RU2661322C2 - Способ изготовления биметаллического электрода путем электрошлаковой наплавки - Google Patents
Способ изготовления биметаллического электрода путем электрошлаковой наплавки Download PDFInfo
- Publication number
- RU2661322C2 RU2661322C2 RU2016132025A RU2016132025A RU2661322C2 RU 2661322 C2 RU2661322 C2 RU 2661322C2 RU 2016132025 A RU2016132025 A RU 2016132025A RU 2016132025 A RU2016132025 A RU 2016132025A RU 2661322 C2 RU2661322 C2 RU 2661322C2
- Authority
- RU
- Russia
- Prior art keywords
- electrode
- slag
- copper
- steel
- pipe
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000005253 cladding Methods 0.000 title 1
- 239000002893 slag Substances 0.000 claims abstract description 45
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 35
- 239000010959 steel Substances 0.000 claims abstract description 35
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052802 copper Inorganic materials 0.000 claims abstract description 25
- 239000010949 copper Substances 0.000 claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 13
- 239000010439 graphite Substances 0.000 claims abstract description 13
- 239000002826 coolant Substances 0.000 claims abstract description 9
- 239000004020 conductor Substances 0.000 claims abstract description 4
- 238000002844 melting Methods 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000002956 ash Substances 0.000 abstract description 7
- 235000002918 Fraxinus excelsior Nutrition 0.000 abstract description 4
- 230000004927 fusion Effects 0.000 abstract description 3
- 238000005272 metallurgy Methods 0.000 abstract description 3
- 238000009434 installation Methods 0.000 abstract description 2
- 239000002699 waste material Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 239000012535 impurity Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000010953 base metal Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910004261 CaF 2 Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 241000711969 Chandipura virus Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- -1 aluminum-manganese Chemical compound 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K25/00—Slag welding, i.e. using a heated layer or mass of powder, slag, or the like in contact with the material to be joined
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
- C22B9/18—Electroslag remelting
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к области металлургии и может быть использовано в литейном производстве при изготовлении биметаллических деталей. В способе используют стальную трубу, которую жестко закрепляют на стальной пластине - нижнем электроде, образующем донную часть отрезка стальной трубы, вводят в нее графитовый электрод до соприкосновения с нижним электродом и засыпают шлак, содержащий 60% CaF, 30% AlO, 10% CaO, пропускают ток для расплавления шлака и одновременного прогрева стальной трубы до температуры 950-1000°С, удаляют графитовый электрод и вводят наплавляемый медный электрод до касания его со шлаком и замыкания электрической цепи, после полного сплавления медного электрода процесс прекращают, полученную заготовку охлаждают, удаляют нижний электрод и шлак с поверхности меди, закрывают пространство трубы над медью фланцем с трубками для подачи и удаления охлаждающей жидкости и приваривают стальной стержень, который является держателем электрода и проводником тока. Изобретение позволяет получить биметалл для изготовления нерасходуемого электрода, который используют в электрошлаковых установках в процессе утилизации отходов металлургических шлаков и золы ТЭЦ. 1 з.п. ф-лы, 2 ил., 2 табл.
Description
Изобретение относится к области металлургии и может быть использовано в литейном производстве при изготовлении биметаллических деталей и утилизации металлургических шлаков и зол ТЭЦ.
Известен способ изготовления биметаллических деталей, включающей основной металл, кристаллизатор, второй металл в виде электрода электрошлаковой сварки, который расплавляют электрошлаковым способом, при этом происходит приплавление второго металла к основному. / Электрошлаковая сварка и наплавка / Под ред. Б.Е. Патона. М.: Машиностроение, 1980. 511 с.
Недостатком данного способа является то, что для такого плавления нужен кристаллизатор с заданными геометрическими размерами, которые не всегда можно обеспечить, стоимость изготовления таких кристаллизаторов может превышать стоимость детали, которую изготовляют таким способом.
Известен так же способ наплавки биметаллических деталей электродами большого сечения / стр. 57 / Электрошлаковая наплавка. Ю.М. Кусков, В.Н. Скороходов, И.А. Рябцев, И.С. Сарычев. М.: «Наука и технологии» 2001. 179 с./. Сущность данного способа заключается в том, что старт процесса осуществляется наплавляемым электродом и весь процесс проводят на одном электроде. Для того чтобы осуществлять старт необходимо иметь вторую печь для расплавления шлака. После расплавления шлака его сливают в нагретый до температуры 600-800 град. Ковш. Затем данный жидкий шлак заливают в кристаллизатор и включают трансформатор. Электрическая цепь, включающая верхний наплавляемый электрод, жидкий шлак и нижний электрод, замыкается и по цепи проходит заданный ток, который и плавит металл наплавляемого электрода. Таким образом, происходит наплавка и изготовляется биметаллической детали
Недостатком данного способа является то, что старт осуществляется через жидкий шлак. Для того чтобы его расплавить, нужна вторая электрошлаковая печь. Прогретый ковш. При таком старте нет гарантии прочности приварки. Так как наплавляемый электрод начинает плавиться, а основание, на которое наплавляется металл, имеет еще низкую температуру и сплавление между ними происходит тогда, когда температура основы будет порядка температуры плавления наплавляемого электрода. Такой способ не пригоден, если наплавляемый металл и основной имеют разность температур плавления, превышающую 50-100 град.
Известен способ восстановления руды на рудовосстановительных печах [Гасик М.И., Лякишев Н.П. Теория Технология Электрометаллургии Ферросплавов. М.: «СП Интермет Инжиниринг». 1999 г. 764 с.]. Для расплавления руды (металлургического шлака) в таких печах используют в качестве не расходуемого электрода графитовый стержень определенного диаметра
Недостатком данного способа является то, что такой электрод вносит в получаемый металл примеси. В процессе работы, взаимодействуя с восстановленным металлом, может образовывать карбиды.
Задача изобретения и технический результат состоят в том, чтобы получить биметалл меди и стали, разница в температурах плавления которых составляет 500 град. Иметь гарантированную приварку их по всей площади с начала процесса и совместить получение жидкого шлака в одной установке электрошлакового переплава. Полученный биметалл необходим для изготовления не расходуемого электрода, при использовании в процессе утилизации отходов металлургических шлаков и зол ТЭЦ в электрошлаковых установках, с получением полезного продукта без вредных примесей (углерод, фтор, сера). Электрод должен служить продолжительное время, быть безопасен и после восстановления металла не иметь примесей, которые приводят продукт к браку.
Поставленная задача достигается тем, что в способе электрошлаковой наплавки биметаллических изделий, включающем расплавление шлака (60% Са F2, 30% Al2O3, 10% СаО) с использованием графитового электрода, в соответствии с изобретением графитовый электрод приводят в соприкосновение с нижним электродом, образующим донную часть отрезка стальной трубы, в которую засыпают шлак и пропускают ток, после расплавления шлака при одновременном прогреве стальной трубы до температуры 950-1000 град, графитовый электрод удаляют и заменяют на наплавляемый медный электрод, опуская его в стальную трубу до касания со шлаком, замыкая таким образом электрическую цепь, ток устанавливают таким, чтобы стальная труба на протяжении всего процесса переплава меди наплавляемого электрода была в заданном интервале температур до окончания процесса наплавки, после чего, полученную заготовку охлаждают, удаляют нижний электрод, удаляют шлак над медью и пространство трубы над медью закрывают фланцем с вводной и выводной трубками для подачи и удаления охлаждающей жидкости и металлическим держателем, способным выполнять функцию проводника тока.
Если температура основного металла (стали) будет меньше 900 град., то его поверхность покрывается шлаковой корочкой, так называемый автогорнесаж, и медь не приваривается к металлу (стали) и при использовании в дальнейшем в процессе утилизации металлургических шлаков и зол ТЭЦ при подаче охлаждающей жидкости в полость электрода она просачивается между медью и металлом по шлаку. Таким образом, электрод будет не пригоден к работе.
Если температура основного металла больше, чем 1050, то происходит значительное растворение железа в меди, что приводит уменьшению теплопроводности меди, а следовательно к перегреву электрода во время работы
Подтверждение выбора температуры приведено в Таблице №1
Таким образом, данный интервал температуры наплавки обеспечивает работоспособность электрода фото 1.
Пример реализации способа.
Стальную трубу диаметром 150 мм и толщиной стенки 15 мм, высота заготовки 400 мм, жестко закрепляют на стальной пластине толщиной 30 мм служащей нижним электродом, вводят в трубу графитовый электрод диаметром 100 мм до касания с нижним электродом, засыпают шлак, состоящий из CaF2, СаО, Al2O3, подают напряжение 35 В, возникает электрический ток 2000 А, который разогревает и плавит шлак, одновременно нагревая стальную трубу. При температуре 1000 град, удаляют графитовый электрод и вводят медный электрод до касания с жидким шлаком при включенном трансформаторе. Во все время плавления медного электрода ток поддерживают в таком диапазоне, чтобы температура стальной трубы была порядка 1000 град. После полного сплавления медного электрода процесс прекращают.
Заготовку охлаждают до комнатной температуры, удаляют нижний электрод, удаляют шлак с поверхности меди, пространство над медью высотой 150 мм (фото 1) закрывают фланцем (например, приваривают). Фланец имеет две трубки диаметром 32 мм и высотой 1200 мм для ввода и вывода воды. Вводная трубка должна быть расположена на расстоянии 15 мм от поверхности меди, а выводная - на уровне фланца. На фланец приваривают стальной стержень квадратного сечения 50×50 мм, высотой 800 мм. В дальнейшем этот стержень служит держателем электрода и проводником тока.
Способ утилизации металлургических шлаков и зол ТЭЦ восстановительной плавкой в печи электрошлакового переплава, включающей тигель с подовым электродом и нерасдуемый электрод, согласно изобретению состоит в следующем, в качестве нерасходуемого электрода используют биметаллический медно-стальной электрод по п. 1, который закрепляют на электрододержателе, на трубках электрода закрепляют шланги и подают охлаждающую жидкость, затем электрод опускают до касания с подовым электродом тигля и подают напряжение, при этом через электрод пойдет ток, в этот момент начинают подсыпать смесь металлургического шлака или золы ТЭЦ с CaF2. После расплавления смеси и стабилизации режима по току подсыпают только металлургический шлак или золу ТЭЦ, затем добавляют соответствующее количество восстановителя и сливают расплав в форму, где он при охлаждении разделяется на полезный продукт (металл) и шлак.
Если вместо нерасходуемого медно-стального электрода использовать графитовый электрод, то в выплавленном продукте-металле после восстановления будут примеси в виде карбидов и сам углерод (таблица 2)
Пример реализации способа.
Исходным сырьем является металлургический шлак, который получается при производстве алюмо-марганцевых лигатур, содержащий 45% MnO и 55% Al2O3. общим весом 300 кг
Закрепляют стальной держатель не расходуемого медно-стального электрода в электродержателе электрошлаковой установки. Соединяют гибкие шланги с трубками системы охлаждения. Опускают медно-стальной электрод в тигель и устанавливают его на расстоянии одного двух миллиметров над поверхностью подового электрода таким образом, чтобы при качании медно-стального электрода он касался подового электрода боковиной. Подают напряжение 32 В на медно-стальной электрод.
Засыпают в тигель смесь исходного металлургического шлака с CaF2 в пропорции 90% CaF2 и 10% металлургического шлака общим весом 0,5-1 кг. Включают подачу охлаждающей жидкости. Медленно покачивают медно-стальной электрод. В момент касания его с подовым электродом возникает дуга и через электроды пойдет ток, который будет расплавлять смесь (фото 2), которую засыпали в тигель. После ее расплавления засыпают остальную смесь 4 кг, как только она расплавится и установится стабильный ток порядка 10000 А плюс минус 200 А. начинают засыпать металлургический шлак порционно по 3-4 кг.
После расплавления металлургического шлака весом около 20-25 кг начинают вместе с порциями металлургического шлака добавлять восстановитель (для данного случая - металлический алюминий) из расчета по стехиометрии на каждый килограмм оксида марганца 253 грамма алюминия.
В 300 кг металлургического шлака содержится 135 оксида марганца, т.е. для его восстановления потребуется 25 кг металлического алюминия.
После проплавления последней порции металлургического шлака, в результате которого получают 94,5 кг металлического марганца, добавляют металлический алюминий из расчета получить лигатуру А/ Mn 10(A) весом 945 кг
Удаляют медно-стальной электрод из тигля и выключают напряжение. Жидкий расплав выливают из тигля в форму. После охлаждения отделяют металлическую лигатуру - полезный продукт от шлака (окислы алюминия и фторид кальция) Выключают подачу охлаждающей жидкости на медно стальной электрод
В таблице 2 указаны результаты утилизации металлургических шлаков от производства алюминиевых лигатур и, в частности, алюминий-марганец 45 и получения лигатуры А/Mn10(А).
Таким образом при переплаве данных отходов с использованием медно-стального электрода получаем годный продукт в соответствии с (ГОСТ Р53777-2010 А/Mn10(А) сумма примесей не должна превышать 0,04)., в то время как при использовании графитового электрода процент примесей превышает норму.
Claims (2)
1. Способ изготовления биметаллического электрода, включающий электрошлаковую наплавку электрода путем расплавления шлака, содержащего 60% Ca F2, 30% Al2O3, 10% CaO, с использованием графитового электрода, отличающийся тем, что осуществляют наплавку медного электрода, при этом используют стальную трубу, которую жестко закрепляют на стальной пластине, служащей нижним электродом, образующим донную часть отрезка стальной трубы, вводят в трубу графитовый электрод до соприкосновения с нижним электродом и засыпают упомянутый шлак, пропускают ток для расплавления шлака и одновременного прогрева стальной трубы до температуры 950-1000°С, удаляют графитовый электрод и вводят наплавляемый медный электрод до касания его со шлаком и замыкания электрической цепи, при этом в течение всего процесса переплава медного электрода силу электрического тока поддерживают в диапазоне, обеспечивающем прогрев стальной трубы в упомянутом интервале температур до окончания процесса наплавки, после чего полученную заготовку охлаждают, удаляют стальную пластину и шлак с поверхности меди, закрывают пространство трубы над медью фланцем с трубками для подачи и удаления охлаждающей жидкости, к которому приваривают стальной стержень, используемый в качестве держателя полученного биметаллического электрода и проводника тока.
2. Способ по п. 1, отличающийся тем, что устье трубки для подачи охлаждающей жидкости располагают на расстоянии 15 мм от поверхности меди, а трубку для удаления охлаждающей жидкости - на уровне упомянутого фланца.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016132025A RU2661322C2 (ru) | 2016-08-03 | 2016-08-03 | Способ изготовления биметаллического электрода путем электрошлаковой наплавки |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016132025A RU2661322C2 (ru) | 2016-08-03 | 2016-08-03 | Способ изготовления биметаллического электрода путем электрошлаковой наплавки |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2016132025A RU2016132025A (ru) | 2018-02-08 |
RU2661322C2 true RU2661322C2 (ru) | 2018-07-13 |
Family
ID=61173983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016132025A RU2661322C2 (ru) | 2016-08-03 | 2016-08-03 | Способ изготовления биметаллического электрода путем электрошлаковой наплавки |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2661322C2 (ru) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112974791B (zh) * | 2021-02-09 | 2022-08-30 | 包头市金为达稀土材料有限公司 | 一种阴极铸模装置及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2525133A (en) * | 1945-06-22 | 1950-10-10 | Kellogg M W Co | Manufacture of composite metal articles |
SU1026947A1 (ru) * | 1981-10-05 | 1983-07-07 | Институт проблем литья АН УССР | Способ наплавки металла на деталь |
WO1993009258A1 (en) * | 1991-10-28 | 1993-05-13 | Elektrometallurgichesky Zavod 'elektrostal' Imeni I.F.Tevosiana | Method for electroslag casting of ingots from a granular metal-containing blend |
RU2139155C1 (ru) * | 1998-04-14 | 1999-10-10 | Общество с ограниченной ответственностью Научно-производственное предприятие "Валок" | Способ ремонта, способ электрошлаковой наплавки, устройство для электрошлаковой наплавки и кристаллизатор устройства для электрошлаковой наплавки чугунных прокатных валков |
RU2485188C1 (ru) * | 2011-11-14 | 2013-06-20 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Способ получения биметаллического слитка |
-
2016
- 2016-08-03 RU RU2016132025A patent/RU2661322C2/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2525133A (en) * | 1945-06-22 | 1950-10-10 | Kellogg M W Co | Manufacture of composite metal articles |
SU1026947A1 (ru) * | 1981-10-05 | 1983-07-07 | Институт проблем литья АН УССР | Способ наплавки металла на деталь |
WO1993009258A1 (en) * | 1991-10-28 | 1993-05-13 | Elektrometallurgichesky Zavod 'elektrostal' Imeni I.F.Tevosiana | Method for electroslag casting of ingots from a granular metal-containing blend |
RU2139155C1 (ru) * | 1998-04-14 | 1999-10-10 | Общество с ограниченной ответственностью Научно-производственное предприятие "Валок" | Способ ремонта, способ электрошлаковой наплавки, устройство для электрошлаковой наплавки и кристаллизатор устройства для электрошлаковой наплавки чугунных прокатных валков |
RU2485188C1 (ru) * | 2011-11-14 | 2013-06-20 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Способ получения биметаллического слитка |
Also Published As
Publication number | Publication date |
---|---|
RU2016132025A (ru) | 2018-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3472650A (en) | Electric-arc steelmaking | |
RU2002125939A (ru) | Способ и устройство для получения расплавленного железа | |
US3469968A (en) | Electroslag melting | |
RU2661322C2 (ru) | Способ изготовления биметаллического электрода путем электрошлаковой наплавки | |
US7849912B2 (en) | Process for electroslag remelting of metals and ingot mould therefor | |
JPH11310833A (ja) | 金属・合金の溶解方法及び溶解鋳造方法 | |
JP5408417B2 (ja) | フェロニッケル製錬用電気炉の操業方法 | |
CN205382196U (zh) | 一种锌锡真空蒸馏炉 | |
JP5455193B2 (ja) | ステンレス鋼の製造方法 | |
JP3746921B2 (ja) | 電気溶融炉の運転方法 | |
KR101075452B1 (ko) | 유리 용해로 | |
Sears | Current processes for the cold-wall melting of titanium | |
JP5203680B2 (ja) | 金属のエレクトロスラグ再溶解のプロセスおよびこれに使用されるインゴット・モールド | |
RU2194780C1 (ru) | Вакуумная дуговая гарнисажная печь | |
JP4985903B2 (ja) | 溶解炉の合金溶製方法 | |
JPS5840791A (ja) | 出滓方法 | |
WO2013056348A4 (en) | Energy efficient salt-free recovery of metal from dross | |
RU199207U1 (ru) | Многофункциональная лабораторная электрическая печь сопротивления | |
Zaitsev et al. | Reliable steel-copper anodes for direct current electric arc furnaces manufactured by electroslag remelting under two circuits diagram | |
JP2006046824A (ja) | 溶融炉用排出ノズルおよび溶融物の排出方法 | |
JPS62502598A (ja) | エレクトロスラグ再溶融により中空のビレツトを製造する方法及びその方法を実施する装置 | |
JP2747983B2 (ja) | 都市ごみ焼却灰の溶融処理方法及びその装置 | |
RU72227U1 (ru) | Установка электрошлакового переплава чугунной стружки | |
JPS6364485B2 (ru) | ||
SU796627A1 (ru) | Тигельна печь |