WO2020152987A1 - アンテナおよびミリ波センサ - Google Patents

アンテナおよびミリ波センサ Download PDF

Info

Publication number
WO2020152987A1
WO2020152987A1 PCT/JP2019/046949 JP2019046949W WO2020152987A1 WO 2020152987 A1 WO2020152987 A1 WO 2020152987A1 JP 2019046949 W JP2019046949 W JP 2019046949W WO 2020152987 A1 WO2020152987 A1 WO 2020152987A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
hole
patch antenna
conductive film
transparent conductive
Prior art date
Application number
PCT/JP2019/046949
Other languages
English (en)
French (fr)
Inventor
岡田 安弘
研一 川崎
幸生 飯田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN201980089263.5A priority Critical patent/CN113302796A/zh
Priority to US17/423,207 priority patent/US11888243B2/en
Publication of WO2020152987A1 publication Critical patent/WO2020152987A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas

Definitions

  • the present disclosure relates to an antenna and a millimeter wave sensor.
  • the patch antenna and the ground plane are formed in a sparse grid pattern, so that matching with the feed line can be achieved compared to the case where the patch antenna and the ground plane are formed of a uniform metal thin film. Have difficulty.
  • the present disclosure proposes an antenna and a millimeter wave sensor that have high transparency and can easily match with a power feeding line.
  • an antenna includes a plate-shaped transparent dielectric, a patch antenna, a ground plane, and a transparent conductive film.
  • the patch antenna is provided on the front surface of the transparent dielectric and has a hole inside.
  • the base plate is provided on the back surface of the transparent dielectric and has a hole inside.
  • the transparent conductive film is provided in the hole of the patch antenna.
  • the antenna according to one aspect of the present disclosure further includes a transparent conductive film provided in the hole of the base plate.
  • FIG. 7 is a graph showing a reflection characteristic with respect to a frequency of the antenna according to the embodiment of the present disclosure. 7 is a graph showing the radiation directivity of the antenna according to the embodiment of the present disclosure. 7 is a graph showing the reflection characteristic with respect to the frequency of the antenna in Reference Example 1. 7 is a graph showing the radiation directivity of the antenna in Reference Example 1. 9 is a graph showing a reflection characteristic with respect to the frequency of the antenna in Reference Example 2.
  • FIG. 9 is a graph showing the radiation directivity of the antenna in Reference Example 2.
  • FIG. 10 is a top perspective view showing a configuration of an antenna according to Modification 1 of the embodiment of the present disclosure.
  • FIG. 11 is a top perspective view showing a configuration of an antenna according to Modification 2 of the embodiment of the present disclosure.
  • FIG. 10 is a top perspective view showing a configuration of an antenna according to Modification 3 of the embodiment of the present disclosure.
  • FIG. 3 is a block diagram showing an example of a schematic configuration of a millimeter wave sensor according to an embodiment of the present disclosure.
  • the patch antenna and the ground plane are formed in a sparse grid pattern, so that matching with the feed line can be achieved as compared with the case where the patch antenna and the ground plane are formed of a uniform metal thin film. Have difficulty.
  • the patch antenna and the ground plane are configured in a sparse grid pattern, which increases the impedance of the antenna. Further, since the patch antenna and the ground plane are formed in a sparse grid pattern, if the grid array pattern changes, the matching condition changes significantly.
  • FIG. 1 is a top perspective view showing a configuration of an antenna 1 according to an embodiment of the present disclosure
  • FIG. 2 is a bottom perspective view showing a configuration of an antenna 1 according to an embodiment of the present disclosure.
  • the antenna 1 includes a transparent dielectric 10, a patch antenna 20, a base plate 30, a transparent conductive film 40, and a transparent conductive film 50 (see FIG. 2).
  • a transparent conductive film 50 For easy understanding, illustration of the transparent conductive film 50 is omitted in FIG. 1, and illustration of the patch antenna 20 and the transparent conductive film 40 is omitted in FIG.
  • the transparent dielectric 10 is made of a transparent dielectric such as glass, resin (for example, polyimide), or plexiglass.
  • the transparent dielectric 10 has a plate shape and has a front surface 11 and a back surface 12 which are substantially parallel to each other.
  • the transparent dielectric 10 has, for example, a rectangular shape in a top view. The shape of the transparent dielectric 10 is not limited to the rectangular shape.
  • the patch antenna 20 is provided on the front surface 11 of the transparent dielectric 10.
  • the patch antenna 20 has a microstrip line 21, a hole 22, and a feeding point 23.
  • the microstrip line 21 is made of a metal thin film having high electric conductivity such as copper, aluminum, and gold.
  • the microstrip line 21 is composed of an aggregate of lines having a predetermined pattern (for example, a lattice shape), and has a predetermined shape (for example, a substantially T shape) as an overall shape.
  • the pattern and overall shape of the microstrip line 21 are not limited to the example shown in FIG. 1, and can be appropriately changed according to the wavelength of electromagnetic waves transmitted and received by the antenna 1.
  • the tip of the microstrip line 21 located in the center of the transparent dielectric 10 is rectangular is shown, but the tip may be circular or the like.
  • a plurality of holes 22 are formed inside the patch antenna 20 in a region surrounded by a plurality of microstrip lines 21.
  • the hole 22 has, for example, a rectangular shape in a top view. In the embodiment, the plurality of holes 22 can improve the transparency of the patch antenna 20.
  • the feeding point 23 is a part to which a feeding line (not shown) is electrically connected. Power is supplied to the patch antenna 20 from an external device (for example, the millimeter-wave band RF circuit 3 (see FIG. 11)) via the power supply line and the power supply point 23.
  • an external device for example, the millimeter-wave band RF circuit 3 (see FIG. 11)
  • the base plate 30 is provided on the back surface 12 of the transparent dielectric 10. That is, the patch antenna 20 and the ground plane 30 are arranged substantially parallel to each other. Then, in the antenna 1 according to the embodiment, by feeding power to the feeding point 23 of the patch antenna 20, a predetermined electric field is formed between the patch antenna 20 and the ground plate 30 which face each other.
  • the base plate 30 has a conductor 31 and a hole 32.
  • the conductor 31 is composed of a metal thin film having high electric conductivity such as copper, aluminum, or gold.
  • a plurality of holes 32 are formed inside the main plate 30 at a portion surrounded by a plurality of conductors 31.
  • the hole 32 has, for example, a rectangular shape in a top view. In the embodiment, the transparency of the base plate 30 can be improved by the plurality of holes 32.
  • the transparent conductive film 40 with dots in FIG. 1 is a conductive thin film having transparency.
  • the transparent conductive film 40 includes, for example, ITO (Indium Tin Oxide), FTO (Fluorine-doped Tin Oxide), ATO (Antimony Tin Oxide), AZO (Antimony Zinc Oxide), GZO (Gallium Zinc Oxide), and IZO (Indium Zinc Oxide). ) And so on.
  • the transparent conductive film 40 is provided in the hole 22 of the patch antenna 20 on the front surface 11 of the transparent dielectric 10.
  • the transparent conductive film 40 is provided, for example, so as to cover all the plurality of holes 22.
  • the transparent conductive film 50 with dots in FIG. 2 is a conductive thin film having transparency.
  • the transparent conductive film 50 is made of, for example, ITO, FTO, ATO, AZO, GZO, IZO or the like.
  • the transparent conductive film 40 and the transparent conductive film 50 may use the same material or different materials.
