WO2016095669A1 - 镍钴氧化物电极材料的制备方法 - Google Patents

镍钴氧化物电极材料的制备方法 Download PDF

Info

Publication number
WO2016095669A1
WO2016095669A1 PCT/CN2015/095405 CN2015095405W WO2016095669A1 WO 2016095669 A1 WO2016095669 A1 WO 2016095669A1 CN 2015095405 W CN2015095405 W CN 2015095405W WO 2016095669 A1 WO2016095669 A1 WO 2016095669A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
electrode material
cobalt
salt
hexamethylenetetramine
Prior art date
Application number
PCT/CN2015/095405
Other languages
English (en)
French (fr)
Inventor
金玉红
王莉
何向明
李建军
尚玉明
张玉峰
赵鹏
张艳丽
高剑
王要武
Original Assignee
江苏合志锂硫电池技术有限公司
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏合志锂硫电池技术有限公司, 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏合志锂硫电池技术有限公司
Publication of WO2016095669A1 publication Critical patent/WO2016095669A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for preparing an electrode material, in particular to a method for preparing a Ni 1.5 Co 1.5 O 4 electrode material.
  • Nickel-cobalt oxide is an ideal electrode material for lithium ion batteries and supercapacitors because it has good electrical conductivity, high theoretical specific capacitance, good cycle performance and environmental friendliness.
  • nickel-cobalt oxides currently used as electrode materials for lithium ion batteries and supercapacitors are mainly nickel cobalt oxide (NiCo 2 O 4 ), and other nickel-cobalt oxides such as Ni 1.5 Co 1.5 O 4 have not been used as lithium ion batteries and Research on supercapacitor electrode materials.
  • Ni 1.5 Co 1.5 O 4 has better conductivity than NiCo 2 O 4 .
  • a method for preparing a Ni 1.5 Co 1.5 O 4 electrode material comprising:
  • Ni 1.5 Co 1.5 O 4 electrode material Sintering the precursor in an oxygen-containing atmosphere to obtain the Ni 1.5 Co 1.5 O 4 electrode material, the Ni 1.5 Co 1.5 O 4 electrode material being a plurality of self-assembled by Ni 1.5 Co 1.5 O 4 nanosheets Three-dimensional flower structure.
  • the preparation method of the Ni 1.5 Co 1.5 O 4 electrode material provided by the invention selects hexamethylenetetramine to coprecipitate nickel ions and cobalt ions, and obtains Ni 1.5 with a molar ratio of nickel element to cobalt element of 1:1.
  • Co 1.5 O 4 electrode material while selecting ethanol solution and hexamethylenetetramine to coordinate the morphology of Ni 1.5 Co 1.5 O 4 electrode material, can prepare three-dimensional flower structure Ni 1.5 Co 1.5 O 4 Electrode material.
  • the three-dimensional flower-like Ni 1.5 Co 1.5 O 4 electrode material has a large specific surface area, strong adsorption capacity, and small volume change during the release of stress, which is more conducive to the diffusion of lithium ions and the full reaction of the electrochemical reaction sites.
  • the increase of lithium ion storage capacity, the modification of the volume change during the adsorption and desorption of lithium, and the improvement of the speed have important significance.
  • the preparation method has the advantages of simple process, environmental protection, low cost and large-scale production.
  • FIG. 1 is a flow chart of a method for preparing a Ni 1.5 Co 1.5 O 4 electrode material of the present invention.
  • 2a and 2b are XRD patterns of the green precursor powder and the black solid powder prepared in Example 1 of the present invention, respectively.
  • Figure 3 is a graph showing the energy dispersive EDX elemental analysis of the black solid powder prepared in Example 1 of the present invention.
  • 4a, 4b, 4c, and 4d are field emission scanning electron microscopy (FESEM) images of black solid powders prepared in Example 1 of the present invention at different magnifications, respectively.
  • FESEM field emission scanning electron microscopy
  • an embodiment of the present invention provides a method for preparing a Ni 1.5 Co 1.5 O 4 electrode material, including:
  • Ni 1.5 Co 1.5 O 4 electrode material is formed by self-assembly of Ni 1.5 Co 1.5 O 4 nanosheets. Multiple three-dimensional flower-like structures.
  • the nickel salt may be one or more of nickel nitrate, nickel chloride, nickel acetate, and nickel sulfate.
  • the cobalt salt may be one or more of nickel nitrate, nickel chloride, cobalt acetate, and cobalt sulfate.
  • the mixing ratio of the nickel salt and the cobalt salt is not limited, and a Ni 1.5 Co 1.5 O 4 electrode material having a molar ratio of nickel element to cobalt element of 1:1 can be obtained at any mixing ratio.
  • the mixing ratio of the nickel element and the cobalt element in the nickel salt and the cobalt salt may be 1:4 to 4:1. More preferably, the mixing ratio of the nickel element and the cobalt element in the nickel salt and the cobalt salt may be 1:2 to 2:1. Within the above ratio range, the nickel salt and the cobalt salt can be fully utilized to reduce the waste of raw materials.
  • the mixed solution is a uniformly clear solution.
  • the ethanol and water form a mixed solvent which is the reaction medium of the hydrothermal reaction.
  • the nickel salt, cobalt salt and hexamethylenetetramine are dissolved in the mixed solvent.
  • the nickel salt and the cobalt salt are dissolved in the mixed solvent to form nickel ions and cobalt ions, respectively.
  • the ethanol and water may be first mixed to form the mixed solvent, and the nickel salt, the cobalt salt, and hexamethylenetetramine may be simultaneously added to the mixed solvent to be mixed. It is also possible to first mix the nickel salt, the cobalt salt, ethanol and water, and then add the hexamethylenetetramine for mixing.
  • the manner of mixing is not limited, and for example, mixing may be performed using agitation or ultrasonication.
  • the precursor is a light green powder, and the light green powder is nickel cobalt hydroxide.
  • the hexamethylenetetramine acts as a precipitant to convert the nickel ions and the cobalt ions into nickel-cobalt hydroxide precipitates, and due to the hexamethylenetetramine pair
  • the precipitation capacity of the nickel ions and the cobalt ions is similar, so in the nickel cobalt hydroxide, the molar ratio of the nickel element to the cobalt element is 0.91 to 1.09.
  • the mass ratio of the mass of the hexamethylenetetramine to the nickel salt and the cobalt salt is 1:1 to 3:1, and the hexamethylenetetramine in the ratio range enables the Nickel ions and cobalt ions are sufficiently precipitated.
  • the hexamethylenetetramine and the mixed solvent also have the function of a morphological guiding agent.
  • a three-dimensional flower-like nickel-cobalt hydroxide can be obtained, and the three-dimensional flower-like structure of nickel
  • the cobalt hydroxide is formed by self-assembly of nickel cobalt hydroxide nanosheets.
  • the nickel-cobalt hydroxide is oxidized to Ni 1.5 Co 1.5 O 4 , and the three-dimensional flower-like structure remains unchanged, thereby obtaining a three-dimensional flower-like structure of Ni 1.5 Co 1.5 O 4 .
  • Electrode material is oxidized to Ni 1.5 Co 1.5 O 4 , and the three-dimensional flower-like structure remains unchanged, thereby obtaining a three-dimensional flower-like structure of Ni 1.5 Co 1.5 O 4 .
  • the Ni 1.5 Co 1.5 O 4 electrode material having the three-dimensional flower-like structure with uniform morphology and uniform size may be formed, and the three-dimensional flower is
  • the Ni 1.5 Co 1.5 O 4 electrode material of the like structure is a spherical structure composed of several tens of Ni 1.5 Co 1.5 O 4 nanosheets, in which each of the Ni 1.5 Co 1.5 O 4 nanosheets is like a flower petal Extending outwardly from the center of the spherical structure, and a plurality of the Ni 1.5 Co 1.5 O 4 nanosheets partially intersect, the spherical structure having voids formed by the Ni 1.5 Co 1.5 O 4 nanosheets in all directions With the tunnel.
  • the three-dimensional flower-like Ni 1.5 Co 1.5 O 4 electrode material has a large specific surface area, strong adsorption capacity, and small volume change during the release of stress, which is more conducive to the diffusion of lithium ions and the full reaction of the electrochemical reaction sites.
  • the increase of lithium ion storage capacity, the modification of the volume change during the adsorption and desorption of lithium, and the improvement of the speed have important significance.
  • the mass ratio of ethanol to water is greater than or equal to 2:1 and less than or equal to 3:1.
  • the ratio of the mass of the hexamethylenetetramine to the mass of the ethanol and water is 1:4 to 1:2.
  • the mixed solution can be transferred to a steel-lined polytetrafluoroethylene reactor for hydrothermal reaction.
