WO2016090907A1 - 制备木质素改性呋喃树脂的方法 - Google Patents

制备木质素改性呋喃树脂的方法 Download PDF

Info

Publication number
WO2016090907A1
WO2016090907A1 PCT/CN2015/083148 CN2015083148W WO2016090907A1 WO 2016090907 A1 WO2016090907 A1 WO 2016090907A1 CN 2015083148 W CN2015083148 W CN 2015083148W WO 2016090907 A1 WO2016090907 A1 WO 2016090907A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
reaction
urea
formaldehyde
added
Prior art date
Application number
PCT/CN2015/083148
Other languages
English (en)
French (fr)
Inventor
祝建勋
刘昭荐
周国栋
Original Assignee
济南圣泉集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南圣泉集团股份有限公司 filed Critical 济南圣泉集团股份有限公司
Publication of WO2016090907A1 publication Critical patent/WO2016090907A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/02Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes
    • C08G16/04Chemically modified polycondensates

Definitions

  • the present invention relates to the field of furan resin preparation technology, and more particularly to a method for preparing a lignin-modified casting self-hardening furan resin, and a lignin-modified furan resin obtained by the method.
  • Furan resin has been used in the foundry industry since the 1960s with high cohesiveness, low gas generation and good collapsibility. It has become one of the most commonly used casting resins.
  • the furan resin for casting is generally formed by reacting formaldehyde, urea, decyl alcohol, etc. as a basic raw material.
  • the residual monomer in the product is usually formaldehyde, decyl alcohol, etc.
  • the free monomer in the furan resin is released, The working environment and the health of workers pose great problems. Therefore, how to reduce the release of harmful chemicals such as various monomers in the resin to reduce pollution and improve the production and operating environment has become a major problem for related companies.
  • Lignin is an aromatic polymer widely found in plants. Its quantity is second only to cellulose. It is a renewable energy source with low pollution, low cost and extremely wide utilization value.
  • the lignin structure contains a plurality of reactive functional groups such as a hydroxyl group, a carbonyl group, a carboxyl group and the like. Among them, hydroxyl groups are more abundant in lignin, and exist in the form of alcoholic hydroxyl group and phenolic hydroxyl group. The amount of phenolic hydroxyl group directly affects the physical and chemical properties of lignin, such as reflecting the degree of etherification and condensation of lignin. It also measures the solubility and responsiveness of lignin.
  • German Patent DE 4226327 discloses the addition of lignin to a commercially available furan resin to reduce the production cost and the content of free formaldehyde in the furan resin; however, in this method, the lignin and the resin are physically blended between No chemical reaction occurs, and a certain amount of lignin affects the final viscosity of the resin, which lowers the fluidity of the resin and weakens the performance of the resin.
  • Chinese patent application CN102863600A discloses the use of lignin moiety instead of sterol preparation a method for casting a furan resin, which first reacts sterol with lignin under certain conditions to obtain a modified sterol component, and then reacts with formaldehyde and urea to prepare a lignin-modified furan resin; although the resin obtained by the method is The free formaldehyde content is reduced, but a large amount of formaldehyde is still released during the casting process, which jeopardizes the working environment; in addition, the patent application CN102863600A does not study the free sterol content in the furan resin.
  • one of the technical problems to be solved by the present invention is to provide a method for preparing a lignin-modified furan resin, wherein the furan resin obtained by the method of the invention not only has a reduced content of free formaldehyde but also a free sterol content. Significantly lower; in addition, the furan resin obtained by the method of the present invention has a significant reduction in the amount of formaldehyde released during the casting process, thereby meeting the requirements of environmentally friendly furan resins.
  • a method of preparing a lignin-modified furan resin comprising:
  • Step (1) adding formaldehyde to the reaction vessel, adjusting the pH to be alkaline, adding lignin, and performing the reaction under stirring;
  • Step (2) adding urea to carry out the reaction
  • Step (3) adding sterol, first performing the reaction under alkaline conditions, and then adjusting the pH of the system to be acidic to carry out the reaction;
  • Step (4) further adding urea to carry out the reaction, and then dehydrating the system under vacuum, and then adding sterol to the dehydrated system, and stirring uniformly to obtain a lignin-modified furan resin.
  • one of the inventive concepts of the present invention is to first chemically crosslink formaldehyde and lignin under alkaline conditions, and then add urea to react with formaldehyde to further reduce the formaldehyde content, and finally add sterol, and then separately in the alkali.
  • a chemical reaction occurs under acidic and acidic conditions to form a modified furan resin.
  • the preparation method of the invention allows lignin to directly participate in the synthesis of furan resin, so that lignin forms more methylol group and further reacts with sterol, and the lignin used can not only be used.
  • the free sterol content in the furan resin is effectively reduced, the free sterol content is below 25 wt% (total amount of the resin), and the free formaldehyde content in the furan resin and the release amount of formaldehyde during the casting sand mixing process can be reduced, thereby Meet the requirements of environmentally friendly furan resin.
  • the present invention also relates to a lignin-modified furan resin obtained by the above method.
  • the amount of formaldehyde added in step (1) is from 4 to 10 parts by weight, advantageously from 5 to 9 parts by weight, advantageously from 6 to 8 parts by weight; the added formaldehyde is an aqueous solution of formaldehyde or solid formaldehyde form.
  • the amount of lignin added in step (1) is from 2 to 30 parts by weight, advantageously from 2 to 25 parts by weight, advantageously from 2 to 20 parts by weight, advantageously from 2 to 15 parts by weight, advantageously 2 to 10 parts by weight, advantageously 2 to 5 parts by weight;
  • the lignin is selected from the group consisting of natural lignin, alkali lignin, sulfonated lignin, acidic lignin, enzymatic lignin, high boiling alcohol lignin One or more of organic solvent extracted lignin.
  • lignin given above in the present invention is exemplarily listed, and lignin which can be used in the present invention includes, but is not limited to, the lignin enumerated above.
  • the present invention has no particular limitation on the source of lignin, and the lignin used may be various lignin conventionally used in the art or a mixture of various lignin.
  • the lignin of the invention is an acidic lignin.
  • the amount of urea added in step (2) is from 3 to 6 parts by weight, advantageously from 4 to 5 parts by weight.
  • the amount of sterol added in step (3) is from 45 to 60 parts by weight, advantageously from 45 to 55 parts by weight, advantageously from 45 to 50 parts by weight.
  • the amount of urea added in step (4) is from 1 to 2 parts by weight.
  • the content of formaldehyde in the resin is more effectively reduced.
  • the water content of the system after dehydration in step (4) is less than 20%.
  • the present invention by making the water content of the system after dehydration less than 20%, it is possible to effectively ensure that the obtained furan resin has good initial strength and ultimate strength; when the water content of the system after dehydration is higher than 20%, The initial strength and ultimate strength of the furan resin are adversely affected. Further, in the present invention, by performing dehydration under vacuum conditions, deterioration of resin properties due to an increase in system temperature for dehydration can be avoided.
  • the amount of sterol added in step (4) is from 10 to 20 parts by weight.
  • the lignin is added in step (1) and then reacted at 80 to 90 ° C, advantageously at 80 to 85 ° C for 2 to 3 hours.
  • step (2) is further: when the temperature of the system is lowered to 40 to 50 ° C, urea is added, and after the urea is dissolved, the reaction is carried out at 80 to 90 ° C for 1 to 2 hours; advantageously, the temperature of the system is lowered. At 40 to 45 ° C, urea is added, and after the urea is dissolved, the reaction is carried out at 80 to 85 ° C for 1 to 2 hours.
