WO2016098186A1 - 空気圧縮装置及び制御方法 - Google Patents
空気圧縮装置及び制御方法 Download PDFInfo
- Publication number
- WO2016098186A1 WO2016098186A1 PCT/JP2014/083325 JP2014083325W WO2016098186A1 WO 2016098186 A1 WO2016098186 A1 WO 2016098186A1 JP 2014083325 W JP2014083325 W JP 2014083325W WO 2016098186 A1 WO2016098186 A1 WO 2016098186A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- speed
- operation mode
- normal operation
- mode
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/02—Stopping, starting, unloading or idling control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B35/00—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
- F04B35/04—Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B41/00—Pumping installations or systems specially adapted for elastic fluids
- F04B41/02—Pumping installations or systems specially adapted for elastic fluids having reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/02—Stopping, starting, unloading or idling control
- F04B49/022—Stopping, starting, unloading or idling control by means of pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
- F04B49/065—Control using electricity and making use of computers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/08—Regulating by delivery pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/20—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2203/00—Motor parameters
- F04B2203/02—Motor parameters of rotating electric motors
- F04B2203/0209—Rotational speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2205/00—Fluid parameters
- F04B2205/05—Pressure after the pump outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2205/00—Fluid parameters
- F04B2205/06—Pressure in a (hydraulic) circuit
- F04B2205/063—Pressure in a (hydraulic) circuit in a reservoir linked to the pump outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2207/00—External parameters
- F04B2207/04—Settings
- F04B2207/043—Settings of time
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2207/00—External parameters
- F04B2207/04—Settings
- F04B2207/044—Settings of the rotational speed of the driving motor
- F04B2207/0442—Settings of the rotational speed of the driving motor minimum
Definitions
- the present invention relates to an air compressor and a control method that are equipped with an inverter and can control the motor rotation speed.
- Patent Document 1 discloses that “the motor control circuit 6 compares and determines the pressure change ⁇ P and the determination values SL, SH, and SW ⁇ , so that the rotational speed of the motor 2 is determined according to the determination result. Is switched between the low rotation speed NL and the high rotation speed NH, so that the rotation speed of the motor 2 can be appropriately controlled in accordance with the flow rate of the compressed air consumed from the tank 4, and the low noise and energy saving type A compressor can be realized "(see summary).
- Patent Document 1 discloses that a change in pressure during operation is detected and the rotation speed of the motor is switched between a low rotation and a high rotation, the air tank is filled with air from the start of operation and is normally operated. It is not disclosed how to perform the control up to.
- An object of the present invention is to provide an air compressor capable of ensuring a sufficient air filling speed while reducing noise at the start of operation.
- a compressor body that compresses air
- a motor that drives the compressor body
- an inverter that controls the rotational speed of the motor
- a control that is connected to the inverter
- An air compression device comprising a circuit and a pressure sensor for detecting the pressure of air compressed in the compressor body, wherein the control circuit activates the compressor body when the air compression device is activated. Operate in a low speed start mode that operates at a low speed rotation frequency lower than the maximum speed, and based on the pressure value detected by the pressure sensor, the elapsed time from the start, the rate of change in pressure, etc.
- the compressor body is controlled to operate by switching to a normal operation mode in which the frequency including the rotation frequency is variable.
- the block diagram which shows the structure of the air compressor which concerns on this invention.
- the flowchart regarding the switching of the operation mode in Embodiment 1. The figure which shows the pressure change of the compressor at the time of the operation start in Embodiment 1, and the change of an operating speed.
- Flowchart relating to operation mode switching in the second embodiment The figure which shows the pressure change of the compressor at the time of the operation start in Embodiment 2, and the change of an operating speed.
- the flowchart regarding the switching of the operation mode in Embodiment 3. The figure which shows the pressure change of the compressor at the time of the operation start in Embodiment 3, and the change of an operating speed.
- Flowchart relating to operation mode switching in the fourth embodiment The figure which shows the pressure change of the compressor at the time of the operation start in Embodiment 4, and the change of an operating speed.
- Flowchart relating to operation mode switching in the fifth embodiment The figure which shows the pressure change of the compressor at the time of the operation start in Embodiment 5, and the change of an operating speed.
- Flowchart relating to operation mode switching in the sixth embodiment The figure which shows the pressure change of the compressor at the time of the operation start in Embodiment 6, and the change of an operating speed.
- a pressure sensor 6 that detects the pressure (discharge pressure) inside the air tank 5 is attached to the air tank 5.
- a control circuit 7 is connected to the inverter 2 in order to control the operation, stop, or rotation speed of the motor 3.
- the compressed air compressed by the compressor body 4 is supplied to the user's facility through the pipe 11 via the air tank 5.
- an external air tank 12 may be provided as a user facility.
- the external air tank 12 is connected to the air tank 5 of the compressor 1 by a pipe 11, and the air tank 5 and the external air tank 12 have the same pressure.
- the compressed air passes through the valve 9 and the pipe 10 and is output to the mechanical equipment.
- the air tank 5 or 12 can be omitted.
- the pressure sensor 6 detects the pressure (discharge pressure) in the pipe 11 or the tank 12.