  • the reaction temperature of the hydrothermal reaction is from 80 ° C to 260 ° C, the reaction temperature is too low, and the dissociation constant of the hexamethylenetetramine is also low, so that the action of the precipitant and the morphological guide agent is not obtained. If the reaction temperature is too high, the hexamethylenetetramine is decomposed.
  • the reaction temperature is from 100 ° C to 140 ° C. This temperature range is more favorable for forming a nickel-cobalt hydroxide of the three-dimensional flower structure having uniform morphology and uniformity.
  • the hydrothermal reaction time is greater than 2 hours to make the hydrothermal reaction more complete.
  • the hydrothermal reaction time is from 2 hours to 8 hours.
  • the precursor can be further separated and purified.
  • the manner of separation can be filtration or centrifugation.
  • the separated precursor can be further washed.
  • the precursor is washed several times with water and absolute ethanol, respectively.
  • the separated and purified precursor may be further dried to remove the solvent. The drying can be vacuum filtration or heat drying.
  • the sintering temperature may be 300 ° C to 500 ° C, and the sintering time may be 2 hours to 10 hours.
  • the nickel cobalt hydroxide undergoes an oxidation reaction during the sintering to form the Ni 1.5 Co 1.5 O 4 electrode material.
  • the Ni 1.5 Co 1.5 O 4 electrode material was a black powder.
  • the above mixed solution was transferred to a steel-lined polytetrafluoroethylene reactor, heated at 90 ° C for 4 hours, then cooled to room temperature with a furnace, taken out, subjected to vacuum filtration - three times of water washing - vacuum filtration - three times of ethanol washing
  • the prepared sample is subjected to a purification treatment, and dried under vacuum at 60 ° C for 12 hours to obtain a pale green precursor powder;
  • the prepared green precursor powder was placed in a muffle furnace, and raised to 350 ° C at a heating rate of 1 ° C per minute under an air atmosphere for 3 hours, and then cooled to room temperature with a furnace to obtain a black solid powder.
  • the green precursor is a cobalt nickel hydroxide structure
  • the black solid powder is a spinel-type cobalt nickel oxide structure.
  • FIG. 3 and the following table it can be confirmed by EDX analysis that the atomic ratio of Co/Ni is 1:1, so it can be inferred that the structural formula of the spinel-type cobalt nickel oxide is Ni 1.5 Co 1.5 O 4 .
  • the black solid powder is a three-dimensional flower-like structure formed by self-assembly of Ni 1.5 Co 1.5 O 4 nanosheets with uniform morphology.
  • the preparation method of the Ni 1.5 Co 1.5 O 4 electrode material provided by the invention selects hexamethylenetetramine to coprecipitate nickel ions and cobalt ions, and obtains Ni 1.5 with a molar ratio of nickel element to cobalt element of 1:1.
  • Co 1.5 O 4 electrode material while selecting ethanol solution and hexamethylenetetramine to coordinate the morphology of Ni 1.5 Co 1.5 O 4 electrode material, can prepare three-dimensional flower structure Ni 1.5 Co 1.5 O 4 Electrode material.
  • the three-dimensional flower-like Ni 1.5 Co 1.5 O 4 electrode material has a large specific surface area, strong adsorption capacity, and small volume change during the release of stress, which is more conducive to the diffusion of lithium ions and the full reaction of the electrochemical reaction sites.
  • the increase of lithium ion storage capacity, the modification of the volume change during the adsorption and desorption of lithium, and the improvement of the speed have important significance.
  • the preparation method has the advantages of simple process, environmental protection, low cost and large-scale production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种Ni1.5Co1.5O4电极材料的制备方法,包括:提供镍盐、钴盐、六亚甲基四胺、乙醇及水,其中,所述乙醇和水的质量比大于1:1小于等于4:1;将所述镍盐、钴盐、六亚甲基四胺、乙醇及水混合,并使所述镍盐、钴盐、六亚甲基四胺溶解,得到一混合溶液;使所述混合溶液进行溶剂热反应,得到前驱体;以及在含氧气氛下进行烧结所述前躯体,得到所述Ni1.5Co1.5O4电极材料,所述Ni1.5Co1.5O4电极材料为由Ni1.5Co1.5O4纳米片自组装形成的多个三维花状结构。

Description

镍钴氧化物电极材料的制备方法 技术领域
本发明涉及一种电极材料的制备方法,尤其涉及一种Ni1.5Co1.5O4电极材料的制备方法。
背景技术
镍钴氧化物由于具有导电性好、理论比电容高、循环性能好和环境友好等优点而成为一种能满足实际应用的用于锂离子电池和超级电容器的理想电极材料。但是目前用作锂离子电池和超级电容器电极材料的镍钴氧化物主要是钴酸镍(NiCo2O4),还没有将其他镍钴氧化物如Ni1.5Co1.5O4用作锂离子电池和超级电容器电极材料的研究。
然而,人们在研究将镍钴氧化物用作禁带宽度较大的半导体材料时,发现Ni1.5Co1.5O4具有比NiCo2O4更好的导电性能。导电性越高,作为电极材料使用的性能也越好,但是现有技术主要是将Ni1.5Co1.5O4薄膜用作半导体材料,由于该Ni1.5Co1.5O4薄膜几乎没有孔道,且比表面积较小,不利于锂离子的扩散和电化学反应活性点充分反应,对锂离子的存储容量十分有限,故直接将该Ni1.5Co1.5O4薄膜作为电极材料使用时其电化学性能较差。
发明内容
有鉴于此,确有必要提供一种利于锂离子扩散和电化学反应活性点充分反应的Ni1.5Co1.5O4电极材料的制备方法。
一种Ni1.5Co1.5O4电极材料的制备方法,包括:
提供镍盐、钴盐、六亚甲基四胺、乙醇及水,其中,所述乙醇和水的质量比大于1:1小于等于4:1;
将所述镍盐、钴盐、六亚甲基四胺、乙醇及水混合,并使所述镍盐、钴盐、六亚甲基四胺溶解,得到一混合溶液;
使所述混合溶液进行水热反应,得到前驱体;以及
在含氧气氛下进行烧结所述前驱体,得到所述Ni1.5Co1.5O4电极材料,所述Ni1.5Co1.5O4电极材料为由Ni1.5Co1.5O4纳米片自组装形成的多个三维花状结构。
本发明提供的Ni1.5Co1.5O4电极材料的制备方法,选择六亚甲基四胺来对镍离子及钴离子进行共沉淀,可得到镍元素和钴元素摩尔比为1:1的Ni1.5Co1.5O4电极材料,同时选择乙醇水溶液与六亚甲基四胺相互配合来对Ni1.5Co1.5O4电极材料的形貌进行调控,可制备出三维花状结构的Ni1.5Co1.5O4电极材料。该三维花状结构的Ni1.5Co1.5O4电极材料比表面积巨大、吸附能力强、在释放应力的过程中体积变化较小,更有利于锂离子的扩散和电化学反应活性点充分反应,对锂离子存储容量的提高,吸附脱附锂过程中体积变化的改性、速度的提高都有重要的意义。该制备方法工艺简单、绿色环保、成本较低、可以进行大规模生产。
附图说明
图1为本发明Ni1.5Co1.5O4电极材料制备方法的流程图。
图2a和图2b分别为本发明实施例1制备的绿色前驱体粉末和黑色固体粉末的XRD谱图。
图3为本发明实施例1制备的黑色固体粉末的能量色散EDX元素分析图。
图4a、4b、4c和4d分别为本发明实施例1制备的黑色固体粉末在不同倍率下的场发射扫描电镜(FESEM)图。
具体实施方式
请参阅图1,本发明实施例提供一种Ni1.5Co1.5O4电极材料的制备方法,包括:
S1,提供镍盐、钴盐、六亚甲基四胺、乙醇及水,其中,所述乙醇和水的质量比大于1:1小于等于4:1;
S2,将所述镍盐、钴盐、六亚甲基四胺、乙醇及水混合,并使所述镍盐、钴盐、六亚甲基四胺溶解,得到一混合溶液;
S3,使所述混合溶液进行水热反应,得到前驱体;以及
S4,在含氧气氛下进行烧结所述前驱体,得到所述Ni1.5Co1.5O4电极材料,所述Ni1.5Co1.5O4电极材料为由Ni1.5Co1.5O4纳米片自组装形成的多个三维花状结构。
在步骤S1中,所述镍盐可以为硝酸镍、氯化镍、醋酸镍和硫酸镍中的一种或几种。所述钴盐可以为硝酸镍、氯化镍、醋酸钴和硫酸钴中的一种或几种。所述镍盐和所述钴盐的混合比例不限,在任意混合比例下,均可得到镍元素和钴元素摩尔比为1:1的Ni1.5Co1.5O4电极材料。优选地,所述镍盐和所述钴盐中镍元素和钴元素的混合比例可为1:4~4:1。更为优选地,所述镍盐和所述钴盐中镍元素和钴元素的混合比例可为1:2~2:1。在上述比例范围内,可以充分地利用镍盐和钴盐,减少原料的浪费。