  • the system is first kept alkaline and reacted under alkaline conditions for 1 to 2 hours to effectively reduce the content of sterol in the resin; if the pH is adjusted to be acidic during this process Or if the reaction time is too short, the content of sterol in the resin will not be effectively reduced; nextly, the pH of the system is adjusted to be acidic, and the reaction is carried out at 90 to 100 ° C for 1 to 2 hours, thereby making the reaction better.
  • the resin is carried out and then the resin has good initial strength and ultimate strength.
  • the pH of the system is adjusted to be alkaline, advantageously adjusting the pH to 7.2 to 10, more advantageously adjusting the pH to 7.5 to 8.5, and then performing the reaction 1 to 5 hours, advantageously 1 to 3 hours, more advantageously 1 to 2 hours.
  • the alkaline pH in the step (1) and the step (3) ranges from 7.2 to 12, advantageously from 7.8 to 10.2.
  • the base used to adjust the basic pH is selected from one or more of sodium hydroxide, potassium hydroxide, aqueous ammonia, sodium carbonate, potassium carbonate, cesium hydroxide or an aqueous solution thereof.
  • the acidic pH in step (3) ranges from 3.0 to 5.5, advantageously from 3.5 to 5.0;
  • the acid used to adjust the acidic pH is selected from one or more of formic acid, acetic acid, sulfonic acid, hydrochloric acid, sulfuric acid or an aqueous solution thereof.
  • the alkaline substance used to adjust the alkaline pH in steps (1) and (3) is the same basic substance.
  • the same basic substance in the steps (1) and (3) not only repeated preparation of various alkali liquids is avoided, thereby making the manufacturing process of the present invention simple and easy, and easy to control the addition.
  • the amount of alkali which is very advantageous in industrial production.
  • the invention modifies the furan resin with a wide range of lignin, effectively reducing the content of free sterol in the resin, and keeping the content of free sterol below 25 wt% (based on the total amount of the resin).
  • lignin is used to contain a group such as a benzene ring, so that the resin is easily formed into a network structure when cured, and the bonding strength of the resin is higher.
  • the various reagents used are all commercially available reagents, wherein the lignin is acidic lignin; in addition, the weight of formaldehyde involved in the examples refers to formaldehyde itself in aqueous formaldehyde solution or solid formaldehyde. the weight of.
  • Formaldehyde (concentration 37%): 211 Kg, urea: 60 Kg, sterol: 925 Kg, acidic lignin: 29 Kg.
  • Formaldehyde (concentration 37%): 195 Kg, urea: 60 Kg, sterol: 760 Kg, acidic lignin: 85 Kg.
  • Formaldehyde (96%): 86 Kg, urea: 75 Kg, decyl alcohol: 872 Kg, acidic lignin: 154 Kg.
  • Formaldehyde (concentration 37%): 203 Kg, urea: 75 Kg, decyl alcohol: 733 Kg, acidic lignin: 183 Kg.
  • Formaldehyde (concentration 37%): 219 Kg, urea: 85 Kg, decyl alcohol: 553 Kg, acidic lignin: 298 Kg.
  • Formaldehyde (concentration 37%): 227 Kg, urea: 63.5 Kg, decyl alcohol: 978 Kg, acidic lignin: 30 Kg.
  • Formaldehyde (concentration 37%): 217 Kg, urea: 65 Kg, sterol: 935 Kg, acidic lignin: 32 Kg.
  • Formaldehyde (concentration 37%): 204.5 Kg, urea: 57 Kg, decyl alcohol: 880 Kg, acidic lignin: 27.5 Kg.
  • Formaldehyde (concentration 37%): 211 Kg, urea: 60 Kg, sterol: 925 Kg, acidic lignin: 29 Kg.
  • Formaldehyde (concentration 37%): 139.5 Kg, urea: 39 Kg, decyl alcohol: 600 Kg, acidic lignin: 19 Kg.
  • Formaldehyde (concentration 37%): 151 Kg, urea: 42 Kg, decyl alcohol: 650 Kg, acidic lignin: 21 Kg.
  • Formaldehyde (concentration 37%): 250 Kg, urea: 65 Kg, decyl alcohol: 970 Kg, acidic lignin: 30 Kg.
  • Formaldehyde (concentration 37%): 211 Kg, urea: 60 Kg, decyl alcohol: 954 Kg.
  • Formaldehyde (concentration 37%): 195 Kg, urea: 60 Kg, decyl alcohol: 845 Kg.
  • the reaction was carried out for 1 hour; the pH of the system was adjusted to 4.1 with hydrochloric acid, and the reaction temperature was 95 ° C for 1.5 hours; 12 Kg of two-step urea was added, the pH of the system was adjusted to 8.0, and after reacting for 1 hour at 75 ° C, the system was cooled to 60 ° C; The mixture was dehydrated under vacuum for 100 Kg, and the remaining sterol component was added to 500 Kg, and the mixture was uniformly stirred, and the product was discharged to 1000 Kg.
  • Formaldehyde (96%): 86 Kg, urea: 75 Kg, decyl alcohol: 1026 Kg.
  • Formaldehyde (concentration 37%): 203 Kg, urea: 75 Kg, decyl alcohol: 916 Kg.
  • Formaldehyde (concentration 37%): 219 Kg, urea: 85 Kg, decyl alcohol: 851 Kg.
  • the reaction was carried out for 1 hour; the pH of the system was adjusted to 5.5 with formic acid, the reaction temperature was 95 ° C for 1.5 hours; the second step of urea was added to 17 kg, the pH of the system was adjusted to 8.2, and after reacting for 1 hour at 75 ° C, the system was cooled to 60 ° C; 105Kg was dehydrated under vacuum conditions, and 550 Kg of the remaining sterol component was added, and the mixture was uniformly stirred, and the product was discharged to 1050 Kg.
  • Re-reaction for 1 hour adjust the pH of the system with formic acid to 3.5, react at a temperature of 95 ° C for 1.5 hours; add two-step urea 17Kg, adjust the pH of the system to 8.2, and react at 75 ° C for 1 hour, then cool the system to 60 ° C; 133.5 Kg was dehydrated under vacuum, 650 Kg of the remaining sterol component was added, and the mixture was uniformly stirred to give a product of 1165 Kg.
  • Formaldehyde (concentration 37%): 217 Kg, urea: 65 Kg, decyl alcohol: 967 Kg.
  • Formaldehyde (concentration 37%): 204.5 Kg, urea: 57 Kg, decyl alcohol: 1007.5 Kg.
  • Kg is further reacted for 1 hour; the pH of the system is adjusted to 3.5 with acetic acid, the reaction temperature is 95 ° C for 1.5 hours; the second step of urea is added 17Kg, the pH of the system is adjusted to 8.2, and the reaction is carried out at 75 ° C for 1 hour, then the system is cooled to 60 ° C; Then, 110 Kg was dehydrated under vacuum, 550 Kg of the remaining sterol component was added, and the mixture was uniformly stirred, and the product was discharged to 1050 Kg.
  • Formaldehyde (concentration 37%): 211 Kg, urea: 60 Kg, decyl alcohol: 954 Kg.
  • the reaction was carried out for 1 hour; the pH of the system was adjusted to 3.5 with hydrochloric acid, the reaction temperature was 95 ° C for 1.5 hours; the second step of urea was added to 12 Kg, the pH of the system was adjusted to 8.2, and after reacting at 75 ° C for 1 hour, the system was cooled to 60 ° C; 110Kg was dehydrated under vacuum conditions, and 540 Kg of the remaining sterol component was added, and the mixture was uniformly stirred, and the product was discharged at 1,115 Kg.
  • Formaldehyde (concentration 37%): 139.5 Kg, urea: 39 Kg, sterol: 619 Kg.
  • Re-reaction for 1 hour adjust the pH of the system with sulfuric acid to 3.8, react at a reaction temperature of 95 ° C for 1.5 hours; add 5 Kg of two-step urea, adjust the pH of the system to 8.2, and react at 75 ° C for 1 hour, then cool the system to 60 ° C; 82.5 Kg was dehydrated under vacuum, 300 Kg of the remaining sterol component was added, and the mixture was uniformly stirred, and the product was discharged to 715 Kg.
  • Formaldehyde (concentration 37%): 151 Kg, urea: 42 Kg, decyl alcohol: 671 Kg.
  • Formaldehyde (concentration 37%): 250 Kg, urea: 65 Kg, decyl alcohol: 1000 Kg.
  • Formaldehyde (concentration 37%): 211 Kg, urea: 60 Kg, sterol: 925 Kg, acidic lignin: 29 Kg.
  • Formaldehyde (concentration 37%): 195 Kg, urea: 60 Kg, sterol: 760 Kg, acidic lignin: 85 Kg.
  • the content of free sterol is greatly reduced, and the content of free formaldehyde is also greatly reduced; in particular, during the casting process, the amount of formaldehyde released is greatly reduced, basically Further, the reduction was over 50%; in addition, the tensile strength of the furan resin produced according to the present invention was substantially equivalent to the tensile strength of the comparative example.
  • the furan resin of the present invention not only makes the content of free sterol and free formaldehyde greatly reduced, but also reduces the amount of formaldehyde released during the casting process by more than 50% while obtaining substantially equivalent tensile strength. This improves the working environment and reduces the physical damage to the workers, which is very advantageous in the environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mold Materials And Core Materials (AREA)
  • Steroid Compounds (AREA)

Abstract

本发明公开了一种制备木质素改性呋喃树脂的方法以及通过所述方法制备的木质素改性呋喃树脂,其中本发明的所述方法包括:步骤(1):向反应釜中加入甲醛,调节PH值为碱性,加入木质素,在搅拌下进行反应;步骤(2):加入尿素进行反应;步骤(3):加入糠醇,先在碱性条件下进行反应,再调整体系的PH值为酸性进行反应;步骤(4):再加入尿素进行反应,随后将体系在真空条件下脱水,然后向脱水后的体系中加入糠醇,搅拌均匀以得到木质素改性的呋喃树脂。本发明所述方法制得的呋喃树脂游离糠醇和游离甲醛的含量低,并能有效减少铸造混砂过程中甲醛的释放量,达到了环保呋喃树脂的要求。

Description

制备木质素改性呋喃树脂的方法 技术领域
本发明涉及呋喃树脂制备技术领域,更具体地涉及一种制备木质素改性的铸造用自硬呋喃树脂的方法,以及通过该方法所获得的木质素改性的呋喃树脂。
背景技术
呋喃树脂具有高粘结性、低发气量以及较好的溃散性,因此从上世纪六十年代开始就被应用到铸造行业中,并且发展迅猛,目前已经成为最常用的铸造用树脂之一。目前铸造用呋喃树脂一般以甲醛、尿素、糠醇等为基本原料反应而成,产品中往往残留反应单体包括甲醛、糠醇等,在铸造过程中,呋喃树脂中游离的单体会释放出来,对作业环境和工人健康造成极大问题。因而,如何降低树脂中有害化学物质如各种单体的释放量以降低污染、改善生产和作业环境,成为相关企业面临的一大问题。
木质素,是广泛存在于植物体中的芳香性聚合物,其数量仅次于纤维素,属于可再生能源,污染小,成本低,具有极其广泛的利用价值。木质素结构中含有多种活性官能团,如羟基、羰基、羧基等。其中羟基在木质素中存在较多,以醇羟基和酚羟基两种形式存在,其中酚羟基的量直接影响到木质素的物理和化学性质,如能反映出木质素的醚化和缩合程度,同时也能衡量木质素的溶解性能和反应能力。
德国专利DE4226327公开了将木质素加入到市售的呋喃树脂中来降低生产成本及呋喃树脂中游离甲醛的含量;然而,在该方法中,木质素和树脂是物理共混的,二者之间并未发生化学反应,并且一定量的木质素会影响树脂的终粘度,使树脂流动性降低,减弱了树脂的使用性能。
中国专利申请CN102863600A公开了利用木质素部分代替糠醇制备 铸造用呋喃树脂的方法,其首先将糠醇与木质素在一定条件下反应得到改性糠醇组分,然后再与甲醛和尿素反应制备木质素改性的呋喃树脂;虽然通过该方法得到的树脂中游离甲醛含量有所降低,但是在铸造过程中仍会有较大量的甲醛释放出来,危害作业环境;此外,该专利申请CN102863600A也没有对呋喃树脂中游离糠醇含量进行研究。
发明内容
鉴于以上内容,本发明要解决的技术问题之一在于提供一种制备木质素改性呋喃树脂的方法,利用本发明的方法制得的呋喃树脂中不仅游离甲醛的含量降低,而且游离糠醇含量也显著降低;此外,利用本发明的方法制得的呋喃树脂特别是在铸造过程中甲醛的释放量明显减少,从而达到了环保呋喃树脂的要求。
本发明公开了如下技术方案:
一种制备木质素改性呋喃树脂的方法,所述方法包括:
步骤(1):向反应釜中加入甲醛,调节PH值为碱性,加入木质素,在搅拌下进行反应;
步骤(2):加入尿素进行反应;
步骤(3):加入糠醇,先在碱性条件下进行反应,再调整体系的PH值为酸性进行反应;
步骤(4):再加入尿素进行反应,随后将体系在真空条件下脱水,然后向脱水后的体系中加入糠醇,搅拌均匀以得到木质素改性的呋喃树脂。
需要说明的是,本发明的发明构思之一在于先让甲醛和木质素在碱性条件下产生化学交联,然后加入尿素以和甲醛反应从而进一步降低甲醛含量,最后加入糠醇,然后分别在碱性和酸性条件下发生化学反应而生成改性呋喃树脂。本发明所述的制备方法让木质素直接参与呋喃树脂的合成,使木质素形成更多的羟甲基,进一步与糠醇反应,所使用的木质素不仅可 以替代部分糠醇,有效降低呋喃树脂中游离糠醇含量,使游离糠醇含量在25wt%以下(树脂总量计),而且可以降低呋喃树脂中游离甲醛含量以及铸造混砂过程中甲醛的释放量,从而达到了环保呋喃树脂的要求。
本发明还涉及通过上述方法所获得的木质素改性的呋喃树脂。
有利地,在步骤(1)中加入的甲醛的量为4~10重量份,有利地为5~9重量份,有利地为6~8重量份;所加入的甲醛为甲醛的水溶液或者固体甲醛的形式。
有利地,在步骤(1)中加入的木质素的量为2~30重量份,有利地为2~25重量份,有利地为2~20重量份,有利地为2~15重量份,有利地为2~10重量份,有利地为2~5重量份;所述木质素选自天然木质素、碱木质素、磺化木质素、酸性木质素、酶解木质素、高沸醇木质素、有机溶剂提取的木质素中的一种或更多种。
本发明上述给出的木质素为示例性列举的,本发明可以使用的木质素包括但不限于以上所列举的木质素。事实上,本发明对于木质素的来源没有特定的限制,所使用的木质素可以是本领域常规使用的各种木质素或者各种木质素的混合物。
有利地,本发明的木质素为酸性木质素。
有利地,在步骤(2)中加入的尿素的量为3~6重量份,有利地为4~5重量份。
有利地,在步骤(3)中加入的糠醇的量为45~60重量份,有利地为45~55重量份,有利地为45~50重量份。
有利地,在步骤(4)中加入的尿素的量为1~2重量份。
在本发明中,通过将尿素分两次加入,并且将两次加入的尿素的量控制为本发明的上述范围,更加有效地降低了树脂中甲醛的含量。
有利地,在步骤(4)中脱水后的体系的含水率低于20%。
在本发明中,通过使得脱水后的体系的含水率低于20%,能够有效地确保所得呋喃树脂具有良好的初强度和终强度;在脱水后的体系的含水率高于20%时,将不利地影响呋喃树脂的初强度和终强度。此外,在本发明中,通过在真空条件下进行脱水,能够避免为了进行脱水而升高体系温度所导致的树脂性能受损,
有利地,在步骤(4)中加入的糠醇的量为10~20重量份。
有利地,在步骤(1)中加入木质素后在80~90℃下、有利地在80~85℃下反应2~3个小时。
有利地,步骤(2)进一步为:待体系温度降至40~50℃,加入尿素,在尿素溶解后,在80~90℃下进行反应1~2个小时;有利地,待体系温度降至40~45℃,加入尿素,在尿素溶解后,在80~85℃下进行反应1~2个小时。
在本发明中,在加入糠醇后,首先保持体系为碱性,在碱性条件下反应1~2小时,以使得有效地降低树脂中糠醇的含量;如果在此过程中将pH值调节为酸性或者反应时间过短,将不能有效地降低树脂中糠醇的含量;接下来,再将体系的pH值调节为酸性,在90~100℃下反应1~2个小时,由此使得反应能够更好地进行并进而使得树脂具有良好的初强度和终强度。
有利地,在步骤(4)中加入尿素后,调整体系的pH值为碱性,有利地将pH值调节为7.2~10,更有利地将pH值调节为7.5~8.5,然后进行反应1~5个小时,有利地进行1~3小时,更有利地进行1~2小时。
有利地,在步骤(1)和步骤(3)中碱性PH值范围为7.2~12,有利地为7.8~10.2。
有利地,。调节碱性PH值所用碱选自氢氧化钠、氢氧化钾、氨水、碳酸钠、碳酸钾、氢氧化钡或它们水溶液中的一种或更多种。
有利地,在步骤(3)中的酸性PH值范围为3.0~5.5,有利地为3.5~5.0; 调节酸性PH值所用酸选自甲酸、乙酸、磺酸、盐酸、硫酸或它们水溶液中的一种或更多种。
有利地,在步骤(1)和步骤(3)中调节碱性PH值所用的碱性物质为同一种碱性物质。在本发明中,通过在步骤(1)和步骤(3)中使用同一种碱性物质,不仅避免了重复配制各种碱液,由此使得本发明的制造工艺简单易行,而且易于控制加入的碱的量,这在工业化生产上是非常有利的。
通过本发明的方法制备呋喃树脂至少具有以下优点:
1、本发明以来源广泛的木质素对呋喃树脂进行改性,有效地降低了树脂中游离糠醇的含量,使游离糠醇的含量保持在25wt%以下(以树脂总量计)。
2、本发明所制备的改性呋喃树脂中游离甲醛的含量明显降低,同时还有效降低树脂在铸造混砂时甲醛的释放量,改善了作业环境,减少了对工人的身体损害,完全达到了低甲醛、低毒害的环保型呋喃树脂的指标。
3、本发明所述的方法中利用木质素含有较多的苯环等基团,使得树脂固化时容易形成网状结构,使树脂的粘结强度更高。
具体实施方式
下面通过实施例对本发明做出进一步说明。应该理解的是,本发明实施例所述制备方法仅用于说明本发明,而用于对本发明进行限制,在本发明的构思前提下对本发明做出的各种改进都属于本发明要求保护的范围。
在以下实施例中,所使用的各种试剂均为商品化的试剂,其中木质素为酸性木质素;此外,实施例中涉及甲醛的重量指代的是在甲醛水溶液或者固体甲醛中的甲醛自身的重量。
实施例1
原材料组成:
甲醛(浓度37%):211Kg,尿素:60Kg,糠醇:925Kg,酸性木质素:29Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)211Kg,用氢氧化钠溶液调节PH值为7.8,加入酸性木质素29Kg,启动搅拌,升温至83℃反应2.5小时;降温至45℃,加入一步尿素48Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分700Kg,保持体系为碱性,再反应1小时;用甲酸调整体系PH值为3.0,反应温度95℃反应1.5小时;加入二步尿素12Kg,调整体系PH值为8.0,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水110Kg,加入剩余糠醇组分225Kg,搅拌均匀,放料得产品1115Kg。
实施例2
原材料组成:
甲醛(浓度37%):195Kg,尿素:60Kg,糠醇:760Kg,酸性木质素:85Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)195Kg,用氢氧化钾溶液调节PH值为8.7,加入酸性木质素85Kg,启动搅拌,升温至83℃反应2.5小时;降温至45℃,加入一步尿素48Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分570Kg,保持体系为碱性,再反应1小时;用盐酸调整体系PH值为4.1,反应温度95℃反应1.5小时;加入二步尿素12Kg,调整体系PH值为8.0,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水100Kg,加入剩余糠醇组分190Kg,搅拌均匀,放料得产品1000Kg。
实施例3
原材料组成:
甲醛(96%):86Kg,尿素:75Kg,糠醇:872Kg,酸性木质素:154Kg。
反应步骤:
向反应釜中加入甲醛(浓度96%)86Kg,用氢氧化钾溶液调节PH值为8.2,加入酸性木质素154Kg,启动搅拌,升温至83℃反应2.5小时;降温至45℃,加入一步尿素48Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分654Kg,保持体系为碱性,再反应1小时;用硫酸调整体系PH值为3.8,反应温度95℃反应1.5小时;加入二步尿素27Kg,调整体系PH值为8.0,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水100Kg,加入剩余糠醇组分218Kg,搅拌均匀,放料得产品1100Kg。
实施例4
原材料组成:
甲醛(浓度37%):203Kg,尿素:75Kg,糠醇:733Kg,酸性木质素:183Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)203Kg,用氢氧化钾溶液调节PH值为9.7,加入酸性木质素183Kg,启动搅拌,升温至83℃反应2.5小时;降温至45℃,加入一步尿素60Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分549Kg,保持体系为碱性,再反应1小时;用乙酸调整体系PH值为5.0,反应温度95℃反应1.5小时;加入二步尿素15Kg,调整体系PH值为8.5,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水100Kg,加入剩余糠醇组分184Kg,搅拌均匀,放料得产品1094Kg。
实施例5
原材料组成:
甲醛(浓度37%):219Kg,尿素:85Kg,糠醇:553Kg,酸性木质素:298Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)219Kg,用氢氧化钠碱性溶液调节PH值为10.2,加入酸性木质素298Kg,启动搅拌,升温至83℃反应2.5小时;降温至45℃,加入一步尿素68Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分414Kg,保持体系为碱性,再反应1小时;用甲酸调整体系PH值为5.5,反应温度95℃反应1.5小时;加入二步尿素17Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水105Kg,加入剩余糠醇组分139Kg,搅拌均匀,放料得产品1050Kg。
实施例6
原材料组成:
甲醛(浓度37%):227Kg,尿素:63.5Kg,糠醇:978Kg,酸性木质素:30Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)227Kg,用氢氧化钾溶液调节PH值为8.2,加入酸性木质素30Kg,启动搅拌,升温至83℃反应2.5小时;降温至45℃,加入一步尿素48.5Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分758Kg,保持体系为碱性,再反应1小时;用甲酸调整体系PH值为3.5,反应温度95℃反应1.5小时;加入二步尿素15Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水133.5Kg,加入剩余糠醇组分220Kg,搅拌均匀,放料得产品1165Kg。
实施例7
原材料组成:
甲醛(浓度37%):217Kg,尿素:65Kg,糠醇:935Kg,酸性木质素:32Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)217Kg,用氨水溶液调节PH值为8.2,加入酸性木质素29Kg,启动搅拌,升温至83℃反应2.5小时;降温至45℃, 加入一步尿素48Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分750Kg,保持体系为碱性,再反应1小时;用盐酸调整体系PH值为3.5,反应温度95℃反应1.5小时;加入二步尿素17Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水129Kg,加入剩余糠醇组分185Kg,搅拌均匀,放料得产品1120Kg。
实施例8
原材料组成:
甲醛(浓度37%):204.5Kg,尿素:57Kg,糠醇:880Kg,酸性木质素:27.5Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)204.5Kg,用碳酸钠溶液调节PH值为7.8,加入酸性木质素27.5Kg,启动搅拌,升温至83℃反应2.5小时;降温至45℃,加入一步尿素48Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分680Kg,保持体系为碱性,再反应1小时;用乙酸调整体系PH值为3.5,反应温度95℃反应1.5小时;加入二步尿素9Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水119Kg,加入剩余糠醇组分200Kg,搅拌均匀,放料得产品1050Kg。
实施例9
原材料组成:
甲醛(浓度37%):211Kg,尿素:60Kg,糠醇:925Kg,酸性木质素:29Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)211Kg,用氢氧化钡溶液调节PH值为8.2,加入酸性木质素29Kg,启动搅拌,升温至83℃反应2.5小时;降温至45℃,加入一步尿素48Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分720Kg,保持体系为碱性,再反应1小时;用盐酸调整体系PH值为3.5,反应温度95℃反应1.5小时;加入二步尿素12Kg,调整体 系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水110Kg,加入剩余糠醇组分225Kg,搅拌均匀,放料得产品1115Kg。
实施例10
原材料组成:
甲醛(浓度37%):139.5Kg,尿素:39Kg,糠醇:600Kg,酸性木质素:19Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)139.5Kg,用氢氧化钠碱性溶液调节PH值为8.2,加入酸性木质素19Kg,启动搅拌,升温至83℃反应2.5小时;降温至45℃,加入一步尿素34Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分500Kg,保持体系为碱性,再反应1小时;用硫酸调整体系PH值为3.8,反应温度95℃反应1.5小时;加入二步尿素5Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水82.5Kg,加入剩余糠醇组分100Kg,搅拌均匀,放料得产品715Kg。
实施例11
原材料组成:
甲醛(浓度37%):151Kg,尿素:42Kg,糠醇:650Kg,酸性木质素:21Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)151Kg,用碳酸钠溶液调节PH值为10.2,加入酸性木质素21Kg,启动搅拌,升温至83℃反应2.5小时;降温至45℃,加入一步尿素30Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分500Kg,保持体系为碱性,再反应1小时;用盐酸调整体系PH值为3.5,反应温度95℃反应1.5小时;加入二步尿素12Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水89Kg,加入剩余糠醇组分150Kg,搅拌均匀,放料得产品775Kg。
实施例12
原材料组成:
甲醛(浓度37%):250Kg,尿素:65Kg,糠醇:970Kg,酸性木质素:30Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)250Kg,用氨水溶液调节PH值为8.2,加入酸性木质素30Kg,启动搅拌,升温至83℃反应2.5小时;降温至45℃,加入一步尿素40Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分755Kg,保持体系为碱性,再反应1小时;用盐酸调整体系PH值为3.5,反应温度95℃反应1.5小时;加入二步尿素25Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水135Kg,加入剩余糠醇组分215Kg,搅拌均匀,放料得产品1180Kg。
对比例1
原材料组成:
甲醛(浓度37%):211Kg,尿素:60Kg,糠醇:954Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)211Kg,启动搅拌,加入一步尿素48Kg,尿素溶解后,用氢氧化钠碱性溶液调节PH值为7.8,升温至85℃反应1小时;加入糠醇组分304Kg再反应1小时;用甲酸调整体系PH值为3.0,反应温度95℃反应1.5小时;加入二步尿素12Kg,调整体系PH值为8.0,75℃反应1小时后,将体系降温至60℃,然后在真空条件下脱水110Kg,加入剩余糠醇组分650Kg,搅拌均匀,放料得产品1115Kg。
对比例2
原材料组成:
甲醛(浓度37%):195Kg,尿素:60Kg,糠醇:845Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)195Kg,启动搅拌,加入一步尿素48Kg,尿素溶解后,用氢氧化钾溶液调节PH值为8.7,升温至85℃反应1小时;加入糠醇组分345Kg再反应1小时;用盐酸调整体系PH值为4.1,反应温度95℃反应1.5小时;加入二步尿素12Kg,调整体系PH值为8.0,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水100Kg,加入剩余糠醇组分500Kg,搅拌均匀,放料得产品1000Kg。
对比例3
原材料组成:
甲醛(96%):86Kg,尿素:75Kg,糠醇:1026Kg。
反应步骤:
向反应釜中加入甲醛(96%)86Kg,加入糠醇组分426Kg,启动搅拌,待甲醛溶解后,用氢氧化钾溶液调节PH值为8.2,升温至83℃反应2.5小时;降温至45℃,加入一步尿素60Kg,尿素溶解后,再升温至85℃反应1.5小时;用硫酸调整体系PH值为3.8,反应温度95℃反应1.5小时;加入二步尿素15Kg,搅拌溶解,调整体系PH值为8.0,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水20Kg,加入剩余糠醇组分600Kg,搅拌均匀,放料得产品1167Kg。
对比例4
原材料组成:
甲醛(浓度37%):203Kg,尿素:75Kg,糠醇:916Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)203Kg,启动搅拌,加入一步尿素60Kg,尿素溶解后,用氢氧化钾碱性溶液调节PH值为9.7,升温至85℃反应1小时;加入糠醇组分400Kg再反应1小时;用乙酸调整体系PH值为5.0,反应温度95℃反应1.5小时;加入二步尿素15Kg,调整体系PH值为8.5,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱 水100Kg,加入剩余糠醇组分516Kg,搅拌均匀,放料得产品1094Kg。
对比例5
原材料组成:
甲醛(浓度37%):219Kg,尿素:85Kg,糠醇:851Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)219Kg,启动搅拌,加入一步尿素68Kg,尿素溶解后,用氢氧化钠溶液调节PH值为10.2,升温至85℃反应1小时;加入糠醇组分301Kg再反应1小时;用甲酸调整体系PH值为5.5,反应温度95℃反应1.5小时;加入二步尿素17Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水105Kg,加入剩余糠醇组分550Kg,搅拌均匀,放料得产品1050Kg。
对比例6
原材料组成:
甲醛(浓度37%):227Kg,尿素:63.5Kg,糠醇:1008Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)227Kg,启动搅拌,加入一步尿素48.5Kg,尿素溶解后,用氢氧化钾溶液调节PH值为8.2,升温至85℃反应1小时;加入糠醇组分458Kg再反应1小时;用甲酸调整体系PH值为3.5,反应温度95℃反应1.5小时;加入二步尿素17Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水133.5Kg,加入剩余糠醇组分650Kg,搅拌均匀,放料得产品1165Kg。
对比例7
原材料组成:
甲醛(浓度37%):217Kg,尿素:65Kg,糠醇:967Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)217Kg,启动搅拌,加入一步尿素48Kg,尿素溶解后,用氨水溶液调节PH值为8.2,升温至85℃反应1小时;加入糠醇组分407Kg再反应1小时;用盐酸调整体系PH值为3.5,反应温度95℃反应1.5小时;加入二步尿素17Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水129Kg,加入剩余糠醇组分560Kg,搅拌均匀,放料得产品1120Kg。
对比例8
原材料组成:
甲醛(浓度37%):204.5Kg,尿素:57Kg,糠醇:1007.5Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)204.5Kg,启动搅拌,加入一步尿素27.5Kg,尿素溶解后,用碳酸钠溶液调节PH值为7.8,升温至85℃反应1小时;加入糠醇组分457.5Kg再反应1小时;用乙酸调整体系PH值为3.5,反应温度95℃反应1.5小时;加入二步尿素17Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水110Kg,加入剩余糠醇组分550Kg,搅拌均匀,放料得产品1050Kg。
对比例9
原材料组成:
甲醛(浓度37%):211Kg,尿素:60Kg,糠醇:954Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)211Kg,启动搅拌,加入一步尿素48Kg,尿素溶解后,用氢氧化钡溶液调节PH值为8.2,升温至85℃反应1小时;加入糠醇组分414Kg再反应1小时;用盐酸调整体系PH值为3.5,反应温度95℃反应1.5小时;加入二步尿素12Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水110Kg,加入剩余糠醇组分540Kg,搅拌均匀,放料得产品1115Kg。
对比例10
原材料组成:
甲醛(浓度37%):139.5Kg,尿素:39Kg,糠醇:619Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)139.5Kg,启动搅拌,加入一步尿素34Kg,尿素溶解后,用氢氧化钠溶液调节PH值为8.2,升温至85℃反应1小时;加入糠醇组分551Kg再反应1小时;用硫酸调整体系PH值为3.8,反应温度95℃反应1.5小时;加入二步尿素5Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水82.5Kg,加入剩余糠醇组分300Kg,搅拌均匀,放料得产品715Kg。
对比例11
原材料组成:
甲醛(浓度37%):151Kg,尿素:42Kg,糠醇:671Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)151Kg,启动搅拌,加入一步尿素30Kg,尿素溶解后,用碳酸钠溶液调节PH值为10.2,升温至85℃反应1小时;加入糠醇组分271Kg再反应1小时;用盐酸调整体系PH值为3.5,反应温度95℃反应1.5小时;加入二步尿素12Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水89Kg,加入剩余糠醇组分400Kg,搅拌均匀,放料得产品775Kg。
对比例12
原材料组成:
甲醛(浓度37%):250Kg,尿素:65Kg,糠醇:1000Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)250Kg,启动搅拌,加入一步尿素 40Kg,尿素溶解后,用氨水碱性溶液调节PH值为8.2,升温至85℃反应1小时;加入糠醇组分400Kg再反应1小时;用盐酸调整体系PH值为3.5,反应温度95℃反应1.5小时;加入二步尿素25Kg,调整体系PH值为8.2,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水135Kg,加入剩余糠醇组分600Kg,搅拌均匀,放料得产品1180Kg。
对比例13
原材料组成:
甲醛(浓度37%):211Kg,尿素:60Kg,糠醇:925Kg,酸性木质素:29Kg。
反应步骤:
向反应釜中加入甲醛(浓度为37%的水溶液)211Kg,用氢氧化钠溶液调节PH值为7.8,加入一步尿素48Kg,尿素溶解后,再升温至85℃反应1小时;降温至45℃,加入酸性木质素29Kg,启动搅拌,升温至83℃反应2.5小时;随后加入糠醇组分700Kg,保持体系为碱性,再反应1小时;用甲酸调整体系PH值为3.0,反应温度95℃反应1.5小时;加入二步尿素12Kg,调整体系PH值为8.0,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水90Kg,加入剩余糠醇组分225Kg,搅拌均匀,放料得产品1135Kg。
对比例14
原材料组成:
甲醛(浓度37%):195Kg,尿素:60Kg,糠醇:760Kg,酸性木质素:85Kg。
反应步骤:
向反应釜中加入甲醛(浓度37%)195Kg,用氢氧化钾溶液调节PH值为8.7,加入一步尿素48Kg,尿素溶解后,再升温至85℃反应1小时;加入糠醇组分570Kg,保持体系为碱性,再反应1小时;降温至45℃,加入酸性木质素85Kg,启动搅拌,升温至83℃反应2.5小时;用盐酸调整体系PH值为4.1,反应温度95℃反应1.5小时;加入二步尿素12Kg,调整体 系PH值为8.0,75℃反应1小时后,将体系降温至60℃;然后在真空条件下脱水100Kg,加入剩余糠醇组分190Kg,搅拌均匀,放料得产品1000Kg。
以上合成呋喃树脂的指标结果见表1。
其中游离糠醇含量、含氮量、游离甲醛和强度的分析方法:按JB/T7526-1994《铸造用自硬呋喃树脂》进行;甲醛释放量根据国标GB13197-91中的乙酰丙酮分光光度法进行测量。
表1:实施例1-12及对比例1-14的指标测定结果
Figure PCTCN2015083148-appb-000001
Figure PCTCN2015083148-appb-000002
由上述可见,与对比例相比,在本发明的实施例中,游离糠醇的含量大大降低,并且游离甲醛的含量也大大降低;特别是在铸造过程中,甲醛释放量大大减少,基本上都减少了超过50%;此外,根据本发明制造的呋喃树脂的抗拉强度与对比例的抗拉强度基本相当。
上述内容同样表明:本发明的呋喃树脂在获得基本相当的抗拉强度的同时,不仅使得游离糠醇和游离甲醛的含量大大降低,而且使得铸造过程中的甲醛释放量降低了超过50%。这改善了作业环境,减少了对工人的身体损害,在环境上是非常有利的。
以上对本发明所提供的制备木质素改性铸造用自硬呋喃树脂的方法进行了详细介绍,本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域技术人员而言,依据本发明的思想,可以在不脱离本发明构思的前提下,对本发明的具体实施方式进行各种改变,这些改变也落入本发明的范围内。

Claims (10)

  1. 一种制备木质素改性呋喃树脂的方法,所述方法包括:
    步骤(1):向反应釜中加入甲醛,调节PH值为碱性,加入木质素,在搅拌下进行反应;
    步骤(2):加入尿素进行反应;
    步骤(3):加入糠醇,先在碱性条件下进行反应,再调整体系的PH值为酸性进行反应;
    步骤(4):再加入尿素进行反应,随后将体系在真空条件下脱水,然后向脱水后的体系中加入糠醇,搅拌均匀以得到木质素改性的呋喃树脂。
  2. 根据权利要求1所述的方法,其中,在所述步骤(1)中加入的甲醛的量为4~10重量份,加入的木质素的量为2~30重量份,木质素选自天然木质素、碱木质素、磺化木质素、酸性木质素、酶解木质素、高沸醇木质素、有机溶剂提取的木质素中的一种或更多种;在所述步骤(2)中加入的尿素的量为3~6重量份;在所述步骤(3)中加入的糠醇的量为45~60重量份;在所述步骤(4)中加入的尿素的量为1~2重量份,加入的糠醇的量为10~20重量份,脱水后的体系的含水率低于20%。
  3. 根据权利要求1所述的方法,其中,在所述步骤(1)中加入木质素后在80~90℃下反应2~3个小时。
  4. 根据权利要求3所述的方法,其中,所述步骤(2)进一步为:待体系温度降至40~50℃,加入尿素,在尿素溶解后,在80~90℃下反应1~2个小时。
  5. 根据权利要求1所述的方法,其中,所述步骤(3)进一步为:向体系中加入糠醇,先在碱性条件下反应1~2个小时,然后调整体系PH值为酸性,在90~100℃下反应1~2个小时。
  6. 根据权利要求1所述的方法,其中,在所述步骤(4)中加入尿素后,调整体系的pH值为碱性,然后进行反应1~5个小时。
  7. 根据权利要求1所述的方法,其中,在所述步骤(1)和步骤(3)中碱性PH值范围为7.2~12,有利地为7.8~10.2;调节碱性PH值所用碱选自氢氧化钠、氢氧化钾、氨水、碳酸钠、碳酸钾、氢氧化钡或它们水溶液中 的一种或更多种。
  8. 根据权利要求1至7中任一项所述的方法,其中,在所述步骤(3)中酸性PH值范围为3.0~5.5,有利地为3.5~5.0;调节酸性PH值所用酸选自甲酸、乙酸、磺酸、盐酸、硫酸或它们水溶液中的一种或更多种。
  9. 根据权利要求1至7中任一项所述的方法,其中,在所述步骤(1)和所述步骤(3)中调节碱性PH值所用的碱性物质为同一种碱性物质。
  10. 一种木质素改性呋喃树脂,其由根据权利要求1至9中任一项所述的方法制备。
PCT/CN2015/083148 2014-12-10 2015-07-02 制备木质素改性呋喃树脂的方法 WO2016090907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410758034.7 2014-12-10
CN201410758034.7A CN104387543B (zh) 2014-12-10 2014-12-10 制备木质素改性呋喃树脂的方法

Publications (1)

Publication Number Publication Date
WO2016090907A1 true WO2016090907A1 (zh) 2016-06-16

Family

ID=52605514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083148 WO2016090907A1 (zh) 2014-12-10 2015-07-02 制备木质素改性呋喃树脂的方法

Country Status (2)

Country Link
CN (1) CN104387543B (zh)
WO (1) WO2016090907A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920895A (zh) * 2022-06-23 2022-08-19 山东永创材料科技有限公司 一种耐寒性呋喃树脂的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104387543B (zh) * 2014-12-10 2017-06-23 济南圣泉集团股份有限公司 制备木质素改性呋喃树脂的方法
CN105924603B (zh) * 2016-05-04 2018-01-12 苏州兴业材料科技股份有限公司 一种改性木质素合成的呋喃树脂及其制备方法
CN106978050A (zh) * 2017-05-22 2017-07-25 安徽三义和能源科技有限公司 一种环保耐用的家具涂料
CN107090239A (zh) * 2017-05-22 2017-08-25 安徽三义和能源科技有限公司 一种家具用不饱和聚酯涂料
CN112222351B (zh) * 2020-09-28 2022-08-05 宁夏共享化工有限公司 一种呋喃树脂及其生产方法
CN113583199A (zh) * 2021-09-06 2021-11-02 山东永创材料科技有限公司 一种呋喃树脂的制备方法
CN113956417B (zh) * 2021-11-18 2024-02-20 上海昶法新材料有限公司 一种改性呋喃树脂的制备方法
CN114163597B (zh) * 2021-12-02 2024-05-28 上海昶法新材料有限公司 一种提高树脂砂抗拉强度的改性呋喃树脂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540837A1 (de) * 1991-11-07 1993-05-12 Bakelite AG Ligninmodifizierte Bindemittel
CN101199981A (zh) * 2007-11-28 2008-06-18 济南圣泉集团股份有限公司 铸造用易溃散呋喃树脂及其制备方法
CN102863600A (zh) * 2012-09-29 2013-01-09 济南圣泉集团股份有限公司 一种铸造用呋喃树脂及其制备方法
CN104031325A (zh) * 2014-06-20 2014-09-10 济南圣泉集团股份有限公司 聚苯乙烯泡沫板、其生产方法以及用于其的固化剂
CN104387543A (zh) * 2014-12-10 2015-03-04 济南圣泉集团股份有限公司 制备木质素改性呋喃树脂的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875756B (zh) * 2012-04-06 2015-01-14 济南圣泉集团股份有限公司 戊糖类化合物替代糠醇生产铸造用自硬呋喃树脂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540837A1 (de) * 1991-11-07 1993-05-12 Bakelite AG Ligninmodifizierte Bindemittel
CN101199981A (zh) * 2007-11-28 2008-06-18 济南圣泉集团股份有限公司 铸造用易溃散呋喃树脂及其制备方法
CN102863600A (zh) * 2012-09-29 2013-01-09 济南圣泉集团股份有限公司 一种铸造用呋喃树脂及其制备方法
CN104031325A (zh) * 2014-06-20 2014-09-10 济南圣泉集团股份有限公司 聚苯乙烯泡沫板、其生产方法以及用于其的固化剂
CN104387543A (zh) * 2014-12-10 2015-03-04 济南圣泉集团股份有限公司 制备木质素改性呋喃树脂的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920895A (zh) * 2022-06-23 2022-08-19 山东永创材料科技有限公司 一种耐寒性呋喃树脂的制备方法
CN114920895B (zh) * 2022-06-23 2023-09-29 山东永创材料科技有限公司 一种耐寒性呋喃树脂的制备方法

Also Published As

Publication number Publication date
CN104387543A (zh) 2015-03-04
CN104387543B (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
WO2016090907A1 (zh) 制备木质素改性呋喃树脂的方法
CN108690191B (zh) 聚苯并噁嗪气凝胶隔热材料及其制备方法
CN104892948B (zh) 一种自交联型磷腈弹性体的制备方法
TWI445740B (zh) 生質環氧樹脂原料及其製備方法
CN105037671A (zh) 一种低糠醇含量久存放铸造用呋喃树脂及其制备方法
CN101780353A (zh) 一种微孔陶瓷过滤芯及其制备方法
CN107556001B (zh) 一种无机陶瓷坯体增强剂及其应用
CN107857746A (zh) 一种呋喃基二酸单体及可溶性芳香聚酰胺与可重复加工的交联聚酰胺及其制备方法和应用
CN107880232B (zh) 一种增材制造型砂专用呋喃树脂及制备方法
CN102861867B (zh) 戊糖类化合物改性糠醇生产铸造用自硬呋喃树脂的方法
CN112552695B (zh) 彩色沥青胶结料及制备方法
CN104292463A (zh) 一种聚芳硫醚砜及其制备方法
CN106830867A (zh) 一种高强度粉煤灰基纤维发泡自保温材料
CN112142938A (zh) 一种节能环保呋喃树脂铸造粘合剂的制备方法
CN109836549B (zh) 一种竹材浸渍用水溶性改性酚醛树脂及其制备方法
CN103319671B (zh) 耐火材料用酚醛树脂的制备方法
CN104031325A (zh) 聚苯乙烯泡沫板、其生产方法以及用于其的固化剂
CN102773405B (zh) 一种铸造用砂型水基涂料的生产工艺
CN102127453A (zh) 一种化学固沙剂及其制备方法
CN112321278B (zh) 一种无机粘结剂在高发热冒口套上的应用工艺
WO2018184601A1 (zh) 铸造用粘结剂组合物及用于制备它的套组
CN103992454A (zh) 环己酮-三聚氰胺-甲醛共缩聚树脂及其制备方法
CN107033745A (zh) 一种纳米涂层材料及其制备方法
CN104999649A (zh) 外墙保温隔热板的制作方法
CN112142936A (zh) 一种增材制造快速成型呋喃树脂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868520

Country of ref document: EP

Kind code of ref document: A1