- the inverter 2 receives the frequency target value given from the control circuit 7, converts the commercial power supply (for example, 60 Hz) into the frequency target value, and supplies it to the motor 3 to control the rotation speed of the motor 3. Thereby, the discharge air amount of the compressor main body 4 driven by the motor 3 can be adjusted. However, due to the characteristics of the compressor main body, the rotation speed can be controlled only within a certain range (for example, 60% to 100% of the commercial power supply frequency).
- the operation panel 8 is connected to the control circuit 7, and the user can operate, stop, or perform various settings of the compression device with buttons and switches on the operation panel 8.
- the control circuit 7 receives a signal from the operation panel 8 and executes a user command.
- the control circuit 7 stores the pressure value measured by the pressure sensor 6 every predetermined time and the target pressure Pref of the air tank 5 set by the user, and controls the rotation speed of the motor 3 based on these values. .
- the control circuit 7 calculates a target value of the motor rotation speed so that the pressure of the air tank 5 can be held at a predetermined pressure target value Pref, and through the inverter 2, the motor 3. To control the rotation speed. If the detected pressure is within a predetermined range with respect to the pressure target value Pref (for example: within Pref ⁇ 0.05 MPa), the rotational speed of the motor 3 is adjusted so that the pressure target value Pref can be maintained.
- the operation is performed at the minimum rotation speed. Further, when the detected pressure is less than the lower limit of the predetermined range, control is performed so as to operate at the maximum rotational speed.
- the upper limit of the predetermined range for example: Pref + 0.05 MPa or more
- the compression apparatus 1 according to Embodiment 1 has the above-described configuration, and next, control using the pressure measurement value P (t) of the compression apparatus 1 will be described with reference to FIGS. 2 to 3.
- FIG. 2 shows a control flow for switching from the low speed start mode to the normal operation mode when the compressor 1 is started.
- FIG. 3 shows a change in pressure with respect to the pressure target value Pref and a change in the operation speed (operation mode) of the compressor from when the compressor 1 is started to the transition to the normal operation mode.
- step 1 the user presses the operation SW to activate the compression device 1.
- step 2 after starting, the mode is shifted to the low speed starting mode, and the compressor body 4 starts at a low rotational frequency (for example, the minimum rotational frequency is 35 Hz).
- the low-speed startup mode is a mode that operates at a low-speed rotation frequency (rotation frequency considering the balance between noise and compression efficiency, for example, 35 Hz) that can be operated as a compressor regardless of the target pressure value Pref and the current pressure value. It is. Noise can be reduced compared to high-speed operation.
- step 3 the next step is taken until a certain time (for example, 4 seconds) has elapsed since the start. Avoid going. After a certain time (for example, 4 seconds) has elapsed, the pressure increase gradient is stabilized, and thus the process proceeds to step 4.
- the control circuit 7 uses the value obtained from the pressure sensor 6 to calculate the pressure increase rate K by (Equation 1).
- K (P (t)-P (t-1)) / Ts (Formula 1)
- K rate of increase in pressure
- P (t) current pressure value
- P (t ⁇ 1) pressure value before 1 second
- Ts 1 second
- the pressure calculated in the control circuit 7 It is determined whether or not the rate of increase K is smaller than a predetermined rate of increase threshold Kh. If it is determined as “Yes”, the process proceeds to Step 6, and if it is determined as “No”, it is determined that the filling speed for the air tank 5 is sufficient, and thus the low-speed operation is continued. In this case, the process returns to Step 4 after a certain time, and the pressure increase rate K is again obtained by (Equation 1), and the determination is again made in Step 5.
- step 5 If “Yes” is determined in step 5, the pressure increase rate K is smaller than the increase rate threshold value Kh, indicating that the filling speed is not sufficient. In step 6, the low speed start mode is canceled and the normal operation mode is entered. Move. Finally, the process proceeds to step 7 and returns.
- the motor is temporarily operated at the maximum rotation frequency, and the pressure is set to the target value as it approaches the target value Pref. Adjust the motor speed to follow Pref.
- noise can be reduced by operating in the low speed start mode at the time of start.
- the tank capacity of the user's equipment is small and there is no need for high-speed operation, it is possible to operate in the low-speed start-up mode at all times until the tank is completely filled.
- the operation mode is automatically switched to the normal operation mode.
- the pressure increase rate K can always be monitored by calculating the pressure increase rate K at a constant cycle (for example, 1 second). For this reason, for example, even when the user starts using air while the tank is being filled with air during startup, even if the pressure rises slowly or drops, the normal operation mode is automatically started immediately. Is switched to.
- the volume of the external air tank 12 of the user equipment it is possible to automatically select whether to perform the low speed operation or the normal operation without performing the setting on the user side in advance. It is possible to reduce noise to the maximum while ensuring the above.
- the rotational speed (frequency) at startup is set to the minimum rotational speed (frequency).
- the rotational speed (frequency) at the start may be set in consideration of characteristics such as noise vibration.
- a user who does not require the low speed start mode can operate in the normal operation mode from the time of starting the compressor if the function is disabled by a button operation.
- FIG. 4 shows a control flow for switching from the low speed start mode to the normal operation mode when the compressor 1 is started.
