WO2016093207A1 - 既存建物の補強構造体 - Google Patents

既存建物の補強構造体 Download PDF

Info

Publication number
WO2016093207A1
WO2016093207A1 PCT/JP2015/084347 JP2015084347W WO2016093207A1 WO 2016093207 A1 WO2016093207 A1 WO 2016093207A1 JP 2015084347 W JP2015084347 W JP 2015084347W WO 2016093207 A1 WO2016093207 A1 WO 2016093207A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
existing building
reinforcing
wall surface
vertical
Prior art date
Application number
PCT/JP2015/084347
Other languages
English (en)
French (fr)
Inventor
克尚 小西
Original Assignee
新日鉄住金エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金エンジニアリング株式会社 filed Critical 新日鉄住金エンジニアリング株式会社
Priority to EP15866532.3A priority Critical patent/EP3088635B1/en
Priority to US15/115,801 priority patent/US9816284B2/en
Priority to CN201580006831.2A priority patent/CN105940167B/zh
Publication of WO2016093207A1 publication Critical patent/WO2016093207A1/ja
Priority to PH12016501514A priority patent/PH12016501514B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/027Preventive constructional measures against earthquake damage in existing buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H15/00Tents or canopies, in general
    • E04H15/32Parts, components, construction details, accessories, interior equipment, specially adapted for tents, e.g. guy-line equipment, skirts, thresholds
    • E04H15/62Pegs, stakes or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0235Anti-seismic devices with hydraulic or pneumatic damping
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/024Structures with steel columns and beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/06Material constitution of slabs, sheets or the like of metal

Definitions

  • the present invention relates to a reinforcing structure for an existing building.
  • the mainstream method is to perform seismic reinforcement on the outer wall of an existing building, which can be retrofitted while using the existing building.
  • the method of directly attaching the framed steel brace and the method of expanding the framed braced frame A typical example can be given.
  • the framed steel brace direct mounting method is a method in which a framed steel brace with a built-in steel brace is directly attached to the outer wall of an existing building. For this reason, the outer wall surface provided with the overhanging portion such as a balcony, a fence, or a louver interferes with the steel brace and the overhanging portion, and is not suitable for application to the outer wall surface provided with the overhanging portion.
  • the steel brace frame expansion method with a frame is a method of constructing a foundation unique to a steel brace frame on the side of the outer wall to be reinforced in an existing building, and sequentially adding a steel brace frame on this foundation. It is.
  • the steel frame brace frame expansion construction method with a frame is demonstrated in detail.
  • a foundation K having an underground beam (not shown) is added to the left and right outer wall surfaces in the longitudinal direction of an existing building B such as a condominium.
  • an existing building B such as a condominium.
  • the steel brace frame H is constructed on the foundation K up to the top floor, and the outer column of the existing building B and the outer beam of each floor are joined with the steel brace frame K to make it earthquake resistant. Reinforcing.
  • FIG. 12 shows various cross-sectional forces generated at the joint between the steel brace frame H and the existing building B.
  • M eh is the bending moment of the joint
  • Q uh is the shearing force of the joint
  • Ne is the tensile force of the joint
  • M eh Q uh ⁇ e h
  • N e M eh / L
  • Q F is the shear force of the additional frame
  • Q uh , e h is the distance between the steel brace core and the beam end
  • L is the width when the steel brace frame H is viewed from the front.
  • the expanded steel brace frame H and the existing building B transmit only the horizontal shearing force, and the vertical shearing force is transmitted to the expanded foundation K by the vertical members of the expanded steel brace frame H.
  • Expansion of foundation K is essential. Furthermore, so that the tensile force N e with the eccentric bending moment occurs in the joint between the steel braced frames H and existing buildings B.
  • the steel braced frame H that rises from the foundation K and rises from the foundation K, that is, actually unnecessary. It is necessary to construct a steel brace frame H including a steel brace for a lower floor. Therefore, an uneconomic reinforcement structure is unavoidable, and when the construction of the foundation K is increased, it is difficult to apply this reinforcement measure if the construction is difficult due to the necessity of satisfying the building limit.
  • a stud-type damper D is arranged between outer beams OB on arbitrary upper and lower floors of an existing building as shown in FIG.
  • the anchor bolt A is fixed to the outer beam OB through the base plate P, but the large pulling force X accompanying the bending moment generated in the same manner as in FIGS. Therefore, in order to resist the pulling force X, a tension member TB such as a PC steel rod is provided by providing a through hole in the outer beam OB.
  • the tension material TB is forced to be joined.
  • the outer beam OB may be increased in order to resist the pulling force X with the tendon material TB.
  • Patent Documents 1 and 2 can be cited as conventional published technologies.
  • Patent Document 1 when installing a seismic reinforcement frame including a reinforcing column and a reinforcing steel beam outside an existing building, the existing external beam and the reinforcing column are not joined to each other. It joins steel beams.
  • the horizontal force at the time of the earthquake is borne by the seismic reinforcement framework, and the existing building can be seismically reinforced, but the reinforcement pillar rises from the foundation, and the foundation unique to the seismic reinforcement framework.
  • the above-mentioned problem is inherent because is essential.
  • a pin support portion is formed at a column beam joint portion on the outer surface of an existing building, and a column beam joint portion is formed by an outer shell beam frame and a pin support portion that are continuous in the beam direction.
  • the outer shell reinforcement frame consisting of the outer shell pillar frame extending upward and downward from each layer is supported by the pin support portion, and the gap between the outer pillar columns extending upward or downward is connected to reinforce the lattice-like outer shell.
  • the frame is constructed on the outside surface of the existing building.
  • this outer shell reinforcing structure although it is not necessary to add a foundation for the outer shell reinforcing structure, it is a structure in which a pin support portion is simply formed at the column beam joint on the outer surface of the existing building. Thus, it is unclear whether or not the strength of the joint portion can resist this pulling force when a large pulling force acts on the pin support portion.
  • the present invention has been made in view of the problems described above, and in the case of seismic reinforcement of the outer wall surface of an existing building having an overhanging portion on the outer wall surface, it is not necessary to add a foundation unique to the reinforcing structure, and any arbitrary existing building It is an object of the present invention to provide a reinforcing structure for an existing building that can be seismically reinforced only in the floor of the existing building and that is unlikely to generate a large pulling force due to an eccentric bending moment that can act on the seismic reinforcing structure.
  • the reinforcement structure for an existing building is limited to a frame member that is installed so as to surround the overhanging portion on the outer wall surface of the existing building having the overhanging portion on the outer wall surface.
  • a reinforcing frame having a seismic member interposed therebetween, and a vertical truss member and a horizontal truss member connecting the reinforcing frame and the outer wall surface are provided.
  • the reinforcing structure for an existing building is installed so as to surround an overhang provided on the outer wall surface of the existing building, and the reinforcing frame having a vibration control member is attached to the vertical truss member and the horizontal truss with respect to the outer wall surface. They are connected by materials. Since the reinforcing frame is installed so as to surround the overhanging portion, the view from the window of the existing building is not hindered. Furthermore, by connecting the reinforcement frame and the outer wall surface via the horizontal truss material and the vertical truss material, the horizontal shearing force acting on the reinforcement frame is transmitted to the existing building via the horizontal truss material and acts on the reinforcement frame.
  • the vertical force accompanying the eccentric bending moment can be transmitted to the existing building via the vertical truss material. Therefore, it is possible to perform seismic reinforcement only at an arbitrary level while eliminating the foundations specific to the reinforcing structure.
  • the outer wall surfaces of all the floors are not equipped with a foundation.
  • the reinforcing structure can be installed only on the wall surface.
  • existing buildings include various buildings such as existing condominiums, buildings, schools, national and local government buildings, public buildings such as station buildings, airports, and water and sewage buildings.
  • the “overhanging part” includes anything that protrudes outward from the outer wall surface of an existing building, such as a balcony, a fence, and a louver.
  • the phrase “installed so as to surround the overhanging portion” means that the reinforcing frame is installed at a position in front of the overhanging portion in addition to being installed around the overhanging portion. is there. Further, there is a form in which the vertical member of the reinforcing frame is present in the middle of the overhanging part, that is, there are vertical members constituting the reinforcing frame on the left and right ends of the overhanging part such as a balcony, and further in the middle of the overhanging part. Further, a form in which a longitudinal member is present is also included. In any form, for example, the reinforcing frame is installed so as not to block the view from a window that may exist behind the overhanging portion.
  • the vertical member of the reinforcing frame exists in the middle of the overhanging portion, if there is no window behind the vertical member, and there is a wall or pillar of the building, the vertical member is removed from the window. Will not obstruct the view.
  • the reinforcing frame is composed of a plurality of steel materials and the like.
  • a steel frame is assembled in a lattice shape to form a reinforcing frame, and a mode in which a vibration control member is interposed between vertical members constituting the reinforcing frame is mentioned. it can.
  • examples of “damping members” include stud-type damping dampers (steel-based hysteresis dampers, high-damping rubber-based viscoelastic dampers, fluid-based viscous dampers), braces, and braces with dampers. it can.
  • a stud-type seismic damper when a stud-type seismic damper is applied, the bending moment generated in the reinforcing frame is not transmitted at the connection point with the outer wall of the existing building via horizontal truss or vertical truss. There is no local pulling force associated with. Therefore, it is not necessary to install tension materials (PC steel bars, PC steel stranded wires, etc.) against such pulling forces in the through holes of existing or additional outer beams.
  • the horizontal truss material and the vertical truss material may be directly joined to the outer wall surface of the existing building via an anchor (post-installed anchor) or the like on the outer wall surface.
  • a connecting steel material or the like may be attached in advance, and a horizontal truss material or the like may be joined to the connecting steel material.
  • the horizontal truss material and the vertical truss material can be formed from steel materials having desired rigidity, such as L-shaped steel materials, C-shaped steel materials, square pipes, H-shaped steel materials, and the like.
  • another embodiment of the reinforcing structure for an existing building comprises a frame member installed so as to surround the overhanging portion on the outer wall surface of the existing building having an overhanging portion on the outer wall surface.
  • a connecting frame ; a reinforcing frame connected to the connecting frame and having a damping member interposed between the frame members; and a vertical truss member and a horizontal truss member connecting the connecting frame and the reinforcing frame.
  • the reinforcement structure according to the present embodiment is a form in which a connection frame is interposed between an outer wall surface of an existing building and the reinforcement frame.
  • the connection frame is fixed to the outer wall surface of the existing building, and the connection frame and the reinforcement frame are horizontal. It is joined via a truss material and a vertical truss material.
  • the reinforcement frame having a vibration control member installed so as to surround the overhang portion provided on the outer wall surface of the existing building.
  • FIG. 4 is an arrow view in the IV direction of FIG. 3.
  • FIG. 4 is an arrow view in the V direction of FIG. 3.
  • FIG. 4 is an arrow view in the VI direction of FIG. 3.
  • Embodiment 2 of a reinforcement structure It is the figure which expanded and showed a part of Embodiment 2 of a reinforcement structure. It is the schematic diagram explaining the conventional steel frame braced frame expansion construction method. It is the schematic diagram explaining the cross-sectional force which arises in the steel brace frame with a frame. It is the schematic diagram explaining the reinforcement structure by the conventional stud type damper.
  • the existing building in the illustrated example illustrates a condominium, but the existing building is not limited to a condominium, but covers various buildings such as buildings and buildings of various public facilities (and public transportation facilities).
  • the example of illustration is a form which installs a reinforcement structure in the outer wall surface of all the dwelling units from the middle floor of the existing building to an upper floor, you may install a reinforcement structure in the whole surface of the outer wall surface of the existing building And you may install a reinforcement structure only with respect to only the arbitrary hierarchies, and also only the arbitrary residential units of an arbitrary hierarchy. Even when a reinforcing structure is installed on the entire outer wall surface of an existing building, the reinforcing structure of the present invention does not require an additional foundation.
  • FIG. 1 is a schematic diagram illustrating a situation in which a reinforcing structure is installed on the outer wall surface of an existing building, according to Embodiment 1 of the reinforcing structure of the present invention, and FIG. 2 is installed on the outer wall surface of the existing building.
  • FIG. 3 is a schematic diagram illustrating a first embodiment of a reinforcing structure, and FIG. 3 is an enlarged view of a part of the first embodiment of the reinforcing structure.
  • 4 to 6 are an arrow view in the IV direction, an arrow view in the V direction, and an arrow view in the VI direction in FIG. 3, respectively.
  • the existing building B is a multi-story condominium having a plurality of residential units on each floor, each residential unit having a balcony T, and a window Wi on the back side of the balcony T ( (See FIG. 6).
  • the seismic reinforcement form in the illustrated example does not require the seismic reinforcement of the lower floor in the existing building B, and performs the seismic reinforcement from the middle floor to the upper floor.
  • 11 and a reinforcing frame 10 composed of a vibration control member 12 interposed between vertical members 11a are manufactured in advance and transported to the site.
  • the wall Wa is present at the center position of each residential unit, and the vertical member 11 a is disposed at the front position of the wall Wa. Therefore, the view from the window Wi of the residential unit is not blocked.
  • channel may be sufficient.
  • the reinforcing frame 10 is disposed so as to surround the balcony T of each residential unit, and is disposed at a position that does not block the view from the window Wi.
  • the reinforcing frame 10 comprises a frame material 11 by assembling steel materials such as H-shaped steel and I-shaped steel in a lattice shape, and the damping member 12 is interposed in the middle of the vertical material 11a constituting the frame material 11. The whole is composed.
  • a stud-type damping damper (steel-based hysteresis damper, high-damping rubber-based viscoelastic damper, fluid-based viscous damper) is applied.
  • connection plate 40 when installing the reinforcing frame 10 in the existing building B, first, the connection plate 40 is installed in a suitable place on the outer wall surface of the existing building B.
  • the connection plate 40 can be installed on the outer wall surface with, for example, an adhesive post-installed anchor.
  • connection plate 40 When the connection plate 40 is installed on the outer wall surface of the existing building B, the connection plate 40 is configured such that the opening (the opening formed by the vertical members 11a and 11b) that surrounds the reinforcing frame 10 surrounds the balcony T.
  • the reinforcing structure 100 is constructed on the outer wall surface of the existing building B by being positioned in the vicinity and connecting the connection plate 40 and the reinforcing frame 10 to each other via the horizontal truss member 20 and the vertical truss member 30. That is, the reinforcing structure 100 includes the reinforcing frame 10, the horizontal truss member 20, and the vertical truss member 30.
  • Both the horizontal truss member 20 and the vertical truss member 30 can be formed from steel materials such as L-shaped steel, C-shaped steel, and square pipes, but both the horizontal truss member 20 and the vertical truss member 30 shown in the drawing are assembled with two L-shaped members. A T-shaped cross section is applied.
  • connection plate 40 installed on the outer wall surface of the existing building B is provided with a steel connection piece 60 rising from the connection plate 40, and the frame material 11 of the reinforcing frame 10 is also provided.
  • a steel connection piece 50 is provided.
  • connection structure is formed between the outer wall surface of the existing building B and the reinforcing frame 10 via the material 20 and the vertical truss material 30.
  • the reinforcing structure 100 shown in the figure is installed so as to surround an overhanging portion T such as a balcony provided on the outer wall surface of an existing building B, and the reinforcing frame 10 having the vibration control member 12 is perpendicular to the outer wall surface. Since the reinforcing frame 10 is installed so as to surround the balcony T, the view from the windows of the existing building B is not hindered. Further, by connecting the reinforcing frame 10 and the outer wall surface via the horizontal truss member 20 and the vertical truss member 30, the horizontal shearing force acting on the reinforcing frame 10 is transmitted to the existing building B via the horizontal truss member 20.
  • the vertical force accompanying the eccentric bending moment acting on the reinforcing frame 10 can be transmitted to the existing building B via the vertical truss member 30. Therefore, it is possible to perform seismic reinforcement only at an arbitrary level while eliminating the need for an additional foundation unique to the reinforcement structure 100, and the reinforcement structure 100 is excellent in construction efficiency and economy.
  • FIG. 7 (a) is a shear force diagram in the reinforcing frame
  • FIG. 7 (b) is a bending moment diagram in the reinforcing frame
  • FIG. 7 (c) is a diagram of each member constituting the reinforcing structure.
  • FIG. 7D is an axial force diagram
  • FIG. 7D is a shear force diagram at the joint between the reinforcing structure and the outer wall surface of the existing building.
  • the fulcrum reaction force due to the truss axial force constituting the reinforcing frame 10 shown in FIG. 7D is used as a design load at the connection point between the existing building B and the reinforcing structure 100.
  • the bending moment is not transmitted, and the tensile force and shearing force are transmitted. And since this shear force acts only in the axial direction of the structural member of the reinforcement frame 10, the design of the connection location of the structural members which comprise a reinforcement frame becomes easy.
  • FIG. 8 is a schematic diagram illustrating a situation in which the reinforcing structure is installed on the outer wall surface of the existing building in the second embodiment of the reinforcing structure of the present invention
  • FIG. 10 is a schematic diagram illustrating a second embodiment of the installed reinforcing structure
  • FIG. 10 is an enlarged view of a part of the second embodiment of the reinforcing structure.
  • a steel connection frame 40A is attached to an outer wall surface of an existing building B with an adhesive post-installed anchor or the like, and then the reinforcement frame 10 and the connection frame 40A are connected to the horizontal truss member 20 and the vertical truss. It is configured to be connected by a material 30.
  • connection frame 40A As shown in the figure, in the connection frame 40A, the lower floor portion that does not require seismic reinforcement has only vertical members.
  • connection plates 40 instead of attaching a large number of connection plates 40 to the outer wall surface of the existing building B as in the reinforcing structure 100, the connecting frame 40A assembled in advance is attached to the outer wall surface.
  • the reinforcement structure 100A can be constructed.
  • the cross-sectional force generated in the reinforcing frame 10 is the same as those shown in FIG.
  • the fulcrum reaction force due to the truss axial force that constitutes the reinforcing frame 10 is used as a design load at the connection point between the existing building B and the reinforcing structure 100A.
  • the bending moment is not transmitted, and the tensile force and shear force are transmitted.
  • SYMBOLS 10 Reinforcement frame, 11 ... Frame member, 11a ... Vertical member, 11b ... Cross member, 11c ... Bundling member, 12 ... Damping member (inter-column type damper), 20 ... Horizontal truss member, 30 ... Vertical truss member, 40 ... Connection plate, 40A ... connection frame, 50, 60 ... connection piece, 100, 100A ... reinforcing structure, B ... existing building, T ... balcony (overhang)

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

 外壁面に張出し部を備える既存建物の該外壁面の耐震補強に際し、補強構造体に固有の基礎の増設を不要とし、既存建物における任意の階層のみを耐震補強することができ、さらには、耐震補強構造に作用し得る偏心曲げモーメントに伴う大きな引抜力が生じ難い既存建物の補強構造体を提供する。 外壁面に張出し部Tを備える既存建物Bの外壁面において、張出し部Tを包囲するようにして設置される、枠材11に制震部材12が介層された補強フレーム10と、補強フレーム10と外壁面を繋ぐ鉛直トラス材30および水平トラス材20とを備えている既存建物の補強構造体100である。

Description

既存建物の補強構造体
 本発明は、既存建物の補強構造体に関するものである。
 ビルやマンションといった既存建物の耐震補強方法として、建物の内部において柱や梁を補強したり、耐震壁を増設するといった方法があるが、この補強方法は建物内部での工事を必須とすることから、工事期間中は建物を供用することができず、好ましい補強方法とは言い難い。
 そこで、既存建物を供用しながらその耐震補強を可能とした、既存建物の外壁面に耐震補強をおこなう方法が主流となっており、枠付き鉄骨ブレース直付け工法と枠付き鉄骨ブレース架構増設工法をその代表例として挙げることができる。
 枠付き鉄骨ブレース直付け工法は、鉄骨ブレースを内蔵した枠付き鉄骨ブレースを既存建物の外壁面に直接取り付ける方法である。そのため、バルコニーや庇、ルーバー等の張出し部が設けられた外壁面においては、鉄骨ブレースと張出し部が干渉することから、張出し部を備えた外壁面への適用には不適である。
 一方、枠付き鉄骨ブレース架構増設工法は、既存建物のうち、補強したい外壁面の側方に鉄骨ブレース架構に固有の基礎を施工し、この基礎の上に鉄骨ブレース架構を順次増設していくものである。ここで、図11を参照して枠付き鉄骨ブレース架構増設工法を詳細に説明する。
 図11で示すように、マンション等の既存建物Bの長手方向の左右の外壁面に対し、まず、不図示の地中梁を備えた基礎Kを増設し、この地中梁を既存建物Bの地中基礎と接続して一体とした後、基礎Kの上に鉄骨ブレース架構Hを最上階まで施工し、既存建物Bの外柱や各階の外梁等と鉄骨ブレース架構Kを接合して耐震補強をおこなうものである。
 ここで、図12には、鉄骨ブレース架構Hと既存建物Bの接合部において生じる各種の断面力を示している。
 図12において、Mehは接合部の曲げモーメント、Quhは接合部のせん断力、Neは接合部の引張力であり、Meh =Quh×eh、Ne=Meh/L (QFは増設架構のせん断力でQuh、ehは鉄骨ブレース芯と梁端間距離、Lは鉄骨ブレース架構Hを正面から見た際の幅)である。
 このように、増設された鉄骨ブレース架構Hと既存建物Bとは水平せん断力のみ伝達し、鉛直せん断力は増設された鉄骨ブレース架構Hの縦材によって増設された基礎Kに伝達させることから、基礎Kの増設は必須となる。さらに、鉄骨ブレース架構Hと既存建物Bとの接合部には偏心曲げモーメントに伴う引張力Neが生じることになる。
 このように基礎Kの増設を必須とすることから、仮に中層階や上層階にのみ耐震補強をおこないたい場合でも、基礎Kを増設し、基礎Kから立ち上がる鉄骨ブレース架構H、すなわち実際には不要な下層階用の鉄骨ブレースを含む鉄骨ブレース架構Hを施工する必要がある。したがって、不経済な補強構造が余儀なくされ、また、基礎Kの増設に際しては建築限界を満たす必要性からその施工が困難な場合はこの補強対策は適用できなくなる。
 また、鉄骨ブレース架構Hに代わって、図13で示すように既存建物の任意の上下階の外梁OB間に間柱型ダンパーDを配設する耐震補強構造もある。間柱型ダンパーDの配設に当たってはベースプレートPを介し、アンカーボルトAで外梁OBに固定されるが、図11,12と同様に発生する曲げモーメントに伴う大きな引抜力XがアンカーボルトAに作用することから(反対側のアンカーボルトAには押込力Xが作用)、この引抜力Xに抗するべく、外梁OB内に貫通孔を設けてPC鋼棒等の緊張材TBを配設し、緊張材TBを締め付けて接合することが余儀なくされる。なお、外梁OBが存在しない場合は、緊張材TBにて引抜力Xに抗するべく、外梁OBの増設が余儀なくされ得る。
 ここで、従来の公開技術として、特許文献1,2を挙げることができる。特許文献1には、補強用柱と補強用鉄骨梁を備えた耐震補強用骨組を既存建物の外側に設置するに当たり、既存外部柱と補強用柱とを接合せず、既存外部梁と補強用鉄骨梁を接合するものである。この構成により、地震時の水平力を耐震補強用骨組に負担させ、もって既存建物を耐震補強できるというものであるが、補強用柱は基礎から立ち上がるものであり、耐震補強用骨組に固有の基礎が必須であることから既述の課題を内在するものである。
 一方、特許文献2には、既存建物の外面の柱梁接合部にピン支持部を形成し、梁方向に連続する外殻梁フレームとピン支持部とで柱梁接合部を形成するように、各層からそれぞれ上方と下方に延びた外殻柱フレームからなる外殻補強フレームをピン支持部で支持し、上方あるいは下方に延びた外殻柱フレーム間の隙間を連結させて格子状の外殻補強フレームを既存建物の外側面に構築するものである。
 この外殻補強構造によれば、当該外殻補強構造用の基礎の増設は不要であるものの、既存建物の外面の柱梁接合部にピン支持部を形成しただけの構造であることから、上記するようにピン支持部に大きな引抜力が作用した際に接合部の強度がこの引抜力に抗し得るか否かは不明である。
特開2009-249851号公報 特開2009-97165号公報
 本発明は上記する問題に鑑みてなされたものであり、外壁面に張出し部を備える既存建物の該外壁面の耐震補強に際し、補強構造体に固有の基礎の増設を不要とし、既存建物における任意の階層のみを耐震補強することができ、さらには、耐震補強構造に作用し得る偏心曲げモーメントに伴う大きな引抜力が生じ難い既存建物の補強構造体を提供することを目的としている。
 前記目的を達成すべく、本発明による既存建物の補強構造体は、外壁面に張出し部を備える既存建物の該外壁面において、該張出し部を包囲するようにして設置される、枠材に制震部材が介層された補強フレームと、前記補強フレームと前記外壁面を繋ぐ鉛直トラス材および水平トラス材とを備えているものである。
 本発明の既存建物の補強構造体は、既存建物の外壁面に設けられた張出し部を包囲するようにして設置され、制震部材を有する補強フレームが外壁面に対して鉛直トラス材および水平トラス材にて繋がれたものである。張出し部を包囲するようにして補強フレームが設置されることから、既存建物の窓からの視界が妨げられることはない。さらに、水平トラス材と鉛直トラス材を介して補強フレームと外壁面の接続を図ることにより、補強フレームに作用する水平せん断力は水平トラス材を介して既存建物に伝達させ、補強フレームに作用する偏心曲げモーメントに伴う鉛直力は鉛直トラス材を介して既存建物に伝達させることができる。したがって、補強構造体に固有の基礎を不要としながら、任意の階層のみの耐震補強をおこなうことができ、たとえば、10階建ての既存建物において、基礎を具備することなくその全ての階の外壁面に補強構造体を設置できることは勿論のこと、1~5階までの外壁面には何らの補強構造体も存在させず、耐震補強したい6階の外壁面にのみ、もしくは6~10階の外壁面にのみ補強構造体を設置することができる。
 ここで、「既存建物」とは、既存のマンション、ビル、学校、国や地方の行政公舎、駅舎や空港、上下水道建屋といった公共施設など、多様な建物が包含される。
 また、「張出し部」とは、バルコニーや庇、ルーバーなど、既存建物の外壁面から外側へ張り出しているもの全般を包含するものである。
 また、「張出し部を包囲するようにして設置される」とは、補強フレームが張出し部の周囲に設置されることの他にも、張出し部よりも前方位置に設置されることも含む意味である。また、さらに、張出し部の途中位置に補強フレームの縦材が存在する形態、すなわち、バルコニー等の張出し部の左右端にそれぞれ補強フレームを構成する縦材が存在し、さらに張出し部の途中位置にも縦材が存在する形態も包含される。いずれの形態であれ、たとえば張出し部の後方に存在し得る窓からの視界を補強フレームが遮らないようにして設置される。したがって、張出し部の途中位置に補強フレームの縦材が存在する形態であっても、当該縦材の後方に窓が存在せず、建物の壁や柱が存在する場合は当該縦材が窓からの視界を遮ることがない。
 補強フレームは複数の鋼材等から構成され、たとえば鋼材が格子状に組み付けられて補強フレームを構成し、この補強フレームを構成する縦材の間に制震部材が介在している形態を挙げることができる。
 ここで、「制震部材」として、間柱型の制震ダンパー(鋼材系の履歴系ダンパー、高減衰ゴム系の粘弾性ダンパー、流体系の粘性ダンパー)、ブレース、ダンパー付きブレースなどを挙げることができる。特に間柱型の制震ダンパーを適用する場合は、水平トラス材や鉛直トラス材を介した既存建物の外壁面との接続箇所において、補強フレームに生じる曲げモーメントは伝達されないため、この曲げモーメントの伝達に伴う局所的な引抜力は生じない。そのため、このような引抜力に抗するための緊張材(PC鋼棒、PC鋼より線等)を既存もしくは増設の外梁等の貫通孔に設置する必要はない。
 本実施の形態の補強構造体において、水平トラス材や鉛直トラス材は既存建物の外壁面に対し、アンカー(接着系の後施工アンカー)等を介して直接接合してもよいし、外壁面に接続用鋼材等を予め取り付けておき、この接続用鋼材に水平トラス材等を接合してもよい。
 また、水平トラス材や鉛直トラス材は、L型鋼材やC型鋼材、角パイプ、H型鋼材等、所望の剛性を具備する鋼材等から形成できる。
 さらに、本発明による既存建物の補強構造体の他の実施の形態は、外壁面に張出し部を備える既存建物の該外壁面において、該張出し部を包囲するようにして設置される枠材からなる接続フレームと、前記接続フレームに接続される、枠材に制震部材が介層された補強フレームと、前記接続フレームと前記補強フレームを繋ぐ鉛直トラス材および水平トラス材と、を備えている。
 本実施の形態の補強構造体は、既存建物の外壁面と補強フレームの間に接続フレームが介在する形態であり、既存建物の外壁面に接続フレームが固定され、この接続フレームと補強フレームが水平トラス材と鉛直トラス材を介して接合されるものである。
 以上の説明から理解できるように、本発明の既存建物の補強構造体によれば、既存建物の外壁面に設けられた張出し部を包囲するようにして設置される、制震部材を有する補強フレームが外壁面に対して鉛直トラス材および水平トラス材にて繋がれた構成を具備することにより、既存建物の窓からの視界を妨げないようにすることができ、補強構造体に固有の基礎の増設を不要とし、既存建物における任意の階層のみを耐震補強することができ、さらには、補強構造体に生じ得る偏心曲げモーメントに伴う大きな引抜力を発生させないようにすることができる。
本発明の補強構造体の実施の形態1に関し、既存建物の外壁面に補強構造体が設置される状況を説明した模式図である。 既存建物の外壁面に設置された補強構造体の実施の形態1を説明した模式図である。 補強構造体の実施の形態1の一部を拡大して示した図である。 図3のIV方向の矢視図である。 図3のV方向の矢視図である。 図3のVI方向の矢視図である。 補強構造体に生じる断面力を説明した図であって、(a)は補強フレームにおけるせん断力図であり、(b)は補強フレームにおける曲げモーメント図であり、(c)は補強構造体を構成する各部材の軸力図であり、(d)は補強構造体と既存建物の外壁面の接合部におけるせん断力図である。 本発明の補強構造体の実施の形態2に関し、既存建物の外壁面に補強構造体が設置される状況を説明した模式図である。 既存建物の外壁面に設置された補強構造体の実施の形態2を説明した模式図である。 補強構造体の実施の形態2の一部を拡大して示した図である。 従来の枠付き鉄骨ブレース架構増設工法を説明した模式図である。 枠付き鉄骨ブレース架構に生じる断面力を説明した模式図である。 従来の間柱型ダンパーによる補強構造を説明した模式図である。
 以下、図面を参照して本発明の既存建物の補強構造体の実施の形態を説明する。なお、図示例の既存建物はマンションを例示しているが、既存建物はマンション以外にも、ビルや各種の公共施設(および公共交通施設)の建屋など、多様な建物が対象である。また、図示例は既存建物の中層階から上層階までの全居住戸の外壁面に補強構造体を設置する形態であるが、既存建物の外壁面の全面に補強構造体を設置してもよいし、任意の階層のみ、さらには任意の階層の任意の居住戸のみに対して補強構造体を設置してもよい。なお、既存建物の外壁面の全面に補強構造体を設置する場合であっても、本発明の補強構造体は固有の基礎の増設を必要としないものである。
(既存建物の補強構造体の実施の形態1)
 図1は本発明の補強構造体の実施の形態1に関し、既存建物の外壁面に補強構造体が設置される状況を説明した模式図であり、図2は既存建物の外壁面に設置された補強構造体の実施の形態1を説明した模式図であり、図3は補強構造体の実施の形態1の一部を拡大して示した図である。さらに、図4~6はそれぞれ、図3のIV方向の矢視図、V方向の矢視図、およびVI方向の矢視図である。
 図1で示すように、既存建物Bは多層階で各階に複数の居住戸を有するマンションであり、各居住戸にはバルコニーTが設けてあり、バルコニーTの奥側には窓Wiがある(図6参照)。
 図示例の耐震補強形態は、既存建物Bのうち、下層階の耐震補強の必要性はなく、中層階から上層階までの耐震補強をおこなうものである。
 中層階から上層階までの各居住戸のバルコニーTを包囲するように(正面視でバルコニーTを包囲する)、鋼材を枠状に組み付けてなる縦材11aと横材11bから構成される枠材11と、縦材11aに介層された制震部材12とから構成される補強フレーム10が予め製作され、現場搬送される。なお、図示例においては、各層に3戸の居住戸があり、これに対して補強フレーム10を構成する枠材11によって形成される各行の開口の個数は6個である。したがって、各居住戸のバルコニーTの途中位置に枠材11の縦材11aが配設されることになる。しかしながら、この形態では、図4,6からも明らかなように、各居住戸の中央位置に壁Waが存在しており、この壁Waの前方位置に縦材11aが配設されることになるため、居住戸の窓Wiからの視界を遮ることにはならない。なお、バルコニーTの外面に溝を設け、この溝に縦材11aを配設する形態であってもよい。
 このように、補強フレーム10は、各居住戸のバルコニーTを包囲するように配設されるとともに、窓Wiからの視界を遮らない位置に配設される。
 ここで、補強フレーム10は、H型鋼、I型鋼等の鋼材を格子状に組み付けて枠材11を構成し、枠材11を構成する縦材11aの途中位置に制震部材12を介層させてその全体が構成されている。
 縦材11aの途中位置に介層される制震部材12としては、間柱型の制震ダンパー(鋼材系の履歴系ダンパー、高減衰ゴム系の粘弾性ダンパー、流体系の粘性ダンパー)が適用される。
 図1に戻り、既存建物Bへの補強フレーム10の設置に際し、まず、既存建物Bの外壁面の適所に接続プレート40を設置する。この接続プレート40の外壁面への設置は、たとえば接着系の後施工アンカーなどにておこなうことができる。
 既存建物Bの外壁面に接続プレート40が設置されたら、次に補強フレーム10を構成する開口(縦材11aと横材11bで構成された開口)がバルコニーTを包囲するようにして接続プレート40近傍に位置決めされ、接続プレート40と補強フレーム10を水平トラス材20と鉛直トラス材30を介して相互に接続することにより、既存建物Bの外壁面に対して補強構造体100が施工される。すなわち、補強構造体100は、補強フレーム10と水平トラス材20、および鉛直トラス材30から構成される。
 水平トラス材20と鉛直トラス材30はいずれも、L型鋼やC型鋼、角パイプなどの鋼材から形成できるが、図示例の水平トラス材20と鉛直トラス材30はともに、2つのL型鋼を組み付けてTの字状断面としたものを適用している。
 図3,4で示すように、既存建物Bの外壁面に設置された接続プレート40には当該接続プレート40から立ち上がる鋼製の接続片60が設けてあり、補強フレーム10の枠材11にも鋼製の接続片50が設けてある。
 水平トラス材20と鉛直トラス材30を構成する2つのLの字状の当接端の隙間に対し、接続片50、60を挿入し、相互に溶接やボルトにて接続することにより、水平トラス材20と鉛直トラス材30を介した既存建物Bの外壁面と補強フレーム10の接続構造が形成される。
 図示する補強構造体100は、既存建物Bの外壁面に設けられたバルコニー等の張出し部Tを包囲するようにして設置され、制震部材12を有する補強フレーム10が外壁面に対して鉛直トラス材30および水平トラス材20にて繋がれたものであり、バルコニーTを包囲するようにして補強フレーム10が設置されることから、既存建物Bの窓からの視界が妨げられることはない。さらに、水平トラス材20と鉛直トラス材30を介して補強フレーム10と外壁面の接続を図ることにより、補強フレーム10に作用する水平せん断力は水平トラス材20を介して既存建物Bに伝達させ、補強フレーム10に作用する偏心曲げモーメントに伴う鉛直力は鉛直トラス材30を介して既存建物Bに伝達させることができる。したがって、補強構造体100に固有の基礎の増設は不要としながら、任意の階層のみの耐震補強をおこなうことができ、施工効率性と経済性に優れた補強構造体100となる。
 次に、図7を参照して、補強構造体の構成部材に生じる断面力や補強構造体と既存建物の外壁面の接続部に生じる反力を説明する。具体的には、図7(a)は補強フレームにおけるせん断力図であり、図7(b)は補強フレームにおける曲げモーメント図であり、図7(c)は補強構造体を構成する各部材の軸力図であり、図7(d)は補強構造体と既存建物の外壁面の接合部におけるせん断力図である。
 図7(a)で示すせん断力図より、中央の縦材間に介層された間柱型ダンパーに地震時のせん断力Qが作用する。そして、このせん断力Qにより、補強フレーム10状の横材11b(水平梁)にはV(=Q×w×h/2)のせん断力が作用し、補強フレームに作用する曲げモーメントは水平トラスや鉛直トラスに伝達されるため、間柱型ダンパーで問題になる、補強構造体と既存建物の外壁面の接合部への曲げモーメントの伝達に伴う局部的な材軸直交方向のせん断力は生じない。そして、水平トラス材と鉛直トラス材にはせん断力のみが伝達されることになる。
 また、図7(b)で示すように、接続フレームの中央の縦材には曲げモーメントM(=Q×h/4)が生じ、水平梁のうち、中央の縦材との接続部には曲げモーメントMc(=Q×h/2)が生じる。
 次に、図7(c)で示す補強フレームを構成するトラスの軸力分布に関し、間柱型ダンパー12に作用するせん断力Qによる偏心曲げモーメントに抵抗する軸力Nqは、Nq=Q×d/wで表すことができる。
 一方、横材11bのせん断力Vの偏心曲げモーメントに抵抗する軸力Nvは、Nv=2V×d/h=Q×d/hで表すことができる。
 このように、軸力は、引張力と圧縮力がともに同じ値で同じ方向の力となるため、束材11cの軸力はN=Nq+Nv=2Q×d/hで表すことができる。
 また、図7(d)で示す、補強フレーム10を構成するトラス軸力による支点反力は、既存建物Bと補強構造体100の接続箇所の設計用荷重として使用されるが、この接続箇所には曲げモーメントは伝達されず、引張力とせん断力が伝達されることになる。そして、このせん断力は補強フレーム10の構成部材の軸方向にのみ作用するため、補強フレームを構成する構成部材同士の接続箇所の設計が容易となる。
(既存建物の補強構造体の実施の形態2)
 図8~10を参照して、既存建物の補強構造体の実施の形態2を説明する。ここで、図8は本発明の補強構造体の実施の形態2に関し、既存建物の外壁面に補強構造体が設置される状況を説明した模式図であり、図9は既存建物の外壁面に設置された補強構造体の実施の形態2を説明した模式図であり、図10は補強構造体の実施の形態2の一部を拡大して示した図である。
 図示する補強構造体100Aは、既存建物Bの外壁面に鋼製の接続フレーム40Aを接着系の後施工アンカー等にて取り付けた後、補強フレーム10と接続フレーム40Aを水平トラス材20および鉛直トラス材30で接続して構成されたものである。
 図示するように、接続フレーム40Aのうち、耐震補強が不要な下層階部分は縦材のみが存在している。
 補強構造体100のように既存建物Bの外壁面に多数の接続プレート40を取り付ける代わりに、予め組み付けられた接続フレーム40Aを外壁面に取り付けることから、補強構造体100に比して短工期にて補強構造体100Aの施工をおこなうことができる。
 また、補強構造体100Aにおいても、補強フレーム10において生じる断面力や構成部材に生じる軸力、補強フレーム10と接続フレーム40Aの接続箇所における反力は図7で示すものと同じである。
 したがって、補強構造体100Aにおいても、補強フレーム10を構成するトラス軸力による支点反力は、既存建物Bと補強構造体100Aの接続箇所の設計用荷重として使用されるが、この接続箇所には曲げモーメントは伝達されず、引張力とせん断力が伝達されることになる。
 以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。
 10…補強フレーム、11…枠材、11a…縦材、11b…横材、11c…束材、12…制震部材(間柱型ダンパー)、20…水平トラス材、30…鉛直トラス材、40…接続プレート、40A…接続フレーム、50,60…接続片、100,100A…補強構造体、B…既存建物、T…バルコニー(張出し部)

Claims (5)

  1.  外壁面に張出し部を備える既存建物の該外壁面において、該張出し部を包囲するようにして設置される、枠材に制震部材が介層された補強フレームと、
     前記補強フレームと前記外壁面を繋ぐ鉛直トラス材および水平トラス材とを備えており、
     前記補強フレームに作用する水平せん断力は前記水平トラス材を介して既存建物に伝達させ、前記補強フレームに作用する偏心曲げモーメントに伴う鉛直力は前記鉛直トラス材を介して既存建物に伝達させる、既存建物の補強構造体。
  2.  外壁面に張出し部を備える既存建物の該外壁面において、該張出し部を包囲するようにして設置される枠材からなる接続フレームと、
     前記接続フレームに接続される、枠材に制震部材が介層された補強フレームと、
     前記接続フレームと前記補強フレームを繋ぐ鉛直トラス材および水平トラス材と、を備えており、
     前記補強フレームに作用する水平せん断力は前記水平トラス材を介し、前記接続フレームを介して既存建物に伝達させ、前記補強フレームに作用する偏心曲げモーメントに伴う鉛直力は前記鉛直トラス材を介し、前記接続フレームを介して既存建物に伝達させる、既存建物の補強構造体。
  3.  前記制震部材が間柱型ダンパー、ブレース、ダンパー付きブレースのいずれかからなる請求項1または2に記載の既存建物の補強構造体。
  4.  前記張出し部が、バルコニー、外付きルーバー、庇のいずれか一種もしくは複数からなる請求項1~3のいずれかに記載の既存建物の補強構造体。
  5.  前記既存建物において、鉛直方向、水平方向に間隔をおいて複数の前記張出し部が設けてあり、
     前記補強構造体が一部の前記張出し部にのみ取り付けられている請求項1~4のいずれかに記載の既存建物の補強構造体。
PCT/JP2015/084347 2014-12-08 2015-12-08 既存建物の補強構造体 WO2016093207A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15866532.3A EP3088635B1 (en) 2014-12-08 2015-12-08 Retrofitting structure for existing building
US15/115,801 US9816284B2 (en) 2014-12-08 2015-12-08 Retrofitting structure for existing building
CN201580006831.2A CN105940167B (zh) 2014-12-08 2015-12-08 现有建筑物的加强构造体
PH12016501514A PH12016501514B1 (en) 2014-12-08 2016-07-29 Retrofitting structure for existing building

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-247977 2014-12-08
JP2014247977A JP5759608B1 (ja) 2014-12-08 2014-12-08 既存建物の補強構造体

Publications (1)

Publication Number Publication Date
WO2016093207A1 true WO2016093207A1 (ja) 2016-06-16

Family

ID=53887596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084347 WO2016093207A1 (ja) 2014-12-08 2015-12-08 既存建物の補強構造体

Country Status (7)

Country Link
US (1) US9816284B2 (ja)
EP (1) EP3088635B1 (ja)
JP (1) JP5759608B1 (ja)
CN (1) CN105940167B (ja)
PH (1) PH12016501514B1 (ja)
TW (1) TWI611083B (ja)
WO (1) WO2016093207A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170044786A1 (en) * 2015-08-10 2017-02-16 MAE Housing, Inc. Hurricane, Tornado, Flood, Storm Surge, Forest Fire and Mud Slide Resistant House
JP5917758B1 (ja) * 2015-09-14 2016-05-18 株式会社新井組 既存建物の外付け補強架構とそのユニット構体及び施工方法
WO2020103239A1 (zh) * 2018-11-19 2020-05-28 扬州大学 免预应力自复位耗能拉索支撑
DE102020107196A1 (de) 2020-03-16 2021-09-16 Brandenburgische Technische Universität Cottbus-Senftenberg Anordnung und Verfahren zum Dämpfen von Schwingungen eines Bauwerks
US11208801B1 (en) 2021-01-28 2021-12-28 Span Construction & Engineering, Inc. Modular structural louver and methods of use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018639A (ja) * 1996-07-02 1998-01-20 Shimizu Corp 建物の補強構造
JP2005155049A (ja) * 2003-11-21 2005-06-16 Nippon Steel Corp 建築構造物の耐震補強構造
JP2012031587A (ja) * 2010-07-29 2012-02-16 Hitoshi Shiobara 制震補強架構における支柱の拘束装置
JP2013049954A (ja) * 2011-08-30 2013-03-14 Hitoshi Shiobara 制震補強架構付き構造物
JP2013087540A (ja) * 2011-10-20 2013-05-13 Toda Constr Co Ltd アウトフレーム補強工法とその補強構造

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690437B2 (ja) 1996-11-25 2005-08-31 清水建設株式会社 既存建築物の耐震補強構造
WO2001073238A2 (en) * 2000-03-29 2001-10-04 The Research Foundation Of The State University Of New York At Buffalo Highly effective seismic energy dissipation apparatus
US6530182B2 (en) * 2000-10-23 2003-03-11 Kazak Composites, Incorporated Low cost, light weight, energy-absorbing earthquake brace
JP3981949B2 (ja) 2002-11-28 2007-09-26 清水建設株式会社 耐震補強構造
JP4247496B2 (ja) 2005-03-29 2009-04-02 清水建設株式会社 耐震補強構造
US7712266B2 (en) * 2007-05-22 2010-05-11 Skidmore Owings & Merrill Llp Seismic structural device
JP5069534B2 (ja) 2007-10-15 2012-11-07 安藤建設株式会社 既存建物の外殻補強構造
JP2009249851A (ja) 2008-04-02 2009-10-29 Fujita Corp 既存建物の耐震補強工法
JP4729132B2 (ja) * 2009-03-12 2011-07-20 新日本製鐵株式会社 連結金物、制振構造、及び建築構造物
US8677699B2 (en) * 2009-03-30 2014-03-25 National University Corporation Nagoya University Vibration control device for beam-and-column frame
IT1395591B1 (it) * 2009-09-10 2012-10-16 Balducci Sistema strutturale per protezione sismica di edifici.
JP5204076B2 (ja) 2009-11-11 2013-06-05 飛島建設株式会社 既存建築物の制震補強工法および制震補強構造物
JP5616713B2 (ja) 2010-07-29 2014-10-29 Toto株式会社 タンク装置
JP5946165B2 (ja) 2011-05-09 2016-07-05 株式会社明興コンサルタンツ 耐震補強構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018639A (ja) * 1996-07-02 1998-01-20 Shimizu Corp 建物の補強構造
JP2005155049A (ja) * 2003-11-21 2005-06-16 Nippon Steel Corp 建築構造物の耐震補強構造
JP2012031587A (ja) * 2010-07-29 2012-02-16 Hitoshi Shiobara 制震補強架構における支柱の拘束装置
JP2013049954A (ja) * 2011-08-30 2013-03-14 Hitoshi Shiobara 制震補強架構付き構造物
JP2013087540A (ja) * 2011-10-20 2013-05-13 Toda Constr Co Ltd アウトフレーム補強工法とその補強構造

Also Published As

Publication number Publication date
TWI611083B (zh) 2018-01-11
PH12016501514A1 (en) 2016-10-10
CN105940167A (zh) 2016-09-14
JP2016108843A (ja) 2016-06-20
EP3088635A4 (en) 2016-12-21
CN105940167B (zh) 2018-01-16
EP3088635A1 (en) 2016-11-02
JP5759608B1 (ja) 2015-08-05
PH12016501514B1 (en) 2016-10-10
TW201627561A (zh) 2016-08-01
EP3088635B1 (en) 2018-07-18
US9816284B2 (en) 2017-11-14
US20170009477A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
WO2016093207A1 (ja) 既存建物の補強構造体
JP4587386B2 (ja) 既設建物の耐震補強構造
KR101377327B1 (ko) 단면증설에 의한 기존 철근콘크리트 모멘트골조 건축물의 내진보강방법
KR100997509B1 (ko) 플랜지보강 합성부재 및 이를 이용한 흙막이 지지구조
JP5213248B2 (ja) 既存建築物の耐震補強構造
JP2009249851A (ja) 既存建物の耐震補強工法
WO2006031001A1 (en) Steel-concrete sandwitch type hybrid beam and high strengh hybrid structure system using the same
KR20180010833A (ko) 헌치를 이용한 철근콘크리트 보-기둥 내진 보강 접합부
KR101670553B1 (ko) Pc벽체가 기존 건축물 외면에 접합되는 내진보강구조
JP2006226054A (ja) 鉄筋コンクリート造ラーメン構造の既存建物の耐震補強工法
JP2005139770A (ja) 既存建物用制震補強架構及びそれを用いた制震構造物
JP6122740B2 (ja) 耐震補強構造体
JP5620462B2 (ja) 既存建物の耐震補強工法
KR102093322B1 (ko) 비내력벽을 갖는 건물의 내진 보강을 위한 부축벽 조립체
JP5711897B2 (ja) 既存建物の耐震補強工法および耐震補強フレーム
JP5191191B2 (ja) 増築建屋の増築構法
JP6791818B2 (ja) 制震構造物
KR20130117204A (ko) 건축물용 내진 보강 구조물 및 이를 이용한 건축물 내진 보강 공법
KR101209363B1 (ko) 에이치형강 기둥의 내진보강용 콘크리트 블럭 및 이를 이용한 내진보강방법
JP7274332B2 (ja) 接合構造体
JP6388738B1 (ja) コンクリート構造物の耐震補強構造
JP2001227176A (ja) 既存建物の上部増築方法
JP2012188870A (ja) 鋼コンクリート合成柱
JP2015105478A (ja) 耐震補強構造
KR20130051183A (ko) 내진 보강 구조물 및 이를 이용한 내진 보강 방법

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015866532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015866532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12016501514

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 15115801

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201605269

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE