WO2016090805A1 - 可降解evoh高阻隔复合薄膜 - Google Patents

可降解evoh高阻隔复合薄膜 Download PDF

Info

Publication number
WO2016090805A1
WO2016090805A1 PCT/CN2015/076816 CN2015076816W WO2016090805A1 WO 2016090805 A1 WO2016090805 A1 WO 2016090805A1 CN 2015076816 W CN2015076816 W CN 2015076816W WO 2016090805 A1 WO2016090805 A1 WO 2016090805A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
sodium alginate
copolymer
hydrophilic
Prior art date
Application number
PCT/CN2015/076816
Other languages
English (en)
French (fr)
Inventor
夏嘉良
高学文
夏瑜
唐敏艳
俞晓琴
Original Assignee
昆山市张浦彩印厂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山市张浦彩印厂 filed Critical 昆山市张浦彩印厂
Priority to US15/519,532 priority Critical patent/US10857766B2/en
Publication of WO2016090805A1 publication Critical patent/WO2016090805A1/zh
Priority to US17/113,021 priority patent/US11548269B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/04Anhydrides, e.g. cyclic anhydrides
    • C08F22/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • B32B2323/046LDPE, i.e. low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/14Gas barrier composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • C08L2203/162Applications used for films sealable films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • C08L23/0823Copolymers of ethene with aliphatic cyclic olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0838Copolymers of ethene with aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/147Copolymers of propene with monomers containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C09J123/0815Copolymers of ethene with aliphatic 1-olefins
    • C09J123/0823Copolymers of ethene with aliphatic cyclic olefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C09J123/0838Copolymers of ethene with aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0853Vinylacetate
    • C09J123/0861Saponified vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • C09J123/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • C09J123/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • C09J123/14Copolymers of propene
    • C09J123/147Copolymers of propene with monomers containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/04Presence of homo or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/04Presence of homo or copolymers of ethene
    • C09J2423/041Presence of homo or copolymers of ethene in the barrier layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/04Presence of homo or copolymers of ethene
    • C09J2423/046Presence of homo or copolymers of ethene in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • C09J2423/106Presence of homo or copolymers of propene in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable
    • Y10T428/2817Heat sealable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable
    • Y10T428/2817Heat sealable
    • Y10T428/2826Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/2878Adhesive compositions including addition polymer from unsaturated monomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31794Of cross-linked polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31928Ester, halide or nitrile of addition polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Definitions

  • the invention relates to the technical field of multilayer composite films, in particular to a biodegradable EVOH high barrier composite film.
  • the multi-layer co-extruded composite film refers to a film which is compounded by a plurality of different polymers by a co-extrusion blow molding method, a co-extrusion casting method or a co-extrusion stretching method.
  • This kind of film is widely used as a plastic packaging material in food, processed meat products, daily necessities, cosmetics, chemical products, pesticides, military products, etc., and can realize the sealing and soft packaging of products and meet various kinds of inflation or vacuuming, thermoforming, etc.
  • the packaging function has various barrier properties such as high moisture resistance, oxygen barrier, oil resistance and fragrance retention under various environments.
  • the object of the present invention is to provide a degradable EVOH high barrier composite film which tends to have a uniform biodegradation rate.
  • the first technical solution adopted by the present invention is: a degradable EVOH high barrier composite thin Membrane, the structure of the composite film is as follows:
  • PET means an outer layer, the function of which is a protective layer or a display layer, the material of which is polyester, the hydrophilic group of the polyester is an ester group;
  • EAA-TIE represents the first adhesive layer, and the material thereof is maleic anhydride grafting.
  • the ethylene acrylic acid copolymer, the maleic anhydride grafted ethylene acrylic acid copolymer contains a hydrophilic group which is a carboxyl group and an acid anhydride;
  • EVOH denotes a middle layer which functions as a barrier layer, the material of which is EVOH represents an ethylene-vinyl alcohol copolymer, and the ethylene-vinyl alcohol copolymer contains a hydrophilic group which is a hydroxyl group;
  • PE-TIE denotes a second adhesive layer whose material is a maleic anhydride grafted polyethylene copolymer, and the maleic anhydride grafted polyethylene copolymer contains a hydrophilic group which is an acid anhydride;
  • PE denotes an inner layer, the function of which is a heat seal layer, the material of which is polyethylene, and the polyethylene does not contain a hydrophilic group;
  • each layer of the composite film obtains a uniform biodegradability by introducing a bio-based group, which is a kind of additive type biodegradable activity in a garbage disposal field or composting condition.
  • the additive masterbatch is uniformly added to each layer of the material in proportion, and then the composite film is prepared by a melt coextrusion method;
  • the additive type masterbatch is composed of a carrier and an active agent, and the active agent is a polymer containing a hydrophilic group, wherein the active component of the active agent is a hydrophilic group, and the hydrophilic group means a carboxylic acid. At least one of a salt, a carboxyl group, a hydroxyl group, an aldehyde group, an amide group, an acid anhydride, and an ester group;
  • the hydrophilic group is a carboxylate, a carboxyl group, a hydroxyl group, an aldehyde group, an amide group, an acid anhydride, an ester group in order of the hydrophilic activity from high to low;
  • the carrier is selected according to a similar compatibility principle for each layer of material: for the outer layer of the polyester material, the carrier in the additive type masterbatch is a polyester;
  • the support in the additive type master batch is an ethylene acrylic acid copolymer
  • the carrier in the additive type masterbatch is polyethylene
  • the carrier in the additive type master batch is polyethylene
  • the carrier in the added masterbatch is polyethylene
  • the added amount of the added masterbatch in each layer of material is controlled within a range of 0.3-15% of the total mass of the layer of the material; the hydrophilic activity of the hydrophilic group in the added masterbatch should be greater than or equal to the formula (1)
  • the hydrophilic activity of the hydrophilic group in each layer of material; by adding the additive type masterbatch, the molar ratio of the hydrophilic group to the carbon atom of each layer of the material in the formula (1) tends to be uniform, that is, the biological activity tends to Consistently, the degradation rate of each layer of the composite film tends to be uniform.
  • the second technical solution adopted by the present invention is: a degradable EVOH high barrier composite film, and the structure of the composite film is as follows:
  • PET means an outer layer, the function of which is a protective layer or a display layer, the material of which is polyester, the hydrophilic group of the polyester is an ester group;
  • EAA-TIE represents the first adhesive layer, and the material thereof is maleic anhydride grafting.
  • the ethylene acrylic acid copolymer, the maleic anhydride grafted ethylene acrylic acid copolymer contains a hydrophilic group which is a carboxyl group and an acid anhydride;
  • EVOH denotes a middle layer, the function of which is a barrier layer, the material of which is an ethylene-vinyl alcohol copolymer, and the hydrophilic group contained in the ethylene-vinyl alcohol copolymer is a hydroxyl group;
  • PP-TIE denotes a second adhesive layer whose material is a maleic anhydride grafted polypropylene copolymer, and the maleic anhydride grafted polypropylene copolymer contains a hydrophilic group which is an acid anhydride;
  • PP denotes an inner layer, which functions as a heat seal layer, the material of which is polypropylene, and the polypropylene does not contain a hydrophilic group;
  • each layer of the composite film obtains a uniform biodegradability by introducing a bio-based group, which is a kind of additive type biodegradable activity in a garbage disposal field or composting condition.
  • the additive masterbatch is uniformly added to each layer of the material in proportion, and then the composite film is prepared by a melt coextrusion method;
  • the additive type masterbatch is composed of a carrier and an active agent, and the active agent is a polymer containing a hydrophilic group, wherein the active agent
  • the active ingredient of the agent is a hydrophilic group, and the hydrophilic group means at least one of a carboxylate, a carboxyl group, a hydroxyl group, an aldehyde group, an amide group, an acid anhydride, and an ester group;
  • the hydrophilic group is a carboxylate, a carboxyl group, a hydroxyl group, an aldehyde group, an amide group, an acid anhydride, an ester group in order of the hydrophilic activity from high to low;
  • the carrier is selected for each layer of material according to a similar compatibility principle:
  • the carrier in the additive masterbatch is a polyester
  • the support in the additive type master batch is an ethylene acrylic acid copolymer
  • the carrier in the additive type masterbatch is polyethylene
  • the carrier in the additive type master batch is at least one of polypropylene and polyethylene;
  • the carrier in the additive type masterbatch is polypropylene
  • the added amount of the added masterbatch in each layer of material is controlled within a range of 0.3-15% of the total mass of the layer of the material; the hydrophilic activity of the hydrophilic group in the added masterbatch should be greater than or equal to the formula (2)
  • the hydrophilic activity of the hydrophilic group in each layer of material; by adding the additive type masterbatch, the molar ratio of the hydrophilic group to the carbon atom of each layer of the material in the formula (2) tends to be uniform, that is, the biological activity tends to Consistently, the degradation rate of each layer of the composite film tends to be uniform.
  • the polyester in the outer layer, is amorphous polyethylene terephthalate or polyethylene terephthalate-1,4-cyclohexane dimethanol ester.
  • the density of the polyester is from 1.300 to 1.400 g/cm 3 .
  • a polyester copolymer obtained by copolymerization modification with a dicarboxylic acid is called a non-crystalline polyethylene terephthalate (APET); a polycondensation obtained by copolymerization of a glycol
  • the ester copolymer is referred to as polyethylene terephthalate-1,4-cyclohexanedimethanol ester (PETG).
  • the density of the maleic anhydride grafted ethylene acrylic acid copolymer in the first adhesive layer is 0.920-0.940 g/cm 3 , and the mass percentage of the maleic anhydride graft ratio is 0.3%. -10%; the molar content of acrylic acid in the ethylene acrylate copolymer is from 8% to 28%.
  • the ethylene-vinyl alcohol copolymer in the barrier layer, has an ethylene molar content of 26 to 48% and a density of 1.170 to 1.190 g/cm 3 .
  • the density of the maleic anhydride grafted polyethylene copolymer is from 0.910 to 0.950 g/cm 3 , and the mass percentage of the maleic anhydride graft ratio is It is 0.3%-10%.
  • the density of the maleic anhydride grafted polypropylene copolymer in the second adhesive layer is 0.880-0.910 g/cm 3 ; the mass percentage of the maleic anhydride graft ratio It is 0.3%-10%.
  • the density of the polyethylene is 0.900-0.935 g/cm 3
  • the polyethylene comprises a polyethylene blend
  • the density of the polyethylene blend is 0.910- 0.925 g/cm 3
  • the polyethylene blend consists of 50-99% by weight of polyethylene and 1-50% by weight of a vinyl homopolymer
  • the polyethylene blend consists of 50-99% by weight Polyethylene and 1-50% by weight of a vinyl copolymer composed of at least one of ethylene and a C4-C12 alpha-olefin, a cycloolefin, a vinyl arene and a polar vinyl monomer
  • the composition has a density of the vinyl copolymer of 0.880 to 0.915 g/cm 3 .
  • thermoplastic layer is made of polypropylene
  • the polypropylene is composed of an isotactic polypropylene homopolymer or/and a polypropylene random copolymer, and the density of the polypropylene is 0.880-0.910 g. /cm 3 .
  • the function of the outer layer is a protective layer or a display layer, wherein when the function is a protective layer, the function is wear resistance and temperature resistance; when the function is a display layer, it can be used Print the display of relevant information, or transparently display the contents of the package.
  • the composite film can obtain corresponding additional functions through coating, metal evaporation, and compounding.
  • the technical principle of the present invention is that the materials constituting the composite film are classified into two types: a hydrophilic material and a hydrophobic material, wherein the hydrophilic material itself contains a hydrophilic group, and has biodegradability under the garbage disposal site or composting condition;
  • the hydrophobic material does not contain a hydrophilic group.
  • the macromolecular chains are stably combined by hydrogen bonding and mutual bending and entanglement between the macromolecular chains to form stable macromolecular aggregates.
  • the hydrophilic group in the active agent is added and uniformly dispersed into each layer of material; in the biodegradable environment, the degradable active agent is first decomposed by the microorganism to cause the molecular chain to be broken, and the carrier which is connected by hydrogen bonding also occurs. The chain breaks, which in turn leads to the decomposition of the macromolecular aggregates, thereby achieving the purpose of biodegradation of the plastic composite film.
  • the biodegradation process of the present invention begins with a characteristic expansion, and the bioactive compound in the plastic makes the carbon-containing polymer more susceptible to attack by microbial bacteria.
  • the microbial bacteria engulf the biologically active compound, an acidic substance is generated, thereby causing inclusion.
  • the carbon polymer matrix expands.
  • the expansion contacts the heat and moisture, and the molecular structure of the carbon-containing polymer is expanded, and the expansion creates space in the molecular structure of the polymer, the combination of the biologically active compound and the masterbatch attracts microorganisms that can metabolize and neutralize the polymer. group.
  • This biodegradation process can be carried out in an aerobic environment or under anaerobic conditions; it can be carried out under conditions of light, heat and humidity, or in the absence of light, heat and humidity.
  • the key point of the technical solution of the present invention is that the hydrophilic activity of the hydrophilic group in the additive type masterbatch should be greater than or equal to the hydrophilic activity of the hydrophilic group in each layer of the composite film; by adding the added masterbatch,
  • the molar ratio of the hydrophilic group to the carbon atom of each layer of the composite film tends to be the same, that is, the biological activity tends to be uniform, so that the degradation rate of each layer of the composite film tends to be uniform.
  • an additive type masterbatch having a hydrophilic activity greater than that of the composite film material is added to each layer of the composite film to weaken the original hydrophilic activity in the composite film material, and by adding the additive type master batch,
  • the molar ratio of the hydrophilic groups to the carbon atoms of the materials in the composite film tends to be uniform, that is, the biological activity tends to be uniform, so that the degradation rate of each layer of the composite film tends to be uniform.
  • the contribution of the present invention is that by balancing the molar ratio of hydrophilic groups to carbon atoms in the materials of the layers and the hydrophilic activity, the biological activities of the materials in the composite film structure tend to be uniform, thereby degrading the materials of the layers of the composite film.
  • the rate tends to be uniform; when the addition amount is 0.3-15% of the total mass of the layer material, the appearance, function and physical and mechanical properties of the film remain unchanged before being processed by the compost.
  • Embodiment 1 (Example of the first technical solution)
  • a degradable EVOH high barrier composite film the structure of the composite film is as follows:
  • PET denotes an outer layer, the function of which is a protective layer or a display layer, the material of which is polyester, the monomer formula is [OCH2-CH2OCOC6H4CO], and the hydrophilic group contained in the polyester itself is ester group-COO-;
  • EAA-TIE denotes a first adhesive layer made of a maleic anhydride grafted ethylene acrylic acid copolymer, and a maleic anhydride grafted ethylene acrylic acid copolymer is mixed with 95% by weight of ethylene acrylic acid and 5% by weight of maleic anhydride.
  • the monomer formula is ⁇ [CH2-CH2]15.5[CH2-CH(COOH)]1 ⁇ 3.7[C4H2O3]1, and the maleic anhydride grafted ethylene acrylic acid copolymer itself contains a hydrophilic group which is a carboxyl group- COOH and anhydride OC-O-CO;
  • EVOH denotes a middle layer which functions as a barrier layer
  • the material of which is EVOH represents an ethylene-vinyl alcohol copolymer
  • the ethylene-vinyl alcohol copolymer is 32% by weight of ethylene PE and 68% by weight of vinyl alcohol PVA
  • the monomer molecular formula is [ CH 2 CH 2 ] 1 [CH 2 CHOH] 1.4
  • the ethylene-vinyl alcohol copolymer itself contains a hydrophilic group is hydroxyl-OH;
  • PE-TIE denotes a second adhesive layer which is a maleic anhydride grafted polyethylene copolymer formed by mixing 95% by weight of polyethylene and 5% by weight of maleic anhydride, and its monomer formula is -[CH 2 -CH 2 ] n -[C 4 H 2 O 3 ] m , the maleic anhydride-grafted polyethylene copolymer itself contains a hydrophilic group which is an anhydride-OC-O-CO-;
  • PE denotes an inner layer which functions as a heat seal layer and whose material is polyethylene, and its monomer formula is -[CH 2 -CH 2 ] n -, and the polyethylene itself does not contain a hydrophilic group.
  • the polyester is a non-crystalline polyethylene terephthalate, and in practical use, if polyethylene terephthalate-1,4-cyclohexane dimethanol ester is used, The same effect can be achieved; in this embodiment, the density of the polyester is 1.360 g/cm 3 , and in practical application, if the density of the polyester is 1.300 g/cm 3 , 1.400 g/cm 3 or others between 1.300 and The same effect can be achieved by a value between 1.400 g/cm 3 .
  • the density of the maleic anhydride grafted ethylene acrylic acid copolymer was 0.940 g/cm 3 .
  • the density value if the ethylene acrylic acid copolymer grafted with maleic anhydride is 3, 3 is interposed 0.920-0.940g or other value between 3 0.920g / cm 0.930g / cm / cm, may be The same effect is achieved; in this embodiment, the mass percentage of maleic anhydride grafting rate is 5% by weight, and in actual application, if it is 0.3% by weight, 8% by weight, 10% by weight or other parts of 0.3-10% by weight The value between the two can also achieve the same effect.
  • the molar content of acrylic acid in the ethylene acrylate copolymer is 14%. In practical applications, the same effect can be obtained if the value is 28%, 20% or other values between 8% and 28%.
  • the barrier layer an ethylene - vinyl alcohol copolymer has a density of 1.170g / cm 3, the actual application, if we take a density of 1.190g / cm 3, 1.18g / cm 3 or other between 1.170-1.190g / cm The value between the three can also achieve the same effect.
  • the ethylene-vinyl alcohol copolymer has an ethylene molar content of 32%. In practical applications, if the ethylene molar content is 26%, 30%, 48% or other between 26-48 The value between % can also achieve the same effect.
  • the second adhesive layer the density of the copolymer of maleic anhydride grafted polyethylene was 0.910g / cm 3, the actual application, when the value of the density 0.950g / cm 3, 0.0300.950g / cm 3 Or the other value between 0.910-0.950g/cm 3 can also achieve the same effect, the mass percentage of maleic anhydride grafting rate is 5% by weight, and in actual application, if it is 0.3% by weight, 8% by weight, A 10% by weight or other value between 0.3 and 10% by weight can also achieve the same effect.
  • the density of polyethylene is 0.900-0.935 g/cm 3 , and the value may be 0.900 g/cm 3 , 0.935 g/cm 3 , 0.940 g/cm 3 or other between 0.900-0.935 g.
  • the same effect can be achieved with a value between /cm 3 ; the polyethylene contains a polyethylene blend having a density of 0.910-0.925 g/cm 3 and a value of 0.910 g/cm.
  • the polyethylene blends of 50 to 99% by weight of poly Ethylene and 1-50% by weight of a vinyl homopolymer, 50% by weight of polyethylene and 50% by weight of vinyl homopolymer, or 99% by weight of polyethylene and 1% by weight of vinyl homopolymer
  • the same effect can be achieved by either 75% by weight of polyethylene and 25% by weight of a vinyl homopolymer, etc.
  • the vinyl copolymer consists of ethylene and C4-C12 alpha-olefins, cyclic olefins, vinyl aromatic hydrocarbons and At least one of polar vinyl monomers having a density of from 0.880 to 0.915 g/cm 3 and a value of 0.910 g/cm 3 , 0.915 g/cm 3 , and 0.900 g/cm 3 . Or other values between 0.880 and 0.915
  • Each layer of the composite film obtains a uniform biodegradability by introducing a bio-based group, which is a type of additive masterbatch having biodegradability in a garbage disposal site or composting condition, the addition
  • the master batch is uniformly added to each layer of the material in proportion, and then the composite film is prepared by a melt coextrusion method.
  • the additive type masterbatch is composed of a carrier and an active agent, and the active agent is a polymer containing a hydrophilic group, wherein the active component of the active agent is a hydrophilic group, and the hydrophilic group means a carboxylic acid. salt -COO -, at least one carboxy group -COOH, a hydroxyl group -OH, an aldehyde group -CHO, amide groups -CONH 2, -OC-O-CO- acid anhydride and the ester group -COOR.
  • the formula (1) layers of material and the additive in the masterbatch, hydrophilic group according to the order of highest to lowest hydrophilic active carboxylate -COO -, a carboxyl group -COOH, a hydroxyl group -OH, -CHO aldehyde , amide group - CONH 2 , anhydride - OC-O-CO -, ester group - COOR.
  • the carrier is selected for each layer of material according to a similar compatibility principle:
  • the carrier in the additive masterbatch is a polyester
  • the support in the additive type master batch is an ethylene acrylic acid copolymer
  • the carrier in the additive type masterbatch is polyethylene
  • the carrier in the additive type master batch is polyethylene
  • the carrier in the additive masterbatch is polyethylene.
  • the added amount of the added masterbatch in each layer of material is controlled within a range of 0.3-15% of the total mass of the layer of the material; the hydrophilic activity of the hydrophilic group in the added masterbatch should be greater than or equal to the formula (1)
  • the hydrophilic activity of the hydrophilic group in each layer of material; by adding the additive type masterbatch, the molar ratio of the hydrophilic group to the carbon atom of each layer of the material in the formula (1) tends to be uniform, that is, the biological activity tends to Consistently, the degradation rate of each layer of the composite film tends to be uniform.
  • the hydrophilic activity of the hydrophilic groups contained in various materials is ranked from high to low as carboxyl group>hydroxyl>anhydride>ester group, that is, hydrophilic activity of each layer material in the formula (1).
  • the sodium alginate having a hydrophilic activity greater than the hydrophilic activity of EAA-TIE (carboxyl) in the composite film material is selected as an additive to weaken the hydrophilic activity of the original hydrophilic group in the composite film material.
  • the monomeric formula of sodium alginate is (C 5 H 7 O 4 COONa) n .
  • the hydrophilic group contained in sodium alginate is sodium carboxylate (—COONa) and hydroxyl group.
  • the hydrophilic activity of sodium carboxylate in sodium alginate is higher than that of maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) having the highest hydrophilic activity in the composite film material.
  • the hydrophilic activity of the carboxyl group (—COOH) plays a leading role in the biodegradation process, while the carboxyl group of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) in the composite film material (-COOH), the hydroxyl group in EVOH, the hydrophilic activity of the acid anhydride in PE-TIE and the ester group in PET were weakened.
  • EAA-TIE, EVOH, PE-TIE and PET were assumed in the following calculations.
  • the molar ratio of hydrophilic group to carbon atom is zero.
  • the sodium alginate in each layer of material is calculated according to the amount of sodium alginate added in 1% and 2.2% by mole respectively. Percentage added:
  • each layer in formula (1) is mixed with sodium alginate in a molar ratio of 99:1, and the molar ratio of hydrophilic group to carbon atom after adding sodium alginate in each layer material is calculated:
  • the materials of each layer are mixed with sodium alginate in a molar ratio of 99:1, and the mixed hydrophilic groups are calculated.
  • the molar ratios of the carbon atoms are the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of sodium alginate added in each layer of material is calculated as follows:
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • EAA-TIE after adding sodium alginate is 1 mol
  • mass of EAA-TIE is m 1-2
  • mass of sodium alginate is m 2-2 ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-3 molecular weight of EVOH (g/mol) * EVOH content (%) * molar amount (mol)
  • m 2-3 molecular weight of sodium alginate (g / mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-4 PE-TIE molecular weight (g / mol) * PE-TIE content (%) * molar rate (mol)
  • m 2-4 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-5 molecular weight of PE (g/mol) * PE content (%) * molar amount (mol)
  • m 2-5 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • the mass percentage of sodium alginate added from PET to EAA-TIE/EVOH/PE-TIE/PE from left to right is: 1.03/4.79/2.18/5.77/6.66.
  • each layer in formula (1) was mixed with sodium alginate in a molar ratio of 97.8:2.2, and the molar ratio of hydrophilic groups to carbon atoms after adding sodium alginate to each layer material was calculated:
  • the materials of each layer are mixed with sodium alginate in a molar ratio of 97.8:2.2, and the mixed hydrophilic groups are calculated.
  • the molar ratios of the carbon atoms are the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of sodium alginate added in each layer of material is calculated as follows:
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • EAA-TIE after adding sodium alginate is 1 mol
  • mass of EAA-TIE is m 1-2
  • mass of sodium alginate is m 2-2 ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-3 molecular weight of EVOH (g/mol) * EVOH content (%) * molar amount (mol)
  • m 2-3 molecular weight of sodium alginate (g / mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-4 PE-TIE molecular weight (g / mol) * PE-TIE content (%) * molar rate (mol)
  • m 2-4 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-5 molecular weight of PE (g/mol) * PE content (%) * molar amount (mol)
  • m 2-5 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • the mass percentage of sodium alginate added from PET to EAA-TIE/EVOH/PE-TIE/PE from left to right is: 2.27/10.65/4.73/12.01/13.72.
  • a polymer having excellent compatibility can be selected for copolymerization.
  • a copolymer of polycaprolactone (PCL) copolymerized with sodium alginate a copolymer of polylactic acid (PLA) and sodium alginate.
  • PCL polycaprolactone
  • PLA polylactic acid
  • the monomer formula of sodium alginate is known as (C 5 H 7 O 4 COONa) n
  • the monomer formula of polycaprolactone is [CH2-(CH2)4-COO] m
  • the graft ratio is 50-
  • the monomeric formula of the 80% by mass sodium alginate-grafted polycaprolactone copolymer is [CH2-(CH2)4-COO] m (C 5 H 7 O 4 COONa) n , which is known from the molecular formula of the monomer.
  • the hydrophilic group contained in sodium alginate is sodium carboxylate (—COONa), hydroxyl (—OH) and ester group (—COOR), and the hydrophilic group contained in polycaprolactone is ester group (—COOR).
  • the hydrophilic activity of sodium carboxylate (—COONa) is greater than the hydrophilic activity of carboxyl group (—COOH), and the hydrophilic activity of sodium carboxylate (—COONa) in sodium alginate is greater than that of maleic anhydride grafted ethylene acrylic acid.
  • the hydrophilic activity of sodium carboxylate in the copolymer is greater than that of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) having the highest hydrophilic activity in the composite film material.
  • the hydrophilic activity of (—COOH) plays a leading role in the biodegradation process, while the carboxyl group of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) in the composite film material -COOH), the hydroxyl group in EVOH, the hydrophilic activity of the anhydride in PE-TIE and the ester group in PET were weakened.
  • the EAA-TIE, EVOH, PE-TIE and PET pros were assumed in the following calculations.
  • the water group to carbon atom molar ratio is zero.
  • the mass percentage of the sodium alginate-grafted polycaprolactone copolymer added in each layer of the material is calculated based on the addition amount of the 2% molar amount of the sodium alginate grafted polycaprolactone copolymer:
  • the polycaprolactone copolymer grafted with sodium alginate in each layer of the formula (1) is mixed at a molar ratio of 98:2, and the sodium alginate grafted polycaprolactone is calculated for each layer of material.
  • the polycaprolactone copolymers respectively grafted with sodium alginate are mixed at a molar ratio of 98:2.
  • the molar ratio of the hydrophilic group to the carbon atom is calculated to be the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of the sodium alginate grafted polycaprolactone copolymer added in each layer of material is calculated as follows:
  • the PET of the sodium alginate grafted polycaprolactone copolymer is 1 mol
  • the mass of PET is m 1-1
  • the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-1 ;
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the EAA-TIE after adding a sodium alginate grafted polycaprolactone copolymer is 1 mole, the mass of EAA-TIE is m 1-2 , and the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-2 ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the EVOH of the sodium alginate grafted polycaprolactone copolymer is 1 mol, the mass of the EVOH is m 1-3 , and the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-3 ;
  • m 1-3 molecular weight of EVOH (g/mol) * EVOH content (%) * molar amount (mol)
  • m 2-3 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the PE-TIE after adding the sodium alginate grafted polycaprolactone copolymer is 1 mole, the mass of the PE-TIE is m 1-4 , and the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-4 ;
  • m 1-4 PE-TIE molecular weight (g / mol) * PE-TIE content (%) * molar rate (mol)
  • m 2-4 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the polyethylene of the sodium alginate grafted polycaprolactone copolymer is 1 mol
  • the mass of the PE is m 1-5
  • the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-5.
  • m 1-5 molecular weight of PE (g/mol) * PE content (%) * molar amount (mol)
  • m 2-5 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the calculation of the mass percentage of the sodium alginate grafted polycaprolactone copolymer is analogous;
  • the percentage by mass of PET/EAA-TIE/EVOH/PE-TIE/PE from left to right sodium alginate grafted polycaprolactone copolymer is:
  • the mechanical properties and barrier properties of the layer material are not affected. .
  • the monomer formula of sodium alginate is known as (C 5 H 7 O 4 COONa) n
  • the monomer formula of polylactic acid is [H-(OCH(CH3)CO) 2 -OH] m
  • the graft ratio is The monomeric formula of the 5-20% by mass sodium alginate grafted polylactic acid copolymer is [H-(OCH(CH3)CO) 2 -OH] m [C 5 H 7 O 4 COONa] n , from the single
  • the molecular formula shows that the hydrophilic groups contained in sodium alginate are sodium carboxylate (—COONa), hydroxyl (—OH) and ester group (—COOR), and the hydrophilic group contained in polylactic acid is carboxyl (-COOH).
  • hydrophilic activity of sodium carboxylate (-COONa) is greater than the hydrophilic activity of carboxyl (-COOH), sodium carboxylate (-COONa) in sodium alginate
  • the hydrophilic activity is greater than the hydrophilic activity of the carboxyl group (-COOH) in the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride), and the carboxyl group (-COOH) content in the polylactic acid.
  • the hydrophilic activity of carboxyl group (-COOH) in polylactic acid is greater than that of maleic anhydride.
  • Grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) The hydrophilic activity of the acid anhydride (-OC-O-CO-), in this example, a sodium alginate grafted polylactic acid copolymer having a graft ratio of 10% by mass is selected as an active agent to be added to each layer of the material.
  • the hydrophilic activity of sodium carboxylate in the sodium alginate-grafted polylactic acid copolymer is greater than that of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA+) having the highest hydrophilic activity in the composite film material.
  • the molar ratio of hydrophilic group to carbon atom of sodium alginate grafted in sodium alginate-grafted polylactic acid copolymer is 2/3; the molar ratio of hydrophilic group to carbon atom of polylactic acid is 2/3, calculated :
  • the mass percentage of the sodium alginate-grafted polylactic acid copolymer added in each layer of the material is calculated according to the addition amount of the 1.5% molar amount of the sodium alginate grafted polylactic acid copolymer:
  • the polylactic acid copolymer grafted with sodium alginate in each layer of the formula (1) is mixed at a molar ratio of 98.5:1.5, and the polylactic acid copolymer grafted with sodium alginate is calculated for each layer of material.
  • each layer of material and sodium alginate grafted polylactic acid copolymer mixed in a molar ratio of 98.5: 1.5 calculated mixing
  • the molar ratio of the hydrophilic group to the carbon atom is the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of the sodium alginate grafted polycaprolactone copolymer added in each layer of material is calculated as follows:
  • the PET of the sodium alginate grafted polylactic acid copolymer is 1 mol
  • the mass of PET is m 1-1
  • the mass of the sodium alginate grafted polylactic acid copolymer is m 2-1 ;
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight (g/mol) of sodium alginate-grafted polylactic acid copolymer * sodium alginate-grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the polyaluminum hydride grafted polylactic acid copolymer has an EAA-TIE of 1 mol, the EAA-TIE has a mass of m 1-2 , and the sodium alginate-grafted polylactic acid copolymer has a mass of m 2-2. ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight (g/mol) of sodium alginate grafted polylactic acid copolymer * sodium alginate grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the EVOH having a sodium alginate grafted polylactic acid copolymer is 1 mol, the mass of the EVOH is m 1-3 , and the mass of the sodium alginate grafted polylactic acid copolymer is m 2-3 ;
  • m 1-3 molecular weight of EVOH (g/mol) * EVOH content (%) * molar amount (mol)
  • m 2-3 molecular weight (g/mol) of sodium alginate grafted polylactic acid copolymer * sodium alginate grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the poly-lactic acid copolymer grafted with sodium alginate has a PE-TIE of 1 mol, the mass of PE-TIE is m 1-4 , and the mass of the sodium alginate-grafted polylactic acid copolymer is m 2-4. ;
  • m 1-4 PE-TIE molecular weight (g / mol) * PE-TIE content (%) * molar rate (mol)
  • m 2-4 molecular weight (g/mol) of sodium alginate grafted polylactic acid copolymer * sodium alginate grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the polylactic acid copolymer grafted with sodium alginate has a PE of 1 mol, the mass of PE is m 1-5 , and the mass of the sodium alginate grafted polylactic acid copolymer is m 2-5 ;
  • m 1-5 molecular weight of PE (g/mol) * PE content (%) * molar amount (mol)
  • m 2-5 molecular weight (g/mol) of sodium alginate-grafted polylactic acid copolymer * sodium alginate-grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the calculation of the mass percentage of the polylactic acid copolymer of the shoots is analogous;
  • the percentage by mass of PET/EAA-TIE/EVOH/PE-TIE/PE from left to right sodium alginate grafted polylactic acid copolymer is:
  • the sodium alginate-grafted polylactic acid copolymer is added in an amount ranging from 0.3 to 15% of the total mass of the corresponding layer material, there is no influence on the mechanical properties and barrier properties of the layer material.
  • Embodiment 2 (Example of the second technical solution)
  • PET denotes an outer layer, the function of which is a protective layer or a display layer, the material of which is polyester, the monomer formula is [OCH2-CH2OCOC6H4CO], and the hydrophilic group contained in the polyester itself is ester group-COO-;
  • EAA-TIE denotes a first adhesive layer which is a maleic anhydride grafted ethylene acrylic acid copolymer having a monomer molecular formula of ⁇ [CH 2 -CH 2 ] 15.5 [CH 2 -CH(COOH)] 1 ⁇ 3.7 [C 4 H 2 O 3 ] 1 , the maleic anhydride grafted ethylene acrylic acid copolymer itself contains a hydrophilic group of a carboxyl group -COOH and an anhydride OC-O-CO;
  • EVOH denotes a middle layer which functions as a barrier layer, the material of which is an ethylene-vinyl alcohol copolymer, the material of which is EVOH represents an ethylene-vinyl alcohol copolymer, and the ethylene-vinyl alcohol copolymer is 32% by weight of ethylene PE and 68% by weight.
  • Vinyl alcohol PVA the monomer molecular formula is [CH 2 CH 2 ] 1 [CH 2 CHOH] 1.4
  • the ethylene-vinyl alcohol copolymer itself contains a hydrophilic group is hydroxyl-OH;
  • PP-TIE denotes a second adhesive layer which is a maleic anhydride grafted polypropylene copolymer formed by mixing 95% by weight of polypropylene and 5% by weight of maleic anhydride, and its monomer formula is -[CH 2 -CH(CH 3 )] n -[C 4 H 2 O 3 ] m , the hydrophilic group contained in the maleic anhydride grafted polypropylene copolymer itself is anhydride-OC-O-CO-;
  • PP denotes an inner layer which functions as a heat seal layer and whose material is polypropylene, and its monomer formula is -[CH 2 -CH(CH 3 )] n -, and the polypropylene itself does not contain a hydrophilic group.
  • the polyester is a non-crystalline polyethylene terephthalate, and in practical use, if polyethylene terephthalate-1,4-cyclohexane dimethanol ester is used, The same effect can be achieved; in this embodiment, the density of the polyester is 1.360 g/cm 3 , and in practical application, if the density of the polyester is 1.300 g/cm 3 , 1.400 g/cm 3 or others between 1.300 and The same effect can be achieved by a value between 1.400 g/cm 3 .
  • the density of the maleic anhydride grafted ethylene acrylic acid copolymer was 0.940 g/cm 3 .
  • the density value if the ethylene acrylic acid copolymer grafted with maleic anhydride or other 3 interposed between 0.920-0.940g value 3 0.920g / cm 3, 0.930g / cm / cm, can be achieved
  • the mass percentage of maleic anhydride grafting rate is 5% by weight, and in actual application, if it is 0.3% by weight, 8% by weight, 10% by weight or other between 0.3-10% by weight
  • the value can also achieve the same effect.
  • the ethylene acrylate copolymer has a molar content of acrylic acid of 14%. In practical applications, the same effect can be obtained if the value is 28%, 20% or other values between 8% and 28%.
  • the barrier layer an ethylene - vinyl alcohol copolymer has a density of 1.170g / cm 3, the actual application, if we take a density of 1.190g / cm 3, 1.18g / cm 3 or other between 1.170-1.190g / cm The value between the three can also achieve the same effect.
  • the ethylene-vinyl alcohol copolymer has an ethylene molar content of 32%. In practical applications, if the ethylene molar content is 26%, 30%, 48% or other between 26-48 The value between % can also achieve the same effect.
  • the second adhesive layer the density of the copolymer of maleic anhydride grafted polyethylene was 0.910g / cm 3, the actual application, when the value of the density 0.950g / cm 3, 0.0300.950g / cm 3 Or the other value between 0.910-0.950g/cm 3 can also achieve the same effect, the mass percentage of maleic anhydride grafting rate is 5% by weight, and in actual application, if it is 0.3% by weight, 8% by weight, A 10% by weight or other value between 0.3 and 10% by weight can also achieve the same effect.
  • the density of polyethylene is 0.900-0.935 g/cm 3 , and the value may be 0.900 g/cm 3 , 0.935 g/cm 3 , 0.940 g/cm 3 or other between 0.900-0.935 g.
  • the same effect can be achieved with a value between /cm 3 ; the polyethylene contains a polyethylene blend having a density of 0.910-0.925 g/cm 3 and a value of 0.910 g/cm.
  • the same effect can be achieved by either 75% by weight of polyethylene and 25% by weight of a vinyl homopolymer, etc.
  • the vinyl copolymer consists of ethylene and C4-C12 alpha-olefins, cyclic olefins, vinyl aromatic hydrocarbons and polar vinyl monomers in at least one of composition, density of the vinyl copolymer is 0.880-0.915g / cm 3, the values may be 0.910g / cm 3, 0.915g / cm 3, 0.900g / cm 3 Are other number between 3 0.880-0.915g / cm, can achieve the
  • Each layer of the composite film obtains a uniform biodegradability by introducing a bio-based group, which is a type of additive masterbatch having biodegradability in a garbage disposal site or composting condition, the addition
  • the master batch is uniformly added to each layer of the material in proportion, and then the composite film is prepared by a melt coextrusion method.
  • the additive type masterbatch is composed of a carrier and an active agent, and the active agent is a polymer containing a hydrophilic group, wherein the active component of the active agent is a hydrophilic group, and the hydrophilic group means a carboxylic acid. salt -COO -, at least one carboxy group -COOH, a hydroxyl group -OH, an aldehyde group -CHO, amide groups -CONH 2, -OC-O-CO- acid anhydride and the ester group -COOR.
  • the carrier is selected for each layer of material according to a similar compatibility principle:
  • the carrier in the additive masterbatch is a polyester
  • the support in the additive type master batch is an ethylene acrylic acid copolymer
  • the carrier in the additive type masterbatch is polyethylene
  • the carrier in the additive type master batch is polyethylene
  • the carrier in the additive masterbatch is polyethylene.
  • the added amount of the added masterbatch in each layer of material is controlled within a range of 0.3-15% of the total mass of the layer of the material; the hydrophilic activity of the hydrophilic group in the added masterbatch should be greater than or equal to the formula (2)
  • the hydrophilic activity of the hydrophilic group in each layer of material; by adding the additive type masterbatch, the molar ratio of the hydrophilic group to the carbon atom of each layer of the material in the formula (2) tends to be uniform, that is, the biological activity tends to Consistently, the degradation rate of each layer of the composite film tends to be uniform.
  • the hydrophilic activity of the hydrophilic groups contained in various materials is ranked from high to low as carboxyl group>hydroxyl>anhydride>ester group, that is, hydrophilic activity of each layer material in the formula (2).
  • the sodium alginate having a hydrophilic activity greater than the hydrophilic activity of EAA-TIE (carboxyl) in the composite film material is selected as an additive to weaken the hydrophilic activity of the original hydrophilic group in the composite film material.
  • the monomeric formula of sodium alginate is (C 5 H 7 O 4 COONa) n .
  • the hydrophilic group contained in sodium alginate is sodium carboxylate (—COONa) and hydroxyl group.
  • the hydrophilic activity of sodium carboxylate in sodium alginate is greater than that of Malay with the highest hydrophilic activity in composite film materials.
  • the hydrophilic activity of the carboxyl group (-COOH) in the anhydride-grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) plays a leading role in the biodegradation process, while the maleic anhydride in the composite film material
  • the effect of the hydrophilic activity of the carboxyl group in the grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride), the hydroxyl group in the EVOH, the anhydride in the PP-TIE and the ester group in PET was weakened.
  • it is assumed in the following calculation that the molar ratio of the hydrophilic group to the carbon atom of EAA-TIE, EVOH, PP-TIE and PET is zero.
  • each layer in formula (2) is mixed with sodium alginate in a molar ratio of 99:1, and the molar ratio of hydrophilic group to carbon atom after adding sodium alginate to each layer material is calculated:
  • each layer of material and alginic acid Sodium is mixed at a molar ratio of 99:1, and the molar ratio of the hydrophilic group to the carbon atom is calculated to be the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of sodium alginate added in each layer of material is calculated as follows:
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • EAA-TIE after adding sodium alginate is 1 mol
  • mass of EAA-TIE is m 1-2
  • mass of sodium alginate is m 2-2 ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-3 molecular weight of EVOH (g/mol) * EVOH content (%) * molar amount (mol)
  • m 2-3 molecular weight of sodium alginate (g / mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-4 molecular weight of PP-TIE (g/mol) * PP-TIE content (%) * molar amount (mol)
  • m 2-4 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-5 molecular weight of PP (g/mol) * PP content (%) * molar amount (mol)
  • m 2-5 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • the mass percentage of sodium alginate added from PET to EAA-TIE/EVOH/PP-TIE/PP from left to right is 1.03/5.07/2.18/4.21/4.64.
  • each layer in formula (2) was mixed with sodium alginate in a molar ratio of 97.8:2.2, and the molar ratio of hydrophilic group to carbon atom after adding sodium alginate to each layer material was calculated:
  • the materials of each layer are mixed with sodium alginate in a molar ratio of 97.8:2.2, and the mixed hydrophilic groups are calculated.
  • the molar ratios of the carbon atoms are the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of sodium alginate added in each layer of material is calculated as follows:
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • EAA-TIE after adding sodium alginate is 1 mol
  • mass of EAA-TIE is m 1-2
  • mass of sodium alginate is m 2-2 ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • m 2-3 molecular weight of sodium alginate (g / mol) * sodium alginate content (%) * molar amount (mol)
  • the PP-TIE after adding sodium alginate is 1 mol
  • the mass of PP-TIE is m 1-4
  • the mass of sodium alginate is m 2-4
  • the molecular weight of m 1-4 PP-TIE (g/ Mol) *PP-TIE content (%) * molar amount (mol)
  • m 2-4 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • m 1-5 molecular weight of PP (g/mol) * PP content (%) * molar amount (mol)
  • m 2-5 molecular weight of sodium alginate (g/mol) * sodium alginate content (%) * molar amount (mol)
  • the mass percentage of sodium alginate added from PET to EAA-TIE/EVOH/PP-TIE/PP from left to right is: 2.27/10.65/4.73/8.91/9.79.
  • a polymer having excellent compatibility can be selected for copolymerization.
  • a copolymer of polycaprolactone (PCL) copolymerized with sodium alginate a copolymer of polylactic acid (PLA) and sodium alginate.
  • PCL polycaprolactone
  • PLA polylactic acid
  • the monomer formula of sodium alginate is known as (C 5 H 7 O 4 COONa) n
  • the monomer formula of polycaprolactone is [CH2-(CH2)4-COO] m
  • the graft ratio is 50-
  • the monomeric formula of the 80% by mass sodium alginate-grafted polycaprolactone copolymer is [CH2-(CH2)4-COO] m (C 5 H 7 O 4 COONa) n , which is known from the molecular formula of the monomer.
  • the hydrophilic group contained in sodium alginate is sodium carboxylate (—COONa), hydroxyl (—OH) and ester group (—COOR), and the hydrophilic group contained in polycaprolactone is ester group (—COOR).
  • the hydrophilic activity of sodium carboxylate (—COONa) is greater than the hydrophilic activity of carboxyl group (—COOH), and the hydrophilic activity of sodium carboxylate (—COONa) in sodium alginate is greater than that of maleic anhydride grafted ethylene acrylic acid.
  • the hydrophilic activity of sodium carboxylate in the copolymer is greater than that of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) having the highest hydrophilic activity in the composite film material.
  • the hydrophilic activity of (—COOH) plays a leading role in the biodegradation process, while the carboxyl group of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride) in the composite film material -COOH), the hydroxyl group in EVOH, the hydrophilic activity of the anhydride in PE-TIE and the ester group in PET were weakened.
  • the EAA-TIE, EVOH, PE-TIE and PET pros were assumed in the following calculations.
  • the water group to carbon atom molar ratio is zero.
  • the mass percentage of the sodium alginate-grafted polycaprolactone copolymer added in each layer of the material is calculated based on the addition amount of the 2% molar amount of the sodium alginate grafted polycaprolactone copolymer:
  • the polycaprolactone copolymer grafted with sodium alginate in each layer of the formula (2) is mixed at a molar ratio of 98:2, and the sodium alginate grafted polycaprolactone is calculated for each layer of material.
  • the polycaprolactone copolymers respectively grafted with sodium alginate in each layer of the material are mixed at a molar ratio of 98:2.
  • the molar ratio of the hydrophilic group to the carbon atom is calculated to be the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of the sodium alginate grafted polycaprolactone copolymer added in each layer of material is calculated as follows:
  • the PET of the sodium alginate grafted polycaprolactone copolymer is 1 mol
  • the mass of PET is m 1-1
  • the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-1 ;
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the EAA-TIE after adding a sodium alginate grafted polycaprolactone copolymer is 1 mole, the mass of EAA-TIE is m 1-2 , and the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-2 ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the EVOH of the sodium alginate grafted polycaprolactone copolymer is 1 mol, the mass of the EVOH is m 1-3 , and the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-3 ;
  • m 1-3 molecular weight of EVOH (g/mol) * EVOH content (%) * molar amount (mol)
  • m 2-3 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the PP-TIE after adding the sodium alginate grafted polycaprolactone copolymer is 1 mole, the mass of the PP-TIE is m 1-4 , and the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-4 ;
  • m 1-4 molecular weight of PP-TIE (g/mol) * PP-TIE content (%) * molar amount (mol)
  • m 2-4 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the PP of the sodium alginate grafted polycaprolactone copolymer is 1 mol
  • the mass of the PP is m 1-5
  • the mass of the sodium alginate grafted polycaprolactone copolymer is m 2-5.
  • m 1-5 molecular weight of PP (g/mol) * PP content (%) * molar amount (mol)
  • m 2-5 molecular weight (g/mol) of sodium alginate grafted polycaprolactone copolymer * sodium alginate grafted polycaprolactone copolymer content (%) * molar amount (mol)
  • the calculation of the mass percentage of the sodium alginate grafted polycaprolactone copolymer is analogous;
  • the percentage by mass of PET/EAA-TIE/EVOH/PP-TIE/PP from left to right sodium alginate grafted polycaprolactone copolymer is:
  • the mechanical properties and barrier properties of the layer material are not affected. .
  • the monomer formula of sodium alginate is known as (C 5 H 7 O 4 COONa) n
  • the monomer formula of polylactic acid is [H-(OCH(CH3)CO) 2 -OH] m
  • the graft ratio is The monomeric formula of the 5-20% by mass sodium alginate grafted polylactic acid copolymer is [H-(OCH(CH3)CO) 2 -OH] m [C 5 H 7 O 4 COONa] n , from the single
  • the molecular formula shows that the hydrophilic groups contained in sodium alginate are sodium carboxylate (—COONa), hydroxyl (—OH) and ester group (—COOR), and the hydrophilic group contained in polylactic acid is carboxyl (-COOH).
  • hydrophilic activity of sodium carboxylate (-COONa) is greater than the hydrophilic activity of carboxyl (-COOH), sodium carboxylate (-COONa) in sodium alginate
  • the hydrophilic activity is greater than the hydrophilic activity of the carboxyl group (-COOH) in the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic anhydride), and the carboxyl group (-COOH) content in the polylactic acid.
  • the hydrophilic activity of carboxyl group (-COOH) in polylactic acid is greater than that of maleic anhydride.
  • Grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA + 5% maleic acid) Polylactic acid copolymer) and an acid anhydride (-OC-O-CO-) hydrophilic activity selects a graft rate of 10% of sodium alginate is added to the mass of layers of material as the active agent.
  • the hydrophilic activity of sodium carboxylate in the sodium alginate-grafted polylactic acid copolymer is greater than that of the maleic anhydride grafted ethylene acrylic acid copolymer EAA-TIE (95% EAA+) having the highest hydrophilic activity in the composite film material.
  • the molar ratio of hydrophilic group to carbon atom of sodium alginate grafted in sodium alginate-grafted polylactic acid copolymer is 2/3; the molar ratio of hydrophilic group to carbon atom of polylactic acid is 2/3, calculated :
  • the mass percentage of the sodium alginate-grafted polylactic acid copolymer added in each layer of the material is calculated according to the addition amount of the 1.5% molar amount of the sodium alginate grafted polylactic acid copolymer:
  • the polylactic acid copolymer grafted with sodium alginate in each layer of the formula (1) is mixed at a molar ratio of 98.5:1.5, and the polylactic acid copolymer grafted with sodium alginate is calculated for each layer of material.
  • each layer of material and sodium alginate grafted polylactic acid copolymer mixed in a molar ratio of 98.5: 1.5, calculated mixing
  • the molar ratio of the hydrophilic group to the carbon atom is the same, that is, the hydrophilic activities of the materials of the layers tend to be uniform, and the degradation rates tend to be uniform.
  • the mass of the sodium alginate grafted polycaprolactone copolymer added in each layer of material is calculated as follows:
  • the PET of the sodium alginate grafted polylactic acid copolymer is 1 mol
  • the mass of PET is m 1-1
  • the mass of the sodium alginate grafted polylactic acid copolymer is m 2-1 ;
  • m 1-1 molecular weight of PET (g/mol) * PET content (%) * molar amount (mol)
  • m 2-1 molecular weight (g/mol) of sodium alginate-grafted polylactic acid copolymer * sodium alginate-grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the polyaluminum hydride grafted polylactic acid copolymer has an EAA-TIE of 1 mol, the EAA-TIE has a mass of m 1-2 , and the sodium alginate-grafted polylactic acid copolymer has a mass of m 2-2. ;
  • m 1-2 molecular weight of EAA-TIE (g/mol) * EAA-TIE content (%) * molar amount (mol)
  • m 2-2 molecular weight (g/mol) of sodium alginate grafted polylactic acid copolymer * sodium alginate grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the EVOH having a sodium alginate grafted polylactic acid copolymer is 1 mol, the mass of the EVOH is m 1-3 , and the mass of the sodium alginate grafted polylactic acid copolymer is m 2-3 ;
  • m 1-3 molecular weight of EVOH (g/mol) * EVOH content (%) * molar amount (mol)
  • m 2-3 molecular weight (g/mol) of sodium alginate grafted polylactic acid copolymer * sodium alginate grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the polylactic acid copolymer grafted with sodium alginate has a PP-TIE of 1 mol, the mass of the PP-TIE is m 1-4 , and the mass of the sodium alginate-grafted polylactic acid copolymer is m 2-4. ;
  • m 1-4 molecular weight of PP-TIE (g/mol) * PP-TIE content (%) * molar amount (mol)
  • m 2-4 molecular weight (g/mol) of sodium alginate grafted polylactic acid copolymer * sodium alginate grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the polylactic acid copolymer grafted with sodium alginate has a PP of 1 mol, the mass of PP is m 1-5 , and the mass of the sodium alginate grafted polylactic acid copolymer is m 2-5 ;
  • m 1-5 molecular weight of PP (g/mol) * PP content (%) * molar amount (mol)
  • m 2-5 molecular weight (g/mol) of sodium alginate-grafted polylactic acid copolymer * sodium alginate-grafted polylactic acid copolymer content (%) * molar amount (mol)
  • the calculation of the mass percentage of the polylactic acid copolymer of the shoots is analogous;
  • the percentage by mass of PET/EAA-TIE/EVOH/PP-TIE/PP from left to right sodium alginate grafted polylactic acid copolymer is:
  • the sodium alginate-grafted polylactic acid copolymer is added in an amount ranging from 0.3 to 15% of the total mass of the corresponding layer material, there is no influence on the mechanical properties and barrier properties of the layer material.
  • the active agent selected sodium alginate and a graft copolymer of sodium alginate, which were all implemented by the above
  • the examples are directly supported, but in the present invention, in addition to the above-mentioned active agents, other polymers containing a hydrophilic group carboxylate, a carboxyl group, a hydroxyl group, an aldehyde group, an amide group, an acid anhydride, and an ester group may be selected.
  • polycaprolactone, polylactic acid, polycaprolactone polyol, polysaccharide polymer, algae-based polymer, etc. those skilled in the art can understand and predict to contain these groups inspired by the embodiments of the present invention.
  • the specific masterbatch of the present invention is not limited to the polymers given in the examples.
  • the addition amount of the additive type masterbatch only gives some examples in numerical value, and those skilled in the art, inspired by the example, easily think that the additive type master batch can be in the range of 0.3-15%.
  • the object and effect of the present invention are achieved.
  • the same material in the same position in the structural formula may be formed by one or more layers, for example, PET/EAA-TIE/EVOH/PE-TIE/PE structure.
  • the structural expression is a 5-layer structure, but the material at any position may be formed by combining two or more layers.
  • PE may be formed by combining two layers, so that the composite film is composed of 6 layers. Combine formation, and so on.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

一种可降解EVOH高阻隔复合薄膜,其特征在于:所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于各层材料中亲水基团的亲水活性;通过加入添加型母料,使各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。本发明的贡献在于通过平衡各层材料中亲水基团与碳原子的摩尔比,获得趋于一致的生物活性以及趋于一致的生物降解率,并保持产品的外观、功能和物理机械性能不变。

Description

可降解EVOH高阻隔复合薄膜 技术领域
本发明涉及多层复合薄膜技术领域,特别涉及一种可生物降解EVOH高阻隔复合薄膜。
背景技术
多层共挤复合薄膜是指由多种不同聚合物,采用共挤出吹塑方法、共挤出流延方法或共挤出拉伸方法复合而成的薄膜。这种薄膜作为塑料包装材料广泛应用于食品、加工肉类产品、日用品、化妆品、化工产品、农药、军工产品等等,并且可以实现产品的密封软包装以及满足充气或抽真空、热成型等各种包装功能、在各种环境下具有高阻湿、阻氧、阻油、保香等各种阻隔性能。
随着大量复合薄膜在各个领域的使用,复合薄膜对环境的污染日益加剧。由于其难以降解,随着用量的与日俱增,复合薄膜所造成的污染已成为世界性的公害。目前处理复合薄膜废弃物的一些传统方法如焚烧、掩埋、回收利用等都存在缺陷,并有一定的局限性给环境带来严重的负荷,因此开发减少环境污染的可生物降解复合薄膜是解决环境污染的重要途径。
据申请人了解,目前有关具有相同降解速率的复合薄膜的生物降解技术及应用技术还是一个空白,在国内外尚未见相关报道。但从市场需求量迅速增加的现状以及保护生态平衡出发,研究具有可生物降解性能的多层共挤复合薄膜已迫在眉睫,其中,如何使多层共挤复合薄膜中的各层材料在生物降解过程中的降解速率趋于一致,同时不损失原有的机械性能以及货架期,是具有现实意义的重要研究课题。
发明内容
本发明目的是提供一种生物降解速率趋于一致的可降解EVOH高阻隔复合薄膜。
为达到上述目的,本发明采用的第一技术方案是:一种可降解EVOH高阻隔复合薄 膜,该复合薄膜的结构如下:
PET/EAA-TIE/EVOH/PE-TIE/PE        式(1)
式(1)中,从左往右依次表示的含义是:
PET表示外层,其功能为保护层或展示层,其材料为聚酯,聚酯含有的亲水基团为酯基;EAA-TIE表示第一粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基和酸酐;
EVOH表示中层,其功能为阻隔层,其材料为EVOH表示乙烯-乙烯醇共聚物,乙烯-乙烯醇共聚物含有的亲水基团为羟基;
PE-TIE表示第二粘合层,其材料为马来酸酐接枝的聚乙烯共聚物,马来酸酐接枝的聚乙烯共聚物含有的亲水基团为酸酐;
PE表示内层,其功能为热封层,其材料为聚乙烯,聚乙烯不含亲水基团;
其创新在于:所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述生物基是一类在垃圾处理场或堆肥条件下具有生物降解活性的添加型母料,该添加型母料按比例均匀添加到各层材料中,然后通过熔融共挤方法制备复合薄膜;
所述添加型母料由载体和活性剂组成,所述活性剂为含有亲水基团的聚合物,其中,活性剂的有效成份为亲水基团,所述亲水基团是指羧酸盐、羧基、羟基、醛基、酰胺基、酸酐和酯基中的至少一种;
所述式(1)各层材料以及添加型母料中,亲水基团按照亲水活性从高到低排列依次为羧酸盐、羧基、羟基、醛基、酰胺基、酸酐、酯基;
所述载体针对各层材料按相似相溶原理进行选择:对于外层的聚酯材料,添加型母料中的载体为聚酯;
对于第一粘合层的马来酸酐接枝的乙烯丙烯酸共聚物材料,添加型母料中的载体为乙烯丙烯酸共聚物;
对于中层的乙烯-乙烯醇共聚物材料,添加型母料中的载体为聚乙烯;
对于第二粘合层的马来酸酐接枝的聚乙烯共聚物材料,添加型母料中的载体为聚乙烯;
对于内层的聚乙烯材料,添加型母料中的载体为聚乙烯;
所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于式(1)各层材料中亲水基团的亲水活性;通过加入添加型母料,使式(1)中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
为达到上述目的,本发明采用的第二技术方案是:一种可降解EVOH高阻隔复合薄膜,该复合薄膜的结构如下:
PET/EAA-TIE/EVOH/PP-TIE/PP          式(2)
式(2)中,从左往右依次表示的含义是:
PET表示外层,其功能为保护层或展示层,其材料为聚酯,聚酯含有的亲水基团为酯基;EAA-TIE表示第一粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基和酸酐;
EVOH表示中层,其功能为阻隔层,其材料为乙烯-乙烯醇共聚物,乙烯-乙烯醇共聚物含有的亲水基团为羟基;
PP-TIE表示第二粘合层,其材料为马来酸酐接枝的聚丙烯共聚物,马来酸酐接枝的聚丙烯共聚物含有的亲水基团为酸酐;
PP表示内层,其功能为热封层,其材料为聚丙烯,聚丙烯不含亲水基团;
其创新在于:所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述生物基是一类在垃圾处理场或堆肥条件下具有生物降解活性的添加型母料,该添加型母料按比例均匀添加到各层材料中,然后通过熔融共挤方法制备复合薄膜;
所述添加型母料由载体和活性剂组成,所述活性剂为含有亲水基团的聚合物,其中,活性 剂的有效成份为亲水基团,所述亲水基团是指羧酸盐、羧基、羟基、醛基、酰胺基、酸酐和酯基中的至少一种;
所述式(2)各层材料以及添加型母料中,亲水基团按照亲水活性从高到低排列依次为羧酸盐、羧基、羟基、醛基、酰胺基、酸酐、酯基;
所述载体针对各层材料按相似相溶原理进行选择:
对于外层的聚酯材料,添加型母料中的载体为聚酯;
对于第一粘合层的马来酸酐接枝的乙烯丙烯酸共聚物材料,添加型母料中的载体为乙烯丙烯酸共聚物;
对于中层的乙烯-乙烯醇共聚物材料,添加型母料中的载体为聚乙烯;
对于第二粘合层的马来酸酐接枝的聚丙烯共聚物材料,添加型母料中的载体为聚丙烯、聚乙烯中的至少一种;
对于内层的聚丙烯材料,添加型母料中的载体为聚丙烯;
所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于式(2)各层材料中亲水基团的亲水活性;通过加入添加型母料,使式(2)中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
上述技术方案中的有关内容解释如下:
1、上述方案中,所述外层中,聚酯为非结晶化聚对苯二甲酸乙二醇酯,或者聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯,聚酯的密度为1.300-1.400g/cm3。以二元羧酸进行共聚改性所制得的聚酯共聚物,称之为非结晶化聚对苯二甲酸乙二醇酯(APET);以二元醇进行共聚改性所制得的聚酯共聚物,称之为聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)。
2、上述方案中,所述第一粘合层中,马来酸酐接枝的乙烯丙烯酸共聚物的密度为0.920-0.940g/cm3,马来酸酐接枝率的质量百分含量为0.3%-10%;乙烯丙烯酸酯共聚物中丙 烯酸的摩尔含量为8%-28%。
3、上述方案中,所述阻隔层中,乙烯-乙烯醇共聚物的乙烯摩尔含量为26-48%,密度为1.170-1.190g/cm3
4、上述第一技术方案中,所述第二粘合层中,马来酸酐接枝的聚乙烯共聚物的密度为0.910-0.950g/cm3,马来酸酐接枝率的质量百分含量为0.3%-10%。
5、上述第二技术方案中,所述第二粘合层中,马来酸酐接枝的聚丙烯共聚物的密度为0.880-0.910g/cm3;马来酸酐接枝率的质量百分含量为0.3%-10%。
6、上述第一技术方案中,所述热封层中,聚乙烯的密度为0.900-0.935g/cm3,聚乙烯中包含聚乙烯共混物,该聚乙烯共混物的密度为0.910-0.925g/cm3,所述聚乙烯共混物由50-99%重量的聚乙烯和1-50%重量的乙烯基均聚物组成,或者所述聚乙烯共混物由50-99%重量的聚乙烯和1-50%重量的乙烯基共聚物组成,所述乙烯基共聚物由乙烯与C4-C12的α-烯烃、环烯烃、乙烯基芳烃和极性乙烯基单体中的至少一种组成,所述乙烯基共聚物的密度为0.880-0.915g/cm3
7、上述第二技术方案中,所述热封层采用聚丙烯,聚丙烯由全同立构聚丙烯均聚物或/和聚丙烯无规共聚物组成,聚丙烯的密度为0.880-0.910g/cm3
8、上述方案中,所述外层的功能为保护层或展示层,其中,当其功能为保护层时,起到的是耐磨、耐温作用;当其功能为展示层时,可用于印刷展示相关信息,或者透明展示包装内容物。
9、上述方案中,所述复合薄膜可以通过涂层、金属蒸镀、复合获得相应的附加功能。
本发明的技术原理是:构成复合薄膜的材料分为亲水材料和疏水材料两类,其中,亲水材料本身含有亲水基团,在垃圾处理场或堆肥条件下即具备生物降解性能;而疏水材料不含亲水基团,通过在疏水材料中添加亲水基团以赋予其生物降解性能,添加型母料按比例添加到各层材料中,载体与活性剂通过共混方式充分相溶,然后通过熔融共挤方法制 备复合薄膜,在高温、高剪切的作用下,大分子链之间通过氢键作用以及大分子链之间的相互弯曲缠绕使其稳定的结合在一起,形成稳定的大分子聚集体,以此将活性剂中的亲水基团添加并均匀分散到各层材料中;在生物降解环境中,可降解活性剂首先被微生物分解导致分子链断裂,而与其通过氢键连接的载体亦发生分子链断裂,进而导致该大分子聚集体分解,从而达到塑料复合薄膜生物降解的目的。
本发明的生物降解过程是从特有的膨胀开始,塑料中的生物活性化合物会使含碳聚合物更容易受到微生物细菌的侵袭,当微生物细菌吞噬掉生物活性化合物后会产生酸性物质,从而使含碳聚合物基质膨胀。当膨胀接触到热及水分,能够扩张含碳聚合物的分子结构,膨胀在聚合物分子结构中创造空间后,生物活性化合物与母料的结合体就会吸引可以代谢和中和聚合物的微生物群。这些微生物群分泌酸液进一步剪断聚合物的分子长链,直至聚合物被分解成惰性腐殖质、二氧化碳和甲烷。这种生物降解过程可以在有氧环境下进行,也可以在无氧条件下进行;可以在有光照、热量及湿度的条件下进行,也可以在无光照、热量及湿度的条件下进行。本发明技术方案的关键是:所述添加型母料中亲水基团的亲水活性应大于或等于复合薄膜各层材料中亲水基团的亲水活性;通过加入添加型母料,使复合薄膜中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。添加生物基时,选择亲水活性大于复合薄膜材料中亲水活性的添加型母料添加到复合薄膜的各层材料中,弱化复合薄膜材料中原有的亲水活性,通过加入添加型母料,使复合薄膜中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
本发明的贡献在于:通过平衡各层材料中亲水基团与碳原子的摩尔比和亲水活性使得复合薄膜结构中各层材料的生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致;当添加量占该层材料总质量的0.3-15%时,可保持薄膜在被堆肥处理之前,其产品的外观、功能和物理机械性能不变。
具体实施方式
下面结合实施例对本发明作进一步描述:
实施例一:(第一技术方案的实例)
一种可降解EVOH高阻隔复合薄膜,该复合薄膜的结构如下:
PET/EAA-TIE/EVOH/PE-TIE/PE            式(1)
式(1)中,从左往右依次表示的含义是:
PET表示外层,其功能为保护层或展示层,其材料为聚酯,其单体分子式为[OCH2-CH2OCOC6H4CO],聚酯自身含有的亲水基团为酯基-COO-;
EAA-TIE表示第一粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物由95%重量的乙烯丙烯酸和5%重量的马来酸酐混合形成,其单体分子式为{[CH2-CH2]15.5[CH2-CH(COOH)]1}3.7[C4H2O3]1,马来酸酐接枝的乙烯丙烯酸共聚物自身含有的亲水基团为羧基-COOH和酸酐OC-O-CO;
EVOH表示中层,其功能为阻隔层,其材料为EVOH表示乙烯-乙烯醇共聚物,乙烯-乙烯醇共聚物为32%重量的乙烯PE和68%重量的乙烯醇PVA,其单体分子式为[CH2CH2]1[CH2CHOH]1.4,乙烯-乙烯醇共聚物自身含有的亲水基团为羟基—OH;
PE-TIE表示第二粘合层,其材料为马来酸酐接枝的聚乙烯共聚物,由95%重量的聚乙烯和5%重量的马来酸酐混合形成,其单体分子式为-[CH2-CH2]n-[C4H2O3]m,马来酸酐接枝的聚乙烯共聚物自身含有的亲水基团为酸酐—OC-O-CO—;
PE表示内层,其功能为热封层,其材料为聚乙烯,其单体分子式为-[CH2-CH2]n-,聚乙烯自身不含亲水基团。
所述外层中,聚酯为非结晶化聚对苯二甲酸乙二醇酯,实际应用时,若采用聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯,也可达到相同效果;本实施例中,所述聚酯的密度为1.360g/cm3,实际应用时,若聚酯的密度取1.300g/cm3、1.400g/cm3或者其他介于 1.300-1.400g/cm3之间的数值,也可达到相同效果。
所述第一粘合层中,马来酸酐接枝的乙烯丙烯酸共聚物的密度为0.940g/cm3
实际应用时,若马来酸酐接枝的乙烯丙烯酸共聚物的密度取值为0.920g/cm3、0.930g/cm3或者其他介于0.920-0.940g/cm3之间的数值,也可达到相同效果;本实施例中,马来酸酐接枝率的质量百分比为5%重量,实际应用时,若取0.3%重量、8%重量、10%重量或其他介于0.3-10%重量之间的值也可达到相同效果。乙烯丙烯酸酯共聚物中丙烯酸的摩尔含量为14%,实际应用时,若取值为28%、20%或其他介于8%-28%之间的数值,也可达到相同效果。
所述阻隔层中,乙烯-乙烯醇共聚物的密度为1.170g/cm3,实际应用时,若取密度为1.190g/cm3、1.18g/cm3或其他介于1.170-1.190g/cm3之间的数值,也可达到相同效果,乙烯-乙烯醇共聚物的乙烯摩尔含量为32%,实际应用时,若乙烯摩尔含量为26%、30%、48%或其他介于26-48%之间的数值,也可达到相同效果。
所述第二粘合层中,马来酸酐接枝的聚乙烯共聚物的密度为0.910g/cm3,实际应用时,若其密度取值为0.950g/cm3、0.0300.950g/cm3或其他介于0.910-0.950g/cm3之间的数值,也可达到相同效果,马来酸酐接枝率的质量百分比为5%重量,实际应用时,若取0.3%重量、8%重量、10%重量或其他介于0.3-10%重量之间的值也可达到相同效果。
所述热封层中,聚乙烯的密度为0.900-0.935g/cm3,其取值可为0.900g/cm3、0.935g/cm3、0.940g/cm3或者其他介于0.900-0.935g/cm3之间的数值,均可达到相同效果;聚乙烯中包含聚乙烯共混物,该聚乙烯共混物的密度为0.910-0.925g/cm3,其取值可为0.910g/cm3、0.925g/cm3、0.920g/cm3或者其他介于0.910-0.925g/cm3之间的数值,均可达到相同效果;所述聚乙烯共混物由50-99%重量的聚乙烯和1-50%重量的乙烯基均聚物组成,可取50%重量的聚乙烯和50%重量的乙烯基均聚物,或者99%重量的聚乙烯和1%重量的乙烯基均聚物,或者75%重量的聚乙烯和25%重量的乙烯基均聚物等,均可达到相同效果;所 述乙烯基共聚物由乙烯与C4-C12的α-烯烃、环烯烃、乙烯基芳烃和极性乙烯基单体中的至少一种组成,所述乙烯基共聚物的密度为0.880-0.915g/cm3,可取值0.910g/cm3、0.915g/cm3、0.900g/cm3或者其他介于0.880-0.915g/cm3之间的数值,均可达到相同效果。
所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述生物基是一类在垃圾处理场或堆肥条件下具有生物降解活性的添加型母料,该添加型母料按比例均匀添加到各层材料中,然后通过熔融共挤方法制备复合薄膜。
所述添加型母料由载体和活性剂组成,所述活性剂为含有亲水基团的聚合物,其中,活性剂的有效成份为亲水基团,所述亲水基团是指羧酸盐—COO-、羧基—COOH、羟基—OH、醛基—CHO、酰胺基—CONH2、酸酐—OC-O-CO—和酯基—COOR中的至少一种。
所述式(1)各层材料以及添加型母料中,亲水基团按照亲水活性从高到低排列依次为羧酸盐—COO-、羧基—COOH、羟基—OH、醛基—CHO、酰胺基—CONH2、酸酐—OC-O-CO—、酯基—COOR。
所述载体针对各层材料按相似相溶原理进行选择:
对于外层的聚酯材料,添加型母料中的载体为聚酯;
对于第一粘合层的马来酸酐接枝的乙烯丙烯酸共聚物材料,添加型母料中的载体为乙烯丙烯酸共聚物;
对于中层的乙烯-乙烯醇共聚物材料,添加型母料中的载体为聚乙烯;
对于第二粘合层的马来酸酐接枝的聚乙烯共聚物材料,添加型母料中的载体为聚乙烯;
对于内层的聚乙烯材料,添加型母料中的载体为聚乙烯。
所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于式(1)各层材料中亲水基团的亲水活性;通过加入添加型母料,使式(1)中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
根据实施例一的复合薄膜结构中各种材料所含亲水基团的亲水活性从高到低排序为羧基>羟基>酸酐>酯基,即式(1)中各层材料的亲水活性从高到低排序为马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)>乙烯-乙烯醇共聚物EVOH(32%PE+68%PVA)>PE-TIE(95%PE+5%马来酸酐)>聚酯PET>聚乙烯PE。
选择亲水活性大于复合薄膜材料中EAA-TIE(羧基)亲水活性的海藻酸钠作为添加活性剂,弱化复合薄膜材料中原有的亲水基团的亲水活性。
1、已知海藻酸钠的单体分子式为(C5H7O4COONa)n,由该单体分子式可知,海藻酸钠中含有的亲水基团为羧酸钠(—COONa)、羟基(—OH)和酯基(—COOR),其中,羧酸钠(—COONa)的亲水活性大于羧基(—COOH)的亲水活性,海藻酸钠中羧酸钠(—COONa)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,故本实施例选择聚合物海藻酸钠作为活性剂添加到各层材料中。
2、由于海藻酸钠中羧酸钠的亲水活性大于复合薄膜材料中具有最高亲水活性的马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,在生物降解过程中起主导作用,而复合薄膜材料中马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH),EVOH中羟基,PE-TIE中酸酐和PET中酯基的亲水活性的作用被弱化了,为了简化表述,在以下计算中假设EAA-TIE,EVOH,PE-TIE和PET的亲水基团与碳原子摩尔比为0。
3、计算得:海藻酸钠的亲水基团与碳原子摩尔比为2/3。
4、EAA-TIE、EVOH、PE-TIE、PET、PE的亲水基团与碳原子摩尔比为0。
5、由于添加型母料的添加量较少,且添加型母料中的载体与被添加的聚合物相同或相似,为了简化表述,在以下计算中将添加型母料中载体的质量忽略。
以下按照1%、2.2%摩尔量的海藻酸钠添加量为基准值分别计算各层材料中海藻酸钠 添加的质量百分比:
A.1%摩尔量的海藻酸钠添加量
设式(1)中各层材料分别与海藻酸钠以摩尔量之比为99:1进行混合,计算各层材料添加海藻酸钠之后的亲水基团与碳原子的摩尔比:
99/100*聚酯(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*乙烯-乙烯醇共聚物(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*马来酸酐接枝聚乙烯共聚物(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*聚乙烯(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067。
由以上计算得到:在PET/EAA-TIE/EVOH/PE-TIE/PE结构中各层材料分别与海藻酸钠以摩尔量之比为99:1进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠添加的质量计算如下:
设添加了海藻酸钠后的PET为1摩尔,PET的质量为m1-1,海藻酸钠的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*99%*1=190.25克;
m2-1=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠的质量为 m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*99%*1=39.39克;
m2-2=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的EVOH为1摩尔,EVOH的质量为m1-3,海藻酸钠的质量为m2-3
m1-3=EVOH的分子量(克/mol)*EVOH含量(%)*摩尔量(mol)
=89.73*99%*1=88.83克;
m2-3=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的PE-TIE为1摩尔,PE-TIE的质量为m1-4,海藻酸钠的质量为m2-4
m1-4=PE-TIE的分子量(克/mol)*PE-TIE含量(%)*摩尔量(mol)
=32.67*99%*1=32.34克;
m2-4=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的PE为1摩尔,PE的质量为m1-5,海藻酸钠的质量为m2-5
m1-5=PE的分子量(克/mol)*PE含量(%)*摩尔量(mol)
=28.05*99%*1=27.77克;
m2-5=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
以外层PET为例,添加的海藻酸钠的质量占PET质量的百分比为:1.98/(190.25+1.98)*100%=1.03%;其余各层材料中添加的海藻酸钠的质量百分比的计算以此类推;
PET/EAA-TIE/EVOH/PE-TIE/PE从左至右海藻酸钠的添加质量百分比为:1.03/4.79/2.18/5.77/6.66。
B.2.2%摩尔量的海藻酸钠添加量
设式(1)中各层材料分别与海藻酸钠以摩尔量之比为97.8:2.2进行混合,计算各层材料添加海藻酸钠之后的亲水基团与碳原子的摩尔比:
97.8/100*聚酯(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*乙烯-乙烯醇共聚物(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*马来酸酐接枝聚乙烯共聚物(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*聚乙烯(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147。
由以上计算得到:在PET/EAA-TIE/EVOH/PE-TIE/PE结构中各层材料分别与海藻酸钠以摩尔量之比为97.8:2.2进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠添加的质量计算如下:
设添加了海藻酸钠后的PET为1摩尔,PET的质量为m1-1,海藻酸钠的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*97.8%*1=187.94克;
m2-1=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*97.8%*1=36.59克;
m2-2=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的EVOH为1摩尔,EVOH的质量为m1-3,海藻酸钠的质量为m2-3
m1-3=EVOH的分子量(克/mol)*EVOH含量(%)*摩尔量(mol)
=89.73*97.8%*1=87.76克;
m2-3=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的PE-TIE为1摩尔,PE-TIE的质量为m1-4,海藻酸钠的质量为m2-4
m1-4=PE-TIE的分子量(克/mol)*PE-TIE含量(%)*摩尔量(mol)
=32.67*97.8%*1=31.95克;
m2-4=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的PE为1摩尔,PE的质量为m1-5,海藻酸钠的质量为m2-5
m1-5=PE的分子量(克/mol)*PE含量(%)*摩尔量(mol)
=28.05*97.8%*1=27.43克;
m2-5=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
以外层PET为例,添加的海藻酸钠的质量占PET质量的百分比为:4.36/(187.94+4.36)*100%=2.27%;其余各层材料中添加的海藻酸钠的质量百分比的计算以此类推;
PET/EAA-TIE/EVOH/PE-TIE/PE从左至右海藻酸钠的添加质量百分比为:2.27/10.65/4.73/12.01/13.72。
当海藻酸钠的添加量占相应层材料总质量的0.3-15%范围内时,对该层材料的机械性能和阻隔性能没有影响。
为了提高亲水基团的加工适性和分散性,可以选择相容性十分优异的聚合物进行共聚。例如:聚己内酯(PCL)与海藻酸钠共聚的共聚物,聚乳酸(PLA)与海藻酸钠共聚的共聚物。
A、聚己内酯(PCL)与海藻酸钠共聚的共聚物
1、已知海藻酸钠的单体分子式为(C5H7O4COONa)n,聚己内酯的单体分子式为[CH2-(CH2)4-COO]m,接枝率为50-80%质量的海藻酸钠接枝的聚己内酯共聚物的单体分子式为[CH2-(CH2)4-COO]m(C5H7O4COONa)n,由该单体分子式可知,海藻酸钠中含有的亲水基团为羧酸钠(—COONa)、羟基(—OH)和酯基(—COOR),聚己内酯中含有的亲水基团为酯基(—COOR),其中,羧酸钠(—COONa)的亲水活性大于羧基(—COOH)的亲水活性,海藻酸钠中羧酸钠(—COONa)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共 聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,本实施例选择海藻酸钠接枝的聚己内酯共聚物,海藻酸钠的接枝率的质量百分比为60%,作为活性剂添加到各层材料中。
2、由于共聚物中羧酸钠的亲水活性大于复合薄膜材料中具有最高亲水活性的马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,在生物降解过程中起主导作用,而复合薄膜材料中马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH),EVOH中羟基,PE-TIE中酸酐和PET中酯基的亲水活性的作用被弱化了,为了简化表述,在以下计算中假设EAA-TIE,EVOH,PE-TIE和PET的亲水基团与碳原子摩尔比为0。
3、海藻酸钠接枝的聚己内酯共聚物中海藻酸钠的亲水基团与碳原子摩尔比为2/3;聚己内酯的亲水基团与碳原子摩尔比为1/7,计算得:海藻酸钠接枝的聚己内酯共聚物的亲水基团与碳原子摩尔比=2/3*60%+1/7*40%=0.4571。
4、EAA-TIE、EVOH、PE-TIE、PET、PE的亲水基团与碳原子摩尔比为0。
5、由于添加型母料的添加量较少,且添加型母料中的载体与被添加的聚合物相同或相似,为了简化表述,在以下计算中将添加型母料中载体的质量忽略。
以下按照2%摩尔量的海藻酸钠接枝的聚己内酯共聚物添加量为基准值分别计算各层材料中海藻酸钠接枝的聚己内酯共聚物添加的质量百分比:
设式(1)中各层材料分别与海藻酸钠接枝的聚己内酯共聚物以摩尔量之比为98:2进行混合,计算各层材料添加海藻酸钠接枝的聚己内酯共聚物之后的亲水基团与碳原子的摩尔比:
98/100*聚酯(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共 聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*乙烯-乙烯醇共聚物(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳 原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*马来酸酐接枝聚乙烯共聚物(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n 亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*聚乙烯(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
由以上计算得到:在PET/EAA-TIE/EVOH/PE-TIE/PE结构中各层材料分别与海藻酸钠接枝的聚己内酯共聚物以摩尔量之比为98:2进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠接枝的聚己内酯共聚物添加的质量计算如下:
设添加了海藻酸钠接枝的聚己内酯共聚物后的PET为1摩尔,PET的质量为m1-1,海藻酸钠接枝的聚己内酯共聚物的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*98%*1=188.33克;
m2-1=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠接枝的聚己内酯共聚物的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*98%*1=36.66克;
m2-2=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的EVOH为1摩尔,EVOH的质量为m1-3,海藻酸钠接枝的聚己内酯共聚物的质量为m2-3
m1-3=EVOH的分子量(克/mol)*EVOH含量(%)*摩尔量(mol)
=89.73*98%*1=87.94克;
m2-3=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的PE-TIE为1摩尔,PE-TIE的质量为m1-4,海藻酸钠接枝的聚己内酯共聚物的质量为m2-4
m1-4=PE-TIE的分子量(克/mol)*PE-TIE含量(%)*摩尔量(mol)
=32.67*98%*1=32.02克;
m2-4=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的PE为1摩尔,PE的质量为m1-5,海藻酸钠接枝的聚己内酯共聚物的质量为m2-5
m1-5=PE的分子量(克/mol)*PE含量(%)*摩尔量(mol)
=28.05*98%*1=27.49克;
m2-5=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
以外层PET为例,添加的海藻酸钠接枝的聚己内酯共聚物的质量占PET质量的百分比为:3.29/(188.33+3.29)*100%=1.72%,其余各层材料中添加的海藻酸钠接枝的聚己内酯共聚物的质量百分比的计算以此类推;
PET/EAA-TIE/EVOH/PE-TIE/PE从左至右海藻酸钠接枝的聚己内酯共聚物的添加质量百分比为:
1.72/8.24/3.61/9.32/10.69。
当海藻酸钠接枝的聚己内酯共聚物的聚己内酯共聚物的添加量占相应层材料总质量的0.3-15%范围内时,对该层材料的机械性能和阻隔性能没有影响。
B、聚乳酸(PLA)与海藻酸钠共聚的共聚物
1、已知海藻酸钠的单体分子式为(C5H7O4COONa)n,聚乳酸的单体分子式为[H-(OCH(CH3)CO)2-OH]m,接枝率为5-20%质量的海藻酸钠接枝的聚乳酸共聚物的单体分子式为[H-(OCH(CH3)CO)2-OH]m[C5H7O4COONa]n,由该单体分子式可知,海藻酸钠中含有的亲水基团为羧酸钠(—COONa)、羟基(—OH)和酯基(—COOR),聚乳酸中含有的亲水基团为羧基(-COOH)、羟基(—OH)和酯基(—COOR),其中,羧酸钠(—COONa)的亲水活性大于羧基(—COOH)的亲水活性,海藻酸钠中羧酸钠(—COONa)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,聚乳酸中羧基(-COOH)的含量大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的含量,聚乳酸中羧基(-COOH)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中 酸酐(—OC-O-CO—)的亲水活性,本实施例选择接枝率为10%质量的海藻酸钠接枝的聚乳酸共聚物作为活性剂添加到各层材料中。
2、由于海藻酸钠接枝的聚乳酸共聚物中羧酸钠的亲水活性大于复合薄膜材料中具有最高亲水活性的马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,海藻酸钠接枝的聚乳酸共聚物中羧基的含量大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的含量,在生物降解过程中起主导作用,而复合薄膜材料中马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH),EVOH中羟基,PE-TIE中酸酐和PET中酯基的亲水活性的作用被弱化了,为了简化表述,在以下计算中假设EAA-TIE,EVOH,PE-TIE和PET的亲水基团与碳原子摩尔比为0。
3、海藻酸钠接枝的聚乳酸共聚物中海藻酸钠的亲水基团与碳原子摩尔比为2/3;聚乳酸的亲水基团与碳原子摩尔比为2/3,计算得:海藻酸钠接枝的聚乳酸共聚物的亲水基团与碳原子摩尔比=2/3*10%+2/3*90%=2/3。
4、EAA-TIE、EVOH、PE-TIE、PET、PE的亲水基团与碳原子摩尔比为0。
5、由于添加型母料的添加量较少,且添加型母料中的载体与被添加的聚合物相同或相似,为了简化表述,在以下计算中将添加型母料中载体的质量忽略。
以下按照1.5%摩尔量的海藻酸钠接枝的聚乳酸共聚物添加量为基准值分别计算各层材料中海藻酸钠接枝的聚乳酸共聚物添加的质量百分比:
设式(1)中各层材料分别与海藻酸钠接枝的聚乳酸共聚物以摩尔量之比为98.5:1.5进行混合,计算各层材料添加海藻酸钠接枝的聚乳酸共聚物之后的亲水基团与碳原子的摩尔比:98.5/100*聚酯(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*乙烯-乙烯醇共聚物(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n 碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*马来酸酐接枝聚乙烯共聚物(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n 亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*聚乙烯(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
由以上计算得到:在PET/EAA-TIE/EVOH/PE-TIE/PE结构中各层材料分别与海藻酸钠接枝的聚乳酸共聚物以摩尔量之比为98.5:1.5进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠接枝的聚己内酯共聚物添加的质量计算如下:
设添加了海藻酸钠接枝的聚乳酸共聚物后的PET为1摩尔,PET的质量为m1-1,海藻酸钠接枝的聚乳酸共聚物的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*98.5%*1=189.29克;
m2-1=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠接枝的聚乳酸共聚物的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*98.5%*1=36.85克;
m2-2=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的EVOH为1摩尔,EVOH的质量为m1-3,海藻酸钠接枝的聚乳酸共聚物的质量为m2-3
m1-3=EVOH的分子量(克/mol)*EVOH含量(%)*摩尔量(mol)
=89.73*98.5%*1=88.38克;
m2-3=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的PE-TIE为1摩尔,PE-TIE的质量为m1-4,海藻酸钠接枝的聚乳酸共聚物的质量为m2-4
m1-4=PE-TIE的分子量(克/mol)*PE-TIE含量(%)*摩尔量(mol)
=32.67*98.5%*1=32.18克;
m2-4=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的PE为1摩尔,PE的质量为m1-5,海藻酸钠接枝的聚乳酸共聚物的质量为m2-5
m1-5=PE的分子量(克/mol)*PE含量(%)*摩尔量(mol)
=28.05*98.5%*1=27.63克;
m2-5=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
以外层PET为例,海藻酸钠接枝的聚乳酸共聚物的质量占PET质量的百分比为:2.49/(189.29+2.49)*100%=1.30%,其余各层材料中添加的海藻酸钠接枝的聚乳酸共聚物的质量百分比的计算以此类推;
PET/EAA-TIE/EVOH/PE-TIE/PE从左至右海藻酸钠接枝的聚乳酸共聚物的添加质量百分比为:
1.30/6.33/2.74/7.18/8.27。
当海藻酸钠接枝的聚乳酸共聚物的添加量占相应层材料总质量的0.3-15%范围内时,对该层材料的机械性能和阻隔性能没有影响。
实施例二:(第二技术方案的实例)
PET/EAA-TIE/EVOH/PP-TIE/PP          式(2)
式(2)中,从左往右依次表示的含义是:
PET表示外层,其功能为保护层或展示层,其材料为聚酯,其单体分子式为[OCH2-CH2OCOC6H4CO],聚酯自身含有的亲水基团为酯基-COO-;
EAA-TIE表示第一粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,其单体分子式为{[CH2-CH2]15.5[CH2-CH(COOH)]1}3.7[C4H2O3]1,马来酸酐接枝的乙烯丙烯酸共聚物自身含有的亲水基团为羧基-COOH和酸酐OC-O-CO;
EVOH表示中层,其功能为阻隔层,其材料为乙烯-乙烯醇共聚物,其材料为EVOH表示乙烯-乙烯醇共聚物,乙烯-乙烯醇共聚物为32%重量的乙烯PE和68%重量的乙烯醇PVA,其 单体分子式为[CH2CH2]1[CH2CHOH]1.4,乙烯-乙烯醇共聚物自身含有的亲水基团为羟基—OH;
PP-TIE表示第二粘合层,其材料为马来酸酐接枝的聚丙烯共聚物,由95%重量的聚丙烯和5%重量的马来酸酐混合形成,其单体分子式为-[CH2-CH(CH3)]n-[C4H2O3]m,马来酸酐接枝的聚丙烯共聚物自身含有的亲水基团为酸酐—OC-O-CO—;
PP表示内层,其功能为热封层,其材料为聚丙烯,其单体分子式为-[CH2-CH(CH3)]n-,聚丙烯自身不含亲水基团。
所述外层中,聚酯为非结晶化聚对苯二甲酸乙二醇酯,实际应用时,若采用聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯,也可达到相同效果;本实施例中,所述聚酯的密度为1.360g/cm3,实际应用时,若聚酯的密度取1.300g/cm3、1.400g/cm3或者其他介于1.300-1.400g/cm3之间的数值,也可达到相同效果。
所述第一粘合层中,马来酸酐接枝的乙烯丙烯酸共聚物的密度为0.940g/cm3
实际应用时,若马来酸酐接枝的乙烯丙烯酸共聚物的密度取值为0.920g/cm3、0.930g/cm3或者其他介于0.920-0.940g/cm3之间的数值,也可达到相同效果;本实施例中,马来酸酐接枝率的质量百分比为5%重量,实际应用时,若取0.3%重量、8%重量、10%重量或其他介于0.3-10%重量之间的值也可达到相同效果。;乙烯丙烯酸酯共聚物中丙烯酸的摩尔含量为14%,实际应用时,若取值为28%、20%或其他介于8%-28%之间的数值,也可达到相同效果。
所述阻隔层中,乙烯-乙烯醇共聚物的密度为1.170g/cm3,实际应用时,若取密度为1.190g/cm3、1.18g/cm3或其他介于1.170-1.190g/cm3之间的数值,也可达到相同效果,乙烯-乙烯醇共聚物的乙烯摩尔含量为32%,实际应用时,若乙烯摩尔含量为26%、30%、48%或其他介于26-48%之间的数值,也可达到相同效果。
所述第二粘合层中,马来酸酐接枝的聚乙烯共聚物的密度为0.910g/cm3,实际应用 时,若其密度取值为0.950g/cm3、0.0300.950g/cm3或其他介于0.910-0.950g/cm3之间的数值,也可达到相同效果,马来酸酐接枝率的质量百分比为5%重量,实际应用时,若取0.3%重量、8%重量、10%重量或其他介于0.3-10%重量之间的值也可达到相同效果。
所述热封层中,聚乙烯的密度为0.900-0.935g/cm3,其取值可为0.900g/cm3、0.935g/cm3、0.940g/cm3或者其他介于0.900-0.935g/cm3之间的数值,均可达到相同效果;聚乙烯中包含聚乙烯共混物,该聚乙烯共混物的密度为0.910-0.925g/cm3,其取值可为0.910g/cm3、0.925g/cm3、0.920g/cm3或者其他介于0.910-0.925g/cm3之间的数值,均可达到相同效果;所述聚乙烯共混物由50-99%重量的聚乙烯和1-50%重量的乙烯基均聚物组成,可取50%重量的聚乙烯和50%重量的乙烯基均聚物,或者99%重量的聚乙烯和1%重量的乙烯基均聚物,或者75%重量的聚乙烯和25%重量的乙烯基均聚物等,均可达到相同效果;所述乙烯基共聚物由乙烯与C4-C12的α-烯烃、环烯烃、乙烯基芳烃和极性乙烯基单体中的至少一种组成,所述乙烯基共聚物的密度为0.880-0.915g/cm3,可取值0.910g/cm3、0.915g/cm3、0.900g/cm3或者其他介于0.880-0.915g/cm3之间的数值,均可达到相同效果。
所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述生物基是一类在垃圾处理场或堆肥条件下具有生物降解活性的添加型母料,该添加型母料按比例均匀添加到各层材料中,然后通过熔融共挤方法制备复合薄膜。
所述添加型母料由载体和活性剂组成,所述活性剂为含有亲水基团的聚合物,其中,活性剂的有效成份为亲水基团,所述亲水基团是指羧酸盐—COO-、羧基—COOH、羟基—OH、醛基—CHO、酰胺基—CONH2、酸酐—OC-O-CO—和酯基—COOR中的至少一种。
所述式(2)各层材料以及添加型母料中,亲水基团按照亲水活性从高到低排列依次为羧酸盐—COO-、羧基—COOH、羟基—OH、醛基—CHO、酰胺基—CONH2、酸酐—OC-O-CO—、酯基—COOR。
所述载体针对各层材料按相似相溶原理进行选择:
对于外层的聚酯材料,添加型母料中的载体为聚酯;
对于第一粘合层的马来酸酐接枝的乙烯丙烯酸共聚物材料,添加型母料中的载体为乙烯丙烯酸共聚物;
对于中层的乙烯-乙烯醇共聚物材料,添加型母料中的载体为聚乙烯;
对于第二粘合层的马来酸酐接枝的聚乙烯共聚物材料,添加型母料中的载体为聚乙烯;
对于内层的聚乙烯材料,添加型母料中的载体为聚乙烯。
所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于式(2)各层材料中亲水基团的亲水活性;通过加入添加型母料,使式(2)中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
根据实施例二的复合薄膜结构中各种材料所含亲水基团的亲水活性从高到低排序为羧基>羟基>酸酐>酯基,即式(2)中各层材料的亲水活性从高到低排序为马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)>乙烯-乙烯醇共聚物EVOH(32%PE+68%PVA)>PP-TIE(95%PE+5%马来酸酐)>聚酯PET>聚丙烯PP。
选择亲水活性大于复合薄膜材料中EAA-TIE(羧基)亲水活性的海藻酸钠作为添加活性剂,弱化复合薄膜材料中原有的亲水基团的亲水活性。
1、已知海藻酸钠的单体分子式为(C5H7O4COONa)n,由该单体分子式可知,海藻酸钠中含有的亲水基团为羧酸钠(—COONa)、羟基(—OH)和酯基(—COOR),其中,羧酸钠(—COONa)的亲水活性大于羧基(—COOH)的亲水活性,海藻酸钠中羧酸钠(—COONa)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,故本实施例选择聚合物海藻酸钠作为活性剂添加到各层材料中。
2、由于海藻酸钠中羧酸钠的亲水活性大于复合薄膜材料中具有最高亲水活性的马来 酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,在生物降解过程中起主导作用,而复合薄膜材料中马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH),EVOH中羟基,PP-TIE中酸酐和PET中酯基的亲水活性的作用被弱化了,为了简化表述,在以下计算中假设EAA-TIE,EVOH,PP-TIE和PET的亲水基团与碳原子摩尔比为0。
3、计算得:海藻酸钠的亲水基团与碳原子摩尔比为2/3。
4、EAA-TIE、EVOH、PP-TIE、PET、PP的亲水基团与碳原子摩尔比为0。
5、由于添加型母料的添加量较少,且添加型母料中的载体与被添加的聚合物相同或相似,为了简化表述,在以下计算中将添加型母料中载体的质量忽略。
以下按照1%、2.2%摩尔量的海藻酸钠添加量为基准值分别计算各层材料中海藻酸钠添加的质量百分比:
A.1%摩尔量的海藻酸钠添加量
设式(2)中各层材料分别与海藻酸钠以摩尔量之比为99:1进行混合,计算各层材料添加海藻酸钠之后的亲水基团与碳原子的摩尔比:
99/100*聚酯(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*乙烯-乙烯醇共聚物(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*马来酸酐接枝聚丙烯共聚物(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067;
99/100*聚丙烯(n亲水基团:n碳原子)+1/100*海藻酸钠(n亲水基团:n碳原子)=99/100*0+1/100*2/3=0.0067。
由以上计算得到:在PET/EAA-TIE/EVOH/PP-TIE/PP结构中各层材料分别与海藻酸 钠以摩尔量之比为99:1进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠添加的质量计算如下:
设添加了海藻酸钠后的PET为1摩尔,PET的质量为m1-1,海藻酸钠的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*99%*1=190.25克;
m2-1=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*99%*1=37.04克;
m2-2=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的EVOH为1摩尔,EVOH的质量为m1-3,海藻酸钠的质量为m2-3
m1-3=EVOH的分子量(克/mol)*EVOH含量(%)*摩尔量(mol)
=89.73*99%*1=88.83克;
m2-3=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的PP-TIE为1摩尔,PP-TIE的质量为m1-4,海藻酸钠的质量为m2-4
m1-4=PP-TIE的分子量(克/mol)*PP-TIE含量(%)*摩尔量(mol)
=45.56*99%*1=45.10克;
m2-4=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
设添加了海藻酸钠后的PP为1摩尔,PP的质量为m1-5,海藻酸钠的质量为m2-5
m1-5=PP的分子量(克/mol)*PP含量(%)*摩尔量(mol)
=41.07*99%*1=40.66克;
m2-5=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*1%*1=1.98克;
以外层PET为例,添加的海藻酸钠的质量占PET质量的百分比为:1.98/(190.25+1.98)*100%=1.03%;其余各层材料中添加的海藻酸钠的质量百分比的计算以此类推;
PET/EAA-TIE/EVOH/PP-TIE/PP从左至右海藻酸钠的添加质量百分比为:1.03/5.07/2.18/4.21/4.64。
B.2.2%摩尔量的海藻酸钠添加量
设式(2)中各层材料分别与海藻酸钠以摩尔量之比为97.8:2.2进行混合,计算各层材料添加海藻酸钠之后的亲水基团与碳原子的摩尔比:
97.8/100*聚酯(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*乙烯-乙烯醇共聚物(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n 碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*马来酸酐接枝聚丙烯共聚物(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147;
97.8/100*聚丙烯(n亲水基团:n碳原子)+2.2/100*海藻酸钠(n亲水基团:n碳原子)=97.8/100*0+2.2/100*2/3=0.0147。
由以上计算得到:在PET/EAA-TIE/EVOH/PP-TIE/PP结构中各层材料分别与海藻酸钠以摩尔量之比为97.8:2.2进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠添加的质量计算如下:
设添加了海藻酸钠后的PET为1摩尔,PET的质量为m1-1,海藻酸钠的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*97.8%*1=187.94克;
m2-1=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*97.8%*1=36.59克;
m2-2=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的EVOH为1摩尔,EVOH的质量为m1-3,海藻酸钠的质量为m2-3; m1-3=EVOH的分子量(克/mol)*EVOH含量(%)*摩尔量(mol)
=89.73*97.8%*1=87.76克;
m2-3=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的PP-TIE为1摩尔,PP-TIE的质量为m1-4,海藻酸钠的质量为m2-4;m1-4=PP-TIE的分子量(克/mol)*PP-TIE含量(%)*摩尔量(mol)
=45.56*97.8%*1=44.56克;
m2-4=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
设添加了海藻酸钠后的PP为1摩尔,PP的质量为m1-5,海藻酸钠的质量为m2-5
m1-5=PP的分子量(克/mol)*PP含量(%)*摩尔量(mol)
=41.07*97.8%*1=40.17克;
m2-5=海藻酸钠的分子量(克/mol)*海藻酸钠含量(%)*摩尔量(mol)
=198.12*2.2%*1=4.36克;
以外层PET为例,添加的海藻酸钠的质量占PET质量的百分比为:4.36/(187.94+4.36)*100%=2.27%;其余各层材料中添加的海藻酸钠的质量百分比的计算以此类推;
PET/EAA-TIE/EVOH/PP-TIE/PP从左至右海藻酸钠的添加质量百分比为:2.27/10.65/4.73/8.91/9.79。
当海藻酸钠的添加量占相应层材料总质量的0.3-15%范围内时,对该层材料的机械性能和阻隔性能没有影响。
为了提高亲水基团的加工适性和分散性,可以选择相容性十分优异的聚合物进行共聚。例如:聚己内酯(PCL)与海藻酸钠共聚的共聚物,聚乳酸(PLA)与海藻酸钠共聚的共聚物。
A、聚己内酯(PCL)与海藻酸钠共聚的共聚物
1、已知海藻酸钠的单体分子式为(C5H7O4COONa)n,聚己内酯的单体分子式为[CH2-(CH2)4-COO]m,接枝率为50-80%质量的海藻酸钠接枝的聚己内酯共聚物的单体分子式为[CH2-(CH2)4-COO]m(C5H7O4COONa)n,由该单体分子式可知,海藻酸钠中含有的亲水基团为羧酸钠(—COONa)、羟基(—OH)和酯基(—COOR),聚己内酯中含有的亲水基团为酯基(—COOR),其中,羧酸钠(—COONa)的亲水活性大于羧基(—COOH)的亲水活性,海藻酸钠中羧酸钠(—COONa)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,本实施例选择海藻酸钠接枝的聚己内酯共聚物,海藻酸钠的接枝率的质量百分比为60%,作为活性剂添加到各层材料中。
2、由于共聚物中羧酸钠的亲水活性大于复合薄膜材料中具有最高亲水活性的马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,在生物降解过程中起主导作用,而复合薄膜材料中马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH),EVOH中羟基,PE-TIE中酸酐和PET中酯基的亲水活性的作用被弱化了,为了简化表述,在以下计算中假设EAA-TIE,EVOH,PE-TIE和PET的亲水基团与碳原子摩尔比为0。
3、海藻酸钠接枝的聚己内酯共聚物中海藻酸钠的亲水基团与碳原子摩尔比为2/3;聚己内酯的亲水基团与碳原子摩尔比为1/7,计算得:海藻酸钠接枝的聚己内酯共聚物的亲水基团与碳原子摩尔比=2/3*60%+1/7*40%=0.4571。
4、EAA-TIE、EVOH、PP-TIE、PET、PP的亲水基团与碳原子摩尔比为0。
5、由于添加型母料的添加量较少,且添加型母料中的载体与被添加的聚合物相同或相似,为了简化表述,在以下计算中将添加型母料中载体的质量忽略。
以下按照2%摩尔量的海藻酸钠接枝的聚己内酯共聚物添加量为基准值分别计算各层材料中海藻酸钠接枝的聚己内酯共聚物添加的质量百分比:
设式(2)中各层材料分别与海藻酸钠接枝的聚己内酯共聚物以摩尔量之比为98:2进行混合,计算各层材料添加海藻酸钠接枝的聚己内酯共聚物之后的亲水基团与碳原子的摩尔比:
98/100*聚酯(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*乙烯-乙烯醇共聚物(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳 原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*马来酸酐接枝聚丙烯共聚物(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n 亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
98/100*聚丙烯(n亲水基团:n碳原子)+2/100*海藻酸钠接枝的聚己内酯共聚物(n亲水基团:n碳原子)=98/100*0+2/100*45.71/100=0.0091;
由以上计算得到:在PET/EAA-TIE/EVOH/PP-TIE/PP结构中各层材料分别与海藻酸钠接枝的聚己内酯共聚物以摩尔量之比为98:2进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠接枝的聚己内酯共聚物添加的质量计算如下:
设添加了海藻酸钠接枝的聚己内酯共聚物后的PET为1摩尔,PET的质量为m1-1,海藻酸钠接枝的聚己内酯共聚物的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*98%*1=188.33克;
m2-1=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠接枝的聚己内酯共聚物的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*98%*1=36.66克;
m2-2=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的EVOH为1摩尔,EVOH的质量为m1-3,海藻酸钠接枝的聚己内酯共聚物的质量为m2-3
m1-3=EVOH的分子量(克/mol)*EVOH含量(%)*摩尔量(mol)
=89.73*98%*1=87.94克;
m2-3=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的PP-TIE为1摩尔,PP-TIE的质量为m1-4,海藻酸钠接枝的聚己内酯共聚物的质量为m2-4
m1-4=PP-TIE的分子量(克/mol)*PP-TIE含量(%)*摩尔量(mol)
=45.56*98%*1=44.65克;
m2-4=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
设添加了海藻酸钠接枝的聚己内酯共聚物后的PP为1摩尔,PP的质量为m1-5,海藻酸钠接枝的聚己内酯共聚物的质量为m2-5
m1-5=PP的分子量(克/mol)*PP含量(%)*摩尔量(mol)
=41.07*98%*1=40.25克;
m2-5=海藻酸钠接枝的聚己内酯共聚物的分子量(克/mol)*海藻酸钠接枝的聚己内酯共聚物含量(%)*摩尔量(mol)
=164.52*2%*1=3.29克;
以外层PET为例,添加的海藻酸钠接枝的聚己内酯共聚物的质量占PET质量的百分比为:3.29/(188.33+3.29)*100%=1.72%,其余各层材料中添加的海藻酸钠接枝的聚己内酯共聚物的质量百分比的计算以此类推;
PET/EAA-TIE/EVOH/PP-TIE/PP从左至右海藻酸钠接枝的聚己内酯共聚物的添加质量百分比为:
1.72/8.24/3.61/6.86/7.56。
当海藻酸钠接枝的聚己内酯共聚物的聚己内酯共聚物的添加量占相应层材料总质量的0.3-15%范围内时,对该层材料的机械性能和阻隔性能没有影响。
B、聚乳酸(PLA)与海藻酸钠共聚的共聚物
1、已知海藻酸钠的单体分子式为(C5H7O4COONa)n,聚乳酸的单体分子式为 [H-(OCH(CH3)CO)2-OH]m,接枝率为5-20%质量的海藻酸钠接枝的聚乳酸共聚物的单体分子式为[H-(OCH(CH3)CO)2-OH]m[C5H7O4COONa]n,由该单体分子式可知,海藻酸钠中含有的亲水基团为羧酸钠(—COONa)、羟基(—OH)和酯基(—COOR),聚乳酸中含有的亲水基团为羧基(-COOH)、羟基(—OH)和酯基(—COOR),其中,羧酸钠(—COONa)的亲水活性大于羧基(—COOH)的亲水活性,海藻酸钠中羧酸钠(—COONa)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,聚乳酸中羧基(-COOH)的含量大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的含量,聚乳酸中羧基(-COOH)的亲水活性大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中酸酐(—OC-O-CO—)的亲水活性,本实施例选择接枝率为10%质量的海藻酸钠接枝的聚乳酸共聚物作为活性剂添加到各层材料中。
2、由于海藻酸钠接枝的聚乳酸共聚物中羧酸钠的亲水活性大于复合薄膜材料中具有最高亲水活性的马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的亲水活性,海藻酸钠接枝的聚乳酸共聚物中羧基的含量大于马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH)的含量,在生物降解过程中起主导作用,而复合薄膜材料中马来酸酐接枝的乙烯丙烯酸共聚物EAA-TIE(95%EAA+5%马来酸酐)中羧基(—COOH),EVOH中羟基,PP-TIE中酸酐和PET中酯基的亲水活性的作用被弱化了,为了简化表述,在以下计算中假设EAA-TIE,EVOH,PP-TIE和PET的亲水基团与碳原子摩尔比为0。
3、海藻酸钠接枝的聚乳酸共聚物中海藻酸钠的亲水基团与碳原子摩尔比为2/3;聚乳酸的亲水基团与碳原子摩尔比为2/3,计算得:海藻酸钠接枝的聚乳酸共聚物的亲水基团与碳原子摩尔比=2/3*10%+2/3*90%=2/3。
4、EAA-TIE、EVOH、PP-TIE、PET、PP的亲水基团与碳原子摩尔比为0。
5、由于添加型母料的添加量较少,且添加型母料中的载体与被添加的聚合物相同或相似,为了简化表述,在以下计算中将添加型母料中载体的质量忽略。
以下按照1.5%摩尔量的海藻酸钠接枝的聚乳酸共聚物添加量为基准值分别计算各层材料中海藻酸钠接枝的聚乳酸共聚物添加的质量百分比:
设式(1)中各层材料分别与海藻酸钠接枝的聚乳酸共聚物以摩尔量之比为98.5:1.5进行混合,计算各层材料添加海藻酸钠接枝的聚乳酸共聚物之后的亲水基团与碳原子的摩尔比:98.5/100*聚酯(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*马来酸酐接枝的乙烯丙烯酸共聚物(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*乙烯-乙烯醇共聚物(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n 碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*马来酸酐接枝聚丙烯共聚物(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n 亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
98.5/100*聚丙烯(n亲水基团:n碳原子)+1.5/100*海藻酸钠接枝的聚乳酸共聚物(n亲水基团:n碳原子)=98.5/100*0+1.5/100*2/3=0.0010;
由以上计算得到:在PET/EAA-TIE/EVOH/PP-TIE/PP结构中各层材料分别与海藻酸钠接枝的聚乳酸共聚物以摩尔量之比为98.5:1.5进行混合,计算混合后的亲水基团与碳原子的摩尔比皆相同,即各层材料的亲水活性皆趋于一致,其降解速率皆趋于一致。各层材料中海藻酸钠接枝的聚己内酯共聚物添加的质量计算如下:
设添加了海藻酸钠接枝的聚乳酸共聚物后的PET为1摩尔,PET的质量为m1-1,海藻酸钠接枝的聚乳酸共聚物的质量为m2-1
m1-1=PET的分子量(克/mol)*PET含量(%)*摩尔量(mol)
=192.17*98.5%*1=189.29克;
m2-1=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的EAA-TIE为1摩尔,EAA-TIE的质量为m1-2,海藻酸钠接枝的聚乳酸共聚物的质量为m2-2
m1-2=EAA-TIE的分子量(克/mol)*EAA-TIE含量(%)*摩尔量(mol)
=37.41*98.5%*1=36.85克;
m2-2=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的EVOH为1摩尔,EVOH的质量为m1-3,海藻酸钠接枝的聚乳酸共聚物的质量为m2-3
m1-3=EVOH的分子量(克/mol)*EVOH含量(%)*摩尔量(mol)
=89.73*98.5%*1=88.38克;
m2-3=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的PP-TIE为1摩尔,PP-TIE的质量为m1-4,海藻酸钠接枝的聚乳酸共聚物的质量为m2-4
m1-4=PP-TIE的分子量(克/mol)*PP-TIE含量(%)*摩尔量(mol)
=45.56*98.5%*1=44.88克;
m2-4=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
设添加了海藻酸钠接枝的聚乳酸共聚物后的PP为1摩尔,PP的质量为m1-5,海藻酸钠接枝的聚乳酸共聚物的质量为m2-5
m1-5=PP的分子量(克/mol)*PP含量(%)*摩尔量(mol)
=41.07*98.5%*1=40.45克;
m2-5=海藻酸钠接枝的聚乳酸共聚物的分子量(克/mol)*海藻酸钠接枝的聚乳酸共聚物含量(%)*摩尔量(mol)
=165.74*1.5%*1=2.49克;
以外层PET为例,海藻酸钠接枝的聚乳酸共聚物的质量占PET质量的百分比为:2.49/(189.29+2.49)*100%=1.30%,其余各层材料中添加的海藻酸钠接枝的聚乳酸共聚物的质量百分比的计算以此类推;
PET/EAA-TIE/EVOH/PP-TIE/PP从左至右海藻酸钠接枝的聚乳酸共聚物的添加质量百分比为:
1.30/6.33/2.74/5.26/5.80。
当海藻酸钠接枝的聚乳酸共聚物的添加量占相应层材料总质量的0.3-15%范围内时,对该层材料的机械性能和阻隔性能没有影响。
在上述实施例中,活性剂选择了海藻酸钠以及海藻酸钠的接枝共聚物,这些均由上述实施 例直接得以支持,但是,在本发明中,除了上述指出的活性剂以外,还可以选择其他含有亲水基团羧酸盐、羧基、羟基、醛基、酰胺基、酸酐和酯基的聚合物,如:聚己内酯、聚乳酸、聚己内酯多元醇、多糖聚合物、藻基聚合物等,本领域技术人员在本发明实施例的启发之下,能够理解并预测含有这些基团的具体聚合物,所以本发明所述的添加型母料并非局限于实施例给出的这些聚合物。
在以上实施例中,有关添加型母料的添加量在数值上仅给出了一些实例,本领域技术人员在该实例的启发下,容易想到添加型母料在0.3-15%范围内均可以实现本发明目的和效果。
在以上实施例中,为了便于实施(适于熔融挤出),对各层材料的密度、共聚比例、共混比例均限定了一个范围,并在实例中举例说明,但这些要求对本发明来说不是必须的,不能作为限定本发明保护范围的依据,换句话说,在上述范围之外的适合于熔融挤出的上述各种指标均可以实现本发明并获得相应的技术效果。
在本发明中,尽管给出了复合薄膜的结构式,但在结构式中位于同一位置的相同材料可以由一层或多层组合形成,比如,PET/EAA-TIE/EVOH/PE-TIE/PE结构式中,表面上看该结构式表达的是5层结构,但任意位置上的材料均可以由两层或两层以上组合形成,例如PE可以由两层组合形成,以此使该复合薄膜由6层组合形成,以此类推。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (9)

  1. 一种可降解EVOH高阻隔复合薄膜,该复合薄膜的结构如下:
    PET/EAA-TIE/EVOH/PE-TIE/PE  式(1)
    式(1)中,从左往右依次表示的含义是:
    PET表示外层,其功能为保护层或展示层,其材料为聚酯,聚酯含有的亲水基团为酯基;EAA-TIE表示第一粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基和酸酐;
    EVOH表示中层,其功能为阻隔层,其材料为EVOH表示乙烯-乙烯醇共聚物,乙烯-乙烯醇共聚物含有的亲水基团为羟基;
    PE-TIE表示第二粘合层,其材料为马来酸酐接枝的聚乙烯共聚物,马来酸酐接枝的聚乙烯共聚物含有的亲水基团为酸酐;
    PE表示内层,其功能为热封层,其材料为聚乙烯,聚乙烯不含亲水基团;
    其特征在于:所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述生物基是一类在垃圾处理场或堆肥条件下具有生物降解活性的添加型母料,该添加型母料按比例均匀添加到各层材料中,然后通过熔融共挤方法制备复合薄膜;
    所述添加型母料由载体和活性剂组成,所述活性剂为含有亲水基团的聚合物,其中,活性剂的有效成份为亲水基团,所述亲水基团是指羧酸盐、羧基、羟基、醛基、酰胺基、酸酐和酯基中的至少一种;
    所述式(1)各层材料以及添加型母料中,亲水基团按照亲水活性从高到低排列依次为羧酸盐、羧基、羟基、醛基、酰胺基、酸酐、酯基;
    所述载体针对各层材料按相似相溶原理进行选择:
    对于外层的聚酯材料,添加型母料中的载体为聚酯;
    对于第一粘合层的马来酸酐接枝的乙烯丙烯酸共聚物材料,添加型母料中的载体为乙烯丙 烯酸共聚物;
    对于中层的乙烯-乙烯醇共聚物材料,添加型母料中的载体为聚乙烯;
    对于第二粘合层的马来酸酐接枝的聚乙烯共聚物材料,添加型母料中的载体为聚乙烯;对于内层的聚乙烯材料,添加型母料中的载体为聚乙烯;
    所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于式(1)各层材料中亲水基团的亲水活性;通过加入添加型母料,使式(1)中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
  2. 一种可降解EVOH高阻隔复合薄膜,该复合薄膜的结构如下:
    PET/EAA-TIE/EVOH/PP-TIE/PP  式(2)
    式(2)中,从左往右依次表示的含义是:
    PET表示外层,其功能为保护层或展示层,其材料为聚酯,聚酯含有的亲水基团为酯基;EAA-TIE表示第一粘合层,其材料为马来酸酐接枝的乙烯丙烯酸共聚物,马来酸酐接枝的乙烯丙烯酸共聚物含有的亲水基团为羧基和酸酐;
    EVOH表示中层,其功能为阻隔层,其材料为乙烯-乙烯醇共聚物,乙烯-乙烯醇共聚物含有的亲水基团为羟基;
    PP-TIE表示第二粘合层,其材料为马来酸酐接枝的聚丙烯共聚物,马来酸酐接枝的聚丙烯共聚物含有的亲水基团为酸酐;
    PP表示内层,其功能为热封层,其材料为聚丙烯,聚丙烯不含亲水基团;
    其特征在于:所述复合薄膜中的各层材料均通过引入生物基获得趋于一致的生物降解性能,所述生物基是一类在垃圾处理场或堆肥条件下具有生物降解活性的添加型母料,该添加型母料按比例均匀添加到各层材料中,然后通过熔融共挤方法制备复合薄膜;
    所述添加型母料由载体和活性剂组成,所述活性剂为含有亲水基团的聚合物,其中,活性 剂的有效成份为亲水基团,所述亲水基团是指羧酸盐、羧基、羟基、醛基、酰胺基、酸酐和酯基中的至少一种;
    所述式(2)各层材料以及添加型母料中,亲水基团按照亲水活性从高到低排列依次为羧酸盐、羧基、羟基、醛基、酰胺基、酸酐、酯基;
    所述载体针对各层材料按相似相溶原理进行选择:
    对于外层的聚酯材料,添加型母料中的载体为聚酯;
    对于第一粘合层的马来酸酐接枝的乙烯丙烯酸共聚物材料,添加型母料中的载体为乙烯丙烯酸共聚物;
    对于中层的乙烯-乙烯醇共聚物材料,添加型母料中的载体为聚乙烯;
    对于第二粘合层的马来酸酐接枝的聚丙烯共聚物材料,添加型母料中的载体为聚丙烯、聚乙烯中的至少一种;
    对于内层的聚丙烯材料,添加型母料中的载体为聚丙烯;
    所述添加型母料在各层材料中的添加量控制在该层材料总质量的0.3-15%范围;所述添加型母料中亲水基团的亲水活性应大于或等于式(2)各层材料中亲水基团的亲水活性;通过加入添加型母料,使式(2)中各层材料的亲水基团与碳原子的摩尔比趋于一致,即生物活性趋于一致,从而使复合薄膜的各层材料降解速率趋于一致。
  3. 根据权利要求1或2所述的可降解EVOH高阻隔复合薄膜,其特征在于:所述外层中,聚酯为非结晶化聚对苯二甲酸乙二醇酯,或者聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯,聚酯的密度为1.300-1.400g/cm3
  4. 根据权利要求1或2所述的可降解EVOH高阻隔复合薄膜,其特征在于:所述第一粘合层中,马来酸酐接枝的乙烯丙烯酸共聚物的密度为0.920-0.940g/cm3,马来酸酐接枝率的质量百分含量为0.3%-10%;乙烯丙烯酸酯共聚物中丙烯酸的摩尔含量为8%-28%。
  5. 根据权利要求1或2所述的可降解EVOH高阻隔复合薄膜,其特征在于:所述阻隔层 中,乙烯-乙烯醇共聚物的乙烯摩尔含量为26-48%,密度为1.170-1.190g/cm3
  6. 根据权利要求1所述的可降解EVOH高阻隔复合薄膜,其特征在于:所述第二粘合层中,马来酸酐接枝的聚乙烯共聚物的密度为0.910-0.950g/cm3,马来酸酐接枝率的质量百分含量为0.3%-10%。
  7. 根据权利要求2所述的可降解EVOH高阻隔复合薄膜,其特征在于:所述第二粘合层中,马来酸酐接枝的聚丙烯共聚物的密度为0.880-0.910g/cm3;马来酸酐接枝率的质量百分含量为0.3%-10%。
  8. 根据权利要求1所述的可降解EVOH高阻隔复合薄膜,其特征在于:所述热封层中,聚乙烯的密度为0.900-0.935g/cm3,聚乙烯中包含聚乙烯共混物,该聚乙烯共混物的密度为0.910-0.925g/cm3,所述聚乙烯共混物由50-99%重量的聚乙烯和1-50%重量的乙烯基均聚物组成,或者所述聚乙烯共混物由50-99%重量的聚乙烯和1-50%重量的乙烯基共聚物组成,所述乙烯基共聚物由乙烯与C4-C12的α-烯烃、环烯烃、乙烯基芳烃和极性乙烯基单体中的至少一种组成,所述乙烯基共聚物的密度为0.880-0.915g/cm3
  9. 根据权利要求2所述的可降解EVOH高阻隔复合薄膜,其特征在于:所述热封层采用聚丙烯,聚丙烯由全同立构聚丙烯均聚物或/和聚丙烯无规共聚物组成,聚丙烯的密度为0.880-0.910g/cm3
PCT/CN2015/076816 2014-12-10 2015-04-16 可降解evoh高阻隔复合薄膜 WO2016090805A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/519,532 US10857766B2 (en) 2014-12-11 2015-04-16 Degradable EVOH high-barrier composite film
US17/113,021 US11548269B2 (en) 2014-12-10 2020-12-05 Degradable EVOH high-barrier composite film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410753620.2 2014-12-11
CN201410753620.2A CN104494261B (zh) 2014-12-11 2014-12-11 可降解evoh高阻隔复合薄膜

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/519,532 A-371-Of-International US10857766B2 (en) 2014-12-11 2015-04-16 Degradable EVOH high-barrier composite film
US17/113,021 Continuation US11548269B2 (en) 2014-12-10 2020-12-05 Degradable EVOH high-barrier composite film

Publications (1)

Publication Number Publication Date
WO2016090805A1 true WO2016090805A1 (zh) 2016-06-16

Family

ID=52935753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076816 WO2016090805A1 (zh) 2014-12-10 2015-04-16 可降解evoh高阻隔复合薄膜

Country Status (3)

Country Link
US (2) US10857766B2 (zh)
CN (1) CN104494261B (zh)
WO (1) WO2016090805A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2831306C (en) 2011-03-28 2018-11-20 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
EP2849636B1 (en) 2012-05-14 2020-04-22 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11096717B2 (en) 2013-03-15 2021-08-24 Avinger, Inc. Tissue collection device for catheter
CN115948817B (zh) * 2022-09-09 2023-11-17 江苏国泰博创实业有限公司 一种可降解纤维及其制备方法及毛绒玩具
CN116849908B (zh) * 2023-07-03 2024-02-09 安徽精良同硕塑膜科技有限公司 一种高阻防渗降温项圈及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854304A (en) * 1994-12-14 1998-12-29 Epi Environmental Products Inc. Degradable/compostable concentrates, process for making degradable/compostable packaging materials and the products thereof
US20080103232A1 (en) * 2006-10-31 2008-05-01 Bio-Tec Environmental, Llc Chemical Additives to Make Polymeric Materials Biodegradable
CN101722699A (zh) * 2009-11-06 2010-06-09 东莞市雅居乐日用制品有限公司 一种可降解复合塑料片材
CN102627013A (zh) * 2012-04-09 2012-08-08 圣夏药品食品包装新材料(昆山)有限公司 利用同一生物基控制共挤复合薄膜中各层同步降解的方法

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016117A (en) * 1972-05-18 1977-04-05 Coloroll Limited Biodegradable synthetic resin sheet material containing starch and a fatty material
JPS5280334A (en) * 1975-12-27 1977-07-06 Mitsui Petrochem Ind Ltd Method of adhering polyolefin and polar substrate
JPS61276808A (ja) * 1985-05-31 1986-12-06 Ube Ind Ltd マレイン酸変性ポリオレフィンの製造法
CH671961A5 (zh) * 1987-02-27 1989-10-13 Amrotex Ag
IN171050B (zh) * 1987-04-11 1992-07-04 Stamicarbon
US5095054A (en) * 1988-02-03 1992-03-10 Warner-Lambert Company Polymer compositions containing destructurized starch
US4963664A (en) * 1988-06-02 1990-10-16 Domtar Inc. Processes for the preparation of amides and amines from a material having carboxyl-containing polysaccharides and products therefrom
US5216050A (en) * 1988-08-08 1993-06-01 Biopak Technology, Ltd. Blends of polyactic acid
US5108807A (en) * 1990-03-14 1992-04-28 First Brands Corporation Degradable multilayer thermoplastic articles
US5219646A (en) * 1990-05-11 1993-06-15 E. I. Du Pont De Nemours And Company Polyester blends and their use in compostable products such as disposable diapers
US5091262A (en) * 1990-08-27 1992-02-25 Rexene Products Company Starch filled coextruded degradable polyethylene film
EP0474173B1 (en) * 1990-09-04 1996-04-10 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Biodegradable melt-molded articles and laminates derived therefrom, and their use
US5087650A (en) * 1990-12-05 1992-02-11 Fully Compounded Plastics, Inc. Biodegradable plastics
US5046730A (en) * 1990-12-10 1991-09-10 Bio Dynamics, Ltd. Golf tee
US5216043A (en) * 1991-12-12 1993-06-01 Minnesota Mining And Manufacturing Company Degradable thermophastic compositions and blends with naturally biodegradable polymers
US5321064A (en) * 1992-05-12 1994-06-14 Regents Of The University Of Minnesota Compositions of biodegradable natural and synthetic polymers
US5354621A (en) * 1992-07-02 1994-10-11 Beltec International Biodegradable construction material and manufacturing method
WO1994024169A1 (en) * 1993-04-15 1994-10-27 Akzo Nobel N.V. Method of making amide modified carboxyl-containing polysaccharide and fatty amide-modified polysaccharide so obtainable
US5523293A (en) * 1994-05-25 1996-06-04 Iowa State University Research Foundation, Inc. Soy protein-based thermoplastic composition for preparing molded articles
DE4442606C2 (de) * 1994-11-30 1998-09-17 Degussa Quellbarer Stärkeester, Verfahren zu dessen Herstellung sowie Verwendung
JPH1036587A (ja) * 1996-07-24 1998-02-10 Chisso Corp 二軸延伸ポリプロピレンフィルム
US5931488A (en) * 1997-05-06 1999-08-03 Bretford Manufacturing, Inc. Wheeled folding table
DE19729269C2 (de) * 1997-07-09 2000-07-27 Aventis Res & Tech Gmbh & Co Dialdehydstärke und natürliche Polymere enthaltende thermoplastische Mischungen, Verfahren und Verwendung
PL341373A1 (en) * 1997-12-19 2001-04-09 Novo Nordisk As Modification of polysaccharides employing a phenol oxidising enzyme
EP1008629A1 (en) * 1998-05-30 2000-06-14 DAICEL CHEMICAL INDUSTRIES, Ltd. Biodegradable polyester resin composition, biodisintegrable resin composition, and molded objects of these
US6605657B1 (en) * 1999-12-27 2003-08-12 Polyvalor Societe En Commandite Polymer compositions containing thermoplastic starch
US7071249B2 (en) * 2001-10-05 2006-07-04 William Ho Biodegradable starch resin and method for making same
US6617447B2 (en) * 2001-11-08 2003-09-09 Archer-Daniels-Midland Company Continuous oxidized starch process
US8008373B2 (en) * 2002-01-22 2011-08-30 Northern Technologies International Corp. Biodegradable polymer masterbatch, and a composition derived therefrom having improved physical properties
US6914097B2 (en) * 2002-12-17 2005-07-05 Equistar Chemicals Lp Process for producing acid functionalized polyolefins and products
CN1230466C (zh) * 2003-02-25 2005-12-07 丁少忠 一种可完全生物降解塑料母料及其制备方法
US7354653B2 (en) * 2003-12-18 2008-04-08 Eastman Chemical Company High clarity films with improved thermal properties
US7368503B2 (en) * 2003-12-22 2008-05-06 Eastman Chemical Company Compatibilized blends of biodegradable polymers with improved rheology
US20050154147A1 (en) * 2003-12-22 2005-07-14 Germroth Ted C. Polyester compositions
ITMI20040947A1 (it) * 2004-05-11 2004-08-11 Novamont Spa Foglia estrusa semi e4spansa prodotti da essa formati e loro processo di preparazione
US7550533B2 (en) * 2005-07-01 2009-06-23 E. I. Du Pont De Nemours And Company Composition comprising acid anhydride-grafted polyolefin
ATE442411T1 (de) * 2006-05-01 2009-09-15 Bnt Force Biodegradable Polyme Neue biologisch abbaubare polymerzusammensetzung, die zur herstellung von biologisch abbaubarem kunststoff geeignet ist, und herstellungsverfahren dafür
US8067485B2 (en) * 2006-07-28 2011-11-29 Biograde (Hong Kong) Pty Ltd Masterbatch and polymer composition
KR20080033620A (ko) * 2006-10-12 2008-04-17 (주)네오엠씨씨 폴리올레핀계 열가소성 중합체의 자연 분해용 첨가제조성물
WO2008054637A1 (en) * 2006-10-30 2008-05-08 Dow Global Technologies Inc. Adhesive films
US8513329B2 (en) * 2006-10-31 2013-08-20 Bio-Tec Environmental, Llc Chemical additives to make polymeric materials biodegradable
US20080163978A1 (en) * 2007-01-09 2008-07-10 Botros Maged G Process for producing multi-layer structures having improved metal adhesion
CN101678564A (zh) * 2007-05-01 2010-03-24 上越农业未来株式会社 高分子复合材料、其制造装置及其制造方法
US20090096703A1 (en) * 2007-05-16 2009-04-16 Chase Corporation Paper/biodegradable plastic laminate and electromagnetic shielding material
BRPI0812095A2 (pt) * 2007-10-03 2014-11-25 Univ Concepcion Composição biodegradável, método de preparação e sua aplicação na fabricação de recipientes funcionais para uso na agricultura e/ou silvicultura.
CA2725222A1 (en) * 2008-05-05 2009-11-12 Wei Li Thermoformed article made from bio-based biodegradable polymer composition
US20100080943A1 (en) * 2008-09-30 2010-04-01 E. I. Du Pont De Nemours And Company Ethylene vinyl alcohol composition with metal carboxylate
US20120016328A1 (en) * 2010-07-19 2012-01-19 Bo Shi Biodegradable films
US9062190B2 (en) * 2010-09-21 2015-06-23 Icast Plastics, Llc Stone based copolymer substrate
JP5829393B2 (ja) * 2010-10-05 2015-12-09 東洋製罐株式会社 生分解性樹脂組成物
JP5286505B2 (ja) * 2011-01-19 2013-09-11 東洋製罐株式会社 生分解性樹脂組成物
MX2013011139A (es) * 2011-04-12 2013-10-30 Procter & Gamble Envases de barrera flexible derivados de recursos renovables.
US8871319B2 (en) * 2011-04-12 2014-10-28 The Procter & Gamble Company Flexible barrier packaging derived from renewable resources
CN102391626B (zh) * 2011-07-29 2012-12-12 广东美联新材料科技有限公司 非石油基可完全降解色母粒及其制备方法
CN102358778B (zh) * 2011-07-29 2014-06-18 上海载和实业投资有限公司 一种新型生物降解母料及其制备方法
US20130046262A1 (en) * 2011-08-17 2013-02-21 James H. Wang Renewable thermoplastic starch-based multi-layer films and articles
JPWO2013073403A1 (ja) * 2011-11-15 2015-04-02 昭和電工株式会社 生分解性樹脂組成物及び生分解性フィルム
WO2013171374A1 (en) * 2012-05-15 2013-11-21 Teknologian Tutkimuskeskus Vtt Method for the manufacture of carbonyl derivatives of polysaccharides
US9080082B2 (en) * 2012-05-18 2015-07-14 Exxonmobil Chemical Patents Inc. Medium density polyethylene film layer and multilayer film comprising same
US20130319288A1 (en) * 2012-06-04 2013-12-05 Nadya Belcheva Environmentally Friendly Medical Packaging
CN104059342A (zh) * 2013-03-19 2014-09-24 上海杰事杰新材料(集团)股份有限公司 高相容性无机填料全生物降解复合材料及其制备方法
US20150328373A1 (en) * 2014-05-19 2015-11-19 Abbott Cardiovascular Systems Inc. Additives To Increase Degradation Rate Of A Biodegradable Scaffolding And Methods Of Forming Same
EP2952543B1 (en) * 2014-06-05 2017-11-01 Omya International AG Polymer composition filled with an inorganic filler material mixture
CN104495260B (zh) * 2014-12-05 2017-10-03 黄永军 一种带局部间隙运行功能的连续式输送机
CN104385698B (zh) * 2014-12-11 2016-09-21 昆山市张浦彩印厂 可降解po发泡共挤出复合薄膜
CN104369508B (zh) * 2014-12-11 2016-08-17 嘉合实业(苏州)有限公司 可降解pp-evoh高阻隔复合薄膜
CN104494260B (zh) * 2014-12-11 2016-05-11 昆山市张浦彩印厂 可降解发泡共挤出pet阻隔薄膜
CN104369509B (zh) * 2014-12-11 2016-09-21 昆山加浦包装材料有限公司 可降解发泡共挤出pa阻隔薄膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854304A (en) * 1994-12-14 1998-12-29 Epi Environmental Products Inc. Degradable/compostable concentrates, process for making degradable/compostable packaging materials and the products thereof
US20080103232A1 (en) * 2006-10-31 2008-05-01 Bio-Tec Environmental, Llc Chemical Additives to Make Polymeric Materials Biodegradable
CN101722699A (zh) * 2009-11-06 2010-06-09 东莞市雅居乐日用制品有限公司 一种可降解复合塑料片材
CN102627013A (zh) * 2012-04-09 2012-08-08 圣夏药品食品包装新材料(昆山)有限公司 利用同一生物基控制共挤复合薄膜中各层同步降解的方法

Also Published As

Publication number Publication date
CN104494261A (zh) 2015-04-08
US10857766B2 (en) 2020-12-08
US20210107262A1 (en) 2021-04-15
CN104494261B (zh) 2016-08-17
US11548269B2 (en) 2023-01-10
US20170334174A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
US11548269B2 (en) Degradable EVOH high-barrier composite film
US9382416B2 (en) Chemical additives to make polymeric materials biodegradable
WO2016090806A1 (zh) 可降解pp-evoh高阻隔复合薄膜
CN103319865B (zh) 聚乳酸合金薄膜及应用
WO2016090801A1 (zh) 可降解发泡共挤出pet阻隔薄膜
JP2016000811A (ja) 生体高分子物品の機能強化のための添加剤
US20090149606A1 (en) Degradable plastic composition and methods
KR101443020B1 (ko) 바이오매스 필름용 조성물 및 이를 이용한 바이오매스 필름
CN106185029A (zh) 一种双降解抗菌食品包装膜
CN111923546B (zh) 一种环保降解防水涂层包装纸及其制备方法
WO2016090799A1 (zh) 可降解po发泡共挤出复合薄膜
JP2013103438A (ja) シートおよび該シートを用いた容器
CN103819746A (zh) 一种可降解环保购物袋
JP2013028811A (ja) 樹脂組成物及びこれを用いたフィルム、積層体
WO2016090803A1 (zh) 可降解发泡共挤出pa阻隔薄膜
EP3861062B1 (en) Process for producing a carbon dioxide neutral and biodegradable polymer and packaging products produced thereof
CN103819739A (zh) 一种可降解环保购物袋的制备方法
JP2005193620A (ja) 共押出多層生分解性シュリンクフィルム
CN102282018A (zh) 叠层膜
JP7229317B2 (ja) 生分解性組成物、生分解性ラップフィルム及びその製造方法
JPH11246727A (ja) 生分解性樹脂組成物および成形物
WO2023276920A1 (ja) 積層体
JP2022144043A (ja) 積層成形体
JP2011016244A (ja) 合成樹脂製容器及び容器成形用積層シート
JP2011140616A (ja) 樹脂組成物及びそれを用いた多層構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867403

Country of ref document: EP

Kind code of ref document: A1