- FIG. 5 shows a change in pressure with respect to the pressure target value Pref and a change in the operation speed (operation mode) of the compressor from when the compressor 1 is started to when the operation mode is shifted to the normal operation mode.
- step 1 the operation switch is pressed to activate the compressor 1.
- step 2 the mode is shifted to the low speed activation mode, and the compressor body 4 is activated at a low rotational frequency (for example, the minimum rotational frequency is 35 Hz). Due to the performance of the inverter, it takes a certain time (for example, 4 seconds) to reach the target frequency after starting, so in step 3, do not go to the next process for a certain time (for example, 4 seconds) after starting. To do. After a certain time (for example, 4 seconds) has elapsed, the pressure increase gradient is stabilized, and thus the process proceeds to step 4.
- step 4 the pressure increase rate K is calculated using the above-described (Equation 1).
- step 5 the control circuit 7 uses the rate of increase K calculated in step 4 to calculate the expected filling time Tx required for the tank pressure to reach the target value Pref from 0 MPa.
- the calculation formula is shown in (Formula 2).
- step 6 the control circuit 7 determines whether or not the expected filling time Tx exceeds a predetermined threshold Th.
- the threshold value Th is a target filling time and can be set in advance by the user on the operation panel 8. If it is determined as “No”, the low-speed operation mode is continued, the process returns to step 4 and the pressure change rate is confirmed again. If it is determined as “Yes” in Step 6, the process proceeds to Step 7, the low speed start mode is canceled, and the normal operation mode is performed.
- Tx is greater than Th, it indicates that the filling cannot be completed within the target filling time Th. Adjust the motor speed to follow Pref.
- the compressor 1 operates in the low-speed operation mode at the time of startup, and shifts to the normal operation mode from the middle.
- the target filling time set by the user is used as a threshold for switching between the low-speed operation mode and the normal operation mode, the user's intention can be reflected in the control of the compression apparatus 1.
- FIG. 6 shows a control flow for switching from the low speed start mode to the normal operation mode when the compressor 1 is started.
- FIG. 7 shows changes in pressure with respect to the pressure target value Pref and changes in the operation speed (operation mode) of the compressor from when the compression apparatus 1 is started until the normal operation mode is entered.
- step 1 the operation switch is pressed to activate the compressor 1.
- step 2 the low-speed activation mode is entered, and the compressor body 4 is activated at a low rotational frequency (for example, the minimum rotational frequency is 35 Hz).
- step 3 it is determined whether a predetermined time (for example, 30 seconds) has elapsed since the start or whether the pressure has reached or exceeded the pressure target value Pref. When it determines with "Yes”, it moves to step 4, cancels
- a predetermined time for example, 30 seconds
- the compressor 1 operates in the low-speed operation mode at the start-up according to the flow of FIG. 6, and shifts to the normal operation mode from the middle.
- Embodiment 3 as long as the pressure target value Pref is not reached after the start of the compressor, it is possible to operate in the low speed operation mode for a certain period of time. Compared to other embodiments, the method for determining the switching of the operation mode is simple, and there is an advantage that the mounting can be easily performed.
- the pressure target value here may reach the pressure target value Pref even when the pressure reaches a predetermined range (for example: within Pref ⁇ 5%).
- FIG. 8 shows a control flow for switching from the low speed start mode to the normal operation mode when the compressor 1 is started.
- FIG. 9 shows changes in pressure with respect to the pressure target value Pref and changes in the operating speed (operation mode) of the compressor from when the compressor 1 is started to when the operation mode is shifted to the normal operation mode.
- step 1 the operation SW is pressed to activate the compression device 1.
- step 2 the mode is shifted to the low speed activation mode, and the compressor body 4 is activated at a low rotation frequency (for example, the minimum rotation frequency 35 Hz). Due to the performance of the inverter, it takes a certain time (for example, 4 seconds) to reach the target frequency after starting. Therefore, in step 3, do not go to the next process within a certain time (for example, 4 seconds) after starting. To do. After a certain time (for example, 4 seconds) elapses, the pressure increasing gradient is stabilized, and the process proceeds to step 4.
- step 4 the pressure increase rate K is calculated using the above-described (Equation 1).
- step 5 it is determined whether or not the calculated pressure increase rate K is smaller than a predetermined increase rate threshold value Kh. If “No” is determined, the process proceeds to Step 7, and if “Yes” is determined, the process proceeds to Step 6.
- step 6 the command rotational frequency Fref for the inverter 2 is calculated and changed by the following (formula 3).
- Fref F (t) + Fn (Hz) (Formula 3)
- Fref command rotation frequency
- F (t) current rotation frequency
- Fn arbitrary value (for example, 5)
- step 7 it is determined whether or not the current pressure P (t) detected by the pressure sensor 6 is equal to or higher than the target pressure Pref.
- step 4 When it determines with "No”, it returns to step 4 after a fixed time (for example, after 1 second), and calculates the pressure increase rate K again. If “Yes” is determined, the process proceeds to step 8, and after switching to the normal operation mode, the process returns in step 9.
- the pressure target value here may reach the pressure target value Pref even when the pressure reaches a predetermined range (for example: within Pref ⁇ 5%).
- Compressor 1 operates at a low speed at startup according to the above control flow, and shifts to normal operation from the middle.