在步骤S2中,所述混合溶液为均一透明的澄清溶液。在所述混合溶液中,所述乙醇和水形成一混合溶剂,该混合溶剂为所述水热反应的反应介质。所述镍盐、钴盐和六亚甲基四胺溶解在所述混合溶剂中。所述镍盐和钴盐在所述混合溶剂中溶解后分别形成镍离子和钴离子。
可先将所述乙醇和水混合形成所述混合溶剂,再将所述镍盐、钴盐和六亚甲基四胺同时加入所述混合溶剂中进行混合。也可先将所述镍盐、钴盐、乙醇和水混合,然后再加入所述六亚甲基四胺进行混合。所述混合的方式不限,例如可使用搅拌或者超声的方式混合。
在步骤S3中,所述前驱体为浅绿色粉末,该浅绿色粉末为镍钴氢氧化物。在所述水热反应过程中,所述六亚甲基四胺作为沉淀剂使所述镍离子和所述钴离子转换为镍钴氢氧化物沉淀,且由于所述六亚甲基四胺对所述镍离子和所述钴离子的沉淀能力相近,故在该镍钴氢氧化物中,镍元素和钴元素的摩尔比为0.91~1.09。优选地,所述六亚甲基四胺的质量与所述镍盐及钴盐的质量和的比例为1:1~3:1,该比例范围内的六亚甲基四胺能使所述镍离子和钴离子充分地沉淀。
所述六亚甲基四胺和所述混合溶剂还具有形貌引导剂的作用,在二者的相互配合下,可得到三维花状结构的镍钴氢氧化物,该三维花状结构的镍钴氢氧化物由镍钴氢氧化物纳米片自组装形成。在后续步骤S4的烧结过程中,所述镍钴氢氧化物被氧化为Ni1.5Co1.5O4,而该三维花状结构保持不变,从而得到了三维花状结构的Ni1.5Co1.5O4电极材料。当所述乙醇和水的质量比大于1:1且小于等于4:1时,可以形成形貌规整、尺寸均一的所述三维花状结构的Ni1.5Co1.5O4电极材料,而且该三维花状结构的Ni1.5Co1.5O4电极材料是由几十个Ni1.5Co1.5O4纳米片组成的球形结构,在该球形结构中,每个所述Ni1.5Co1.5O4纳米片均像花瓣一样从该球形结构的中心向外延伸,且多个所述Ni1.5Co1.5O4纳米片部分交叉,该球形结构在各个方向上均具有由所述Ni1.5Co1.5O4纳米片形成的空隙与孔道。该三维花状结构的Ni1.5Co1.5O4电极材料比表面积巨大、吸附能力强、在释放应力的过程中体积变化较小,更有利于锂离子的扩散和电化学反应活性点充分反应,对锂离子存储容量的提高,吸附脱附锂过程中体积变化的改性、速度的提高都有重要的意义。优选地,所述乙醇和水的质量比大于等于2:1且小于等于3:1。优选地,所述六亚甲基四胺的质量与所述乙醇及水的质量和的比例为1:4~1:2。
可将所述混合溶液转移到钢衬聚四氟乙烯反应釜中进行水热反应。所述水热反应的反应温度为80℃~260℃,反应温度过低,所述六亚甲基四胺的解离常数也较低,从而起不到沉淀剂和形貌引导剂的作用,反应温度过高,会使所述六亚甲基四胺发生分解。优选地,所述反应温度为100℃~140℃,这个温度范围更有利于形成形貌均一、一致性好的所述三维花状结构的镍钴氢氧化物。所述水热反应时间大于2小时,以使所述水热反应更充分。优选地,所述水热反应时间为2小时~8小时。
在通过所述步骤S3得到所述前驱体后,可进一步分离提纯该前驱体。所述分离的方式可以为过滤或离心分离。所述分离后的前驱体可进一步进行洗涤。本发明实施例中采用水和无水乙醇分别多次洗涤该前驱体。所述分离提纯后的前驱体可进一步进行干燥以去除溶剂。该干燥可以是真空抽滤或加热干燥。
在步骤S4中,所述烧结温度可为300℃~500℃,所述烧结时间可为2小时~10小时。所述镍钴氢氧化物在所述烧结过程中发生氧化反应形成所述Ni1.5Co1.5O4电极材料。所述Ni1.5Co1.5O4电极材料为黑色粉末。
实施例1
将1mmol的Ni(NO3)2·6H2O和2mmol的Co(NO3)2·6H2O加入到乙醇和水的混合溶剂中,搅拌30分钟,乙醇和水的混合比例为2:1,然后缓慢地加入六亚甲基四胺(HMT),六亚甲基四胺的质量与Ni(NO3)2·6H2O及Co(NO3)2·6H2O质量和的比例为2:1,搅拌30分钟,形成均一的粉红色混合溶液;
将上述的混合溶液转移到钢衬聚四氟乙烯反应釜中,在90℃加热4小时,然后随炉冷却至室温,取出,经过真空抽滤-三次水洗-真空抽滤-三次乙醇洗对所制备的样品进行纯化处理,在60℃下真空干燥12小时,可得到浅绿色前驱体粉末;
将制备的所述绿色前驱体粉末置于马弗炉中,在空气气氛下,以每分钟1℃升温速率升到350℃,保持3小时,然后随炉冷却至室温,可得到黑色固体粉末。
请参阅图2,通过对XRD图谱的分析可知,所述绿色前驱体是钴镍氢氧化物结构,所述黑色固体粉末是尖晶石型钴镍氧化物结构。请参阅图3及下表,通过EDX分析,可以确定Co/Ni原子比是1:1,因此可以推断该尖晶石型钴镍氧化物的结构式是Ni1.5Co1.5O4。请参阅图4,可以看出,所述黑色固体粉末为形貌均一的由Ni1.5Co1.5O4纳米片自组装形成的三维花状结构。
元素 重量百分比(%) 原子数百分比(%)
O 32.94 64.36
Co 34.98 18.55
Ni 32.09 17.09
总量 100.00 100.00
本发明提供的Ni1.5Co1.5O4电极材料的制备方法,选择六亚甲基四胺来对镍离子及钴离子进行共沉淀,可得到镍元素和钴元素摩尔比为1:1的Ni1.5Co1.5O4电极材料,同时选择乙醇水溶液与六亚甲基四胺相互配合来对Ni1.5Co1.5O4电极材料的形貌进行调控,可制备出三维花状结构的Ni1.5Co1.5O4电极材料。该三维花状结构的Ni1.5Co1.5O4电极材料比表面积巨大、吸附能力强、在释放应力的过程中体积变化较小,更有利于锂离子的扩散和电化学反应活性点充分反应,对锂离子存储容量的提高,吸附脱附锂过程中体积变化的改性、速度的提高都有重要的意义。该制备方法工艺简单、绿色环保、成本较低、可以进行大规模生产。
另外,本领域技术人员还可以在本发明精神内做其它变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (9)

  1. 一种Ni1.5Co1.5O4电极材料的制备方法,包括:
    提供镍盐、钴盐、六亚甲基四胺、乙醇及水,其中,所述乙醇和水的质量比大于1:1小于等于4:1;
    将所述镍盐、钴盐、六亚甲基四胺、乙醇及水混合,并使所述镍盐、钴盐、六亚甲基四胺溶解,得到一混合溶液;
    使所述混合溶液进行水热反应,得到前驱体;以及
    在含氧气氛下进行烧结所述前驱体,得到所述Ni1.5Co1.5O4电极材料,所述Ni1.5Co1.5O4电极材料为由Ni1.5Co1.5O4纳米片自组装形成的多个三维花状结构。
  2. 如权利要求1所述的Ni1.5Co1.5O4电极材料的制备方法,其特征在于,所述前驱体为镍钴氢氧化物,所述镍钴氢氧化物中镍元素与钴元素的摩尔比为0.91~1.09。
  3. 如权利要求1所述的Ni1.5Co1.5O4电极材料的制备方法,其特征在于,所述乙醇和水的质量比为2:1~3:1。
  4. 如权利要求1所述的Ni1.5Co1.5O4电极材料的制备方法,其特征在于,所述六亚甲基四胺的质量与所述乙醇和水的质量和的比例为1:4~1:2。
  5. 如权利要求1所述的Ni1.5Co1.5O4电极材料的制备方法,其特征在于,所述水热反应的反应温度为100℃~140℃。
  6. 如权利要求1所述的Ni1.5Co1.5O4电极材料的制备方法,其特征在于,所述六亚甲基四胺与所述镍盐及钴盐质量和的质量比为1:1~3:1。
  7. 如权利要求1所述的Ni1.5Co1.5O4电极材料的制备方法,其特征在于,所述镍盐为硝酸镍、氯化镍、醋酸镍和硫酸镍中的一种或几种,所述钴盐为硝酸钴、氯化钴、醋酸钴和硫酸钴中的一种或几种。
  8. 如权利要求1所述的Ni1.5Co1.5O4电极材料的制备方法,其特征在于,所述烧结温度为300~500℃,所述烧结时间为2~8小时。
  9. 如权利要求1所述的Ni1.5Co1.5O4电极材料的制备方法,其特征在于,每一三维花状结构是由几十个Ni1.5Co1.5O4纳米片组成的球形结构,在该球形结构中,每个所述Ni1.5Co1.5O4纳米片均像花瓣一样从该球形结构的中心向外延伸,且多个所述Ni1.5Co1.5O4纳米片部分交叉,该球形结构在各个方向上均具有由所述Ni1.5Co1.5O4纳米片形成的空隙与孔道。
PCT/CN2015/095405 2014-12-17 2015-11-24 镍钴氧化物电极材料的制备方法 WO2016095669A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410778878.8 2014-12-17
CN201410778878.8A CN104505508A (zh) 2014-12-17 2014-12-17 镍钴氧化物电极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2016095669A1 true WO2016095669A1 (zh) 2016-06-23

Family

ID=52947243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095405 WO2016095669A1 (zh) 2014-12-17 2015-11-24 镍钴氧化物电极材料的制备方法

Country Status (2)

Country Link
CN (1) CN104505508A (zh)
WO (1) WO2016095669A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841812A (zh) * 2019-01-25 2019-06-04 四川师范大学 一种三明治结构的三元钴酸镍锂离子电池负极材料及其制备方法
EP3613825A1 (en) * 2018-08-20 2020-02-26 China University of Petroleum-Beijing Nanocomposite pour point depressant, preparation method and use thereof
CN113113598A (zh) * 2020-12-10 2021-07-13 三峡大学 水系锌基镍钴电池正极材料及其制备方法
CN113725449A (zh) * 2020-05-25 2021-11-30 深圳清华大学研究院 燃料电池催化剂及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505508A (zh) * 2014-12-17 2015-04-08 江苏合志锂硫电池技术有限公司 镍钴氧化物电极材料的制备方法
CN105399149B (zh) * 2015-11-24 2017-09-29 张铭朔 一种超级电容器电极材料的制备方法
CN105399150B (zh) * 2015-11-24 2017-09-29 青岛能迅新能源科技有限公司 一种钴酸镍纳米材料及其制备方法和应用
CN105399152B (zh) * 2015-11-24 2017-10-03 青岛能迅新能源科技有限公司 一种钴酸镍纳米材料的溶剂热制备方法
CN105399151B (zh) * 2015-11-24 2018-01-12 青岛能迅新能源科技有限公司 一种钴酸镍纳米材料的制备方法
CN106450300B (zh) * 2016-11-01 2019-05-03 中南大学 一种具有花状结构的焦磷酸铁钠材料及其制备方法和应用
CN107522241A (zh) * 2017-08-20 2017-12-29 桂林理工大学 一种镍钴双金属氢氧化物的制备方法及其应用
CN108598502A (zh) * 2018-03-23 2018-09-28 广东工业大学 一种Ni-Co氧化物金属空气电池电极催化剂及其制备方法和应用
CN108470628B (zh) * 2018-04-17 2019-07-19 吉林大学 一种复合电极材料及其制备方法
CN109167074A (zh) * 2018-08-08 2019-01-08 东华大学 中空锰掺杂氧化钴镍包覆的氮掺杂碳纳米复合材料及制备
CN115849461A (zh) * 2022-11-30 2023-03-28 陕西科技大学 一种空心笼状镍钴双金属氧化物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181200A1 (en) * 2009-01-22 2010-07-22 Samsung Electronics Co., Ltd. Transition metal/carbon nanotube composite and method of preparing the same
CN102465341A (zh) * 2010-11-17 2012-05-23 中国科学院大连化学物理研究所 微米级花状复合金属氧化物的制备方法
CN104143450A (zh) * 2014-07-10 2014-11-12 东华大学 导电聚合物包覆钴酸镍复合电极材料的制备方法
CN104505508A (zh) * 2014-12-17 2015-04-08 江苏合志锂硫电池技术有限公司 镍钴氧化物电极材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659192A (zh) * 2012-04-27 2012-09-12 浙江大学 四氧化三钴负极材料、非晶碳包覆四氧化三钴负极材料及其制备方法和应用
CN104085858B (zh) * 2014-06-27 2017-01-04 江苏华东锂电技术研究院有限公司 金属氧化物的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181200A1 (en) * 2009-01-22 2010-07-22 Samsung Electronics Co., Ltd. Transition metal/carbon nanotube composite and method of preparing the same
CN102465341A (zh) * 2010-11-17 2012-05-23 中国科学院大连化学物理研究所 微米级花状复合金属氧化物的制备方法
CN104143450A (zh) * 2014-07-10 2014-11-12 东华大学 导电聚合物包覆钴酸镍复合电极材料的制备方法
CN104505508A (zh) * 2014-12-17 2015-04-08 江苏合志锂硫电池技术有限公司 镍钴氧化物电极材料的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613825A1 (en) * 2018-08-20 2020-02-26 China University of Petroleum-Beijing Nanocomposite pour point depressant, preparation method and use thereof
CN109841812A (zh) * 2019-01-25 2019-06-04 四川师范大学 一种三明治结构的三元钴酸镍锂离子电池负极材料及其制备方法
CN109841812B (zh) * 2019-01-25 2022-05-24 四川师范大学 一种三明治结构的三元钴酸镍锂离子电池负极材料及其制备方法
CN113725449A (zh) * 2020-05-25 2021-11-30 深圳清华大学研究院 燃料电池催化剂及其制备方法和应用
CN113725449B (zh) * 2020-05-25 2022-12-16 深圳清华大学研究院 燃料电池催化剂及其制备方法和应用
CN113113598A (zh) * 2020-12-10 2021-07-13 三峡大学 水系锌基镍钴电池正极材料及其制备方法
CN113113598B (zh) * 2020-12-10 2024-03-15 三峡大学 水系锌基镍钴电池正极材料及其制备方法

Also Published As

Publication number Publication date
CN104505508A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2016095669A1 (zh) 镍钴氧化物电极材料的制备方法
WO2016029841A1 (zh) 钴酸镍介孔微球及其制备方法
CN109208030B (zh) 一种金属氢氧化物-金属有机框架复合材料及其制备方法
US20200147591A1 (en) Preparation method for hollow molybdate composite microspheres and their application
CN107994225B (zh) 一种多孔硅碳复合负极材料及其制备方法、锂离子电池
WO2019109831A1 (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
CN108550821B (zh) 一种基于Ni-MOF的核壳结构磷化镍/碳微球的制备方法
WO2016078509A1 (zh) 应用于电化学储能装置的电极及其制备方法
CN109244427B (zh) 碳包覆硫化锌负载石墨烯作为钾离子电池负极的制备方法
CN108806998B (zh) 溶剂热法合成基于ZIF-8的三元复合ZnO/ZnCo2O4/NiO的方法及其应用
US10131544B2 (en) Graphene/porous iron oxide nanorod composite and manufacturing method thereof
CN106975489B (zh) 一种氧化镍原位包覆石墨烯纳米复合材料的制备方法
CN109970039B (zh) 一种二元过渡金属纳米颗粒原位嵌入多孔氮掺杂碳球及其制备方法
CN109264787B (zh) 一种ZnFe2O4立方块体结构的制备方法及所得产品
CN103464784A (zh) 一种碳负载纳米镍的制备方法
TW201609559A (zh) 鎳鋰金屬複合氧化物粉體及其製造方法、鋰離子電池用正極活性物質、鋰離子電池用正極、及鋰離子電池
CN109569670B (zh) 一种BiOBr/黑磷烯异质结纳米复合材料的制备方法
CN113697863B (zh) 一种优异电磁波吸收性能的四氧化三铁/碳纳米片复合材料及其制备方法和应用
CN109559902B (zh) 一种金属有机框架衍生钴镍硼硫化物材料及其制备方法与应用
CN105129857A (zh) 一种花状氧化钨纳米材料及其制备方法
CN108996557B (zh) 一种空心球结构氧化镍/氧化铜复合纳米材料及其制备方法
CN111569907A (zh) 双金属复合材料及其制备方法和应用
CN106699550B (zh) 纳米Cu-CuBTC型金属有机骨架材料的制备方法
CN111569914A (zh) 双金属磷化物复合材料及其制备方法和应用
CN113501552A (zh) MOFs衍生的中空多面体Co3S4及制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869177

Country of ref document: EP

Kind code of ref document: A1