WO2016093145A1 - 金属めっき被覆ステンレス材の製造方法 - Google Patents

金属めっき被覆ステンレス材の製造方法 Download PDF

Info

Publication number
WO2016093145A1
WO2016093145A1 PCT/JP2015/083992 JP2015083992W WO2016093145A1 WO 2016093145 A1 WO2016093145 A1 WO 2016093145A1 JP 2015083992 W JP2015083992 W JP 2015083992W WO 2016093145 A1 WO2016093145 A1 WO 2016093145A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
steel material
metal plating
oxide film
thickness
Prior art date
Application number
PCT/JP2015/083992
Other languages
English (en)
French (fr)
Inventor
隆広 吉田
知之 鶴田
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014251504A external-priority patent/JP6574568B2/ja
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to EP15867548.8A priority Critical patent/EP3231893B1/en
Priority to CN201580067709.6A priority patent/CN107002240B/zh
Priority to CA2969897A priority patent/CA2969897A1/en
Priority to US15/533,287 priority patent/US10287689B2/en
Priority to KR1020177016851A priority patent/KR20170095880A/ko
Publication of WO2016093145A1 publication Critical patent/WO2016093145A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the present invention relates to a method for producing a metal plating coated stainless steel material.
  • a metal plating coated stainless steel material in which a metal plating layer such as a gold plating layer is coated on the surface of a stainless steel material, or a surface-treated stainless steel material is used. ing.
  • the stainless steel material with the metal plating layer formed on the surface (hereinafter also referred to as a metal plating coated stainless steel material) is formed on the stainless steel material before forming the metal plating layer.
  • a metal plating coated stainless steel material is formed on the stainless steel material before forming the metal plating layer.
  • a technique for directly forming a metal plating layer on a stainless steel material without applying the base nickel plating is also known.
  • a surface-treated stainless steel material for example, a stainless steel material in which a predetermined oxide film is formed on the surface is known as in Patent Document 2.
  • the metal plating coated stainless steel In the metal plating coated stainless steel, if the thickness of the metal plating layer on the surface is made too thin, the coverage of the metal plating layer is remarkably lowered, and the characteristics required for the metal plating layer cannot be obtained. On the other hand, the corrosion resistance is lowered due to exposure, but if the thickness of the metal plating layer on the surface is too thick, it is disadvantageous in terms of cost. Therefore, in the metal plating coated stainless steel material, in order to solve these problems, the metal plating layer formed on the surface is required to have a thin and uniform thickness.
  • Patent Document 1 has a problem that the thickness of the metal plating layer formed on the stainless steel material becomes non-uniform, and the adhesion and corrosion resistance of the metal plating layer are lowered. That is, the surface of the stainless steel material is exposed to an air atmosphere, and a natural oxide film is generated. This oxide film has a different thickness for each individual stainless steel material, and even within the same surface of one stainless steel material. There are variations. In the technique of the above-mentioned patent document 1, since the variation of the oxide film generated on the surface of the stainless steel material used as the substrate is not considered, the metal plating layer formed on the stainless steel material has a thickness corresponding to the variation of the thickness of the oxide film.
  • the present invention relates to a metal plating layer formed on a stainless steel material, regardless of individual differences and variations in the thickness of the oxide film formed on the surface of the stainless steel material. It aims at providing the manufacturing method of the metal plating coating stainless steel material which can improve the corrosion resistance, electroconductivity, smoothness, etc. of plating coating stainless steel material.
  • the inventors of the present invention have found that the above object can be achieved by performing a predetermined pretreatment on the stainless steel material and then performing a treatment for modifying the surface, and have completed the present invention.
  • a coated stainless steel material according to the first aspect of the present invention, as a pretreatment for the stainless steel material, an acid treatment step of treating the stainless steel material with an acidic solution, and the stainless steel material after the acid treatment step A metal plating coated stainless steel having a modification step of modifying the surface of the stainless steel material after the pretreatment to a state suitable for metal plating treatment.
  • a method of manufacturing the material is provided.
  • an oxide film having a lower density than the passive film before the treatment with the acidic solution is formed on the surface of the stainless steel material.
  • the oxide film including the passive film on the surface of the stainless steel material may be thickened compared to before the acid treatment step.
  • the production method of the present invention it is preferable to use any one of nitric acid and sulfuric acid or a mixture thereof as the etching treatment agent.
  • the modification step of the production method of the present invention it is preferable to perform a treatment in which the stainless steel material is immersed in a sulfuric acid aqueous solution having a sulfuric acid concentration of 20 to 25% by volume at a temperature of 50 to 70 ° C. for 5 to 600 seconds.
  • a film reduction step of reducing the oxide film formed on the surface of the stainless steel material with an etchant As a pretreatment for the stainless steel material, a film reduction step of reducing the oxide film formed on the surface of the stainless steel material with an etchant; A film increasing step of increasing the thickness of the reduced oxide film with an oxidizing agent, and further modifying the surface of the stainless steel material after the pretreatment to a state suitable for metal plating.
  • a method for producing a metal-plated stainless steel material having a quality process is provided.
  • any one of ammonium hydrogen fluoride, sulfuric acid, nitric acid and hydrochloric acid or a mixture thereof as the etching agent.
  • the stainless steel material is treated with an acidic solution, then intentionally etched with an etching treatment agent, and then subjected to a treatment for modifying the surface.
  • the surface of the stainless steel material to be used The thickness of the oxide film can be made uniform, and the metal plating layer formed on the stainless steel material can be excellent in adhesion, thin and uniform in thickness.
  • required of metal plating layers, such as corrosion resistance, electroconductivity, and smoothness, can be provided.
  • the reduced oxide film is intentionally increased by the oxidizing agent.
  • the resulting metal plating layer can be excellent in adhesion, and can be made thin and uniform in thickness.
  • FIG. 1 is a cross-sectional view of a metal plating-coated stainless steel material according to the first and second embodiments of the present invention.
  • Drawing 2 is a figure for explaining each process for manufacturing a metal plating covering stainless steel material in a 1st embodiment of the present invention.
  • Drawing 3 is a figure for explaining each process for manufacturing a metal plating covering stainless steel material in a 2nd embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a method for measuring the contact resistance of the metal-plated coated stainless steel material 1 obtained in the examples and comparative examples.
  • the metal plating-coated stainless steel material 1 of the first embodiment is an etching process for treating a stainless steel material first with an acid treatment step of treating with an acidic solution and a stainless steel material after the acid treatment step with an etching treatment agent as a pretreatment.
  • the surface of the stainless steel material is formed by performing a reforming process that modifies the surface of the stainless steel material to a state suitable for metal plating, and a metal plating process that forms a metal plating layer on the stainless steel material. As shown in FIG. 1, a metal plating layer 20 is formed on the oxide film 11 covering the stainless steel material 10.
  • cover stainless steel material 1 is prepared. It does not specifically limit as a board
  • the shape of the stainless steel material 10 is not particularly limited and can be appropriately selected depending on the intended use. For example, a conductive metal part or plate processed into a linear shape or plate shape is processed into an uneven shape.
  • the length (width), thickness (diameter) and thickness (plate thickness) of the stainless steel material 10 are not particularly limited, and can be appropriately selected according to the intended use.
  • the acid treatment process processed with an acidic solution is managed and performed on predetermined conditions.
  • the oxide film 11 including the passive film existing on the surface of the stainless steel material 10 before the treatment with the acidic solution can be made to have a lower density.
  • the stainless steel material 10 is treated with an acidic solution, so that the surface of the stainless steel material 10 is identified from the passive film existing before the treatment with the acidic treatment liquid. There is a method of removing the above components and forming the oxide film 11.
  • the specific component is not particularly limited, iron oxide in the passivation film (FeO, Fe 2 O 3), and the like.
  • the stainless steel material 10 is treated with an acidic solution, so that at least one of the passive films existing on the surface of the stainless steel material 10 before the treatment with the acidic solution is performed.
  • the oxide film 11 is thicker than the oxide film 11 including the passivated film existing before the treatment with the acidic solution.
  • FIG. 2 shows that the untreated stainless steel material 10 is subjected to an acid treatment process in which it is treated with an acidic solution, an etching process, a reforming process in which the metal plating process is modified to a state suitable for metal plating treatment, and a metal plating process. It is a figure which shows an example of a mode that is formed. In addition, in FIG.
  • the prepared stainless steel material 10 (described as “untreated” in FIG. 2) is subjected to the treatment to be brought into contact with the acidic solution in this manner. Then, the oxide film 11 can be formed. That is, in the example of FIG. 2, referring to the graph obtained by measurement with a scanning Auger electron spectrometer (AES), the atomic concentration of oxygen (O) from the surface of the stainless steel material 10 is an atom of iron (Fe).
  • the thickness of the oxide film 11 is set to a depth smaller than the concentration, the thickness of the oxide film 11 is 4.6 nm in an unprocessed state, but becomes 19 nm through a process with an acidic solution. Increase the film thickness.
  • the oxide film 11 can be made uniform by forming the oxide film 11 using an acidic solution. That is, as shown in FIG. 2, the untreated stainless steel material 10 has a non-uniform thickness of the oxide film 11 including the passivated film. Therefore, the thin portion of the passivated film is further oxidized. The portion where the passivation film is thick is in a state where it is difficult to oxidize.
  • the above-described oxide film 11 is formed by intentionally oxidizing the surface of the stainless steel material 10 using an acidic solution, a portion of the stainless steel material 10 that is easily oxidized (passive film is While the increase in the thickness of the oxide film 11 formed in the thin portion proceeds, the increase in the thickness of the oxide film 11 formed in the portion that is difficult to oxidize (the portion where the passive film is thick) is suppressed. As a result, the entire surface of the stainless steel material 10 is oxidized to the same extent, and the thickness of the oxide film 11 on the stainless steel material 10 is considered to be uniform.
  • the oxide film 11 formed by the acid treatment step of treating with an acidic solution has a characteristic that it can be removed relatively easily by an etchant in an etching step described later. This is considered to be because the oxide film 11 formed by the acid treatment step of treating with an acidic solution has a low density to the extent that it can be peeled off with a cellophane tape.
  • the thickness of the oxide film 11 on the surface of the stainless steel material 10 can be made intentionally uniform by performing the acid treatment process and etching process which process with such an acidic solution.
  • the acid solution used in the acid treatment step treated with the acid solution is not particularly limited as long as the oxide film 11 can be reduced in density to the extent that it can be peeled off with a cellophane tape. It is preferable to use any one of ammonium hydrogen fluoride, sulfuric acid, and nitric acid, or a mixture thereof, and hydrochloric acid is particularly preferable.
  • the surface of the stainless steel material 10 can be oxidized by bringing the aqueous solution of the acidic solution into contact with the stainless steel material 10, but the concentration of the acidic solution in the aqueous solution is preferably 1 It may be adjusted to a concentration suitable for use depending on the kind of acidic solution.
  • the concentration in the case of treatment with a hydrochloric acid solution is preferably 10 to 35 wt%, more preferably 15 to 25 wt%.
  • any method can be used as long as the oxide film 11 can be appropriately formed with a uniform thickness as much as possible.
  • the method of immersing the stainless steel material 10 in the aqueous solution of the acidic solution A method of spraying an aqueous solution of an acidic solution can be used.
  • the temperature of the aqueous solution is preferably 40 to 80 ° C., more preferably 50 to 65 ° C.
  • the time for immersing the stainless steel material 10 in the aqueous solution of the acidic solution is preferably 5 to 120 seconds, more preferably 10 to 60 seconds.
  • the stainless steel material 10 that has undergone the acid treatment step is managed by performing the treatment in contact with the etching agent under predetermined conditions as described above, so that an oxide film on the surface is obtained as shown in FIG. 11 can be uniformly reduced. That is, in the example shown in FIG. 2, referring to the graph obtained by measurement with a scanning Auger electron spectrometer (AES), the atomic concentration of oxygen (O) is iron (Fe) from the surface of the stainless steel material 10.
  • the thickness of the oxide film 11 is set to a depth smaller than the atomic concentration, the thickness of the oxide film 11 is 19 nm in the state after the acid treatment process, but is reduced to 9.2 nm through the etching process. Film.
  • the etching agent used in the etching step is not particularly limited, but any one of nitric acid and sulfuric acid or a mixture thereof is preferably used, and nitric acid is particularly preferable.
  • a part of the oxide film 11 on the surface of the stainless steel material 10 can be removed by bringing the aqueous solution of the etching agent into contact with the stainless steel material 10, but the concentration of the etching agent in the aqueous solution is preferably 5 to 30 wt. %, More preferably 10 to 25 wt%.
  • concentration of the etching agent in the above range the oxide film 11 of the stainless steel material 10 can be appropriately reduced, and the thickness of the oxide film 11 remaining on the stainless steel material 10 can be made uniform.
  • any method can be used as long as the oxide film 11 can be appropriately reduced in thickness as uniform as possible.
  • a method of immersing the stainless steel material 10 in an aqueous solution of the etching agent, stainless steel material 10 For example, a method of spraying an aqueous solution of an etching agent can be used.
  • the temperature of the aqueous solution is preferably 20 to 60 ° C., more preferably 25 to 40 ° C.
  • the time for immersing the stainless steel material 10 in the aqueous solution of the etching agent is preferably 1 to 30 seconds, more preferably 2 to 15 seconds.
  • the ground iron of the stainless steel material 10 when part of the oxide film 11 is removed in the etching step, the ground iron of the stainless steel material 10 (the base portion that is not oxidized and does not become the oxide film 11 in the stainless steel material 10). It is desirable not to expose it. That is, when the ground iron of the stainless steel material 10 is exposed, the exposed portion comes into contact with oxygen in the air or oxygen in the water, and a new oxide film 11 is naturally generated. Since the naturally generated oxide film 11 is likely to have a non-uniform thickness, in the first embodiment, the oxide film 11 is reduced to such an extent that the ground iron of the stainless steel material 10 is not exposed in the etching process. As a result, it is possible to prevent a new oxide film 11 from being naturally generated on the stainless steel material 10, and to make the thickness of the oxide film 11 uniform.
  • the stainless steel material 10 in which the oxide film 11 is reduced by the etching process is subjected to a modification process for modifying the surface oxide film 11 to a state suitable for metal plating.
  • the stainless steel material 10 covered with the oxide film 11 is obtained as shown in FIGS.
  • Cr / O value Cr / O molar ratio
  • Cr / Fe value Cr / Fe molar ratio
  • the metal plating formed on the oxide film 11 by controlling the Cr / O value and the Cr / Fe value by Auger electron spectroscopy analysis of the surface of the oxide film 11 in the stainless steel material 10 to the above ranges.
  • the coverage of the layer 20 that is, the ratio of the area covered with the metal plating layer 20 on the surface on which the metal plating layer 20 is formed on the oxide film 11
  • the adhesion and corrosion resistance are excellent.
  • the Cr / O value and the Cr / Fe value obtained by Auger electron spectroscopy can be measured, for example, by the following method. That is, first, the surface of the oxide film 11 is measured using a scanning Auger electron spectrometer (AES), and the atomic% of Cr, O, and Fe on the surface of the oxide film 11 is calculated. Then, the surface of the oxide film 11 is subjected to measurement with a scanning Auger electron spectrometer at five locations, and the obtained results are averaged to obtain a Cr / O value (Cr atomic% / O atomic%). ) And Cr / Fe value (atomic% of Cr / atomic% of Fe).
  • AES scanning Auger electron spectrometer
  • a peak at 510 to 535 eV is a Cr peak
  • a peak at 485 to 520 eV is an O peak
  • the atomic% of Cr, O, and Fe is measured by setting the peak of 570 to 600 eV as the peak of Fe and the total of these Cr, O, and Fe as 100 atomic%.
  • the method of setting the Cr / O value and the Cr / Fe value by Auger electron spectroscopy analysis in the oxide film 11 of the stainless steel material 10 in the above ranges examples include a method of immersing the stainless steel material 10 that has undergone the etching process in an aqueous sulfuric acid solution.
  • the sulfuric acid concentration in the sulfuric acid aqueous solution is preferably 20 to 25% by volume.
  • the temperature at which the stainless steel material 10 is immersed is preferably 50 to 70 ° C., more preferably 60 to 70 ° C.
  • the time for immersing the stainless steel material 10 in the sulfuric acid aqueous solution is preferably 3 to 600 seconds, more preferably 5 to 300 seconds.
  • the conditions for sulfuric acid concentration, temperature, and immersion time are By setting the above range, a part of the oxide film 11 on the surface of the stainless steel material 10 is removed, and the Cr / O value and the Cr / Fe value by the Auger electron spectroscopic analysis of the surface on the stainless steel material 10 are described above. A surface-controlled stainless steel surface can be obtained.
  • the stainless steel material 10 in which the oxide film 11 is reduced by the etching process is usually subjected to a reforming process in which the oxide film 11 is modified to a state suitable for the metal plating process described above.
  • the film is further reduced.
  • the atomic concentration of oxygen (O) is iron (Fe) from the surface of the stainless steel material 10.
  • the thickness of the oxide film 11 is set to a depth smaller than the atomic concentration, the thickness of the oxide film 11 is 9.2 nm after the etching process, but is changed to a state suitable for the metal plating process.
  • the film thickness is reduced to 6.7 nm through a modification process.
  • the stainless steel material 10 that has been modified by a modification process that is modified to a state suitable for the metal plating process is subjected to metal plating to perform a metal plating process that forms a metal plating layer 20 on the surface.
  • the metal constituting the metal plating layer 20 is not limited to the following, but is gold (Au), silver (Ag), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium ( Ru), copper (Cu), tin (Sn), chromium (Cr), nickel (Ni), cobalt (Co), iron (Fe), phosphorus (P), boron (B), any one metal, Or the alloy containing at least 2 or more metals among these is mentioned, Among these, Au, Ag, Pd, or Pt is especially preferable.
  • the plating method for forming the metal plating layer 20 is not particularly limited, but plating including a salt such as Au, Ag, Pd, Pt, Rh, Ru, Cu, Sn, Cr, Ni, Co, Fe, P, B, etc. It is preferable to form by electroless plating using a bath.
  • All of Au, Ag, Pd, Pt, Rh, Ru, Cu, Sn, Cr, and Ni mentioned here are noble metals having a large standard electrode potential and a common property that their contact resistance is low. have. Therefore, even when any of the above metals is used as the metal constituting the metal plating layer 20, the obtained metal plating coated stainless steel material 1 has the plating property, adhesion, corrosion resistance, and conductivity of the metal plating layer 20. Etc.
  • the coverage of the metal plating layer 20, that is, the ratio of the area covered with the metal plating layer 20 on the surface of the oxide film 11 on which the metal plating layer 20 is formed is preferably 95% or more. .
  • the coverage of the metal plating layer 20 is preferably 95% or more.
  • the thickness of the metal plating layer 20 to be formed is preferably 2 to 20 nm, more preferably 2 to 10 nm. If the thickness of the metal plating layer 20 mainly made of gold is too thin, the uniform metal plating layer 20 is not formed on the oxide film 11 of the stainless steel material 10, and the corrosion resistance and conductivity of the metal plating coated stainless steel material 1 are lowered. There is a fear. On the other hand, if the thickness of the metal plating layer 20 mainly made of gold is too thick, it is disadvantageous in terms of cost.
  • the thickness of the metal plating layer 20 to be formed is preferably 10 to 200 nm, more preferably 20 to 100 nm. If the thickness of the metal plating layer 20 mainly made of silver is too thin, the uniform metal plating layer 20 is not formed on the oxide film 11 of the stainless steel material 10, and the corrosion resistance and conductivity of the metal plating coated stainless steel material 1 are lowered. There is a fear. On the other hand, when the thickness of the metal plating layer 20 mainly made of silver is too thick, it is disadvantageous in terms of cost.
  • the thickness of the metal plating layer 20 to be formed is preferably 2 to 20 nm, more preferably 2 to 10 nm. is there. If the thickness of the metal plating layer 20 made of such a metal is too thin, the uniform metal plating layer 20 is not formed on the oxide film 11 of the stainless steel material 10, and the corrosion resistance and conductivity of the metal plating coated stainless steel material 1 are lowered. There is a risk. On the other hand, when the thickness of the metal plating layer 20 made of such a metal is too thick, it is disadvantageous in terms of cost.
  • the metal plating-coated stainless steel material 1 can be obtained by subjecting the stainless steel material 10 to metal plating treatment by the metal plating process and forming the metal plating layer 20 on the oxide film 11.
  • the thickness variation of the oxide film 11 naturally formed on the surface (that is, the thickness variation of the oxide film 11 based on the individual difference of the stainless steel material, Regardless of the thickness variation of the oxide film 11 in the same plane of the stainless steel material, the thickness of the oxide film 11 can be made uniform by the acid treatment step and the etching step performed with the acidic solution described above. Specifically, even if the thickness of the oxide film 11 varies with respect to the untreated stainless steel material 10, the oxide film 11 of the stainless steel material 10 is formed by an acid treatment process that is treated with an acidic solution, and then etched. By reducing the film thickness in the process, the thickness is adjusted to be uniform regardless of individual differences or variations in the thickness of the oxide film 11 formed on the surface of the stainless steel material 10.
  • the oxide film 11 having a uniform thickness is subjected to a reforming process for modifying the oxide film 11 into a state suitable for the above-described metal plating process, thereby making the oxide film 11 a metal.
  • a state suitable for the plating process can be obtained, and the metal plating layer 20 having a small thickness and uniform thickness can be formed in the subsequent metal plating step.
  • the metal plating-coated stainless steel material 1 of the first embodiment can be used as an electrical contact material used for a connector, a switch, a printed wiring board, or the like, but can also be used as a fuel cell separator. it can.
  • a fuel cell separator is used as a member of a fuel cell constituting a fuel cell stack, and has a function of supplying fuel gas and air to an electrode through a gas flow path, and a function of collecting electrons generated at the electrode It is.
  • the metal plating coated stainless steel material 1 is used as a fuel cell separator, the stainless steel material 10 has a surface on which irregularities (gas flow paths) that function as fuel gas or air flow paths are formed in advance.
  • the stainless steel material 10 is prepared and subjected to each of the acid treatment step, the etching step, the reforming step, and the metal plating step, which are modified to a state suitable for the metal plating treatment.
  • a method for forming the gas flow path is not particularly limited, and for example, a method of forming by a press working can be mentioned.
  • the fuel cell separator is exposed to a high-temperature and acidic atmosphere in the fuel cell.
  • the coverage of the plating layer is low, the corrosion of the stainless steel material that is the base material progresses early, which increases the electrical resistance value due to the corrosion products generated on the surface of the stainless steel material, and causes the electrons generated at the electrodes.
  • the function as a fuel cell separator that collects the current is reduced.
  • the metal plating-coated stainless steel material 1 of the second embodiment is a film reduction process for reducing the oxide film 11 including the passive film by first treating the stainless steel material 10 with an etching treatment agent as a pretreatment.
  • a film increasing step for increasing the oxide film 11 by treatment with an oxidizing agent, a reforming step for modifying the oxide film 11, and metal plating for forming a metal plating layer on the stainless steel material As shown in FIG. 1, a metal plating layer 20 is formed on the oxide film 11 covering the stainless steel material 10.
  • cover stainless steel material 1 is prepared.
  • the substrate the same substrate as in the first embodiment described above can be used.
  • the oxide film 11 including the passive film naturally formed on the surface is subjected to a film reduction process for reducing the film thickness with an etching agent under predetermined conditions. Specifically, a part of the oxide film 11 on the surface of the stainless steel material 10 is removed by bringing the stainless steel material 10 into contact with the etching agent, and the oxide film 11 is reduced in thickness as shown in FIG.
  • FIG. 3 is a diagram illustrating an example of a state in which the untreated stainless steel material 10 is formed with the metal plating coated stainless steel material 1 through a film reduction process, a film increase process, a modification process, and a metal plating process.
  • FIG. 3 is a diagram illustrating an example of a state in which the untreated stainless steel material 10 is formed with the metal plating coated stainless steel material 1 through a film reduction process, a film increase process, a modification process, and a metal plating process.
  • FIG. 3 is a diagram illustrating an example of a state in which the untreated stainless steel material 10 is formed with the metal plating
  • the prepared stainless steel material 10 (described as “untreated” in FIG. 3) is subjected to the treatment to be brought into contact with the etching agent in this manner, so that as shown in FIG.
  • the oxide film 11 can be reduced. That is, in the example of FIG. 3, referring to the graph obtained by measurement with a scanning Auger electron spectrometer (AES), the atomic concentration of oxygen (O) from the surface of the stainless steel material 10 is an atom of iron (Fe).
  • the thickness of the oxide film 11 is set to a depth smaller than the concentration, the thickness of the oxide film 11 was 4.6 nm in the unprocessed state, but decreased to 4.0 nm through the film reduction process. Film.
  • the thickness of the oxide film 11 reduced by the film reduction process is reduced as a whole.
  • the etching agent used in the film reduction step is not particularly limited as long as it can reduce the oxide film 11, and any one of ammonium hydrogen fluoride, sulfuric acid, nitric acid, and hydrochloric acid, or a mixture thereof is used. It is particularly preferable to use ammonium hydrogen fluoride or a mixed acid of hydrochloric acid and nitric acid obtained by mixing hydrochloric acid and nitric acid.
  • the concentration of the etching agent in the aqueous solution is preferably 1 to It is 99 wt%, and it may be adjusted to a concentration suitable for use depending on the type of acidic solution.
  • the concentration in the case of treatment with an ammonium hydrogen fluoride solution is preferably 1 to 15 wt%, more preferably 3 to 5 wt%.
  • any method can be used as long as the oxide film 11 can be appropriately reduced in thickness as uniform as possible.
  • the method of immersing the stainless steel material 10 in the aqueous solution of the etching agent, the stainless steel material 10 For example, a method of spraying an aqueous solution of an etching agent can be used.
  • the temperature of the aqueous solution is preferably 20 to 60 ° C., more preferably 25 to 50 ° C.
  • the time for immersing the stainless steel material 10 in the aqueous solution of the etching agent is preferably 5 to 600 seconds, more preferably 10 to 120 seconds.
  • the base metal of the stainless steel material 10 (the base portion of the stainless steel material 10 that is not oxidized and does not become the oxide film 11). It is desirable to prevent exposure. That is, when the ground iron of the stainless steel material 10 is exposed, the exposed portion comes into contact with oxygen in the air or oxygen in the water, and a new oxide film 11 is naturally generated. Since the naturally generated oxide film 11 is likely to have a non-uniform thickness, in the second embodiment, the oxide film 11 is thinned to such an extent that the ground iron of the stainless steel material 10 is not exposed in the film reduction process. This prevents the new oxide film 11 from being naturally formed on the stainless steel material 10.
  • the film increasing step for increasing the oxide film 11 is performed by bringing the oxidizing agent into contact with the stainless steel material 10 on which the oxide film 11 has been increased by the film reducing step. .
  • the stainless steel material 10 that has undergone the film-reducing step is managed by performing the process of contacting with the oxidation treatment agent under a predetermined condition as described above, thereby, as shown in FIG. Can be increased. That is, in the example shown in FIG. 3, referring to the graph obtained by measurement with a scanning Auger electron spectrometer (AES), the atomic concentration of oxygen (O) is iron (Fe) from the surface of the stainless steel material 10.
  • the thickness of the oxide film 11 is set to a depth smaller than the atomic concentration, the thickness of the oxide film 11 is 4.0 nm in the state after the film reduction process, but is 6. Thicken to 2 nm.
  • the thickness of the oxide film 11 can be made uniform while increasing the thickness of the oxide film 11. That is, as shown in FIG. 3, the untreated stainless steel material 10 is formed by reducing the overall thickness of the oxide film 11 of the untreated stainless steel material 10 (the stainless steel material 10 after the film reduction process) is oxidized. The thickness of the film 11 is non-uniform, so that the portion where the oxide film 11 is thin is more easily oxidized, and the portion where the oxide film 11 is thick is difficult to oxidize.
  • the film thickness increase of the oxide film 11 in the easily oxidized portion (the portion where the oxide film 11 is thin) of the stainless steel material 10 is increased.
  • the film thickening is suppressed in the portion that is difficult to oxidize (the portion where the oxide film 11 is thick).
  • the entire surface of the stainless steel material 10 is oxidized to the same extent, and the thickness of the oxide film 11 on the stainless steel material 10 becomes uniform.
  • the thickness of the oxide film 11 on the surface of the stainless steel material 10 can be intentionally made uniform by performing the above-described film reducing step and film increasing step.
  • a good metal plating layer 20 can be formed on the obtained coated stainless steel material 1, and the metal plating coated stainless steel material excellent in adhesion and corrosion resistance of the metal plating layer 20. 1 can be manufactured.
  • the oxidation treatment agent used in the film increasing step is not particularly limited as long as it can appropriately increase the oxide film 11, but it is preferable to use any one of nitric acid and sulfuric acid or a mixture thereof. Nitric acid is particularly preferred.
  • the surface of the stainless steel material 10 can be oxidized by bringing the aqueous solution of the oxidation treatment agent into contact with the stainless steel material 10.
  • the concentration of the oxidation treatment agent in the aqueous solution is preferably 5 to 25 wt%. More preferably, it is 15 to 20 wt%.
  • any method can be used as long as the oxide film 11 can be thickened so that the thickness of the oxide film 11 is as uniform as possible.
  • a method of immersing, a method of spraying an aqueous solution of an oxidation treatment agent onto the stainless steel material 10, and the like can be used.
  • the temperature of the aqueous solution is preferably 20 to 60 ° C., more preferably 25 to 40 ° C.
  • the time for immersing the stainless steel material 10 in the aqueous solution of the oxidizing agent is preferably 1 to 30 seconds, more preferably 2 to 15 seconds.
  • Cr / O value Cr / O molar ratio
  • Cr / Fe value Cr / Fe molar ratio
  • the metal plating formed on the oxide film 11 by controlling the Cr / O value and the Cr / Fe value of the surface of the oxide film 11 in the stainless steel material 10 by the Auger electron spectroscopy analysis to the above ranges.
  • the coverage of the layer 20 that is, the ratio of the area covered with the metal plating layer 20 on the surface on which the metal plating layer 20 is formed on the oxide film 11
  • the adhesion and corrosion resistance are excellent.
  • the Cr / O value and the Cr / Fe value by Auger electron spectroscopy can be measured by the following method, for example. That is, first, the surface of the oxide film 11 is measured using a scanning Auger electron spectrometer (AES), and the atomic% of Cr, O, and Fe on the surface of the oxide film 11 is calculated. Then, the surface of the oxide film 11 is subjected to measurement with a scanning Auger electron spectrometer at five locations, and the obtained results are averaged to obtain a Cr / O value (Cr atomic% / O atomic%). ) And Cr / Fe value (atomic% of Cr / atomic% of Fe).
  • AES scanning Auger electron spectrometer
  • the peak at 510 to 535 eV is the Cr peak
  • the peak at 485 to 520 eV is the O peak
  • the atomic% of Cr, O, and Fe is measured by setting the peak of 570 to 600 eV as the peak of Fe and the total of these Cr, O, and Fe as 100 atomic%.
  • the oxide film 11 of the stainless steel material 10 as a method for setting the Cr / O value and the Cr / Fe value by Auger electron spectroscopic analysis in the above ranges, for example, stainless steel that has undergone a film forming process.
  • the method of immersing the steel material 10 in sulfuric acid aqueous solution is mentioned.
  • the sulfuric acid concentration of the sulfuric acid aqueous solution is preferably 20 to 25% by volume.
  • the temperature at which the stainless steel material 10 is immersed is preferably 50 to 70 ° C., more preferably 60 to 70 ° C.
  • the time for immersing the stainless steel material 10 in the sulfuric acid aqueous solution is preferably 3 to 600 seconds, more preferably 5 to 300 seconds.
  • the conditions of the sulfuric acid concentration, temperature, and immersion time are set within the above ranges, whereby the stainless steel material 10 A part of the surface oxide film 11 is removed, and a stainless steel material surface on which the Cr / O value and the Cr / Fe value by the Auger electron spectroscopic analysis of the surface are controlled in the above-described range is obtained on the stainless steel material 10.
  • the stainless steel material 10 on which the oxide film 11 is increased by the film increasing process is normally reduced in thickness by the above-described reforming process.
  • the atomic concentration of oxygen (O) is iron (Fe) from the surface of the stainless steel material 10.
  • the thickness of the oxide film 11 is set to a depth smaller than the atomic concentration, the thickness of the oxide film 11 is 6.2 nm in the state after the film increasing process, but is 2. Reduce the film thickness to 7 nm.
  • the stainless steel material 10 that has been modified in the modification process is subjected to metal plating, and the metal plating process for forming the metal plating layer 20 on the surface is performed.
  • the metal plating coated stainless steel material 1 can be obtained.
  • the thickness variation of the oxide film 11 naturally formed on the surface (that is, the thickness variation of the oxide film 11 based on the individual difference of the stainless steel material, Regardless of the thickness variation of the oxide film 11 in the same plane of the stainless steel material, the thickness of the oxide film 11 can be made uniform by the film reduction process and the film increase process. Specifically, even if the thickness of the oxide film 11 varies in the untreated stainless steel material 10, the oxide film 11 of the stainless steel material 10 is reduced by the film reduction process and then increased by the film increase process. By forming the film, the thickness is adjusted to be uniform regardless of individual differences or variations in the thickness of the oxide film 11 formed on the surface of the stainless steel material 10.
  • the oxide film 11 can be made into the state suitable for the metal plating process by performing the modification
  • the metal plating layer 20 having a small thickness and a uniform thickness can be formed.
  • the metal plating coated stainless steel material 1 of the second embodiment can be used as an electrical contact material used for a connector, a switch, a printed wiring board or the like, as in the first embodiment described above. It can also be used as a separator. According to the metal plating coated stainless steel material 1 of the second embodiment, as described above, since the metal plating layer 20 having excellent coverage and adhesion is formed, it can be suitably used as a fuel cell separator. it can.
  • the present invention will be described more specifically with reference to examples.
  • the present invention is not limited to these examples.
  • cover stainless steel material 1 obtained in the Example and the comparative example is as follows.
  • the contact resistance value was measured using the measurement system shown in FIG.
  • the measuring system shown in FIG. 4 includes two metal plating-coated stainless steel materials 1, a copper electrode 2 coated with gold plating, a voltmeter 3, and an ammeter 4.
  • the contact resistance value is measured by first processing the metal plating coated stainless steel material 1 into a size of 20 mm in width, 20 mm in length, and 0.1 mm in thickness, and as shown in FIG. A laminate of two stainless steel materials 1 was sandwiched and fixed from both sides by a copper electrode 2 coated with gold plating to obtain a measurement system shown in FIG.
  • the contact resistance value of the test piece was measured using a resistance meter (manufactured by Hioki Electric Co., Ltd., milliohm high tester 3540) while applying a constant load to the copper electrode 2 coated with gold plating.
  • Example 1 First, a SUS316L plate was prepared as the stainless steel material 10. Next, the prepared stainless steel material 10 was washed with water and degreased, and then immersed in an aqueous hydrochloric acid solution having a hydrochloric acid concentration of 20 wt% under conditions of a temperature of 60 ° C. and an immersion time of 60 seconds (acid treatment step of treating with an acidic solution). Treatment), an oxide film 11 was formed on the surface of the stainless steel material 10.
  • a treatment is performed in which the nitric acid concentration is immersed in an aqueous nitric acid solution having a concentration of 20 wt% at a temperature of 30 ° C. and an immersion time of 3 seconds.
  • etching treatment etching treatment
  • a metal plating layer 20 having a thickness of about 40 nm was formed on the oxide film 11 to obtain a metal plating coated stainless steel material 1.
  • Example 2 First, SUS316L was prepared as the stainless steel material 10. Next, the prepared stainless steel material 10 is washed with water and degreased, and then immersed in an aqueous solution of ammonium hydrogen fluoride having an ammonium hydrogen fluoride concentration of 3 wt% at a temperature of 30 ° C. and an immersion time of 60 seconds (film reduction step). ), The oxide film 11 on the surface of the stainless steel material 10 was reduced.
  • the stainless steel material 10 with the oxide film 11 reduced in thickness is washed with water, it is immersed in a nitric acid aqueous solution having a nitric acid concentration of 20 wt% at a temperature of 30 ° C. and an immersion time of 3 seconds (film increasing process). As a result, the oxide film 11 on the surface of the stainless steel material 10 was increased.
  • the stainless steel material 10 with the oxide film 11 increased in thickness is washed with water, and then immersed in a sulfuric acid aqueous solution having a sulfuric acid concentration of 25% by volume under conditions of a temperature of 70 ° C. and an immersion time of 5 seconds (reforming process). ), The oxide film 11 on the surface of the stainless steel material 10 was modified.
  • an electroless plating process is performed using an electroless palladium alloy plating bath under conditions of pH 5.5, 38 ° C. for 4 minutes (metal plating process).
  • a metal plating layer 20 having a thickness of about 40 nm was formed on the oxide film 11 to obtain a metal plating coated stainless steel material 1.
  • Example 3 SUS316L was prepared as the stainless steel material 10.
  • the prepared stainless steel material 10 is washed with water and degreased, and then immersed in an aqueous solution in which hydrochloric acid concentration: 18 wt% and nitric acid concentration: 1 wt% are mixed with hydrochloric acid and nitric acid at a temperature of 40 ° C. and an immersion time of 15 seconds.
  • the oxide film 11 on the surface of the stainless steel material 10 was reduced by performing the process (the process of the film reduction process).
  • the stainless steel material 10 with the oxide film 11 reduced in thickness is washed with water, it is immersed in a nitric acid aqueous solution having a nitric acid concentration of 20 wt% at a temperature of 30 ° C. and an immersion time of 3 seconds (film increasing process). As a result, the oxide film 11 on the surface of the stainless steel material 10 was increased.
  • the stainless steel material 10 with the oxide film 11 increased in thickness is washed with water, and then immersed in a sulfuric acid aqueous solution having a sulfuric acid concentration of 25% by volume under conditions of a temperature of 70 ° C. and an immersion time of 5 seconds (reforming process). ), The oxide film 11 on the surface of the stainless steel material 10 was modified.
  • an electroless plating process is performed using an electroless palladium alloy plating bath under conditions of pH 5.5, 38 ° C. for 4 minutes (metal plating process).
  • a metal plating layer 20 having a thickness of about 40 nm was formed on the oxide film 11 to obtain a metal plating coated stainless steel material 1.
  • the obtained metal plating-coated stainless steel material 1 was subjected to a heat treatment for 1 hour in an environment at a temperature of 250 ° C., and the contact resistance was measured according to the method described above. The results are shown in Table 1.
  • Comparative Example 1 A metal-plated coated stainless steel material was prepared in the same manner as in Example 1 except that the treatment for immersing the stainless steel material 10 in an aqueous hydrochloric acid solution (treatment in the acid treatment step using an acidic solution) was not performed. Measurements were made. The results are shown in Table 1.
  • Example 1 in which the metal plating coated stainless steel material 1 was manufactured through the acid treatment step treated with the acid solution described above, the etching step, and the modification step modified to a state suitable for the metal plating treatment.
  • the contact resistance value before heat treatment and the contact resistance value after heat treatment were both 4.1 m ⁇ , and it was confirmed that the contact resistance value did not change even when heat treatment was applied.
  • Example 2 which produced the metal plating coating stainless steel material 1 through the film reduction process, the film increase process, and the modification
  • the contact resistance value after heat treatment was 6.1 m ⁇ , and it was confirmed that the contact resistance value hardly changed even after heat treatment.
  • the contact resistance value after the heat treatment was 4.0 m ⁇ . It was confirmed that the contact resistance value was low even when heat treatment was applied.
  • the metal plating coated stainless steel material 1 when the metal plating layer 20 is not sufficiently formed and a part of the stainless steel material 10 is exposed, the exposed portion of the stainless steel material 10 is treated with chromium oxide by heat treatment.
  • the metal plating coated stainless steel material 1 of Examples 1 and 2 has a good metal plating layer without exposing the stainless steel material 10 because the contact resistance value is not increased even when heat treatment is applied. It was confirmed that 20 was formed. Moreover, since the metal plating coated stainless steel material 1 of Example 3 is able to maintain a low contact resistance value even when heat treatment is applied, the stainless steel material 10 is not exposed and the metal is satisfactorily obtained. It was confirmed that the plating layer 20 was formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Composite Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • ing And Chemical Polishing (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

 ステンレス鋼材(10)を、酸性溶液で処理する酸処理工程と、前記酸処理工程後のステンレス鋼材(10)を、エッチング処理剤により処理するエッチング工程と、前記エッチング工程後のステンレス鋼材(10)の表面を、金属めっき処理に適した状態に改質する改質工程と、を有する金属めっき被覆ステンレス材(1)の製造方法を提供する。

Description

金属めっき被覆ステンレス材の製造方法
 本発明は、金属めっき被覆ステンレス材の製造方法に関する。
 従来、コネクタ、スイッチもしくはプリント配線基板などに用いられる電気接点材料として、ステンレス鋼材の表面に金めっき層等の金属めっき層が被覆された金属めっき被覆ステンレス材や、表面処理したステンレス鋼材が用いられている。
 表面に金属めっき層が形成されたステンレス鋼材(以下、金属めっき被覆ステンレス材ともいう)は、表面の金属めっき層の密着性を向上させるために、金属めっき層を形成する前に、ステンレス鋼材上に下地ニッケルめっきを施して下地ニッケルめっき層が形成されるほか、たとえば、特許文献1に記載のように、下地ニッケルめっきを施すことなく、ステンレス鋼材上に、直接、金属めっき層を形成する技術も知られている。また、表面処理したステンレス鋼材としては、たとえば、特許文献2のように、表面に所定の酸化膜を形成したステンレス鋼材が知られている。
特開2008-4498号公報 特開2007-280664号公報
 金属めっき被覆ステンレス材では、表面の金属めっき層の厚みを薄くし過ぎると、金属めっき層の被覆率が著しく低下することにより、金属めっき層に要求される特性が得られなくなるとともに、ステンレス鋼材が露出して耐食性が低下する一方で、表面の金属めっき層の厚みを厚くし過ぎると、コスト的に不利になる。そのため、金属めっき被覆ステンレス材においては、これらの問題を解決するために、表面に形成する金属めっき層について、厚みを薄く且つ均一なものとすることが求められている。
 しかしながら、上記特許文献1に開示されている技術では、ステンレス鋼材上に形成する金属めっき層の厚みが不均一になり、金属めっき層の密着性及び耐食性が低下するという問題がある。すなわち、ステンレス鋼材の表面は、空気雰囲気に曝されることで自然酸化膜が生成するが、この酸化膜は、ステンレス鋼材の個体ごとに厚みが異なり、さらに一のステンレス鋼材の同一面内でも厚みのばらつきがある。上記特許文献1の技術では、基板として用いるステンレス鋼材の表面に生成した酸化膜のばらつきを考慮していないため、ステンレス鋼材上に形成する金属めっき層は、酸化膜の厚みのばらつきに応じて厚みが不均一になってしまい、めっきが析出しない箇所が発生したり、金属めっき層の剥離が発生したりする。これにより金属めっき層の被覆率が低下して、耐食性、導電性及び平滑性などの金属めっき層に要求される特性が低下するという問題がある。
 また、上記特許文献2に開示されている技術では、ステンレス鋼材への表面処理として、ステンレス鋼材に陰極電解処理を施すことで、ステンレス鋼材上に所定の酸化膜を形成し、ステンレス鋼材の防食性などを向上させているが、形状が複雑で均一に通電ができないステンレス鋼材や、基材の電気抵抗が高く通電が困難なステンレス鋼材を用いる場合、ステンレス鋼材への通電が不均一になり、形成される酸化膜の厚みが不均一になる等の問題がある。
 本発明は、ステンレス鋼材の表面に生成した酸化膜の厚みの個体差やばらつきによらず、ステンレス鋼材上に形成する金属めっき層について、密着性に優れ、厚みを薄く且つ均一なものとし、金属めっき被覆ステンレス材料の耐食性、導電性及び平滑性などを向上できる金属めっき被覆ステンレス材の製造方法を提供することを目的とする。
 本発明者等は、ステンレス鋼材に対して所定の前処理を行い、その後、表面を改質する処理を施すことにより、上記目的を達成できることを見出し本発明を完成させるに至った。
 すなわち、本発明の第1の観点に係る被覆ステンレス材の製造方法によれば、ステンレス鋼材に対する前処理として、ステンレス鋼材を、酸性溶液で処理する酸処理工程と、前記酸処理工程後のステンレス鋼材を、エッチング処理剤により処理するエッチング工程と、を有し、さらに、当該前処理後の前記ステンレス鋼材の表面を、金属めっき処理に適した状態に改質する改質工程を有する金属めっき被覆ステンレス材の製造方法が提供される。
 本発明の製造方法において、前記ステンレス鋼材を前記酸性溶液で処理することで、ステンレス鋼材の表面に生成する、前記酸性溶液での処理前の不動態膜より低密度の酸化膜を形成することが好ましい。
 本発明の製造方法において、前記ステンレス鋼材を前記酸性溶液で処理することで、前記ステンレス鋼材の表面における前記不動態膜を含む酸化膜を、前記酸処理工程前と比較して増膜することが好ましい。
 本発明の製造方法において、前記酸性溶液として、塩酸、フッ化水素アンモニウム、硫酸及び硝酸のうちいずれか1種又はこれらの混合物を含む溶液を用いることが好ましい。
 本発明の製造方法において、前記エッチング処理剤として、硝酸、及び硫酸のうちいずれか1種又はこれらの混合物を用いることが好ましい。
 本発明の製造方法の前記改質工程において、前記ステンレス鋼材を、硫酸濃度が20~25体積%である硫酸水溶液に、50~70℃の温度で5~600秒間浸漬させる処理を行うことが好ましい。
 本発明の製造方法において、前記改質工程の後に、前記ステンレス鋼材に金属めっき処理を施す金属めっき工程をさらに有することが好ましい。
 また、本発明の第2の観点に係る被覆ステンレス材の製造方法によれば、ステンレス鋼材に対する前処理として、ステンレス鋼材の表面に生成した酸化膜を、エッチング剤により減膜する減膜工程と、前記減膜した酸化膜を、酸化処理剤により増膜する増膜工程と、を有し、さらに、当該前処理後の前記ステンレス鋼材の表面を、金属めっき処理に適した状態に改質する改質工程を有する金属めっき被覆ステンレス材の製造方法が提供される。
 本発明の製造方法において、前記エッチング剤として、フッ化水素アンモニウム、硫酸、硝酸及び塩酸のうちいずれか1種又はこれらの混合物を用いることが好ましい。
 本発明の製造方法において、前記酸化処理剤として、硝酸及び硫酸のうちいずれか1種又はこれらの混合物を用いることが好ましい。
 本発明の製造方法の前記改質工程において、前記ステンレス鋼材を、硫酸濃度が20~25体積%である硫酸水溶液に、50~70℃の温度で5~600秒間浸漬させる処理を行うことが好ましい。
 本発明の製造方法において、前記改質工程の後に、前記ステンレス鋼材に金属めっき処理を施す金属めっき工程をさらに有することが好ましい。
 本発明によれば、ステンレス鋼材について、酸性溶液により処理した後、エッチング処理剤を用いて意図的にエッチングし、その後、表面を改質する処理を施すので、結果的に、用いるステンレス鋼材の表面の酸化膜の厚みが均一化され、ステンレス鋼材上に形成する金属めっき層を、密着性に優れ、厚みを薄く且つ均一なものとすることができる。これにより、耐食性、導電性及び平滑性などの金属めっき層に要求される特性に優れた金属めっき被覆ステンレス材の製造方法を提供することができる。
 あるいは、本発明によれば、ステンレス鋼材の表面に生成された酸化膜を、エッチング剤により意図的に減膜したのち、当該減膜した酸化膜を、酸化処理剤により意図的に増膜するので、ステンレス鋼材の表面に生成した酸化膜の厚みばらつきによらず、形成する金属めっき層について、結果的に密着性に優れ、厚みを薄く且つ均一なものとすることができる。これにより、耐食性、導電性及び平滑性などの金属めっき層に要求される特性に優れた金属めっき被覆ステンレス材の製造方法を提供することができる。
図1は、本発明の第1実施形態及び第2実施形態に係る金属めっき被覆ステンレス材の断面図である。 図2は、本発明の第1実施形態における、金属めっき被覆ステンレス材を製造するための各工程を説明するための図である。 図3は、本発明の第2実施形態における、金属めっき被覆ステンレス材を製造するための各工程を説明するための図である。 図4は、実施例及び比較例で得られた金属めっき被覆ステンレス材1の接触抵抗を測定する方法を説明するための図である。
 以下、本実施形態の金属めっき被覆ステンレス材1の製造方法について説明する。
<<第1実施形態>>
 第1実施形態の金属めっき被覆ステンレス材1は、ステンレス鋼材に対し、まず、前処理として、酸性溶液で処理する酸処理工程と、前記酸処理工程後のステンレス鋼材をエッチング処理剤により処理するエッチング工程と、を行った後、ステンレス鋼材の表面を、金属めっき処理に適した状態に改質する改質工程と、ステンレス鋼材上に金属めっき層を形成する金属めっき工程と、を行うことにより形成され、図1に示すように、ステンレス鋼材10を被覆する酸化膜11上に金属めっき層20が形成されてなる。
<酸処理工程>
 まず、第1実施形態では、金属めっき被覆ステンレス材1の基板となるステンレス鋼材10を準備する。基板としては、特に限定されず、SUS316L、SUS316、SUS304などのステンレス鋼材が挙げられる。また、ステンレス鋼材にはマルテンサイト系、フェライト系、オーステナイト系などが挙げられるが、特にオーステナイト系ステンレス鋼材が好適である。ステンレス鋼材10の形状としては、特に限定されず、使用用途に応じて適宜選択することができるが、たとえば、線形状や板形状に加工された導電性の金属部品、板を凹凸形状に加工してなる導電性部材、ばね形状や筒形状に加工された電子機器の部品などの用途に応じて必要な形状に加工したもの用いることができる。また、ステンレス鋼材10の長さ(幅)、太さ(直径)や厚み(板厚)は、特に限定されず、使用用途に応じて適宜選択することができる。
 第1実施形態では、このように準備したステンレス鋼材10について、酸性溶液で処理する酸処理工程を、所定の条件で管理して行う。第1実施形態では、酸処理工程を行うことにより、ステンレス鋼材10の表面に前記酸性溶液での処理前から存在する不動態膜を含む酸化膜11を、より低密度なものとすることができる。このような低密度の酸化膜11を形成する方法としては、ステンレス鋼材10を酸性溶液で処理することで、ステンレス鋼材10の表面に前記酸性処理液での処理前から存在する不動態膜から特定の成分を除去し、上記酸化膜11を形成する方法が挙げられる。なお、特定の成分としては、特に限定されないが、不動態膜中の酸化鉄(FeO、Fe)などが挙げられる。あるいは、上記低密度の酸化膜11を形成する方法としては、ステンレス鋼材10を酸性溶液で処理することで、ステンレス鋼材10の表面に前記酸性溶液での処理前から存在する不動態膜の少なくとも一部を除去し、ステンレス鋼材10の表面に新たな酸化膜として、上記酸化膜11を形成する方法が挙げられる。
 第1実施形態では、このような酸化膜11を形成することで、図2に示すように、酸性溶液での処理前から存在する不動態膜を含む酸化膜11より、厚みが厚い酸化膜11が形成されることがあり、この場合には、結果的にステンレス鋼材10の表面の酸化膜の大部分が増膜することとなる。図2は、未処理のステンレス鋼材10が、酸性溶液で処理する酸処理工程、エッチング工程、金属めっき処理に適した状態に改質する改質工程及び金属めっき工程を経て金属めっき被覆ステンレス材1が形成される様子の一例を示す図である。なお、図2では、酸性溶液で処理する酸処理工程を経たステンレス鋼材10、エッチング工程を経たステンレス鋼材10、及び金属めっき処理に適した状態に改質する改質工程を経たステンレス鋼材10について、それぞれ走査型オージェ電子分光分析装置(AES)により測定し、酸素(O)及び鉄(Fe)の原子濃度(at%)の推移を示したグラフを示した。図2において、縦軸は酸素(O)又は鉄(Fe)の原子濃度を示し、横軸はステンレス鋼材10の表面から走査型オージェ電子分光分析装置(AES)により測定した深さを示す。
 第1実施形態では、準備したステンレス鋼材10(図2では、「未処理」と記載した)に対して、このように酸性溶液と接触させる処理を行うことにより、図2に示すように、表面に酸化膜11を形成することができる。すなわち、図2の例では、走査型オージェ電子分光分析装置(AES)により測定して得たグラフを参照すると、ステンレス鋼材10の表面から、酸素(O)の原子濃度が鉄(Fe)の原子濃度より小さくなる深さまでを酸化膜11の厚みとした場合に、酸化膜11の厚みは、未処理の状態では4.6nmであったものが、酸性溶液で処理する工程を経ることで19nmに増膜する。
 また、第1実施形態では、上述したように、酸性溶液を用いて酸化膜11を形成することにより、酸化膜11の厚みを均一化することができる。すなわち、未処理のステンレス鋼材10は、図2に示すように、不動態膜を含む酸化膜11の厚みが不均一なものとなっており、そのため、この不動態膜が薄い部分はさらに酸化し易い状態となり、不動態膜が厚い部分は酸化し難い状態となっている。これに対し、酸性溶液を用いて意図的にステンレス鋼材10の表面を酸化させることで、上述した酸化膜11が形成される際に、ステンレス鋼材10のうち、酸化し易い部分(不動態膜が薄い部分)に形成される酸化膜11の増膜が進行する一方で、酸化し難い部分(不動態膜が厚い部分)に形成される酸化膜11の増膜が抑制される。その結果、ステンレス鋼材10の表面全体が同程度に酸化されることとなり、ステンレス鋼材10上の酸化膜11の厚みが均一化すると考えられる。
 第1実施形態では、酸性溶液で処理する酸処理工程により形成された酸化膜11は、後述するエッチング工程におけるエッチング剤により比較的容易に除去できる特性を有している。これは、酸性溶液で処理する酸処理工程により形成された酸化膜11が、セロハンテープで剥離が可能な程度まで低密度であることに起因すると考えられる。第1実施形態では、このような酸性溶液で処理する酸処理工程及びエッチング工程を行うことにより、ステンレス鋼材10の表面の酸化膜11の厚みを意図的に均一なものとすることができる。これにより、第1実施形態によれば、得られる被覆ステンレス材1上に、良好な金属めっき層20を形成できるようになり、金属めっき層20に要求される、耐食性、導電性及び平滑性などに優れた金属めっき被覆ステンレス材1を製造可能となる。
 酸性溶液で処理する酸処理工程で用いる酸性溶液としては、特に限定されず、酸化膜11を、セロハンテープで剥離が可能な程度まで密度を低下させることができるものであればよいが、塩酸、フッ化水素アンモニウム、硫酸及び硝酸のうちいずれか1種又はこれらの混合物を用いることが好ましく、塩酸が特に好ましい。
 酸性溶液で処理する酸処理工程では、上記酸性溶液の水溶液をステンレス鋼材10に接触させることで、ステンレス鋼材10の表面を酸化させることができるが、水溶液中における酸性溶液の濃度は、好ましくは1~99wt%であり、酸性溶液の種類によって使用に適した濃度に調整すればよい。特に塩酸溶液で処理する場合の濃度は、好ましくは10~35wt%、より好ましくは15~25wt%である。酸性溶液の濃度を上記範囲とすることにより、ステンレス鋼材10の表面を適切に酸化させることができる。
 ステンレス鋼材10を酸性溶液に接触させる方法としては、酸化膜11をできる限り均一な厚みで適切に形成できる方法であればよく、ステンレス鋼材10を酸性溶液の水溶液に浸漬させる方法、ステンレス鋼材10に酸性溶液の水溶液をスプレーする方法等を用いることができる。
 ステンレス鋼材10を酸性溶液の水溶液に浸漬させる場合には、水溶液の温度は、好ましくは40~80℃、より好ましくは50~65℃である。さらに、ステンレス鋼材10を酸性溶液の水溶液に浸漬させる時間は、好ましくは5~120秒、より好ましくは10~60秒である。
<エッチング工程>
 次いで、酸処理工程により酸化膜11を形成したステンレス鋼材10に対し、エッチング剤を接触させることにより、図2に示すように酸化膜11を減膜するエッチング工程の処理を行う。
 第1実施形態では、酸処理工程を経たステンレス鋼材10に対して、このようにエッチング剤と接触させる処理を所定の条件で管理して行うことにより、図2に示すように、表面の酸化膜11を均一に減膜することができる。すなわち、図2に示す例では、走査型オージェ電子分光分析装置(AES)により測定して得たグラフを参照すると、ステンレス鋼材10の表面から、酸素(O)の原子濃度が鉄(Fe)の原子濃度より小さくなる深さまでを酸化膜11の厚みとした場合に、酸化膜11の厚みは、酸処理工程を経た状態では19nmであったものが、エッチング工程を経ることで9.2nmまで減膜する。
 エッチング工程で用いるエッチング剤としては、特に限定されないが、硝酸、及び硫酸のうちいずれか1種又はこれらの混合物を用いることが好ましく、硝酸が特に好ましい。
 エッチング工程では、上記エッチング剤の水溶液をステンレス鋼材10に接触させることで、ステンレス鋼材10表面の酸化膜11の一部を除去できるが、水溶液中におけるエッチング剤の濃度としては、好ましくは5~30wt%、より好ましくは10~25wt%である。エッチング剤の濃度を上記範囲とすることにより、ステンレス鋼材10の酸化膜11を適切に減膜し、ステンレス鋼材10上に残存する酸化膜11の厚みを均一なものとすることができる。
 ステンレス鋼材10をエッチング剤に接触させる方法としては、酸化膜11をできる限り均一な厚みで適切に減膜できる方法であればよく、ステンレス鋼材10をエッチング剤の水溶液に浸漬させる方法、ステンレス鋼材10にエッチング剤の水溶液をスプレーする方法等を用いることができる。
 ステンレス鋼材10をエッチング剤の水溶液に浸漬させる場合には、水溶液の温度は、好ましくは20~60℃、より好ましくは25~40℃である。さらに、ステンレス鋼材10をエッチング剤の水溶液に浸漬させる時間は、好ましくは1~30秒、より好ましくは2~15秒である。
 第1実施形態では、エッチング工程において酸化膜11の一部を除去する際には、ステンレス鋼材10の地鉄(ステンレス鋼材10において、酸化されておらず酸化膜11となっていない基体部分)が露出しないようにすることが望ましい。すなわち、ステンレス鋼材10の地鉄が露出してしまうと、露出した部分が、空気中の酸素や水中の酸素と接触し、新たな酸化膜11が自然に生成してしまうこととなる。このように自然に生成される酸化膜11は、厚みが不均一となり易いため、第1実施形態では、エッチング工程において、ステンレス鋼材10の地鉄が露出しない程度に酸化膜11を減膜することにより、ステンレス鋼材10に新たな酸化膜11が自然に生成されてしまうことが防止され、酸化膜11の厚みを均一なものとすることができる。
<改質工程>
 次いで、エッチング工程により酸化膜11の減膜を行ったステンレス鋼材10について、表面の酸化膜11を、金属めっき処理に適した状態に改質する改質工程の処理を行う。第1実施形態では、当該改質工程の処理を行うことにより、図1,2に示すように酸化膜11で被覆されたステンレス鋼材10が得られる。
 金属めっき処理に適した状態としては、酸化膜11の表面におけるオージェ電子分光分析によるCr/O値(Cr/Oのモル比)及びCr/Fe値(Cr/Feのモル比)が、次の範囲に調整された状態が挙げられる。すなわち、Cr/O値が好ましくは0.05~0.2、より好ましくは0.05~0.15の範囲である。またCr/Fe値が好ましくは0.5~0.8、より好ましくは0.5~0.7の範囲である。
 第1実施形態においては、ステンレス鋼材10における酸化膜11の表面のオージェ電子分光分析によるCr/O値及びCr/Fe値を上記範囲に制御することにより、酸化膜11上に形成される金属めっき層20の被覆率(すなわち、酸化膜11上の金属めっき層20が形成された面における、金属めっき層20によって被覆されている面積の割合)が向上し、密着性及び耐食性に優れたものとなる。
 なお、第1実施形態において、オージェ電子分光分析によるCr/O値及びCr/Fe値は、たとえば、次の方法により測定することができる。すなわち、まず、酸化膜11の表面について、走査型オージェ電子分光分析装置(AES)を用いて測定を行い、酸化膜11の表面のCr、O、及びFeの原子%を算出する。そして、酸化膜11の表面のうち、5箇所について、走査型オージェ電子分光分析装置による測定を行い、得られた結果を平均することにより、Cr/O値(Crの原子%/Oの原子%)及びCr/Fe値(Crの原子%/Feの原子%)を算出することができる。なお、第1実施形態においては、走査型オージェ電子分光分析装置を用いた測定により得られたピークのうち、510~535eVのピークをCrのピークとし、485~520eVのピークをOのピークとし、570~600eVのピークをFeのピークとし、これらCr,O,Feの合計を100原子%として、Cr、O、及びFeの原子%を測定する。
 第1実施形態の金属めっき処理に適した状態に改質する改質工程では、ステンレス鋼材10の酸化膜11において、オージェ電子分光分析によるCr/O値及びCr/Fe値を上記範囲とする方法としては、たとえば、エッチング工程を経たステンレス鋼材10を、硫酸水溶液に浸漬させる方法が挙げられる。
 金属めっき処理に適した状態に改質する改質工程においてステンレス鋼材10を硫酸水溶液に浸漬させる場合には、硫酸水溶液の硫酸濃度は、好ましくは20~25体積%である。また、ステンレス鋼材10を浸漬させる際の温度は、好ましくは50~70℃、より好ましくは60~70℃である。さらに、ステンレス鋼材10を硫酸水溶液に浸漬させる時間は、好ましくは3~600秒、より好ましくは5~300秒である。
 第1実施形態によれば、金属めっき処理に適した状態に改質する改質工程において、ステンレス鋼材10を硫酸水溶液に浸漬させる方法を用いる場合に、硫酸濃度、温度、及び浸漬時間の条件を上記範囲とすることにより、ステンレス鋼材10の表面の酸化膜11の一部が除去されるとともに、ステンレス鋼材10上に、表面のオージェ電子分光分析によるCr/O値及びCr/Fe値が上述した範囲に制御されたステンレス鋼材表面を得ることができる。
 なお、第1実施形態では、エッチング工程により酸化膜11が減膜したステンレス鋼材10は、上述した金属めっき処理に適した状態に改質する改質工程を経ることにより、通常、酸化膜11がさらに減膜する。たとえば、図2に示す例では、走査型オージェ電子分光分析装置(AES)により測定して得たグラフを参照すると、ステンレス鋼材10の表面から、酸素(O)の原子濃度が鉄(Fe)の原子濃度より小さくなる深さまでを酸化膜11の厚みとした場合に、酸化膜11の厚みは、エッチング工程を経た状態では9.2nmであったものが、金属めっき処理に適した状態に改質する改質工程を経ることで6.7nmまで減膜する。
<金属めっき工程>
 次いで、金属めっき処理に適した状態に改質する改質工程により改質を行ったステンレス鋼材10について、金属めっきを施し、表面に金属めっき層20を形成する金属めっき工程の処理を行う。
 なお、金属めっき層20を構成する金属としては、以下に限定されるものではないが、金(Au)、銀(Ag)、パラジウム(Pd)、白金(Pt)、ロジウム(Rh)、ルテニウム(Ru)、銅(Cu)、錫(Sn)、クロム(Cr)、ニッケル(Ni)、コバルト(Co)、鉄(Fe)、リン(P)、ホウ素(B)のうちいずれか一の金属、又はこれらのうち少なくとも二以上の金属を含む合金が挙げられ、これらのうち、Au、Ag、Pd又はPtが特に好ましい。また、金属めっき層20を形成するめっき方法は特に限定されないが、Au、Ag、Pd、Pt、Rh、Ru、Cu、Sn、Cr、Ni、Co、Fe、P、Bなどの塩を含むめっき浴を用いて、無電解めっきにより形成することが好ましい。
 ここで挙げたAu、Ag、Pd、Pt、Rh、Ru、Cu、Sn、Cr、Niは、いずれも、標準電極電位が大きく貴な金属であり、かつ、接触抵抗が低い、という共通の性質を有している。そのため、金属めっき層20を構成する金属として上記のいずれの金属を用いた場合であっても、得られる金属めっき被覆ステンレス材1は、金属めっき層20のめっき性、密着性、耐食性及び導電性などに優れるものとなる。
 なお、金属めっき層20の被覆率、すなわち、酸化膜11上の金属めっき層20が形成された面における、金属めっき層20によって被覆されている面積の割合としては、好ましくは95%以上である。金属めっき層20の被覆率を95%以上とすることにより、金属めっき層20のピンホールを低減させることができ、これにより、ピンホールをきっかけとした金属めっき層20の剥離を防止することができるとともに、得られる金属めっき被覆ステンレス材1について、耐食性及び導電性をより向上させることができる。
 金属めっき層20を構成する主な金属として金を用いる場合には、形成する金属めっき層20の厚みは、好ましくは2~20nmであり、より好ましくは2~10nmである。主に金からなる金属めっき層20の厚みが薄過ぎると、ステンレス鋼材10の酸化膜11上に均一な金属めっき層20が形成されず、金属めっき被覆ステンレス材1の耐食性及び導電性が低下するおそれがある。一方、主に金からなる金属めっき層20の厚みが厚過ぎると、コスト的に不利になる。
 また、金属めっき層20を構成する主な金属として銀を用いる場合には、形成する金属めっき層20の厚みは、好ましくは10~200nmであり、より好ましくは20~100nmである。主に銀からなる金属めっき層20の厚みが薄過ぎると、ステンレス鋼材10の酸化膜11上に均一な金属めっき層20が形成されず、金属めっき被覆ステンレス材1の耐食性及び導電性が低下するおそれがある。一方、主に銀からなる金属めっき層20の厚みが厚過ぎると、コスト的に不利になる。
 あるいは、金属めっき層20を構成する主な金属として金及び銀以外の金属を用いる場合には、形成する金属めっき層20の厚みは、好ましくは2~20nmであり、より好ましくは2~10nmである。このような金属からなる金属めっき層20の厚みが薄過ぎると、ステンレス鋼材10の酸化膜11上に均一な金属めっき層20が形成されず、金属めっき被覆ステンレス材1の耐食性及び導電性が低下するおそれがある。一方、このような金属からなる金属めっき層20の厚みが厚過ぎると、コスト的に不利になる。
 以上のようにして、金属めっき工程によりステンレス鋼材10に金属めっき処理を施し、酸化膜11上に金属めっき層20を形成することにより、金属めっき被覆ステンレス材1を得ることができる。
 第1実施形態によれば、基材として準備したステンレス鋼材10について、表面に自然に生成した酸化膜11の厚みのばらつき(すなわち、ステンレス鋼材の個体差に基づく酸化膜11の厚みばらつきや、一のステンレス鋼材の同一面内における酸化膜11の厚みばらつき)によらず、上述した酸性溶液で処理する酸処理工程及びエッチング工程により、酸化膜11の厚みを均一なものとすることができる。具体的には、未処理の状態のステンレス鋼材10について、酸化膜11の厚みがばらついていたとしても、ステンレス鋼材10の酸化膜11は、酸性溶液で処理する酸処理工程により形成した後、エッチング工程により減膜することで、ステンレス鋼材10の表面に生成した酸化膜11の厚みの個体差やばらつきによらず、均一な厚みに調整される。
 そして、第1実施形態では、このように厚みが均一化された酸化膜11に対して、上述した金属めっき処理に適した状態に改質する改質工程を行うことで、酸化膜11を金属めっき処理に適した状態とすることができ、その後の金属めっき工程にて、厚みが薄く且つ均一な金属めっき層20を形成できるようになる。
 これにより、第1実施形態では、ステンレス鋼材10の表面に生成した酸化膜11のばらつきによらず、厚みが均一で金属めっき処理に適した酸化膜11が形成され、このような酸化膜11上に、厚みが薄く且つ均一な金属めっき層20が形成される。その結果、第1実施形態によれば、金属めっき層20の密着性及び耐食性に優れた金属めっき被覆ステンレス材1を製造することができる。
 また、第1実施形態の金属めっき被覆ステンレス材1は、上述したように、コネクタ、スイッチ、もしくはプリント配線基板などに用いられる電気接点材料として用いることができるが、燃料電池用セパレータとして用いることもできる。燃料電池用セパレータは、燃料電池スタックを構成する燃料電池セルの部材として用いられ、ガス流路を通じて電極に燃料ガスや空気を供給する機能、及び電極で発生した電子を集電する機能を有するものである。金属めっき被覆ステンレス材1を、燃料電池用セパレータとして用いる際には、ステンレス鋼材10については、予めその表面に燃料ガスや空気の流路として機能する凹凸(ガス流路)が形成されたものを準備し、このステンレス鋼材10に対して、上述した酸性溶液で処理する酸処理工程、エッチング工程、金属めっき処理に適した状態に改質する改質工程及び金属めっき工程の各処理を施すことが好ましい。ガス流路を形成する方法としては、特に限定されないが、たとえば、プレス加工により形成する方法が挙げられる。
 なお、通常、表面に金属めっき層が形成されたステンレス鋼材を燃料電池用セパレータとして用いる場合には、燃料電池用セパレータは、燃料電池内における高温かつ酸性雰囲気の環境にさらされるため、表面の金属めっき層の被覆率が低いときには、基材となるステンレス鋼材の腐食が早期に進行してしまい、これにより、ステンレス鋼材表面に生成した腐食生成物により電気抵抗値が増加し、電極で発生した電子を集電する燃料電池用セパレータとしての機能が低下してしまうという問題がある。
 これに対し、第1実施形態の金属めっき被覆ステンレス材1によれば、上述したように、被覆率及び密着性に優れた金属めっき層20が形成されているため、このような燃料電池用セパレータとしても好適に用いることができる。
<<第2実施形態>>
 第2実施形態の金属めっき被覆ステンレス材1は、ステンレス鋼材10に対して、まず、前処理として、エッチング処理剤で処理することで不動態膜を含む酸化膜11を減膜する減膜工程と、酸化処理剤により処理することで酸化膜11を増膜する増膜工程と、を行った後、酸化膜11を改質する改質工程と、ステンレス鋼材上に金属めっき層を形成する金属めっき工程と、を行うことにより形成され、図1に示すように、ステンレス鋼材10を被覆する酸化膜11上に金属めっき層20が形成されてなる。
<減膜工程>
 まず、第2実施形態では、金属めっき被覆ステンレス材1の基板となるステンレス鋼材10を準備する。基板としては、上述した第1実施形態と同様のものを用いることができる。
 第2実施形態では、準備したステンレス鋼材10について、表面に自然に生成した不動態膜を含む酸化膜11を、エッチング剤により減膜する減膜工程の処理を所定の条件で管理して行う。具体的には、ステンレス鋼材10をエッチング剤に接触させることで、ステンレス鋼材10の表面の酸化膜11の一部を除去し、図3に示すように、酸化膜11を減膜する。図3は、未処理のステンレス鋼材10が、減膜工程、増膜工程、改質工程及び金属めっき工程を経て金属めっき被覆ステンレス材1が形成される様子の一例を示す図である。なお、図3では、減膜工程を経たステンレス鋼材10、増膜工程を経たステンレス鋼材10、及び改質工程を経たステンレス鋼材10について、それぞれ走査型オージェ電子分光分析装置(AES)により測定し、酸素(O)及び鉄(Fe)の原子濃度(at%)の推移を示したグラフを示した。図3において、縦軸は酸素(O)又は鉄(Fe)の原子濃度を示し、横軸はステンレス鋼材10の表面から走査型オージェ電子分光分析装置(AES)により測定した深さを示す。
 第2実施形態では、準備したステンレス鋼材10(図3では、「未処理」と記載した)に対して、このようにエッチング剤と接触させる処理を行うことにより、図3に示すように、表面の酸化膜11を減膜することができる。すなわち、図3の例では、走査型オージェ電子分光分析装置(AES)により測定して得たグラフを参照すると、ステンレス鋼材10の表面から、酸素(O)の原子濃度が鉄(Fe)の原子濃度より小さくなる深さまでを酸化膜11の厚みとした場合に、酸化膜11の厚みは、未処理の状態では4.6nmであったものが、減膜工程を経ることで4.0nmまで減膜する。第2実施形態では、減膜工程により減膜された酸化膜11は、図3に示すように、全体的に厚みが減少する。
 減膜工程で用いるエッチング剤としては、酸化膜11を減膜できるものであればよく、特に限定されないが、フッ化水素アンモニウム、硫酸、硝酸及び塩酸のうちいずれか1種又はこれらの混合物を用いることが好ましく、フッ化水素アンモニウムまたは塩酸と硝酸を混ぜた塩酸と硝酸の混酸が特に好ましい。
 減膜工程では、上記エッチング剤の水溶液をステンレス鋼材10に接触させることで、ステンレス鋼材10表面の酸化膜11の一部を除去できるが、水溶液中におけるエッチング剤の濃度としては、好ましくは1~99wt%であり、酸性溶液の種類によって使用に適した濃度に調整すればよい。特にフッ化水素アンモニウム溶液で処理する場合の濃度は、好ましくは1~15wt%、より好ましくは3~5wt%である。エッチング剤の濃度を上記範囲とすることにより、ステンレス鋼材10の酸化膜11を適切に減膜できる。
 ステンレス鋼材10をエッチング剤に接触させる方法としては、酸化膜11をできる限り均一な厚みで適切に減膜できる方法であればよく、ステンレス鋼材10をエッチング剤の水溶液に浸漬させる方法、ステンレス鋼材10にエッチング剤の水溶液をスプレーする方法等を用いることができる。
 ステンレス鋼材10をエッチング剤の水溶液に浸漬させる場合には、水溶液の温度は、好ましくは20~60℃、より好ましくは25~50℃である。さらに、ステンレス鋼材10をエッチング剤の水溶液に浸漬させる時間は、好ましくは5~600秒、より好ましくは10~120秒である。
 第2実施形態では、減膜工程において酸化膜11の一部を除去する際には、ステンレス鋼材10の地鉄(ステンレス鋼材10において、酸化されておらず酸化膜11となっていない基体部分)が露出しないようにすることが望ましい。すなわち、ステンレス鋼材10の地鉄が露出してしまうと、露出した部分が、空気中の酸素や水中の酸素と接触し、新たな酸化膜11が自然に生成してしまうこととなる。このように自然に生成される酸化膜11は、厚みが不均一となり易いため、第2実施形態では、減膜工程において、ステンレス鋼材10の地鉄が露出しない程度に酸化膜11を減膜することにより、ステンレス鋼材10に新たな酸化膜11が自然に生成されてしまうことが防止される。
<増膜工程>
 次いで、減膜工程により酸化膜11の増膜を行ったステンレス鋼材10に対し、酸化処理剤を接触させることにより、図3に示すように酸化膜11を増膜する増膜工程の処理を行う。
 第2実施形態では、減膜工程を経たステンレス鋼材10に対して、このように酸化処理剤と接触させる処理を所定の条件で管理して行うことにより、図3に示すように、酸化膜11を増膜することができる。すなわち、図3に示す例では、走査型オージェ電子分光分析装置(AES)により測定して得たグラフを参照すると、ステンレス鋼材10の表面から、酸素(O)の原子濃度が鉄(Fe)の原子濃度より小さくなる深さまでを酸化膜11の厚みとした場合に、酸化膜11の厚みは、減膜工程を経た状態では4.0nmであったものが、増膜工程を経ることで6.2nmに増膜する。
 第2実施形態では、上述したように、酸化処理剤を用いて酸化膜11を増膜することにより、酸化膜11を増膜するとともに、酸化膜11の厚みを均一化することができる。すなわち、未処理のステンレス鋼材10は、図3に示すように、未処理のステンレス鋼材10の酸化膜11を全体的に減膜したステンレス鋼材10(減膜工程後のステンレス鋼材10)は、酸化膜11の厚みが不均一なものとなっており、そのため、酸化膜11が薄い部分はさらに酸化し易い状態となり、酸化膜11が厚い部分は酸化し難い状態となっている。これに対し、酸化処理剤を用いて意図的にステンレス鋼材10の表面を酸化させることで、ステンレス鋼材10のうち、酸化し易い部分(酸化膜11が薄い部分)の酸化膜11の増膜が進行する一方で、酸化し難い部分(酸化膜11が厚い部分)は増膜が抑制される。その結果、ステンレス鋼材10の表面全体が同程度に酸化されることとなり、ステンレス鋼材10上の酸化膜11の厚みが均一化する。
 第2実施形態では、上述した減膜工程及び増膜工程を行うことにより、ステンレス鋼材10の表面の酸化膜11の厚みを意図的に均一なものとすることができる。これにより、第2実施形態によれば、得られる被覆ステンレス材1上に、良好な金属めっき層20を形成できるようになり、金属めっき層20の密着性及び耐食性に優れた金属めっき被覆ステンレス材1を製造可能となる。
 増膜工程で用いる酸化処理剤としては、酸化膜11を適切に増膜できるものであればよく、特に限定されないが、硝酸及び硫酸のうちいずれか1種又はこれらの混合物を用いることが好ましく、硝酸が特に好ましい。
 増膜工程では、上記酸化処理剤の水溶液をステンレス鋼材10に接触させることで、ステンレス鋼材10の表面を酸化させることができるが、水溶液中における酸化処理剤の濃度は、好ましくは5~25wt%、より好ましくは15~20wt%である。酸化処理剤の濃度を上記範囲とすることにより、ステンレス鋼材10の表面を適切に酸化させることができる。
 ステンレス鋼材10を酸化処理剤に接触させる方法としては、酸化膜11の厚みができる限り均一となるように酸化膜11を増膜できる方法であればよく、ステンレス鋼材10を酸化処理剤の水溶液に浸漬させる方法、ステンレス鋼材10に酸化処理剤の水溶液をスプレーする方法等を用いることができる。
 ステンレス鋼材10を酸化処理剤の水溶液に浸漬させる場合には、水溶液の温度は、好ましくは20~60℃、より好ましくは25~40℃である。さらに、ステンレス鋼材10を酸化処理剤の水溶液に浸漬させる時間は、好ましくは1~30秒、より好ましくは2~15秒である。
<改質工程>
 次いで、増膜工程により酸化膜11の増膜を行ったステンレス鋼材10について、上述した第1実施形態と同様にして、表面の酸化膜11を、金属めっき処理に適した状態に改質する改質工程の処理を行う。第2実施形態では、改質工程の処理を行うことにより、図1,3に示すように酸化膜11で被覆されたステンレス鋼材10が得られる。
金属めっき処理に適した状態としては、酸化膜11の表面におけるオージェ電子分光分析によるCr/O値(Cr/Oのモル比)及びCr/Fe値(Cr/Feのモル比)が、次の範囲に調整された状態が挙げられる。すなわち、Cr/O値が好ましくは0.05~0.2、より好ましくは0.05~0.15の範囲である。またCr/Fe値が好ましくは0.5~0.8、より好ましくは0.5~0.7の範囲である。
 第2実施形態においては、ステンレス鋼材10における酸化膜11の表面のオージェ電子分光分析によるCr/O値及びCr/Fe値を上記範囲に制御することにより、酸化膜11上に形成される金属めっき層20の被覆率(すなわち、酸化膜11上の金属めっき層20が形成された面における、金属めっき層20によって被覆されている面積の割合)が向上し、密着性及び耐食性に優れたものとなる。
 なお、第2実施形態において、オージェ電子分光分析によるCr/O値及びCr/Fe値は、たとえば、次の方法により測定することができる。すなわち、まず、酸化膜11の表面について、走査型オージェ電子分光分析装置(AES)を用いて測定を行い、酸化膜11の表面のCr、O、及びFeの原子%を算出する。そして、酸化膜11の表面のうち、5箇所について、走査型オージェ電子分光分析装置による測定を行い、得られた結果を平均することにより、Cr/O値(Crの原子%/Oの原子%)及びCr/Fe値(Crの原子%/Feの原子%)を算出することができる。なお、第2実施形態においては、走査型オージェ電子分光分析装置を用いた測定により得られたピークのうち、510~535eVのピークをCrのピークとし、485~520eVのピークをOのピークとし、570~600eVのピークをFeのピークとし、これらCr,O,Feの合計を100原子%として、Cr、O、及びFeの原子%を測定する。
 第2実施形態の改質工程では、ステンレス鋼材10の酸化膜11において、オージェ電子分光分析によるCr/O値及びCr/Fe値を上記範囲とする方法としては、たとえば、造膜工程を経たステンレス鋼材10を、硫酸水溶液に浸漬させる方法が挙げられる。
 改質工程においてステンレス鋼材10を硫酸水溶液に浸漬させる場合には、硫酸水溶液の硫酸濃度は、好ましくは20~25体積%である。また、ステンレス鋼材10を浸漬させる際の温度は、好ましくは50~70℃、より好ましくは60~70℃である。さらに、ステンレス鋼材10を硫酸水溶液に浸漬させる時間は、好ましくは3~600秒、より好ましくは5~300秒である。
 第2実施形態によれば、改質工程において、ステンレス鋼材10を硫酸水溶液に浸漬させる方法を用いる場合に、硫酸濃度、温度、及び浸漬時間の条件を上記範囲とすることにより、ステンレス鋼材10の表面の酸化膜11の一部が除去されるとともに、ステンレス鋼材10上に、表面のオージェ電子分光分析によるCr/O値及びCr/Fe値が上述した範囲に制御されたステンレス鋼材表面を得ることができる。
 なお、第2実施形態では、増膜工程により酸化膜11が増膜したステンレス鋼材10は、上述した改質工程を経ることにより、通常、酸化膜11が減膜する。たとえば、図3に示す例では、走査型オージェ電子分光分析装置(AES)により測定して得たグラフを参照すると、ステンレス鋼材10の表面から、酸素(O)の原子濃度が鉄(Fe)の原子濃度より小さくなる深さまでを酸化膜11の厚みとした場合に、酸化膜11の厚みは、増膜工程を経た状態では6.2nmであったものが、改質工程を経ることで2.7nmまで減膜する。
<金属めっき工程>
 次いで、改質工程により改質を行ったステンレス鋼材10について、上述した第1実施形態と同様にして、金属めっきを施し、表面に金属めっき層20を形成する金属めっき工程の処理を行う。金属めっき工程によりステンレス鋼材10に金属めっき処理を施し、酸化膜11上に金属めっき層20を形成することにより、金属めっき被覆ステンレス材1を得ることができる。
 第2実施形態によれば、基板として準備したステンレス鋼材10について、表面に自然に生成した酸化膜11の厚みのばらつき(すなわち、ステンレス鋼材の個体差に基づく酸化膜11の厚みばらつきや、一のステンレス鋼材の同一面内における酸化膜11の厚みばらつき)によらず、減膜工程及び増膜工程により、酸化膜11の厚みを均一なものとすることができる。具体的には、未処理の状態のステンレス鋼材10について、酸化膜11の厚みがばらついていたとしても、ステンレス鋼材10の酸化膜11は、減膜工程により減膜した後、増膜工程により増膜することで、ステンレス鋼材10の表面に生成した酸化膜11の厚みの個体差やばらつきによらず、均一な厚みに調整される。
 そして、第2実施形態では、このように厚みが均一化された酸化膜11に対して、上述した改質工程を行うことで、酸化膜11を金属めっき処理に適した状態とすることができ、その後の金属めっき工程にて、厚みが薄く且つ均一な金属めっき層20を形成できるようになる。
 これにより、第2実施形態では、ステンレス鋼材10の表面に生成した酸化膜11のばらつきによらず、厚みが均一で金属めっき処理に適した酸化膜11が形成され、このような酸化膜11上に、厚みが薄く且つ均一な金属めっき層20が形成される。その結果、第2実施形態によれば、金属めっき層20の密着性及び耐食性に優れた金属めっき被覆ステンレス材1を製造することができる。
 また、第2実施形態の金属めっき被覆ステンレス材1は、上述した第1実施形態と同様に、コネクタ、スイッチ、もしくはプリント配線基板などに用いられる電気接点材料として用いることができるほか、燃料電池用セパレータとして用いることもできる。第2実施形態の金属めっき被覆ステンレス材1によれば、上述したように、被覆率及び密着性に優れた金属めっき層20が形成されているため、燃料電池用セパレータとしても好適に用いることができる。
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。
 なお、実施例及び比較例にて得られた金属めっき被覆ステンレス材1の評価方法は、以下のとおりである。
<接触抵抗値の測定>
 金属めっき被覆ステンレス材1について、図4に示す測定系を用いて、接触抵抗値の測定を行った。なお、図4に示す測定系は、2枚の金属めっき被覆ステンレス材1と、金めっき被覆された銅電極2と、電圧計3と、電流計4とから構成される。接触抵抗値の測定は、具体的には、まず、金属めっき被覆ステンレス材1を幅20mm、長さ20mm、厚さ0.1mmの大きさに加工し、図4に示すように、金属めっき被覆ステンレス材1を2枚重ねあわせたものを、金めっき被覆された銅電極2によって両側から挟んで固定することで、図4に示す測定系とした。次いで、金めっき被覆された銅電極2に一定の荷重を加えながら、抵抗計(日置電機社製、ミリオームハイテスタ3540)を用いて、試験片の接触抵抗値を測定した。
《実施例1》
 まず、ステンレス鋼材10としてSUS316Lの板を準備した。次いで、準備したステンレス鋼材10について水洗及び脱脂した後、塩酸濃度:20wt%の塩酸水溶液に、温度:60℃、浸漬時間:60秒の条件で浸漬させる処理(酸性溶液で処理する酸処理工程の処理)を行うことで、ステンレス鋼材10の表面に酸化膜11を形成した。
 次いで、酸化膜11を形成したステンレス鋼材10を水洗した後、硝酸濃度:20wt%の硝酸水溶液に、温度:30℃、浸漬時間:3秒の条件で浸漬させる処理(エッチング工程の処理)を行うことで、ステンレス鋼材10の表面の酸化膜11を減膜した。
 その後、酸化膜11を減膜したステンレス鋼材10を水洗した後、硫酸濃度:25体積%の硫酸水溶液に、温度:70℃、浸漬時間:5秒の条件で浸漬させる処理(金属めっき処理に適した状態に改質する改質工程の処理)を行うことにより、ステンレス鋼材10の表面の酸化膜11を改質した。
 そして、酸化膜11を改質したステンレス鋼材10を水洗した後に、無電解パラジウム合金めっき浴を用いて、38℃、pH5.5、4分間の条件で無電解めっきする処理(金属めっき工程の処理)を行うことにより、酸化膜11上に、厚さ約40nmの金属めっき層20を形成し、金属めっき被覆ステンレス材1を得た。
 次いで、得られた金属めっき被覆ステンレス材1について、上述した方法にしたがって、接触抵抗の測定を行った。さらに、金属めっき被覆ステンレス材1を、温度250℃の環境にて1時間保管する熱処理を施し、再度、接触抵抗の測定を行った。結果を表1に示す。
《実施例2》
 まず、ステンレス鋼材10としてSUS316Lを準備した。次いで、準備したステンレス鋼材10について水洗及び脱脂した後、フッ化水素アンモニウム濃度:3wt%のフッ化水素アンモニウム水溶液に、温度:30℃、浸漬時間:60秒の条件で浸漬させる処理(減膜工程の処理)を行うことで、ステンレス鋼材10の表面の酸化膜11を減膜した。
 次いで、酸化膜11を減膜したステンレス鋼材10を水洗した後、硝酸濃度:20wt%の硝酸水溶液に、温度:30℃、浸漬時間:3秒の条件で浸漬させる処理(増膜工程の処理)を行うことで、ステンレス鋼材10の表面の酸化膜11を増膜した。
 その後、酸化膜11を増膜したステンレス鋼材10を水洗した後、硫酸濃度:25体積%の硫酸水溶液に、温度:70℃、浸漬時間:5秒の条件で浸漬させる処理(改質工程の処理)を行うことにより、ステンレス鋼材10の表面の酸化膜11を改質した。
 そして、酸化膜11を改質したステンレス鋼材10を水洗した後に、無電解パラジウム合金めっき浴を用いて、pH5.5、38℃、4分間の条件で無電解めっきする処理(金属めっき工程の処理)を行うことにより、酸化膜11上に、厚さ約40nmの金属めっき層20を形成し、金属めっき被覆ステンレス材1を得た。
 次いで、得られた金属めっき被覆ステンレス材1について、上述した方法にしたがって、接触抵抗の測定を行った。さらに、金属めっき被覆ステンレス材1を、温度250℃の環境にて1時間保管する熱処理を施し、再度、接触抵抗の測定を行った。結果を表1に示す。
《実施例3》
 まず、ステンレス鋼材10としてSUS316Lを準備した。次いで、準備したステンレス鋼材10について水洗及び脱脂した後、塩酸濃度:18wt%と硝酸濃度:1wt%の塩酸と硝酸を混ぜた水溶液に、温度:40℃、浸漬時間:15秒の条件で浸漬させる処理(減膜工程の処理)を行うことで、ステンレス鋼材10の表面の酸化膜11を減膜した。
 次いで、酸化膜11を減膜したステンレス鋼材10を水洗した後、硝酸濃度:20wt%の硝酸水溶液に、温度:30℃、浸漬時間:3秒の条件で浸漬させる処理(増膜工程の処理)を行うことで、ステンレス鋼材10の表面の酸化膜11を増膜した。
 その後、酸化膜11を増膜したステンレス鋼材10を水洗した後、硫酸濃度:25体積%の硫酸水溶液に、温度:70℃、浸漬時間:5秒の条件で浸漬させる処理(改質工程の処理)を行うことにより、ステンレス鋼材10の表面の酸化膜11を改質した。
 そして、酸化膜11を改質したステンレス鋼材10を水洗した後に、無電解パラジウム合金めっき浴を用いて、pH5.5、38℃、4分間の条件で無電解めっきする処理(金属めっき工程の処理)を行うことにより、酸化膜11上に、厚さ約40nmの金属めっき層20を形成し、金属めっき被覆ステンレス材1を得た。
 次いで、得られた金属めっき被覆ステンレス材1を、温度250℃の環境にて1時間保管する熱処理を施し、上述した方法にしたがって、接触抵抗の測定を行った。結果を表1に示す。
《比較例1》
 ステンレス鋼材10を塩酸水溶液に浸漬させる処理(酸性溶液で処理する酸処理工程の処理)を行わなかった以外は、実施例1と同様にして金属めっき被覆ステンレス材を作製し、同様に接触抵抗の測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、上述した酸性溶液で処理する酸処理工程、エッチング工程及び金属めっき処理に適した状態に改質する改質工程を経て金属めっき被覆ステンレス材1を作製した実施例1においては、熱処理前の接触抵抗値と、熱処理後の接触抵抗値とが、いずれも4.1mΩであり、熱処理を加えても接触抵抗値が変化しないことが確認された。また、表1の結果より、上述した減膜工程、増膜工程及び改質工程を経て金属めっき被覆ステンレス材1を作製した実施例2においては、熱処理前の接触抵抗値が5.4mΩであるのに対し、熱処理後の接触抵抗値が6.1mΩであり、熱処理を加えても接触抵抗値がほとんど変化しないことが確認された。同様に、表1の結果より、上述した減膜工程、増膜工程及び改質工程を経て金属めっき被覆ステンレス材1を作製した実施例3においては、熱処理後の接触抵抗値が4.0mΩであり、熱処理を加えても接触抵抗値が低いことが確認された。なお、金属めっき被覆ステンレス材1において、金属めっき層20の形成が不十分であり、ステンレス鋼材10の一部が露出している場合には、熱処理により、ステンレス鋼材10の露出部分に、酸化クロムや、酸化鉄が形成され、金属めっき被覆ステンレス材1の接触抵抗値は上昇することとなる。これに対し、実施例1,2の金属めっき被覆ステンレス材1は、熱処理を加えた場合にも、接触抵抗値が上昇していないため、ステンレス鋼材10が露出することなく、良好に金属めっき層20が形成されていることが確認された。また、実施例3の金属めっき被覆ステンレス材1は、熱処理を加えた場合であっても、低い接触抵抗値を維持することができているため、ステンレス鋼材10が露出することなく、良好に金属めっき層20が形成されていることが確認された。
 一方、表1の結果より、酸性溶液で処理する酸処理工程を経ずに金属めっき被覆ステンレス材を作製した比較例1においては、熱処理前の接触抵抗値が5.8mΩであるのに対し、熱処理後の接触抵抗値が60.1mΩであり、熱処理によって接触抵抗値が増加したことが確認された。これにより、酸性溶液で処理する工程を経ずに作製された金属めっき被覆ステンレス材1は、ステンレス鋼材10の露出に起因する接触抵抗値の上昇がみられるため、金属めっき層20の形成が不十分であることが確認された。
1…金属めっき被覆ステンレス材
 10…ステンレス鋼材
  11…酸化膜
 20…金属めっき層

Claims (10)

  1.  ステンレス鋼材を、酸性溶液で処理する酸処理工程と、
     前記酸処理工程後のステンレス鋼材をエッチング処理剤により処理するエッチング工程と、
     前記ステンレス鋼材の表面を、金属めっき処理に適した状態に改質する改質工程と、を有する金属めっき被覆ステンレス材の製造方法。
  2.  前記酸処理工程において、前記ステンレス鋼材を前記酸性溶液で処理することで、ステンレス鋼材の表面に前記酸性溶液での処理前から存在する不動態膜より低密度の酸化膜を形成する請求項1に記載の金属めっき被覆ステンレス材の製造方法。
  3.  前記酸処理工程において、前記ステンレス鋼材を前記酸性溶液で処理することで、前記ステンレス鋼材の表面における前記不動態膜を含む酸化膜を、前記酸処理工程前と比較して増膜する請求項2に記載の金属めっき被覆ステンレス材の製造方法。
  4.  前記酸性溶液として、塩酸、フッ化水素アンモニウム、硫酸及び硝酸のうちいずれか1種又はこれらの混合物を含む溶液を用いる請求項1~3の何れか一項に記載の金属めっき被覆ステンレス材の製造方法。
  5.  前記エッチング処理剤として、硝酸及び硫酸のうちいずれか1種又はこれらの混合物を用いる請求項1~4の何れか一項に記載の金属めっき被覆ステンレス材の製造方法。
  6.  ステンレス鋼材の表面に生成した酸化膜を、エッチング剤により減膜する減膜工程と、
     前記減膜した酸化膜を、酸化処理剤により増膜する増膜工程と、
     前記ステンレス鋼材の表面を、金属めっき処理に適した状態に改質する改質工程と、を有する金属めっき被覆ステンレス材の製造方法。
  7.  前記エッチング剤として、フッ化水素アンモニウム、硫酸、硝酸及び塩酸のうちいずれか1種又はこれらの混合物を用いる請求項6に記載の金属めっき被覆ステンレス材の製造方法。
  8.  前記酸化処理剤として、硝酸及び硫酸のうちいずれか1種又はこれらの混合物を用いる請求項6又は7に記載の金属めっき被覆ステンレス材の製造方法。
  9.  前記改質工程において、前記ステンレス鋼材を、硫酸濃度が20~25体積%である硫酸水溶液に、50~70℃の温度で5~600秒間浸漬させる処理を行う請求項1~8の何れか一項に記載の金属めっき被覆ステンレス材の製造方法。
  10.  前記改質工程の後に、前記ステンレス鋼材に金属めっき処理を施す金属めっき工程をさらに有する請求項1~9の何れか一項に記載の金属めっき被覆ステンレス材の製造方法。
PCT/JP2015/083992 2014-12-12 2015-12-03 金属めっき被覆ステンレス材の製造方法 WO2016093145A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15867548.8A EP3231893B1 (en) 2014-12-12 2015-12-03 Method for producing metal-plated stainless steel material
CN201580067709.6A CN107002240B (zh) 2014-12-12 2015-12-03 镀金属覆盖不锈钢材料的制造方法
CA2969897A CA2969897A1 (en) 2014-12-12 2015-12-03 Method for producing metal-plated stainless material
US15/533,287 US10287689B2 (en) 2014-12-12 2015-12-03 Method for producing metal-plated stainless material
KR1020177016851A KR20170095880A (ko) 2014-12-12 2015-12-03 금속 도금 피복 스텐레스재의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-251505 2014-12-12
JP2014251505 2014-12-12
JP2014-251504 2014-12-12
JP2014251504A JP6574568B2 (ja) 2014-12-12 2014-12-12 金属めっき被覆ステンレス材の製造方法

Publications (1)

Publication Number Publication Date
WO2016093145A1 true WO2016093145A1 (ja) 2016-06-16

Family

ID=56107333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083992 WO2016093145A1 (ja) 2014-12-12 2015-12-03 金属めっき被覆ステンレス材の製造方法

Country Status (6)

Country Link
US (1) US10287689B2 (ja)
EP (1) EP3231893B1 (ja)
KR (1) KR20170095880A (ja)
CN (1) CN107002240B (ja)
CA (1) CA2969897A1 (ja)
WO (1) WO2016093145A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11312048B2 (en) * 2017-01-10 2022-04-26 Guangdong Everwin Precision Technology Co., Ltd. Surface treatment method of material, material product and composite material
JP2020020025A (ja) 2018-08-03 2020-02-06 東京エレクトロン株式会社 金属汚染防止方法及び金属汚染防止装置、並びにこれらを用いた基板処理方法及び基板処理装置
US10868384B1 (en) * 2019-06-07 2020-12-15 Northrop Grumman Systems Corporation Self-insulating contacts for use in electrolytic environments
WO2022114671A1 (ko) * 2020-11-24 2022-06-02 주식회사 포스코 표면 친수성 및 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974269A (ja) * 1983-09-13 1984-04-26 Zojirushi Vacuum Bottle Co ステンレス鋼への銀メツキ方法
JPS61243193A (ja) * 1985-04-18 1986-10-29 Nisshin Steel Co Ltd ステンレス鋼に純金めつきする方法
JPS63195291A (ja) * 1987-02-06 1988-08-12 Kansai Plant Kogyo:Kk 金めつき容器類、その製造方法及び製造装置
JPH06158384A (ja) * 1992-11-26 1994-06-07 Misuzu Kogyo:Kk ステンレス材の金メッキ方法
US5433839A (en) * 1992-06-12 1995-07-18 Ugine S.A. Process for the manufacture of a coated stainless steel sheet
JP2011102411A (ja) * 2009-11-10 2011-05-26 Sumitomo Metal Ind Ltd 導電性を有するステンレス鋼材とその製造方法
WO2014199526A1 (ja) * 2013-06-13 2014-12-18 東洋鋼鈑株式会社 金めっき被覆ステンレス材、および金めっき被覆ステンレス材の製造方法
WO2015041132A1 (ja) * 2013-09-20 2015-03-26 東洋鋼鈑株式会社 金属めっき被覆ステンレス材、および金属めっき被覆ステンレス材の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2665231A (en) * 1949-06-17 1954-01-05 Parker Rust Proof Co Coating process with alkali metal phosphate and added fluoride salt
US3290174A (en) * 1961-10-09 1966-12-06 Rohr Corp Two-stage process for derusting and protecting the surfaces of ferrous materials
US3879237A (en) * 1973-01-16 1975-04-22 Amchem Prod Coating compositions for stainless steels
JP4976727B2 (ja) 2006-04-04 2012-07-18 トヨタ自動車株式会社 表面処理方法、燃料電池用セパレータおよび燃料電池用セパレータの製造方法
JP2008004498A (ja) 2006-06-26 2008-01-10 Mitsubishi Materials Corp 酸化性環境下に長期間さらされても接触抵抗が増加することの少ない複合層被覆金属板
US8530589B2 (en) 2007-05-04 2013-09-10 Kovio, Inc. Print processing for patterned conductor, semiconductor and dielectric materials
SG2012070850A (en) * 2007-10-01 2014-04-28 Kovio Inc Profile engineered thin film devices and structures
KR101266096B1 (ko) 2010-10-20 2013-05-27 가부시키가이샤 네오맥스 마테리아르 연료 전지용 세퍼레이터 및 그 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974269A (ja) * 1983-09-13 1984-04-26 Zojirushi Vacuum Bottle Co ステンレス鋼への銀メツキ方法
JPS61243193A (ja) * 1985-04-18 1986-10-29 Nisshin Steel Co Ltd ステンレス鋼に純金めつきする方法
JPS63195291A (ja) * 1987-02-06 1988-08-12 Kansai Plant Kogyo:Kk 金めつき容器類、その製造方法及び製造装置
US5433839A (en) * 1992-06-12 1995-07-18 Ugine S.A. Process for the manufacture of a coated stainless steel sheet
JPH06158384A (ja) * 1992-11-26 1994-06-07 Misuzu Kogyo:Kk ステンレス材の金メッキ方法
JP2011102411A (ja) * 2009-11-10 2011-05-26 Sumitomo Metal Ind Ltd 導電性を有するステンレス鋼材とその製造方法
WO2014199526A1 (ja) * 2013-06-13 2014-12-18 東洋鋼鈑株式会社 金めっき被覆ステンレス材、および金めっき被覆ステンレス材の製造方法
WO2015041132A1 (ja) * 2013-09-20 2015-03-26 東洋鋼鈑株式会社 金属めっき被覆ステンレス材、および金属めっき被覆ステンレス材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3231893A4 *

Also Published As

Publication number Publication date
US20170327953A1 (en) 2017-11-16
EP3231893B1 (en) 2021-03-31
EP3231893A1 (en) 2017-10-18
CN107002240A (zh) 2017-08-01
KR20170095880A (ko) 2017-08-23
CA2969897A1 (en) 2016-06-16
US10287689B2 (en) 2019-05-14
EP3231893A4 (en) 2018-09-05
CN107002240B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
JP6495172B2 (ja) 金属めっき被覆ステンレス材、および金属めっき被覆ステンレス材の製造方法
WO2016093145A1 (ja) 金属めっき被覆ステンレス材の製造方法
JP6220393B2 (ja) 金めっき被覆ステンレス材、および金めっき被覆ステンレス材の製造方法
JPWO2015064529A1 (ja) 合金めっき被覆材料、および合金めっき被覆材料の製造方法
JP2016166397A (ja) 錫めっき銅合金端子材及びその製造方法並びに電線端末部構造
JP6574568B2 (ja) 金属めっき被覆ステンレス材の製造方法
JP5190726B2 (ja) ステンレス鋼製導電性部材およびその製造方法
JP6628585B2 (ja) 金属めっき被覆ステンレス材の製造方法
CN107851811B (zh) 燃料电池用通电构件、燃料电池单元、燃料电池堆和燃料电池用通电构件的制造方法
JP6848022B2 (ja) 金属めっき被覆ステンレス材の製造方法
JP6199086B2 (ja) パラジウムめっき被覆材料、およびパラジウムめっき被覆材料の製造方法
JP7407615B2 (ja) ステンレス鋼、接点用部材およびステンレス鋼の製造方法
JP5315571B2 (ja) ステンレス鋼製導電性部材およびその製造方法
JP2009084590A (ja) 金属めっきステンレス鋼板材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867548

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15533287

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2969897

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015867548

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177016851

Country of ref document: KR

Kind code of ref document: A