- the fourth embodiment as in the first embodiment, low noise during startup and a sufficient air filling speed to the tank can be ensured.
- the fourth embodiment is characterized in that the pressure increase rate K is gradually increased so as to be equal to or higher than the threshold value Kh.
- Embodiment 4 since the rotational speed is not increased more than necessary, the operation time with low noise is relatively long. Further, since the operation is switched to the normal operation at the pressure target value Pref, it is not necessary to operate at the maximum rotation speed, and the air filling can be completed with a smoother sound.
- Embodiment 5 of the present invention will be described.
- the same components are denoted by the same reference numerals, and the description of the same portions is omitted.
- FIG. 10 shows a control flow for switching from the low speed start mode to the normal operation mode when the compressor 1 is started.
- FIG. 11 shows changes in pressure with respect to the pressure target value Pref and changes in the operation speed (operation mode) of the compressor from when the compression apparatus 1 is started until the normal operation mode is entered.
- step 1 the operation switch is pressed to activate the compressor 1.
- step 2 the mode is shifted to the low speed start mode, and the compressor body 4 starts at a low rotation frequency (for example, 35 Hz). Due to the performance of the inverter, it takes a certain time (for example, 4 seconds) to reach the target frequency after starting, so in step 3, do not go to the next process for a certain time (for example, 4 seconds) after starting. To do. After a certain time (for example, 4 seconds) has elapsed, the pressure increase gradient is stabilized, and thus the process proceeds to step 4.
- step 4 the pressure increase rate K is calculated using the above-described (Equation 1).
- Step 5 the control circuit 7 uses the rate of increase K calculated in Step 4 to calculate the expected filling time Tx required for the tank pressure to reach the target value Pref from 0 MPa using the above-described (Equation 2). To do.
- step 6 the control circuit 7 determines whether or not the expected filling time Tx exceeds a preset threshold value Th.
- the threshold value Th is a target filling time and can be set in advance by the user on the operation panel 8.
- Step 7 the command rotation frequency is obtained by (Equation 4).
- Command rotation frequency Fref F (t) x Tx / Th (Formula 4)
- F (t) current rotation frequency
- Tx expected filling time
- Th target filling time
- step 8 it is determined whether or not the calculated command rotation frequency Fref exceeds the maximum rotation frequency (Fmax). To do. If “Yes”, the command frequency is corrected to the maximum rotation frequency in Step 9, and the process proceeds to Step 10. If “No”, the process proceeds to Step 10 as it is.
- step 10 it is determined whether the pressure is equal to or higher than the pressure target value Pref. In the case of “No”, the process returns to step 4 after a certain period of time and confirms the pressure increase again. In the case of “Yes”, the process proceeds to step 11 and constant pressure control is performed. Return at the last step 12.
- step 10 it is determined whether the pressure is equal to or higher than the pressure target value Pref. In the case of “No”, the process returns to step 4 after a certain period of time and confirms the pressure increase again. In the case of “Yes”, the process proceeds to step 11 and constant pressure control is performed. Return at the last step 12.
- the fifth embodiment as in the second embodiment, low noise at startup and a sufficient air filling speed to the tank can be ensured.
- the fifth embodiment is characterized in that the rotational frequency during low-speed operation is adjusted so as to satisfy the target filling time.
- operation is performed at a rotational speed that is lower than the maximum rotational speed, so that charging at an unnecessarily high speed can be prevented.
- This has the effect of reducing user discomfort due to noise changes when the rotational speed suddenly increases to the maximum rotational speed.
- there is an effect that the rotation speed can be optimally adjusted in a short time.
- FIG. 12 shows a control flow for switching from the low speed start mode to the normal operation mode when the compressor 1 is started.
- FIG. 13 shows changes in pressure with respect to the pressure target value Pref and changes in the operation speed (operation mode) of the compressor from when the compression apparatus 1 is started until the normal operation mode is entered.
- step 1 the operation switch is pressed to activate the compressor 1.
- step 2 the mode is shifted to the low speed start mode, and the compressor body 4 starts at a low rotation frequency (for example, 35 Hz). Due to the performance of the inverter, it takes a certain time (for example, 4 seconds) to reach the target frequency after starting, so in step 3, do not go to the next process for a certain time (for example, 4 seconds) after starting. To do. After a certain time (for example, 4 seconds) has elapsed, the pressure increase gradient is stabilized, and thus the process proceeds to step 4.
- step 4 the pressure increase rate K is calculated using the above-described (Equation 1).
- step 5 the control circuit 7 determines whether or not the pressure increase rate K is less than a predetermined target value Kh. If it is determined as “No”, the low-speed operation mode is continued and the process proceeds to Step 9. If “Yes” is determined in Step 5, the process proceeds to Step 6.
- step 6 the command rotational frequency Fref to the motor is obtained by Equation 5 so that the pressure increase rate becomes the target pressure increase rate.
- Command rotation frequency Fref F (t) x Kh / K (Formula 5)
- F (t) current rotation frequency
- Kh pressure increase rate target value
- step 7 it is determined whether or not the calculated command rotation frequency Fref exceeds the maximum rotation frequency (Fmax). In the case of “Yes”, the command frequency is corrected so as to become the maximum rotation frequency in Step 8, and the process proceeds to Step 9. If “No”, the process proceeds to Step 9 as it is.
- step 9 it is determined whether or not the pressure is equal to or higher than the pressure target value Pref. In the case of “No”, the process returns to step 4 after a certain period of time and confirms the pressure increase again. In the case of “Yes”, the process proceeds to step 10 to perform a constant pressure control. Return at the last step 11.
- the sixth embodiment as in the first embodiment, low noise at startup and a sufficient air filling speed to the tank can be ensured.
- the sixth embodiment is characterized in that the rotation frequency during low-speed operation is adjusted so as to satisfy the pressure increase rate target value.
- operation is performed at a rotational speed that is lower than the maximum rotational speed, so that charging at an unnecessarily high speed can be prevented.
- This has the effect of reducing user discomfort due to noise changes when the rotational speed suddenly increases to the maximum rotational speed.
- the calculation is easy, and there is an advantage that the mounting is simple.
- the rotational speed is not increased more than necessary, the operation time with low noise is relatively long. Further, since the operation is switched to the normal operation at the pressure target value Pref, it is not necessary to operate at the maximum rotation speed, and the air filling can be completed with a smoother sound.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
ここで、K:圧力の上昇率、P(t):現在圧力値、P(t-1):1秒前の圧力値、Ts:1秒
ステップ5では、制御回路7において、計算された圧力の上昇率Kを予め決められた上昇率閾値Khより小さいか否かを判定する。「Yes」と判定した場合、ステップ6に移り、「No」と判定した場合は、空気タンク5に対する充填速度が十分であると判断されるため、低速運転を継続する。この場合は、一定時間後にステップ4に戻り、再度(式1)で圧力の上昇率Kを求め、再度ステップ5にて判定を行う。
ステップ6では、制御回路7は、予想充填時間Txは予め設けられた閾値Thを越えるか否かを判定する。閾値Thは目標充填時間であり、使用者が予め操作パネル8で設定可能である。「No」と判定した場合は、低速運転モードを継続し、ステップ4に戻り、再度圧力の変化率を確認する。ステップ6で「Yes」と判定した場合、ステップ7に移行し、低速起動モードを解除し、通常運転モードに移行する。
Fref = F(t) + Fn (Hz) (式3)
ここで、Fref:指令回転周波数、F(t):現在回転周波数、Fn:任意値(例えば5)
ステップ7では圧力センサ6で検出される現在圧力P(t)が目標圧力Pref以上であるかどうかを判定する。「No」と判定した場合は、一定時間後(例えば1秒後)にステップ4に戻り、再度圧力上昇率Kを計算する。「Yes」と判定した場合は、ステップ8に移り、通常運転モードに切替えた後、ステップ9でリターンする。
ここで、F(t):現在の回転周波数、Tx:予想充填時間、Th:目標充填時間
次に、ステップ8では、計算した指令回転周波数Frefが最高回転周波数(Fmax)を超えるかどうかを判定する。「Yes」の場合は、ステップ9で指令周波数を最高回転周波数になるよう補正し、ステップ10に移行する。「No」の場合は、そのままステップ10に移行する。
次に、本発明の実施形態6を示す。実施形態6では、前述した実施形態1と同様の構成の圧縮装置1を前提とするため、同一の構成要素に同一の符号を付し、同様の部分についてはその説明を省略するものとする。
指令回転周波数Fref = F(t)×Kh/K (式5)
ここで、F(t):現在の回転周波数、Kh:圧力上昇率目標値
次に、ステップ7では、計算した指令回転周波数Frefが最高回転周波数(Fmax)を超えるかどうかを判定する。「Yes」の場合は、ステップ8で指令周波数を最高回転周波数になるよう補正し、ステップ9に移行する。「No」の場合は、そのままステップ9に移行する。
Claims (15)
- 空気を圧縮する圧縮機本体と、
前記圧縮機本体を駆動するモータと、
前記モータの回転速度を制御するインバータと、
前記インバータに接続される制御回路と、
前記圧縮機本体において圧縮された空気の圧力を検出する圧力センサと、
を備えてなる空気圧縮装置であって、
前記制御回路は、前記空気圧縮装置を起動する場合は、前記圧縮機本体を最高回転速度よりも低い低速回転周波数で運転する低速起動モードで運転し、前記圧力センサにおいて検出した圧力値及び起動からの経過時間に基づいて、前記低速起動モードから、最高回転周波数を含めて周波数を可変にして運転する通常運転モードに切り替えて、前記圧縮機本体を運転するように制御することを特徴とする空気圧縮装置。 - 請求項1に記載の空気圧縮装置であって、
前記制御回路は、前記圧力センサにて検出した圧力値により算出した圧力変化率が、所定の値よりも小さい場合に、前記低速起動モードから前記通常運転モードに切り替えることを特徴とする空気圧縮装置。 - 請求項1に記載の空気圧縮装置であって、
前記制御回路は、前記空気圧縮装置の起動から前記低速回転周波数に達するまでの時間を経過した後に前記通常運転モードに切り替え可能にすることを特徴とする空気圧縮装置。 - 請求項1に記載の空気圧縮装置であって、
前記制御回路は、前記圧力センサにて検出した圧力値が、圧力目標値に到達するまでの予想充填時間が、予め設定された目標充填時間より短い場合に、前記低速起動モードから前記通常運転モードに切り替えることを特徴とする空気圧縮装置。 - 請求項1に記載の空気圧縮装置であって、
