WO2016093197A1 - 電気抵抗炉の運用方法 - Google Patents

電気抵抗炉の運用方法 Download PDF

Info

Publication number
WO2016093197A1
WO2016093197A1 PCT/JP2015/084301 JP2015084301W WO2016093197A1 WO 2016093197 A1 WO2016093197 A1 WO 2016093197A1 JP 2015084301 W JP2015084301 W JP 2015084301W WO 2016093197 A1 WO2016093197 A1 WO 2016093197A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
change
management
furnace body
electric resistance
Prior art date
Application number
PCT/JP2015/084301
Other languages
English (en)
French (fr)
Inventor
公男 岩本
賢一 片山
Original Assignee
K2システム有限会社
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K2システム有限会社, 日新製鋼株式会社 filed Critical K2システム有限会社
Priority to CN201580067766.4A priority Critical patent/CN107250700B/zh
Publication of WO2016093197A1 publication Critical patent/WO2016093197A1/ja
Priority to ZA2017/03685A priority patent/ZA201703685B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting

Definitions

  • the present invention relates to a method of operating an electric resistance furnace in which an alloy is continuously manufactured by supplying electric power to each electrode and melting raw materials in the furnace body.
  • Patent Document 1 a configuration in an electric arc furnace shown in the following Patent Document 1 can be exemplified. That is, in the conventional method, the remaining thickness of the refractory layer in the furnace body is detected based on the detected temperature detected by the temperature sensor attached to the furnace body. And after all the molten metal produced
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method of operating an electric resistance furnace capable of extending the life of a furnace body of an electric resistance furnace that continuously manufactures an alloy. Is to provide.
  • An operation method of an electric resistance furnace includes a furnace body, a plurality of electrodes that are disposed apart from each other and that can be moved up and down, and are inserted into the furnace body from above the furnace body, A plurality of temperature sensors that respectively detect the temperature of the furnace body at a plurality of temperature detection positions spaced apart from each other along the circumferential direction and the height direction, and supply power to each electrode to melt the raw material in the furnace body
  • the operation method of the electric resistance furnace that continuously manufactures the alloy, and before starting the operation of the electric resistance furnace, a plurality of management categories corresponding to the temperature detected by the temperature sensor are determined and each management Assigning the management work to the division, determining which of the plurality of management categories the detected temperature detected by each temperature sensor corresponds to after the operation of the electric resistance furnace starts, and detecting the detected temperature
  • management work assigned to the management section after determining the corresponding management section, and the management work includes the suppression of refractory erosion at the temperature detection position where the detected temperature has increased and the temperature detection position
  • the management work assigned to the management section is performed, and the management work is performed at the temperature detection position where the detected temperature has increased. Therefore, the life of the furnace body of the electric resistance furnace for continuously producing the alloy can be extended.
  • FIG. 2 is a cross-sectional view of the electric resistance furnace taken along line II-II in FIG. It is explanatory drawing for demonstrating the management division used for the operating method of the electrical resistance furnace of this Embodiment. It is a flowchart which shows the operating method of the electric resistance furnace 1 of this Embodiment.
  • FIG. 1 is a cross-sectional view showing a configuration of an electric resistance furnace in which the method of operating an electric resistance furnace according to Embodiment 1 of the present invention is implemented
  • FIG. 2 is a cross-sectional view of the electric resistance furnace taken along line II-II in FIG. FIG.
  • the electric resistance furnace 1 is provided with a furnace body 10, a furnace lid 11, a plurality of supply means 12, a plurality of electrodes 13, a plurality of cooling means 14, and a plurality of temperature sensors 15. ing.
  • the number of components included in the electric resistance furnace 1 such as the supply means 12, the electrode 13, the cooling means 14, and the temperature sensor 15 is not limited to the number shown in FIGS. 1 and 2, and the size of the furnace body 10 is not limited. It can be changed as appropriate.
  • the furnace body 10 is a container for producing an alloy such as ferrochrome or other alloy iron by melting raw materials.
  • the furnace body 10 is provided with an iron skin 100, first to fifth refractory layers 101 1 to 101 5 and a pouring part 102.
  • the iron skin 100 is a cup-shaped container body provided on the outermost side of the furnace body 10.
  • the first to fifth refractory layers 101 1 to 101 5 are each constituted by a refractory provided inside the iron skin 100.
  • the first refractory layer 101 1 is disposed in contact with the iron skin 100.
  • the second refractory layer 101 2 , the third refractory layer 101 3 , the fourth refractory layer 101 4, and the fifth refractory layer 101 5 are in order of the first refractory layer 101 along the radial direction of the furnace body 10. 1 is located inside. That is, the fifth refractory layer 101 5 constitutes an innermost layer comprising a refractory which is arranged on the innermost side of the furnace body 10.
  • the refractory material of each layer can be composed of, for example, carbon paste, refractory brick made of magnesia chromite, or the like.
  • the third refractory layer 101 3 is treated as erosion unacceptable layer.
  • the erosion non-permissible layer is a refractory layer disposed outside the innermost layer, and is defined to operate the electric resistance furnace 1 so that the refractory layer is not eroded (melted). As will be described in detail later, if the non-erodible layer is likely to be eroded or eroded, the electric resistance furnace 1 gives priority to the protection of the furnace body 10 without lowering the production efficiency of the alloy. To operate.
  • Pouring part 102 is for communicating the outside of the inner and Tetsugawa 100 of the fifth refractory layer 101 5, from the pouring part 102, the alloy produced in furnace 10. for example a ladle or the like Poured into another container.
  • the furnace lid 11 is a lid for covering the upper opening of the furnace body 10.
  • the furnace lid 11 is provided with openings corresponding to the supply means 12 and the electrodes 13.
  • each supply means 12 supplies a raw material and a flux from above the furnace body 10 into the furnace body 10 through the openings of the furnace lid 11 at a plurality of supply positions 12 a that are separated from each other.
  • the supply means 12 is sometimes called a chute.
  • the electrodes 13 are arranged apart from each other, and are inserted into the furnace body 10 from the silo (storage bin) above the furnace body 10 through the opening of the furnace lid 11. It is a rod-shaped member, and by supplying power to these electrodes 13, the raw material in the furnace body 10 is melted to produce an alloy.
  • Each electrode 13 is provided so as to be movable up and down by a known configuration. Moreover, the electric power supplied to each electrode 13 can be controlled individually.
  • the cooling means 14 cools the furnace body 10 at a plurality of cooling positions separated from each other, and is constituted by, for example, a water cooling jacket or a device that sprays cooling water on the iron skin 100 from a nozzle. Can do.
  • the respective cooling positions are provided on the outer surface of the furnace body 10 and are separated from each other along the height circumferential direction and the height direction of the furnace body 10. The amount of cooling of the furnace body 10 by each cooling means 14 can be individually controlled.
  • the temperature sensor 15 detects the temperature of the furnace body 10 at a plurality of temperature detection positions separated from each other along the circumferential direction and the height direction of the furnace body, and can be configured by, for example, a thermocouple. Specifically, the temperature sensor 15 is provided inside the third refractory layer 101 3 is erodible non-permissive layer, detecting a third temperature of the refractory layer 101 3. The position where the temperature sensor 15 detects the temperature inside the third refractory layer 101 3 is arbitrary, but the temperature at the center position in the thickness direction of the third refractory layer 101 3 along the radial direction of the furnace body 10 is the temperature. It is preferable that the sensor 15 detects.
  • the electric resistance furnace 1 of the present embodiment is not a batch operation but a continuous operation. That is, the raw material is continuously or intermittently supplied to the furnace body 10, and the alloy is continuously manufactured without emptying the furnace body 10.
  • FIG. 3 is explanatory drawing for demonstrating the management division used for the operation method of the electrical resistance furnace 1 of this Embodiment.
  • the temperature of the two positions along a radial direction of the furnace body 10 as well as the thickness and heat the refractory layers 101 1-101 5 By performing the heat conduction calculation based on the conductivity, the remaining thicknesses of the refractory layers 101 1 to 10 15 can be estimated. In other words, it is possible to estimate how much the refractory layers 101 1 to 101 5 are eroded if the detected temperature of the temperature sensor 15 (the temperature of the non-erodible layer) is high.
  • each refractory layer 101 1 to 10 15 thickness in an uneroded state
  • thermal conductivity the thickness and thermal conductivity of cell flying
  • Table 1 the thickness and thermal conductivity of cell flying
  • one detection temperature (temperature of the central position of the third refractory layer 101 3 in the thickness direction along the radial direction of the furnace body 10) of the temperature sensor 15
  • the other one can use the temperature of the iron skin 100 whose temperature is controlled by cooling.
  • the temperature of the iron skin 100 shall be 40 degreeC.
  • heat transmission coefficient K1 between the furnace shell 100 and the center position of the third refractory layer 101 3 in the thickness direction can be obtained as follows.
  • heat transmission coefficient K2 between the innermost surface of the central position of the third refractory layer 101 3 in the thickness direction and the fourth refractory layer 101 4 can be obtained as follows.
  • heat transmission coefficient K3 between the innermost surface of the third refractory layer 101 3 in the thickness direction of the center position and the fifth refractory layer 101 5 may be determined as follows.
  • the heat flow rate Q can be obtained as follows using the heat transmissivity K1.
  • Temperature t4 of the innermost surface of the fourth refractory layer 101 4 can be determined as follows using the heat flow Q and heat transmission coefficient K2.
  • the temperature t5 of the innermost surface of the fifth refractory layer 101 5 may be determined as follows using the heat flow Q and heat transmission coefficient K3.
  • the thickness X of the self-cleaning can be obtained as follows. That is, it can be estimated that the detected temperature of the temperature sensor 15 is assumed to be 300 ° C., the self-lining of 1.439m to the inside of the fifth refractory layer 101 5 is formed.
  • the temperature t5 of the innermost surface of the fourth refractory layer 101 fourth innermost surface temperature t4 and fifth refractory layer 101 5 of the following can be obtained as follows.
  • the temperature t5 of the innermost surface of the fifth refractory layer 101 5 calculated by the heat conduction calculation is over 1600 ° C. which is the melting point of the material.
  • Remaining thickness Y of the fifth refractory layer 101 5 at this time can be determined as follows.
  • erosion unacceptable detected by the temperature sensor 15 Define multiple management categories corresponding to the temperature of the bed.
  • the management category can be set as shown in Table 2 below.
  • FIG. 3 shows erosion situations (broken lines) corresponding to the respective sections (first section to fifth section) shown in Table 2.
  • management work is assigned to each management category.
  • the management operation is an operation having at least one of the functions of suppressing erosion of the refractory at the temperature detection position where the detection temperature has increased and promoting the formation of cell flying at the temperature detection position.
  • the management work includes flux change, raw material change, cooling amount change, supply power amount change, electrode position change and power stop / hot water.
  • the flux change is an operation of changing the melting point of the flux by changing the composition of the flux supplied at each supply position 12a.
  • Material change is an operation of changing at least one of the supply amount and size of the raw material at each supply position 12a.
  • a hot gas is generated when the raw material is melted in the furnace body 10. This gas has a function of preheating the raw material located above the furnace body 10.
  • the gas heats the refractory and promotes erosion of the refractory.
  • the detection temperature is increased by at least one of reducing the supply amount of the raw material and increasing the size of the raw material. Erosion of the refractory at the detected temperature position is suppressed.
  • Cooling amount change is an operation to change the cooling amount at each cooling position.
  • Supplied power amount change is an operation to change the supplied power amount to the electrode 13.
  • the electrode position change is an operation for changing the height position of the electrode 13.
  • the tip side becomes higher in temperature than the rear end side of each electrode 13. For this reason, by changing the height position of the electrode 13 so that the tip of the electrode 13 positioned in the vicinity thereof is away from the temperature detection position where the detection temperature has increased, the cell flying can be performed at the temperature detection position where the detection temperature has increased. Formation is promoted and erosion of the refractory is suppressed.
  • Stopping and hot water discharge are operations for stopping the power supply to the electrode 13 and pouring the molten alloy in the furnace body 10 out of the furnace body 10. By performing this work, erosion of the refractory can be stopped.
  • flux change, raw material change, and cooling amount change do not involve a decrease in manufacturing efficiency or a small decrease in manufacturing efficiency.
  • the change in the amount of supplied power, the change in the electrode position, and the power stop and hot water decrease the production efficiency of the alloy relatively large. In particular, emergency stop and hot water stop and hot water drastically reduce the production efficiency of the alloy.
  • flux change, raw material change, and cooling amount change can be performed from the management category corresponding to a temperature lower than the temperature corresponding to the management category to which the supply power amount change, electrode position change, and power stop / hot water are assigned.
  • flux change, cooling amount change and raw material change are made from the second division
  • supply electric energy change and electrode position change are made from the third division
  • power stop and hot water supply are made from the fifth division. Is called.
  • the supply power amount of the third section is reduced to 50% of the steady output
  • the change of the supply power amount of the fourth section is reduced to 25% of the steady output.
  • the degree is changed for each category.
  • normal monitoring work such as confirmation of the remaining thickness of the refractory, temperature transition, and operation status is performed through all of the first to fifth sections.
  • FIG. 4 is a flowchart showing an operation method of the electric resistance furnace 1 of the present embodiment.
  • the operation method of the electric resistance furnace 1 as described above, before starting the operation of the electric resistance furnace 1, a plurality of management categories corresponding to the temperature detected by the temperature sensor are determined, and management operations are performed for each management category. Is assigned (step S1).
  • step S2 After the operation of the electric resistance furnace 1 is started, it is determined which of the plurality of management categories the detected temperature detected by each temperature sensor 15 corresponds to (step S2). Then, after determining the management section corresponding to the detected temperature, the management work assigned to the management section is performed (step S3). Steps S2 and S3 are repeated when the electric resistance furnace 1 is in operation. For example, when the detected temperature at a certain temperature detection position corresponds to the second section, the management operation for that temperature detection position is performed, so that the detected temperature at that temperature detection position falls and falls into the first section. Sometimes it comes to respond.
  • the electric resistance furnace 1 is in operation.
  • the lifetime of the furnace body 10 of the electric resistance furnace 1 that continuously manufactures the alloy is extended by performing at least one of the flux change, raw material change, cooling amount change, supply power amount change, and electrode position change. be able to.
  • the management task assigned to the management category is performed, and the management task is performed at the temperature detection position where the detected temperature has increased. Since it has at least one action of suppressing erosion of objects and promoting the formation of cell flying at the temperature detection position, it is possible to extend the life of the furnace body 10 of the electric resistance furnace 1 for continuously producing an alloy.
  • the management work includes at least one of flux change, raw material change, cooling amount change, supply power amount change, and electrode position change, the furnace body of the electric resistance furnace 1 that manufactures the alloy more reliably and continuously. Ten lifetimes can be extended.
  • At least one of the flux change, the raw material change, and the cooling amount change included in the management work is higher than the temperature corresponding to the management division to which at least one of the supply power amount change and the electrode position change included in the management work is assigned. Since it is performed from the management section corresponding to the low temperature, the life of the furnace body 10 can be extended while suppressing the production efficiency of the alloy from being lowered.
  • At least one of flux change, raw material change, and cooling amount change included in the management work is performed from the second section, and at least one of supply power amount change and electrode position change included in the management work is the third section. Therefore, the lifetime of the furnace body 10 can be extended while more reliably suppressing the production efficiency of the alloy from being lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

 本発明による電気抵抗炉の運用方法は、電気抵抗炉の操業を開始する前に、温度センサによって検出される温度に対応する複数の管理区分を定めるとともに、各管理区分に管理作業を割り当てることと、電気抵抗炉の操業を開始した後に、各温度センサによって検出された検出温度が複数の管理区分のうちのどの管理区分に対応するか判断することと、検出温度が対応する管理区分を判断した後に、該管理区分に割り当てられている管理作業を行うこととを含む。管理作業は、検出温度が上昇した温度検出位置における耐火物の浸食抑制及び該温度検出位置におけるセルフライニングの形成促進の少なくとも一方の作用を有する。

Description

電気抵抗炉の運用方法
 本発明は、各電極に電力を供給して炉体内の原料を溶融することにより合金を連続的に製造する電気抵抗炉の運用方法に関する。
 従来用いられていたこの種の方法としては、例えば下記の特許文献1等に示されている電気アーク炉における構成を挙げることができる。すなわち、従来方法では、炉体に取り付けられた温度センサによって検出される検出温度に基づき、炉体内の耐火物層の残厚が検出される。そして、炉体内で生成された溶融金属のすべてが炉体から注ぎ出されて炉体が空にされた後に、耐火物層の残厚が少なくなっている箇所の補修が行われる。
特開平8-94264号公報
 上記のような従来方法では、炉体を空にした後に、耐火物層の残厚が少なくなっている箇所の補修を行っている。このような従来方法は、電気抵抗炉において連続操業される場合、すなわち炉体に原料を連続的又は断続的に供給して、炉体を空にすることなく連続的に合金を製造する場合に適用することができない。
 本発明は、上記のような課題を解決するためになされたものであり、その目的は、連続的に合金を製造する電気抵抗炉の炉体の寿命を延ばすことができる電気抵抗炉の運用方法を提供することである。
 本発明に係る電気抵抗炉の運用方法は、炉体と、互いに離間して配置されるとともに昇降可能に設けられ炉体の上方から炉体の内部に挿入された複数の電極と、炉体の周方向及び高さ方向に沿って互いに離間された複数の温度検出位置において炉体の温度をそれぞれ検出する複数の温度センサとを備え、各電極に電力を供給して炉体内の原料を溶融することにより合金を連続的に製造する電気抵抗炉の運用方法であって、電気抵抗炉の操業を開始する前に、温度センサによって検出される温度に対応する複数の管理区分を定めるとともに、各管理区分に管理作業を割り当てることと、電気抵抗炉の操業を開始した後に、各温度センサによって検出された検出温度が複数の管理区分のうちのどの管理区分に対応するか判断することと、検出温度が対応する管理区分を判断した後に、該管理区分に割り当てられている管理作業を行うこととを含み、管理作業は、検出温度が上昇した温度検出位置における耐火物の浸食抑制及び該温度検出位置におけるセルフライニングの形成促進の少なくとも一方の作用を有する。
 本発明の電気抵抗炉の運用方法によれば、検出温度が対応する管理区分を判断した後に、該管理区分に割り当てられている管理作業を行い、管理作業が、検出温度が上昇した温度検出位置における耐火物の浸食抑制及び該温度検出位置におけるセルフライニングの形成促進の少なくとも一方の作用を有するので、連続的に合金を製造する電気抵抗炉の炉体の寿命を延ばすことができる。
本発明の実施の形態1による電気抵抗炉の運用方法が実施される電気抵抗炉の構成を示す断面図である。 図1の線II-IIに沿う電気抵抗炉の断面図である。 本実施の形態の電気抵抗炉の運用方法に用いられる管理区分を説明するための説明図である。 本実施の形態の電気抵抗炉1の運用方法を示すフローチャートである。
 以下、本発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1は本発明の実施の形態1による電気抵抗炉の運用方法が実施される電気抵抗炉の構成を示す断面図であり、図2は図1の線II-IIに沿う電気抵抗炉の断面図である。図1及び図2に示すように、電気抵抗炉1には、炉体10、炉蓋11、複数の供給手段12、複数の電極13、複数の冷却手段14及び複数の温度センサ15が設けられている。なお、供給手段12、電極13、冷却手段14及び温度センサ15等の電気抵抗炉1に含まれる構成要素の数は、図1及び図2に示す数に限定されず、炉体10の大きさ等により適宜変更することができる。
 炉体10は、原料を溶融して、フェロクロムその他の合金鉄等の合金を製造するための容器である。炉体10には、鉄皮100、第1~第5耐火物層1011~1015及び注出部102が設けられている。鉄皮100は、炉体10の最も外側に設けられたカップ状の容器体である。第1~第5耐火物層1011~1015は、鉄皮100の内側に設けられた耐火物によりそれぞれ構成されるものである。第1耐火物層1011は、鉄皮100に接して配置されている。第2耐火物層1012、第3耐火物層1013、第4耐火物層1014及び第5耐火物層1015は、その順に炉体10の径方向に沿って第1耐火物層1011の内側に配置されている。すなわち、第5耐火物層1015は、炉体10の最も内側に配置された耐火物からなる最内層を構成している。各層の耐火物は、例えばカーボンペーストや、マグネシア・クロマイトからなる耐火煉瓦等により構成することができる。
 本実施の形態では、第3耐火物層1013は浸食非許容層として扱われる。浸食非許容層とは、最内層よりも外側に配置された耐火物層であり、この耐火物層が浸食(溶損)されないように電気抵抗炉1の操業を行うと定められるものである。後に詳しく説明するように、仮に浸食非許容層が浸食されそうであるか又は浸食された場合には、合金の生産効率の低下を厭わずに炉体10の保護を優先して電気抵抗炉1の操業を行う。
 注出部102は、第5耐火物層1015の内側と鉄皮100の外側とを連通するものであり、この注出部102から、炉体10内で製造された合金が例えば取鍋等の別の容器に注ぎ出される。
 炉蓋11は、炉体10の上部開口を覆うための蓋体である。炉蓋11には、供給手段12及び電極13に対応する開口部が設けられている。
 各供給手段12は、図2に示すように互いに離間された複数の供給位置12aにおいて炉蓋11の開口部を通して炉体10の上方から炉体10内に原料及びフラックスをそれぞれ供給するものである。供給手段12はシュートと呼ばれることもある。
 各電極13は、図2に示すように互いに離間して配置されるとともに、炉蓋11の開口部を通して炉体10の上方にあるサイロ(貯鉱ビン)から炉体10の内部に挿入された棒状部材であり、これら電極13に電力が供給されることで炉体10内の原料が溶融されて合金が製造される。各電極13は、周知の構成により昇降可能に設けられている。また、各電極13に供給される電力は、個々に制御することができる。
 冷却手段14は、互いに離間された複数の冷却位置において炉体10をそれぞれ冷却するものであり、例えば水冷ジャケット、又はノズルから冷却水を鉄皮100に対して噴霧する装置等により構成されることができる。本実施の形態では、各冷却位置は、炉体10の外面に設けられるとともに、炉体10の高さ周方向及び高さ方向に沿って互いに離間されている。各冷却手段14による炉体10の冷却量は、個々に制御することができる。
 温度センサ15は、炉体の周方向及び高さ方向に沿って互いに離間された複数の温度検出位置において炉体10の温度をそれぞれ検出するものであり、例えば熱電対等により構成することができる。具体的には、温度センサ15は、浸食非許容層である第3耐火物層1013の内部に設けられており、第3耐火物層1013の温度を検出する。第3耐火物層1013の内部で温度センサ15が温度を検出する位置は任意であるが、炉体10の径方向に沿う第3耐火物層1013の厚み方向の中央位置の温度を温度センサ15が検出することが好ましい。
 本実施の形態の電気抵抗炉1は、バッチ操業されるものでなく、連続操業されるものである。すなわち、炉体10に原料が連続的又は断続的に供給されて、炉体10が空にされずに連続的に合金が製造される。
 次に、図3は、本実施の形態の電気抵抗炉1の運用方法に用いられる管理区分を説明するための説明図である。例えば、本出願人らによる特許第5137990号公報等にも開示されているように、炉体10の径方向に沿う二つの位置の温度並びに各耐火物層1011~1015の厚さ及び熱伝導率に基づいて熱伝導計算を行うことにより、各耐火物層1011~1015の残厚を推定することができる。換言すれば、温度センサ15の検出温度(浸食非許容層の温度)がどの程度であれば、各耐火物層1011~1015がどの程度浸食されているか推定することができる。
 例えば、各耐火物層1011~1015の厚さ(浸食されていない状態の厚さ)及び熱伝導率、並びにセルフライニングの厚さ及び熱伝導率を以下の表1に示すものと仮定する。なお、セルフライニングとは、炉体10の内面で凝固した原料であり、耐火物層の保護材として利用できるものである。各耐火物層1011~1015及びセルフライニングの熱伝導率は、それぞれの素材に依存する。
Figure JPOXMLDOC01-appb-T000001
 炉体10の径方向に沿う二つの位置の温度のうち、1つは温度センサ15の検出温度(炉体10の径方向に沿う第3耐火物層1013の厚み方向の中央位置の温度)を用い、もう1つは冷却により温度が管理されている鉄皮100の温度を用いることができる。鉄皮100の温度は40℃とする。
 このとき、鉄皮100と第3耐火物層1013の厚み方向の中央位置との間の熱貫流率K1は、以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000002
 また、第3耐火物層1013の厚み方向の中央位置と第4耐火物層1014の最内面との間の熱貫流率K2は、以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000003
 さらに、第3耐火物層1013の厚み方向の中央位置と第5耐火物層1015の最内面との間の熱貫流率K3は、以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000004
 例えば、温度センサ15の検出温度が300℃であるとすると、上記熱貫流率K1を用いて熱流量Qを以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000005
 第4耐火物層1014の最内面の温度t4は、上記熱流量Qと熱貫流率K2を用いて以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000006
 また、第5耐火物層1015の最内面の温度t5は、上記熱流量Qと熱貫流率K3を用いて以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000007
 そして、セルフライニング(原料)の融点を1600℃とすると、セルフライニングの厚さXは、以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000008
 すなわち、温度センサ15の検出温度が300℃であるとすると、第5耐火物層1015の内側に1.439mのセルフライニングが形成されていると推定できる。
 また、例えば温度センサ15の検出温度が700℃であるとすると、熱流量Q、第4耐火物層1014の最内面の温度t4及び第5耐火物層1015の最内面の温度t5は以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000009
 このとき、熱伝導計算により算出された第5耐火物層1015の最内面の温度t5が原料の融点である1600℃を超えている。このことにより、第5耐火物層1015が浸食されていると推定できる。このときの第5耐火物層1015の残厚Yは、以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000010
 本実施の形態の電気抵抗炉1の運用方法では、上記のような熱伝導計算により推定される各耐火物層1011~1015の浸食状況に基づき、温度センサ15によって検出される浸食非許容層の温度に対応する複数の管理区分を定める。管理区分は、以下の表2に示すように設定することができる。なお、図3には、表2に示す各区分(第1区分~第5区分)に対応する浸食状況(破線)が示されている。
Figure JPOXMLDOC01-appb-T000011
 また、下記の表3のように各管理区分に管理作業を割り当てる。管理作業とは、検出温度が上昇した温度検出位置における耐火物の浸食抑制及び該温度検出位置におけるセルフライニングの形成促進の少なくとも一方の作用を有する作業である。管理作業には、フラックス変更、原料変更、冷却量変更、供給電力量変更、電極位置変更及び止電・出湯が含まれている。
Figure JPOXMLDOC01-appb-T000012
 フラックス変更は、各供給位置12aで供給されるフラックスの組成を変更することによりフラックスの融点を変更する作業である。検出温度が上昇した温度検出位置の近傍に位置する供給位置12aにおいて融点が高いフラックスを供給することで、検出温度が上昇した温度検出位置におけるセルフライニングの形成が促進される。
 原料変更は、各供給位置12aでの原料の供給量及びサイズの少なくとも1つを変更する作業である。周知のように、炉体10内で原料を溶融する際には高熱のガスが発生する。このガスは、炉体10の上方に位置する原料を予め熱する作用を有している。一方で、炉体10上方へのガスの抜けが悪いと、ガスが耐火物を熱して耐火物の浸食を促進することになる。このため、検出温度が上昇した温度検出位置の近傍に位置する供給位置12aにおいて、原料の供給量を少なくすること、及び原料のサイズを大きくすることの少なくとも一方を行うことで、検出温度が上昇した温度検出位置における耐火物の浸食が抑制される。
 冷却量変更は、各冷却位置での冷却量を変更する作業である。検出温度が上昇した温度検出位置の近傍に位置する冷却位置での冷却量を大きくすることで、検出温度が上昇した温度検出位置において、セルフライニングの形成が促進されるとともに、耐火物の浸食が抑制される。
 供給電力量変更は、電極13への供給電力量を変更する作業である。検出温度が上昇した温度検出位置の近傍に位置する電極13への供給電力量を少なくすることで、その温度検出位置に供給される熱量を少なくすることができる。これにより、検出温度が上昇した温度検出位置において、セルフライニングの形成が促進されるとともに、耐火物の浸食が抑制される。
 電極位置変更は、電極13の高さ位置を変更する作業である。一般に、各電極13に電力が供給されているとき、各電極13の後端側に比べて先端側のほうが高温となる。このため、検出温度が上昇した温度検出位置からその近傍に位置する電極13の先端を遠ざけるように電極13の高さ位置を変更することで、検出温度が上昇した温度検出位置において、セルフライニングの形成が促進されるとともに、耐火物の浸食が抑制される。
 止電・出湯は、電極13への電力供給を停止するとともに、炉体10内の溶融合金を炉体10外に注ぎ出す作業である。この作業を行うことで、耐火物の浸食を止めることができる。
 上述した管理作業のうち、フラックス変更、原料変更及び冷却量変更は、製造効率の低下を伴わないか、又は製造効率の低下が少ない。一方で、供給電力量変更、電極位置変更及び止電・出湯は、合金の製造効率を比較的大きく低下させる。特に、非常時又は緊急時の止電・出湯は、合金の製造効率を著しく低下させる。
 このため、フラックス変更、原料変更及び冷却量変更は、供給電力量変更、電極位置変更及び止電・出湯が割り当てられた管理区分に対応する温度よりも低い温度に対応する管理区分から行うことが好ましい。表3の割り当て例では、フラックス変更、冷却量変更及び原料変更は第2区分から行われ、供給電力量変更及び電極位置変更は第3区分から行われ、止電・出湯は第5区分から行われる。
 なお、例えば第3区分の供給電力量変更では供給電力を定常出力の50%に低減させ、第4区分の供給電力量変更では供給電力を定常出力の25%に低減させるなど、同じ管理作業でも区分毎に程度が変更される。第1~第5区分のすべての区分を通して、上述した管理作業とは別に、耐火物の残厚、温度遷移及び運転状況の確認等の通常の監視作業が行われる。
 次に、図4は、本実施の形態の電気抵抗炉1の運用方法を示すフローチャートである。電気抵抗炉1の運用方法では、上述したように、電気抵抗炉1の操業を開始する前に、温度センサによって検出される温度に対応する複数の管理区分を定めるとともに、各管理区分に管理作業を割り当てる(ステップS1)。
 その次に、電気抵抗炉1の操業を開始した後に、各温度センサ15によって検出された検出温度が前記複数の管理区分のうちのどの管理区分に対応するか判断する(ステップS2)。そして、検出温度が対応する管理区分を判断した後に、該管理区分に割り当てられている管理作業を行う(ステップS3)。ステップS2,S3は、電気抵抗炉1の操業されているときに繰り返し行われる。例えば、ある温度検出位置における検出温度が第2区分に対応するときに、その温度検出位置を対象とした管理作業が行われることで、その温度検出位置の検出温度が降下して第1区分に対応するようになることもある。
 なお、上述した実施の形態では、管理作業として、フラックス変更、原料変更、冷却量変更、供給電力量変更及び電極位置変更のすべてを行うように説明しているが、電気抵抗炉1の操業中に、これらフラックス変更、原料変更、冷却量変更、供給電力量変更及び電極位置変更の少なくとも1つを実施することで、連続的に合金を製造する電気抵抗炉1の炉体10の寿命を延ばすことができる。
 このような電気抵抗炉の運用方法では、検出温度が対応する管理区分を判断した後に、該管理区分に割り当てられている管理作業を行い、管理作業が、検出温度が上昇した温度検出位置における耐火物の浸食抑制及び該温度検出位置におけるセルフライニングの形成促進の少なくとも一方の作用を有するので、連続的に合金を製造する電気抵抗炉1の炉体10の寿命を延ばすことができる。
 また、管理作業は、フラックス変更、原料変更、冷却量変更、供給電力量変更、及び電極位置変更の少なくとも1つを含むので、より確実に連続的に合金を製造する電気抵抗炉1の炉体10の寿命を延ばすことができる。
 さらに、管理作業に含まれるフラックス変更、原料変更及び冷却量変更の少なくとも1つは、管理作業に含まれる供給電力量変更及び電極位置変更の少なくとも1つが割り当てられた管理区分に対応する温度よりも低い温度に対応する管理区分から行われるので、合金の生産効率が低下することを抑制しつつ、炉体10の寿命を延ばすことができる。
 さらにまた、管理作業に含まれるフラックス変更、原料変更及び冷却量変更の少なくとも1つは第2区分から行われ、管理作業に含まれる供給電力量変更及び電極位置変更の少なくとも1つは第3区分から行われるので、合金の生産効率が低下することをより確実に抑制しつつ、炉体10の寿命を延ばすことができる。

Claims (4)

  1.  炉体と、互いに離間して配置されるとともに昇降可能に設けられ前記炉体の上方から前記炉体の内部に挿入された複数の電極と、前記炉体の周方向及び高さ方向に沿って互いに離間された複数の温度検出位置において前記炉体の温度をそれぞれ検出する複数の温度センサとを備え、各電極に電力を供給して前記炉体内の原料を溶融することにより合金を連続的に製造する電気抵抗炉の運用方法であって、
     前記電気抵抗炉の操業を開始する前に、前記温度センサによって検出される温度に対応する複数の管理区分を定めるとともに、各管理区分に管理作業を割り当てることと、
     前記電気抵抗炉の操業を開始した後に、各温度センサによって検出された検出温度が前記複数の管理区分のうちのどの管理区分に対応するか判断することと、
     前記検出温度が対応する管理区分を判断した後に、該管理区分に割り当てられている管理作業を行うことと
     を含み、
     前記管理作業は、前記検出温度が上昇した温度検出位置における耐火物の浸食抑制及び該温度検出位置におけるセルフライニングの形成促進の少なくとも一方の作用を有する、
     電気抵抗炉の運用方法。
  2.  前記管理作業は、
     互いに離間された複数の供給位置において前記炉体に供給される前記フラックスの組成を変更することにより前記フラックスの融点を変更するフラックス変更、
     前記供給位置での前記原料の供給量及びサイズの少なくとも1つを変更する原料変更、
     互いに離間された複数の冷却位置での前記炉体の冷却量を変更する冷却量変更、
     前記電極への供給電力量を変更する供給電力量変更、及び
     前記電極の高さ位置を変更する電極位置変更
     の少なくとも1つを含む、
     請求項1記載の電気抵抗炉の運用方法。
  3.  前記管理作業は、
     互いに離間された複数の供給位置において前記炉体に供給される前記フラックスの組成を変更することにより前記フラックスの融点を変更するフラックス変更、前記供給位置での前記原料の供給量及びサイズの少なくとも1つを変更する原料変更、及び互いに離間された複数の冷却位置での前記炉体の冷却量を変更する冷却量変更の少なくとも1つと、
     前記電極への供給電力量を変更する供給電力量変更、及び前記電極の高さ位置を変更する電極位置変更の少なくとも1つと
     を含んでおり、
     前記管理作業に含まれる前記フラックス変更、前記原料変更及び前記冷却量変更の前記少なくとも1つは、前記管理作業に含まれる前記供給電力量変更及び前記電極位置変更の前記少なくとも1つが割り当てられた管理区分に対応する温度よりも低い温度に対応する管理区分から行われる、
     請求項1記載の電気抵抗炉の運用方法。
  4.  前記炉体には、前記炉体の最も内側に配置された耐火物からなる最内層と、前記最内層よりも外側に配置された耐火物からなる浸食非許容層とが設けられており、
     前記温度センサは、前記浸食非許容層の温度を検出するものであり、
     前記管理区分には、
     操業が安定しているときの温度で、前記最内層が浸食されていないときの前記浸食非許容層の温度に対応する第1区分と、
     前記最内層が浸食される直前の前記浸食非許容層の温度に対応する第2区分と、
     前記浸食非許容層が浸食される直前の前記浸食非許容層の温度に対応する第3区分と
     が設けられており、
     前記管理作業に含まれる前記フラックス変更、前記原料変更及び前記冷却量変更の前記少なくとも1つは前記第2区分から行われ、
     前記管理作業に含まれる前記供給電力量変更及び前記電極位置変更の前記少なくとも1つは前記第3区分から行われる、
     請求項3記載の電気抵抗炉の運用方法。
PCT/JP2015/084301 2014-12-12 2015-12-07 電気抵抗炉の運用方法 WO2016093197A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580067766.4A CN107250700B (zh) 2014-12-12 2015-12-07 电阻炉的运用方法
ZA2017/03685A ZA201703685B (en) 2014-12-12 2017-05-29 Operation method for electric resistance furnaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-251992 2014-12-12
JP2014251992A JP6052907B2 (ja) 2014-12-12 2014-12-12 電気抵抗炉の運用方法

Publications (1)

Publication Number Publication Date
WO2016093197A1 true WO2016093197A1 (ja) 2016-06-16

Family

ID=56107381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084301 WO2016093197A1 (ja) 2014-12-12 2015-12-07 電気抵抗炉の運用方法

Country Status (4)

Country Link
JP (1) JP6052907B2 (ja)
CN (1) CN107250700B (ja)
WO (1) WO2016093197A1 (ja)
ZA (1) ZA201703685B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112022003087A2 (pt) * 2019-09-06 2022-05-17 Jfe Mat Co Ltd Método para produzir ferrocromo de baixo teor de carbono

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141139A (en) * 1977-05-14 1978-12-08 Nippon Steel Welding Prod Eng Melting method in electric melting furnace and its device
JP2004068099A (ja) * 2002-08-07 2004-03-04 Hyuga Seirensho:Kk 溶錬炉の操業方法
JP2008115408A (ja) * 2006-10-31 2008-05-22 Nisshin Steel Co Ltd 溶解装置
JP2009085549A (ja) * 2007-10-02 2009-04-23 Sumitomo Metal Mining Co Ltd 非定常伝熱解析による電気炉スラグコーチング厚みの推定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339261B1 (ko) * 1997-10-20 2002-06-03 야마오카 요지로 야금로의 구조 및 그 야금로의 하부조 교환방법, 그 야금로의 조업방법 및 그 야금로에 사용되는 플랜지의 시일장치
JP5216491B2 (ja) * 2008-09-03 2013-06-19 新日鐵住金株式会社 高炉炉底部の解体方法および搬送装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141139A (en) * 1977-05-14 1978-12-08 Nippon Steel Welding Prod Eng Melting method in electric melting furnace and its device
JP2004068099A (ja) * 2002-08-07 2004-03-04 Hyuga Seirensho:Kk 溶錬炉の操業方法
JP2008115408A (ja) * 2006-10-31 2008-05-22 Nisshin Steel Co Ltd 溶解装置
JP2009085549A (ja) * 2007-10-02 2009-04-23 Sumitomo Metal Mining Co Ltd 非定常伝熱解析による電気炉スラグコーチング厚みの推定方法

Also Published As

Publication number Publication date
CN107250700A (zh) 2017-10-13
CN107250700B (zh) 2019-05-21
JP6052907B2 (ja) 2016-12-27
JP2016114272A (ja) 2016-06-23
ZA201703685B (en) 2018-11-28

Similar Documents

Publication Publication Date Title
WO2015037408A1 (ja) 誘導加熱炉用坩堝
WO2016093197A1 (ja) 電気抵抗炉の運用方法
JP5408417B2 (ja) フェロニッケル製錬用電気炉の操業方法
JP2007111760A (ja) 連続鋳造装置
CN101825400A (zh) 埋弧电炉电极插深自动控制方法
JP6429190B2 (ja) 製鋼スラグの溶融処理用の電気炉
JP5747286B2 (ja) 三相交流電極式円形電気炉の冷却方法及びその三相交流電極式円形電気炉
JP4912758B2 (ja) 三相交流電極式円形電気炉とその冷却方法
JP6673055B2 (ja) アーク式電気炉の操業方法
JP2010249477A (ja) 三相交流電極式円形電気炉とその炉体の冷却方法
JP3746921B2 (ja) 電気溶融炉の運転方法
JP2014105348A (ja) フェロニッケル製錬用電気炉の操業方法
JP2008116066A (ja) 電気炉の操業方法
JP5963655B2 (ja) 三相交流電極式円形電気炉及びその冷却方法
JP2012223776A (ja) 溶鋼鍋の管理方法
JP4949074B2 (ja) プラズマ式溶融炉の運転制御方法及び装置
RU2661322C2 (ru) Способ изготовления биметаллического электрода путем электрошлаковой наплавки
JP5007094B2 (ja) プラズマ溶融炉の制御方法
JP5526549B2 (ja) 溝型誘導加熱装置の湯道内径制御方法
CN109321761A (zh) 一种可防止活泼金属烧损的电渣炉
KR101443534B1 (ko) 진공 용해로
JP5526548B2 (ja) 溝型誘導加熱装置の湯道内径制御方法
KR20120032940A (ko) 래들의 습식 보수재 및 이를 이용한 보수방법
Duncanson et al. New refractory lining direction at Jindal stainless–first Indian FeCr producer to install UCAR Chillkote® linings
JP5851050B2 (ja) シンターケーキ支持スタンドの製造方法およびシンターケーキ支持スタンドにおける肉盛溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 04-10-2017 )

122 Ep: pct application non-entry in european phase

Ref document number: 15866932

Country of ref document: EP

Kind code of ref document: A1