  • the transparent conductive film 50 is provided in the hole 32 of the main plate 30 on the back surface 12 of the transparent dielectric 10.
  • the transparent conductive film 50 is provided so as to cover all the plurality of holes 32, for example.
  • FIG. 3 is a top perspective view showing the configuration of the antenna 100 according to the first reference example.
  • the antenna 100 of the reference example 1 has a transparent dielectric 10, a patch antenna 20, and a ground plane 30.
  • the transparent dielectric body 10, the patch antenna 20, and the ground plane 30 of the antenna 100 have the same configuration as that of the embodiment. That is, the antenna 100 of Reference Example 1 has a configuration in which the transparent conductive film 40 and the transparent conductive film 50 are removed from the antenna 1 of the embodiment. Therefore, the antenna 100 of Reference Example 1 has high transparency as in the embodiment.
  • FIG. 4 is a top perspective view showing the configuration of the antenna 101 according to the second reference example.
  • the antenna 101 according to the second reference example includes a transparent dielectric 10, a patch antenna 20, and a base plate 30.
  • the patch antenna 20 of the antenna 101 has the same overall shape as the patch antenna 20 of the embodiment.
  • the hole 22 is not formed in the patch antenna 20 of the antenna 101, and all regions are formed of a uniform metal thin film.
  • the ground plane 30 of the antenna 101 has the same overall shape as the ground plane 30 of the embodiment.
  • the hole 32 is not formed, and all regions are formed of a uniform metal thin film.
  • the antenna 101 of Reference Example 2 has low transparency because the holes 22 and 32 are not formed in the patch antenna 20 and the ground plate 30.
  • FIG. 5A is a graph showing a reflection characteristic with respect to frequency of the antenna 1 according to the embodiment of the present disclosure.
  • the reflection characteristics of the various antennas shown below indicate the reflection characteristics at the input 50 ( ⁇ ) used in a general feed line.
  • the antenna 1 since the antenna 1 according to the embodiment has a reflection minimum point near the frequency 77 (GHz), it has good reflection characteristics as an antenna for transmitting and receiving a millimeter wave signal.
  • FIG. 5B is a graph showing the radiation directivity of the antenna 1 according to the embodiment of the present disclosure. Regarding the radiation directivity of the various antennas shown below, the radiation directivity of the H plane and the radiation directivity of the E plane are shown in one graph.
  • the radiation directivity of the H plane is reduced in the region of 90 (°) to 270 (°), so that the radiation level in the back direction is suppressed. ing.
  • FIG. 6A is a graph showing the reflection characteristic with respect to the frequency of the antenna 100 in Reference Example 1. As shown in FIG. 6A, since the antenna 100 in Reference Example 1 does not have a reflection minimum point in the vicinity of the frequency 77 (GHz), reflection loss is large as an antenna that transmits and receives a millimeter wave signal.
  • GHz frequency 77
  • the antenna 100 does not have a reflection minimum point in a frequency band other than the frequency band shown in FIG. 6A, the reflection loss is large even as an antenna that transmits and receives a signal other than a millimeter wave signal.
  • FIG. 6B is a graph showing the radiation directivity of the antenna 100 in the reference example 1.
  • the antenna 100 according to the first reference example has a relatively high level in the radiation directivity of the H-plane and the E-plane in the range of 90 (°) to 270 (°). Radiation levels in the direction are not suppressed.
  • the antenna 100 of Reference Example 1 is an antenna having high transparency but low antenna efficiency.
  • FIG. 7A is a graph showing the reflection characteristic with respect to the frequency of the antenna 101 in Reference Example 2.
  • the antenna 101 of Reference Example 2 has a reflection minimum point near the frequency 77 (GHz), and thus has good reflection characteristics as an antenna for transmitting and receiving a millimeter wave signal.
  • FIG. 7B is a graph showing the radiation directivity of the antenna 101 in Reference Example 2. As shown in FIG. 7B, in the antenna 101 of Reference Example 2, since the radiation directivity of the H surface is reduced in the region of 90 (°) to 270 (°), the radiation level in the back direction is suppressed. ing.
  • the antenna 101 of Reference Example 2 is an antenna having high antenna efficiency but low transparency. Further, as shown in FIGS. 5A and 7A, the antenna 1 according to the embodiment and the antenna 101 of the reference example 2 have similar reflection characteristics.
  • the patch antenna 20 is similar to the antenna 101 formed of a uniform metal thin film. It is possible to provide the antenna 1 with the reflection characteristic of.
  • the antenna 101 in which the patch antenna 20 is formed of a uniform metal thin film is relatively easy to be designed to match with the power feeding line according to the frequency of the electromagnetic waves transmitted and received.
  • the antenna 101 in which the patch antenna 20 is formed of a uniform metal thin film is designed, the hole 22 is provided in the designed patch antenna 20, and the transparent conductive film 40 is provided in the hole 22.
  • the antenna 101 in which the patch antenna 20 is formed of a uniform metal thin film is designed, the hole 22 is provided in the designed patch antenna 20, and the transparent conductive film 40 is provided in the hole 22.
  • the transparent transparent conductive film 40 is provided in the hole 22 of the patch antenna 20, the high transparency of the antenna 1 can be continuously ensured. Therefore, according to the embodiment, it is possible to realize the antenna 1 which has high transparency and can easily be matched with the feed line.
  • the radiation level in the back direction can be suppressed. Therefore, according to the embodiment, when there is any object on the back side of the antenna 1, the influence of the electromagnetic wave on the object can be reduced, and the influence of the electromagnetic wave reflected from the object on the antenna 1 can be reduced. can do.
  • the antenna 1 can be provided with a reflection characteristic similar to that of the antenna 101 in which the base plate 30 is formed of a uniform metal thin film.
  • the transparent conductive film 40 may be provided so as to cover the hole 22 of the patch antenna 20. This makes it possible to give the antenna 1 a reflection characteristic more similar to that of the antenna 101 in which the patch antenna 20 is formed of a uniform metal thin film.
  • the transparent conductive film 50 may be provided so as to cover the hole 32 of the main plate 30.
  • the antenna 1 can be provided with a reflection characteristic more similar to the antenna 101 in which the ground plate 30 is formed of a uniform metal thin film.
  • the antenna 1 of the embodiment is limited to such an example. I can't.
  • the transparent conductive film 40 may be provided only in the hole 22 of the patch antenna 20, or the transparent conductive film 50 may be provided only in the hole 32 of the main plate 30.
  • the patch antenna 20 may have a first conductive path formed along the outer circumference and a second conductive path formed inside the plurality of holes 22.
  • a plurality of holes 32 may be provided side by side on the main plate 30.
  • the base plate 30 may have a first conductive path formed along the outer periphery and a second conductive path formed inside the plurality of holes 32.
  • the antenna 1 can be provided with sufficient antenna characteristics.
  • the transparent conductive film 40 may be provided not only on the hole 22 of the patch antenna 20 but also on the surface of the microstrip line 21. On the other hand, in the embodiment, it is preferable that the transparent conductive film 40 be provided so as not to protrude from the region surrounded by the microstrip line 21.
  • the hole 22 of the patch antenna 20 may be rectangular. Accordingly, when the patch antenna 20 is formed of a rectangular aggregate, the holes 22 can be arranged without waste, so that the transparency of the patch antenna 20 can be improved.
  • FIG. 8 is a top perspective view showing the configuration of the antenna 1 according to Modification 1 of the embodiment of the present disclosure. As shown in FIG. 8, the hole 22 of the patch antenna 20 may have a hexagonal shape.
  • the holes 22 can be arranged inside the patch antenna 20 without waste, so that the transparency of the patch antenna 20 can be improved.
  • the base plate 30 has the same configuration as that of the embodiment shown in FIG.
  • the radius r of the hole 22 is set in the range of ⁇ /50 ⁇ r ⁇ /50 to obtain good antenna characteristics. Obtainable.
  • the transmittance of the patch antenna 20 is set by setting w/( ⁇ 3r) ⁇ 0.3. Since it can be 70% or more, high transparency can be obtained.
  • FIG. 9 is a top perspective view showing the configuration of the antenna 1 according to the second modification of the embodiment of the present disclosure.
  • the hole 22 of the patch antenna 20 may have a triangular shape.
  • the holes 22 can be arranged inside the patch antenna 20 without waste, so that the transparency of the patch antenna 20 can be improved.
  • FIG. 10 is a top perspective view showing the configuration of the antenna 1 according to Modification 3 of the embodiment of the present disclosure.
  • the hole 22 of the patch antenna 20 may be circular.
  • the holes 22 can be arranged inside the patch antenna 20 without waste, so that the transparency of the patch antenna 20 can be improved.
  • the hole 22 of the embodiment is not limited to the rectangular shape, the hexagonal shape, the triangular shape, and the circular shape, and may have other shapes (for example, other polygonal shapes and elliptical shapes). Further, the plurality of holes 22 are not limited to the case of one type of shape, and a plurality of types of shapes may be mixed.
  • the hole 32 of the main plate 30 is not limited to the rectangular shape shown in FIG. 2, and may have the same shape as the various shapes of the hole 22 described so far.
  • the antenna 1 includes a plate-shaped transparent dielectric 10, a patch antenna 20, a base plate 30, and a transparent conductive film 40.
  • the patch antenna 20 is provided on the front surface 11 of the transparent dielectric 10 and has a hole 22 inside.
  • the base plate 30 is provided on the back surface 12 of the transparent dielectric 10 and has a hole 32 inside.
  • the transparent conductive film 40 is provided in the hole 22 of the patch antenna 20.
  • the transparent conductive film 40 is provided so as to cover the hole 22 of the patch antenna 20.
  • the antenna 1 it is possible to give the antenna 1 a reflection characteristic more similar to the antenna 101 in which the patch antenna 20 is formed of a uniform metal thin film.
  • the plurality of hole portions 22 of the patch antenna 20 are provided side by side.
  • the patch antenna 20 includes a first conductive path formed along the outer periphery and a second conductive path formed inside the plurality of holes 22. Have.
  • the antenna 1 according to the embodiment further includes the transparent conductive film 50 provided in the hole 32 of the base plate 30.
  • the antenna 1 a reflection characteristic similar to that of the antenna 101 in which the base plate 30 is formed of a uniform metal thin film.
  • the transparent conductive film 50 provided in the hole 32 of the base plate 30 is provided so as to cover the hole 32.
  • the antenna 1 a reflection characteristic more similar to that of the antenna 101 in which the base plate 30 is formed of a uniform metal thin film.
  • the hole 22 of the patch antenna 20 has a rectangular shape.
  • the holes 22 can be arranged without waste, so that the transparency of the patch antenna 20 can be improved.
  • the hole 22 of the patch antenna 20 has a hexagonal shape.
  • the holes 22 can be arranged without waste, so that the transparency of the patch antenna 20 can be improved.
  • the hole 22 of the patch antenna 20 has a triangular shape.
  • the holes 22 can be arranged without waste, so that the transparency of the patch antenna 20 can be improved.
  • the hole 22 of the patch antenna 20 has a circular shape.
  • the holes 22 can be arranged without waste, so that the transparency of the patch antenna 20 can be improved.
  • FIG. 11 is a block diagram showing an example of a schematic configuration of the millimeter wave sensor 2 according to the embodiment of the present disclosure.
  • the millimeter wave sensor 2 according to the embodiment includes an antenna 1, a millimeter wave band RF circuit 3, an ADC/DAC 4, a DSP 5, a power supply unit 6, and an input/output terminal 7.
  • a millimeter wave signal generated by the millimeter wave band RF circuit 3 is radiated from the antenna 1 to the outside. Then, the radiated millimeter wave signal reaches the target DUT, is reflected, and is received by the antenna 1 again.
  • the millimeter wave sensor 2 compares the received wave with the transmitted wave in the millimeter wave band RF circuit 3 to determine the Doppler signal. Extract. Then, the extracted Doppler signal is converted into a digital signal by the ADC (Analog-to-Digital Converter)/DAC (Digital-to-Analog Converter) 4.
  • ADC Analog-to-Digital Converter
  • DAC Digital-to-Analog Converter
  • the millimeter wave sensor 2 detects the Doppler frequency by Fourier transforming this digitally converted Doppler signal with a DSP (Digital Signal Processor) 5. Then, by analyzing the Doppler frequency, the millimeter wave sensor 2 can calculate the relative operation status of the measured object such as the relative speed.
  • DSP Digital Signal Processor
  • the millimeter wave sensor 2 can output the processing result by the DSP 5 through the input/output terminal 7. Further, in the millimeter wave sensor 2, the digital signal input through the input/output terminal 7 may be processed by the DSP 5, converted into an analog signal by the DAC of the ADC/DAC 4, and transmitted to the millimeter wave band RF circuit 3. it can.
  • the millimeter wave sensor 2 uses the antenna 1 described above, the millimeter wave sensor 2 using the antenna 1 has high transparency and can be easily matched with the feed line.
  • the sensor 2 can be realized.
  • the antenna 1 according to the embodiment is not limited to the case of being used for the millimeter wave sensor 2, but can be used for other various devices.
  • the present technology may also be configured as below.
  • the said hole part of the said patch antenna is an antenna as described in said (1) or (2) provided in multiple numbers.
  • the antenna according to (3), wherein the patch antenna has a first conductive path formed along the outer circumference and a second conductive path formed inside along the plurality of holes. ..
  • the antenna according to any one of (1) to (6), wherein the hole of the patch antenna has a triangular shape.
  • the antenna according to any one of (1) to (6), wherein the hole of the patch antenna has a circular shape.
  • a millimeter wave band RF circuit for generating a millimeter wave signal, An antenna for transmitting and receiving the millimeter wave signal, Equipped with The antenna is A plate-shaped transparent dielectric, A patch antenna provided on the front surface of the transparent dielectric and having a hole inside, A base plate provided on the back surface of the transparent dielectric and having a hole inside, A transparent conductive film provided in the hole of the patch antenna, Millimeter wave sensor having.
  • the patch antenna has a first conductive path formed along an outer circumference and a second conductive path formed along the plurality of holes inside.
  • Wave sensor (15) The millimeter wave sensor according to any one of (11) to (14), further including a transparent conductive film provided in the hole of the base plate. (16) The millimeter-wave sensor according to (15), wherein the transparent conductive film provided in the hole of the base plate is provided so as to cover the hole. (17) The millimeter wave sensor according to any one of (11) to (16), wherein the hole of the patch antenna has a rectangular shape. (18) The hole part of the patch antenna is the millimeter wave sensor according to any one of (11) to (16), which has a hexagonal shape.

Landscapes

  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本開示に係るアンテナ(1)は、板状の透明誘電体(10)と、パッチアンテナ(20)と、地板(30)と、透明導電膜(40)とを備える。パッチアンテナ(20)は、透明誘電体(10)のおもて面(11)に設けられ、内側に孔部(22)を有する。地板(30)は、透明誘電体(10)の裏面(12)に設けられ、内側に孔部(32)を有する。透明導電膜(40)は、パッチアンテナ(20)の孔部(22)に設けられる。

Description

アンテナおよびミリ波センサ
 本開示は、アンテナおよびミリ波センサに関する。
 近年、建物や車両の窓に設置するアンテナにおいて、パッチアンテナおよび地板をまばらな格子状にすることにより、アンテナの透明性を高める技術がある(たとえば、特許文献1参照)。
特開2006-303846号公報
 しかしながら、上記の従来技術では、パッチアンテナおよび地板をまばらな格子状で構成するため、パッチアンテナおよび地板が一様な金属薄膜で構成される場合に比べて、給電線路との整合を取ることが困難である。
 そこで、本開示では、高い透明性を有するとともに、給電線路との整合を容易に取ることができるアンテナおよびミリ波センサを提案する。
 本開示によれば、アンテナが提供される。アンテナは、板状の透明誘電体と、パッチアンテナと、地板と、透明導電膜とを備える。パッチアンテナは、前記透明誘電体のおもて面に設けられ、内側に孔部を有する。地板は、前記透明誘電体の裏面に設けられ、内側に孔部を有する。透明導電膜は、前記パッチアンテナの前記孔部に設けられる。
 また、本開示の一つの側面に係るアンテナは、前記地板の前記孔部に設けられる透明導電膜をさらに備える。
 本開示によれば、高い透明性を有するとともに、給電線路との整合を容易に取ることができるアンテナおよびミリ波センサを提供することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本開示の実施形態に係るアンテナの構成を示す上面斜視図である。 本開示の実施形態に係るアンテナの構成を示す下面斜視図である。 参考例1におけるアンテナの構成を示す上面斜視図である。 参考例2におけるアンテナの構成を示す上面斜視図である。 本開示の実施形態に係るアンテナの周波数に対する反射特性を示すグラフである。 本開示の実施形態に係るアンテナの放射指向性を示すグラフである。 参考例1におけるアンテナの周波数に対する反射特性を示すグラフである。 参考例1におけるアンテナの放射指向性を示すグラフである。 参考例2におけるアンテナの周波数に対する反射特性を示すグラフである。 参考例2におけるアンテナの放射指向性を示すグラフである。 本開示の実施形態の変形例1に係るアンテナの構成を示す上面斜視図である。 本開示の実施形態の変形例2に係るアンテナの構成を示す上面斜視図である。 本開示の実施形態の変形例3に係るアンテナの構成を示す上面斜視図である。 本開示の実施形態に係るミリ波センサの概略的な構成の一例を示すブロック図である。
 以下に、本開示の各実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 近年、建物や車両の窓に設置するアンテナにおいて、パッチアンテナおよび地板をまばらな格子状にすることにより、アンテナの透明性を高める技術がある。
 しかしながら、上記の従来技術では、パッチアンテナおよび地板をまばらな格子状で構成するため、パッチアンテナおよび地板が一様な金属薄膜で構成される場合に比べて、給電線路との整合を取ることが困難である。
 なぜなら、パッチアンテナおよび地板をまばらな格子状で構成するため、アンテナのインピーダンスが増加してしまうからである。さらに、パッチアンテナおよび地板をまばらな格子状で構成するため、かかる格子状の配列パターンが変わると、整合条件が大幅に変化するからである。
 そこで、高い透明性を有するとともに、給電線路との整合を容易に取ることができるアンテナの実現が期待されている。
[実施形態]
 最初に、実施形態に係るアンテナ1の構成について、図1および図2を参照しながら説明する。図1は、本開示の実施形態に係るアンテナ1の構成を示す上面斜視図であり、図2は、本開示の実施形態に係るアンテナ1の構成を示す下面斜視図である。
 図1などに示すように、実施形態に係るアンテナ1は、透明誘電体10と、パッチアンテナ20と、地板30と、透明導電膜40と、透明導電膜50(図2参照)とを備える。なお、理解の容易のため、図1では透明導電膜50の図示を省略し、図2ではパッチアンテナ20および透明導電膜40の図示を省略する。
 透明誘電体10は、ガラスや樹脂(たとえば、ポリイミド)、プレキシガラスなどの透明な誘電体で構成される。透明誘電体10は、板状であり、互いに略並行なおもて面11および裏面12を有する。透明誘電体10は、たとえば、上面視で矩形状である。なお、透明誘電体10の形状は、矩形状に限られない。
 パッチアンテナ20は、透明誘電体10のおもて面11に設けられる。パッチアンテナ20は、マイクロストリップ線路21と、孔部22と、給電点23とを有する。
 マイクロストリップ線路21は、銅やアルミニウム、金などの電気伝導率の高い金属薄膜で構成される。マイクロストリップ線路21は、所定のパターン(たとえば、格子状)を有する線路の集合体で構成され、全体形状として所定の形状(たとえば、略T字状)を有する。
 なお、マイクロストリップ線路21のパターンや全体形状は、図1に示す例に限られず、アンテナ1が送受信する電磁波の波長などに応じて適宜変更することができる。たとえば、図1の例では、透明誘電体10の中央部に位置するマイクロストリップ線路21の先端部が矩形状である場合について示しているが、かかる先端部は円形状などであってもよい。
 孔部22は、パッチアンテナ20の内側において、複数のマイクロストリップ線路21で囲まれる部位に複数形成される。孔部22は、たとえば、上面視で矩形状である。実施形態では、かかる複数の孔部22によって、パッチアンテナ20の透明性を向上させることができる。
 給電点23は、図示しない給電線路が電気的に接続される部位である。パッチアンテナ20には、かかる給電線路および給電点23を介して、外部装置(たとえば、ミリ波帯RF回路3(図11参照))から給電される。
 図2に示すように、地板30は、透明誘電体10の裏面12に設けられる。すなわち、パッチアンテナ20および地板30は、互いに略並行に配置される。そして、実施形態に係るアンテナ1では、パッチアンテナ20の給電点23に給電されることにより、互いに向かい合うパッチアンテナ20と地板30との間に所定の電界が形成される。
 地板30は、導体31と、孔部32とを有する。導体31は、銅やアルミニウム、金などの電気伝導率の高い金属薄膜で構成される。
 孔部32は、地板30の内側において、複数の導体31で囲まれる部位に複数形成される。孔部32は、たとえば、上面視で矩形状である。実施形態では、かかる複数の孔部32によって、地板30の透明性を向上させることができる。
 図1においてドットのハッチングを付している透明導電膜40は、透明性を有する導電体薄膜である。透明導電膜40は、たとえば、ITO(Indium Tin Oxide)、FTO(Fluorine-doped Tin Oxide)、ATO(Antimony Tin Oxide)、AZO(Antimony Zinc Oxide)、GZO(Gallium Zinc Oxide)、IZO(Indium Zinc Oxide)などで構成される。
 透明導電膜40は、透明誘電体10のおもて面11において、パッチアンテナ20の孔部22に設けられる。透明導電膜40は、たとえば、複数の孔部22をすべて覆うように設けられる。
 図2においてドットのハッチングを付している透明導電膜50は、透明性を有する導電体薄膜である。透明導電膜50は、たとえば、ITO、FTO、ATO、AZO、GZO、IZOなどで構成される。なお、透明導電膜40および透明導電膜50は、互いに同じ材料を用いてもよいし、異なる材料を用いてもよい。
 透明導電膜50は、透明誘電体10の裏面12において、地板30の孔部32に設けられる。透明導電膜50は、たとえば、複数の孔部32をすべて覆うように設けられる。
 つづいて、ここまで説明した実施形態に係るアンテナ1の各種特性について、参考例1および参考例2と比較しながら説明する。まずは、かかる参考例1、2について、図3および図4を参照しながら説明する。
 図3は、参考例1におけるアンテナ100の構成を示す上面斜視図である。図3に示すように、参考例1のアンテナ100は、透明誘電体10と、パッチアンテナ20と、地板30とを有する。
 なお、アンテナ100の透明誘電体10、パッチアンテナ20および地板30は、実施形態と同様の構成を有する。すなわち、参考例1のアンテナ100は、実施形態のアンテナ1から透明導電膜40および透明導電膜50が除かれた構成を有する。したがって、参考例1のアンテナ100は、実施形態と同様に高い透明性を有する。
 図4は、参考例2におけるアンテナ101の構成を示す上面斜視図である。図4に示すように、参考例2のアンテナ101は、透明誘電体10と、パッチアンテナ20と、地板30とを有する。
 なお、アンテナ101のパッチアンテナ20は、実施形態のパッチアンテナ20と同等の全体形状を有する。一方で、アンテナ101のパッチアンテナ20には、孔部22が形成されておらず、すべての領域が一様な金属薄膜で形成される。
 同様に、アンテナ101の地板30は、実施形態の地板30と同等の全体形状を有する。一方で、アンテナ101の地板30には、孔部32が形成されておらず、すべての領域が一様な金属薄膜で形成される。
 このように、参考例2のアンテナ101は、パッチアンテナ20および地板30に孔部22、32が形成されていないことから、透明性が低い。
 つづいて、上述のアンテナ1、アンテナ100およびアンテナ101の各種アンテナ特性について示す。図5Aは、本開示の実施形態に係るアンテナ1の周波数に対する反射特性を示すグラフである。なお、以下に示す各種アンテナの反射特性は、一般的な給電線路で用いられる入力50(Ω)における反射特性を示している。
 図5Aに示すように、実施形態に係るアンテナ1は、周波数77(GHz)付近に反射極小点を有することから、ミリ波信号を送受信するアンテナとして良好な反射特性を有する。
 図5Bは、本開示の実施形態に係るアンテナ1の放射指向性を示すグラフである。なお、以下に示す各種アンテナの放射指向性は、H面の放射指向性とE面の放射指向性とを1つのグラフに示している。
 図5Bに示すように、実施形態に係るアンテナ1は、H面の放射指向性が90(°)~270(°)の領域で低減していることから、背面方向への放射レベルが抑制されている。
 図6Aは、参考例1におけるアンテナ100の周波数に対する反射特性を示すグラフである。図6Aに示すように、参考例1におけるアンテナ100は、周波数77(GHz)付近に反射極小点を有さないことから、ミリ波信号を送受信するアンテナとしては反射損失が大きい。
 なお、アンテナ100は、図6Aに示す周波数帯以外の周波数帯においても反射極小点を有さないことから、ミリ波信号以外を送受信するアンテナとしても反射損失が大きい。
 図6Bは、参考例1におけるアンテナ100の放射指向性を示すグラフである。図6Bに示すように、参考例1におけるアンテナ100は、H面およびE面の放射指向性が90(°)~270(°)の領域で比較的高いレベルを有していることから、背面方向への放射レベルが抑制されていない。
 すなわち、参考例1のアンテナ100は、透過性が高い一方でアンテナ効率は低いアンテナである。
 図7Aは、参考例2におけるアンテナ101の周波数に対する反射特性を示すグラフである。図7Aに示すように、参考例2のアンテナ101は、周波数77(GHz)付近に反射極小点を有することから、ミリ波信号を送受信するアンテナとして良好な反射特性を有する。
 図7Bは、参考例2におけるアンテナ101の放射指向性を示すグラフである。図7Bに示すように、参考例2のアンテナ101は、H面の放射指向性が90(°)~270(°)の領域で低減していることから、背面方向への放射レベルが抑制されている。
 すなわち、参考例2のアンテナ101は、アンテナ効率が高い一方で透過性が低いアンテナである。また、図5Aおよび図7Aに示すように、実施形態に係るアンテナ1と参考例2のアンテナ101とは、類似の反射特性を有する。
 すなわち、実施形態では、高い透明性を確保するために形成されるパッチアンテナ20の孔部22に透明導電膜40を設けることにより、パッチアンテナ20を一様な金属薄膜で形成したアンテナ101と類似の反射特性をアンテナ1に付与することができる。
 ここで、パッチアンテナ20を一様な金属薄膜で形成したアンテナ101は、送受信する電磁波の周波数などに応じて、給電線路との整合をとる設計が比較的容易である。
 したがって、実施形態では、最初にパッチアンテナ20が一様な金属薄膜で形成されたアンテナ101を設計し、設計されたパッチアンテナ20に孔部22を設け、かかる孔部22に透明導電膜40を設けることにより、給電線路との整合を容易に取ることができる。
 さらに、実施形態では、パッチアンテナ20の孔部22に透明な透明導電膜40が設けられることから、引き続きアンテナ1の高い透明性を確保することができる。したがって、実施形態によれば、高い透明性を有するとともに、給電線路との整合を容易に取ることができるアンテナ1を実現することができる。
 また、実施形態では、パッチアンテナ20の孔部22に導電性の透明導電膜40を設けることにより、背面方向への放射レベルを抑制することができる。したがって、実施形態によれば、アンテナ1の背面側に何らかの物体がある場合に、かかる物体への電磁波の影響を低減することができるとともに、かかる物体から反射した電磁波によるアンテナ1への影響を低減することができる。
 また、実施形態では、高い透明性を確保するために形成される地板30の孔部32に、導電性の透明導電膜50を設けるとよい。これにより、地板30を一様な金属薄膜で形成したアンテナ101に類似する反射特性をアンテナ1に付与することができる。
 また、実施形態では、パッチアンテナ20の孔部22を覆うように透明導電膜40が設けられるとよい。これにより、パッチアンテナ20を一様な金属薄膜で形成したアンテナ101にさらに類似する反射特性をアンテナ1に付与することができる。
 同様に、実施形態では、地板30の孔部32を覆うように透明導電膜50が設けられるとよい。これにより、地板30を一様な金属薄膜で形成したアンテナ101にさらに類似する反射特性をアンテナ1に付与することができる。
 なお、実施形態では、パッチアンテナ20の孔部22と地板30の孔部32とのいずれにも透明導電膜40、50を設けた例について示したが、実施形態のアンテナ1はかかる例に限られない。
 たとえば、パッチアンテナ20の孔部22にのみ透明導電膜40が設けられていてもよいし、地板30の孔部32にのみ透明導電膜50が設けられていてもよい。
 また、実施形態では、孔部22がパッチアンテナ20に複数並んで設けられるとよい。換言すると、パッチアンテナ20は、外周に沿うように形成される第1の導電経路と、内側で複数の孔部22に沿うように形成される第2の導電経路とを有するとよい。
 これにより、内側に金属より導電性の低い透明導電膜40が設けられている場合でも、アンテナ1に十分なアンテナ特性を付与することができる。
 同様に、実施形態では、孔部32が地板30に複数並んで設けられるとよい。換言すると、地板30は、外周に沿うように形成される第1の導電経路と、内側で複数の孔部32に沿うように形成される第2の導電経路とを有するとよい。
 これにより、内側に金属より導電性の低い透明導電膜50が設けられている場合でも、アンテナ1に十分なアンテナ特性を付与することができる。
 なお、実施形態では、透明導電膜40がパッチアンテナ20の孔部22のみならず、マイクロストリップ線路21の表面にも設けられていてもよい。一方で、実施形態では、透明導電膜40がマイクロストリップ線路21で囲まれる領域からはみ出さないように設けられるとよい。
 なぜなら、給電点23から給電された電流はマイクロストリップ線路21と透明導電膜40とで構成される集合体の外周に沿って流れるが、かかる外周に透明導電膜40がはみ出ている場合、はみ出た透明導電膜40を流れる電流に損失が生じるためである。
 また、実施形態では、パッチアンテナ20の孔部22が矩形状であるとよい。これにより、パッチアンテナ20の形状が矩形状の集合体で形成されている場合に、孔部22を無駄なく並べることができることから、パッチアンテナ20の透明性を向上させることができる。
 なお、実施形態のアンテナ1では、パッチアンテナ20の孔部22が矩形状でなくともよい。図8は、本開示の実施形態の変形例1に係るアンテナ1の構成を示す上面斜視図である。図8に示すように、パッチアンテナ20の孔部22は六角形状であってもよい。
 これにより、パッチアンテナ20の内側に孔部22を無駄なく並べることができることから、パッチアンテナ20の透明性を向上させることができる。なお、以降に説明する各種変形例において、地板30は、図2に示した実施形態と同様の構成を有する。
 また、変形例1では、アンテナ1が送受信する電磁波の波長をλとした場合、孔部22の半径rをλ/50<r<λ/50の範囲に設定することにより、良好なアンテナ特性を得ることができる。
 また、変形例1では、隣接する孔部22の間に設けられる導電経路の幅をwとした場合、w/(√3r)<0.3に設定することにより、パッチアンテナ20の透過率を70%以上にすることができることから、高い透明性を得ることができる。
 図9は、本開示の実施形態の変形例2に係るアンテナ1の構成を示す上面斜視図である。図9に示すように、パッチアンテナ20の孔部22は三角形状であってもよい。これにより、パッチアンテナ20の内側に孔部22を無駄なく並べることができることから、パッチアンテナ20の透明性を向上させることができる。
 図10は、本開示の実施形態の変形例3に係るアンテナ1の構成を示す上面斜視図である。図10に示すように、パッチアンテナ20の孔部22は円形状であってもよい。これにより、パッチアンテナ20の内側に孔部22を無駄なく並べることができることから、パッチアンテナ20の透明性を向上させることができる。
 なお、実施形態の孔部22は、矩形状や六角形状、三角形状、円形状に限られず、その他の形状(たとえば、その他の多角形状や楕円形状)であってもよい。また、複数の孔部22は、一種類の形状である場合に限られず、複数種類の形状が混ざっていてもよい。
 さらに、実施形態において、地板30の孔部32は、図2に示した矩形状に限られず、これまで説明した孔部22の各種形状と同様の形状であってもよい。
[効果]
 実施形態に係るアンテナ1は、板状の透明誘電体10と、パッチアンテナ20と、地板30と、透明導電膜40とを備える。パッチアンテナ20は、透明誘電体10のおもて面11に設けられ、内側に孔部22を有する。地板30は、透明誘電体10の裏面12に設けられ、内側に孔部32を有する。透明導電膜40は、パッチアンテナ20の孔部22に設けられる。
 これにより、高い透明性を有するとともに、給電線路との整合を容易に取ることができるアンテナ1を実現することができる。
 また、実施形態に係るアンテナ1において、透明導電膜40は、パッチアンテナ20の孔部22を覆うように設けられる。
 これにより、パッチアンテナ20を一様な金属薄膜で形成したアンテナ101にさらに類似する反射特性をアンテナ1に付与することができる。
 また、実施形態に係るアンテナ1において、パッチアンテナ20の孔部22は、複数並んで設けられる。
 これにより、内側に金属より導電性の低い透明導電膜40が設けられている場合でも、アンテナ1に十分なアンテナ特性を付与することができる。
 また、実施形態に係るアンテナ1において、パッチアンテナ20は、外周に沿うように形成される第1の導電経路と、内側で複数の孔部22に沿うように形成される第2の導電経路とを有する。
 これにより、内側に金属より導電性の低い透明導電膜40が設けられている場合でも、アンテナ1に十分なアンテナ特性を付与することができる。
 また、実施形態に係るアンテナ1は、地板30の孔部32に設けられる透明導電膜50をさらに備える。
 これにより、地板30を一様な金属薄膜で形成したアンテナ101に類似する反射特性をアンテナ1に付与することができる。
 また、実施形態に係るアンテナ1において、地板30の孔部32に設けられる透明導電膜50は、孔部32を覆うように設けられる。
 これにより、地板30を一様な金属薄膜で形成したアンテナ101にさらに類似する反射特性をアンテナ1に付与することができる。
 また、実施形態に係るアンテナ1において、パッチアンテナ20の孔部22は、矩形状である。
 これにより、パッチアンテナ20の形状が矩形状の集合体で形成されている場合に、孔部22を無駄なく並べることができることから、パッチアンテナ20の透明性を向上させることができる。
 また、実施形態に係るアンテナ1において、パッチアンテナ20の孔部22は、六角形状である。
 これにより、孔部22を無駄なく並べることができることから、パッチアンテナ20の透明性を向上させることができる。
 また、実施形態に係るアンテナ1において、パッチアンテナ20の孔部22は、三角形状である。
 これにより、孔部22を無駄なく並べることができることから、パッチアンテナ20の透明性を向上させることができる。
 また、実施形態に係るアンテナ1において、パッチアンテナ20の孔部22は、円形状である。
 これにより、孔部22を無駄なく並べることができることから、パッチアンテナ20の透明性を向上させることができる。
[ミリ波センサ]
 図11は、本開示の実施形態に係るミリ波センサ2の概略的な構成の一例を示すブロック図である。図11に示すように、実施形態に係るミリ波センサ2は、アンテナ1と、ミリ波帯RF回路3と、ADC/DAC4と、DSP5と、電源ユニット6と、入出力端子7とを備える。
 図11に示すミリ波センサ2において、たとえば、ミリ波帯RF回路3で生成されたミリ波信号は、アンテナ1から外部に放射される。そして、放射されたミリ波信号は、ターゲットとなる被測定物に到達して反射され、再度アンテナ1により受信される。
 この受信されたミリ波信号には相対速度差によるドップラー信号が含まれていることから、ミリ波センサ2は、ミリ波帯RF回路3で受信波を送信波と比較することにより、ドップラー信号を抽出する。そして、抽出されたドップラー信号は、ADC(Analog-to-Digital Converter)/DAC(Digital-to-Analog Converter)4のADCでデジタル信号に変換される。
 このデジタル変換されたドップラー信号をDSP(Digital Signal Processor)5でフーリエ変換することにより、ミリ波センサ2は、ドップラー周波数を検出する。そして、かかるドップラー周波数を解析することで、ミリ波センサ2は、相対速度等の被測定物の相対動作状況を算出することができる。
 また、ミリ波センサ2は、DSP5による処理結果を入出力端子7を通じて出力することができる。さらに、ミリ波センサ2は、入出力端子7を介して入力されたデジタル信号をDSP5で処理し、ADC/DAC4のDACでアナログ信号に変換して、ミリ波帯RF回路3に伝送することもできる。
 そして、実施形態に係るミリ波センサ2は、上述のアンテナ1が用いられていることから、高い透明性を有するとともに、給電線路との整合を容易に取ることができるアンテナ1を用いたミリ波センサ2を実現することができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。また、実施形態に係るアンテナ1は、ミリ波センサ2に用いられる場合に限られず、その他の各種機器にも用いることができる。
 なお、本技術は以下のような構成も取ることができる。
(1)
 板状の透明誘電体と、
 前記透明誘電体のおもて面に設けられ、内側に孔部を有するパッチアンテナと、
 前記透明誘電体の裏面に設けられ、内側に孔部を有する地板と、
 前記パッチアンテナの前記孔部に設けられる透明導電膜と、
 を備えるアンテナ。
(2)
 前記透明導電膜は、前記パッチアンテナの前記孔部を覆うように設けられる
 前記(1)に記載のアンテナ。
(3)
 前記パッチアンテナの前記孔部は、複数並んで設けられる
 前記(1)または(2)に記載のアンテナ。
(4)
 前記パッチアンテナは、外周に沿うように形成される第1の導電経路と、内側で複数の前記孔部に沿うように形成される第2の導電経路とを有する
 前記(3)に記載のアンテナ。
(5)
 前記地板の前記孔部に設けられる透明導電膜をさらに備える
 前記(1)~(4)のいずれか一つに記載のアンテナ。
(6)
 前記地板の前記孔部に設けられる前記透明導電膜は、当該孔部を覆うように設けられる 前記(5)に記載のアンテナ。
(7)
 前記パッチアンテナの前記孔部は、矩形状である
 前記(1)~(6)のいずれか一つに記載のアンテナ。
(8)
 前記パッチアンテナの前記孔部は、六角形状である
 前記(1)~(6)のいずれか一つに記載のアンテナ。
(9)
 前記パッチアンテナの前記孔部は、三角形状である
 前記(1)~(6)のいずれか一つに記載のアンテナ。
(10)
 前記パッチアンテナの前記孔部は、円形状である
 前記(1)~(6)のいずれか一つに記載のアンテナ。
(11)
 ミリ波信号を生成するミリ波帯RF回路と、
 前記ミリ波信号を送受信するアンテナと、
 を備え、
 前記アンテナは、
 板状の透明誘電体と、
 前記透明誘電体のおもて面に設けられ、内側に孔部を有するパッチアンテナと、
 前記透明誘電体の裏面に設けられ、内側に孔部を有する地板と、
 前記パッチアンテナの前記孔部に設けられる透明導電膜と、
 を有するミリ波センサ。
(12)
 前記透明導電膜は、前記パッチアンテナの前記孔部を覆うように設けられる
 前記(11)に記載のミリ波センサ。
(13)
 前記パッチアンテナの前記孔部は、複数並んで設けられる
 前記(11)または(12)に記載のミリ波センサ。
(14)
 前記パッチアンテナは、外周に沿うように形成される第1の導電経路と、内側で複数の前記孔部に沿うように形成される第2の導電経路とを有する
 前記(13)に記載のミリ波センサ。
(15)
 前記地板の前記孔部に設けられる透明導電膜をさらに備える
 前記(11)~(14)のいずれか一つに記載のミリ波センサ。
(16)
 前記地板の前記孔部に設けられる前記透明導電膜は、当該孔部を覆うように設けられる 前記(15)に記載のミリ波センサ。
(17)
 前記パッチアンテナの前記孔部は、矩形状である
 前記(11)~(16)のいずれか一つに記載のミリ波センサ。
(18)
 前記パッチアンテナの前記孔部は、六角形状である
 前記(11)~(16)のいずれか一つに記載のミリ波センサ。
(19)
 前記パッチアンテナの前記孔部は、三角形状である
 前記(11)~(16)のいずれか一つに記載のミリ波センサ。
(20)
 前記パッチアンテナの前記孔部は、円形状である
 前記(11)~(16)のいずれか一つに記載のミリ波センサ。
1  アンテナ
2  ミリ波センサ
3  ミリ波帯RF回路
10 透明誘電体
11 おもて面
12 裏面
20 パッチアンテナ
21 マイクロストリップ線路
22 孔部
23 給電点
30 地板
31 導体
32 孔部
40 透明導電膜
50 透明導電膜

Claims (11)

  1.  板状の透明誘電体と、
     前記透明誘電体のおもて面に設けられ、内側に孔部を有するパッチアンテナと、
     前記透明誘電体の裏面に設けられ、内側に孔部を有する地板と、
     前記パッチアンテナの前記孔部に設けられる透明導電膜と、
     を備えるアンテナ。
  2.  前記透明導電膜は、前記パッチアンテナの前記孔部を覆うように設けられる
     請求項1に記載のアンテナ。
  3.  前記パッチアンテナの前記孔部は、複数並んで設けられる
     請求項1に記載のアンテナ。
  4.  前記パッチアンテナは、外周に沿うように形成される第1の導電経路と、内側で複数の前記孔部に沿うように形成される第2の導電経路とを有する
     請求項3に記載のアンテナ。
  5.  前記地板の前記孔部に設けられる透明導電膜をさらに備える
     請求項1に記載のアンテナ。
  6.  前記地板の前記孔部に設けられる前記透明導電膜は、当該孔部を覆うように設けられる
     請求項5に記載のアンテナ。
  7.  前記パッチアンテナの前記孔部は、矩形状である
     請求項1に記載のアンテナ。
  8.  前記パッチアンテナの前記孔部は、六角形状である
     請求項1に記載のアンテナ。
  9.  前記パッチアンテナの前記孔部は、三角形状である
     請求項1に記載のアンテナ。
  10.  前記パッチアンテナの前記孔部は、円形状である
     請求項1に記載のアンテナ。
  11.  ミリ波信号を生成するミリ波帯RF回路と、
     前記ミリ波信号を送受信するアンテナと、
     を備え、
     前記アンテナは、
     板状の透明誘電体と、
     前記透明誘電体のおもて面に設けられ、内側に孔部を有するパッチアンテナと、
     前記透明誘電体の裏面に設けられ、内側に孔部を有する地板と、
     前記パッチアンテナの前記孔部に設けられる透明導電膜と、
     を有するミリ波センサ。
PCT/JP2019/046949 2019-01-23 2019-12-02 アンテナおよびミリ波センサ WO2020152987A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980089263.5A CN113302796A (zh) 2019-01-23 2019-12-02 天线和毫米波传感器
US17/423,207 US11888243B2 (en) 2019-01-23 2019-12-02 Antenna and millimeter-wave sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019009598A JP2020120262A (ja) 2019-01-23 2019-01-23 アンテナおよびミリ波センサ
JP2019-009598 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020152987A1 true WO2020152987A1 (ja) 2020-07-30

Family

ID=71736135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046949 WO2020152987A1 (ja) 2019-01-23 2019-12-02 アンテナおよびミリ波センサ

Country Status (4)

Country Link
US (1) US11888243B2 (ja)
JP (1) JP2020120262A (ja)
CN (1) CN113302796A (ja)
WO (1) WO2020152987A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020251064A1 (ko) * 2019-06-10 2020-12-17 주식회사 에이티코디 패치 안테나 및 이를 포함하는 배열 안테나
CN112736407A (zh) * 2020-12-20 2021-04-30 英特睿达(山东)电子科技有限公司 用于汽车智能玻璃的透明天线
WO2023209833A1 (ja) * 2022-04-27 2023-11-02 三菱電機株式会社 アンテナ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257755A (ja) * 2012-06-13 2013-12-26 Mitsubishi Rayon Co Ltd 透明二次元通信シート
US20140104157A1 (en) * 2012-10-15 2014-04-17 Qualcomm Mems Technologies, Inc. Transparent antennas on a display device
WO2015075072A1 (en) * 2013-11-21 2015-05-28 Sony Corporation Surveillance apparatus having an optical camera and a radar sensor
WO2016098763A1 (ja) * 2014-12-18 2016-06-23 シャープ株式会社 透明アンテナ及び透明アンテナ付き表示装置
JP2018182734A (ja) * 2017-04-04 2018-11-15 株式会社Soken 光透過型アンテナ、窓部貼付型通信モジュール、及び、周辺監視ユニット

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121127A (en) * 1988-09-30 1992-06-09 Sony Corporation Microstrip antenna
US5696372A (en) * 1996-07-31 1997-12-09 Yale University High efficiency near-field electromagnetic probe having a bowtie antenna structure
US6933891B2 (en) * 2002-01-29 2005-08-23 Calamp Corp. High-efficiency transparent microwave antennas
JP3964435B2 (ja) 2005-04-20 2007-08-22 日本無線株式会社 グリッドパッチアンテナ
TWI374573B (en) * 2008-08-22 2012-10-11 Ind Tech Res Inst Uwb antenna and detection apparatus for transportation means
US20140106684A1 (en) * 2012-10-15 2014-04-17 Qualcomm Mems Technologies, Inc. Transparent antennas on a display device
KR102139217B1 (ko) * 2014-09-25 2020-07-29 삼성전자주식회사 안테나 장치
KR20160080444A (ko) * 2014-12-29 2016-07-08 삼성전자주식회사 안테나 장치 및 그를 구비하는 전자 장치
CN106785463A (zh) * 2017-01-09 2017-05-31 中国人民解放军防空兵学院 一种单陷波超宽带单极子天线
WO2018186375A1 (ja) 2017-04-04 2018-10-11 株式会社デンソー 光透過型アンテナ、窓部貼付型通信モジュール、及び、周辺監視ユニット
CN108091996B (zh) * 2018-01-30 2023-05-05 厦门大学嘉庚学院 梯形多缝-六边形阵列复合超宽频带天线及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257755A (ja) * 2012-06-13 2013-12-26 Mitsubishi Rayon Co Ltd 透明二次元通信シート
US20140104157A1 (en) * 2012-10-15 2014-04-17 Qualcomm Mems Technologies, Inc. Transparent antennas on a display device
WO2015075072A1 (en) * 2013-11-21 2015-05-28 Sony Corporation Surveillance apparatus having an optical camera and a radar sensor
WO2016098763A1 (ja) * 2014-12-18 2016-06-23 シャープ株式会社 透明アンテナ及び透明アンテナ付き表示装置
JP2018182734A (ja) * 2017-04-04 2018-11-15 株式会社Soken 光透過型アンテナ、窓部貼付型通信モジュール、及び、周辺監視ユニット

Also Published As

Publication number Publication date
US20220109239A1 (en) 2022-04-07
CN113302796A (zh) 2021-08-24
US11888243B2 (en) 2024-01-30
JP2020120262A (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
WO2020152987A1 (ja) アンテナおよびミリ波センサ
GB2498546A (en) Double ridge horn antenna
Schaubert et al. Experimental study of a microstrip array on high permittivity substrate
JP2009152686A (ja) アンテナ装置
Nasir et al. A novel integrated Yagi–Uda and dielectric rod antenna with low sidelobe level
JP2011526469A (ja) バラン非実装の単純な給電素子を用いた広帯域の長スロットアレイアンテナ
Nayak et al. Design and simulation of compact UWB Bow-tie antenna with reduced end-fire reflections for GPR applications
US9472857B2 (en) Antenna device
CN210443662U (zh) 新型k波段高增益超材料微带天线
Liu et al. A wideband, low-profile log-periodic monopole array with end-fire scanning beams
US20210384632A1 (en) Antenna and antenna module
Murshed et al. Designing of a both-sided MIC starfish microstrip array antenna for K-band application
Mathur et al. High gain series fed planar microstrip antenna array using printed l—probe feed
KR101556019B1 (ko) 밀리미터파 대역용 인쇄회로기판 일체형 영차 공진 안테나
Guntupalli et al. 45$^{\circ} $ Linearly Polarized High-Gain Antenna Array for 60-GHz Radio
Li et al. Compact, low-profile, HIS-based pattern-reconfigurable antenna for wide-angle scanning
Locker et al. Unidirectional radiation efficient stacked aperture antenna for X-band application
Badawy et al. Broadside/Endfire switched beam double ridge-gap waveguide H-plane horn antenna
KR20080006415A (ko) 광자밴드갭 구조의 안테나
Kwon et al. Small low-profile loop wideband antennas with unidirectional radiation characteristics
Cristian et al. Microstrip Patch Antenna for WiMAX Applications
Barik et al. Design of a UHF pyramidal horn antenna using CST
TWI752780B (zh) 寬波束之天線結構
Bayat-Makou et al. Aperture controlled substrate integrated h-plane horn antenna
Das et al. Two elements dual segment cylindrical dielectric resonator antenna array with annular shaped microstrip feed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912036

Country of ref document: EP

Kind code of ref document: A1