前記制御回路は、前記圧力センサにて検出した圧力値が圧力目標値に到達したか、空気圧縮装置の起動から所定時間経過した場合に、前記低速起動モードから前記通常運転モードに切り替えることを特徴とする空気圧縮装置。 - 請求項1に記載の空気圧縮装置であって、
前記制御回路は、前記圧力センサにて検出した圧力値により算出した圧力変化率が、所定の値よりも小さい場合に、圧縮機本体の回転周波数を所定値増速させ、検出した圧力値が圧力目標値に到達した場合に、前記低速起動モードから前記通常運転モードに切り替えることを特徴とする空気圧縮装置。 - 請求項1に記載の空気圧縮装置であって、
前記制御回路は、前記圧力センサにて検出した圧力値が圧力目標値に到達するまでの予想充填時間が、予め設定された目標充填時間より短い場合に、圧縮機本体の回転周波数を前記予想充填時間と前記目標充填時間に基づいて算出される回転周波数となるように増速させ、検出した圧力値が圧力目標値に到達した場合に、前記低速起動モードから前記通常運転モードに切り替えることを特徴とする空気圧縮装置。 - 請求項1に記載の空気圧縮装置であって、
前記制御回路は、前記圧力センサにて検出した圧力値により算出した圧力変化率が予め設定された圧力変化率の目標値より小さい場合、圧縮機本体の回転周波数を前記算出した圧力変化率と前記圧力変化率の目標値とに基づいて算出される回転周波数となるように増速させ、検出した圧力値が圧力目標値に到達した場合に、前記低速起動モードから前記通常運転モードに切り替えることを特徴とする空気圧縮装置。 - 圧縮された空気の圧力を検出し、圧縮機本体を駆動するモータの回転速度を制御可能な空気圧縮装置を制御する制御方法であって、
前記空気圧縮装置を起動する場合は、前記圧縮機本体を最高回転速度よりも低い低速回転周波数で運転する低速起動モードで運転し、前記圧力センサにおいて検出した圧力値及び起動からの経過時間に基づいて、前記低速起動モードから、最高回転周波数を含めて周波数を可変にして運転する通常運転モードに切り替えて、前記圧縮機本体を運転するように制御することを特徴とする制御方法。 - 請求項9に記載の制御方法であって、
検出された圧力値により算出した圧力変化率が、所定の値よりも小さい場合に、前記低速起動モードから前記通常運転モードに切り替えることを特徴とする制御方法。 - 請求項9に記載の制御方法であって、
前記空気圧縮装置の起動から前記低速回転周波数に達するまでの時間を経過した後に前記通常運転モードに切り替え可能にすることを特徴とする制御方法。 - 請求項9に記載の制御方法であって、
検出された圧力値が圧力目標値に到達するまでの予想充填時間が、予め設定された目標充填時間より短い場合に、前記低速起動モードから前記通常運転モードに切り替えることを特徴とする制御方法。 - 請求項9に記載の制御方法であって、
検出された圧力値が圧力目標値に到達したか、空気圧縮装置の起動から所定時間経過した場合に、前記低速起動モードから前記通常運転モードに切り替えることを特徴とする制御方法。 - 請求項9に記載の制御方法であって、
検出された圧力値により算出した圧力変化率が、所定の値よりも小さい場合に、圧縮機本体の回転周波数を所定値増速させ、検出した圧力値が圧力目標値に到達した場合に、前記低速起動モードから前記通常運転モードに切り替えることを特徴とする制御方法。 - 請求項10に記載の制御方法であって、
検出された圧力値が圧力目標値に到達するまでの予想充填時間が予め設定された目標充填時間より短い場合に、圧縮機本体の回転周波数を前記予想充填時間と前記目標充填時間に基づいて算出される回転周波数となるように増速させ、検出した圧力値が圧力目標値に到達した場合に、前記低速起動モードから前記通常運転モードに切り替えることを特徴とする制御方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177004421A KR101968125B1 (ko) | 2014-12-17 | 2014-12-17 | 공기 압축 장치 및 제어 방법 |
PCT/JP2014/083325 WO2016098186A1 (ja) | 2014-12-17 | 2014-12-17 | 空気圧縮装置及び制御方法 |
JP2016564496A JP6383806B2 (ja) | 2014-12-17 | 2014-12-17 | 空気圧縮装置及び制御方法 |
EP14908396.6A EP3236071B1 (en) | 2014-12-17 | 2014-12-17 | Air compressing apparatus and control method |
CN201480081539.2A CN106605063B (zh) | 2014-12-17 | 2014-12-17 | 空气压缩装置和控制方法 |
US15/506,407 US11193482B2 (en) | 2014-12-17 | 2014-12-17 | Air compressing apparatus and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/083325 WO2016098186A1 (ja) | 2014-12-17 | 2014-12-17 | 空気圧縮装置及び制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016098186A1 true WO2016098186A1 (ja) | 2016-06-23 |
Family
ID=56126109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083325 WO2016098186A1 (ja) | 2014-12-17 | 2014-12-17 | 空気圧縮装置及び制御方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11193482B2 (ja) |
EP (1) | EP3236071B1 (ja) |
JP (1) | JP6383806B2 (ja) |
KR (1) | KR101968125B1 (ja) |
CN (1) | CN106605063B (ja) |
WO (1) | WO2016098186A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180269506A1 (en) * | 2017-03-17 | 2018-09-20 | Hyundai Motor Company | Air supply control method and system for fuel cell |
JP2018189009A (ja) * | 2017-04-28 | 2018-11-29 | 工機ホールディングス株式会社 | 気体圧縮機 |
JP2020180570A (ja) * | 2019-04-24 | 2020-11-05 | 株式会社日立産機システム | 圧縮空気製造設備、圧縮空気の目標圧調整方法、および圧縮空気の目標圧調整プログラム |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11466675B2 (en) | 2017-03-30 | 2022-10-11 | Eaton-Max, Inc. | Air compressor and methods of operation |
