reverse magnetic field can be suitably reduced.
  • Embodiment 9 of the present invention will be described with reference to FIG.
  • a configuration in which the configuration of the lead-out wiring portion 819 is changed from the above-described eighth embodiment is shown.
  • action, and effect as above-mentioned Embodiment 8 is abbreviate
  • the wide portion 823 constituting the lead-out wiring portion 819 according to the present embodiment gradually becomes wider as the distance from the antenna main body portion 818 increases. It is configured to gradually increase as the distance from the portion 818 increases.
  • the lead-out wiring section 919 is arranged on the opposite side of the first wiring section 924 that is continuous with the antenna main body section 918 and the first wiring section 924 from the antenna main body section 918 side.
  • the first wiring portion 924 and the third wiring portion 28 have their line widths gradually widened as they move away from the antenna main body portion 918, and each side portion 918L, 918S constituting the antenna main body portion 918 is included.
  • the first wiring portion 924 and the third wiring portion 28 are “wide portions 923” whose line width is wider than the line width of the antenna element wire 921 constituting the antenna main body portion 918, and the line width extends in the extending direction. It can be said that it is a “line width variable wide portion” that varies depending on the position, and further, it is a “inclined wide portion” whose outer edge extends while forming an inclined shape.
  • the first wiring part 924 has an inclination angle of 14 degrees or more with respect to the direction orthogonal to the short side part 918S to be connected in the antenna body part 918, that is, the Y-axis direction, specifically 14 degrees to 15 degrees.
  • the second wiring portion 925 is a “wide portion 923” in which the line width is made wider than the line width of the antenna element wire 921 constituting the antenna main body portion 918, as described in the second embodiment. Furthermore, it is a “line width constant wide portion” in which the line width is constant over the entire length.
  • the third wiring portion 28 has a minimum line width wider than the maximum line width of the first wiring portion 924 and wider than the line width of the second wiring portion 925. As described above, in the lead-out wiring portion 919, the line widths of the first wiring portion 924, the second wiring portion 925, and the third wiring portion 28 are larger than the line width of the antenna element wire 921 constituting the antenna main body portion 918. It can be said that the entire area is the “wide part 923”.
  • the lead-out wiring part 1019 includes a first wiring part 1024 having a constant line width, a second wiring part 1025 having a variable line width, and a constant line width.
  • the third wiring portion 1028 is configured.
  • the first wiring portion 1024 has a line width that is substantially the same as the line width of the antenna element wire 1021 that constitutes the antenna main body portion 1018 and is constant over the entire length, similar to that described in the second embodiment. “Line width constant part”. As the second wiring portion 1025 moves away from the antenna main body portion 1018 and the first wiring portion 1024, the line width gradually increases, and in the direction along the side portions 1018L and 1018S constituting the antenna main body portion 1018. On the other hand, it is inclined.
  • the second wiring portion 1025 is a “wide portion 1023” whose line width is wider than the line width of the antenna element wire 1021 constituting the antenna body portion 1018, and the line width depends on the position in the extending direction. It can be said that it is a “line width variable wide portion” that can be varied and an “inclined wide portion” whose outer edge extends while forming an inclined shape.
  • the third wiring portion 1028 is a “wide portion 1023” whose line width is wider than the line width of the antenna element wire 1021 constituting the antenna body portion 1018, and the line width is made constant over the entire length. It is a “constant wide part”.
  • the lead-out wiring portion 1119 is all constant although the line widths of the first wiring portion 1124, the second wiring portion 1125, and the third wiring portion 1128 are different.
  • the first wiring portion 1124 has a line width that is substantially the same as the line width of the antenna element wire 1121 that constitutes the antenna main body portion 1118 and is constant over the entire length, as described in the second embodiment. “Line width constant part”.
  • the second wiring portion 1125 is a “wide portion 1123” whose line width is wider than the line widths of the antenna wire 1121 and the first wiring portion 1124 constituting the antenna main body 1118, and the line width extends over the entire length. It is a “line width constant wide portion” that is constant.
  • the third wiring portion 1128 is a “wide portion 1123” whose line width is wider than that of the second wiring portion 1125, and is a “line width constant wide portion” whose line width is constant over the entire length. is there. That is, it can be said that the lead-out wiring portion 1119 has a configuration in which the line width gradually increases stepwise as the distance from the antenna body portion 1118 increases.
  • the lead-out wiring portion 1219 has a line width as the first wiring portion 1224, the second wiring portion 1225, and the third wiring portion 1228 all move away from the antenna main body portion 1218. Is to be widened. As the first wiring portion 1224 moves away from the antenna main body portion 1218, the line width gradually increases, and the first wiring portion 1224 is inclined with respect to the direction along the side portions 1218L and 1218S constituting the antenna main body portion 1218. ing. That is, the first wiring portion 1224 is a “wide portion 1223” whose line width is wider than the line width of the antenna element wire 1221 constituting the antenna main body 1218, and the line width depends on the position in the extending direction.
  • the first wiring portion 1224 is configured such that an inclination angle formed with respect to the direction orthogonal to the short side portion 1218S to be connected in the antenna main body portion 1218, that is, the Y-axis direction is, for example, about 20 degrees.
  • the second wiring portion 1225 gradually increases in width as the distance from the first wiring portion 1224 increases, and the second wiring portion 1225 is inclined with respect to the direction along the side portions 1218L and 1218S constituting the antenna body 1218. There is no.
  • the change rate of the line width in the second wiring part 1225 is set to be smaller than the change rate of the line width in the first wiring part 1224. Therefore, the second wiring portion 1225 is configured such that the inclination angle formed with respect to the Y-axis direction is smaller than that of the first wiring portion 1224, specifically, for example, about 14 degrees to 15 degrees. Has been.
  • the second wiring portion 1226 can be said to be a “wide portion 1223”, a “line width variable wide portion”, and further, an “inclined wide portion”.
  • the third wiring portion 1228 gradually increases in width as it moves away from the second wiring portion 1225, and is inclined with respect to the direction along the side portions 1218L and 1218S constituting the antenna main body portion 1218.
  • the change rate of the line width in the third wiring part 1228 is set to be smaller than the change rate of the line width in the second wiring part 1225. Therefore, the third wiring portion 1228 is configured such that the inclination angle formed with respect to the Y-axis direction is smaller than the same inclination angle of the second wiring portion 1225, specifically, for example, about 10 degrees. .
  • the third wiring portion 1228 is a “wide portion 1223”, a “line width variable wide portion”, and further, an “inclined wide portion”. It can be said.
  • the present invention is not limited to the embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the transparent antenna is configured by the composite conductive film in which the transparent electrode film (ITO) is laminated on the mesh metal film. You may do it.
  • ITO transparent electrode film
  • the inclination angle in the inclined wide portion, the change rate of the line width in the line width variable wide portion, the length of the first wiring portion, the constant line width wide portion, and the constant line width portion can be appropriately changed.
  • the size relationship between the maximum outer width dimension of the antenna main body and the maximum outer width dimension of the lead-out wiring portion can be changed as appropriate, for example, the latter is smaller than the former, or conversely, the former The latter can be made larger.
  • the transparent antenna is illustrated in the vicinity of the central position in the Y-axis direction of the liquid crystal panel.
  • the X-axis direction and the Y-axis direction of the transparent antenna in the plane of the liquid crystal panel The specific arrangement of can be changed as appropriate.
  • the transparent antenna may be disposed above or below the center position in the Y-axis direction within the plane of the liquid crystal panel, and may be disposed near the center position in the X-axis direction.
  • planar shape of the antenna main body is a vertically long square
  • planar shape of the antenna main body may be a horizontally long square or a square. Is possible.
  • planar shape of the antenna body may be a circle or an ellipse.
  • the lead-out wiring portion is configured to extend downward from the antenna main body portion in the Y-axis direction in the liquid crystal display device. It is also possible to adopt a configuration extending from the main body portion toward the upper side in the Y-axis direction of the liquid crystal display device. Furthermore, it is also possible to adopt a configuration in which the lead-out wiring part extends from the antenna main body part to either the left or right side in the X-axis direction of the liquid crystal display device. It is preferable to rotate the angle.
  • the antenna main body portion is configured with three antenna strands.
  • the number (number of turns) of the antenna strands constituting the antenna main body portion can be changed as appropriate. It is.
  • the number of lead-out wiring sections and the number of antenna connection wiring sections may be changed accordingly.
  • the transparent antenna has a symmetrical shape is illustrated, but the transparent antenna may have an asymmetric shape.
  • the antenna main body portion has a closed ring shape surrounding the magnetic field generation region.
  • the antenna main body portion has an open ring shape so as to open between both ends of the antenna element wire.
  • the present invention is also applicable to the antenna main body.
  • planar shape of the liquid crystal panel is a horizontally long rectangular shape.
  • planar shape of the liquid crystal panel may be a vertically long rectangular shape, a square shape, or the like. is there.
  • planar shape of the liquid crystal panel may be a circle or an ellipse, or the planar shape of the outer peripheral edge of the liquid crystal panel may be a form in which straight lines and curves are combined. .
  • liquid crystal display device including a liquid crystal panel having a screen size of 30 inches to 60 inches is exemplified, but the present invention is also applied to a liquid crystal display device including a liquid crystal panel having a screen size of 30 inches or less. The invention is applicable.
  • liquid crystal display device used in an electronic device such as an information display, an electronic blackboard, and a television receiver
  • present invention is also applicable to liquid crystal display devices used in electronic devices such as tablet-type terminals, fablet-type terminals, smartphones, mobile phones, and portable game machines.
  • the liquid crystal display device including the touch panel and the cover panel is illustrated, but it is also possible to adopt a configuration in which a touch panel pattern is provided on the cover panel and the touch panel is omitted. Further, the touch panel can be omitted by providing the touch panel pattern on the liquid crystal panel. In that case, it is also possible to omit the cover panel.
  • the pixel electrode is disposed on the array substrate side
  • the common electrode is disposed on the CF substrate side
  • the pixel electrode and the common electrode are overlapped with a liquid crystal layer interposed therebetween.
  • a liquid crystal panel (VA mode liquid crystal panel) having the above configuration is illustrated, but the pixel electrode and the common electrode are both disposed on the array substrate side, and an insulating film is interposed between the pixel electrode and the common electrode.
  • the present invention can also be applied to a liquid crystal display device using a liquid crystal panel (FFS mode liquid crystal panel) that is superposed on the LCD.
  • the present invention can be applied to a liquid crystal display device using a so-called IPS mode liquid crystal panel.
  • the liquid crystal panel color filter is exemplified by a three-color configuration of red, green, and blue.
  • the present invention can also be applied to a color filter having a four-color configuration.
  • a transmissive liquid crystal display device including a backlight device that is an external light source has been exemplified.
  • the present invention provides a reflective liquid crystal display device that performs display using external light.
  • the backlight device can be omitted.
  • the present invention can also be applied to a transflective liquid crystal display device.
  • the TFT is used as the switching element of the liquid crystal panel.
  • the present invention can be applied to a liquid crystal display device having a liquid crystal panel for monochrome display.
  • the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified, but other types of display panels (PDP (plasma display panel), organic EL panel, EPD (electrophoretic display panel)
  • PDP plasma display panel
  • organic EL panel organic EL panel
  • EPD electrochrometic display panel
  • the present invention can also be applied to display devices using the above. In these cases, the backlight device can be omitted.
  • the present invention can also be applied to a display device using a MEMS display panel.
  • SYMBOLS 10,310 Liquid crystal display device (display device with a transparent antenna), 11,311 ... Liquid crystal panel (display panel), 12,312 ... Transparent antenna substrate, 17, 117, 217 ... Transparent antenna , 18, 118, 218, 418, 518, 618, 718, 818, 918, 1018, 1118, 1218 ... antenna body, 18L, 118L, 418L, 518L, 618L, 918L, 1018L, 1218L ... long Side (side), 18S, 118S, 418S, 518S, 618S, 918S, 1018S, 1218S ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)

Abstract

透明アンテナ17は、環状をなしていてその中心側に磁場を発生させるアンテナ本体部18と、アンテナ本体部18から引き出される引き出し配線部19であって、アンテナ本体部18の線幅よりも広い線幅とされる幅広部23を少なくとも一部に有する引き出し配線部19と、を備える。

Description

透明アンテナ及び透明アンテナ付き表示装置
 本発明は、透明アンテナ及び透明アンテナ付き表示装置に関する。
 従来、ディスプレイの画面に取り付けられて外部機器などとの通信を行うための透明アンテナの一例として下記特許文献1に記載されたものが知られている。この特許文献1には、絶縁性を有するシート状の透明基体と、この透明基体の表面に面状に形成されるアンテナパターンとを有し、上記アンテナパターンの導電部が網目構造の導電性薄膜からなり、各網目の輪郭が略等幅の極細帯で構成され、上記アンテナパターン形成部の光線透過率が70%以上とされるディスプレイ用の透明アンテナが記載されている。
特許第4814223号公報
(発明が解決しようとする課題)
 上記した特許文献1に記載された透明アンテナを構成するアンテナパターンは、網目構造の導電性薄膜からなるものとされている。しかしながら、近年ではより高いアンテナ性能が求められる傾向にあり、そのような高いアンテナ性能を満たすには、上記した網目構造の導電性薄膜からなるアンテナパターンでは配線抵抗が十分に低くなっているとは言い難いものがあった。しかも、透明アンテナをディスプレイの画面中央寄りに配置することが求められるのに加えて、近年ではディスプレイの画面サイズの大型化が進行していることから、透明アンテナの配線抵抗がより高くなる傾向にある。透明アンテナの配線抵抗が高くなると、透明アンテナのアンテナ性能が低下するという問題があった。
 本発明は上記のような事情に基づいて完成されたものであって、アンテナ性能を向上させることを目的とする。
(課題を解決するための手段)
 本発明の透明アンテナは、環状をなしていてその中心側に磁場を発生させるアンテナ本体部と、前記アンテナ本体部から引き出される引き出し配線部であって、前記アンテナ本体部の線幅よりも広い線幅とされる幅広部を少なくとも一部に有する引き出し配線部と、を備える。
 このようにすれば、引き出し配線部に通電することで、環状をなすアンテナ本体部に電流が流されると、電磁誘導作用によりアンテナ本体部の中心側に磁場が発生するものとされる。この引き出し配線部は、アンテナ本体部の線幅よりも広い線幅とされる幅広部を少なくとも一部に有しているから、当該透明アンテナの配線抵抗を低下させることができる。これにより、当該透明アンテナのQ値が高まり、もってアンテナ性能の向上が図られる。
 本発明の透明アンテナの実施態様として、次の構成が好ましい。
(1)前記アンテナ本体部は、その中心側にあって前記磁場が発生する磁場発生領域を取り囲む形で閉じた環状をなすものとされる。このようにすれば、仮にアンテナ本体部を開いた形の環状とした場合に比べると、高い誘導起電力を得ることができる。これにより、より高いアンテナ性能が得られる。
(2)前記幅広部には、前記アンテナ本体部から遠ざかるのに従って次第に線幅が広くなる線幅可変幅広部が含まれている。このようにすれば、閉じた環状をなすアンテナ本体部から引き出される引き出し配線部を構成する幅広部に、アンテナ本体部から遠ざかるのに従って次第に線幅が広くなる線幅可変幅広部を含ませているので、仮に幅広部の線幅を一定とした場合に比べると、アンテナ本体部の高い誘導起電力を保ちつつ配線抵抗を好適に低減することができる。
(3)前記アンテナ本体部は、平面形状が方形の環状をなすよう4つの辺部を有しているのに対し、前記線幅可変幅広部は、前記アンテナ本体部を構成する1つの前記辺部に連ねられており、前記線幅可変幅広部には、前記アンテナ本体部を構成する前記辺部に沿う方向に対して傾斜状をなす傾斜状幅広部が含まれている。引き出し配線部における線幅可変幅広部と、アンテナ本体部のうちの線幅可変幅広部に連なる辺部とは、付加コイルを構成し得るものとされ、その付加コイルにより発生する磁場(これを逆向き磁場と言う)が、アンテナ本体部の中心側の磁場発生領域に発生する磁場とは逆向きとなるため、それに起因してアンテナ性能が劣化することが懸念される。その点、線幅可変幅広部には、アンテナ本体部を構成する辺部に沿う方向に対して傾斜状をなす傾斜状幅広部が含まれているから、仮に線幅可変幅広部が連なる辺部に対して直交する方向に沿って延在する構成とした場合に比べると、逆向き磁場が発生する領域が狭くなるので、逆向き磁場の比率が相対的に低いものとなる。これにより、逆向き磁場に起因するアンテナ性能の劣化を抑制することができる。
(4)前記引き出し配線部は、複数が並んで配されており、複数の前記引き出し配線部のうち、最外位置に配されたものに有される前記線幅可変幅広部は、前記アンテナ本体部のうち前記線幅可変幅広部に連なる前記辺部と直交する方向に対して14度以上の角度をなすよう構成されている。仮に最外位置に配された引き出し配線部に有される線幅可変幅広部が、アンテナ本体のうち線幅可変幅広部に連なる辺部と直交する方向に対してなす角度が14度よりも小さくされると、逆向き磁場の比率が高くなり過ぎるため、アンテナ性能の劣化が看過できないものとなるおそれがある。その点、最外位置に配された引き出し配線部に有される線幅可変幅広部が、アンテナ本体のうち線幅可変幅広部に連なる辺部と直交する方向に対してなす角度が14度以上とされることで、逆向き磁場が発生する領域が十分に狭くなって逆向き磁場の比率が十分に低いものとなるので、逆向き磁場に起因するアンテナ性能の劣化を十分に抑制することができる。
(5)前記引き出し配線部は、その全域が前記幅広部により構成されている。このようにすれば、仮に引き出し配線部の一部の線幅をアンテナ本体部の線幅と同じにした場合に比べると、引き出し配線部の面積がより大きく確保されるので、当該透明アンテナの配線抵抗がより低下し、もってアンテナ性能のさらなる向上が図られる。
(6)前記引き出し配線部は、前記アンテナ本体部に連なる第1配線部と、前記第1配線部に対して前記アンテナ本体部側とは反対側に配されて前記第1配線部に連なる第2配線部と、を少なくとも有しており、前記第1配線部は、前記アンテナ本体部と同等の線幅とされるのに対し、前記第2配線部は、前記幅広部とされる。このようにすれば、引き出し配線部のうち、閉じた環状をなすアンテナ本体部に連なる第1配線部の線幅がアンテナ本体部の線幅と同等とされているので、仮に第1配線部を幅広部とした場合に比べると、アンテナ本体部の磁場発生領域に発生する磁場がより強いものとなり、それにより、より高い誘導起電力が得られる。これに対し、第1配線部に対してアンテナ本体部側とは反対側に配されて第1配線部に連なる第2配線部は、幅広部とされているので、第1配線部によって得られる高い誘導起電力を担保しつつも配線抵抗を好適に低減することができる。以上により、より高いアンテナ性能が得られる。
(7)前記アンテナ本体部は、平面形状が方形の環状をなすよう4つの辺部を有しており、前記第1配線部は、前記アンテナ本体部を構成する1つの前記辺部に連ねられるとともにその連なる前記辺部に対して直交する方向に沿って延在していて、さらにその長さ寸法が21mm以下となるよう構成されている。引き出し配線部における第1配線部と、アンテナ本体部のうちの第1配線部に連なる辺部とは、付加コイルを構成し得るものとされ、その付加コイルにより発生する磁場(これを逆向き磁場と言う)が、アンテナ本体部の中心側の磁場発生領域に発生する磁場とは逆向きとなるため、それに起因してアンテナ性能が劣化することが懸念される。特に、第1配線部は、平面形状が方形の環状をなすアンテナ本体部を構成する1つの辺部に連なるとともにその連なる辺部に対して直交する方向に沿って延在しているため、仮に第1配線部が連なる辺部に対して傾斜状をなす構成とした場合に比べると、逆向き磁場が強くなる傾向にあり、第1配線部の長さ寸法を21mmよりも大きくすると、逆向き磁場に起因するアンテナ性能の劣化が看過できないほどになるおそれがある。その点、第1配線部の長さ寸法を21mm以下とすることで、逆向き磁場が発生する領域が十分に狭くなって逆向き磁場の比率が十分に低いものとなるので、逆向き磁場に起因するアンテナ性能の劣化を十分に抑制することができる。
(8)前記幅広部には、その線幅が一定とされる線幅一定幅広部が含まれている。このようにすれば、第2配線部を構成する幅広部に線幅が一定とされる線幅一定幅広部が含まれることで、当該透明アンテナの配置スペースをコンパクトにすることができる。これにより、当該透明アンテナを複数並べて配置するような場合に好適となる。
(9)前記引き出し配線部は、複数が並んで配されるとともにそれら複数の前記引き出し配線部における最大外幅寸法が、前記アンテナ本体部における最大外幅寸法と同じかそれよりも小さくなるよう構成されている。このようにすれば、当該透明アンテナの配置スペースをコンパクトにすることができる。これにより、当該透明アンテナを複数並べて配置するような場合に好適となる。
(10)前記アンテナ本体部及び前記引き出し配線部は、網目状をなす金属膜からなるとともに、前記金属膜にパターニングされるスリットによりその平面形状が画定されている。このようにすれば、当該透明アンテナの透光性を担保しつつ、配線抵抗の低抵抗化を図ることができる。
 次に、上記課題を解決するために、本発明の透明アンテナ付き表示装置は、上記した透明アンテナと、前記透明アンテナが設けられる透明アンテナ基板と、前記透明アンテナ基板に積層される形で配される表示パネルであって、画像を表示可能な表示領域とその周りを取り囲む非表示領域とを有する表示パネルと、を備えており、前記透明アンテナは、前記表示領域と重畳する位置に配されている。
 このようにすれば、表示パネルの表示領域と重畳する位置に配された透明アンテナを利用することで、例えば外部機器などとの通信を行うことが可能となる。表示領域に表示された画像に基づいて外部機器を透明アンテナに接近させる、などの操作を行うことが可能となるので、利便性などに優れる。そして、透明アンテナのアンテナ性能が十分に高いものとされているので、外部機器などとの通信を良好に行うことができる。
 本発明の透明アンテナ付き表示装置の実施態様として、次の構成が好ましい。
(1)前記透明アンテナ基板には、前記非表示領域と重畳する位置に配されるとともに前記引き出し配線部に接続されるアンテナ接続配線部が設けられている。このようにすれば、非表示領域と重畳する位置に配されたアンテナ接続配線部を引き出し配線部に接続するようにしているから、例えばアンテナ接続配線部を、遮光性を有する金属膜からなる構成とすることが可能となる。これにより、透明アンテナの配線抵抗をより低下させることが可能となる。
(2)前記透明アンテナは、前記アンテナ本体部が複数のアンテナ素線を有するとともに、前記引き出し配線部が前記アンテナ素線の各端部のそれぞれに対して個別に接続される形で複数備えられる構成とされており、前記アンテナ接続配線部には、互いに異なる前記アンテナ素線の端部に接続される2本の前記引き出し配線部間を短絡させる短絡配線部が含まれている。このようにすれば、互いに異なるアンテナ素線の端部に接続される2本の引き出し配線部間を短絡配線部によって短絡させることで、短絡された2本の引き出し配線部に対してそれぞれ接続されたアンテナ素線に電流を流すことが可能となる。これにより、アンテナ本体部の中心側に磁場を発生させることができる。
(発明の効果)
 本発明によれば、アンテナ性能を向上させることができる。
本発明の実施形態1に係る液晶表示装置の斜視図 液晶表示装置の概略構成を示す断面図 液晶表示装置の正面図 透明アンテナの平面図 透明アンテナの拡大図 透明アンテナに対して機器側アンテナの平面配置がずれた状態を示す平面図 比較実験1において、比較例及び実施例1に係る透明アンテナのQ値と、液晶パネルの画面サイズとの関係を表すグラフ 比較実験2において、幅広部の傾斜角度と、逆向き磁場の強度の比率との関係を表すグラフ 比較実験3において、機器側アンテナを異なる3通りの平面配置としたときの実施例1に係る透明アンテナのQ値と、液晶パネルの画面サイズとの関係を表すグラフ 本発明の実施形態2に係る透明アンテナの平面図 比較実験4において、比較例及び実施例1,2に係る透明アンテナのQ値と、液晶パネルの画面サイズとの関係を表すグラフ 比較実験5において、第1配線部の長さと、逆向き磁場の強度の比率との関係を表すグラフ 本発明の実施形態3に係る透明アンテナの平面図 液晶表示装置の正面図 本発明の実施形態4に係る液晶表示装置の概略構成を示す断面図 本発明の実施形態5に係る透明アンテナの平面図 本発明の実施形態6に係る透明アンテナの平面図 本発明の実施形態7に係る透明アンテナの平面図 本発明の実施形態8に係る透明アンテナの平面図 本発明の実施形態9に係る透明アンテナの平面図 本発明の実施形態10に係る透明アンテナの平面図 本発明の実施形態11に係る透明アンテナの平面図 本発明の実施形態12に係る透明アンテナの平面図 本発明の実施形態13に係る透明アンテナの平面図
 <実施形態1>
 本発明の実施形態1を図1から図9によって説明する。本実施形態では、透明アンテナ17による外部機器(図示せず)との通信が可能とされる、透明アンテナ付きの液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。
 まず、液晶表示装置10の構成について説明する。液晶表示装置10は、図1に示すように、画像を表示する液晶パネル(表示パネル)11と、液晶パネル11に対して外側(表側)に対向状に配されるとともに透明アンテナ17が設けられた透明アンテナ基板12と、液晶パネル11に向けて光を照射する外部光源であるバックライト装置(照明装置)13と、を備えている。このうち、互いに対向した状態で積層される液晶パネル11及び透明アンテナ基板12は、その間にほぼ透明な接着層(図示せず)介在させることで相互に固着されて一体化されている。この接着層としては、例えばOCA(Optical Clear Adhesive)テープなどを用いるのが好ましい。また、液晶表示装置10は、バックライト装置13を収容するシャーシ14と、シャーシ14との間でバックライト装置13を保持するフレーム15と、フレーム15との間で液晶パネル11及び透明アンテナ基板12を保持するベゼル16と、を備えている。
 本実施形態に係る液晶表示装置10は、インフォメーションディスプレイ、電子黒板、テレビ受信装置などの各種電子機器(図示せず)に用いられるものである。このため、液晶表示装置10を構成する液晶パネル11の画面サイズは、30数インチ~50数インチ程度とされ、一般的には中型から大型に分類される大きさとされている。また、液晶表示装置10と外部機器との通信方式としては、NFC(Near Field Communication)などの近距離無線通信を用いるのが好ましいものとされる。液晶表示装置10との間で近距離無線通信を行う外部機器の具体例としては、それぞれ機器側アンテナDAを内蔵したICカードやスマートフォンなどが挙げられる。使用者は、ICカードやスマートフォンなどの外部機器を、液晶表示装置10の表示に従って透明アンテナ17に接近させることで、外部機器の機器側アンテナDAと透明アンテナ17との間で近距離無線通信を行うことが可能とされる。なお、図4では、機器側アンテナDAの外形を一点鎖線により図示している。
 液晶パネル11は、図2及び図3に示すように、平面に視て横長の方形(長方形)をなしており、透光性に優れた一対のガラス製の基板が所定のギャップを隔てた状態で貼り合わせられるとともに、両基板間に液晶が封入された構成とされる。液晶パネル11は、その長辺方向がX軸方向と、短辺方向がY軸方向と、厚さ方向がZ軸方向とそれぞれ一致する姿勢で液晶表示装置10に組み込まれている。一対の基板のうち、一方の基板(アレイ基板)には、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子(例えばTFT)と、そのスイッチング素子に接続された画素電極、さらには配向膜等が設けられ、他方の基板(CF基板)には、R(赤色),G(緑色),B(青色)等の各着色部が所定配列で配置されたカラーフィルタや対向電極、さらには配向膜等が設けられている。この液晶パネル11は、その表示面が、画面中央側にあって画像が表示可能な表示領域(アクティブエリア)AAと、画面外周端側にあって表示領域AAの周りを取り囲む枠状(額縁状)をなす非表示領域(ノンアクティブエリア)NAAとに区分されている。表示領域AAは、横長の方形状をなしているのに対し、非表示領域NAAは、横長の枠状をなしている。図3において一点鎖線により囲んだ範囲が表示領域AAとされ、その外側が非表示領域NAAとされる。なお、一対の基板の外面側には、表裏一対の偏光板がそれぞれ貼り付けられている。このような構成の液晶パネル11に光を供給するバックライト装置13は、光源(例えば冷陰極管、LED、有機ELなど)と、光源から発せられる面状に変換するなどの光学機能を有する光学部材と、を少なくとも備えてなるものとされる。
 次に、透明アンテナ基板12及びそこに設けられる透明アンテナ17について説明する。透明アンテナ基板12は、例えばPET(polyethylene terephthalate)などの合成樹脂材料からなり、優れた透光性を有していてほぼ透明とされている。透明アンテナ基板12は、図2及び図3に示すように、シート状をなしており、その平面に視た大きさ及び外形が液晶パネル11とほぼ同じとされている。なお、図3では、透明アンテナ17を破線により図示している。従って、透明アンテナ基板12は、図4に示すように、液晶パネル11の表示領域AAと平面に視て重畳する表示重畳領域OAAと、液晶パネル11の非表示領域NAAと平面に視て重畳する非表示重畳領域NOAAと、を有していることになる。透明アンテナ基板12のうち、内側、つまり液晶パネル11側の板面には、網目状(メッシュ状)をなす網目状金属膜が成膜されるとともに、同網目状金属膜がパターニングされることで透明アンテナ17が形成されている。網目状金属膜は、遮光性を有する金属膜に多数の微細な網目(メッシュ)が規則的に平面配置される形で形成されることで、当該網目を通る光によって透明アンテナ基板12の光透過率を一定程度確保することができるものとされる。網目状金属膜にパターニングされる多数の網目は、個々の平面形状が菱形をなしており、その対角ピッチが例えば0.5mm程度とされる。この網目状金属膜は、透明アンテナ基板12の板面のうちの表示重畳領域OAAにおいてほぼ全域にわたって形成されており、それにより透明アンテナ17が形成されるアンテナ形成領域と、透明アンテナ17が形成されないアンテナ非形成領域と、で透明アンテナ基板12における光の透過率(透明度)に差が生じ難くされている。つまり、表示重畳領域OAAは、網目状金属膜形成領域とされる。これに対し、透明アンテナ基板12の非表示重畳領域NOAAにおける内側の板面には、ほぼ全域にわたって遮光膜(図示せず)が成膜されるとともに、後述するアンテナ接続配線部20を構成する非網目状金属膜(ベタ状金属膜)が成膜されている。網目状金属膜及び非網目状金属膜は、例えば銅などの導電性に優れた金属材料からなるものとされる。
 透明アンテナ17は、図4に示すように、透明アンテナ基板12に形成された網目状金属膜にスリットSLを入れることで、その平面形状及び配線パターンが画定されている。なお、図4では、スリットSLを白抜きにして図示している。透明アンテナ17は、環状をなしていてその中心側に磁場(磁界)を発生させるアンテナ本体部18と、アンテナ本体部18から引き出される引き出し配線部19と、を備える。この透明アンテナ17は、アンテナ本体部18が透明アンテナ基板12における表示重畳領域OAAと非表示重畳領域NOAAとの境界位置からY軸方向について所定距離だけ液晶パネル11の画面中央側に離間した位置に配されるとともに、上記境界位置とアンテナ本体部18との間に引き出し配線部19が配される構成となっている。具体的には、透明アンテナ17は、アンテナ本体部18が液晶パネル11におけるY軸方向についてほぼ中央位置に配されている。このため、液晶パネル11の画面サイズが大きくなるほど、引き出し配線部19の延面距離は長くなる傾向にある、と言える。このように透明アンテナ17を液晶パネル11の画面中央付近に配置すれば、透明アンテナ17の通信対象である外部機器を、使用者が透明アンテナ17に直感的に接近させること、などが可能とされ、利便性に優れる。この透明アンテナ17は、その全域が透明アンテナ基板12の表示重畳領域OAAに配されている。これに対し、透明アンテナ基板12の非表示重畳領域NOAAには、透明アンテナ17の引き出し配線部19に接続されるアンテナ接続配線部20が設けられている。このアンテナ接続配線部20が図示しないアンテナ電力供給回路に接続されることで、透明アンテナ17に電力、つまり磁場を発生させるための電流が供給されるようになっている。
 アンテナ本体部18は、図4に示すように、その中心側にあって磁場が発生する磁場発生領域MAを取り囲む形で閉じた環状をなしており、その平面形状が縦長の方形状とされる。アンテナ本体部18は、その長辺方向についての内寸が例えば85.6mm程度とされ、短辺方向についての内寸が例えば54mm程度とされる。また、外部機器における機器側アンテナDAも、アンテナ本体部18とほぼ同じ外形寸法を有している。従って、機器側アンテナDAがアンテナ本体部18に対して適切な平面位置(以下、正規位置と言う)とされつつ接近されると、磁場発生領域MAの全域に対して機器側アンテナDAが重畳配置されるとともに、磁場発生領域MAに発生する磁場のほぼ全てを機器側アンテナDAにより捕捉することができるものとされる。アンテナ本体部18は、長辺方向がY軸方向と、短辺方向がX軸方向と、それぞれ一致する形で配置されており、Y軸方向に沿って延在する一対の長辺部18Lと、X軸方向に沿って延在する一対の短辺部18Sと、を有する。アンテナ本体部18は、4つの辺部18L,18Sを有しており、これら4つの辺部18L,18Sに流される電流による電磁誘導作用によって、磁場発生領域MAに磁場を発生させることができるので、仮にアンテナ本体部が3つの辺部からなる構成とした場合に比べると、より高い誘導起電力が得られるものとされる。アンテナ本体部18は、方形の環状をなすアンテナ素線21を複数(図4では3つ)、間にスリットSL分の間隔を空けつつ放射方向に並べてなるものとされる。複数のアンテナ素線21は、平面形状がアンテナ本体部18と相似形をなしており、磁場発生領域MAに近いものほど外形が小さく且つ延面距離(各辺部の長さ寸法)が短くなり、逆に磁場発生領域MAから遠いものほど外形が大きく且つ延面距離が長くなる傾向にある。つまり、磁場発生領域MAに近いアンテナ素線21は、それに対して磁場発生領域MAから遠い側に隣り合うアンテナ素線21よりも一回り小さな外形を有しており、その隣り合うアンテナ素線21により全周にわたって取り囲まれている。各アンテナ素線21は、その両端部が図4に示す下側(引き出し配線部19側)の短辺部18Sに配されるとともに、それぞれが異なる引き出し配線部19に接続されている。最も延面距離が短い最内周のアンテナ素線21は、両端部間に1本のスリットSL分の隙間しか存在しないものの、中間のアンテナ素線21は、両端部間に3本のスリットSL分の隙間に加えて2本の引き出し配線部19(最内周のアンテナ素線21に接続される引き出し配線部19)が介在し、さらには最も延面距離が長い最外周のアンテナ素線21は、両端部間に5本のスリットSL分の隙間に加えて4本の引き出し配線部19(最内周のアンテナ素線21及び中間のアンテナ素線21にそれぞれ接続される引き出し配線部19)が介在している。また、各アンテナ素線21は、Y軸方向に沿う中心線に対して線対称形状をなしている。
 引き出し配線部19は、図4に示すように、透明アンテナ基板12における表示重畳領域OAAと非表示重畳領域NOAAとの境界位置から、アンテナ本体部18に至るまでの間、延在する形で配索されている。引き出し配線部19は、その延在方向と交差する方向(X軸方向)に沿って複数本(図4では6本)が並んで配されており、その設置本数はアンテナ素線21の設置本数の2倍とされている。引き出し配線部19は、アンテナ本体部18側(引き出し元側)の端部がアンテナ素線21の端部に接続されているのに対し、その反対側(引き出し先側、境界位置側)の端部がアンテナ接続配線部20に接続されている。引き出し配線部19は、その延面距離が長くなるほど配線抵抗が大きくなる傾向にある。このため、液晶パネル11の画面サイズが大型化されるほど、引き出し配線部19に係る配線抵抗が高くなる傾向にある。
 アンテナ接続配線部20は、図4に示すように、透明アンテナ基板12の非表示重畳領域NOAAに形成された非網目状金属膜からなるものとされる。従って、アンテナ接続配線部20は、網目状金属膜からなる透明アンテナ17を構成するアンテナ本体部18及び引き出し配線部19に比べると、単位長さまたは単位面積当たりの配線抵抗が相対的に低いものとされる。アンテナ接続配線部20には、2本の引き出し配線部19間を短絡させる短絡配線部22が複数(図4では2本)含まれている。短絡配線部22の設置数は、引き出し配線部19の設置数から2を差し引いた値となっている。短絡配線部22により短絡される2本の引き出し配線部19は、互いに異なるアンテナ素線21に接続されている。具体的には、最外周のアンテナ素線21における一方(図4の左側)の端部に接続される引き出し配線部19は、中間のアンテナ素線21における一方(図4の右側)の端部に接続される引き出し配線部19に対して短絡配線部22により短絡されている。中間のアンテナ素線21における他方(図4の左側)の端部に接続される引き出し配線部19は、最内周のアンテナ素線21における一方(図4の右側)の端部に接続される引き出し配線部19に対して短絡配線部22により接続されている。そして、アンテナ接続配線部20には、最外周のアンテナ素線21における他方(図4の右側)の端部に接続される引き出し配線部19に接続される入力配線部(図示せず)と、最内周のアンテナ素線21における一方(図4の左側)の端部に接続される引き出し配線部19に接続される出力配線部(図示せず)と、が含まれている。以上により、入力配線部から流される電流が、引き出し配線部19を介して最外周のアンテナ素線21に図4の反時計回り方向に流された後、引き出し配線部19及び短絡配線部22を介して中間のアンテナ素線21に、さらに引き出し配線部19及び短絡配線部22を介して最外周のアンテナ素線21にそれぞれ図4の反時計回り方向に流された後、出力配線部へと流されるようになっている。このようにアンテナ本体部18において電流が図4の反時計回り方向に流されると、アンテナ本体部18の磁場発生領域MAには、図4の紙面における手前側に向かう磁場が発生するようになっている。
 既述したように、透明アンテナ17のアンテナ本体部18を液晶パネル11における画面中央側に配置すると、引き出し配線部19の延面距離が長くなる傾向にあり、その傾向は画面サイズが大型化された場合に顕著なものとなる。例えば、仮にアンテナ本体部の長辺方向についての内寸を85.6mm、短辺方向についての内寸を54mmとした上で透明アンテナを液晶パネル11の画面の端部に配置し、引き出し配線部を殆ど設けない構成とした場合には、透明アンテナのQ値が19.765程度と十分に高い値となるものの、引き出し配線部を20cmの長さとした場合には、透明アンテナのQ値が8.757程度と半分以下の値となり、十分な誘導起電力が得られる目安となるQ値である10を下回る結果となる。なお、透明アンテナのアンテナ性能を表すQ値は、式「2πfL/R」によって表される。この式のうち、「L」がインダクタンス(誘導起電力)とされ、「R」が配線抵抗とされ、「f」が共振周波数とされる。つまり、Q値は、インダクタンスに比例し、配線抵抗に反比例する傾向にある。
 そこで、本実施形態に係る透明アンテナ17は、図4に示すように、引き出し配線部19が、アンテナ本体部18よりも線幅が広い幅広部23を有する構成としている。このように、引き出し配線部19が幅広部23を有する構成とすることで、透明アンテナ17の配線抵抗を低下させることができるので、透明アンテナ17のQ値が高くなり、もってアンテナ性能(受信感度など)の向上が図られる。
 幅広部23は、図4に示すように、アンテナ本体部18から遠ざかるとともに、透明アンテナ基板12における表示重畳領域OAAと非表示重畳領域NOAAとの境界位置(アンテナ接続配線部20)に近づくのに従って、その線幅が次第に広くなるものとされる。逆に言うと、幅広部23は、アンテナ本体部18に近づくとともに、透明アンテナ基板12における表示重畳領域OAAと非表示重畳領域NOAAとの境界位置から遠ざかるのに従って、その線幅が次第に狭くなるものとされている。従って、幅広部23は、線幅が延在方向についての位置に応じて可変する「線幅可変幅広部」である、と言える。
 幅広部23は、図4に示すように、その線幅がアンテナ本体部18からの距離に比例して連続的に漸次増加するものとされ、その外形がアンテナ本体部18における各辺部18L,18Sに沿う方向(X軸方向及びY軸方向)に対して直線的に傾斜した傾斜状をなすものとされる。従って、幅広部23は、外縁が傾斜状をなしつつ延在する「傾斜状幅広部」である、と言える。幅広部23は、引き出し配線部19の全域を構成するものとされており、アンテナ本体部18のアンテナ素線21に対する接続箇所(アンテナ本体部18側の端部)の線幅が最も狭く、アンテナ接続配線部20に対する接続箇所(アンテナ本体部18側とは反対側の端部)の線幅が最も広いものとされている。複数の引き出し配線部19は、それぞれの最小線幅及び最大線幅がほぼ同じとされるとともに、線幅の変化率もほぼ同じとされている。X軸方向に沿って並ぶ複数の引き出し配線部19群における最大外幅寸法は、アンテナ本体部218における最大外幅寸法よりも大きなものとされている。
 複数の引き出し配線部19のうち、X軸方向について最外位置に配される2本の引き出し配線部19に有される幅広部23は、図4及び図5に示すように、アンテナ本体部18のうち接続対象となる短辺部18Sと直交する方向、つまりY軸方向に対してなす傾斜角度θが14度以上、具体的には14度~15度程度となるよう構成されている。複数の引き出し配線部19のうち、X軸方向について外側のものほど上記傾斜角度θが大きくなり、X軸方向について中央側のものほど上記傾斜角度θが小さくなるよう構成されている。なお、図5では、網目状金属膜の網目の図示を省略し、アンテナ素線21及び引き出し配線部19の外形のみを図示している。
 ところで、引き出し配線部19における幅広部23と、アンテナ本体部18のうちの幅広部23に連なる短辺部18Sとは、付加コイルを構成し得るものとされる。つまり、透明アンテナ17の通電時には、引き出し配線部19からそれに連なる短辺部18Sへと電流が流されるため、これらが付加コイルを構成するとともにこれらの間に挟まれた領域(以下、逆向き磁場発生領域OMAと言う)には、アンテナ本体部18の中心側の磁場発生領域MAにて発生する磁場(以下、正規磁場と言う)とは逆向きとなる逆向き磁場が発生することになる。従って、例えば外部機器の機器側アンテナDAがアンテナ本体部18に対して正規位置からずれた平面配置、具体的には磁場発生領域MA及び逆向き磁場発生領域OMAとに跨る平面配置とされつつ透明アンテナ17に接近されると(図6の太い一点鎖線を参照)、磁場発生領域MAに発生した正規磁場を部分的にしか機器側アンテナDAにより捕捉できないばかりか、逆向き磁場発生領域OMAに発生した逆向き磁場によって正規磁場が弱められることになり、その結果誘導起電力が大きく低下し、アンテナ性能が大きく劣化することが懸念される。
 その点、幅広部23は、図4に示すように、アンテナ本体部18を構成する各辺部18L,18Sに沿う方向に対して傾斜状をなしているから、仮に幅広部が連なる短辺部18Sに対して直交する方向に沿って延在する構成とした場合に比べると、逆向き磁場が発生する逆向き磁場発生領域OMAが狭くなるので、正規磁場の強度に対する逆向き磁場の強度の比率が相対的に低いものとなる。これにより、機器側アンテナDAがアンテナ本体部18に対して正規位置からずれた平面配置とされた場合でも、逆向き磁場に起因するアンテナ性能の劣化を抑制することができる。しかも、幅広部23は、アンテナ本体部18のうち幅広部辺部に連なる辺部と直交する方向に対してなす角度が14度以上とされることで、逆向き磁場が発生する領域が十分に狭くなって正規磁場の強度に対する逆向き磁場の強度の比率が十分に低いものとなるので、逆向き磁場に起因するアンテナ性能の劣化を十分に抑制することができる。
 続いて、上記した構成の透明アンテナ17のQ値が液晶パネル11の画面サイズに応じてどのように変化するかについて知見を得るべく、以下の比較実験1を行った。比較実験1では、引き出し配線部が、アンテナ本体部の短辺部の延在方向に対して直交する方向に沿って真っ直ぐに延在するとともに一定の線幅とされる構成の透明アンテナを比較例とし、本段落以前にて説明した幅広部23を有する透明アンテナ17を実施例1としており、これら比較例及び実施例1に係る各透明アンテナを様々な画面サイズとされる液晶パネル11を備える液晶表示装置10に用いた場合のQ値を測定し、その結果を図7に示す。図7は、横軸が液晶パネル11の画面サイズ(単位は「インチ」)を、縦軸が透明アンテナのQ値(無単位)を、それぞれ表している。図7では、実線のグラフが実施例1の実験結果を、破線のグラフが比較例の実験結果を、それぞれ表している。比較例及び実施例1に係る各透明アンテナは、いずれも画面サイズの液晶パネル11においても、その液晶パネル11におけるY軸方向についての中央位置にアンテナ本体部が配される構成とされており、画面サイズが大きくなるほど引き出し配線部の延面距離が長くなるものとされる。
 比較実験1の実験結果について説明する。図7によれば、比較例及び実施例1は、いずれも液晶パネル11の画面サイズが大きくなるほど、透明アンテナのQ値が低下する傾向にあることが分かる。そして、比較例では、透明アンテナのQ値の低下率が実施例1に比べると大きなものとなっている。具体的には、比較例では、液晶パネル11の画面サイズが32インチを超えると、透明アンテナのQ値が、十分な誘導起電力が得られる目安である10を下回るため、32インチよりも大きな画面サイズの液晶パネル11を備える液晶表示装置10には適用が難しいものとなる。比較例に係る透明アンテナのQ値が上記のような低下率となる理由は、液晶パネル11の画面サイズが大型化するのに伴う引き出し配線部の延面距離の長大化に起因して配線抵抗が高くなるため、と考えられる。これに対し、実施例1は、比較例よりも常に高いQ値となるグラフとされるとともに透明アンテナのQ値の低下率が比較例に比べると小さなものとされている。具体的には、実施例1では、液晶パネル11の画面サイズが32インチを超えてもQ値が10以上となっていて、55インチを超えるまでは、Q値が10以上となっている。従って、実施例1は、55インチまでの画面サイズの液晶パネル11を備えた液晶表示装置10に適用することができるものとされる。実施例1に係る透明アンテナ17のQ値が上記のような低下率となる理由は、液晶パネル11の画面サイズが大型化するのに伴って引き出し配線部19の延面距離が長大化するものの、引き出し配線部19の全域が幅広部23により構成されることでその配線面積が十分に大きく確保されることで配線抵抗が十分に低く抑制されるため、と考えられる。このように実施例1によれば、液晶表示装置10が大画面化されても、透明アンテナ17を画面の中央位置付近に配置しつつ十分な誘導起電力及びアンテナ性能を得ることができる。
 次に、幅広部23の傾斜角度θと付加コイルによる逆向き磁場の強度の比率との関係について知見を得るべく、以下の比較実験2を行った。比較実験2では、上記した比較実験1の実施例1に係る幅広部23を有する透明アンテナ17において、最外位置の引き出し配線部19を構成する幅広部23がY軸方向に対してなす傾斜角度θを0度~60度の範囲で変化させるとともに、付加コイルによる逆向き磁場の強度が正規磁場の強度に占める比率を測定しており、その結果を図8に示す。図8は、横軸が最外位置の引き出し配線部19を構成する幅広部23の傾斜角度θ(単位は「度」)を、縦軸が逆向き磁場の強度の比率(単位は「%」)を、それぞれ表している。
 比較実験2の実験結果について説明する。図8によれば、最外位置の引き出し配線部19を構成する幅広部23の傾斜角度θが大きくなるほど、付加コイルによる逆向き磁場の強度の比率が低下する傾向にあることが分かる。そして、最外位置の引き出し配線部19を構成する幅広部23の傾斜角度θが14度よりも小さいと、逆向き磁場の強度の比率が5%を上回るのに対し、同幅広部23の傾斜角度θが14度以上になると、逆向き磁場の強度の比率が5%以下となる傾向にあることが分かる。
 続いて、透明アンテナ17に対して外部機器の機器側アンテナDAの平面位置が正規位置からずれたときの逆向き磁場の影響に関して知見を得るべく、以下の比較実験3を行った。比較実験3では、上記した比較実験1の実施例1に係る幅広部23を有する透明アンテナ17に対し、機器側アンテナDAを正規位置とした場合と、機器側アンテナDAを正規位置からY軸方向について引き出し配線部19側とは反対側に約15mm(アンテナ本体部18の長辺寸法の約17.5%となる長さ)ずらした平面配置とした場合(図6の細い一点鎖線を参照)と、機器側アンテナDAを正規位置からY軸方向について引き出し配線部19側に約15mm(アンテナ本体部18の長辺寸法の約17.5%となる長さ)ずらした平面配置とした場合(図6の太い一点鎖線を参照)と、でそれぞれ透明アンテナ17のQ値を、比較実験1と同様に液晶パネル11の画面サイズを変化させつつ測定し、その結果を図9に示す。図9は、横軸が液晶パネル11の画面サイズ(単位は「インチ」)を、縦軸が透明アンテナ17のQ値(無単位)を、それぞれ表している。図9では、実線のグラフが正規位置の場合の実験結果を、細い一点鎖線のグラフが引き出し配線部19側とは反対側にずれた場合の実験結果を、太い一点鎖線のグラフが引き出し配線部19側にずれた場合の実験結果を、それぞれ表している。また、図9には、参考のため、比較実験1の比較例の実験結果を破線のグラフにて記載している。
 比較実験3の実験結果について説明する。図9によれば、実施例1において機器側アンテナDAを正規位置とした場合のQ値が最も高く、次に実施例1において機器側アンテナDAを正規位置からY軸方向について引き出し配線部19側とは反対側にずらした場合のQ値が高くなっており、実施例1において機器側アンテナDAを正規位置からY軸方向について引き出し配線部19側にずらした場合のQ値が最も低くなっているのが分かる。以下、このような結果となった理由について説明する。まず、実施例1において機器側アンテナDAを正規位置からY軸方向について引き出し配線部19側とは反対側にずらした場合には、図6の細い一点鎖線に示されるように、機器側アンテナDAは磁場発生領域MAに発生する正規磁場を部分的にしか捕捉できないものの、逆向き磁場発生領域OMAとは重畳することがないので、逆向き磁場を捕捉することはないものとされる。つまり、実施例1において機器側アンテナDAを正規位置からY軸方向について引き出し配線部19側とは反対側にずらした場合は、磁場発生領域MAのうち機器側アンテナDAが非重畳となる部分に発生した正規磁場の分だけ、正規位置とした場合との比較においてQ値が低下している。これに対し、実施例1において機器側アンテナDAを正規位置からY軸方向について引き出し配線部19側にずらした場合には、図6の太い一点鎖線に示されるように、機器側アンテナDAは磁場発生領域MAに発生する正規磁場を部分的にしか捕捉できないのに加えて、逆向き磁場発生領域OMAと重畳するために逆向き磁場を捕捉している。つまり、実施例1において機器側アンテナDAを正規位置からY軸方向について引き出し配線部19側にずらした場合は、磁場発生領域MAのうち機器側アンテナDAが非重畳となる部分に発生した正規磁場の分、Q値が低下するのに加えて、逆向き磁場によって正規磁場が打ち消される分についてもQ値が低下している。
 実施例1において機器側アンテナDAを正規位置とした場合は、図9に示すように、液晶パネル11の画面サイズが55インチを超えるまでは、Q値が10以上となっているのに対し、実施例1において機器側アンテナDAを正規位置からY軸方向について引き出し配線部19側とは反対側にずらした場合には、液晶パネル11の画面サイズが38インチを超えると、Q値が10を下回り、さらには、実施例1において機器側アンテナDAを正規位置からY軸方向について引き出し配線部19側にずらした場合には、液晶パネル11の画面サイズが33インチを超えると、Q値が10を下回ることになる。つまり、実施例1において機器側アンテナDAを正規位置からY軸方向について引き出し配線部19側にずらした場合は、比較例の実験結果を僅かに上回るQ値が得られている、と言える。
 そして、上記した比較実験2の実験結果(図8を参照)によれば、最外位置の引き出し配線部19を構成する幅広部23の傾斜角度θを小さくするほど、逆向き磁場の強度の比率が大きくなるのに対し、逆に同傾斜角度θを大きくするほど、逆向き磁場の強度の比率が小さくなる傾向にある。このことから、比較実験3の実験結果に係る実施例1において機器側アンテナDAを正規位置からY軸方向について引き出し配線部19側にずらした場合(機器側アンテナDAが逆向き磁場を捕捉する配置とされた場合)のグラフは、最外位置の引き出し配線部19を構成する幅広部23の傾斜角度θを小さくするほど、Q値が低くなる方向にシフトし、逆に同傾斜角度θを大きくするほど、Q値が高くなる方向にシフトすることになる。実施例1に係る透明アンテナ17は、最外位置の引き出し配線部19を構成する幅広部23の傾斜角度θが14度~15度程度とされ、逆向き磁場の強度の比率が5%程度とされていることから(図8を参照)、仮に幅広部23の傾斜角度θが14度を下回るとともに逆向き磁場の強度の比率が5%を超えると、比較例よりもQ値が低下してしまい、液晶パネル11の画面サイズが32インチよりも小さい場合でもQ値を10以上確保できなくなることが懸念される。以上の検討から、幅広部23の傾斜角度θを14度以上とすることで、逆向き磁場の強度の比率を5%以下とし、それにより機器側アンテナDAが逆向き磁場を捕捉する配置とされた場合におけるQ値の低下を十分に抑制することができるものとされる。
 以上説明したように本実施形態の透明アンテナ17は、環状をなしていてその中心側に磁場を発生させるアンテナ本体部18と、アンテナ本体部18から引き出される引き出し配線部19であって、アンテナ本体部18の線幅よりも広い線幅とされる幅広部23を少なくとも一部に有する引き出し配線部19と、を備える。
 このようにすれば、引き出し配線部19に通電することで、環状をなすアンテナ本体部18に電流が流されると、電磁誘導作用によりアンテナ本体部18の中心側に磁場が発生するものとされる。この引き出し配線部19は、アンテナ本体部18の線幅よりも広い線幅とされる幅広部23を少なくとも一部に有しているから、当該透明アンテナ17の配線抵抗を低下させることができる。これにより、当該透明アンテナ17のQ値が高まり、もってアンテナ性能の向上が図られる。
 また、アンテナ本体部18は、その中心側にあって磁場が発生する磁場発生領域MAを取り囲む形で閉じた環状をなすものとされる。このようにすれば、仮にアンテナ本体部を開いた形の環状とした場合に比べると、高い誘導起電力を得ることができる。これにより、より高いアンテナ性能が得られる。
 また、幅広部23には、アンテナ本体部18から遠ざかるのに従って次第に線幅が広くなる線幅可変幅広部が含まれている。このようにすれば、閉じた環状をなすアンテナ本体部18から引き出される引き出し配線部19を構成する幅広部23に、アンテナ本体部18から遠ざかるのに従って次第に線幅が広くなる線幅可変幅広部を含ませているので、仮に幅広部の線幅を一定とした場合に比べると、アンテナ本体部18の高い誘導起電力を保ちつつ配線抵抗を好適に低減することができる。
 また、アンテナ本体部18は、平面形状が方形の環状をなすよう4つの辺部18L,18Sを有しているのに対し、線幅可変幅広部は、アンテナ本体部18を構成する1つの短辺部(辺部)18Sに連ねられており、線幅可変幅広部には、アンテナ本体部18を構成する辺部18L,18Sに沿う方向に対して傾斜状をなす傾斜状幅広部が含まれている。引き出し配線部19における線幅可変幅広部と、アンテナ本体部18のうちの線幅可変幅広部に連なる短辺部18Sとは、付加コイルを構成し得るものとされ、その付加コイルにより発生する磁場(これを逆向き磁場と言う)が、アンテナ本体部18の中心側の磁場発生領域MAに発生する磁場とは逆向きとなるため、それに起因してアンテナ性能が劣化することが懸念される。その点、線幅可変幅広部には、アンテナ本体部18を構成する辺部18L,18Sに沿う方向に対して傾斜状をなす傾斜状幅広部が含まれているから、仮に線幅可変幅広部が連なる短辺部18Sに対して直交する方向に沿って延在する構成とした場合に比べると、逆向き磁場が発生する領域が狭くなるので、逆向き磁場の比率が相対的に低いものとなる。これにより、逆向き磁場に起因するアンテナ性能の劣化を抑制することができる。
 また、引き出し配線部19は、複数が並んで配されており、複数の引き出し配線部19のうち、最外位置に配されたものに有される線幅可変幅広部は、アンテナ本体部18のうち線幅可変幅広部に連なる短辺部18Sと直交する方向に対して14度以上の角度をなすよう構成されている。仮に最外位置に配された引き出し配線部19に有される線幅可変幅広部が、アンテナ本体のうち線幅可変幅広部に連なる短辺部18Sと直交する方向に対してなす角度が14度よりも小さくされると、逆向き磁場の比率が高くなり過ぎるため、アンテナ性能の劣化が看過できないものとなるおそれがある。その点、最外位置に配された引き出し配線部19に有される線幅可変幅広部が、アンテナ本体のうち線幅可変幅広部に連なる短辺部18Sと直交する方向に対してなす角度が14度以上とされることで、逆向き磁場が発生する領域が十分に狭くなって逆向き磁場の比率が十分に低いものとなるので、逆向き磁場に起因するアンテナ性能の劣化を十分に抑制することができる。
 また、引き出し配線部19は、その全域が幅広部23により構成されている。このようにすれば、仮に引き出し配線部の一部の線幅をアンテナ本体部18の線幅と同じにした場合に比べると、引き出し配線部19の面積がより大きく確保されるので、当該透明アンテナ17の配線抵抗がより低下し、もってアンテナ性能のさらなる向上が図られる。
 また、アンテナ本体部18及び引き出し配線部19は、網目状をなす金属膜からなるとともに、金属膜にパターニングされるスリットによりその平面形状が画定されている。このようにすれば、当該透明アンテナ17の透光性を担保しつつ、配線抵抗の低抵抗化を図ることができる。
 また、本実施形態に係る液晶表示装置(透明アンテナ付き表示装置)10は、上記した透明アンテナ17と、透明アンテナ17が設けられる透明アンテナ基板12と、透明アンテナ基板12に積層される形で配される液晶パネル(表示パネル)11であって、画像を表示可能な表示領域AAとその周りを取り囲む非表示領域NAAとを有する液晶パネル11と、を備えており、透明アンテナ17は、表示領域AAと重畳する位置に配されている。
 このようにすれば、液晶パネル11の表示領域AAと重畳する位置に配された透明アンテナ17を利用することで、例えば外部機器などとの通信を行うことが可能となる。表示領域AAに表示された画像に基づいて外部機器を透明アンテナ17に接近させる、などの操作を行うことが可能となるので、利便性などに優れる。そして、透明アンテナ17のアンテナ性能が十分に高いものとされているので、外部機器などとの通信を良好に行うことができる。
 また、透明アンテナ基板12には、非表示領域NAAと重畳する位置に配されるとともに引き出し配線部19に接続されるアンテナ接続配線部20が設けられている。このようにすれば、非表示領域NAAと重畳する位置に配されたアンテナ接続配線部20を引き出し配線部19に接続するようにしているから、例えばアンテナ接続配線部20を、遮光性を有する金属膜(非網目状金属膜)からなる構成とすることが可能となる。これにより、透明アンテナ17の配線抵抗をより低下させることが可能となる。
 また、透明アンテナ17は、アンテナ本体部18が複数のアンテナ素線21を有するとともに、引き出し配線部19がアンテナ素線21の各端部のそれぞれに対して個別に接続される形で複数備えられる構成とされており、アンテナ接続配線部20には、互いに異なるアンテナ素線21の端部に接続される2本の引き出し配線部19間を短絡させる短絡配線部22が含まれている。このようにすれば、互いに異なるアンテナ素線21の端部に接続される2本の引き出し配線部19間を短絡配線部22によって短絡させることで、短絡された2本の引き出し配線部19に対してそれぞれ接続されたアンテナ素線21に電流を流すことが可能となる。これにより、アンテナ本体部18の中心側に磁場を発生させることができる。
 <実施形態2>
 本発明の実施形態2を図10から図12によって説明する。この実施形態2では、引き出し配線部119の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る透明アンテナ117を構成する引き出し配線部119は、図10に示すように、アンテナ本体部118に連なる第1配線部24と、第1配線部24に対してアンテナ本体部118側とは反対側に配されて第1配線部24に連なる第2配線部25と、からなる構成とされる。このうち、第1配線部24は、アンテナ本体部118を構成するアンテナ素線121と同等の線幅とされる。第1配線部24は、その線幅が全長にわたって一定とされていることから、「線幅一定部」である、と言える。第1配線部24は、アンテナ本体部118に連なる部分がY軸方向に沿って直線的に延在しており、その延在方向がアンテナ本体部118を構成し且つ第1配線部24に連なる短辺部118Sに対して直交する形となっている。これに対し、引き出し配線部119のうち最外位置に配されるものと、中間位置に配されるものと、をそれぞれ構成する各第1配線部24は、第2配線部25に連なる側の部分がX軸方向に沿って延在するよう、ほぼ直角に屈曲されており、全体として平面に視てL字型をなしている。従って、第1配線部24とそれに連なる短辺部118Sとの間に挟まれた逆向き磁場発生領域OMAは、平面に視て角部がほぼ直角となる方形状をなすものとされる。そして、第1配線部24は、その長さ寸法が21mm以下となるよう構成されている。これにより、逆向き磁場発生領域OMAにおけるY軸方向についての寸法は、21mm以下とされる。つまり、逆向き磁場発生領域OMAにおけるY軸方向についての寸法は、第1配線部24の長さとほぼ等しいものとされる。
 これに対し、第2配線部25は、その線幅がアンテナ素線121及び第1配線部24の線幅よりも広い幅広部123とされている。つまり、この引き出し配線部119は、部分的に幅広部123を有する構成とされている。この第2配線部25を構成する幅広部123は、Y軸方向に沿って直線的に延在するとともに、その線幅が全長にわたって一定とされていることから、「線幅一定幅広部」である、と言える。第2配線部25を構成する幅広部123の線幅は、アンテナ素線121及び第1配線部24の線幅の約4倍~5倍程度の大きさとされるのが好ましい。また、X軸方向に沿って並ぶ複数の第2配線部25は、その線幅がほぼ同一とされえいる。複数の第2配線部25の線幅がほぼ同一で且つ一定とされているので、複数の引き出し配線部119における最大外幅寸法は、X軸方向に沿って並ぶ複数の第2配線部25群の幅と一致し且つその延面距離(液晶パネルの画面サイズ)に拘わらず常に一定とされる。
 続いて、上記した構成の透明アンテナ117のQ値が液晶パネルの画面サイズに応じてどのように変化するかについて知見を得るべく、以下の比較実験4を行った。比較実験4では、本段落以前にて説明した幅広部123及び引き出し配線部119を有する透明アンテナ117を実施例2としており、実施例2に係る透明アンテナ117を、様々な画面サイズとされる液晶パネルを備える液晶表示装置に用いた場合のQ値を測定し、その結果を図11に示す。図11は、横軸が液晶パネルの画面サイズ(単位は「インチ」)を、縦軸が透明アンテナのQ値(無単位)を、それぞれ表している。図11には、上記した実施形態1の比較実験1に係る比較例及び実施例1のグラフを併せて記載している。図11では、実線のグラフが実施例2の実験結果を、破線のグラフが比較例の実験結果を、二点鎖線のグラフが実施例1の実験結果を、それぞれ表している。比較例及び実施例1,2に係る各透明アンテナは、いずれも画面サイズの液晶パネルにおいても、その液晶パネルにおけるY軸方向についての中央位置にアンテナ本体部が配される構成とされており、画面サイズが大きくなるほど引き出し配線部の延面距離が長くなるものとされる。
 比較実験4の実験結果について説明する。図11によれば、実施例2は、比較例及び実施例1よりも常に高いQ値となるグラフとされるとともに透明アンテナのQ値の低下率が比較例及び実施例1に比べると小さなものとされている。具体的には、実施例2では、液晶パネルの画面サイズが55インチを超えてもQ値が10以上となっていて、60インチにおいてもQ値が12程度とされている。従って、実施例2は、少なくとも60インチまでの画面サイズの液晶パネルを備えた液晶表示装置に適用することができ、60インチを超える画面サイズにも適用可能であると推察される。実施例2に係る透明アンテナ117のQ値が上記のような低下率となる理由は、液晶パネルの画面サイズが大型化するのに伴って引き出し配線部119の延面距離が長大化するものの、引き出し配線部119のうち、閉じた環状をなすアンテナ本体部118に連なる第1配線部24の線幅がアンテナ本体部118のアンテナ素線121の線幅と同等とされているので、仮に第1配線部を幅広部とした場合に比べると、アンテナ本体部118の磁場発生領域MAに発生する磁場がより強いものとなり、それにより、より高い誘導起電力が得られることが一因と考えられる。しかも、引き出し配線部119は、第1配線部24に対してアンテナ本体部118側とは反対側に配されて第1配線部24に連なる第2配線部25が幅広部123とされているので、第1配線部24によって得られる高い誘導起電力を担保しつつも配線抵抗が好適に低減され、もって透明アンテナ117のQ値が高いものとされている。
 次に、引き出し配線部119を構成する第1配線部24の長さと付加コイルによる逆向き磁場の強度の比率との関係について知見を得るべく、以下の比較実験5を行った。比較実験5では、上記した比較実験4の実施例2に係る引き出し配線部119を有する透明アンテナ117において、第1配線部24における延在方向(Y軸方向)についての長さを10mm~200mmの範囲で変化させるとともに、付加コイルによる逆向き磁場の強度が正規磁場の強度に占める比率を測定しており、その結果を図12に示す。図12は、横軸が第1配線部24の長さ(単位は「mm」)を、縦軸が逆向き磁場の強度の比率(単位は「%」)を、それぞれ表している。
 比較実験5の実験結果について説明する。図12によれば、第1配線部24の長さが10mmから40mmに至るまでの間は、同長さが大きくなるのに伴って、付加コイルによる逆向き磁場の強度の比率が急速に高くなる傾向にあり、同長さが約50mmになると、逆向き磁場の強度の比率がピーク(約9.5%程度)となる。第1配線部24の長さが50mmを超えると、付加コイルによる逆向き磁場の強度の比率が緩やかに低下し、100mmを超えたあたりから逆向き磁場の強度の比率が約9%でほぼ一定となる(飽和する)。つまり、第1配線部24は、長さが50mmを超えると、逆向き磁場発生領域OMAが間延びするために発生する逆向き磁場の強度がそれ以上強くならないものの、長さが10mm~40mmの範囲では、逆向き磁場発生領域OMAの拡張に伴って、発生する逆向き磁場の強度が急速に強くなるものと考えられる。そして、第1配線部24の長さが21mmよりも大きくなると、逆向き磁場の強度の比率が5%を上回るのに対し、第1配線部24の長さが21mm以下では、逆向き磁場の強度の比率が5%以下となる傾向にあることが分かる。従って、上記した実施形態1の比較実験3の実験結果を踏まえると、第1配線部24の長さを21mm以下として、逆向き磁場の強度の比率を5%以下とすることで、機器側アンテナが逆向き磁場を捕捉する配置とされた場合におけるQ値の低下を十分に抑制することができるものとされる。
 以上説明したように本実施形態によれば、引き出し配線部119は、アンテナ本体部118に連なる第1配線部24と、第1配線部24に対してアンテナ本体部118側とは反対側に配されて第1配線部24に連なる第2配線部25と、を少なくとも有しており、第1配線部24は、アンテナ本体部118と同等の線幅とされるのに対し、第2配線部25は、幅広部123とされる。このようにすれば、引き出し配線部119のうち、閉じた環状をなすアンテナ本体部118に連なる第1配線部24の線幅がアンテナ本体部118の線幅と同等とされているので、仮に第1配線部を幅広部とした場合に比べると、アンテナ本体部118の磁場発生領域MAに発生する磁場がより強いものとなり、それにより、より高い誘導起電力が得られる。これに対し、第1配線部24に対してアンテナ本体部118側とは反対側に配されて第1配線部24に連なる第2配線部25は、幅広部123とされているので、第1配線部24によって得られる高い誘導起電力を担保しつつも配線抵抗を好適に低減することができる。以上により、より高いアンテナ性能が得られる。
 また、アンテナ本体部118は、平面形状が方形の環状をなすよう4つの辺部118L,118Sを有しており、第1配線部24は、アンテナ本体部118を構成する1つの短辺部118Sに連ねられるとともにその連なる短辺部118Sに対して直交する方向に沿って延在していて、さらにその長さ寸法が21mm以下となるよう構成されている。引き出し配線部119における第1配線部24と、アンテナ本体部118のうちの第1配線部24に連なる短辺部118Sとは、付加コイルを構成し得るものとされ、その付加コイルにより発生する磁場(これを逆向き磁場と言う)が、アンテナ本体部118の中心側の磁場発生領域MAに発生する磁場とは逆向きとなるため、それに起因してアンテナ性能が劣化することが懸念される。特に、第1配線部24は、平面形状が方形の環状をなすアンテナ本体部118を構成する1つの短辺部118Sに連なるとともにその連なる短辺部118Sに対して直交する方向に沿って延在しているため、仮に第1配線部が連なる短辺部118Sに対して傾斜状をなす構成とした場合に比べると、逆向き磁場が強くなる傾向にあり、第1配線部24の長さ寸法を21mmよりも大きくすると、逆向き磁場に起因するアンテナ性能の劣化が看過できないほどになるおそれがある。その点、第1配線部24の長さ寸法を21mm以下とすることで、逆向き磁場が発生する領域が十分に狭くなって逆向き磁場の比率が十分に低いものとなるので、逆向き磁場に起因するアンテナ性能の劣化を十分に抑制することができる。
 また、幅広部123には、その線幅が一定とされる線幅一定幅広部が含まれている。このようにすれば、第2配線部25を構成する幅広部123に線幅が一定とされる線幅一定幅広部が含まれることで、当該透明アンテナ117の配置スペースをコンパクトにすることができる。これにより、当該透明アンテナ117を複数並べて配置するような場合に好適となる。
 <実施形態3>
 本発明の実施形態3を図13または図14によって説明する。この実施形態3では、上記した実施形態1から引き出し配線部219の最大外幅寸法を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る透明アンテナ217を構成する引き出し配線部219は、図13に示すように、その最大外幅寸法W1がアンテナ本体部218における最大外幅寸法W2とほぼ同じとされている。上記した実施形態1に記載した通り、引き出し配線部219は、その線幅がアンテナ接続配線220側の端部において最大となっている。従って、X軸方向に沿って並ぶ複数の引き出し配線部219群における最大外幅寸法W1は、アンテナ接続配線220側の端部における外幅寸法と一致している。このような構成とすれば、引き出し配線部219群におけるX軸方向についての配置スペースが、アンテナ本体部218における同配置スペースと同等になる。これにより、例えば、図14に示すように、液晶パネルの表示領域AA内にX軸方向に沿って複数の透明アンテナ217を並べる場合に、透明アンテナ217を効率的に配置することができるものとされる。
 以上説明したように本実施形態によれば、引き出し配線部219は、複数が並んで配されるとともにそれら複数の引き出し配線部219における最大外幅寸法W1が、アンテナ本体部218における最大外幅寸法W2と同じとなるよう構成されている。このようにすれば、当該透明アンテナ217の配置スペースをコンパクトにすることができる。これにより、当該透明アンテナ217を複数並べて配置するような場合に好適となる。
 <実施形態4>
 本発明の実施形態4を図15によって説明する。この実施形態4では、上記した実施形態1にタッチパネル26及びカバーパネル27を追加したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る液晶表示装置310には、図15に示すように、透明アンテナ基板312に対して表側、つまり液晶パネル311側とは反対側に重ねて配置されるタッチパネル26と、タッチパネル26に対してさらに表側に重ねて配置されるカバーパネル27と、が備えられている。タッチパネル26は、その平面に視た大きさ及び外形が液晶パネル311とほぼ同じとされており、その板面に使用者が入力した位置情報を検出するためのタッチパネルパターン(図示せず)が設けられている。タッチパネル26に設けるタッチパネルパターンとしては、投影型静電容量方式とされるのが好ましい。カバーパネル27は、ほぼ透明で優れた透光性を有するガラス製で板状の基材からなり、好ましくは強化ガラスからなる。カバーパネル27に用いられる強化ガラスとしては、例えば板状のガラス基材の表面に化学強化処理が施されることで、表面に化学強化層を備えた化学強化ガラスを用いることが好ましい。カバーパネル27は、機械的強度及び耐衝撃性能が高いものとされているから、その裏側に配されるタッチパネル26、透明アンテナ基板312、及び液晶パネル311が破損したり、傷付くのをより確実に防止することができる。
 <実施形態5>
 本発明の実施形態5を図16によって説明する。この実施形態5では、上記した実施形態2から引き出し配線部419の構成を変更したものを示す。なお、上記した実施形態2と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る引き出し配線部419は、図16に示すように、線幅が可変する第1配線部424と、線幅が一定とされる第2配線部425と、からなる構成とされる。このうち、第1配線部424は、アンテナ本体部418から遠ざかるのに従って、その線幅が次第に広くなっているとともに、アンテナ本体部418を構成する各辺部418L,418Sに沿う方向に対して傾斜状をなしている。つまり、第1配線部424は、線幅がアンテナ本体部418を構成するアンテナ素線421の線幅よりも幅広な「幅広部423」であり、線幅が延在方向についての位置に応じて可変する「線幅可変幅広部」であり、さらには外縁が傾斜状をなしつつ延在する「傾斜状幅広部」である、と言える。第1配線部424は、アンテナ本体部418のうち接続対象となる短辺部418Sと直交する方向、つまりY軸方向に対してなす傾斜角度が14度以上、具体的には14度~15度程度となるよう構成されている。第2配線部425は、上記した実施形態2に記載したものと同様に、線幅がアンテナ本体部418を構成するアンテナ素線421の線幅よりも広くされる「幅広部423」であり、さらには線幅が全長にわたって一定とされる「線幅一定幅広部」である。以上のように、この引き出し配線部419は、第1配線部424及び第2配線部425の各線幅が、アンテナ本体部418を構成するアンテナ素線421の線幅よりも幅広とされており、全域が「幅広部423」である、と言える。このような構成によれば、引き出し配線部419に係る配線抵抗を好適に低減させることができるのに加えて、第1配線部424によって逆向き磁場の強度の比率を好適に低下させることができるとともに、第2配線部425によって透明アンテナ417の配置スペースをコンパクトなものとすることができる。
 <実施形態6>
 本発明の実施形態6を図17によって説明する。この実施形態6では、上記した実施形態2から引き出し配線部519の構成を変更したものを示す。なお、上記した実施形態2と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る引き出し配線部519は、図17に示すように、線幅が一定とされる第1配線部524と、線幅が可変される第2配線部525と、からなる構成とされる。第1配線部524は、上記した実施形態2に記載したものと同様に、線幅が、アンテナ本体部518を構成するアンテナ素線521の線幅とほぼ同じとされるとともに、全長にわたって一定とされる「線幅一定部」である。第2配線部525は、アンテナ本体部518及び第1配線部524から遠ざかるのに従って、その線幅が次第に広くなっているとともに、アンテナ本体部518を構成する各辺部518L,518Sに沿う方向に対して傾斜状をなしている。つまり、第2配線部525は、線幅がアンテナ本体部518を構成するアンテナ素線521の線幅よりも広くされる「幅広部523」であり、線幅が延在方向についての位置に応じて可変する「線幅可変幅広部」であり、さらには外縁が傾斜状をなしつつ延在する「傾斜状幅広部」である、と言える。このような構成によれば、第1配線部524によってアンテナ本体部518の誘導起電力を向上させることができるとともに、第2配線部525によって引き出し配線部519に係る配線抵抗を好適に低減させることができる。
 <実施形態7>
 本発明の実施形態7を図18によって説明する。この実施形態7では、上記した実施形態2から引き出し配線部619の構成を変更したものを示す。なお、上記した実施形態2と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る引き出し配線部619は、図18に示すように、線幅が可変される第1配線部624と、線幅が可変されるとともに線幅の変化率が第1配線部624よりも小さな第2配線部625と、からなる構成とされる。第1配線部624は、アンテナ本体部618から遠ざかるのに従って、その線幅が次第に広くなっているとともに、アンテナ本体部618を構成する各辺部618L,618Sに沿う方向に対して傾斜状をなしている。つまり、第1配線部624は、線幅がアンテナ本体部618を構成するアンテナ素線621の線幅よりも幅広な「幅広部623」であり、線幅が延在方向についての位置に応じて可変する「線幅可変幅広部」であり、さらには外縁が傾斜状をなしつつ延在する「傾斜状幅広部」である、と言える。第1配線部624は、アンテナ本体部618のうち接続対象となる短辺部618Sと直交する方向、つまりY軸方向に対してなす傾斜角度が例えば20度程度となるよう構成されている。第2配線部625は、アンテナ本体部618及び第1配線部624から遠ざかるのに従って、その線幅が次第に広くなっているとともに、アンテナ本体部618を構成する各辺部618L,618Sに沿う方向に対して傾斜状をなしている。第2配線部625における線幅の変化率は、第1配線部624における線幅の変化率よりも小さなものとされている。従って、第2配線部625は、Y軸方向に対してなす傾斜角度が第1配線部624の同傾斜角度よりも小さくなっており、具体的には例えば14度~15度程度となるよう構成されている。第2配線部626は、第1配線部624と同様に、「幅広部623」であり、「線幅可変幅広部」であり、さらには「傾斜状幅広部」である、と言える。このような構成によれば、実施形態1に記載した引き出し配線部19よりもY軸方向に対する傾斜角度が大きな第1配線部624によって、逆向き磁場の強度の比率をより好適に低下させることができるとともに、第1配線部624よりもY軸方向に対する傾斜角度が小さな第2配線部625によって透明アンテナ617の配置スペースをコンパクトなものとすることができる。
 <実施形態8>
 本発明の実施形態8を図19によって説明する。この実施形態8では、上記した実施形態1から引き出し配線部719の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る引き出し配線部719を構成する幅広部723は、図19に示すように、その外縁が略円弧状に湾曲した曲線状をなしている。幅広部723は、その線幅がアンテナ本体部718から遠ざかるのに従って次第に広くなっているが、その変化率についてはアンテナ本体部718から遠ざかるのに従って次第に小さくなるよう構成されている。これにより、逆向き磁場が発生する逆向き磁場発生領域OMAの面積が好適に削減されるので、逆向き磁場の強度の比率を好適に低下させることができる。
 <実施形態9>
 本発明の実施形態9を図20によって説明する。この実施形態9では、上記した実施形態8から引き出し配線部819の構成を変更したものを示す。なお、上記した実施形態8と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る引き出し配線部819を構成する幅広部823は、図20に示すように、その線幅がアンテナ本体部818から遠ざかるのに従って次第に広くなっているが、その変化率についてはアンテナ本体部818から遠ざかるのに従って次第に大きくなるよう構成されている。
 <実施形態10>
 本発明の実施形態10を図21によって説明する。この実施形態10では、上記した実施形態2から引き出し配線部919の構成を変更したものを示す。なお、上記した実施形態2と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る引き出し配線部919は、図21に示すように、アンテナ本体部918に連なる第1配線部924と、第1配線部924に対してアンテナ本体部918側とは反対側に配されて第1配線部924に連なる第2配線部925と、第2配線部925に対して第1配線部924側とは反対側に配されて第2配線部925に連なる第3配線部28と、からなる構成とされる。このうち、第1配線部924及び第3配線部28は、それぞれアンテナ本体部918から遠ざかるのに従って、その線幅が次第に広くなっているとともに、アンテナ本体部918を構成する各辺部918L,918Sに沿う方向に対して傾斜状をなしている。つまり、第1配線部924及び第3配線部28は、線幅がアンテナ本体部918を構成するアンテナ素線921の線幅よりも幅広な「幅広部923」であり、線幅が延在方向についての位置に応じて可変する「線幅可変幅広部」であり、さらには外縁が傾斜状をなしつつ延在する「傾斜状幅広部」である、と言える。第1配線部924は、アンテナ本体部918のうち接続対象となる短辺部918Sと直交する方向、つまりY軸方向に対してなす傾斜角度が14度以上、具体的には14度~15度程度となるよう構成されている。第2配線部925は、上記した実施形態2に記載したものと同様に、線幅がアンテナ本体部918を構成するアンテナ素線921の線幅よりも広くされる「幅広部923」であり、さらには線幅が全長にわたって一定とされる「線幅一定幅広部」である。第3配線部28は、その最小線幅が第1配線部924の最大線幅よりも広く、且つ第2配線部925の線幅よりも広いものとされる。以上のように、この引き出し配線部919は、第1配線部924、第2配線部925及び第3配線部28の各線幅が、アンテナ本体部918を構成するアンテナ素線921の線幅よりも幅広とされており、全域が「幅広部923」である、と言える。
 <実施形態11>
 本発明の実施形態11を図22によって説明する。この実施形態11では、上記した実施形態10から引き出し配線部1019の構成を変更したものを示す。なお、上記した実施形態10と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る引き出し配線部1019は、図22に示すように、線幅が一定とされる第1配線部1024と、線幅が可変される第2配線部1025と、線幅が一定とされる第3配線部1028と、からなる構成とされる。第1配線部1024は、上記した実施形態2に記載したものと同様に、線幅が、アンテナ本体部1018を構成するアンテナ素線1021の線幅とほぼ同じとされるとともに、全長にわたって一定とされる「線幅一定部」である。第2配線部1025は、アンテナ本体部1018及び第1配線部1024から遠ざかるのに従って、その線幅が次第に広くなっているとともに、アンテナ本体部1018を構成する各辺部1018L,1018Sに沿う方向に対して傾斜状をなしている。つまり、第2配線部1025は、線幅がアンテナ本体部1018を構成するアンテナ素線1021の線幅よりも広くされる「幅広部1023」であり、線幅が延在方向についての位置に応じて可変する「線幅可変幅広部」であり、さらには外縁が傾斜状をなしつつ延在する「傾斜状幅広部」である、と言える。第3配線部1028は、線幅がアンテナ本体部1018を構成するアンテナ素線1021の線幅よりも幅広な「幅広部1023」であり、さらにその線幅が全長にわたって一定とされる「線幅一定幅広部」である。
 <実施形態12>
 本発明の実施形態12を図23によって説明する。この実施形態12では、上記した実施形態11から引き出し配線部1119の構成を変更したものを示す。なお、上記した実施形態11と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る引き出し配線部1119は、図23に示すように、第1配線部1124、第2配線部1125、及び第3配線部1128の線幅がそれぞれ異なるものの、全て一定とされている。第1配線部1124は、上記した実施形態2に記載したものと同様に、線幅が、アンテナ本体部1118を構成するアンテナ素線1121の線幅とほぼ同じとされるとともに、全長にわたって一定とされる「線幅一定部」である。第2配線部1125は、その線幅がアンテナ本体部1118を構成するアンテナ素線1121及び第1配線部1124の線幅よりも幅広な「幅広部1123」であり、さらにその線幅が全長にわたって一定とされる「線幅一定幅広部」である。第3配線部1128は、その線幅が第2配線部1125の線幅よりも幅広な「幅広部1123」であり、さらにその線幅が全長にわたって一定とされる「線幅一定幅広部」である。つまり、この引き出し配線部1119は、アンテナ本体部1118から遠ざかるのに従って線幅が段階的に逐次広くなる構成である、と言える。
 <実施形態13>
 本発明の実施形態13を図24によって説明する。この実施形態13では、上記した実施形態10から引き出し配線部1219の構成を変更したものを示す。なお、上記した実施形態10と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る引き出し配線部1219は、図24に示すように、第1配線部1224、第2配線部1225、及び第3配線部1228の全てが、アンテナ本体部1218から遠ざかるのに従って線幅が広くなる構成とされる。第1配線部1224は、アンテナ本体部1218から遠ざかるのに従って、その線幅が次第に広くなっているとともに、アンテナ本体部1218を構成する各辺部1218L,1218Sに沿う方向に対して傾斜状をなしている。つまり、第1配線部1224は、線幅がアンテナ本体部1218を構成するアンテナ素線1221の線幅よりも幅広な「幅広部1223」であり、線幅が延在方向についての位置に応じて可変する「線幅可変幅広部」であり、さらには外縁が傾斜状をなしつつ延在する「傾斜状幅広部」である、と言える。第1配線部1224は、アンテナ本体部1218のうち接続対象となる短辺部1218Sと直交する方向、つまりY軸方向に対してなす傾斜角度が例えば20度程度となるよう構成されている。第2配線部1225は、第1配線部1224から遠ざかるのに従って、その線幅が次第に広くなっているとともに、アンテナ本体部1218を構成する各辺部1218L,1218Sに沿う方向に対して傾斜状をなしている。第2配線部1225における線幅の変化率は、第1配線部1224における線幅の変化率よりも小さなものとされている。従って、第2配線部1225は、Y軸方向に対してなす傾斜角度が第1配線部1224の同傾斜角度よりも小さくなっており、具体的には例えば14度~15度程度となるよう構成されている。第2配線部1226は、第1配線部1224と同様に、「幅広部1223」であり、「線幅可変幅広部」であり、さらには「傾斜状幅広部」である、と言える。第3配線部1228は、第2配線部1225から遠ざかるのに従って、その線幅が次第に広くなっているとともに、アンテナ本体部1218を構成する各辺部1218L,1218Sに沿う方向に対して傾斜状をなしている。第3配線部1228における線幅の変化率は、第2配線部1225における線幅の変化率よりも小さなものとされている。従って、第3配線部1228は、Y軸方向に対してなす傾斜角度が第2配線部1225の同傾斜角度よりも小さくなっており、具体的には例えば10度程度となるよう構成されている。第3配線部1228は、第1配線部1224及び第2配線部1225と同様に、「幅広部1223」であり、「線幅可変幅広部」であり、さらには「傾斜状幅広部」である、と言える。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態では、網目状金属膜により透明アンテナを構成した場合を示したが、網目状金属膜に透明電極膜(ITO)を積層させた複合導電膜により透明アンテナを構成するようにしてもよい。このような複合導電膜を透明アンテナに用いることで、透明アンテナの配線抵抗を一層低減させることができる。
 (2)上記した各実施形態以外にも、傾斜状幅広部における傾斜角度、線幅可変幅広部における線幅の変化率、第1配線部の長さ、線幅一定幅広部及び線幅一定部の線幅、網目状金属膜の網目の対角ピッチなどの具体的な数値については、適宜に変更することができる。また、アンテナ本体部の最大外幅寸法と、引き出し配線部の最大外幅寸法との大小関係についても適宜に変更可能であり、例えば前者よりも後者の方が小さくしたり、逆に前者よりも後者の方が大きくしたりすることも可能である。
 (3)上記した各実施形態では、透明アンテナが液晶パネルにおけるY軸方向についての中央位置付近に配置される構成を例示したが、液晶パネルの面内における透明アンテナのX軸方向及びY軸方向についての具体的な配置は適宜に変更可能である。例えば、透明アンテナが液晶パネルの面内においてY軸方向について中央位置よりも上側や下側に配置されていてもよく、またX軸方向について中央位置付近などに配置されていてもよい。
 (4)上記した各実施形態では、アンテナ本体部の平面形状が縦長の方形状とされる場合を示したが、アンテナ本体部の平面形状を横長の方形状としたり、正方形などとすることも可能である。それ以外にもアンテナ本体部の平面形状を、円形や楕円形などとすることも可能である。
 (5)上記した各実施形態では、引き出し配線部がアンテナ本体部から液晶表示装置におけるY軸方向についての下側に向けて延出する構成とされた場合を示したが、引き出し配線部がアンテナ本体部から液晶表示装置におけるY軸方向についての上側に向けて延出する構成とすることも可能である。さらには、引き出し配線部がアンテナ本体部から液晶表示装置におけるX軸方向についての左右いずれか一方側に向けて延出する構成とすることも可能であり、その場合はアンテナ本体部の配置を90度回転させるのが好ましい。
 (6)上記した各実施形態では、アンテナ本体部が3本のアンテナ素線からなる構成のものを例示したが、アンテナ本体部を構成するアンテナ素線の数(巻き数)は適宜に変更可能である。アンテナ素線の数を変更する場合は、それに伴って引き出し配線部の本数やアンテナ接続配線部の本数を適宜に変更すればよい。
 (7)上記した各実施形態では、透明アンテナが対称形状とされた場合を例示したが、透明アンテナが非対称形状とされていても構わない。
 (8)上記した各実施形態では、アンテナ本体部が磁場発生領域を取り囲む形で閉じた環状をなすものを示したが、アンテナ素線の両端部間が開口するよう開いた形の環状をなすアンテナ本体部にも本発明は適用可能である。
 (9)上記した各実施形態では、液晶パネルの平面形状が横長の方形状とされる場合を示したが、液晶パネルの平面形状を縦長の方形状としたり、正方形などとすることも可能である。それ以外にも液晶パネルの平面形状を、円形や楕円形などとしたり、さらには液晶パネルの外周端部の平面形状を、直線と曲線とを複合させたような形態とすることも可能である。
 (10)上記した各実施形態に記載した技術事項を適宜に組み合わせることも可能である。
 (11)上記した各実施形態では、30数インチから60インチまでの画面サイズの液晶パネルを備える液晶表示装置を例示したが、30インチ以下の画面サイズの液晶パネルを備える液晶表示装置にも本発明は適用可能である。
 (12)上記した各実施形態では、インフォメーションディスプレイ、電子黒板、テレビ受信装置などの電子機器に用いられる液晶表示装置を例示したが、それ以外にもPCモニタ(デスクトップ型PC用モニタ、ノート型PC用モニタを含む)、タブレット型端末、ファブレット型端末、スマートフォン、携帯電話、携帯型ゲーム機などの電子機器に用いられる液晶表示装置にも本発明は適用可能である。
 (13)上記した実施形態4では、タッチパネルとカバーパネルとを備えた液晶表示装置を例示したが、カバーパネルにタッチパネルパターンを設けるようにし、タッチパネルを省略した構成を採ることも可能である。また、タッチパネルパターンを液晶パネルに設けるようにすることでタッチパネルを省略する事も可能である。その場合、さらにカバーパネルを省略することも可能である。
 (14)上記した各実施形態では、アレイ基板側に画素電極が配されるとともにCF基板側に共通電極が配されるとともに画素電極と共通電極とが間に液晶層を介在させた形で重畳する構成の液晶パネル(VAモードの液晶パネル)を例示したが、アレイ基板側に画素電極と共通電極とが共に配されるとともに、画素電極と共通電極とが間に絶縁膜を介在させた形で重畳する構成の液晶パネル(FFSモードの液晶パネル)を用いた液晶表示装置にも本発明は適用可能である。それ以外にも、いわゆるIPSモードの液晶パネルを用いた液晶表示装置にも本発明は適用可能である。
 (15)上記した各実施形態では、液晶パネルのカラーフィルタが赤色、緑色及び青色の3色構成とされたものを例示したが、赤色、緑色及び青色の各着色部に、黄色の着色部を加えて4色構成としたカラーフィルタを備えたものにも本発明は適用可能である。
 (16)上記した各実施形態では、外部光源であるバックライト装置を備えた透過型の液晶表示装置を例示したが、本発明は、外光を利用して表示を行う反射型液晶表示装置にも適用可能であり、その場合はバックライト装置を省略することができる。また、本発明は、半透過型液晶表示装置にも適用可能である。
 (17)上記した各実施形態では、液晶パネルのスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶パネルを備えた液晶表示装置にも適用可能であり、カラー表示する液晶パネルを備えた液晶表示装置以外にも、白黒表示する液晶パネルを備えた液晶表示装置にも適用可能である。
 (18)上記した各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネル(PDP(プラズマディスプレイパネル)、有機ELパネル、EPD(電気泳動ディスプレイパネル)など)を用いた表示装置にも本発明は適用可能である。これらの場合、バックライト装置を省略することも可能である。また、MEMSディスプレイパネルを用いた表示装置にも本発明は適用可能である。
 10,310...液晶表示装置(透明アンテナ付き表示装置)、11,311...液晶パネル(表示パネル)、12,312...透明アンテナ基板、17,117,217...透明アンテナ、18,118,218,418,518,618,718,818,918,1018,1118,1218...アンテナ本体部、18L,118L,418L,518L,618L,918L,1018L,1218L...長辺部(辺部)、18S,118S,418S,518S,618S,918S,1018S,1218S...短辺部(辺部)、19,119,219,419,519,619,719,819,919,1019,1119,1219...引き出し配線部、20,220...アンテナ接続配線部、21,421,521,621,921,1021,1221...アンテナ素線、22...短絡配線部、23,123,523,623,723,823,923,1023,1123,1223...幅広部(線幅可変幅広部、傾斜状幅広部)、24,424,524,624,924,1024,1124,1224...第1配線部、25,425,525,625,925,1025,1125,1225...第2配線部(線幅一定幅広部)、AA...表示領域、NAA...非表示領域、MA...磁場発生領域、SL...スリット

Claims (14)

  1.  環状をなしていてその中心側に磁場を発生させるアンテナ本体部と、
     前記アンテナ本体部から引き出される引き出し配線部であって、前記アンテナ本体部の線幅よりも広い線幅とされる幅広部を少なくとも一部に有する引き出し配線部と、を備える透明アンテナ。
  2.  前記アンテナ本体部は、その中心側にあって前記磁場が発生する磁場発生領域を取り囲む形で閉じた環状をなすものとされる請求項1記載の透明アンテナ。
  3.  前記幅広部には、前記アンテナ本体部から遠ざかるのに従って次第に線幅が広くなる線幅可変幅広部が含まれている請求項2記載の透明アンテナ。
  4.  前記アンテナ本体部は、平面形状が方形の環状をなすよう4つの辺部を有しているのに対し、前記線幅可変幅広部は、前記アンテナ本体部を構成する1つの前記辺部に連ねられており、
     前記線幅可変幅広部には、前記アンテナ本体部を構成する前記辺部に沿う方向に対して傾斜状をなす傾斜状幅広部が含まれている請求項3記載の透明アンテナ。
  5.  前記引き出し配線部は、複数が並んで配されており、
     複数の前記引き出し配線部のうち、最外位置に配されたものに有される前記線幅可変幅広部は、前記アンテナ本体部のうち前記線幅可変幅広部に連なる前記辺部と直交する方向に対して14度以上の角度をなすよう構成されている請求項4記載の透明アンテナ。
  6.  前記引き出し配線部は、その全域が前記幅広部により構成されている請求項4または請求項5記載の透明アンテナ。
  7.  前記引き出し配線部は、前記アンテナ本体部に連なる第1配線部と、前記第1配線部に対して前記アンテナ本体部側とは反対側に配されて前記第1配線部に連なる第2配線部と、を少なくとも有しており、
     前記第1配線部は、前記アンテナ本体部と同等の線幅とされるのに対し、前記第2配線部は、前記幅広部とされる請求項2または請求項3記載の透明アンテナ。
  8.  前記アンテナ本体部は、平面形状が方形の環状をなすよう4つの辺部を有しており、
     前記第1配線部は、前記アンテナ本体部を構成する1つの前記辺部に連ねられるとともにその連なる前記辺部に対して直交する方向に沿って延在していて、さらにその長さ寸法が21mm以下となるよう構成されている請求項7記載の透明アンテナ。
  9.  前記幅広部には、その線幅が一定とされる線幅一定幅広部が含まれている請求項7または請求項8記載の透明アンテナ。
  10.  前記引き出し配線部は、複数が並んで配されるとともにそれら複数の前記引き出し配線部における最大外幅寸法が、前記アンテナ本体部における最大外幅寸法と同じかそれよりも小さくなるよう構成されている請求項2から請求項9のいずれか1項に記載の透明アンテナ。
  11.  前記アンテナ本体部及び前記引き出し配線部は、網目状をなす金属膜からなるとともに、前記金属膜にパターニングされるスリットによりその平面形状が画定されている請求項1から請求項10のいずれか1項に記載の透明アンテナ。
  12.  請求項1から請求項11のいずれか1項に記載の透明アンテナと、前記透明アンテナが設けられる透明アンテナ基板と、前記透明アンテナ基板に積層される形で配される表示パネルであって、画像を表示可能な表示領域とその周りを取り囲む非表示領域とを有する表示パネルと、を備えており、
     前記透明アンテナは、前記表示領域と重畳する位置に配されている透明アンテナ付き表示装置。
  13.  前記透明アンテナ基板には、前記非表示領域と重畳する位置に配されるとともに前記引き出し配線部に接続されるアンテナ接続配線部が設けられている請求項12記載の透明アンテナ付き表示装置。
  14.  前記透明アンテナは、前記アンテナ本体部が複数のアンテナ素線を有するとともに、前記引き出し配線部が前記アンテナ素線の各端部のそれぞれに対して個別に接続される形で複数備えられる構成とされており、
     前記アンテナ接続配線部には、互いに異なる前記アンテナ素線の端部に接続される2本の前記引き出し配線部間を短絡させる短絡配線部が含まれている請求項13記載の透明アンテナ付き表示装置。
PCT/JP2015/085042 2014-12-18 2015-12-15 透明アンテナ及び透明アンテナ付き表示装置 WO2016098763A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/536,487 US10910718B2 (en) 2014-12-18 2015-12-15 Transparent antenna and transparent antenna-attached display device
CN201580068815.6A CN107004956B (zh) 2014-12-18 2015-12-15 透明天线及附透明天线的显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-256436 2014-12-18
JP2014256436 2014-12-18

Publications (1)

Publication Number Publication Date
WO2016098763A1 true WO2016098763A1 (ja) 2016-06-23

Family

ID=56126652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085042 WO2016098763A1 (ja) 2014-12-18 2015-12-15 透明アンテナ及び透明アンテナ付き表示装置

Country Status (3)

Country Link
US (1) US10910718B2 (ja)
CN (1) CN107004956B (ja)
WO (1) WO2016098763A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018057700A (ja) * 2016-10-07 2018-04-12 株式会社ユニバーサルエンターテインメント 遊技機
JP2018057699A (ja) * 2016-10-07 2018-04-12 株式会社ユニバーサルエンターテインメント 遊技機
JP2018057703A (ja) * 2016-10-07 2018-04-12 株式会社ユニバーサルエンターテインメント 遊技機
JP2018057704A (ja) * 2016-10-07 2018-04-12 株式会社ユニバーサルエンターテインメント 遊技機
JP2018057701A (ja) * 2016-10-07 2018-04-12 株式会社ユニバーサルエンターテインメント 遊技機
WO2018225702A1 (ja) * 2017-06-08 2018-12-13 シャープ株式会社 アンテナデバイスおよびこれを備えた表示装置
WO2020152987A1 (ja) * 2019-01-23 2020-07-30 ソニーセミコンダクタソリューションズ株式会社 アンテナおよびミリ波センサ
US20230223674A1 (en) * 2022-01-12 2023-07-13 Au Optronics Corporation Antenna module and display apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102406686B1 (ko) * 2015-11-10 2022-06-08 삼성전자주식회사 안테나 장치 및 그를 구비하는 전자 장치
US11073958B2 (en) * 2016-01-29 2021-07-27 Sharp Kabushiki Kaisha Antenna device
US9972271B2 (en) * 2016-05-12 2018-05-15 Novatek Microelectronics Corp. Display panel
EP3688837A4 (en) * 2017-09-25 2021-06-02 Antwave Intellectual Property Limited SYSTEMS, DEVICES, AND METHODS FOR IMPROVING ANTENNA PERFORMANCE IN ELECTRONIC DEVICES
US10775490B2 (en) * 2017-10-12 2020-09-15 Infineon Technologies Ag Radio frequency systems integrated with displays and methods of formation thereof
JP7195645B2 (ja) * 2018-02-23 2022-12-26 日本電業工作株式会社 アンテナ構造体
KR102621661B1 (ko) * 2019-02-25 2024-01-05 삼성전자주식회사 전자 장치 및 그의 동작 방법
CN111682307A (zh) * 2019-03-11 2020-09-18 夏普株式会社 天线装置及具有该天线装置的显示装置
TWI708430B (zh) * 2019-10-02 2020-10-21 友達光電股份有限公司 透明天線及電子裝置
CN111312064A (zh) * 2019-11-25 2020-06-19 深圳市华星光电半导体显示技术有限公司 透明显示屏及其制作方法
TWI827926B (zh) * 2021-05-06 2024-01-01 友達光電股份有限公司 射頻液晶天線系統
CN113299184A (zh) * 2021-05-21 2021-08-24 维沃移动通信有限公司 显示模组和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142984A (ja) * 2003-11-10 2005-06-02 Shin Etsu Polymer Co Ltd 透光性アンテナ
JP2008160825A (ja) * 2006-12-01 2008-07-10 Nippon Tungsten Co Ltd 誘電体アンテナ
JP2011091788A (ja) * 2009-09-24 2011-05-06 Dainippon Printing Co Ltd 透明アンテナ用エレメント及び透明アンテナ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6506004A (ja) 1965-05-12 1966-03-25
US6317099B1 (en) * 2000-01-10 2001-11-13 Andrew Corporation Folded dipole antenna
CA2314449A1 (en) * 2000-07-25 2002-01-25 Superpass Company Inc. High gain printed loop antennas
US6933891B2 (en) * 2002-01-29 2005-08-23 Calamp Corp. High-efficiency transparent microwave antennas
JP2004364199A (ja) * 2003-06-06 2004-12-24 Sony Corp アンテナモジュール及びこれを備えた携帯型通信端末
US7079079B2 (en) * 2004-06-30 2006-07-18 Skycross, Inc. Low profile compact multi-band meanderline loaded antenna
US7656357B2 (en) 2005-04-01 2010-02-02 Nissha Printing Co., Ltd. Transparent antenna for vehicle and vehicle glass with antenna
CN101180765B (zh) 2005-04-01 2013-06-05 日本写真印刷株式会社 显示器用透明天线和带天线的显示器用透光性构件以及带天线的壳体用构件
TW200943625A (en) * 2008-04-14 2009-10-16 Kuo-Ching Chiang Thin film non-metallic antenna and the portable device with thereof
CN201212991Y (zh) * 2008-06-30 2009-03-25 汉王科技股份有限公司 透明天线板的电磁式触摸装置
JP5532678B2 (ja) * 2009-05-26 2014-06-25 ソニー株式会社 通信装置、アンテナ装置、並びに通信システム
KR20120138758A (ko) * 2010-02-17 2012-12-26 갈트로닉스 코포레이션 리미티드 강화된 안테나 아이솔레이션을 위한 새로운 전류 분포 및 방사 패턴을 가진 안테나
CN107275763B (zh) * 2012-03-23 2020-07-28 Lg 伊诺特有限公司 天线组件
US10290934B2 (en) * 2014-04-30 2019-05-14 Tdk Corporation Antenna device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142984A (ja) * 2003-11-10 2005-06-02 Shin Etsu Polymer Co Ltd 透光性アンテナ
JP2008160825A (ja) * 2006-12-01 2008-07-10 Nippon Tungsten Co Ltd 誘電体アンテナ
JP2011091788A (ja) * 2009-09-24 2011-05-06 Dainippon Printing Co Ltd 透明アンテナ用エレメント及び透明アンテナ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018057700A (ja) * 2016-10-07 2018-04-12 株式会社ユニバーサルエンターテインメント 遊技機
JP2018057699A (ja) * 2016-10-07 2018-04-12 株式会社ユニバーサルエンターテインメント 遊技機
JP2018057703A (ja) * 2016-10-07 2018-04-12 株式会社ユニバーサルエンターテインメント 遊技機
JP2018057704A (ja) * 2016-10-07 2018-04-12 株式会社ユニバーサルエンターテインメント 遊技機
JP2018057701A (ja) * 2016-10-07 2018-04-12 株式会社ユニバーサルエンターテインメント 遊技機
WO2018225702A1 (ja) * 2017-06-08 2018-12-13 シャープ株式会社 アンテナデバイスおよびこれを備えた表示装置
WO2020152987A1 (ja) * 2019-01-23 2020-07-30 ソニーセミコンダクタソリューションズ株式会社 アンテナおよびミリ波センサ
US11888243B2 (en) 2019-01-23 2024-01-30 Sony Semiconductor Solutions Corporation Antenna and millimeter-wave sensor
US20230223674A1 (en) * 2022-01-12 2023-07-13 Au Optronics Corporation Antenna module and display apparatus
US11862842B2 (en) * 2022-01-12 2024-01-02 Au Optronics Corporation Antenna module and display apparatus

Also Published As

Publication number Publication date
US20170373397A1 (en) 2017-12-28
CN107004956B (zh) 2019-12-27
US10910718B2 (en) 2021-02-02
CN107004956A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2016098763A1 (ja) 透明アンテナ及び透明アンテナ付き表示装置
US10411353B2 (en) Transparent antenna and transparent antenna-equipped display device
CN103941952B (zh) 一种电磁感应式触控基板以及电感式触控显示装置
JP6165270B2 (ja) 位置入力装置及び表示装置
JP6313471B2 (ja) 位置入力機能付き表示装置
US10503290B2 (en) Color filtering substrate and display apparatus
TWI614555B (zh) 液晶顯示面板
CN109716585B (zh) Nfc天线及显示装置
US9823502B2 (en) Method and apparatus for color filter as touch pad
US9632633B2 (en) Touch panel, liquid crystal display device and scanning method thereof
WO2018062245A1 (ja) アンテナ付きタッチパネルディスプレイ
US11018420B2 (en) Display device and communication system
US20160043104A1 (en) Display panel
JP2013231786A (ja) 液晶表示パネル
KR20140066452A (ko) 입력 장치
US10088718B2 (en) Touch liquid crystal display and method of controlling the same
US11133591B2 (en) Antenna device, position input device including antenna device, and display device including antenna device
US20130050628A1 (en) Liquid crystal display apparatus
CN109460167A (zh) 显示面板和显示装置
JP2019028168A (ja) 表示装置
JP5659294B2 (ja) 表示装置
JP2013164498A (ja) 表示装置
WO2016084728A1 (ja) 位置入力装置、及び位置入力機能付き表示装置
JP3194343U (ja) リード線の曲率と遮光パターン部の曲率とが異なる液晶表示装置
CN103336599B (zh) 触控显示屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15536487

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP