WO2016090963A1 - 一种锂离子电容器的制作方法及锂离子电容器 - Google Patents

一种锂离子电容器的制作方法及锂离子电容器 Download PDF

Info

Publication number
WO2016090963A1
WO2016090963A1 PCT/CN2015/088354 CN2015088354W WO2016090963A1 WO 2016090963 A1 WO2016090963 A1 WO 2016090963A1 CN 2015088354 W CN2015088354 W CN 2015088354W WO 2016090963 A1 WO2016090963 A1 WO 2016090963A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
discharge
ion capacitor
lithium
charging
Prior art date
Application number
PCT/CN2015/088354
Other languages
English (en)
French (fr)
Inventor
阮殿波
曾福娣
傅冠生
Original Assignee
宁波南车新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波南车新能源科技有限公司 filed Critical 宁波南车新能源科技有限公司
Publication of WO2016090963A1 publication Critical patent/WO2016090963A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to the field of lithium ion capacitors, and more particularly to a method for fabricating a lithium ion capacitor and a lithium ion capacitor.
  • Lithium-ion capacitors are a new type of typical energy storage device that combines lithium-ion batteries with electric double-layer supercapacitors. It combines the high specific energy of lithium-ion capacitors with the high specific power and long life of supercapacitors. Green energy and other fields have broad application prospects.
  • the production of lithium ion capacitors generally adopts the method of Fuji Heavy Industries invention patent CN101138058B, that is, lithium metal is used as a lithium source, and a metal foil having a through hole is used as a current collector, and lithium metal is placed at a relative position of the negative electrode, and short-circuited. The lithium metal and the negative electrode are discharged by using a potential difference between the lithium metal and the negative electrode to embed lithium into the negative electrode.
  • the method can obtain a large-capacity large-scale power storage device with high energy density and high output density, and has good charging and discharging characteristics, but has the following problems: (1) The chemical properties of the lithium foil are extremely active, so that the production of the lithium ion capacitor requires environmental requirements. Extremely high; (2) the amount of lithium needs to be precisely controlled, and the amount of lithium is too small to improve the voltage. The excessive amount of lithium will cause a large safety hazard to the monomer, so the uniformity of the monomer is better. Poor; (3) The manufacturing process of lithium ion capacitors is complicated, and the use of key raw materials such as lithium metal and porous current collectors makes the cost of lithium ion capacitors high.
  • the existing process also adopts the above lithium ion capacitor structure, but the short circuit of the short circuit of the negative electrode and the lithium metal is replaced by a lithium-ion battery in the charge and discharge tester, and the lithium ion is embedded in the discharge or charge and discharge cycle.
  • Negative carbon material this method may improve the performance of the lithium ion capacitor monomer, but can not solve the problems of safety, production cost and the like.
  • Chinese Patent No. CN102385991A discloses a method for manufacturing a lithium ion capacitor and a lithium ion capacitor manufactured by the same.
  • the invention forms a lithium thin film by vacuum vapor deposition on one surface of the separator, and the lithium thin film is opposed to the negative electrode in the lithium thin film.
  • Li + is pre-embedded in the negative electrode Compared with the method of Fuji Heavy Industries, the method has the following advantages: (1) since the lithium film is in direct contact with the negative electrode to perform pre-intercalation of lithium in a subsequent process, it is not necessary to use a through-hole current collector, which can reduce the internal resistance of the product; (2) This method can conveniently control the amount of lithium, and the safety is improved; (3) each layer of the negative electrode is directly in contact with the lithium film to impart lithium, which can greatly shorten the pre-tapping time. This method is theoretically feasible, but its practical feasibility remains to be verified.
  • the grade metal lithium powder is a lithium source, which is mixed with hard carbon and then made into a negative electrode by a dry process, and activated carbon is a positive electrode assembled into a lithium ion capacitor monomer.
  • activated carbon is a positive electrode assembled into a lithium ion capacitor monomer.
  • the invention can effectively solve the problem of excessive cost caused by lithium metal and porous current collector. It can improve safety and simplify the process, suitable for industrial mass production.
  • the present invention is achieved by the following technical solutions: To achieve the above object, the present invention provides a method for fabricating a lithium ion capacitor and a lithium ion capacitor, the production steps are as follows:
  • the positive electrode and the negative electrode are respectively connected to the charge and discharge tester, and one discharge is performed as one cycle after one charge, and a total of 1-100 cycles are performed to complete pre-intercalation of lithium to the negative electrode;
  • the battery core after the pre-intercalation of lithium is taken out, placed in a package, and the electrolyte is injected and assembled into a lithium ion capacitor unit.
  • the above positive electrode active material may be a porous carbon material or a conductive polymer and a composite thereof.
  • the positive active material may be activated carbon, the activated carbon has a high specific surface area, and the obtained lithium ion capacitor has a high capacity.
  • the material of the positive electrode may be at least one of a porous carbon material such as activated carbon fiber, carbon aerogel, carbon nanotube, and wave state carbon, or a polymer such as polyaniline, polythiophene, or polyphenylacetylene. In practical applications, a suitable material can be selected as the positive electrode active material as needed.
  • the above negative active material may be a lithium intercalable carbon material or a lithium intercalable metal oxide or a conductive polymer and a composite thereof.
  • the negative electrode active material may be a natural graphite, artificial graphite, coke, mesocarbon microbeads, hard carbon, or the like, or a lithium intercalable carbon material or a lithium intercalation metal oxide or polyacene oxide such as tin oxide, lithium titanate or titanium dioxide. At least one of the electrically conductive polymers. In practical applications, a suitable material can be selected as the negative electrode active material as needed.
  • the positive electrode current collector may be a foil or a mesh of a metal such as aluminum, stainless steel, iron, nickel or the like, and the foil used may be porous or non-porous.
  • the anode current collector may be a foil or a mesh of a metal such as copper, stainless steel, iron, nickel or the like, and the foil used may be porous or non-porous.
  • the lithium salt used above may be LiPF 6 , LiBF 4 , LiClO 4 , LiAlO 4 , LiOH, Li 2 CO 3 , CH 3 COOLi, LiNO 3 , LiB(C 2 O 4 ) 2 , LiP (C 6 H 4 O 2 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiN(SO 2 CF 3 ) 2 is one or more of soluble in a lithium salt of an organic solvent.
  • the organic solution contains at least one of PC, EC, DEC, DMC, DMF, DME, THF, and SL.
  • the positive electrode and the negative electrode are connected in such a manner that the positive electrode and the negative electrode are connected by a charge and discharge device.
  • a series connection of resistors can be added to the entire circuit, or it can be directly connected without a resistor.
  • the battery core immersed in the lithium salt organic solution is subjected to a charge ⁇ discharge or charge ⁇ self-discharge cycle operation, and both the charge current and the discharge current are constant currents.
  • the constant current may be a current value corresponding to a 0.01 C to 10 C rate calculated based on the positive electrode mass or the negative electrode mass or the cell mass.
  • the number of cycles of the charge and discharge cycle operation is 1 to 100 times, and the highest cutoff voltage of the charge is between 3.6 V and 4.2 V, and the charge cutoff voltage in each cycle may be the same or different.
  • the charging currents in each cycle may be the same or different; the discharge currents in each cycle may be the same or different. There may be a constant pressure process after each charging process, or a constant pressure process may not be performed.
  • the self-discharge time in each cycle is 1 min to 10 h, and the self-discharge time in each cycle may be the same or different.
  • the cyclic charge and discharge treatment is carried out under constant temperature conditions, and the temperature is constant at 0 to 60 °C.
  • Lithium-ion capacitors generate a certain amount of heat during charging and discharging, which causes the temperature of the capacitor cell to rise. If the temperature of the capacitor cell is not controlled, the temperature rises to a certain temperature, which will cause the electrolyte in the capacitor cell to decompose, resulting in a large amount of The gas, the gas generated will impact the assembled lithium ion capacitor cell, damaging the cell diaphragm and the pole piece.
  • the charging and discharging process under lower temperature conditions can effectively suppress the decomposition of the electrolyte in the capacitor cell, reduce or even eliminate the generation of gas, and protect the separator and the pole piece of the capacitor cell from damage.
  • the charging system in the cyclic discharge treatment is as follows:
  • Pre-charging stage when the capacitor voltage is below 3V, charging with a small current with a charging rate of 0.01 to 0.05C;
  • the discharge system is as follows:
  • the first discharge phase when the capacitor voltage is greater than 3.5V and less than or equal to the highest cutoff voltage, the discharge current is discharged at a rate of 1 to 2C;
  • the pre-charging phase uses a small current charge to achieve a higher voltage in a stable state of the capacitor. Constant The large-rate charging can make the capacitor reach a higher voltage quickly, and the cut-off voltage of the lithium-ion capacitor is 3.6-4.2V. After the large-rate constant-current charging reaches 3.5V, the charging of the small-rate can prevent the voltage of the lithium-ion capacitor. Exceeding the cut-off voltage to prevent capacitor performance degradation. After the capacitor voltage reaches the cutoff voltage, constant voltage charging is required to continue to increase the capacitor capacity, but the voltage is prevented from being too high.
  • discharge with higher discharge rate can discharge as soon as possible with the performance of the capacitor; at the end of discharge, a smaller discharge rate can prevent the voltage of the capacitor during discharge from being lower than that of the capacitor. The lowest voltage prevents damage to the capacitor due to excessive discharge and low voltage.
  • the separator is a polypropylene-based composite separator
  • the polypropylene-based composite separator is prepared from 80-85 wt% polypropylene, 10-15 wt% natural cellulose pulp. 3-5 wt% of aged stone powder, 0.5-1.5 wt% of a silane coupling agent; the above materials are uniformly mixed, and the polypropylene-based composite separator is obtained by a dry process.
  • the natural cellulose pulp in the polypropylene-based composite separator is prepared as follows:
  • the solid filtrate is beaten and concentrated by a beater to obtain a natural cellulose slurry having a solid content of 60 to 70% by weight.
  • the natural cellulose slurry prepared by the above method contains a large amount of natural cellulose, and the natural cellulose has the characteristics of good hygroscopicity and good thermal stability, and a small amount of natural cellulose combined with polypropylene can improve polypropylene. Hygroscopicity and thermal stability enhance the absorption retention of the electrolyte to improve the rate performance and cycle performance of the product.
  • natural cellulose and polypropylene are combined to produce cross-linking, which also enhances the tensile strength and anti-sting strength of the separator to some extent.
  • the above-mentioned packaging shell may be an aluminum molded shell or an aluminum shell or a steel shell; the monomers may be in the form of flakes or square or round.
  • Figure 1 is a schematic diagram of a specific capacity test of a capacitor
  • the ordinate is the specific capacitance of the capacitor measured by different discharge currents
  • the abscissa is the discharge current
  • a method for fabricating a lithium ion capacitor is as follows:
  • a slurry containing activated carbon as an active material adheres to a non-porous aluminum foil as a positive electrode, and a slurry of a mesophase carbon microsphere as an active material adheres to a non-porous copper foil as a negative electrode, and a PP/PE/PP three-layer polymer
  • the battery is laminated into a battery according to the separator, the negative electrode, the separator and the positive electrode, and is fixed by a tape, and the positive current collector and the negative current collector are respectively welded to the positive and negative electrode tabs or the lead terminals;
  • the battery cells in the step (3) are taken out, placed in an aluminum plastic case, and an electrolyte is injected to assemble a flexible package monomer.
  • a method for fabricating a lithium ion capacitor is as follows:
  • a slurry containing activated carbon as an active material adheres to a non-porous aluminum foil as a positive electrode, a slurry of artificial graphite as an active material adheres to a non-porous copper foil as a negative electrode, and a PP/PE/PP three-layer polymer serves as a separator.
  • a slurry containing activated carbon as an active material adheres to a non-porous aluminum foil as a positive electrode
  • a slurry of artificial graphite as an active material adheres to a non-porous copper foil as a negative electrode
  • a PP/PE/PP three-layer polymer serves as a separator.
  • the battery cells in the step (3) are taken out, placed in a square aluminum case, and an electrolyte is injected to assemble a square monomer.
  • a method for fabricating a lithium ion capacitor is as follows:
  • a slurry containing activated carbon as an active material adheres to a porous aluminum foil as a positive electrode, a slurry in which a hard carbon is an active material adheres to a porous copper foil as a negative electrode, and a single-layer PP polymer film serves as a separator, according to a separator, a negative electrode,
  • the separator and the positive electrode are wound into a battery core and fixed by a tape, and the positive electrode current collector and the negative electrode current collector are respectively welded to the positive and negative electrode tabs or the lead terminals;
  • the circuit is charged to 3.8V with a constant current of 0.2C, and then the circuit is naturally discharged for a certain period of time, so that it is repeatedly subjected to 50 charging/self-discharge pulse period processing (in which the self-discharge time of the first to tenth cycles is 0.5h, The self-discharge time of the 11th to 20th cycles is 1h, the self-discharge time of the 21st to 30th cycles is 1.5h, the self-discharge time of the 31st to 40th cycles is 2h, and the self-discharge time of the 40th to 50th cycles For 3h);
  • the battery cells in the step (3) are taken out, placed in a circular aluminum casing, and an electrolyte is injected to assemble a circular monomer.
  • a method for fabricating a lithium ion capacitor is as follows:
  • a slurry containing activated carbon as an active material adheres to a non-porous aluminum foil as a positive electrode, a slurry of a mesophase carbon microsphere as an active material adheres to a non-porous copper foil as a negative electrode, and a polypropylene-based natural fiber composite material is a separator.
  • the charging system is as follows:
  • the discharge system is as follows:
  • the first discharge phase when the capacitor voltage is greater than 3.5V and less than or equal to 4.2V, the discharge current is discharged at a rate of 1C rate;
  • the battery cells in the step (3) are taken out, placed in an aluminum plastic case, and an electrolyte is injected to assemble a flexible package monomer.
  • a method for fabricating a lithium ion capacitor is as follows:
  • a slurry containing activated carbon as an active material adheres to a non-porous aluminum foil as a positive electrode, a slurry of artificial graphite as an active material adheres to a non-porous copper foil as a negative electrode, and a polypropylene-based natural fiber composite material serves as a separator, according to a separator.
  • a negative electrode, a separator, and a positive electrode are laminated into a battery core, and fixed by a tape, and the positive current collector and the negative current collector are respectively welded to the positive and negative electrode tabs or the lead terminals;
  • the charging system is as follows:
  • a) pre-charging stage when the capacitor voltage is below 3V, it is charged with a small current of 0.03C;
  • the discharge system is as follows:
  • the first discharge phase when the capacitor voltage is greater than 3.5V and less than or equal to 4.2V, the discharge current is discharged at a rate of 1.5C.
  • the battery cells in the step (3) are taken out, placed in a square aluminum case, and an electrolyte is injected to assemble a square monomer.
  • a method for fabricating a lithium ion capacitor is as follows:
  • a slurry containing activated carbon as an active material adheres to a porous aluminum foil as a positive electrode, and a hard carbon is attached to a slurry of an active material.
  • a negative electrode on a porous copper foil a polypropylene-based natural fiber composite material is a separator, which is wound into a cell according to a separator, a negative electrode, a separator, and a positive electrode, and is fixed by a tape, and the positive electrode current collector and the negative electrode current collector are respectively positively and positively Welding the negative electrode tab or the lead terminal;
  • the charging system is as follows:
  • a) pre-charging stage when the capacitor voltage is below 3V, charging with a small current of 0.05C;
  • the discharge system is as follows:
  • the first discharge phase when the capacitor voltage is greater than 3.5V and less than or equal to 4.2V, the discharge current is discharged at a rate of 2C rate;
  • the battery cells in the step (3) are taken out, placed in a circular aluminum casing, and an electrolyte is injected to assemble a circular monomer.
  • a method for fabricating a lithium ion capacitor is as follows:
  • a slurry containing activated carbon as an active material adheres to a porous aluminum foil as a positive electrode, a slurry in which a hard carbon is an active material adheres to a porous copper foil as a negative electrode, and a PP/PE/PP three-layer polymer serves as a separator, and a lithium foil Tightly crimped on the copper foil as a lithium electrode, laminated into a battery according to the diaphragm, the positive electrode, the separator, the negative electrode, the separator, the lithium electrode, and the separator, and fixed with a tape, and the positive electrode current collector, the negative electrode current collector, and the lithium electrode set
  • the fluid is welded to the positive and negative poles or the lead terminals respectively;
  • a method for fabricating a lithium ion capacitor is as follows:
  • the fluid is welded to the positive and negative poles or the lead terminals respectively;
  • a method for fabricating a lithium ion capacitor is as follows:
  • a slurry containing activated carbon as an active material adheres to a porous aluminum foil as a positive electrode, a slurry in which a hard carbon is an active material adheres to a porous copper foil as a negative electrode, a single-layer PP polymer film serves as a separator, and a lithium foil is tightly crimped.
  • a lithium electrode on a copper foil it is wound into a cell according to a separator, a positive electrode, a separator, a negative electrode, a separator, a lithium electrode, and a separator, and is fixed by a tape, and the positive electrode current collector, the negative electrode current collector, and the lithium electrode current collector are respectively Welding the positive and negative poles or the lead terminals;
  • the Super capacitor FB series manufactured by NEC-tokin is commercially available.
  • the examples 1, 2, 3 and the comparative examples were charged and discharged using 1C, 5C and 10C, respectively, and the corresponding examples were charged and discharged using the methods described in Examples 4, 5 and 6, and the capacity retention ratio was recorded. 1 is shown.
  • the first lithium insertion amount can be monitored by the external connection charge and discharge tester, and the lithium insertion capacity of the capacitor can be monitored in real time. The results are shown in Table 2.
  • the lithium ion capacitor fabricated by the method of the present invention has a significantly higher specific capacity, and in the case of high current discharge, the decrease in the specific capacity of the capacitor is smaller than that of the lithium ion capacitor fabricated by the conventional process.
  • the lithium ion capacitor fabricated by the method of the present invention and the lithium ion capacitor fabricated by short-circuiting the negative electrode and the lithium electrode as a pre-intercalation lithium method can ensure a small number of cycles under each charge and discharge current.
  • High capacity, and after multiple cycles of charge and discharge, the capacitor produced by the method of the invention has higher capacity retention rate and stable results at different currents, and the degree of lithium intercalation affects the life of the capacitor and
  • the results of Table 1 illustrates the pre-intercalation lithium mode used in the present invention, can play a better role for the capacitor, ensure the basic operation of the capacitor and at the same time make the capacitor have more stable long-term performance and improve the life of the capacitor.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 First lithium insertion amount (mAh/g) 112.3 ⁇ 5.7 114.2 ⁇ 6.1 114.5 ⁇ 9.4 112.3 ⁇ 9.2 118.5 ⁇ 9.6 116.4 ⁇ 5.6

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种锂离子电容器的制作方法,步骤如下:(1)组装电芯;(2)将电芯浸入含有锂盐的有机溶液中;(3)将正极和负极分别连接充放电测试仪,以一次充电后进行一次放电作为一个循环,共进行1-100次循环,完成对负极的预嵌锂;(4)取出电芯,放入包装壳内,注入电解液并组装成锂离子电容器单体。该方法可以有效解决锂金属、多孔集流体等造成的成本过高问题,可以提高安全性,以及简化工艺流程,适用于工业大规模生产。

Description

一种锂离子电容器的制作方法及锂离子电容器 技术领域
本发明涉及锂离子电容器领域,特别是涉及一种锂离子电容器的制作方法及锂离子电容器。
背景技术
锂离子电容器是将锂离子电池与双电层超级电容器“内并”的新型典型混合储能器件,兼具锂离子电容器的高比能量与超级电容器高比功率、长寿命等优点,在军工航天、绿色能源等领域具有广泛的应用前景。目前锂离子电容器的制作一般都采用富士重工业发明专利CN101138058B中的方法,即以锂金属为锂源,使用具有通孔的金属箔为集流体,将锂金属放置于负极相对的位置,通过短接锂金属与负极,利用锂金属与负极之间的电势差放电从而将锂嵌入负极中。该方法可得到能量密度和输出密度高的大容量大型蓄电装置,并具有良好的充放电特性,但存在以下问题:(1)锂箔化学性质极为活泼,使得锂离子电容器的生产对环境要求极高;(2)锂的用量需要精准控制,锂量过少对电压的改善达不到预期效果,锂量过多又会使单体存在较大的安全隐患,因此单体的一致性较差;(3)锂离子电容器制造工艺复杂,且锂金属、多孔集流体等关键原材料的使用使得锂离子电容器的成本居高不下。
现有工艺也有采用以上锂离子电容器结构,但将短接负极与锂金属的短路放电赋锂方式改为在负极与锂金属之间连接充放电测试仪,通过放电或充放电循环将锂离子嵌入负极碳材料,该方法可能对锂离子电容器单体的性能有所提升,但无法解决安全性、生产成本等问题。
中国专利CN102385991A公开了一种制造锂离子电容器的方法以及利用其制造的锂离子电容器,此发明在隔膜的一个表面上通过真空气相沉积形成锂薄膜,使锂薄膜与负极相对,用锂薄膜中的Li+预嵌入负极。相比于富士重工的方法,该方法有如下优点:(1)由于锂薄膜与负极直接接触以在随后的过程中进行预嵌锂,因此无需使用通孔集流体,这样可降低产品内阻;(2)此方法可以较方便的控制锂的用量,安全性有所提高;(3)每层负极均与锂薄膜直接接触赋锂,可大大缩短预赋锂时间。该方法理论上可行,但其实际可行性尚有待考证。
郑剑平课题组(W.J.Cao,J.P.Zheng,Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes,Journal of Power Sources,213(2012)180-185.)使用表面具有钝化膜的纳米级金属锂粉为锂源,与硬碳混合后用干法工艺制成负极,活性炭为正极组装成锂离子电容器单体。相比富士重工使用锂金属箔的结构,该结构的锂离子电容器可在干燥房中进行制造,而无需手套箱的苛刻环境,大大增加了可操作性。
发明内容
为了解决锂离子电容器生产成本高,安全隐患大,工艺复杂的问题,我们提出了一种锂离子电容器的制作方法,采用本发明可以有效解决锂金属、多孔集流体等造成的成本过高问题,可以提高安全性,以及简化工艺流程,适用于工业大规模生产。
本发明是通过以下技术方案实现的:为实现上述目的,本发明提供一种锂离子电容器的制作方法及锂离子电容器,生产步骤如下:
(1)将负极、隔膜、正极、隔膜依次层叠或卷绕后用胶带固定组成电芯;
(2)将电芯浸入含有锂盐的有机溶液中;
(3)将正极和负极分别连接充放电测试仪,以一次充电后进行一次放电作为一个循环,共进行1-100次循环,完成对负极的预嵌锂;
(4)将预嵌锂完成后的电芯取出,放入包装壳内,注入电解液并组装成锂离子电容器单体。优选地,上述正极活性材料可以为多孔碳材料或导电聚合物及其复合物。具体的,正极活性材料可以为活性炭,活性炭具有较高的比表面积,得到的锂离子电容器容量较高。此外,正极的材质还可以为活性炭纤维、碳气凝胶、碳纳米管、波态碳等多孔碳材料或聚苯胺、聚噻吩、聚苯乙炔等聚合物中的至少一种。在实际应用中,可以根据需要选择合适的材料用作正极活性材料。
优选地,上述负极活性材料可以为可嵌锂碳材料或可嵌锂金属氧化物或导电聚合物及其复合物。具体的,负极活性材料可以为天然石墨、人造石墨、焦炭、中间相碳微球、硬炭等可嵌锂碳材料或氧化锡、钛酸锂、二氧化钛等可嵌锂金属氧化物或聚并苯等导电聚合物中的至少一种。在实际应用中,可根据需要选择合适的材料用作负极活性材料。
优选地,上述正极集流体可以为铝质、不锈钢、铁、镍等金属的箔或网状,所用的箔可以有孔或无孔。
优选地,上述负极集流体可以为铜、不锈钢、铁、镍等金属的箔或网状,所用的箔可以有孔或无孔。
优选地,上述所用的锂盐可以是LiPF6、LiBF4、LiClO4、LiAlO4、LiOH、Li2CO3、CH3COOLi、LiNO3、LiB(C2O4)2、LiP(C6H4O2)3、LiPF3(C2F5)3、LiN(SO2CF3)2可溶于有机溶剂的锂盐中的一种或多种。
优选的,上述有机溶液至少含有PC、EC、DEC、DMC、DMF、DME、THF、SL中的一种。
优选地,将正极和负极连接的方式为将正极和负极通过充放电设备进行连接。在整个回路中可以加入电阻串联连接,也可以不用电阻直接连接。
优选地,对浸入锂盐有机溶液的电芯进行充电→放电或充电→自放电循环操作,其充电电流和放电电流均为恒电流。具体的,恒电流可以为基于正极质量或负极质量或电芯质量计算的0.01C~10C倍率对应的电流值。
优选地,充放电循环操作的循环次数为1~100次,充电的最高截止电压在3.6V~4.2V之间,各个循环中的充电截止电压可以相同,也可以不同。
优选地,每次循环中的充电电流可以相同,也可以不同;每次循环中的放电电流可以相同,也可以不同。在每次充电过程结束后可有一段恒压过程,也可不进行恒压过程。
优选地,每个循环中自放电时间为1min~10h,且各个循环中的自放电时间可以相同,也可以不同。
优选地,循环充放电处理在恒温条件下进行,温度恒定为0~60℃。
锂离子电容器在充放电过程中会产生一定的热量,使得电容器电芯的温度上升,如果不对电容器电芯温度进行控制,升温到一定温度,会使电容器电芯中的电解液发生分解,产生大量气体,产生的气体会冲击已经组装好的锂离子电容器电芯,损坏电芯隔膜和极片。在较低温度条件下进行充放电过程,可以有效抑制电容器电芯中电解液的分解,减少甚至杜绝气体的产生,保护电容器电芯的隔膜和极片不受损伤。
优选地,循环放电处理中充电制度如下:
(1)预充电阶段:在电容器电压在3V以下时,采用充电倍率为0.01~0.05C的小电流充电;
(2)恒流大倍率充电阶段:在电容器电压大于3V且小于3.5V电压,采用充电倍率为0.1~0.5C的电流充电;
(3)恒流小倍率充电阶段:在电容器电压大于3.5V且小于最高截止电压时,采用充电倍率为0.05~0.1C的电流充电;
(4)恒压充电阶段;当电容器电流达到最高截止电压后,采用以恒压充电的方式充电,到充电电流小于10~20mA时充电完成并停止充电,恒定电压为最高截止电压;
放电制度如下:
(1)第一放电阶段:当电容器电压大于3.5V且小于等于最高截止电压时,采用放电倍率为1~2C倍率放电电流放电;
(2)第二放电阶段:当电容器电压大于3V且小于等于3.5V时,采用放电倍率为0.5~1C倍率放电电流放电;
(3)第三放电阶段:当电容器电压小于3V时,采用放电倍率为0.1~0.5C小倍率放电电流放电。
预充电阶段采用小电流充电,可以在电容器在一个稳定的状态下,达到一个较高的电压。恒 流大倍率充电可以使电容器迅速达到一个较高的电压,而锂离子电容器的截止电压为3.6~4.2V,在大倍率恒流充电到达3.5V后改用小倍率充电可以防止锂离子电容器的电压超过截至电压,防止电容器性能降低。电容器电压到达截止电压后,需要恒压充电继续增加电容器容量,但要防止电压过高。
电容器放电初始阶段,采用较高的放电倍率放电可以在电容器性能允许的情况下尽快的放电;在放电结尾阶段,采用较小的放电倍率可以防止放电过程中电容器的电压低于电容器所能承载的最低电压,防止因放电过度,电压过低,损坏电容器。
优选地,隔膜为以聚丙烯为基体的复合材料隔膜,所述以聚丙烯为基体的复合材料隔膜由以下物质制备而成:80-85wt%的聚丙烯,10-15wt%的天然纤维素浆料,3-5wt%的高龄石粉,0.5-1.5wt%的硅烷偶联剂;将上述各物质混合均匀后通过干法工艺制得所述以聚丙烯为基体的复合材料隔膜。
优选地,聚丙烯基复合隔膜中的天然纤维素浆料按以下步骤制得:
(1)以竹纤维为原材料,将所述竹纤维加入到氢氧化钠溶液中,接着对上述氢氧化钠溶液进行抽真空蒸煮,蒸煮温度为300℃,蒸煮时间为2h;其中所述竹纤维与氢氧化钠溶液的质量比为1:4,氢氧化钠溶液的浓度为10wt%;
(2)将蒸煮后的竹纤维取出并用清水洗净,再将竹纤维浸泡于温度为80-90℃的热水中进行研磨,研磨后进行过滤,取固态过滤物;
(3)用打浆机对固态过滤物进行打浆、浓缩后得到固含量为60-70wt%的天然纤维素浆料。
按上述方法制得的天然纤维素浆料中含有大量的天然纤维素,天然纤维素具有吸湿性好,热稳定性佳的特点,少量的天然纤维素与聚丙烯进行复合后,能够改善聚丙烯吸湿性和热稳定性,使得隔膜对电解液的吸收保持能力加强,从而改善产品的倍率性能和循环性能。此外,天然纤维素和聚丙烯复合后,天然纤维素产生了交联,在一定程度上也增强了隔膜的拉伸强度和抗尖刺强度。
优选地,上述包装壳可以为铝塑壳或铝壳或钢壳;单体可以为薄片状或方形或圆形。
与现有技术相比,本发明的有益效果在于:
(1)通过使用含有锂盐的有机溶剂来替代锂箔或者纳米级金属锂,降低成本,同时使用无孔集流体也大幅降低了成本;
(2)使用含有锂盐的有机溶剂替代锂箔,无须在极端环境下加工,提高加工的安全性;
(3)以充放电测试仪连接正极和负极,可缩短预嵌锂的时间,并提高预嵌锂的效果;
(4)简化工艺流程,可大规模工业化生产。
附图说明
图1是电容器的比容量测试示意图;
图中:纵坐标为不同放电电流测得的电容器比容量,横坐标为放电电流。
具体实施方式
下面结合实施例,更具体地说明本发明的内容。应当理解,本发明的实施并不局限于下面的实施例,对本发明所做的任何形式上的变通或改变都落入本发明保护范围;且下述实施例中的方法,如无特别说明,均为本领域的常规方法。
实施例1
一种锂离子电容器的制作方法,步骤如下:
(1)以活性炭为活性物质的浆料附着于无孔铝箔上作为正极,中间相碳微球为活性物质的浆料附着于无孔铜箔上作为负极,PP/PE/PP三层聚合物为隔膜,按照隔膜、负极、隔膜、正极的方式叠片成电芯,并用胶带固定,将正极集流体、负极集流体分别与正、负极极耳或引出端子进行焊接;
(2)干燥后将该电芯浸入盛有LiPF6-EC/PC/DEC溶液的烧杯中;
(3)用充放电测试仪的正负极分别连接正极、负极,以相当于0.1C的电流恒流充电至3.8V,在3.8V恒压1h,然后断开电路静置1h让单体自然放电,1h后再次接通电路0.1C恒流充电至3.8V,然后再断开电路自然放电1h,如此反复经过3个充电/自放电脉冲周期处理;
(4)将步骤(3)中的电芯取出,放于铝塑壳内,注入电解液,组装成软包装单体。
实施例2
一种锂离子电容器的制作方法,步骤如下:
(1)以活性炭为活性物质的浆料附着于无孔铝箔上作为正极,人造石墨为活性物质的浆料附着于无孔铜箔上作为负极,PP/PE/PP三层聚合物为隔膜,按照隔膜、负极、隔膜、正极的方式叠片成电芯,并用胶带固定,将正极集流体、负极集流体分别与正、负极极耳或引出端子进行焊接;
(2)干燥后将电芯浸入盛有LiBF4-PC/DMF溶液的烧杯中;
(3)用充放电测试仪的正负极分别连接正极、负极,以相当于0.1C的电流恒流充电至3.8V,然后断开电路静置2h让单体自然放电,2h后再次接通电路0.1C恒流充电至3.8V,然后再断开电路自然放电2h,如此反复经过10个充电/自放电脉冲周期处理;
(4)将步骤(3)中的电芯取出,放于方形铝壳内,注入电解液,组装成方形单体。
实施例3
一种锂离子电容器的制作方法,步骤如下:
(1)以活性炭为活性物质的浆料附着于多孔铝箔上作为正极,硬炭为活性物质的浆料附着于多孔铜箔上作为负极,单层PP聚合物膜为隔膜,按照隔膜、负极、隔膜、正极的方式卷绕成电芯,并用胶带固定,将正极集流体、负极集流体分别与正、负极极耳或引出端子进行焊接;
(2)干燥后将电芯浸入盛有Li2CO3有机溶液的烧杯中;
(3)用充放电测试仪的正负极分别连接正极、负极,以相当于0.2C的电流恒流充电至3.8V,然后断开电路静置一定的时间让单体自然放电,然后再次接通电路0.2C恒流充电至3.8V,然后再断开电路自然放电一定的时间,如此反复经过50个充电/自放电脉冲周期处理(其中第1~10个周期的自放电时间为0.5h,第11~20个周期的自放电时间为1h,第21~30个周期的自放电时间为1.5h,第31~40个周期的自放电时间为2h,第40~50个周期的自放电时间为3h);
(4)将步骤(3)中的电芯取出,放于圆形铝壳内,注入电解液,组装成圆形单体。
实施例4
一种锂离子电容器的制作方法,步骤如下:
(1)以活性炭为活性物质的浆料附着于无孔铝箔上作为正极,中间相碳微球为活性物质的浆料附着于无孔铜箔上作为负极,聚丙烯基天然纤维复合材料为隔膜,按照隔膜、负极、隔膜、正极的方式叠片成电芯,并用胶带固定,将正极集流体、负极集流体分别与正、负极极耳或引出端子进行焊接;
(2)干燥后将该电芯浸入盛有LiPF6-EC/PC/DEC溶液的烧杯中;
(3)用充放电测试仪的正负极分别连接正极、负极,在0℃恒温环境下,按如下制度进行3个充电/放电周期处理:
充电制度如下:
a)预充电阶段:在电容器电压在3V以下时,采用0.01C的小电流充电;
b)恒流大倍率充电阶段:在电容器电压大于3V且小于3.5V电压,采用充电倍率为0.1C电流充电;
c)恒流小倍率充电阶段:在电容器电压大于3.5V且小于4.2V时,采用充电倍率为0.05C电流充电;
d)恒压充电阶段;当电容器电压达到4.2V后,采用以4.2V电压恒压充电的方式充电,到充电电流小于10mA时充电完成并停止充电;
放电制度如下:
a)第一放电阶段:当电容器电压大于3.5V且小于等于4.2V时,采用放电倍率为1C倍率放电电流放电;
b)第二放电阶段:当电容器电压大于3V且小于等于3.5V时,采用放电倍率为0.5C倍率放电电流放电;
c)第三放电阶段:当电容器电压小于3V时,采用放电倍率为0.1C的小倍率放电电流放电;
(4)将步骤(3)中的电芯取出,放于铝塑壳内,注入电解液,组装成软包装单体。
实施例5
一种锂离子电容器的制作方法,步骤如下:
(1)以活性炭为活性物质的浆料附着于无孔铝箔上作为正极,人造石墨为活性物质的浆料附着于无孔铜箔上作为负极,聚丙烯基天然纤维复合材料为隔膜,按照隔膜、负极、隔膜、正极的方式叠片成电芯,并用胶带固定,将正极集流体、负极集流体分别与正、负极极耳或引出端子进行焊接;
(2)干燥后将电芯浸入盛有LiBF4-PC/DMF溶液的烧杯中;
(3)用充放电测试仪的正负极分别连接正极、负极,在30℃恒温环境下,按如下制度进行10个充电/放电周期处理:
充电制度如下:
a)预充电阶段:在电容器电压在3V以下时,采用0.03C的小电流充电;
b)恒流大倍率充电阶段:在电容器电压大于3V且小于3.5V电压,采用充电倍率为0.3C电流充电;
c)恒流小倍率充电阶段:在电容器电压大于3.5V且小于4.2V时,采用充电倍率为0.075C电流充电;
d)恒压充电阶段;当电容器电压达到4.2V后,采用以4.2V电压恒压充电的方式充电,到充电电流小于15mA时充电完成并停止充电;
放电制度如下:
a)第一放电阶段:当电容器电压大于3.5V且小于等于4.2V时,采用放电倍率为1.5C倍率放电电流放电;
b)第二放电阶段:当电容器电压大于3V且小于等于3.5V时,采用放电倍率为0.75C倍率放电电流放电;
c)第三放电阶段:当电容器电压小于3V时,采用放电倍率为0.3C的小倍率放电电流放电;
(4)将步骤(3)中的电芯取出,放于方形铝壳内,注入电解液,组装成方形单体。
实施例6
一种锂离子电容器的制作方法,步骤如下:
(1)以活性炭为活性物质的浆料附着于多孔铝箔上作为正极,硬炭为活性物质的浆料附着 于多孔铜箔上作为负极,聚丙烯基天然纤维复合材料为隔膜,按照隔膜、负极、隔膜、正极的方式卷绕成电芯,并用胶带固定,将正极集流体、负极集流体分别与正、负极极耳或引出端子进行焊接;
(2)干燥后将电芯浸入盛有Li2CO3有机溶液的烧杯中;
(3)用充放电测试仪的正负极分别连接正极、负极,在60℃恒温环境下,按如下制度进行50个充电/放电周期处理:
充电制度如下:
a)预充电阶段:在电容器电压在3V以下时,采用0.05C的小电流充电;
b)恒流大倍率充电阶段:在电容器电压大于3V且小于3.5V电压,采用充电倍率为0.5C电流充电;
c)恒流小倍率充电阶段:在电容器电压大于3.5V且小于4.2V时,采用充电倍率为0.1C电流充电;
d)恒压充电阶段;当电容器电压达到4.2V后,采用以4.2V电压恒压充电的方式充电,到充电电流小于20mA时充电完成并停止充电;
放电制度如下:
a)第一放电阶段:当电容器电压大于3.5V且小于等于4.2V时,采用放电倍率为2C倍率放电电流放电;
b)第二放电阶段:当电容器电压大于3V且小于等于3.5V时,采用放电倍率为1C倍率放电电流放电;
c)第三放电阶段:当电容器电压小于3V时,采用放电倍率为0.5C的小倍率放电电流放电;
(4)将步骤(3)中的电芯取出,放于圆形铝壳内,注入电解液,组装成圆形单体。
对比例1:
一种锂离子电容器的制作方法,步骤如下:
(1)以活性炭为活性物质的浆料附着于多孔铝箔上作为正极,硬炭为活性物质的浆料附着于多孔铜箔上作为负极,PP/PE/PP三层聚合物为隔膜,锂箔紧密压接于铜箔上作为锂极,按照隔膜、正极、隔膜、负极、隔膜、锂极、隔膜的方式叠片成电芯,并用胶带固定,将正极集流体、负极集流体、锂极集流体分别与正、负极极耳或引出端子进行焊接;
(2)将该电芯放于铝塑壳内,注入LiPF6-EC/PC/DEC溶液电解液,组装成软包装单体;
(3)短路嵌锂:将负极与锂极通过导线直接短路进行放电嵌锂;
对比例2:
一种锂离子电容器的制作方法,步骤如下:
(1)以活性炭为活性物质的浆料附着于多孔铝箔上作为正极,人造石墨为活性物质的浆料附着于多孔铜箔上作为负极,PP/PE/PP三层聚合物为隔膜,锂箔紧密压接于铜箔上作为锂极,按照隔膜、正极、隔膜、负极、隔膜、锂极、隔膜的方式叠片成电芯,并用胶带固定,将正极集流体、负极集流体、锂极集流体分别与正、负极极耳或引出端子进行焊接;
(2)将该电芯放于方形铝壳内,注入LiBF4-PC/DMF溶液电解液,组装成方形单体;
(3)短路嵌锂:将负极与锂极通过导线直接短路进行放电嵌锂;
对比例3:
一种锂离子电容器的制作方法,步骤如下:
(1)以活性炭为活性物质的浆料附着于多孔铝箔上作为正极,硬炭为活性物质的浆料附着于多孔铜箔上作为负极,单层PP聚合物膜为隔膜,锂箔紧密压接于铜箔上作为锂极,按照隔膜、正极、隔膜、负极、隔膜、锂极、隔膜的方式卷绕成电芯,并用胶带固定,将正极集流体、负极集流体、锂极集流体分别与正、负极极耳或引出端子进行焊接;
(2)将该电芯放于圆形铝壳内,注入Li2CO3的有机溶液,组装成圆形单体软包装单体;
(3)短路嵌锂:将负极与锂极通过导线直接短路进行放电嵌锂;
对比例4:
市购NEC-tokin生产的Super capacitor FB series。
检测方法及结果:
1、电容器的比容量
使用LRBT-02电池性能综合检测仪,将实施例1、2、3和对比例分别在1C,5C和10C进行放电比容量测试,结果如图1所示。
2、容量保持率
分别使用1C,5C和10C对实施例1、2、3和对比例进行充放电,使用实施例4、5、6所述方式对相应实施例进行充放电,记录其容量保持率,结果如表1所示。
3、首次嵌锂量通过外部连接充放电测试仪,可实时监测电容器的嵌锂量,结果如表2所示。
由图1可知,使用本发明的方法制作的锂离子电容器,有显著较高的比容量,且在高电流放电情况下,对电容器比容量的下降幅度小于传统工艺制作的锂离子电容器。
表1:
Figure PCTCN2015088354-appb-000001
Figure PCTCN2015088354-appb-000002
由表1可知,采用本发明的方法制作的锂离子电容器,与通过将负极与锂极短路作为预嵌锂方法制作的锂离子电容器,在各个充放电电流下,少量次数的循环皆可保证较高的容量,而在多次循环充放电后,本发明的方法制作的电容器有更高的容量保持率,以及在不同电流下都有稳定的结果,嵌锂程度的高低影响了电容器对寿命及使用效果,表1结果说明了本发明使用的预嵌锂方式,能对电容器起到更好的作用,保证电容器的基本工作同时使得电容器有更加稳定的长期使用性能,提高了电容器的寿命。
表2
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
首次嵌锂量(mAh/g) 112.3±5.7 114.2±6.1 114.5±9.4 112.3±9.2 118.5±9.6 116.4±5.6
由表2可知,不同时间和电流的充放电循环对电容器的首次嵌锂量影响不大,嵌锂使的温度对首次嵌锂量有一定影响,温度过低会阻碍嵌锂过程,较小的电流所需充放电时间较长,可对电容器的嵌锂量略有提升,可提高电容器的使用寿命和充放电效率,其中通过小电流程序充放电对电容器的嵌锂量提升效果更佳。

Claims (14)

  1. 一种锂离子电容器的制作方法及锂离子电容器,其特征在于,步骤如下:
    (1)将负极、隔膜、正极、隔膜依次层叠或卷绕后用胶带固定组成电芯;
    (2)将电芯浸入含有锂盐的有机溶液中;
    (3)将正极和负极分别连接充放电测试仪,以一次充电后进行一次放电作为一个循环,共进行1-100次循环,完成对负极的预嵌锂;
    (4)将预嵌锂完成后的电芯取出,放入包装壳内,注入电解液并组装成锂离子电容器单体。
  2. 如权利要求1所述的一种锂离子电容器的制作方法及锂离子电容器,其特征在于,所述正极材料为多孔碳材料。
  3. 如权利要求1所述的一种锂离子电容器的制作方法及锂离子电容器,其特征在于,所述负极材料为天然石墨、人造石墨、焦炭、中间相碳微球、硬炭、聚并苯中的至少一种。
  4. 如权利要求1所述的一种锂离子电容器的制作方法及锂离子电容器,其特征在于,所述正极和负极中集流体为无孔或有孔集流体。
  5. 如权利要求1所述的一种锂离子电容器的制作方法及锂离子电容器,其特征在于,所述锂盐为LiPF6、LiBF4、LiClO4、LiAlO4、LiOH、Li2CO3、CH3COOLi、LiNO3、LiB(C2O4)2、LiP(C6H4O2)3、LiPF3(C2F5)3、LiN(SO2CF3)2可溶于有机溶剂的锂盐中的至少一种,有机溶液为PC、EC、DEC、DMC、DMF、DME、THF、SL中的至少一种。
  6. 如权利要求1所述的一种锂离子电容器的制作方法及锂离子电容器,其特征在于,所述循环中放电为测试仪放电或电芯自放电。
  7. 如权利要求1所述的一种锂离子电容器的制作方法及锂离子电容器,其特征在于,所述充电和放电为恒电流,且电流为0.01C-10C。
  8. 如权利要求1所述的一种锂离子电容器的制作方法及锂离子电容器,其特征在于,所述充电最高截止电压为3.6V-4.2V。
  9. 如权利要求1、6、7或8所述的一种锂离子电容器的制作方法及锂离子电容器,其特征在于,所述每个循环中的充放电电流、充放电电压可以相同,也可以不同。
  10. 如权利要求9所述的一种锂离子电容器的制作方法及锂离子电容器,其特征在于,所述每个循环中放电时间为1min-10h。
  11. 如权利要求1所述的一种锂离子电容器的新型预嵌锂方法,其特征在于:所述循环充放电处理在恒温条件下进行,温度恒定为0~60℃。
  12. 如权利要求1所述的一种锂离子电容器的新型预嵌锂方法,其特征在于:
    所述充电制度如下:
    (1)预充电阶段:在电容器电压在3V以下时,采用0.01~0.05C的小电流充电;
    (2)恒流大倍率充电阶段:在电容器电压大于3V且小于3.5V电压,采用充电倍率为0.1~0.5C的电流充电;
    (3)恒流小倍率充电阶段:在电容器电压大于3.5V且小于最高截止电压时,采用充电倍率为0.05~0.1C的电流充电;
    (4)恒压充电阶段;当电容器电流达到最高截止电压后,采用以恒压充电的方式充电,到充电电流小于10~20mA时充电完成并停止充电,恒定电压为最高截止电压;
    所述放电制度如下:
    (1)第一放电阶段:当电容器电压大于3.5V且小于等于最高截止电压时,采用放电倍率为1~2C倍率放电电流放电;
    (2)第二放电阶段:当电容器电压大于3V且小于等于3.5V时,采用放电倍率为0.5~1C倍率放电电流放电;
    (3)第三放电阶段:当电容器电压小于3V时,采用放电倍率为0.1~0.5C的小倍率放电电流放电。
  13. 根据权利要求1所述的一种锂离子电容器的新型预嵌锂方法,其特征在于,所述隔膜为以聚丙烯为基体的复合材料隔膜,所述以聚丙烯为基体的复合材料隔膜由以下物质制备而成:80-85wt%的聚丙烯,10-15wt%的天然纤维素浆料,3-5wt%的高龄石粉,0.5-1.5wt%的硅烷偶联剂;将上述各物质混合均匀后通过干法工艺制得所述以聚丙烯为基体的复合材料隔膜。
  14. 根据权利要求11所述的一种锂离子电容器的新型预嵌锂方法,其特征在于,所述天然纤维素浆料按以下步骤制得:
    (1)以竹纤维为原材料,将所述竹纤维加入到氢氧化钠溶液中,接着对上述氢氧化钠溶液进行抽真空蒸煮,蒸煮温度为300℃,蒸煮时间为2h;其中所述竹纤维与氢氧化钠溶液的质量比为1:4,氢氧化钠溶液的浓度为10wt%;
    (2)将蒸煮后的竹纤维取出并用清水洗净,再将竹纤维浸泡于温度为80-90℃的热水中进行研磨,研磨后进行过滤,取固态过滤物;
    (3)用打浆机对固态过滤物进行打浆、浓缩后得到固含量为60-70wt%的天然纤维素浆料。
PCT/CN2015/088354 2014-12-12 2015-08-28 一种锂离子电容器的制作方法及锂离子电容器 WO2016090963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410764307.9 2014-12-12
CN201410764307.9A CN104701031B (zh) 2014-12-12 2014-12-12 一种锂离子电容器的制作方法及锂离子电容器

Publications (1)

Publication Number Publication Date
WO2016090963A1 true WO2016090963A1 (zh) 2016-06-16

Family

ID=53348051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088354 WO2016090963A1 (zh) 2014-12-12 2015-08-28 一种锂离子电容器的制作方法及锂离子电容器

Country Status (4)

Country Link
CN (1) CN104701031B (zh)
AU (1) AU2015100981A4 (zh)
NL (1) NL2015825B1 (zh)
WO (1) WO2016090963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623003B (zh) * 2016-06-17 2018-05-01 日商帝伯愛爾股份有限公司 電雙層電容器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701031B (zh) * 2014-12-12 2018-01-09 宁波中车新能源科技有限公司 一种锂离子电容器的制作方法及锂离子电容器
CN104681311B (zh) * 2014-12-12 2017-12-19 宁波中车新能源科技有限公司 一种锂离子电容器的新型预嵌锂方法
CN105047428B (zh) * 2015-08-03 2016-06-29 宁波中车新能源科技有限公司 一种锂离子电容器的制备方法
CN107910186A (zh) * 2017-10-23 2018-04-13 安徽铜峰电子股份有限公司 可充电纽扣型锂离子电容器的预嵌锂方法
CN109361022A (zh) * 2018-11-09 2019-02-19 珠海格力电器股份有限公司 一种锂离子电池及其制备方法
CN109545566A (zh) * 2018-11-21 2019-03-29 湖南中车特种电气装备有限公司 一种高比能锂离子电容器
CN109786841B (zh) * 2018-12-13 2020-12-15 中国科学院电工研究所 一种锂离子电化学储能器件的制备方法
CN112635930B (zh) * 2020-12-22 2023-02-07 东莞东阳光科研发有限公司 一种锂硫软包电池的注液方法
CN114156094B (zh) * 2021-11-09 2023-03-28 同济大学 一种锂离子电容器负极化成工艺
CN114633035B (zh) * 2022-05-11 2022-08-12 东莞市盛雄激光先进装备股份有限公司 一种正极极片的制片方法、制片系统及正极极片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050295A (zh) * 2012-12-20 2013-04-17 上海奥威科技开发有限公司 一种锂离子电容器
CN103915262A (zh) * 2013-01-04 2014-07-09 深圳清华大学研究院 锂离子电容器负极预嵌锂的方法
WO2014176267A1 (en) * 2013-04-23 2014-10-30 Maxwell Technologies, Inc. Methods for solid electrolyte interphase formation and anode pre-lithiation of lithium ion capacitors
CN104701031A (zh) * 2014-12-12 2015-06-10 宁波南车新能源科技有限公司 一种锂离子电容器的制作方法及锂离子电容器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112068A1 (ja) * 2005-03-31 2006-10-26 Fuji Jukogyo Kabushiki Kaisha リチウムイオンキャパシタ
CN101252043A (zh) * 2007-04-25 2008-08-27 北京理工大学 一种锂离子超级电容器负极的预嵌锂方法
CN101847513B (zh) * 2010-02-26 2013-08-07 上海奥威科技开发有限公司 一种长寿命负极片的制备工艺及使用该负极片的电容电池
KR101138502B1 (ko) * 2010-08-27 2012-04-25 삼성전기주식회사 리튬 이온 커패시터의 제조 방법
US8735000B2 (en) * 2011-10-13 2014-05-27 Tokushu Tokai Paper Co., Ltd. Porous membrane and process for preparing the same
CN103021675B (zh) * 2012-12-30 2015-08-19 万裕三信电子(东莞)有限公司 锂离子电容器及其负极极片及制备方法
EP2951872B1 (en) * 2013-01-30 2019-10-16 Nanoscale Components, Inc. Phased introduction of lithium into the pre-lithiated anode of a lithium ion electrochemical cell
CN104681311B (zh) * 2014-12-12 2017-12-19 宁波中车新能源科技有限公司 一种锂离子电容器的新型预嵌锂方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050295A (zh) * 2012-12-20 2013-04-17 上海奥威科技开发有限公司 一种锂离子电容器
CN103915262A (zh) * 2013-01-04 2014-07-09 深圳清华大学研究院 锂离子电容器负极预嵌锂的方法
WO2014176267A1 (en) * 2013-04-23 2014-10-30 Maxwell Technologies, Inc. Methods for solid electrolyte interphase formation and anode pre-lithiation of lithium ion capacitors
CN104701031A (zh) * 2014-12-12 2015-06-10 宁波南车新能源科技有限公司 一种锂离子电容器的制作方法及锂离子电容器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623003B (zh) * 2016-06-17 2018-05-01 日商帝伯愛爾股份有限公司 電雙層電容器
US10636581B2 (en) 2016-06-17 2020-04-28 Tpr Co., Ltd. Electric double layer capacitor

Also Published As

Publication number Publication date
NL2015825B1 (en) 2017-02-15
CN104701031A (zh) 2015-06-10
CN104701031B (zh) 2018-01-09
NL2015825A (en) 2016-09-20
AU2015100981A4 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
WO2016090977A1 (zh) 一种锂离子电容器的新型预嵌锂方法
WO2016090963A1 (zh) 一种锂离子电容器的制作方法及锂离子电容器
CN105355457B (zh) 锂离子电容器及其化成方法
WO2016110134A1 (zh) 一种基于复合正、负极材料的新型电池电容
CN109103496A (zh) 一种长贮存寿命锂离子电池及其制备方法
CN103779600B (zh) 一种钛酸锂电池及制造方法
KR20140004773A (ko) 폴리이미드 충전 전지 및 그 제조방법
CN109346725B (zh) 储能器件铝负极、储能器件及其制备方法
CN106449126B (zh) 一种采用第三电极对锂离子电容器的嵌锂方法
US20120099246A1 (en) Lithium ion capacitor
WO2016206548A1 (zh) 一种锂电池高电压改性负极材料的制备方法
JP6284198B2 (ja) 蓄電デバイスの製造方法
WO2020118880A1 (zh) 一种基于石墨正极和锌负极的混合型超级电容器
JP6865355B2 (ja) 電気化学デバイスおよびこれに用いる負極とその製造方法
CN104993174A (zh) 一种锂离子电池负极材料的制备方法
CN107210138A (zh) 锂离子电容器中的聚偏二氟乙烯阳极粘合剂
CN110474114B (zh) 一种电化学储能装置
CN105513827B (zh) 一种(lmo‑ncm‑ac)/(lto‑ac)混合电池电容电极材料及电极片
CN108155027B (zh) 一种锂离子超级电容器负极预嵌锂的方法
WO2022000309A1 (zh) 一种集流体、包含该集流体的电化学装置及电子装置
KR101424865B1 (ko) 정극 활물질 및 전극의 제조 방법과 전극
CN108511680A (zh) 正极片及其制备方法及储能装置
CN106409529B (zh) 一种锂离子电容器的嵌锂方法
WO2022000329A1 (zh) 一种电化学装置及电子装置
CN108963198A (zh) 正极、负极,其制备方法以及包括其的锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867175

Country of ref document: EP

Kind code of ref document: A1