US10578089B2 (en) | 2017-03-30 | 2020-03-03 | Eaton-Max, Inc. | Air compressor noise dampener |
US11852131B2 (en) * | 2017-09-25 | 2023-12-26 | Carrier Corporation | Pressure safety shutoff |
JP6851953B2 (ja) * | 2017-10-30 | 2021-03-31 | アークレイ株式会社 | ポンプ駆動方法 |
CN111902631B (zh) * | 2018-03-29 | 2022-03-25 | 株式会社日立产机系统 | 气体压缩机 |
JP7075305B2 (ja) * | 2018-07-25 | 2022-05-25 | 北越工業株式会社 | 圧縮機の運転制御方法及び圧縮機 |
JP7123000B2 (ja) * | 2019-04-24 | 2022-08-22 | 株式会社日立製作所 | エレベーター制御システムおよびエレベーター制御方法 |
WO2020240858A1 (ja) * | 2019-05-31 | 2020-12-03 | 三菱電機株式会社 | 冷凍サイクル装置および冷凍機 |
DE102020100296A1 (de) * | 2020-01-09 | 2021-07-15 | Knorr-Bremse Systeme für Schienenfahrzeuge GmbH | Kompressorsystem und Verfahren zum Betreiben eines Kompressorsystems in Abhängigkeit des Druckluftbedarfs eines Betriebszustands des Fahrzeugs |
CN113665878B (zh) * | 2021-09-01 | 2022-11-29 | 得力集团有限公司 | 一种真空包装方法及真空包装机 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6338693A (ja) * | 1986-07-31 | 1988-02-19 | Nippon Air Brake Co Ltd | 鉄道車両用調圧方法 |
JPH09217682A (ja) * | 1996-02-13 | 1997-08-19 | Ebara Corp | 可変速給水装置 |
JP2005344655A (ja) * | 2004-06-04 | 2005-12-15 | Hokuetsu Kogyo Co Ltd | 流体圧縮機の容量制御方法及び容量制御装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4068980A (en) * | 1976-10-01 | 1978-01-17 | Gardner-Denver Company | Compressor startup control |
US4263540A (en) * | 1979-07-05 | 1981-04-21 | General Electric Company | Two-speed refrigerant motor compressor |
US4863355A (en) * | 1987-03-20 | 1989-09-05 | Tokico Ltd. | Air compressor having control means to select a continuous or intermittent operation mode |
FR2784308B1 (fr) | 1998-10-09 | 2001-11-09 | Air Liquide | Procede et installation de separation de gaz avec production d'un debit gazeux variable |
US6604909B2 (en) * | 2001-03-27 | 2003-08-12 | Aquatec Water Systems, Inc. | Diaphragm pump motor driven by a pulse width modulator circuit and activated by a pressure switch |
US6487869B1 (en) * | 2001-11-06 | 2002-12-03 | Themo King Corporation | Compressor capacity control system |
ITTO20040092A1 (it) * | 2003-03-31 | 2004-05-18 | Hitachi Kokico Ltd | Compressore d'aria e metodo per il suo comando |
JP2005016330A (ja) | 2003-06-24 | 2005-01-20 | Hitachi Koki Co Ltd | 圧力スイッチ機構及びこれを用いた空気圧縮機 |
JP4033087B2 (ja) * | 2003-09-10 | 2008-01-16 | 日立工機株式会社 | 空気圧縮機及びその制御方法 |
JP4584599B2 (ja) | 2004-01-30 | 2010-11-24 | 株式会社日立製作所 | 圧縮機 |
US20060045751A1 (en) * | 2004-08-30 | 2006-03-02 | Powermate Corporation | Air compressor with variable speed motor |
CN1940294B (zh) * | 2005-09-30 | 2011-06-01 | 株式会社日立制作所 | 空气压缩装置的控制装置 |
JP4916383B2 (ja) * | 2007-06-01 | 2012-04-11 | サンデン株式会社 | 電動型スクロール圧縮機の起動制御装置及びその起動制御方法 |
JP5464399B2 (ja) * | 2008-10-09 | 2014-04-09 | 日立工機株式会社 | 空気圧縮機 |
JP5337662B2 (ja) * | 2009-10-14 | 2013-11-06 | 川崎重工業株式会社 | 油圧システムにおける油圧ポンプの運転装置及び方法 |
AU2011242892B2 (en) * | 2010-04-20 | 2015-09-03 | Sandvik Intellectual Property Ab | Air compressor system and method of operation |
JP2013060907A (ja) | 2011-09-14 | 2013-04-04 | Panasonic Corp | 圧縮機の制御装置 |
US9518587B2 (en) | 2011-09-22 | 2016-12-13 | Hitachi Koki Co., Ltd. | Air compressor |
-
2014
- 2014-12-17 EP EP14908396.6A patent/EP3236071B1/en active Active
- 2014-12-17 CN CN201480081539.2A patent/CN106605063B/zh active Active
- 2014-12-17 KR KR1020177004421A patent/KR101968125B1/ko active IP Right Grant
- 2014-12-17 WO PCT/JP2014/083325 patent/WO2016098186A1/ja active Application Filing
- 2014-12-17 JP JP2016564496A patent/JP6383806B2/ja active Active
- 2014-12-17 US US15/506,407 patent/US11193482B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6338693A (ja) * | 1986-07-31 | 1988-02-19 | Nippon Air Brake Co Ltd | 鉄道車両用調圧方法 |
JPH09217682A (ja) * | 1996-02-13 | 1997-08-19 | Ebara Corp | 可変速給水装置 |
JP2005344655A (ja) * | 2004-06-04 | 2005-12-15 | Hokuetsu Kogyo Co Ltd | 流体圧縮機の容量制御方法及び容量制御装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180269506A1 (en) * | 2017-03-17 | 2018-09-20 | Hyundai Motor Company | Air supply control method and system for fuel cell |
KR20180107384A (ko) * | 2017-03-17 | 2018-10-02 | 현대자동차주식회사 | 연료전지 공기 공급 제어방법 및 시스템 |
CN108630961A (zh) * | 2017-03-17 | 2018-10-09 | 现代自动车株式会社 | 用于燃料电池的空气供给控制方法和系统 |
US10826095B2 (en) * | 2017-03-17 | 2020-11-03 | Hyundai Motor Company | Air supply control method and system for fuel cell |
KR102336394B1 (ko) * | 2017-03-17 | 2021-12-08 | 현대자동차주식회사 | 연료전지 공기 공급 제어방법 및 시스템 |
CN108630961B (zh) * | 2017-03-17 | 2022-07-12 | 现代自动车株式会社 | 用于燃料电池的空气供给控制方法和系统 |
JP2018189009A (ja) * | 2017-04-28 | 2018-11-29 | 工機ホールディングス株式会社 | 気体圧縮機 |
JP2020180570A (ja) * | 2019-04-24 | 2020-11-05 | 株式会社日立産機システム | 圧縮空気製造設備、圧縮空気の目標圧調整方法、および圧縮空気の目標圧調整プログラム |
JP7179673B2 (ja) | 2019-04-24 | 2022-11-29 | 株式会社日立産機システム | 圧縮空気製造設備、圧縮空気の目標圧調整方法、および圧縮空気の目標圧調整プログラム |
Also Published As
Publication number | Publication date |
---|---|
CN106605063B (zh) | 2019-01-08 |
US20180223832A1 (en) | 2018-08-09 |
CN106605063A (zh) | 2017-04-26 |
EP3236071A4 (en) | 2018-06-20 |
JP6383806B2 (ja) | 2018-08-29 |
KR20170032422A (ko) | 2017-03-22 |
EP3236071B1 (en) | 2020-02-19 |
EP3236071A1 (en) | 2017-10-25 |
KR101968125B1 (ko) | 2019-04-11 |
JPWO2016098186A1 (ja) | 2017-06-08 |
US11193482B2 (en) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6383806B2 (ja) | 空気圧縮装置及び制御方法 | |
JP6581626B2 (ja) | 給水装置 | |
US10514026B2 (en) | Fluid compression system and control device therefor | |
JP6014508B2 (ja) | 流体圧縮システム | |
US11274674B2 (en) | Air compressor | |
JP2011117347A (ja) | 圧縮機の容量制御方法及び圧縮装置 | |
JP2014040786A (ja) | 空気圧縮機 | |
JP2009108822A (ja) | 空気圧縮装置の制御装置 | |
JP6539319B2 (ja) | 流体圧縮システムまたはその制御装置 | |
JP6692170B2 (ja) | 流体圧縮装置 | |
JP6014509B2 (ja) | 流体圧縮システム | |
JP6012417B2 (ja) | 流体圧縮装置 | |
JP2005344536A (ja) | ポンプ並列運転制御装置および制御方法 | |
JP6176518B2 (ja) | 圧縮機台数制御システム | |
JP4236876B2 (ja) | インバータ駆動圧縮機 | |
JP2022127518A (ja) | エアコンプレッサ | |
WO2020066268A1 (ja) | 気体圧縮機、及び、その制御方法 | |
JP2011064113A (ja) | 自動圧力タンク式ポンプ | |
JPH0260870B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14908396 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016564496 Country of ref document: JP Kind code of ref document: A Ref document number: 20177004421 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014908396 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014908396 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15506407 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |