WO2016088196A1 - 半導体装置の製造方法および半導体装置 - Google Patents

半導体装置の製造方法および半導体装置 Download PDF

Info

Publication number
WO2016088196A1
WO2016088196A1 PCT/JP2014/081839 JP2014081839W WO2016088196A1 WO 2016088196 A1 WO2016088196 A1 WO 2016088196A1 JP 2014081839 W JP2014081839 W JP 2014081839W WO 2016088196 A1 WO2016088196 A1 WO 2016088196A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate electrode
silicide layer
film
insulating film
semiconductor device
Prior art date
Application number
PCT/JP2014/081839
Other languages
English (en)
French (fr)
Inventor
直 山口
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to PCT/JP2014/081839 priority Critical patent/WO2016088196A1/ja
Priority to JP2016562121A priority patent/JP6311033B2/ja
Priority to US15/505,563 priority patent/US10014410B2/en
Priority to TW104138667A priority patent/TW201631711A/zh
Publication of WO2016088196A1 publication Critical patent/WO2016088196A1/ja
Priority to US15/952,956 priority patent/US10121895B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7845Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being a conductive material, e.g. silicided S/D or Gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Definitions

  • the present invention relates to a method of manufacturing a semiconductor device and a semiconductor device, and can be used, for example, in the manufacture of a semiconductor device having a silicide layer.
  • a transistor including a metal gate electrode and a high dielectric constant film (high-k film) is known as a transistor formed in the logic portion of a next-generation microcomputer that can be miniaturized.
  • a so-called gate last process is known in which a dummy gate electrode is formed on a substrate and then the dummy gate electrode is replaced with a metal gate electrode.
  • a nonvolatile semiconductor memory device that can be electrically written and erased
  • a memory cell having a conductive floating gate electrode or a trapping insulating film surrounded by an oxide film under a gate electrode of a MISFET is widely used. It is used.
  • a nonvolatile semiconductor memory device using a trap insulating film there is a split gate type cell of MONOS (Metal Oxide Nitride Oxide Semiconductor) type.
  • MONOS Metal Oxide Nitride Oxide Semiconductor
  • silicide layers are formed on source / drain regions of various MISFETs, and then the element is covered with an interlayer insulating film, and then the upper surface of the interlayer insulating film is polished to expose the upper surface of the gate electrode. For this reason, in the case of forming a silicide layer on a gate electrode which is a gate electrode which constitutes a memory cell and is made of a semiconductor film, it is necessary to carry out a step of forming a silicide layer again after the polishing step.
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-154790
  • a silicide layer is formed on the source / drain region of the MISFET, and then, the gate last process is performed. It is described that the silicide layer is formed on the gate electrode of the memory cell after forming the metal gate electrode of the MISFET by this.
  • the characteristic of the MISFET can be improved by inducing the tensile stress to the channel region.
  • the silicide layer on the gate electrode of the memory cell becomes large, the silicide layer is likely to be broken, which causes a problem that the operation speed of the device is significantly reduced due to the breakage of the silicide layer.
  • the silicide layer on the source / drain region is formed by the salicide process accompanied by a high temperature heat treatment.
  • a silicide layer is formed on the gate electrode of the MONOS memory by a salicide process accompanied by a low temperature heat treatment.
  • the amount of platinum per unit area in the lower surface of the first silicide layer on the source / drain region of each of the MONOS memory and the MISFET mixedly mounted on the substrate is equal to the MONOS q memory.
  • the performance of the semiconductor device can be improved.
  • the characteristics of the element can be improved while preventing increase in resistance of the gate electrode.
  • FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the first embodiment
  • FIG. 2 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 1
  • FIG. 3 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 2
  • FIG. 4 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 3
  • FIG. 5 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 4
  • FIG. 6 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 5
  • FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 6
  • FIG. 8 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 7;
  • FIG. 9 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 8;
  • FIG. 10 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 9;
  • FIG. 11 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 10;
  • FIG. 12 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 11;
  • FIG. 13 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 12;
  • FIG. 14 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 13;
  • FIG. 15 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 14;
  • FIG. 16 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 15;
  • FIG. 17 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 16;
  • FIG. 18 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 17;
  • FIG. 19 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 18;
  • FIG. 20 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 19;
  • FIG. 21 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 20;
  • FIG. 21 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 20;
  • FIG. 22 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 21;
  • FIG. 16 is a table showing an example of application conditions of voltages to each portion of a selected memory cell at “writing”, “erasing” and “reading”.
  • FIG. 18 is a cross-sectional view of a semiconductor device which is a modification 1 of the first embodiment;
  • FIG. 18 is a cross-sectional view of a semiconductor device which is a modified example 2 of the first embodiment.
  • FIG. 16 is a cross-sectional view of a semiconductor device which is a modification 3 of the first embodiment;
  • FIG. 26 is a cross-sectional view showing the semiconductor device in the second embodiment during the manufacturing process thereof.
  • FIG. 28 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 27;
  • FIG. 29 is a cross-sectional view showing the manufacturing process of the semiconductor device continued from FIG. 28;
  • the symbols “ ⁇ ” and “ + ” represent relative concentrations of n-type or p-type impurities of the conductivity type, and in the case of n-type impurities, for example, “n ⁇ ” or “n + The impurity concentration in turn increases.
  • the semiconductor devices of this embodiment and the following embodiments are semiconductor devices provided with nonvolatile memories (nonvolatile memory elements, flash memories, nonvolatile semiconductor memory devices).
  • nonvolatile memory will be described based on a memory cell based on an n-channel type MISFET (MISFET: Metal Insulator Semiconductor Field Effect Transistor).
  • MISFET Metal Insulator Semiconductor Field Effect Transistor
  • the polarities (polarity of applied voltage and polarity of carrier at the time of writing, erasing, reading) in the present embodiment and the following embodiments are similar to those of the memory cell based on the n-channel type MISFET.
  • the p channel MISFET is used as a basis, the same operation can be obtained in principle by reversing all the polarities such as the applied potential and the conductivity type of the carrier.
  • the silicide layer formed by the reaction of the metal film and the semiconductor film and the semiconductor film will be described separately. That is, the silicide referred to in the present application is a compound of metal and silicon and is not a semiconductor.
  • FIG. 1 to 22 are cross-sectional views in the manufacturing process of the semiconductor device of the present embodiment.
  • the memory cell area 1A is shown on the left side of each figure, and the peripheral circuit area 1B is shown on the right side.
  • a memory cell of nonvolatile memory is shown in the memory cell area 1A, and a MISFET is shown in the peripheral circuit area 1B.
  • n channel type MISFET control transistor and memory transistor
  • p channel type MISFET control transistor and memory transistor
  • the p-channel type MISFET can be formed in the peripheral circuit region 1B by reversing the conductivity type.
  • both the n channel MISFET and the p channel MISFET can be formed in the peripheral circuit region 1B.
  • the formation of a relatively low breakdown voltage MISFET in the peripheral circuit region 1B will be described, but in the peripheral circuit region 1B, the gate length or gate insulating film is lower than that of the low breakdown voltage MISFET.
  • a high breakdown voltage MISFET is also formed which has a difference in the thickness of the
  • a semiconductor substrate (semiconductor wafer) SB made of p-type single crystal silicon (Si) or the like having a specific resistance of about 1 to 10 ⁇ cm is prepared. Then, on the main surface of the semiconductor substrate SB, a plurality of element isolation regions ST which define active regions are formed.
  • the element isolation region ST is made of an insulator such as silicon oxide and can be formed, for example, by the STI method or the LOCOS method. Here, formation of the element isolation region by the STI method will be described.
  • the silicon nitride film and the silicon oxide film are etched using photolithography technology and dry etching method, and a groove is formed on the upper surface of semiconductor substrate SB. Form A plurality of the grooves are formed.
  • each insulating film on the semiconductor substrate SB is removed by a polishing process or the like to form a plurality of element isolation regions ST.
  • the element isolation region ST is formed, for example, between the memory cell region 1A and the peripheral circuit region 1B and between the MISFETs formed in the peripheral circuit region 1B. Thereby, the structure shown in FIG. 1 is obtained.
  • a p-type well is formed on the main surface of the semiconductor substrate SB in the memory cell region 1A and the peripheral circuit region 1B.
  • the p-type well can be formed, for example, by ion implantation of p-type impurities such as boron (B) into the semiconductor substrate SB.
  • p-type wells formed in respective formation regions such as memory cells, high withstand voltage MISFETs, or low withstand voltage MISFETs can be formed by the same ion implantation step, in order to optimize the characteristics of each element, It is also possible to form by different ion implantation processes in each region.
  • an insulating film IF1 for a gate insulating film is formed on the main surface of the semiconductor substrate SB. That is, the insulating film IF1 is formed on the upper surface of the semiconductor substrate SB in the memory cell region 1A and the peripheral circuit region 1B.
  • a silicon oxide film can be used as the insulating film IF1.
  • the insulating films IF1 of the memory cell region 1A and the peripheral circuit region 1B may be formed in different film thicknesses by being formed in separate steps.
  • a silicon film PS1 made of a polycrystalline silicon film is formed over the semiconductor substrate SB using, for example, a CVD (Chemical Vapor Deposition) method so as to cover the upper surface of the insulating film IF1.
  • the silicon film PS1 can be formed as an amorphous silicon film, and then the silicon film PS1 made of an amorphous silicon film can be changed to a silicon film PS1 made of a polycrystalline silicon film by heat treatment thereafter.
  • the silicon film PS1 can be made a low resistance semiconductor film (doped polysilicon film) by introducing an impurity at the time of film formation, or ion-implanting the impurity after film formation.
  • phosphorus (P) can be suitably used.
  • the insulating film IF2 is a cap insulating film made of, for example, silicon nitride (SiN).
  • the film thickness of the insulating film IF2 can be, for example, about 20 to 50 nm.
  • the laminated film formed of the insulating film IF2, the silicon film PS1, and the insulating film IF1 in the memory cell region 1A is patterned by photolithography and etching.
  • the gate insulating film GI formed of the insulating film IF1 is formed in the memory cell region 1A.
  • the control gate electrode CG formed of the silicon film PS1 of the memory cell region 1A is formed by this etching step.
  • the control gate electrode CG is a pattern to be a control gate electrode by being silicided in a later step.
  • the control gate electrode CG is a pattern extending in a predetermined direction in plan view.
  • the predetermined direction, that is, the gate width direction is the depth direction in FIG.
  • the above-mentioned patterning process can be performed, for example, as follows. That is, the insulating film IF2, the silicon film PS1, and the insulating film IF1 in the memory cell region 1A are processed using the photolithography technique and the dry etching method. Thus, the control gate electrode CG and the gate insulating film GI are formed. Alternatively, it is possible to first process the insulating film IF2 in the memory cell region 1A using photolithography and dry etching and then process the silicon film PS1 and the insulating film IF1 using the insulating film IF2 as a mask. .
  • the insulating film IF2 in the peripheral circuit region 1B is removed using photolithography and wet etching. Thereby, the upper surface of the silicon film PS1 in the peripheral circuit region 1B is exposed. At this time, the insulating film IF2 in the memory cell region 1A is not removed.
  • an ONO (oxide-nitride-oxide) film ON for a gate insulating film of the memory transistor is formed on the entire main surface of the semiconductor substrate SB.
  • the ONO film ON covers the upper surface of the semiconductor substrate SB in the memory cell region 1A and the side wall and upper surface of the laminated film formed of the gate insulating films GI and IF2 and the control gate electrode CG, and the insulating film IF1 and silicon in the peripheral circuit region 1B. It covers the sidewall and top surface of the laminated film including the film PS1.
  • the ONO film ON is an insulating film having a charge storage portion inside.
  • the ONO film ON is a silicon oxide film OX1 formed over the semiconductor substrate SB, a silicon nitride film NT formed over the silicon oxide film OX1, and a silicon oxide film formed over the silicon nitride film NT. It comprises a laminated film with the film OX2.
  • the silicon oxide films OX1 and OX2 can be formed by, for example, an oxidation process (thermal oxidation process), a CVD method, or a combination thereof. It is also possible to use in-situ steam generation (ISSG) oxidation for the oxidation treatment at this time.
  • the silicon nitride film NT can be formed, for example, by the CVD method.
  • a memory cell is configured, and a silicon nitride film NT is formed as an insulating film (charge storage layer) having a trap level.
  • the film used as the charge storage layer is preferably a silicon nitride film from the viewpoint of reliability, but it is not limited to the silicon nitride film.
  • a silicon nitride film from the viewpoint of reliability, but it is not limited to the silicon nitride film.
  • a high dielectric constant film (high dielectric constant insulating film) having a dielectric constant higher than that of a silicon nitride film can also be used as the charge storage layer or charge storage portion.
  • the thickness of the silicon oxide film OX1 can be, for example, about 2 to 10 nm
  • the thickness of the silicon nitride film NT can be, for example, about 5 to 15 nm
  • the thickness of the silicon oxide film OX2 is, for example, 2 to 10 nm The degree can be.
  • a polycrystalline silicon film PS2 is formed over the entire main surface of the semiconductor substrate SB using, for example, the CVD method so as to cover the surface of the ONO film ON.
  • the side wall and the upper surface of the ONO film ON exposed in the memory cell region 1A are covered with the silicon film PS2. That is, the silicon film PS2 is formed on the side wall of the control gate electrode CG via the ONO film ON.
  • the film thickness of the silicon film PS2 is, for example, 40 nm.
  • the silicon film PS2 can be formed as an amorphous silicon film, and the silicon film PS2 made of an amorphous silicon film can be changed to the silicon film PS2 made of a polycrystalline silicon film by heat treatment thereafter.
  • the silicon film PS2 is a film into which, for example, a p-type impurity (for example, boron (B)) is introduced at a relatively high concentration.
  • the silicon film PS2 is a film for forming a memory gate electrode MG described later.
  • the film thickness as referred to herein means the thickness of the film in the direction perpendicular to the surface of the base of the film.
  • the film thickness of the silicon film PS2 is the semiconductor substrate This refers to the thickness of the silicon film PS2 in the direction perpendicular to the main surface of the SB.
  • the silicon film PS2 in a portion formed in contact with the wall perpendicular to the main surface of the semiconductor substrate SB, such as the side wall of the ONO film ON the silicon film PS2 in the direction perpendicular to the side wall I say the thickness.
  • FIG. 3 shows an ONO film ON having a laminated structure of three layers of a silicon oxide film OX1, a silicon nitride film NT, and a silicon nitride film NT
  • the sectional view used in the following description makes the drawing easy to understand. Therefore, the illustration of the laminated structure of the ONO film ON is omitted. That is, the ONO film ON has a laminated structure, but in the drawings used in the following description, the boundaries between the films constituting the ONO film ON are not shown, and the ONO film ON is shown as one film.
  • the silicon film PS2 is etched back (etching, dry etching, anisotropic etching) by an anisotropic etching technique to expose the upper surface of the ONO film ON.
  • the silicon film PS2 is anisotropically etched (etched back) to allow the ONO film ON to be formed on the sidewalls of both of the laminated film consisting of the gate insulating film GI, IF2 and the control gate electrode CG. , Leaving the silicon film PS2 in a sidewall shape.
  • the memory gate electrode MG made of the silicon film PS2 remaining in the side wall shape via the ONO film ON is formed on one of the side walls of the laminated film. Further, the upper surface of the ONO film ON in the peripheral circuit region 1B is exposed by the above-described etch back.
  • a resist film is used to cover memory gate electrode MG adjacent to one sidewall of control gate electrode CG and expose silicon film PS2 adjacent to the other sidewall of control gate electrode CG using photolithography technology. (Not shown) is formed on the semiconductor substrate SB. Thereafter, etching is performed using the resist film as an etching mask to remove the silicon film PS2 formed on the opposite side of the memory gate electrode MG with the control gate electrode CG interposed therebetween. Thereafter, the resist film is removed. In this etching step, since the memory gate electrode MG is covered with the resist film, it remains without being etched.
  • the ONO film ON a portion exposed without being covered by the memory gate electrode MG is removed by etching (for example, wet etching).
  • the ONO film ON immediately below the memory gate electrode MG remains without being removed.
  • the ONO film ON located between the laminated film including the gate insulating films GI and IF2 and the control gate electrode CG and the memory gate electrode MG remains without being removed. Since the ONO film ON in the other regions is removed, the upper surface of the semiconductor substrate SB in the memory cell region 1A is exposed, the upper surface of the laminated film is exposed, and the upper surface of the silicon film PS1 in the peripheral circuit region 1B. Is exposed. Further, the side wall of the control gate electrode CG which is not adjacent to the memory gate electrode MG is exposed.
  • the memory gate electrode MG is formed on the semiconductor substrate SB via the ONO film ON having the charge storage portion inside so as to be adjacent to the control gate electrode CG.
  • the insulating film IF3 is formed using, for example, the CVD method.
  • the insulating film IF3 is made of, for example, a silicon nitride film.
  • the silicon film PS1 in the peripheral circuit region 1B is covered with the insulating film IF3.
  • the main surface of the substrate SB is covered with the insulating film IF3.
  • a silicon oxide film may be deposited on the entire main surface of the semiconductor substrate SB by using, for example, the CVD method before the insulating film IF3 is formed.
  • a resist film PR1 covering the insulating film IF3 in the memory cell region 1A is formed using a photolithography technique.
  • the insulating film IF3 in contact with the upper surface and the side wall of the silicon film PS1 is exposed from the resist film PR1.
  • the resist film PR1 is removed. Thereby, the insulating film IF3 in the peripheral circuit region 1B is removed, and the silicon film PS1 and the insulating film IF1 are exposed.
  • the silicon film PS1 and the insulating film IF1 in the peripheral circuit region 1B are removed using, for example, a wet etching method.
  • the laminated film made of the gate insulating film GI, the control gate electrode CG and the insulating film IF2 in the memory cell region 1A, and the ONO film ON and the memory gate electrode MG adjacent to the side wall of the laminated film It is not removed because it is covered.
  • the insulating films IF4 and HK, the metal film TN, the silicon film PS3, and the insulating film IF5 are sequentially formed.
  • the laminated film including the gate insulating film GI, the control gate electrode CG, and the insulating film IF2 in the memory cell region 1A, and the ONO film ON and the memory gate electrode MG adjacent to the sidewall of the laminated film are the insulating film IF3, It is covered by IF4, HK, metal film TN, silicon film PS3 and insulating film IF5.
  • the insulating film IF4 is made of, for example, a silicon oxide film, and can be formed using an oxidation method such as a thermal oxidation method.
  • the insulating film HK is an insulating film for a gate insulating film. Specifically, the insulating film HK is a film which constitutes a gate insulating film of the MISFET which is to be formed later in the peripheral circuit region 1B.
  • the insulating film HK is a so-called high-k film (high dielectric constant film), which is an insulating material film having a dielectric constant (specific dielectric constant) higher than any of silicon oxide and silicon nitride.
  • the insulating film HK As the insulating film HK, a metal oxide film such as a hafnium oxide film, a zirconium oxide film, an aluminum oxide film, a tantalum oxide film, or a lanthanum oxide film can be used. And / or silicon (Si).
  • the insulating film HK can be formed, for example, by an ALD (atomic layer deposition) method or the like.
  • the film thickness of the insulating film HK is, for example, 1.5 nm.
  • the insulating film HK When a high dielectric constant film (here, the insulating film HK) is used for the gate insulating film, the physical thickness of the gate insulating film can be increased as compared with the case where a silicon oxide film is used, so the leakage current Can be reduced.
  • the metal film TN is made of, for example, a titanium nitride film, and can be formed, for example, by sputtering.
  • the silicon film PS3 is made of a polysilicon film and can be formed, for example, by the CVD method.
  • the film thickness of the silicon film PS3 is, for example, 40 nm.
  • the silicon film PS3 can be formed as an amorphous silicon film, and then the silicon film PS3 made of an amorphous silicon film can be changed to the silicon film PS3 made of a polycrystalline silicon film by heat treatment thereafter.
  • the silicon film PS3 is a film into which, for example, a p-type impurity (for example, boron (B)) is introduced at a relatively high concentration.
  • the silicon film PS3 is a film for forming a dummy gate electrode DG described later.
  • the insulating film IF5 is a cap insulating film made of, for example, silicon nitride, and can be formed by, for example, a CVD method.
  • Resist film PR2 is a resist film that exposes semiconductor substrate SB and element isolation region ST in the vicinity of the boundary between memory cell region 1A and peripheral circuit region 1B.
  • the insulating film IF5, the silicon film PS3, the metal film TN, the insulating film HK, and the insulating film IF4 are removed by performing etching using the resist film PR2 as a mask.
  • the silicon film PS3 in the memory cell region 1A and the silicon film PS3 in the peripheral circuit region 1B are separated from each other.
  • the insulating film IF6 is formed over the entire main surface of the semiconductor substrate SB using, for example, the CVD method.
  • the insulating film IF6 is a cap insulating film made of, for example, a silicon oxide film.
  • the insulating film IF6 in the memory cell region 1A is removed using a photolithography technique and an etching method.
  • the memory cell region 1A is exposed from the insulating film IF6, and the insulating films IF4 and HK, the metal film TN, the silicon film PS3 and the insulating film IF5 in the peripheral circuit region 1B are covered with the insulating film IF6.
  • the insulating film IF5 and the silicon film PS3 in the memory cell region 1A are removed using phosphoric acid, and then the metal film TN and the insulating film HK and IF3 are removed.
  • the structure on the semiconductor substrate SB in the peripheral circuit region 1B is not removed because it is covered with the resist film.
  • the surface is exposed.
  • the insulating film IF6 in the peripheral circuit region 1B is removed.
  • the insulating film IF5, the silicon film PS3, the metal film TN, and the insulating films HK and IF4 in the peripheral circuit region 1B are patterned using a photolithography technique and an etching technique.
  • the dummy gate electrode DG made of the silicon film PS3 and the gate insulating film made of the insulating films HK and IF4 are formed in the region where the MISFETs forming the peripheral circuit are formed.
  • the insulating film IF5 is patterned using a photolithography technique and an etching method, and then etching is performed using the insulating film IF5 as a mask in a state where the memory cell region 1A is covered with a resist film.
  • the metal film TN, the insulating films HK and IF4 are patterned.
  • a plurality of extension regions (n -- type semiconductor regions, impurity diffusion regions) EX are formed using an ion implantation method or the like. That is, for example, a semiconductor using an n-type impurity such as arsenic (As) or phosphorus (P) as a mask using gate insulating film GI, control gate electrode CG, memory gate electrode MG, dummy gate electrode DG, ONO film ON, etc.
  • a plurality of extension regions EX are formed by introducing the substrate SB by ion implantation.
  • Offset spacer that covers the sidewall of the structure including the gate insulating film GI, the control gate electrode CG, the insulating film IF2, the ONO film ON, and the memory gate electrode MG and the sidewall of the dummy gate electrode DG before forming the extension region EX.
  • the extension regions EX of the memory cell region 1A and the peripheral circuit region 1B can be formed in the same ion implantation step, but can also be formed in different ion implantation steps. Although illustration is omitted, before or after the step of forming the extension region EX, for example, p-type impurities on the main surface of the semiconductor substrate SB in the peripheral circuit region 1B using the insulating film IF5 and the dummy gate electrode DG as a mask.
  • the halo region may be formed by implanting (for example, boron (B)).
  • the halo region is formed on the main surface of the semiconductor substrate SB immediately below the center of the dummy gate electrode DG than the extension region EX, that is, on a portion closer to the channel region of the MISFET formed in the peripheral circuit region 1B in a later step. . By forming the halo region, it is possible to improve the short channel characteristics of the MISFET.
  • sidewalls SW are formed covering the sidewalls on both sides of the above structure including the control gate electrode CG and the memory gate electrode MG in the memory cell region 1A. Further, in the same process, in the peripheral circuit region 1B, sidewalls SW are formed covering the sidewalls on both sides of the laminated film formed of the gate insulating film GI, the insulating film HK, the metal film TN, the dummy gate electrode DG and the insulating film IF5.
  • the sidewall SW is formed by sequentially forming, for example, a silicon oxide film and a silicon nitride film over the semiconductor substrate SB using a CVD method or the like, and then partially removing the silicon oxide film and the silicon nitride film by anisotropic etching.
  • a silicon oxide film and a silicon nitride film By exposing the upper surface of the semiconductor substrate SB and the upper surfaces of the insulating films IF2 and IF5, they can be formed in a self-aligned manner. That is, although it is conceivable that the sidewall SW is formed of a laminated film, in the drawing, the interface between the films constituting the laminated film is not shown.
  • diffusion regions (n + -type semiconductor regions, impurity diffusion regions) DF are formed in the memory cell region 1A and the peripheral circuit region 1B by ion implantation or the like. That is, an n-type impurity (for example, arsenic (As) or phosphorus (P)), gate insulating film GI, control gate electrode CG, insulating film IF2, ONO film ON, memory gate electrode MG, dummy gate electrode DG and sidewall SW
  • the diffusion region DF can be formed by introducing the semiconductor substrate SB into the semiconductor substrate SB by using the ion implantation mask as a mask (ion implantation blocking mask). Diffusion region DF has a higher impurity concentration and a deeper junction depth than extension region EX.
  • the extension region EX and the diffusion region DF having the impurity concentration higher than that of the extension region EX are formed, and a source / drain region having a lightly doped drain (LDD) structure is formed.
  • LDD lightly doped drain
  • extension region EX and diffusion region DF formed on the upper surface of semiconductor substrate SB beside the structure including control gate electrode CG and memory gate electrode MG are control transistors in memory cell region 1A to be formed later. And configure source / drain regions of the memory transistor.
  • the extension region EX and the diffusion region DF formed on the upper surface of the semiconductor substrate SB next to the dummy gate electrode DG constitute source / drain regions of the MISFET in the peripheral circuit region 1B to be formed later.
  • the respective diffusion regions DF of the memory cell region 1A and the peripheral circuit region 1B can be formed in the same ion implantation step, but can also be formed in different ion implantation steps.
  • activation annealing which is a heat treatment for activating the impurities introduced into the source and drain semiconductor regions (the extension region EX and the diffusion region DF), is performed.
  • a silicide layer is formed by performing a so-called salicide (Self Aligned Silicide) process described with reference to FIGS. 13 and 14.
  • the silicide layer can be formed as follows.
  • a metal film MF1 for forming a silicide layer is formed (deposited) over the entire main surface of the semiconductor substrate SB including the upper surface of the diffusion region DF and the upper surface of the memory gate electrode MG.
  • the film thickness of the metal film MF1 is, for example, 20 to 25 nm.
  • the metal film MF1 is made of, for example, an alloy film of nickel (Ni) and platinum (Pt), and can be formed using a sputtering method or the like.
  • the metal film MF1 formed here is an alloy film containing nickel, and the material to be added to nickel in the alloy film is not limited to platinum, but may be aluminum (Al), carbon (C), etc. . However, since platinum has higher heat resistance than aluminum or carbon, it can be suitably used for the alloy film.
  • the surface layer portions of the diffusion region DF and the memory gate electrode MG are reacted with the metal film MF1 by applying a heat treatment to the semiconductor substrate SB. Due to this reaction, that is, silicidation, a silicide layer S1 is formed on top of each of the diffusion region DF and the memory gate electrode MG. Further, the metal film MF1 which has not reacted even after the heat treatment is removed by wet etching or the like.
  • the heat treatment includes two heat treatment steps. That is, in the first heat treatment, heating is performed, for example, at 260 ° C. for 30 to 120 seconds to form the silicide layer S1 including NiSi microcrystals and Ni 2 Si. Thereafter, the unreacted metal film MF1 is removed by wet etching or the like as described above, and heating is further performed at 600 ° C. for 5 to 30 seconds in the second heat treatment to grow the NiSi crystal in the silicide layer S1. Let By performing the heat treatment twice in this manner, it is possible to prevent the silicide layer S1 from abnormally growing and extending in the semiconductor substrate SB.
  • the silicide layer S1 thus formed is made of, for example, nickel platinum (NiPt) silicide.
  • the heat treatment performed for the second time is referred to as the first heat treatment for convenience.
  • the first heat treatment is performed, for example, at 450 to 600.degree. In the present embodiment, as described above, the first heat treatment is performed at 600.degree.
  • the first heat treatment may be performed using a laser or a flash lamp. Alternatively, the unreacted metal film MF1 may be removed after the first heat treatment.
  • the silicide layer S1 formed by the heat treatment at a relatively high temperature as described above has a relatively large tensile stress.
  • the silicide layer S1 is not formed on the control gate electrode CG.
  • the silicide layer S1 is not formed on the dummy gate electrode DG.
  • the silicide layer S1 is formed in the exposed portion.
  • the silicide layer S1 is completely removed by a polishing process by a CMP (Chemical Mechanical Polishing) method performed in a later process.
  • an insulating film (liner insulating film) so as to cover the control gate electrode CG, the memory gate electrode MG, the dummy gate electrode DG and the sidewall SW over the entire main surface of the semiconductor substrate SB.
  • IF 7 and interlayer insulating film IL 1 are formed in order.
  • the insulating film IF7 is made of, for example, a silicon nitride film, and can be formed by, for example, a CVD method.
  • the insulating film IF7 can be used as an etching stopper film when forming a contact hole in a later step.
  • the interlayer insulating film IL1 is made of, for example, a single film of a silicon oxide film, and can be formed using, for example, a CVD method.
  • the interlayer insulating film IL1 is formed to have a film thickness larger than that of the control gate electrode CG, for example.
  • the upper surface of the interlayer insulating film IL1 is polished using a CMP method or the like. Thereby, the upper surfaces of the control gate electrode CG, the memory gate electrode MG, and the dummy gate electrode DG are exposed. That is, in this polishing step, the interlayer insulating film IL1 and the insulating film IF7 are polished until the upper surfaces of the control gate electrode CG, the memory gate electrode MG, and the dummy gate electrode DG are exposed. Thereby, the insulating films IF2 and IF5 are removed, and the respective upper portions of the sidewall SW and the ONO film ON are also partially removed. In addition, the silicide layer S1 on the memory gate electrode MG is removed together with a part of the upper portion of the memory gate electrode MG in this step.
  • control gate electrode CG and memory gate electrode MG are processed to form a split gate including control gate electrode CG, ONO film ON, memory gate electrode MG and source / drain regions in memory cell region 1A.
  • a memory cell MC of the MONOS memory of the type is formed.
  • a memory cell MC which is a MONOS nonvolatile memory element, is configured of a control transistor and a memory transistor.
  • the control gate electrode CG and the pair of source / drain regions formed on the upper surface of the semiconductor substrate SB next to the control gate electrode CG constitute a control transistor.
  • the memory gate electrode MG and the pair of source / drain regions formed on the upper surface of the semiconductor substrate SB next to the memory gate electrode MG constitute a memory transistor.
  • the ONO film ON under the memory gate electrode MG constitutes a gate insulating film of the memory transistor.
  • control transistor Since the control transistor is a memory cell selection transistor, it can also be regarded as a selection transistor. Therefore, the control gate electrode CG can also be regarded as a selection gate electrode.
  • the memory transistor is a storage transistor.
  • an insulating film IF8 is formed on the interlayer insulating film IL1 by using, for example, a CVD method, and then the insulating film IF8 in the peripheral circuit region 1B is formed by using a photolithography technique and an etching method. Remove.
  • the insulating film IF8 remains in the memory cell region 1A. That is, the insulating film IF8 covers the upper surfaces of the control gate electrode CG and the memory gate electrode MG, and exposes the upper surface of the dummy gate electrode DG.
  • the insulating film IF8 is made of, for example, a silicon oxide film.
  • the upper surface of the dummy gate electrode DG in the peripheral circuit region 1B exposed from the insulating film IF8 is etched back to be retracted. Since the film on the upper surface of the dummy gate electrode DG can be removed by removing a part of the upper portion of the dummy gate electrode DG in this manner, the dummy gate electrode DG can be removed in an etching process described later with reference to FIG. Can be removed easily.
  • an insulating film IF9 is formed on the interlayer insulating film IL1 by using, for example, a CVD method, and then the insulating film IF9 is processed by using a photolithography technique and an etching method.
  • the insulating film IF9 covers the memory cell region 1A, and covers the interlayer insulating film IL1 in the peripheral circuit region 1B. That is, the insulating film IF9 covers the upper surfaces of the control gate electrode CG and the memory gate electrode MG, and exposes the upper surface of the dummy gate electrode DG.
  • the insulating film IF9 is made of, for example, a silicon oxide film.
  • the insulating film IF8 may be left between the insulating film IF9 and the interlayer insulating film IL1 without being removed.
  • the dummy gate electrode DG is removed by wet etching.
  • the dummy gate electrode DG is removed by performing wet etching with an alkaline aqueous solution, for example.
  • aqueous ammonia NH 4 OH
  • trenches are formed on the insulating films IF4 and HK that constitute the gate insulating film.
  • the groove on the insulating film HK in the peripheral circuit region 1B is a region from which the dummy gate electrode DG is removed, and the side walls on both sides of the groove are constituted by the sidewalls SW.
  • the groove is completely buried on the semiconductor substrate SB, that is, on the interlayer insulating film IL1 including the inner surface (bottom and side walls) of the groove.
  • a metal film is formed as a conductive film of The metal film is considered to have a structure in which, for example, two or more metal films are stacked, but in the figure, the illustration of the boundary of the two or more metal films is omitted, and the metal film is used as one film. Show.
  • the inside of the groove is completely filled.
  • the metal film is also formed on the interlayer insulating film IL1.
  • TiN titanium nitride
  • TaN tantalum nitride
  • WN tungsten nitride
  • TiC titanium carbide
  • TaC tantalum carbide
  • WC tungsten carbide
  • TaCN tantalum nitride carbide
  • Ti titanium
  • Ta tantalum
  • TiAl titanium aluminum
  • Al aluminum
  • the metal film refers to a conductive film showing metal conduction, and includes not only a single metal film (pure metal film) or an alloy film, but also a metal compound film showing metal conduction.
  • the metal film can be formed using, for example, a sputtering method.
  • the metal film can be formed of, for example, a laminated film of a titanium nitride (TiN) film and an aluminum (Al) film over the titanium nitride film. At this time, it is preferable to make the aluminum film thicker than the titanium nitride film. Since the aluminum film has a low resistance, the resistance of the gate electrode G1 to be formed later can be reduced.
  • TiN titanium nitride
  • Al aluminum
  • the metal film and the insulating film IF 9 and the like outside each of the grooves are polished and removed by a CMP method or the like to embed the metal film in the grooves.
  • the control gate electrode CG and the memory gate electrode MG are exposed.
  • the gate electrode G1 is formed of the metal film embedded in the trench on the insulating film IF4 in the peripheral circuit region 1B.
  • the MISFET Q1 is formed in the peripheral circuit region 1B.
  • the MISFET Q1 has a gate electrode G1 and source / drain regions beside the gate electrode G1.
  • the MISFET Q1 is, for example, a field effect transistor which constitutes a peripheral circuit of the memory cell MC.
  • the insulating film HK and the insulating film IF4 immediately below the gate electrode G1 constitute a gate insulating film of the MISFET Q1.
  • the gate electrode G1 is a metal gate electrode.
  • the dummy gate electrode DG (see FIG. 17) is removed and replaced with the gate electrode G1. Therefore, the dummy gate electrode DG is a pseudo gate electrode and can be regarded as a replacement gate electrode.
  • the dummy gate electrode DG is formed on the semiconductor substrate SB and the source / drain regions are formed in the semiconductor substrate SB, the dummy gate electrode is replaced with the metal gate electrode. That is, the MISFET Q1 is formed using the gate last process. Further, in the present embodiment, since the gate electrode G1 is a metal gate electrode, downsizing of the transistor element (thinning of the gate insulating film) is possible.
  • a silicide layer is formed on each electrode made of a polysilicon film by performing a salicide process.
  • the silicide layer can be formed as follows.
  • a pattern of insulating film IF10 covering peripheral circuit region 1B is formed using, for example, a CVD method, a photolithography technique and an etching method.
  • the insulating film IF10 is an insulating film that exposes the upper surfaces of the control gate electrode CG and the memory gate electrode MG in the memory cell region 1A and covers the gate electrode G1, and is made of, for example, a silicon oxide film.
  • a metal film MF2 for forming a silicide layer is formed (deposited) over the entire main surface of the semiconductor substrate SB including the upper surfaces of the control gate electrode CG and the memory gate electrode MG.
  • the film thickness of the metal film MF2 is, for example, 20 to 25 nm.
  • the metal film MF2 is made of, for example, an alloy film of nickel (Ni) and platinum (Pt), and can be formed using a sputtering method or the like.
  • the metal film MF2 formed here is an alloy film containing nickel, and the material to be added to nickel in the alloy film is not limited to platinum, but may be aluminum (Al), carbon (C), etc. . However, since platinum has higher heat resistance than aluminum or carbon, it can be suitably used for the alloy film.
  • the surface layer portions of the control gate electrode CG and the memory gate electrode MG are reacted with the metal film MF2 by applying heat treatment to the semiconductor substrate SB.
  • a silicide layer S2 is formed on the control gate electrode CG and the memory gate electrode MG.
  • the metal film MF2 which has not reacted even after the above heat treatment is removed by wet etching or the like.
  • the gate electrode G1 made of a metal film is protected by the insulating film IF10, it is not removed.
  • the heat treatment includes two heat treatment steps. That is, in the first heat treatment, for example, heating is performed at 260 ° C. for 30 to 120 seconds to form the silicide layer S2 containing NiSi microcrystals and Ni 2 Si. Thereafter, the unreacted metal film MF2 is removed by wet etching or the like as described above, and heating is further performed at 400 ° C. for 10 to 120 seconds in the second heat treatment to grow the NiSi crystal in the silicide layer S2.
  • the silicide layer S2 thus formed is made of, for example, nickel platinum (NiPt) silicide.
  • the heat treatment performed for the second time is referred to as a second heat treatment for convenience.
  • the second heat treatment is performed, for example, at 400 ° C. or less. In the present embodiment, as described above, the second heat treatment is performed at 400.degree.
  • the unreacted metal film MF2 may be removed after the second heat treatment.
  • the platinum in the silicide layer S2 formed by the second heat treatment segregates at the bottom of the silicide layer S2. That is, more platinum in the silicide layer S2 is present on the bottom surface of the silicide layer S2 than in the top surface of the silicide layer S2.
  • the silicide layer S2 formed by the heat treatment at a lower temperature than the first heat treatment as described above has a relatively small tensile stress.
  • the silicide layer S1 formed on the source / drain region in the step (first heat treatment) described with reference to FIGS. 13 and 14 is formed at a relatively high temperature of about 450 to 600 ° C. Most of platinum (Pt) in the silicide layer S1 is segregated downward in the silicide layer S1.
  • silicide layer S2 formed on control gate electrode CG and memory gate electrode MG in the step (second heat treatment) described with reference to FIGS. 20 and 21 is formed at a relatively low temperature of 400.degree. C. or less. Because of this, the amount of downward segregation of platinum (Pt) in the silicide layer S2 is relatively small.
  • the downward segregation amount of platinum (Pt) in the silicide layer S2 is smaller than the downward segregation amount of platinum (Pt) in the silicide layer S1.
  • the amount of platinum (Pt) in the lower surface is larger than that in the upper surface
  • the amount of platinum (Pt) per unit area of the lower surface of the silicide layer S1 is that of the silicide layer S2. More than the amount of platinum (Pt) per unit area of the lower surface.
  • the amount of platinum (Pt) per unit area of the top surface of the silicide layer S1 is smaller than the amount of platinum (Pt) per unit area of the top surface of the silicide layer S2.
  • the difference in the segregation amount of platinum (Pt) in each of the silicide layers S1 and S2 is attributed to the difference in temperature of the heat treatment performed to form each silicide layer.
  • the tensile stress of the silicide layer S2 formed by the second heat treatment at a lower temperature than the first heat treatment is smaller than the tensile stress of the silicide layer S1 formed by the first heat treatment. Therefore, the silicide layer S2 is characterized in that disconnection is less likely to occur than the silicide layer S1.
  • an interlayer insulating film and a plurality of contact plugs are formed.
  • the interlayer insulating film IL2 covering the entire top surface of the semiconductor substrate SB including the memory cell region 1A and the peripheral circuit region 1B is formed using, for example, the CVD method.
  • the interlayer insulating film IL2 is made of, for example, a silicon oxide film, and covers the upper surfaces of the control gate electrode CG, the memory gate electrode MG, the gate electrode G1, and the interlayer insulating film IL1.
  • the interlayer insulating films IL2 and IL1, and the insulating films IF10 and IF7 are dry etched using a resist film (not shown) formed over the interlayer insulating film IL2 by photolithography as an etching mask.
  • a plurality of contact holes (openings, through holes) penetrating through the interlayer insulating film IL2 and a plurality of contact holes penetrating through the interlayer insulating films IL1 and IL2 and the insulating film IF7 are formed.
  • the contact holes in the peripheral circuit region 1B penetrate the insulating film IF10.
  • each contact hole a portion of the main surface of semiconductor substrate SB, for example, a portion of silicide layer S1 on the surface of diffusion region DF, a portion of silicide layer S2 on the surface of control gate electrode CG, a memory gate electrode A part of the silicide layer S2 or a part of the gate electrode G1 on the surface of the MG is exposed.
  • the contact hole on each gate electrode is formed in a region not shown in FIG.
  • a conductive contact plug CP made of tungsten (W) or the like is formed as a conductor for connection.
  • a barrier conductor film for example, a titanium film, a titanium nitride film, or a laminated film thereof
  • IL2 interlayer insulating film
  • the contact plug CP can be formed by removing it by an etch back method or the like. Note that, in order to simplify the drawing, FIG. 22 shows the barrier conductor film and the main conductor film (tungsten film) that constitute the contact plug CP in an integrated manner.
  • the contact plug CP embedded in the contact hole is formed to be connected to the upper portion of each of the diffusion region DF, the control gate electrode CG, the memory gate electrode MG, or the gate electrode G1. That is, the contact plug CP is connected to the upper surface of each of the memory cell MC and the diffusion region DF of the MISFET Q1 through the silicide layer S1. Further, a contact plug CP is connected to the upper surface of each of the control gate electrode CG and the memory gate electrode MG via the silicide layer S2.
  • One of the purposes of providing the silicide layers S1 and S2 is to reduce the contact resistance between the contact plug CP and the diffusion region DF made of a semiconductor, the control gate electrode CG and the memory gate electrode MG. Therefore, no silicide layer is provided between the gate electrode G1 which is a metal gate electrode and the contact plug CP.
  • a first wiring layer including a first wiring layer is formed on the interlayer insulating film IL2 in which the contact plug CP is embedded.
  • This wiring can be formed using damascene technology.
  • the first wiring layer has an interlayer insulating film and a first layer wiring passing therethrough.
  • the plurality of first layer wirings are connected to the upper surface of each contact plug CP shown in FIG.
  • a second wiring layer, a third wiring layer, and the like are sequentially formed on the first wiring layer to form a laminated wiring layer, and then the semiconductor wafer is singulated in a dicing step to obtain a plurality of semiconductor chips.
  • the semiconductor device of the present embodiment is manufactured.
  • the memory cell of the present embodiment has a MISFET structure, in which the charge storage state in the trapping insulating film in the gate electrode of the MISFET is stored information and read out as the threshold of the transistor.
  • the trappable insulating film is an insulating film capable of storing charge, and an example thereof is a silicon nitride film or the like. By such injection and discharge of charges to the charge storage region, the threshold value of the MISFET is shifted to operate as a storage element.
  • a nonvolatile semiconductor memory device using a trap insulating film there is a split gate type MONOS memory as in the memory cell of the present embodiment.
  • FIG. 23 is a table showing an example of application conditions of voltage to each portion of the selected memory cell in “write”, “erase” and “read” in the present embodiment.
  • the voltage Vmg applied to the memory gate electrode MG of the memory cell MC as shown in FIG. 22 is applied to the source region at each of “write”, “erase” and “read”.
  • the voltage Vs, the voltage Vcg applied to the control gate electrode CG, the voltage Vd applied to the drain region, and the base voltage Vb applied to the p-type well on the top surface of the semiconductor substrate are described.
  • the selected memory cell referred to here is a memory cell selected as a target to which “write”, “erase” or “read” is to be performed.
  • the active region on the right side of the memory gate electrode MG is a source region
  • the active region on the left side of the control gate electrode CG is a drain region.
  • surface of FIG. 23 is a suitable example of the application conditions of a voltage, It is not limited to this, It can change variously as needed.
  • injection of electrons into the silicon nitride film NT (see FIG. 3), which is a charge storage portion in the ONO film ON of the memory transistor, is “written”, injection of holes. Is defined as "erasing".
  • the column A corresponds to the case where the writing method is the SSI method and the erasing method is the BTBT method
  • the column B corresponds to the SSI method as the writing method and the FN method
  • the column D corresponds to the FN method as the writing method and the FN method. It corresponds to
  • the SSI method can be regarded as an operation method for writing a memory cell by injecting hot electrons into the silicon nitride film NT, and the BTBT method erases a memory cell by injecting hot holes into the silicon nitride film NT.
  • the FN scheme can be considered as an operation method for writing or erasing by tunneling of electrons or holes.
  • the writing in the FN method can be regarded as an operation method for writing a memory cell by injecting electrons into the silicon nitride film NT by the FN tunneling effect
  • the erasing in the FN method Can be regarded as an operation method for erasing a memory cell by injecting holes into the silicon nitride film NT by the FN tunnel effect. The details will be described below.
  • the writing method is a so-called SSI (Source Side Injection) method called hot side injection writing method (hot electron injection writing method), and a so-called FN method called FN (Fowler Nordheim)
  • SSI Source Side Injection
  • FN hot electron injection writing method
  • FN FN
  • a writing method tunneling writing method
  • Hot electrons are generated in the lower channel region (between the source and the drain) between the two gate electrodes (the memory gate electrode MG and the control gate electrode CG), and in the ONO film ON under the memory gate electrode MG.
  • Hot electrons are injected into the silicon nitride film NT which is a charge storage portion.
  • the injected hot electrons (electrons) are trapped by the trap levels in the silicon nitride film NT in the ONO film ON, and as a result, the threshold voltage of the memory transistor is increased. That is, the memory transistor is in the write state.
  • the threshold voltage of the memory transistor is increased. That is, the memory transistor is in the write state.
  • writing can be performed by tunneling electrons from the semiconductor substrate SB and injecting the electrons into the silicon nitride film NT in the ONO film ON.
  • the writing operation voltage is, for example, FIG.
  • the "write operation voltage" in the column C or the column D in Table 1 may be inverted.
  • the erase method is a so-called BTBT method such as an erase method (hot hole injection erase method) in which erase is performed by hot hole injection by BTBT (Band-To-Band Tunneling) and a so-called FN method called FN (Fowler). Nordheim)
  • BTBT hot hole injection erase method
  • FN FN
  • erasing method tunneling erasing method
  • erasing is performed by injecting holes (positive holes) generated by BTBT into the charge storage portion (silicon nitride film NT in ONO film ON).
  • holes are generated by the BTBT phenomenon and electric field acceleration is performed to inject holes into the silicon nitride film NT in the ONO film ON of the selected memory cell, thereby lowering the threshold voltage of the memory transistor. That is, the memory transistor is in the erased state.
  • the erase operation is performed by applying 0 V) to each portion of the selected memory cell to be erased, tunneling holes from the memory gate electrode MG in the selected memory cell, and injecting it into the silicon nitride film NT in the ONO film ON. At this time, holes are injected from the memory gate electrode MG through the silicon oxide film OX2 (see FIG.
  • the threshold voltage of the memory transistor is lowered. That is, the memory transistor is in the erased state.
  • erasing can also be performed by tunneling holes from the semiconductor substrate SB and injecting it into the silicon nitride film NT in the ONO film ON.
  • the erase operation voltage is, for example, shown in FIG.
  • the "erasing operation voltage" in column B or column D of the table may be inverted.
  • resistance reduction of the gate electrode can be realized by using a silicide layer formed over the gate electrode formed of a semiconductor film as a wiring.
  • the silicide layer formed in contact with the upper surface of the source / drain region of the MISFET has a tensile stress
  • the tensile stress can be induced in the channel region to improve the characteristics of the MISFET.
  • channel mobility can be improved. Therefore, the write / erase speed of the memory cell can be improved by enhancing the tensile stress of the silicide layer on the source / drain region of each of the MISFETs constituting the memory cell and its peripheral circuit.
  • heat treatment performed to form the silicide layer is performed at a high temperature of, for example, about 450 to 600 ° C. in the manufacturing process of the semiconductor device.
  • a silicide layer is also formed on the gate electrode of the MISFET.
  • the silicide layer above the gate electrode remains even after completion of the semiconductor device.
  • the heat treatment for forming the silicide layer was performed at a high temperature of about 450 to 600.degree.
  • high tensile stress also occurs in the silicide layer on the gate electrode.
  • the silicide layer on the upper part of the gate electrode of the MISFET constituting the MONOS memory is used as a wiring for realizing the reduction of the resistance of the gate electrode.
  • the silicide layer on the gate electrode of the MONOS memory is broken, the resistance value of the gate electrode is significantly increased, which causes a problem that the operating speed of the MONOS memory is reduced.
  • a semiconductor device including a memory cell is formed by using a gate first process, it is difficult to apply tensile stress to the device to improve the characteristics of the device from the viewpoint of preventing the disconnection of the silicide layer.
  • the silicide layers on top of the source / drain region of the MONOS memory and the gate electrode and source / drain region of the MISFET in the peripheral circuit region are not used as interconnections. Also, contact plugs may be connected at short intervals to the source / drain region of the MONOS memory and the gate electrode and source / drain region of the MISFET in the peripheral circuit region, respectively, as compared to the gate electrode of the MONOS memory. It is possible.
  • the gate electrodes (control gate electrode and memory gate electrode) of the MONOS memory are arranged side by side with high density to improve the integration degree of the memory cell, power supply for connecting the contact plug to the gate electrode It is difficult to provide parts in a short cycle. Therefore, the distance between the plurality of contact plugs connected to the gate electrode becomes very long. Therefore, if the silicide layer on the gate electrode of the memory cell is not used as a wire, the resistance of the gate electrode is increased to operate the memory cell. Will be late.
  • the semiconductor device manufacturing process for forming the MISFET using the gate last process after forming gate electrodes or dummy gate electrodes of memory cells and other MISFETs and forming silicide layers on the source / drain regions , Removing a portion of the top of the gate electrode. At this time, since the silicide layer on each gate electrode is removed, it is necessary to form a silicide layer again as a wiring on the gate electrode or as a relaxation layer which reduces the contact resistance between the gate electrode and the contact plug.
  • the silicide layer on the source / drain region and the silicide layer on the gate electrode can be formed in separate steps.
  • the inventor pays attention to this, and forms a silicide layer with high tensile stress on the source / drain region and a silicide layer with low tensile stress on the gate electrode of the memory cell by silicidation processes under different conditions.
  • the first heat treatment is performed at a relatively high temperature to form silicide layer S1 with high tensile stress on the source / drain region. doing.
  • This makes it possible to improve the characteristics of the memory cell MC (see FIG. 22) of the MONOS memory and the MISFET Q1 (see FIG. 22) in the peripheral circuit region 1B.
  • the silicide layer S1 having high tensile stress is formed on the memory gate electrode MG, but the silicide layer S1 on the memory gate electrode MG is removed by the polishing process described using FIG. Therefore, the silicide layer S1 which is easily broken does not remain on the memory gate electrode MG.
  • the second heat treatment is performed at a relatively low temperature, whereby the silicide layer S2 with small tensile stress is formed on each of the control gate electrode CG and the memory gate electrode MG.
  • the silicide layer S2 that is hard to break can be formed on the control gate electrode CG and the memory gate electrode MG of the memory cell MC (see FIG. 22) of the MONOS memory.
  • silicide layer S1 having high tensile stress is formed on the source / drain region, and silicide having low tensile stress is formed on each of control gate electrode CG and memory gate electrode MG of memory cell MC.
  • Layer S2 can be formed. Therefore, it is possible to realize both the improvement of the characteristics of each semiconductor element including the memory cell MC and the MISFET Q1 and the prevention of the decrease in the operating speed of the memory cell MC. Thereby, the performance of the semiconductor device can be improved, and the reliability of the semiconductor device can be improved.
  • the silicide layer S1 and the silicide layer are different depending on the amount of segregation of platinum. It is possible to determine the difference between the heat treatment temperature in each forming step with S2 and the difference in the tensile stress between the silicide layer S1 and the silicide layer S2 resulting from the temperature. This is because, as described above, the amount of segregation of platinum in each of the silicide layers S1 and S2 is different due to the difference in temperature of the heat treatment performed to form the silicide layers S1 and S2. It is.
  • the first temperature performed at a lower temperature than the first heat treatment (2)
  • the amount of platinum diffused in the silicide layer S2 formed by the heat treatment is small in the downward direction in the silicide layer S2. Therefore, the amount of platinum per unit area of the lower surface of the silicide layer S1 is larger than the amount of platinum per unit area of the lower surface of the silicide layer S2, and the amount of platinum per unit area of the upper surface of the silicide layer S1 is silicide Less than the amount of platinum per unit area of the top surface of layer S2. Therefore, in the silicide layers S1 and S2 formed at different temperatures, a difference occurs in the segregation amount of platinum as described above.
  • platinum (Pt) is segregated at the interface between the silicide layer S1 and the semiconductor substrate SB by forming the silicide layer S1 on the source / drain region at a high temperature, so that (010 ) Oriented NiSi film is formed preferentially.
  • the inventor has found through experiments that a (010) -oriented NiSi film is a film having a large tensile stress, and that the tensile stress is applied to the n-channel type MISFET from the silicide layer on the source / drain region. It has been discovered that when applied to a channel, the channel mobility of an n-channel type MISFET can be improved.
  • the configuration of this embodiment can be applied.
  • the increase in resistance due to the disconnection of the silicide layer on each of the control gate electrode and the memory gate electrode causes deterioration of the device characteristics.
  • the silicide layer S2 shown in FIG. 22 at a low temperature of 400 ° C. or less, segregation of platinum to the interface between the silicide layer S2 and the control gate electrode CG or the memory gate electrode MG. Can be suppressed to prevent the formation of (010) orientation. That is, the number of (010) oriented grains per unit volume of the silicide layer S1 is larger than the number of (010) oriented grains per unit volume of the silicide layer S2. As a result, it is possible to form a silicide layer S2 which has a smaller stress than the silicide layer S1 and has high strength against disconnection.
  • the heat resistance of the silicide layers S1 and S2 is improved by using platinum as a part of the material of the silicide layers S1 and S2.
  • disconnection of the silicide layer S2 on each of the control gate electrode CG and the memory gate electrode MG of the memory cell MC can be prevented.
  • the reason for lowering the formation temperature of the silicide layer S2 on each of the control gate electrode CG and the memory gate electrode MG is also the reason described below. That is, since the gate electrode G1 which is a metal gate electrode is formed in the peripheral circuit region 1B at the time of formation of the silicide layer S2, if the second heat treatment at the time of formation of the silicide layer S2 is performed at high temperature, the inside of the gate electrode G1 is Metal may be diffused into the gate insulating film of the MISFET Q1 to deteriorate the transistor. In order to prevent such deterioration of the element, the temperature at the time of forming the silicide layer S2 is desirably a low temperature of 400 ° C. or less.
  • FIG. 24 shows a cross section of a memory cell MC1 of a MONOS memory which is a first modification of the semiconductor device of the present embodiment. Similar to FIG. 22, FIG. 24 shows the memory cell region 1A and the peripheral circuit region 1B.
  • the memory cell MC1 shown in FIG. 24 includes the control gate electrode CG and the memory gate electrode MG which are adjacent to each other and insulated from each other. Further, an ONO film ON1 is formed between the memory gate electrode MG and the semiconductor substrate SB.
  • the stacked structure of the ONO film ON1 is illustrated. That is, the ONO film ON1 immediately below the memory gate electrode MG is formed of a laminated film of a silicon oxide film OX1, a silicon nitride film NT, and a silicon oxide film OX2 sequentially formed on the semiconductor substrate SB.
  • the insulating film IF11 which does not include a film (for example, a silicon nitride film) functioning as a charge storage portion is formed.
  • the insulating film IF11 is made of, for example, a silicon oxide film.
  • the insulating film IF11 formed between the control gate electrode CG and the memory gate electrode MG does not have a charge storage portion. It differs from the structure described using FIG. Therefore, the ONO film ON1 does not have an L-shaped cross section. Also here, Pt (platinum) is segregated at the bottom of the silicide layer S1 more than the bottom of the silicide layer S2, and the silicide layer S1 has a larger tensile stress than the silicide layer S2.
  • Pt platinum
  • the following manufacturing method is used. That is, after the ONO film ON1 and the polysilicon film are sequentially formed on the semiconductor substrate SB, the polysilicon film and the ONO film ON1 are processed to form the memory gate electrode MG. Thereafter, a sidewall-shaped insulating film IF11 having a relatively small thickness is formed on one sidewall of the memory gate electrode MG, and then a polysilicon film is deposited on the semiconductor substrate SB to cover the memory gate electrode MG.
  • the polysilicon film is etched back to form a sidewall-shaped control gate electrode CG in a self-aligned manner on the sidewall of the memory gate electrode MG.
  • the subsequent steps, the formation of the interlayer insulating film IL1, the polishing of the upper surfaces of the control gate electrode CG and the memory gate electrode MG, and the steps of forming the silicide layers S1 and S2 are described with reference to FIGS. Do the same as the process. Thereby, the structure shown in FIG. 24 can be obtained.
  • FIG. 25 shows a cross section of a memory cell MC2 of a MONOS memory which is a modification 2 of the semiconductor device of the present embodiment. Similar to FIG. 22, FIG. 25 shows the memory cell area 1A and the peripheral circuit area 1B.
  • the memory cell MC2 shown in FIG. 25 includes the insulating film IF11 which does not include the charge storage portion between the control gate electrode CG and the memory gate electrode MG.
  • This modification differs from the structures shown in FIGS. 22 and 24 in that the control gate electrode is formed of a film deposited along the main surface of the semiconductor substrate SB and the sidewall of the memory gate electrode MG.
  • control gate electrode CG extends along the upper surface of semiconductor substrate SB, and the other part extends along the sidewall of memory gate electrode MG. .
  • the control gate electrode CG having such a shape has a wider width of the polysilicon film left by the processing.
  • the control gate electrode CG having such a shape can be formed by reducing the thickness of the polysilicon film to be the control gate electrode CG by processing in the manufacturing process of the first modification.
  • Pt platinum
  • the silicide layer S1 has a larger tensile stress than the silicide layer S2.
  • FIG. 26 shows a cross section of a memory cell MC3 of a MONOS memory which is a third modification of the semiconductor device of the present embodiment.
  • the memory cell region 1A and the peripheral circuit region 1B are shown.
  • Memory cell MC3 shown in FIG. 26 has charges between control gate electrode CG and memory gate electrode MG and between memory gate electrode MG and semiconductor substrate SB, similarly to the structure described with reference to FIG. It has the insulating film containing an accumulation part.
  • the ONO film ON2 provided between the control gate electrode CG and the memory gate electrode MG and the ONO film ON1 formed between the memory gate electrode MG and the semiconductor substrate SB are formed of different films. There is. In this point, this modification differs from the structure shown in FIG. That is, the ONO film ON2 provided between the control gate electrode CG and the memory gate electrode MG and the ONO film ON1 formed between the memory gate electrode MG and the semiconductor substrate SB are not integrated.
  • the ONO film ON1 does not have an L-shaped cross section.
  • the structure of the memory cell MC3 of the present modification shown in FIG. 26 can be obtained by forming the ONO film ON2 instead of the insulating film IF11 (see FIG. 24) in the manufacturing process of the first modification.
  • the ONO film ON2 is a film in which a silicon oxide film OX3, a silicon nitride film NT1, and a silicon oxide film OX4 are sequentially stacked from the side wall of the memory gate electrode MG toward the side wall of the control gate electrode CG.
  • Pt platinum
  • the silicide layer S1 has a larger tensile stress than the silicide layer S2.
  • FIG. 27 to 29 are cross-sectional views for explaining the manufacturing process of the semiconductor device of the present embodiment.
  • FIGS. 27 to 29 show the memory cell region 1A and the peripheral circuit region 1B in the same manner as FIGS. 1 to 22.
  • the polysilicon film is formed using a photolithography technique and an etching method.
  • the polysilicon film PS1 and the insulating film IF1 in the peripheral circuit region 1B are left, and the polysilicon film PS1 and the insulating film IF1 in the memory cell region 1A are removed.
  • an ONO film ON is formed on the entire main surface of the semiconductor substrate SB.
  • the ONO film ON is a laminated film in which a silicon oxide film OX1, a silicon nitride film NT, and a silicon oxide film OX2 are sequentially laminated.
  • the polysilicon film and the ONO film ON are processed to control the memory cell region 1A including the polysilicon film.
  • the gate electrode CG is formed.
  • the ONO film ON remains between the control gate electrode CG and the semiconductor substrate SB, and the upper surface of the semiconductor substrate SB is exposed in a region not covered with the control gate electrode CG in the memory cell region 1A.
  • the polysilicon film and the ONO film ON in the peripheral circuit region 1B are removed, and the polysilicon film PS1 is exposed.
  • the memory cell region 1A has the memory cell MC4 which is a single gate type MONOS memory, by performing the same steps as the steps described with reference to FIGS.
  • the semiconductor device of the present embodiment having the MISFET Q1 in the peripheral circuit region 1B is formed.
  • the side walls and source / drain regions of the control gate electrode CG and the dummy gate electrode are formed.
  • Silicide layers S1 are formed on the source / drain regions.
  • the interlayer insulating film IL1 is formed, and the upper surface of the interlayer insulating film IL1 is polished to expose the upper surfaces of the control gate electrode CG and the dummy gate electrode.
  • the silicide layer S1 on the control gate electrode CG is removed by the polishing process.
  • the dummy gate electrode is removed and replaced with a metal gate electrode, and then a silicide layer S2 with small stress is formed on the upper surface of the control gate electrode CG. Subsequently, an interlayer insulating film IL2 and a plurality of contact plugs are formed. Thereby, the structure shown in FIG. 29 is obtained.
  • the memory cell MC4 does not have a gate electrode other than the control gate electrode CG, unlike the first embodiment.
  • Fowler-Nordheim tunneling is used for the write operation and the erase operation of the memory cell MC4.
  • the write operation and the erase operation can also be performed using hot electrons and hot holes. Since a high potential difference (about 12 V) is applied to the memory cell MC4 at the time of a write operation of the memory cell MC4, etc., the MONOS type transistor forming the memory cell MC4 is required to have a relatively high withstand voltage.
  • the erase operation will be described. For example, consider the case of erasing data stored in memory cell MC4.
  • the potential of the selected p-type well is 1.5 V
  • the potential of the control gate electrode CG is -8.5 V
  • the potential of the source region is 1.5 V
  • the drain region is floated.
  • the charge stored in the charge storage portion under the control gate electrode CG of the memory cell MC4 that is, the charge stored in the silicon nitride film NT is drawn to the semiconductor substrate SB side, and the data is erased.
  • the potential of the selected p-type well is ⁇ 10.5 V
  • the potential of the control gate electrode CG is 1.5 V
  • the potential of the source region is ⁇ 10.5 V
  • the drain region is floated. Then, charges are injected into the charge storage portion under the control gate electrode CG, and data writing is performed.
  • the read operation will be described. For example, it is assumed that data “1” is written to the memory cell MC4 and the threshold voltage of the transistor is high.
  • the potential of the selected p-type well is set to -2 V
  • the potential of the control gate electrode CG is set to 0 V
  • the potential of the source region is set to 0 V
  • the potential of the drain region is set to 1 V.
  • the threshold voltage of memory cell MC4 in which data "1" is written is higher than the threshold voltage of memory cell MC4 in which data "0" is written. be able to.
  • no memory gate electrode is provided in the present embodiment, but the same effect as the first embodiment can be obtained.
  • the silicide layer S1 on the source / drain region of each of the memory cell MC4 and the MISFET Q1 and the silicide layer S2 on the control gate electrode CG can be formed in separate steps. it can.
  • Pt platinum
  • the silicide layer S1 has a larger tensile stress than the silicide layer S2. Therefore, the characteristics of each transistor can be improved by making the tensile stress of the silicide layer S1 in contact with the source / drain region larger than that of the silicide layer S2 on the control gate electrode CG. Further, by making the tensile stress of the silicide layer S2 on the control gate electrode CG smaller than that of the silicide layer S1 in contact with the source / drain region, disconnection of the silicide layer S2 can be prevented.
  • (1) Semiconductor substrate A first gate electrode formed on the semiconductor substrate via a first insulating film; A second gate electrode formed on a side wall of the first gate electrode via a second insulating film having a charge storage portion therein; First source / drain regions formed on the main surface of the semiconductor substrate; A first silicide layer formed in contact with the upper surface of the first source / drain region; A second silicide layer formed in contact with the upper surface of the first gate electrode; A third silicide layer formed in contact with the upper surface of the second gate electrode; Have a memory cell containing The second gate electrode is formed on the semiconductor substrate via the second insulating film.
  • the first to third silicide layers contain platinum, The amount of platinum per unit area of the lower surface of the first silicide layer is larger than the amount of platinum per unit area of the lower surface of each of the second silicide layer and the third silicide layer.
  • the first and second silicide layers contain platinum, The amount of platinum per unit area of the lower surface of the first silicide layer is larger than the amount of platinum per unit area of the lower surface of the second silicide layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

 MONOSメモリのゲート電極上のシリサイド層が断線することを防ぎ、かつ、MISFETの特性を向上させる。その手段として、メモリセルと、いわゆるゲートラストプロセスにより形成されるMISFETとを混載する場合に、比較的高い温度の熱処理を伴うサリサイドプロセスによりソース・ドレイン領域上のシリサイド層を形成した後、メモリセルの制御ゲート電極およびメモリゲート電極のそれぞれの上に、比較的低い温度の熱処理を伴うサリサイドプロセスによりシリサイド層を形成する。

Description

半導体装置の製造方法および半導体装置
 本発明は、半導体装置の製造方法および半導体装置に関し、例えば、シリサイド層を有する半導体装置の製造に利用できるものである。
 微細化が可能な次世代のマイコンのロジック部に形成するトランジスタとして、メタルゲート電極および高誘電率膜(high-k膜)を含むトランジスタが知られている。このようなトランジスタの形成方法には、基板上にダミーゲート電極を形成した後、当該ダミーゲート電極をメタルゲート電極に置換する、いわゆるゲートラストプロセスが知られている。
 また、電気的に書込・消去が可能な不揮発性半導体記憶装置として、MISFETのゲート電極の下に、酸化膜で囲まれた導電性の浮遊ゲート電極あるいはトラップ性絶縁膜を有するメモリセルが広く使用されている。トラップ性絶縁膜を用いた不揮発性半導体記憶装置としては、MONOS(Metal Oxide Nitride Oxide Semiconductor)型のスプリットゲート型セルがある。
 ゲートラストプロセスでは、各種のMISFETのソース・ドレイン領域上にシリサイド層を形成した後に素子を層間絶縁膜により覆い、その後層間絶縁膜の上面を研磨してゲート電極の上面を露出させる。このため、メモリセルを構成するゲート電極であって、半導体膜からなるゲート電極の上にシリサイド層を形成する場合には、当該研磨工程の後にシリサイド層を形成する工程を再度行う必要がある。
 特許文献1(特開2014-154790号公報)には、メモリセルと、ロジック部のMISFETとを混載する場合において、MISFETのソース・ドレイン領域上のシリサイド層を形成し、続いて、ゲートラストプロセスによりMISFETのメタルゲート電極を形成した後に、メモリセルのゲート電極上にシリサイド層を形成することが記載されている。
特開2014-154790号公報
 MISFETのソース・ドレイン領域上のシリサイド層の引張応力を強めることができれば、チャネル領域への引張応力を誘起させることで、当該MISFETの特性を向上させることができる。一方、メモリセルのゲート電極上のシリサイド層の引張応力が大きくなると、シリサイド層が断線しやすくなるため、シリサイド層の断線により素子の動作速度が著しく低下する問題が起きる。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される実施の形態のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 一実施の形態である半導体装置の製造方法は、MONOSメモリと、ゲートラストプロセスにより形成されるMISFETとを混載する場合において、高温の熱処理を伴うサリサイドプロセスによりソース・ドレイン領域上のシリサイド層を形成した後、MONOSメモリのゲート電極上に、低温の熱処理を伴うサリサイドプロセスによりシリサイド層を形成するものである。
 また、他の実施の形態である半導体装置は、基板上に混載されたMONOSメモリおよびMISFETのそれぞれのソース・ドレイン領域上の第1シリサイド層の下面における単位面積当たりの白金の量が、MONOSqメモリのゲート電極上の第2シリサイド層の下面における単位面積当たりの白金の量よりも多いものである。
 一実施の形態によれば、半導体装置の性能を向上させることができる。特に、ゲート電極の高抵抗化を防ぎつつ、素子の特性を向上させることができる。
実施の形態1である半導体装置の製造工程中の断面図である。 図1に続く半導体装置の製造工程中の断面図である。 図2に続く半導体装置の製造工程中の断面図である。 図3に続く半導体装置の製造工程中の断面図である。 図4に続く半導体装置の製造工程中の断面図である。 図5に続く半導体装置の製造工程中の断面図である。 図6に続く半導体装置の製造工程中の断面図である。 図7に続く半導体装置の製造工程中の断面図である。 図8に続く半導体装置の製造工程中の断面図である。 図9に続く半導体装置の製造工程中の断面図である。 図10に続く半導体装置の製造工程中の断面図である。 図11に続く半導体装置の製造工程中の断面図である。 図12に続く半導体装置の製造工程中の断面図である。 図13に続く半導体装置の製造工程中の断面図である。 図14に続く半導体装置の製造工程中の断面図である。 図15に続く半導体装置の製造工程中の断面図である。 図16に続く半導体装置の製造工程中の断面図である。 図17に続く半導体装置の製造工程中の断面図である。 図18に続く半導体装置の製造工程中の断面図である。 図19に続く半導体装置の製造工程中の断面図である。 図20に続く半導体装置の製造工程中の断面図である。 図21に続く半導体装置の製造工程中の断面図である。 「書込」、「消去」および「読出」時における選択メモリセルの各部位への電圧の印加条件の一例を示す表である。 実施の形態1の変形例1である半導体装置の断面図である。 実施の形態1の変形例2である半導体装置の断面図である。 実施の形態1の変形例3である半導体装置の断面図である。 実施の形態2である半導体装置の製造工程中の断面図である。 図27に続く半導体装置の製造工程中の断面図である。 図28に続く半導体装置の製造工程中の断面図である。
 以下、実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
 また、符号「」および「」は、導電型がn型またはp型の不純物の相対的な濃度を表しており、例えばn型不純物の場合は、「n」、「n」の順に不純物濃度が高くなる。
 本実施の形態および以下の実施の形態の半導体装置は、不揮発性メモリ(不揮発性記憶素子、フラッシュメモリ、不揮発性半導体記憶装置)を備えた半導体装置である。本実施の形態では、不揮発性メモリは、nチャネル型MISFET(MISFET:Metal Insulator Semiconductor Field Effect Transistor)を基本としたメモリセルをもとに説明を行う。
 また、本実施の形態および以下の実施の形態での極性(書込・消去・読出時の印加電圧の極性やキャリアの極性)は、nチャネル型MISFETを基本としたメモリセルの場合の動作を説明するためのものであり、pチャネル型MISFETを基本とする場合は、印加電位やキャリアの導電型等の全ての極性を反転させることで、原理的には同じ動作を得ることができる。また、本願では、金属膜と半導体膜とが反応して形成されたシリサイド層と半導体膜とを区別して説明する。つまり、本願でいうシリサイドは、金属とシリコンとの化合物であり、半導体ではない。
 <半導体装置の製造方法について>
 本実施の形態の半導体装置の製造方法を、図1~図22を参照して説明する。
 図1~図22は、本実施の形態の半導体装置の製造工程中の断面図である。図1~図22においては、各図の左側にメモリセル領域1Aを示し、右側に周辺回路領域1Bを示している。メモリセル領域1Aには不揮発性メモリのメモリセルが、周辺回路領域1BにはMISFETが、それぞれ形成される様子を示す。
 ここでは、メモリセル領域1Aにnチャネル型のMISFET(制御トランジスタおよびメモリトランジスタ)からなるメモリセルを形成する場合について説明するが、導電型を逆にしてpチャネル型のMISFET(制御トランジスタおよびメモリトランジスタ)からなるメモリセルをメモリセル領域1Aに形成することもできる。同様に、ここでは、周辺回路領域1Bにnチャネル型のMISFETを形成する場合について説明するが、導電型を逆にしてpチャネル型のMISFETを周辺回路領域1Bに形成することもできる。
 また、周辺回路領域1Bに、nチャネル型のMISFETとpチャネル型のMISFETの両方、すなわちCMISFETを形成することもできる。また、本実施の形態では、周辺回路領域1Bに比較的低耐圧のMISFETを形成することについて説明するが、周辺回路領域1Bには、当該低耐圧のMISFETに比べてゲート長、またはゲート絶縁膜の厚さなどに違いのある、高耐圧のMISFETも形成される。
 半導体装置を製造工程においては、まず、図1に示すように、例えば1~10Ωcm程度の比抵抗を有するp型の単結晶シリコン(Si)などからなる半導体基板(半導体ウエハ)SBを用意する。それから、半導体基板SBの主面に、活性領域を規定する複数の素子分離領域STを形成する。
 素子分離領域STは、酸化シリコンなどの絶縁体からなり、例えばSTI法またはLOCOS法などにより形成することができる。ここでは、STI法により素子分離領域を形成することについて説明する。
 すなわち、半導体基板SB上に順に酸化シリコン膜および窒化シリコン膜を順に積層した後、フォトリソグラフィ技術およびドライエッチング法を用いて窒化シリコン膜および酸化シリコン膜をエッチングし、さらに半導体基板SBの上面に溝を形成する。当該溝は複数形成される。
 続いて、それらの溝内に、例えば酸化シリコンからなる絶縁膜を埋め込んだ後、研磨工程などにより、半導体基板SB上の各絶縁膜を除去することで、複数の素子分離領域STを形成する。素子分離領域STは、例えばメモリセル領域1Aと周辺回路領域1Bとの間と、周辺回路領域1B内に形成するMISFET同士の間とに形成されている。これにより図1に示す構造を得る。
 次に、図示は省略するが、メモリセル領域1Aおよび周辺回路領域1Bの半導体基板SBの主面にp型ウエルを形成する。p型ウエルは、例えばホウ素(B)などのp型の不純物を半導体基板SBにイオン注入することなどによって形成することができる。なお、メモリセル、高耐圧のMISFETまたは低耐圧のMISFETなどのそれぞれの形成領域において形成するp型ウエルは、同じイオン注入工程で形成することもできるが、各素子の特性の最適化のため、それぞれの領域において、異なるイオン注入工程で形成することも可能である。
 次に、図2に示すように、半導体基板SBの主面に、ゲート絶縁膜用の絶縁膜IF1を形成する。すなわち、メモリセル領域1Aおよび周辺回路領域1Bの半導体基板SBの上面上に絶縁膜IF1を形成する。絶縁膜IF1としては、例えば酸化シリコン膜を用いることができる。メモリセル領域1Aおよび周辺回路領域1Bのそれぞれの絶縁膜IF1は、別々の工程で形成することで、互いに異なる膜厚で形成してもよい。
 その後、絶縁膜IF1の上面を覆うように、例えばCVD(Chemical Vapor Deposition)法を用いて、半導体基板SB上に多結晶シリコン膜からなるシリコン膜PS1を形成する。成膜時はシリコン膜PS1をアモルファスシリコン膜として形成してから、その後の熱処理で、アモルファスシリコン膜からなるシリコン膜PS1を、多結晶シリコン膜からなるシリコン膜PS1に変えることもできる。また、シリコン膜PS1は、成膜時に不純物を導入するか、あるいは成膜後に不純物をイオン注入することなどにより、低抵抗の半導体膜(ドープトポリシリコン膜)とすることができる。シリコン膜PS1に導入するn型不純物としては、例えばリン(P)を好適に用いることができる。
 その後、シリコン膜PS1上に、例えばCVD法を用いて絶縁膜IF2を形成する。絶縁膜IF2は例えば窒化シリコン(SiN)からなるキャップ絶縁膜である。絶縁膜IF2の膜厚は、例えば20~50nm程度とすることができる。
 次に、図2に示すように、メモリセル領域1Aの絶縁膜IF2、シリコン膜PS1および絶縁膜IF1からなる積層膜を、フォトリソグラフィ技術およびエッチング技術によりパターニングする。これにより、メモリセル領域1Aでは、絶縁膜IF1からなるゲート絶縁膜GIが形成される。また、このエッチング工程により、メモリセル領域1Aのシリコン膜PS1からなる制御ゲート電極CGが形成される。制御ゲート電極CGは、後の工程でシリサイド化されることで制御ゲート電極となるパターンである。制御ゲート電極CGは、平面視において所定の方向に延在するパターンである。当該所定の方向、つまりゲート幅方向とは、図2の奥行き方向である。
 上記のパターニング工程は、例えば次のようにして行うことができる。すなわち、メモリセル領域1Aの絶縁膜IF2、シリコン膜PS1および絶縁膜IF1を、フォトリソグラフィ技術およびドライエッチング法を用いて加工する。これにより、制御ゲート電極CGおよびゲート絶縁膜GIを形成する。なお、最初にメモリセル領域1Aの絶縁膜IF2をフォトリソグラフィ技術およびドライエッチング法を用いて加工し、その後に絶縁膜IF2をマスクとして、シリコン膜PS1および絶縁膜IF1を加工することも可能である。
 次に、図3に示すように、フォトリソグラフィ技術およびウェットエッチング法を用いて、周辺回路領域1Bの絶縁膜IF2を除去する。これにより、周辺回路領域1Bのシリコン膜PS1の上面が露出する。このとき、メモリセル領域1Aの絶縁膜IF2は除去しない。
 その後、半導体基板SBの主面全面上に、メモリトランジスタのゲート絶縁膜用のONO(oxide-nitride-oxide)膜ONを形成する。ONO膜ONは、メモリセル領域1Aの半導体基板SBの上面と、ゲート絶縁膜GI、IF2および制御ゲート電極CGからなる積層膜の側壁および上面とを覆い、周辺回路領域1Bの絶縁膜IF1およびシリコン膜PS1を含む積層膜の側壁および上面を覆っている。
 ONO膜ONは、内部に電荷蓄積部を有する絶縁膜である。具体的には、ONO膜ONは、半導体基板SB上に形成された酸化シリコン膜OX1と、酸化シリコン膜OX1上に形成された窒化シリコン膜NTと、窒化シリコン膜NT上に形成された酸化シリコン膜OX2との積層膜からなる。
 酸化シリコン膜OX1、OX2は、例えば酸化処理(熱酸化処理)またはCVD法あるいはその組み合わせにより形成することができる。この際の酸化処理には、ISSG(In-Situ Steam Generation)酸化を用いることも可能である。窒化シリコン膜NTは、例えばCVD法により形成することができる。
 本実施の形態においては、メモリセルを構成し、トラップ準位を有する絶縁膜(電荷蓄積層)として、窒化シリコン膜NTを形成している。電荷蓄積層として用いる膜は、信頼性の面などで窒化シリコン膜が好適であるが、窒化シリコン膜に限定されものではなく、例えば酸化アルミニウム膜(アルミナ)、酸化ハフニウム膜または酸化タンタル膜など、窒化シリコン膜よりも高い誘電率を有する高誘電率膜(高誘電率絶縁膜)を電荷蓄積層または電荷蓄積部として使用することもできる。
 酸化シリコン膜OX1の厚みは、例えば2~10nm程度とすることができ、窒化シリコン膜NTの厚みは、例えば5~15nm程度とすることができ、酸化シリコン膜OX2の厚みは、例えば2~10nm程度とすることができる。
 続いて、ONO膜ONの表面を覆うように、半導体基板SBの主面全面上に、例えばCVD法を用いて多結晶のシリコン膜PS2を形成する。これにより、メモリセル領域1Aにおいて露出していたONO膜ONの側壁および上面は、シリコン膜PS2により覆われる。つまり、制御ゲート電極CGの側壁には、ONO膜ONを介してシリコン膜PS2が形成される。
 シリコン膜PS2の膜厚は、例えば40nmである。成膜時はシリコン膜PS2をアモルファスシリコン膜として形成してから、その後の熱処理で、アモルファスシリコン膜からなるシリコン膜PS2を、多結晶シリコン膜からなるシリコン膜PS2に変えることもできる。シリコン膜PS2は、例えばp型の不純物(例えばホウ素(B))を比較的高い濃度で導入された膜である。シリコン膜PS2は、後述のメモリゲート電極MGを形成するための膜である。
 ここでいう膜厚とは、特定の膜の場合、当該膜の下地の表面に対して垂直な方向における当該膜の厚さをいう。例えば、ONO膜ONの上面などのように、半導体基板SBの主面に沿う面の上に、当該面に沿ってシリコン膜PS2が形成された場合、シリコン膜PS2の膜厚とは、半導体基板SBの主面に対して垂直な方向におけるシリコン膜PS2の厚さをいう。また、ONO膜ONの側壁のように、半導体基板SBの主面に対して垂直な壁に接して形成される部分のシリコン膜PS2の場合、当該側壁に対して垂直な方向におけるシリコン膜PS2の厚さをいう。
 なお、図3では酸化シリコン膜OX1、窒化シリコン膜NTおよび窒化シリコン膜NTの3層の積層構造からなるONO膜ONを示しているが、以下の説明で用いる断面図では、図を分かりやすくするため、ONO膜ONの積層構造の図示を省略する。すなわち、ONO膜ONは積層構造を有するが、以下の説明で用いる図では、ONO膜ONを構成する膜同士の境界の図示を省略し、ONO膜ONを1つの膜として示す。
 次に、図4に示すように、異方性エッチング技術により、シリコン膜PS2をエッチバック(エッチング、ドライエッチング、異方性エッチング)することで、ONO膜ONの上面を露出させる。当該エッチバック工程では、シリコン膜PS2を異方性エッチング(エッチバック)することにより、ゲート絶縁膜GI、IF2および制御ゲート電極CGからなる積層膜の両方の側壁上に、ONO膜ONを介して、シリコン膜PS2をサイドウォール状に残す。
 これにより、メモリセル領域1Aにおいて、上記積層膜の側壁のうち、一方の側壁に、ONO膜ONを介してサイドウォール状に残存したシリコン膜PS2からなるメモリゲート電極MGが形成される。また、上記エッチバックにより、周辺回路領域1BのONO膜ONの上面が露出する。
 続いて、フォトリソグラフィ技術を用いて、制御ゲート電極CGの一方の側壁に隣接するメモリゲート電極MGを覆い、かつ、制御ゲート電極CGの他方の側壁に隣接するシリコン膜PS2を露出するレジスト膜(図示しない)を半導体基板SB上に形成する。その後、そのレジスト膜をエッチングマスクとしてエッチングを行うことにより、制御ゲート電極CGを挟んでメモリゲート電極MGの反対側に形成されたシリコン膜PS2を除去する。その後、当該レジスト膜を除去する。このエッチング工程において、メモリゲート電極MGは、レジスト膜で覆われているため、エッチングされずに残存する。
 続いて、ONO膜ONのうち、メモリゲート電極MGで覆われずに露出する部分をエッチング(例えばウェットエッチング)によって除去する。この際、メモリセル領域1Aにおいて、メモリゲート電極MGの直下のONO膜ONは除去されずに残る。同様に、ゲート絶縁膜GI、IF2および制御ゲート電極CGを含む積層膜と、メモリゲート電極MGとの間に位置するONO膜ONは、除去されずに残る。他の領域のONO膜ONは除去されるため、メモリセル領域1Aの半導体基板SBの上面が露出し、また、上記積層膜の上面が露出し、また、周辺回路領域1Bのシリコン膜PS1の上面が露出する。また、制御ゲート電極CGの側壁であって、メモリゲート電極MGと隣接していない方の側壁が露出する。
 このようにして、制御ゲート電極CGと隣り合うように、半導体基板SB上に、内部に電荷蓄積部を有するONO膜ONを介してメモリゲート電極MGが形成される。
 次に、図5に示すように、半導体基板SBの主面全面上に、例えばCVD法を用いて、絶縁膜IF3を形成する。絶縁膜IF3は、例えば窒化シリコン膜からなる。これにより、周辺回路領域1Bのシリコン膜PS1は、絶縁膜IF3により覆われる。また、メモリセル領域1Aのゲート絶縁膜GI、制御ゲート電極CGおよび絶縁膜IF2からなる積層膜と、当該積層膜の側壁に隣接するONO膜ONおよびメモリゲート電極MGと、メモリセル領域1Aの半導体基板SBの主面とは、絶縁膜IF3により覆われる。なお、図示はしていないが、絶縁膜IF3を形成する前に、半導体基板SBの主面全面上に、例えばCVD法を用いて酸化シリコン膜を堆積してもよい。
 続いて、フォトリソグラフィ技術を用いて、メモリセル領域1Aの絶縁膜IF3を覆うレジスト膜PR1を形成する。なお、シリコン膜PS1の上面および側壁のそれぞれに接する絶縁膜IF3はレジスト膜PR1から露出している。
 次に、図6に示すように、レジスト膜PR1から露出する絶縁膜IF3をウェットエッチング法により除去した後、レジスト膜PR1を除去する。これにより、周辺回路領域1Bの絶縁膜IF3は除去され、シリコン膜PS1および絶縁膜IF1が露出する。
 その後、周辺回路領域1Bのシリコン膜PS1および絶縁膜IF1を、例えばウェットエッチング法を用いて除去する。このとき、メモリセル領域1Aのゲート絶縁膜GI、制御ゲート電極CGおよび絶縁膜IF2からなる積層膜と、当該積層膜の側壁に隣接するONO膜ONおよびメモリゲート電極MGとは、絶縁膜IF3により覆われているため除去されない。
 次に、図7に示すように、半導体基板SBの主面全面上に、絶縁膜IF4、HK、金属膜TN、シリコン膜PS3および絶縁膜IF5を順に形成する。これにより、メモリセル領域1Aのゲート絶縁膜GI、制御ゲート電極CGおよび絶縁膜IF2からなる積層膜と、当該積層膜の側壁に隣接するONO膜ONおよびメモリゲート電極MGとは、絶縁膜IF3、IF4、HK、金属膜TN、シリコン膜PS3および絶縁膜IF5により覆われる。
 絶縁膜IF4は、例えば酸化シリコン膜からなり、熱酸化法などの酸化法を用いて形成することができる。絶縁膜HKは、ゲート絶縁膜用の絶縁膜である。具体的には、絶縁膜HKは、後に周辺回路領域1Bに形成するMISFETのゲート絶縁膜を構成する膜である。絶縁膜HKは、酸化シリコンおよび窒化シリコンのいずれよりも誘電率(比誘電率)が高い絶縁材料膜、いわゆるhigh-k膜(高誘電率膜)である。
 絶縁膜HKとしては、酸化ハフニウム膜、酸化ジルコニウム膜、酸化アルミニウム膜、酸化タンタル膜または酸化ランタン膜などの金属酸化物膜を用いることができ、また、これらの金属酸化物膜は、窒素(N)およびケイ素(Si)の一方または両方をさらに含有することもできる。絶縁膜HKは、例えば、ALD(Atomic layer Deposition:原子層堆積)法などにより形成することができる。絶縁膜HKの膜厚は例えば1.5nmである。ゲート絶縁膜に高誘電率膜(ここでは絶縁膜HK)を用いた場合は、酸化シリコン膜を用いた場合に比べて、ゲート絶縁膜の物理的膜厚を増加させることができるため、リーク電流を低減できるという利点を得られる。
 金属膜TNは、例えば窒化チタン膜からなり、例えばスパッタリング法により形成することができる。シリコン膜PS3はポリシリコン膜からなり、例えばCVD法により形成することができる。シリコン膜PS3の膜厚は、例えば40nmである。成膜時はシリコン膜PS3をアモルファスシリコン膜として形成してから、その後の熱処理で、アモルファスシリコン膜からなるシリコン膜PS3を、多結晶シリコン膜からなるシリコン膜PS3に変えることもできる。シリコン膜PS3は、例えばp型の不純物(例えばホウ素(B))を比較的高い濃度で導入された膜である。シリコン膜PS3は、後述のダミーゲート電極DGを形成するための膜である。絶縁膜IF5は、例えば窒化シリコンからなるキャップ絶縁膜であり、例えばCVD法により形成することができる。
 次に、図8に示すように、フォトリソグラフィ技術によりパターニングされたレジスト膜PR2を形成する。レジスト膜PR2は、メモリセル領域1Aと周辺回路領域1Bとの境界の近傍の半導体基板SBと素子分離領域STとを露出するレジスト膜である。その後、レジスト膜PR2をマスクとしてエッチングを行うことにより、絶縁膜IF5、シリコン膜PS3、金属膜TN、絶縁膜HKおよび絶縁膜IF4を除去する。これにより、メモリセル領域1Aのシリコン膜PS3と周辺回路領域1Bのシリコン膜PS3とは、互いに分離される。
 次に、図9に示すように、レジスト膜PR2を除去した後、半導体基板SBの主面全面上に、例えばCVD法を用いて絶縁膜IF6を形成する。絶縁膜IF6は、例えば酸化シリコン膜からなるキャップ絶縁膜である。その後、フォトリソグラフィ技術およびエッチング法を用いて、メモリセル領域1Aの絶縁膜IF6を除去する。これにより、メモリセル領域1Aは絶縁膜IF6から露出し、周辺回路領域1Bの絶縁膜IF4、HK、金属膜TN、シリコン膜PS3および絶縁膜IF5は、絶縁膜IF6に覆われた状態となる。
 次に、図10に示すように、リン酸を用いてメモリセル領域1Aの絶縁膜IF5およびシリコン膜PS3を除去した後、金属膜TN、絶縁膜HKおよびIF3を除去する。このとき、周辺回路領域1Bの半導体基板SB上の構造体はレジスト膜に覆われているため、除去されない。これにより、メモリセル領域1Aのゲート絶縁膜GI、制御ゲート電極CGおよび絶縁膜IF2からなる積層膜と、当該積層膜の側壁に隣接するONO膜ONおよびメモリゲート電極MGと、半導体基板SBの主面とが露出する。その後、周辺回路領域1Bの絶縁膜IF6を除去する。
 次に、図11に示すように、周辺回路領域1Bの絶縁膜IF5、シリコン膜PS3、金属膜TN、絶縁膜HKおよびIF4を、フォトリソグラフィ技術およびエッチング技術を用いてパターニングする。これにより、周辺回路を構成するMISFETを形成する領域に、シリコン膜PS3からなるダミーゲート電極DGと、絶縁膜HKおよびIF4からなるゲート絶縁膜とを形成する。ここでは、まず絶縁膜IF5をフォトリソグラフィ技術およびエッチング法を用いてパターニングした後、メモリセル領域1Aをレジスト膜により覆った状態で、絶縁膜IF5をマスクとしてエッチングを行うことで、シリコン膜PS3、金属膜TN、絶縁膜HKおよびIF4をパターニングする。
 次に、図12に示すように、複数のエクステンション領域(n型半導体領域、不純物拡散領域)EXを、イオン注入法などを用いて形成する。すなわち、例えばヒ素(As)またはリン(P)などのn型の不純物を、ゲート絶縁膜GI、制御ゲート電極CG、メモリゲート電極MG、ダミーゲート電極DGおよびONO膜ONなどをマスクとして用いて半導体基板SBにイオン注入法で導入することにより、複数のエクステンション領域EXを形成する。エクステンション領域EXの形成前に、ゲート絶縁膜GI、制御ゲート電極CG、絶縁膜IF2、ONO膜ONおよびメモリゲート電極MGを含む構造体の側壁と、ダミーゲート電極DGの側壁とをそれぞれ覆うオフセットスペーサを、例えば窒化シリコン膜、酸化シリコン膜、またはそれらの積層膜などにより形成してもよい。
 メモリセル領域1Aと周辺回路領域1Bのそれぞれのエクステンション領域EXは、同じイオン注入工程で形成することができるが、異なるイオン注入工程で形成することも可能である。なお、図示は省略しているが、エクステンション領域EXの形成工程の前または後に、例えば周辺回路領域1Bの半導体基板SBの主面に、絶縁膜IF5、ダミーゲート電極DGをマスクとしてp型の不純物(例えばホウ素(B))を打ち込むことで、ハロー領域を形成してもよい。ハロー領域は、エクステンション領域EXよりもダミーゲート電極DGの中心の直下の半導体基板SBの主面、つまり、後の工程で周辺回路領域1Bに形成されるMISFETのチャネル領域に近い箇所に形成される。ハロー領域を形成することにより、当該MISFETの短チャネル特性を改善させることが可能である。
 続いて、メモリセル領域1Aの制御ゲート電極CGおよびメモリゲート電極MGを含む上記構造体の両側の側壁を覆うサイドウォールSWを形成する。また、同工程により、周辺回路領域1Bにおいて、ゲート絶縁膜GI、絶縁膜HK、金属膜TN、ダミーゲート電極DGおよび絶縁膜IF5からなる積層膜の両側の側壁を覆うサイドウォールSWを形成する。
 サイドウォールSWは、CVD法などを用いて半導体基板SB上に例えば酸化シリコン膜および窒化シリコン膜を順に形成した後、異方性エッチングにより当該酸化シリコン膜および当該窒化シリコン膜を一部除去し、半導体基板SBの上面および絶縁膜IF2、IF5の上面を露出させることにより、自己整合的に形成することができる。つまり、サイドウォールSWは積層膜により形成することが考えられるが、図では当該積層膜を構成する膜同士の界面を示していない。
 続いて、拡散領域(n型半導体領域、不純物拡散領域)DFを、イオン注入法などを用いてメモリセル領域1Aおよび周辺回路領域1Bに形成する。すなわち、n型不純物(例えばヒ素(As)またはリン(P))を、ゲート絶縁膜GI、制御ゲート電極CG、絶縁膜IF2、ONO膜ON、メモリゲート電極MG、ダミーゲート電極DGおよびサイドウォールSWをマスク(イオン注入阻止マスク)として用いて半導体基板SBにイオン注入法で導入することで、拡散領域DFを形成することができる。拡散領域DFは、エクステンション領域EXよりも不純物濃度が高く、かつ接合深さが深い。
 これにより、エクステンション領域EXと、エクステンション領域EXよりも不純物濃度が高い拡散領域DFとからなり、LDD(Lightly Doped Drain)構造を有するソース・ドレイン領域が形成される。
 メモリセル領域1Aにおいて、制御ゲート電極CGおよびメモリゲート電極MGを含む構造体の横の半導体基板SBの上面に形成されたエクステンション領域EXおよび拡散領域DFは、後に形成するメモリセル領域1Aの制御トランジスタおよびメモリトランジスタのソース・ドレイン領域を構成する。また、周辺回路領域1Bにおいて、ダミーゲート電極DGの横の半導体基板SBの上面に形成されたエクステンション領域EXおよび拡散領域DFは、後に形成する周辺回路領域1BのMISFETのソース・ドレイン領域を構成する。メモリセル領域1Aと周辺回路領域1Bのそれぞれの拡散領域DFは、同じイオン注入工程で形成することができるが、異なるイオン注入工程で形成することも可能である。
 続いて、ソースおよびドレイン用の半導体領域(エクステンション領域EXおよび拡散領域DF)などに導入された不純物を活性化するための熱処理である活性化アニールを行う。
 次に、図13および図14を用いて説明する、いわゆるサリサイド(Salicide:Self Aligned Silicide)プロセスを行うことによって、シリサイド層を形成する。具体的には、次のようにしてシリサイド層を形成することができる。
 すなわち、図13に示すように、前処理として、半導体基板SBの主面に対してケミカルドライエッチングを行うことで、半導体基板SB上の余分な酸化シリコン膜などを除去し、半導体の表面を露出させる。続いて、拡散領域DFの上面上およびメモリゲート電極MGの上面上を含む半導体基板SBの主面全面上に、シリサイド層形成用の金属膜MF1を形成(堆積)する。金属膜MF1の膜厚は、例えば20~25nmである。
 金属膜MF1は、例えば、ニッケル(Ni)と白金(Pt)との合金膜からなり、スパッタリング法などを用いて形成することができる。ここで形成する金属膜MF1はニッケルを含む合金膜であり、当該合金膜内においてニッケルに対して添加する材料は、白金に限らず、アルミニウム(Al)または炭素(C)などであってもよい。ただし、白金はアルミニウムまたは炭素などに比べて耐熱性が高いため、当該合金膜に好適に用いることができる。
 次に、図14に示すように、半導体基板SBに対して熱処理を施すことによって、拡散領域DFおよびメモリゲート電極MGの各表層部分を、金属膜MF1と反応させる。この反応、つまりシリサイド化により、拡散領域DFおよびメモリゲート電極MGのそれぞれの上部に、シリサイド層S1が形成される。また、上記熱処理を行っても未反応であった金属膜MF1を、ウェットエッチングなどにより除去する。
 この熱処理では、カーボンヒータにより半導体基板に対して加熱を行う熱処理装置を用いる。ここで、当該熱処理は、2度の熱処理工程を含んでいる。つまり、1度目の熱処理では、例えば260℃で30~120秒加熱を行うことで、NiSiの微結晶およびNiSiを含むシリサイド層S1を形成する。その後、上記のように未反応の金属膜MF1をウェットエッチングなどにより除去した後、さらに2度目の熱処理において、600℃で5~30秒加熱を行うことで、シリサイド層S1内のNiSi結晶を成長させる。このように2度に分けて熱処理を行うことで、シリサイド層S1が異常成長して半導体基板SB内において延伸することを防ぐことができる。これにより形成されたシリサイド層S1は、例えばニッケル白金(NiPt)シリサイドからなる。
 ここでは、上記熱処理において2回行われる熱処理のうち、2度目に行われる熱処理を、便宜上、第1熱処理と呼ぶ。第1熱処理は例えば450~600℃で行う。本実施の形態では、上記のように、第1熱処理を600℃で行っている。なお、第1熱処理は、レーザーまたはフラッシュランプを用いて行ってもよい。また、第1熱処理を行ってから、未反応の金属膜MF1を除去してもよい。
 このように第1熱処理は非常に高い温度で行われるため、シリサイド層S1内の白金はシリサイド層S1の底部に偏析する。つまり、シリサイド層S1内の白金は、シリサイド層S1の上面に比べ、シリサイド層S1の底面に非常に多く存在している。また、このように比較的高い温度の熱処理により形成されたシリサイド層S1は、比較的大きい引張応力を有している。
 なお、制御ゲート電極CGの上面はキャップ膜である絶縁膜IF2により覆われているため、制御ゲート電極CGの上部にシリサイド層S1は形成されない。同様に、周辺回路領域1Bのダミーゲート電極DGの上部もキャップ膜である絶縁膜IF5に覆われているため、ダミーゲート電極DGの上部にシリサイド層S1は形成されない。また、サイドウォール状のメモリゲート電極MGの上部は露出しているため、その露出部にはシリサイド層S1が形成される。ただし、このシリサイド層S1は、後の工程において行うCMP(Chemical Mechanical Polishing)法による研磨工程により、完全に除去される。
 次に、図15に示すように、半導体基板SBの主面全面上に、制御ゲート電極CG、メモリゲート電極MG、ダミーゲート電極DGおよびサイドウォールSWを覆うように、絶縁膜(ライナー絶縁膜)IF7および層間絶縁膜IL1を順に形成する。絶縁膜IF7は例えば窒化シリコン膜からなり、例えばCVD法により形成することができる。絶縁膜IF7は、後の工程でコンタクトホールを形成する際にエッチングストッパ膜として用いることができる。層間絶縁膜IL1は、例えば酸化シリコン膜の単体膜からなり、例えばCVD法などを用いて形成することができる。ここでは、例えば制御ゲート電極CGの膜厚よりも厚い膜厚で層間絶縁膜IL1を形成する。
 次に、図16に示すように、層間絶縁膜IL1の上面を、CMP法などを用いて研磨する。これにより、制御ゲート電極CG、メモリゲート電極MGおよびダミーゲート電極DGのそれぞれの上面を露出させる。つまり、この研磨工程では、制御ゲート電極CG、メモリゲート電極MGおよびダミーゲート電極DGのそれぞれの上面が露出するまで、層間絶縁膜IL1および絶縁膜IF7を研磨する。これにより、絶縁膜IF2、IF5は除去され、サイドウォールSWおよびONO膜ONのそれぞれの上部も一部除去される。また、メモリゲート電極MG上のシリサイド層S1は、この工程により、メモリゲート電極MGの上部の一部とともに除去される。
 これにより、制御ゲート電極CGおよびメモリゲート電極MGの形状が加工されることで、メモリセル領域1Aにおいて、制御ゲート電極CG、ONO膜ON、メモリゲート電極MGおよびソース・ドレイン領域を含む、スプリットゲート型のMONOSメモリのメモリセルMCが形成される。MONOS型の不揮発性記憶素子であるメモリセルMCは、制御トランジスタおよびメモリトランジスタにより構成されている。
 すなわち、メモリセル領域1Aにおいて、制御ゲート電極CGと、制御ゲート電極CGの横の半導体基板SBの上面に形成された一対のソース・ドレイン領域とは、制御トランジスタを構成している。また、メモリセル領域1Aにおいて、メモリゲート電極MGと、メモリゲート電極MGの横の半導体基板SBの上面に形成された一対のソース・ドレイン領域とは、メモリトランジスタを構成している。また、メモリゲート電極MGの下のONO膜ONは、メモリトランジスタのゲート絶縁膜を構成している。このように、制御トランジスタおよびメモリトランジスタは、一対のソース・ドレイン領域を共有している。
 なお、制御トランジスタは、メモリセル選択用トランジスタであるため、選択トランジスタとみなすこともできる。このため、制御ゲート電極CGは、選択ゲート電極とみなすこともできる。メモリトランジスタは、記憶用トランジスタである。
 次に、図17に示すように、層間絶縁膜IL1上に、例えばCVD法を用いて絶縁膜IF8を形成した後、フォトリソグラフィ技術およびエッチング法を用いて、周辺回路領域1Bの絶縁膜IF8を除去する。これにより、絶縁膜IF8はメモリセル領域1Aに残る。つまり、絶縁膜IF8は制御ゲート電極CGおよびメモリゲート電極MGの上面を覆っており、ダミーゲート電極DGの上面を露出している。絶縁膜IF8は、例えば酸化シリコン膜からなる。
 続いて、絶縁膜IF8から露出している周辺回路領域1Bのダミーゲート電極DGの上面をエッチバックすることで後退させる。このようにダミーゲート電極DGの上部の一部を除去することで、ダミーゲート電極DGの上面上の膜を除去することができるため、図18を用いて後述するエッチング工程において、ダミーゲート電極DGを容易に除去することが可能となる。
 次に、図18に示すように、層間絶縁膜IL1上に、例えばCVD法を用いて絶縁膜IF9を形成した後、フォトリソグラフィ技術およびエッチング法を用いて絶縁膜IF9を加工する。これにより、絶縁膜IF9はメモリセル領域1Aを覆い、かつ、周辺回路領域1Bの層間絶縁膜IL1を覆った状態となる。つまり、絶縁膜IF9は制御ゲート電極CGおよびメモリゲート電極MGの上面を覆っており、ダミーゲート電極DGの上面を露出している。絶縁膜IF9は、例えば酸化シリコン膜からなる。なお、ここでは図示を省略しているが、絶縁膜IF8(図18参照)は、除去されずに絶縁膜IF9と層間絶縁膜IL1との間に残っていてもよい。
 その後、ダミーゲート電極DGをウェットエッチング法により除去する。ここでは、絶縁膜IF9を、制御ゲート電極CGおよびメモリゲート電極MGを保護するマスクとして用いて、例えばアルカリ水溶液によりウェットエッチングを行うことで、ダミーゲート電極DGを除去する。このアルカリ水溶液としては、例えばアンモニア水(NHOH)を用いる。ダミーゲート電極DGが除去されたことにより、ゲート絶縁膜を構成する絶縁膜IF4およびHKの上に溝(凹部、窪み部)が形成される。周辺回路領域1Bの絶縁膜HK上の溝は、ダミーゲート電極DGが除去された領域であり、当該溝の両側の側壁はサイドウォールSWにより構成されている。
 次に、図19に示すように、半導体基板SB上、つまり、上記の溝の内面(底面および側壁)上を含む層間絶縁膜IL1上に、上記の溝を完全に埋め込むように、ゲート電極用の導電膜として金属膜を形成する。なお、当該金属膜は、例えば2つ以上の金属膜を積層した構造を有することが考えられるが、図では当該2つ以上の金属膜の境界の図示を省略し、1つの膜として金属膜を示す。
 当該金属膜の形成工程において、上記の溝の内側は完全に埋まった状態になる。また、当該金属膜は、層間絶縁膜IL1上にも形成される。当該金属膜としては、例えば、窒化チタン(TiN)膜、窒化タンタル(TaN)膜、窒化タングステン(WN)膜、炭化チタン(TiC)膜、炭化タンタル(TaC)膜、炭化タングステン(WC)膜、窒化炭化タンタル(TaCN)膜、チタン(Ti)膜、タンタル(Ta)膜、チタンアルミニウム(TiAl)膜またはアルミニウム(Al)膜などを用いることができる。なお、ここで言う金属膜とは、金属伝導を示す導電膜を言い、単体の金属膜(純金属膜)または合金膜だけでなく、金属伝導を示す金属化合物膜も含むものとする。当該金属膜は、例えばスパッタリング法などを用いて形成することができる。
 ここでは、例えば当該金属膜は、例えば、窒化チタン(TiN)膜と、当該窒化チタン膜上のアルミニウム(Al)膜との積層膜により形成することができる。この際、窒化チタン膜よりもアルミニウム膜を厚くすることが好ましい。アルミニウム膜は、低抵抗であるため、後に形成するゲート電極G1の低抵抗化を図ることができる。
 その後、上記の溝のそれぞれの外部の不要な上記金属膜および絶縁膜IF9などをCMP法などによって研磨して除去することにより、溝内に上記金属膜を埋め込む。これにより、制御ゲート電極CGおよびメモリゲート電極MGを露出させる。また、周辺回路領域1Bの絶縁膜IF4上の溝内に埋め込まれた上記金属膜により、ゲート電極G1が形成される。これにより、周辺回路領域1Bにおいて、MISFETQ1が形成される。MISFETQ1は、ゲート電極G1とその横のソース・ドレイン領域とを有する。MISFETQ1は、例えばメモリセルMCの周辺回路を構成する電界効果トランジスタである。
 ゲート電極G1の直下の絶縁膜HKおよび絶縁膜IF4は、MISFETQ1のゲート絶縁膜を構成している。ゲート電極G1はメタルゲート電極である。本実施の形態では、ダミーゲート電極DG(図17参照)を除去してゲート電極G1に置き換えている。このため、ダミーゲート電極DGは、擬似的なゲート電極であり、置換用ゲート電極とみなすことができる。
 このように、本実施の形態では、半導体基板SB上のダミーゲート電極DGを形成し、半導体基板SB内にソース・ドレイン領域を形成した後、当該ダミーゲート電極をメタルゲート電極に置換する方法、つまりゲートラストプロセスを用いて、MISFETQ1を形成している。また、本実施の形態では、ゲート電極G1をメタルゲート電極としているため、トランジスタ素子の小型化(ゲート絶縁膜の薄膜化)を可能としている。
 次に、図20および図21を用いて説明するように、サリサイドプロセスを行うことによって、ポリシリコン膜からなる各電極上にシリサイド層を形成する。具体的には、次のようにしてシリサイド層を形成することができる。
 すなわち、図20に示すように、周辺回路領域1Bを覆う絶縁膜IF10のパターンを、例えばCVD法、フォトリソグラフィ技術およびエッチング法を用いて形成する。絶縁膜IF10はメモリセル領域1Aの制御ゲート電極CGおよびメモリゲート電極MGの上面を露出し、ゲート電極G1を覆う絶縁膜であり、例えば酸化シリコン膜などからなる。
 続いて、前処理として、半導体基板SBの主面に対してケミカルドライエッチングを行うことで、制御ゲート電極CG上およびメモリゲート電極MG上の余分な酸化シリコン膜などを除去し、半導体の表面を露出させる。続いて、制御ゲート電極CGおよびメモリゲート電極MGのそれぞれの上面上を含む半導体基板SBの主面全面上に、シリサイド層形成用の金属膜MF2を形成(堆積)する。金属膜MF2の膜厚は、例えば20~25nmである。
 金属膜MF2は、例えば、ニッケル(Ni)と白金(Pt)との合金膜からなり、スパッタリング法などを用いて形成することができる。ここで形成する金属膜MF2はニッケルを含む合金膜であり、当該合金膜内においてニッケルに対して添加する材料は、白金に限らず、アルミニウム(Al)または炭素(C)などであってもよい。ただし、白金はアルミニウムまたは炭素などに比べて耐熱性が高いため、当該合金膜に好適に用いることができる。
 次に、図21に示すように、半導体基板SBに対して熱処理を施すことによって、制御ゲート電極CGおよびメモリゲート電極MGの各表層部分を、金属膜MF2と反応させる。このシリサイド化により、制御ゲート電極CGおよびメモリゲート電極MGのそれぞれの上部に、シリサイド層S2が形成される。また、上記熱処理を行っても未反応であった金属膜MF2は、ウェットエッチングなどにより除去する。このとき、金属膜からなるゲート電極G1は、絶縁膜IF10により保護されているため、除去されない。
 この熱処理では、カーボンヒータにより半導体基板に対して加熱を行う熱処理装置を用いる。ここで、当該熱処理は、2度の熱処理工程を含んでいる。つまり、1度目の熱処理では、例えば260℃で30~120秒加熱を行うことで、NiSiの微結晶およびNiSiを含むシリサイド層S2形成する。その後、上記のように未反応の金属膜MF2をウェットエッチングなどにより除去した後、さらに2度目の熱処理において、400℃で10~120秒加熱を行うことで、シリサイド層S2内のNiSi結晶を成長させる。これにより形成されたシリサイド層S2は、例えばニッケル白金(NiPt)シリサイドからなる。
 ここでは、上記熱処理において2回行われる熱処理のうち、2度目に行われる熱処理を、便宜上、第2熱処理と呼ぶ。第2熱処理は例えば400℃以下で行う。本実施の形態では、上記のように、第2熱処理を400℃で行っている。なお、第2熱処理を行ってから、未反応の金属膜MF2を除去してもよい。
 第2熱処理により形成されたシリサイド層S2内の白金は、シリサイド層S2の底部に偏析する。つまり、シリサイド層S2内の白金は、シリサイド層S2の上面に比べ、シリサイド層S2の底面に多く存在している。また、このように第1熱処理に比べて低い温度の熱処理により形成されたシリサイド層S2は、比較的小さい引張応力を有する。
 ここで、図13および図14を用いて説明した工程(第1熱処理)でソース・ドレイン領域上に形成したシリサイド層S1は、450~600℃程度の比較的高い温度で形成されているため、シリサイド層S1内の白金(Pt)の多くがシリサイド層S1内の下方に偏析している。これに対し、図20および図21を用いて説明した工程(第2熱処理)で制御ゲート電極CGおよびメモリゲート電極MGの上に形成したシリサイド層S2は、400℃以下の比較的低い温度で形成されているため、シリサイド層S2内の白金(Pt)の下方への偏析量は比較的小さい。
 すなわち、シリサイド層S2内の白金(Pt)の下方への偏析量は、シリサイド層S1内の白金(Pt)の下方への偏析量よりも少ない。言い換えれば、シリサイド層S1、S2のそれぞれは、上面よりも下面の方が白金(Pt)の量が多く、シリサイド層S1の下面の単位面積当たりの白金(Pt)の量は、シリサイド層S2の下面の単位面積当たりの白金(Pt)の量よりも多い。また、シリサイド層S1の上面の単位面積当たりの白金(Pt)の量は、シリサイド層S2の上面の単位面積当たりの白金(Pt)の量よりも少ない。
 このように、シリサイド層S1、S2のそれぞれの白金(Pt)の偏析量に差があるのは、各シリサイド層の形成するために行った熱処理の温度の差に起因する。また、第1熱処理に比べて低い温度の第2熱処理により形成されたシリサイド層S2の引張応力は、第1熱処理により形成されたシリサイド層S1の引張応力よりも小さい。したがって、シリサイド層S2は、シリサイド層S1に比べて断線しにくい特徴を有する。
 次に、図22に示すように、層間絶縁膜および複数のコンタクトプラグを形成する。ここではまず、メモリセル領域1Aおよび周辺回路領域1Bを含む半導体基板SBの上面全体を覆う層間絶縁膜IL2を、例えばCVD法を用いて形成する。層間絶縁膜IL2は、例えば酸化シリコン膜からなり、制御ゲート電極CG、メモリゲート電極MG、ゲート電極G1および層間絶縁膜IL1のそれぞれの上面を覆っている。
 続いて、フォトリソグラフィ技術を用いて層間絶縁膜IL2上に形成したレジスト膜(図示しない)をエッチングマスクとして、層間絶縁膜IL2、IL1、絶縁膜IF10およびIF7をドライエッチングする。これにより、層間絶縁膜IL2を貫通するコンタクトホール(開口部、貫通孔)と、層間絶縁膜IL1、IL2および絶縁膜IF7を貫通するコンタクトホールとを、それぞれ複数形成する。なお、周辺回路領域1Bのコンタクトホールは、絶縁膜IF10を貫通している。
 各コンタクトホールの底部では、半導体基板SBの主面の一部、例えば拡散領域DFの表面上のシリサイド層S1の一部、制御ゲート電極CGの表面上のシリサイド層S2の一部、メモリゲート電極MGの表面上のシリサイド層S2の一部、またはゲート電極G1の一部などが露出している。なお、各ゲート電極上のコンタクトホールは、図22に示していない領域に形成されている。
 続いて、各コンタクトホール内に、接続用の導電体として、タングステン(W)などからなる導電性のコンタクトプラグCPを形成する。コンタクトプラグCPを形成するには、例えば、コンタクトホールの内部を含む層間絶縁膜IL2上に、バリア導体膜(例えばチタン膜、窒化チタン膜、あるいはそれらの積層膜)を形成する。それから、このバリア導体膜上にタングステン膜などからなる主導体膜を、各コンタクトホール内を完全に埋めるように形成してから、コンタクトホールの外部の不要な主導体膜およびバリア導体膜をCMP法またはエッチバック法などによって除去することにより、コンタクトプラグCPを形成することができる。なお、図面の簡略化のために、図22では、コンタクトプラグCPを構成するバリア導体膜および主導体膜(タングステン膜)を一体化して示している。
 コンタクトホールに埋め込まれたコンタクトプラグCPは、拡散領域DF、制御ゲート電極CG、メモリゲート電極MGまたはゲート電極G1のそれぞれの上部に接続されるように形成される。つまり、メモリセルMCおよびMISFETQ1のそれぞれの拡散領域DFの上面には、シリサイド層S1を介してコンタクトプラグCPが接続されている。また、制御ゲート電極CGおよびメモリゲート電極MGのそれぞれの上面には、シリサイド層S2を介してコンタクトプラグCPが接続されている。
 シリサイド層S1、S2を設ける目的の1つは、コンタクトプラグCPと、半導体からなる拡散領域DF、制御ゲート電極CGおよびメモリゲート電極MGとの間の接触抵抗を低減することにある。したがって、メタルゲート電極であるゲート電極G1とコンタクトプラグCPとの間にはシリサイド層を設けていない。
 この後は、図示は省略するが、コンタクトプラグCPが埋め込まれた層間絶縁膜IL2上に第1層目の配線を含む第1配線層を形成する。この配線は、ダマシン技術を用いて形成することができる。第1配線層は、層間絶縁膜と、それを貫通する第1層目の配線とを有する。複数の第1層目の配線は、図22に示す各コンタクトプラグCPの上面に接続される。その後、第1配線層上に、第2配線層、第3配線層などを順に形成して積層配線層を形成した後、半導体ウエハをダイシング工程により個片化し、複数の半導体チップを得る。以上のようにして、本実施の形態の半導体装置が製造される。
 <不揮発性メモリの動作について>
 次に、不揮発性メモリの動作例について、図23を参照して説明する。
 本実施の形態のメモリセルは、MISFET構造を有し、当該MISFETのゲート電極内のトラップ性絶縁膜での電荷蓄積状態を記憶情報とし、それをトランジスタの閾値として読み出すものである。トラップ性絶縁膜とは、電荷の蓄積可能な絶縁膜をいい、一例として、窒化シリコン膜などが挙げられる。このような電荷蓄積領域への電荷の注入・放出によってMISFETのしきい値をシフトさせ記憶素子として動作させる。トラップ性絶縁膜を用いた不揮発性半導体記憶装置としては、本実施の形態のメモリセルのように、スプリットゲート型のMONOSメモリがある。
 図23は、本実施の形態の「書込」、「消去」および「読出」時における選択メモリセルの各部位への電圧の印加条件の一例を示す表である。図23の表には、「書込」、「消去」および「読出」時のそれぞれにおいて、図22に示されるようなメモリセルMCのメモリゲート電極MGに印加する電圧Vmg、ソース領域に印加する電圧Vs、制御ゲート電極CGに印加する電圧Vcg、ドレイン領域に印加する電圧Vd、および半導体基板上面のp型ウエルに印加するベース電圧Vbが記載されている。ここでいう選択メモリセルとは、「書込」、「消去」または「読出」を行う対象として選択されたメモリセルをいう。
 なお、図22に示す不揮発性メモリの例では、メモリゲート電極MGの右側の活性領域がソース領域、制御ゲート電極CGの左側の活性領域がドレイン領域である。また、図23の表に示したものは電圧の印加条件の好適な一例であり、これに限定されるものではなく、必要に応じて種々変更可能である。また、本実施の形態では、メモリトランジスタのONO膜ON中の電荷蓄積部である窒化シリコン膜NT(図3参照)への電子の注入を「書込」、ホール(hole:正孔)の注入を「消去」と定義する。
 また、図23の表において、Aの欄は、書込み方法がSSI方式で、かつ消去方法がBTBT方式の場合に対応し、Bの欄は、書込み方法がSSI方式で、かつ消去方法がFN方式の場合に対応し、Cの欄は、書込み方法がFN方式で、かつ消去方法がBTBT方式の場合に対応し、Dの欄は、書込み方法がFN方式で、かつ消去方法がFN方式の場合に対応している。
 SSI方式は、窒化シリコン膜NTにホットエレクトロンを注入することによってメモリセルの書込みを行う動作法とみなすことができ、BTBT方式は、窒化シリコン膜NTにホットホールを注入することによってメモリセルの消去を行う動作法とみなすことができ、FN方式は、電子またはホールのトンネリングによって書込みまたは消去を行う動作法とみなすことができる。FN方式について、別の表現でいうと、FN方式の書込みは、窒化シリコン膜NTにFNトンネル効果により電子を注入することによってメモリセルの書込みを行う動作方式とみなすことができ、FN方式の消去は、窒化シリコン膜NTにFNトンネル効果によりホールを注入することによってメモリセルの消去を行う動作方式とみなすことができる。以下、具体的に説明する。
 書込み方式は、いわゆるSSI(Source Side Injection:ソースサイド注入)方式と呼ばれるソースサイド注入によるホットエレクトロン注入で書込みを行う書込み方式(ホットエレクトロン注入書込み方式)と、いわゆるFN方式と呼ばれるFN(Fowler Nordheim)トンネリングにより書込みを行う書込み方式(トンネリング書込み方式)とがある。
 SSI方式の書込みでは、例えば図23の表のAの欄またはBの欄の「書込動作電圧」に示されるような電圧(Vmg=10V、Vs=5V、Vcg=1V、Vd=0.5V、Vb=0V)を、書込みを行う選択メモリセルの各部位に印加し、選択メモリセルのONO膜ON中の窒化シリコン膜NT中に電子を注入することで書込みを行う。
 この際、ホットエレクトロンは、2つのゲート電極(メモリゲート電極MGおよび制御ゲート電極CG)間の下のチャネル領域(ソース、ドレイン間)で発生し、メモリゲート電極MGの下のONO膜ON中の電荷蓄積部である窒化シリコン膜NTにホットエレクトロンが注入される。注入されたホットエレクトロン(電子)は、ONO膜ON中の窒化シリコン膜NT中のトラップ準位に捕獲され、その結果、メモリトランジスタのしきい値電圧が上昇する。すなわち、メモリトランジスタは書込み状態となる。
 FN方式の書込みでは、例えば図23の表のCの欄またはDの欄の「書込動作電圧」に示されるような電圧(Vmg=-12V、Vs=0V、Vcg=0V、Vd=0V、Vb=0V)を、書込みを行う選択メモリセルの各部位に印加し、選択メモリセルにおいて、メモリゲート電極MGから電子をトンネリングさせてONO膜ON中の窒化シリコン膜NTに注入することで書込みを行う。この際、電子はメモリゲート電極MGからFNトンネリング(FNトンネル効果)により酸化シリコン膜OX2(図3参照)をトンネリングしてONO膜ON中に注入され、ONO膜ON中の窒化シリコン膜NT中のトラップ準位に捕獲され、その結果、メモリトランジスタのしきい値電圧が上昇する。すなわち、メモリトランジスタは書込み状態となる。
 なお、FN方式の書込みにおいて、半導体基板SBから電子をトンネリングさせてONO膜ON中の窒化シリコン膜NTに注入することで書込みを行うこともでき、この場合、書込動作電圧は、例えば図23の表のCの欄またはDの欄の「書込動作電圧」の正負を反転させたものとすることができる。
 消去方法は、いわゆるBTBT方式と呼ばれるBTBT(Band-To-Band Tunneling:バンド間トンネル現象)によるホットホール注入により消去を行う消去方式(ホットホール注入消去方式)と、いわゆるFN方式と呼ばれるFN(Fowler Nordheim)トンネリングにより消去を行う消去方式(トンネリング消去方式)とがある。
 BTBT方式の消去では、BTBTにより発生したホール(正孔)を電荷蓄積部(ONO膜ON中の窒化シリコン膜NT)に注入することにより消去を行う。例えば図23の表のAの欄またはCの欄の「消去動作電圧」に示されるような電圧(Vmg=-6V、Vs=6V、Vcg=0V、Vd=open、Vb=0V)を、消去を行う選択メモリセルの各部位に印加する。これにより、BTBT現象によりホールを発生させ電界加速することで選択メモリセルのONO膜ON中の窒化シリコン膜NT中にホールを注入し、それによってメモリトランジスタのしきい値電圧を低下させる。すなわち、メモリトランジスタは消去状態となる。
 FN方式の消去では、例えば図23の表のBの欄またはDの欄の「消去動作電圧」に示されるような電圧(Vmg=12V、Vs=0V、Vcg=0V、Vd=0V、Vb=0V)を、消去を行う選択メモリセルの各部位に印加し、選択メモリセルにおいて、メモリゲート電極MGからホールをトンネリングさせてONO膜ON中の窒化シリコン膜NTに注入することで消去を行う。この際、ホールはメモリゲート電極MGからFNトンネリング(FNトンネル効果)により酸化シリコン膜OX2(図3参照)をトンネリングしてONO膜ON中に注入され、ONO膜ON中の窒化シリコン膜NT中のトラップ準位に捕獲され、その結果、メモリトランジスタのしきい値電圧が低下する。すなわち、メモリトランジスタは消去状態となる。
 なお、FN方式の消去において、半導体基板SBからホールをトンネリングさせてONO膜ON中の窒化シリコン膜NTに注入することで消去を行うこともでき、この場合、消去動作電圧は、例えば図23の表のBの欄またはDの欄の「消去動作電圧」の正負を反転させたものとすることができる。
 読出し時には、例えば図23の表のAの欄、Bの欄、Cの欄またはDの欄の「読出動作電圧」に示されるような電圧を、読出しを行う選択メモリセルの各部位に印加する。読出し時のメモリゲート電極MGに印加する電圧Vmgを、書込み状態におけるメモリトランジスタのしきい値電圧と消去状態におけるしきい値電圧との間の値にすることで、書込み状態と消去状態とを判別することができる。
 <本実施の形態の効果について>
 以下に、本実施の形態の製造方法および半導体装置の効果について説明する。
 MONOSメモリでは、半導体膜からなるゲート電極上に形成されたシリサイド層を配線として用いることにより、ゲート電極の低抵抗化を実現することができる。また、MISFETのソース・ドレイン領域の上面に接して形成されたシリサイド層が引張応力を有する場合、チャネル領域へ引張応力を誘起させてMISFETの特性を向上させることができる。具体的には、チャネル移動度を向上させることができる。したがって、メモリセルおよびその周辺回路を構成するMISFETのそれぞれのソース・ドレイン領域上のシリサイド層の引張応力を高めることで、メモリセルの書き込み・消去速度を向上させることができる。シリサイド層の引張応力を高めるためには、半導体装置の製造工程において、当該シリサイド層を形成するために行う熱処理を、例えば450~600℃程度の高い温度で行うことが考えられる。
 ここで、ゲートラストプロセスを行わない半導体装置の製造方法、つまり、ダミーゲート電極を形成せず、ゲート電極の置き換えを行わない製造方法では、ソース・ドレイン領域上にシリサイド層を形成する工程において、MISFETのゲート電極上にもシリサイド層が形成される。このようなゲートファーストプロセスにより半導体素子を形成する場合、シリサイド層の形成後にゲート電極の上部を研磨する工程を行わないため、ゲート電極の上部の当該シリサイド層は、半導体装置の完成後においても残る。
 この場合において、ソース・ドレイン領域上に形成するシリサイド層の引張応力を高めてMISFETの特性を向上させるために、シリサイド層を形成する際の熱処理を例えば450~600℃程度の高い温度で行った場合、ゲート電極上のシリサイド層にも、高い引張応力が生じる。このとき、半導体基板上にMONOSメモリが設けてある場合、MONOSメモリの動作速度が低下する問題が生じる。
 すなわち、MONOSメモリを構成するMISFETのゲート電極の上部のシリサイド層は、当該ゲート電極の低抵抗化を実現する配線として用いられるものである。上記のように当該ゲート電極上のシリサイド層の引張応力が大きくなった場合、当該シリサイド層は断線しやすくなる。このため、MONOSメモリのゲート電極上のシリサイド層が断線すると、ゲート電極の抵抗値が著しく上昇し、MONOSメモリの動作速度が低下する問題が生じる。このように、ゲートファーストプロセスを用いて、メモリセルを含む半導体装置を形成する場合、素子に引張応力を与えて素子の特性を向上させることは、シリサイド層の断線を防ぐ観点から困難である。
 なお、MONOSメモリのソース・ドレイン領域と、周辺回路領域のMISFETのゲート電極およびソース・ドレイン領域のそれぞれの上部のシリサイド層は、配線として用いられるものではない。また、MONOSメモリのソース・ドレイン領域と、周辺回路領域のMISFETのゲート電極およびソース・ドレイン領域のそれぞれに対しては、MONOSメモリのゲート電極に比べて、短い間隔でコンタクトプラグを接続することが可能である。したがって、MONOSメモリのソース・ドレイン領域と、周辺回路領域の高耐圧または低耐圧のMISFETのゲート電極およびソース・ドレイン領域のそれぞれの上部のシリサイド層が断線したとしても、それらの電極またはソース・ドレイン領域には所望の電位を容易に供給することができ、素子の特性が低下する問題は殆ど乗じない。
 しかし、MONOSメモリのゲート電極(制御ゲート電極およびメモリゲート電極)は、メモリセルの集積度を向上させるために高い密度で複数並んで配置されるため、コンタクトプラグをゲート電極に接続するための給電部を短い周期で設けることは困難である。したがって、当該ゲート電極に接続される複数のコンタクトプラグ同士の間隔は非常に長くなるため、メモリセルのゲート電極上のシリサイド層を配線として用いなければ、ゲート電極が高抵抗化してメモリセルの動作が遅くなる。
 これに対し、ゲートラストプロセスを用いてMISFETを形成する半導体装置の製造工程では、メモリセルおよびその他のMISFETのゲート電極またはダミーゲート電極を形成し、ソース・ドレイン領域上のシリサイド層を形成した後、それらのゲート電極の上部の一部を除去する工程を行う。このとき、各ゲート電極上のシリサイド層は除去されるため、ゲート電極上の配線として、またはゲート電極とコンタクトプラグとの接触抵抗を低減する緩和層としてシリサイド層を再度形成する必要がある。
 つまり、ゲートラストプロセスにより半導体装置を形成する場合には、ソース・ドレイン領域上のシリサイド層と、ゲート電極上のシリサイド層とを別々の工程で形成することが可能である。本発明者はこのことに着目し、ソース・ドレイン領域上の、引張応力の高いシリサイド層と、メモリセルのゲート電極上の、引張応力の低いシリサイド層とを異なる条件のシリサイド化工程で形成することで、各半導体素子の特性向上と、メモリセルの動作速度低下の防止との両方を実現することを見出した。
 すなわち、本実施の形態において、図13および図14を用いて説明した工程では、比較的高い温度で第1熱処理を行うことで、ソース・ドレイン領域上に、引張応力の高いシリサイド層S1を形成している。これにより、MONOSメモリのメモリセルMC(図22参照)および周辺回路領域1BのMISFETQ1(図22参照)のそれぞれの特性を向上させることを可能としている。このとき、メモリゲート電極MG上には引張応力が高いシリサイド層S1が形成されるが、図16を用いて説明した研磨工程により、メモリゲート電極MG上のシリサイド層S1は除去される。このため、メモリゲート電極MG上に、断線しやすいシリサイド層S1は残らない。
 そして、図20および図21を用いて説明した工程では、比較的低い温度で第2熱処理を行うことで、制御ゲート電極CGおよびメモリゲート電極MGのそれぞれの上に、引張応力の小さいシリサイド層S2を形成している。つまり、MONOSメモリのメモリセルMC(図22参照)の制御ゲート電極CGおよびメモリゲート電極MGのそれぞれの上に、断線しにくいシリサイド層S2を形成することができる。
 したがって、本実施の形態では、ソース・ドレイン領域上に引張応力の高いシリサイド層S1を形成し、かつ、メモリセルMCの制御ゲート電極CGおよびメモリゲート電極MGのそれぞれの上に引張応力の低いシリサイド層S2を形成することができる。このため、メモリセルMCおよびMISFETQ1を含む各半導体素子の特性向上と、メモリセルMCの動作速度低下の防止との両方を実現することができる。これにより、半導体装置の性能を向上させ、かつ、半導体装置の信頼性を向上させることができる。
 本実施の形態では、ニッケル(Ni)と白金(Pt)の合金と半導体とを反応させてシリサイド層S1、S2を形成しているため、白金の偏析量の違いにより、シリサイド層S1とシリサイド層S2とのそれぞれの形成工程における熱処理温度の違い、および、当該温度に起因するシリサイド層S1とシリサイド層S2とのそれぞれの引張応力の違いを判断することが可能である。これは、上記のように、各シリサイド層S1、S2を形成するために行う熱処理の温度の差に起因して、各シリサイド層S1、S2のそれぞれの内部の白金の偏析量に差が生じるためである。
 つまり、より高い温度で行われた第1熱処理によって形成されたシリサイド層S1内の白金の多くはシリサイド層S1内で下方に拡散するのに比べて、第1熱処理より低い温度で行われた第2熱処理によって形成されたシリサイド層S2内の白金は、シリサイド層S2内における下方への拡散量が少ない。よって、シリサイド層S1の下面の単位面積当たりの白金の量は、シリサイド層S2の下面の単位面積当たりの白金の量よりも多く、シリサイド層S1の上面の単位面積当たりの白金の量は、シリサイド層S2の上面の単位面積当たりの白金の量よりも少ない。よって、異なる温度で形成されたシリサイド層S1、S2は、上記のように白金の偏析量に違いが生じる。
 以下に、シリサイド層内の白金の偏析量に違いが生じることで、MISFETの特性が変化する理由、およびシリサイド層の断線の起こりやすさが変化する理由を説明する。
 本実施の形態では、ソース・ドレイン領域上のシリサイド層S1を高温で形成することで、シリサイド層S1と半導体基板SBとの界面に白金(Pt)が偏析して、シリサイド層S1内に(010)配向のNiSi膜が優先的に形成される。本発明者は、実験により、(010)配向のNiSi膜は引張応力が大きい膜となることを発見しており、また、引張応力をソース・ドレイン領域上のシリサイド層からnチャネル型のMISFETのチャネルに印加すれば、nチャネル型のMISFETのチャネル移動度を向上させることができることを発見している。
 また、pチャネル型のMISFETにおいて、チャネル方向が<100>の場合は、応力感度がないので、移動度は劣化しない。また、pチャネル型のMISFETにおいて、チャネル方向が<110>の場合、ソース・ドレイン領域は、半導体基板の主面よりも高さが高いSiGeからなるせり上げ構造となるため、応力による劣化の問題はなく本実施の形態の構成を適用することができる。
 制御ゲート電極およびメモリゲート電極のそれぞれの上のシリサイド層の断線による抵抗上昇はデバイス特性の劣化を起こす。これに対し、本実施の形態では、図22に示すシリサイド層S2を400℃以下の低温で形成することで、シリサイド層S2と制御ゲート電極CGまたはメモリゲート電極MGとの界面への白金の偏析を抑制し、(010)配向が形成されることを防ぐことができる。つまり、シリサイド層S1の単位体積当たりの(010)配向粒の数は、シリサイド層S2の単位体積当たりの(010)配向粒の数よりも多い。その結果、シリサイド層S1に比べて、応力が小さく、断線に対して高い強度を有するシリサイド層S2を形成することができる。
 また、本実施の形態では、シリサイド層S1、S2の材料の一部に白金を用いることで、シリサイド層S1、S2の耐熱性を向上させている。これにより、メモリセルMCの制御ゲート電極CGおよびメモリゲート電極MGのそれぞれの上のシリサイド層S2が断線することを防ぐことができる。
 また、制御ゲート電極CGおよびメモリゲート電極MGのそれぞれの上のシリサイド層S2の形成温度を低くする理由には、次に説明する理由もある。すなわち、シリサイド層S2の形成時には、周辺回路領域1Bにメタルゲート電極であるゲート電極G1が形成されているため、シリサイド層S2の形成時の第2熱処理を高温で行うと、ゲート電極G1内の金属が、MISFETQ1のゲート絶縁膜内に拡散してトランジスタが劣化する虞がある。このような素子の劣化を防ぐため、シリサイド層S2の形成の際の温度は400℃以下の低温とすることが望ましい。
 <変形例1について>
 図24に、本実施の形態の半導体装置の変形例1であるMONOSメモリのメモリセルMC1の断面を示す。図24では、図22と同様に、メモリセル領域1Aおよび周辺回路領域1Bを示している。
 図24に示すメモリセルMC1は、図22に示すメモリセルMCと同様に、互いに絶縁されて隣接する制御ゲート電極CGおよびメモリゲート電極MGを有している。また、メモリゲート電極MGと半導体基板SBとの間には、ONO膜ON1が形成されている。ここでは、図22と異なり、ONO膜ON1の積層構造を図示している。つまり、メモリゲート電極MGの直下のONO膜ON1は、半導体基板SB上に順に形成された酸化シリコン膜OX1、窒化シリコン膜NT、および酸化シリコン膜OX2の積層膜からなる。
 これに対し、制御ゲート電極CGとメモリゲート電極MGとの間には、ONO膜ON1ではなく、電荷蓄積部として機能する膜(例えば窒化シリコン膜)を含まない絶縁膜IF11が形成されている。絶縁膜IF11は、例えば酸化シリコン膜からなる。
 すなわち、制御ゲート電極CGとメモリゲート電極MGとの間に形成された絶縁膜IF11が、メモリゲート電極MGの直下のONO膜ON1と異なり電荷蓄積部を有していない点で、本変形例は図22を用いて説明した構造と異なる。よって、ONO膜ON1はL字型の断面を有していない。ここでも、シリサイド層S1の底面には、シリサイド層S2の底面よりも多くPt(白金)が偏析しており、シリサイド層S1は、シリサイド層S2よりも引張応力が大きい。このように、ONO膜ON1および絶縁膜IF11を有するメモリセルMC1を含む半導体装置においても、図1~図22を用いて説明した効果と同様の効果を得ることができる。
 本変形例の構造を形成する工程では、例えば以下のような製造方法を用いる。つまり、半導体基板SB上にONO膜ON1およびポリシリコン膜を順に形成した後、当該ポリシリコン膜およびONO膜ON1を加工してメモリゲート電極MGを形成する。その後、メモリゲート電極MGの一方の側壁に膜厚が比較的小さいサイドウォール状の絶縁膜IF11を形成し、続いて半導体基板SB上にポリシリコン膜を堆積することでメモリゲート電極MGを覆う。
 その後、当該ポリシリコン膜をエッチバックすることで、メモリゲート電極MGの側壁に自己整合的にサイドウォール状の制御ゲート電極CGを形成する。その後の工程は、層間絶縁膜IL1の形成、制御ゲート電極CGおよびメモリゲート電極MGの上面の研磨工程、並びに各シリサイド層S1、S2を形成する工程は、図16~図22を用いて説明した工程と同様に行う。これにより、図24に示す構造を得ることができる。
 <変形例2について>
 図25に、本実施の形態の半導体装置の変形例2であるMONOSメモリのメモリセルMC2の断面を示す。図25では、図22と同様に、メモリセル領域1Aおよび周辺回路領域1Bを示している。
 図25に示すメモリセルMC2は、前記変形例1と同様に、制御ゲート電極CGとメモリゲート電極MGとの間に、電荷蓄積部を含まない絶縁膜IF11を有している。本変形例は、制御ゲート電極が、半導体基板SBの主面およびメモリゲート電極MGの側壁に沿うように堆積された膜により構成されている点で、図22および図24に示す構造と異なる。
 つまり、本変形例において、制御ゲート電極CGの一部は、半導体基板SBの上面に沿って延在しており、他の一部は、メモリゲート電極MGの側壁に沿って延在している。このような形状の制御ゲート電極CGは、前記変形例1の製造工程において、ポリシリコン膜を加工して制御ゲート電極CGを形成する際に、当該加工により残すポリシリコン膜の幅を大きくすることで形成することができる。また、このような形状の制御ゲート電極CGは、前記変形例1の製造工程において、加工により制御ゲート電極CGとなるポリシリコン膜の膜厚を小さくすることで形成することができる。
 ここでも、シリサイド層S1の底面には、シリサイド層S2の底面よりも多くPt(白金)が偏析しており、シリサイド層S1は、シリサイド層S2よりも引張応力が大きい。このように、ONO膜ON1および絶縁膜IF11を有するメモリセルMC2を含む半導体装置においても、図1~図22を用いて説明した効果と同様の効果を得ることができる。
 <変形例3について>
 図26に、本実施の形態の半導体装置の変形例3であるMONOSメモリのメモリセルMC3の断面を示す。図26では、図22と同様に、メモリセル領域1Aおよび周辺回路領域1Bを示している。
 図26に示すメモリセルMC3は、図22を用いて説明した構造と同様に、制御ゲート電極CGとメモリゲート電極MGとの間、および、メモリゲート電極MGと半導体基板SBとの間に、電荷蓄積部を含む絶縁膜を有している。ただし、制御ゲート電極CGとメモリゲート電極MGとの間に設けられたONO膜ON2と、メモリゲート電極MGと半導体基板SBとの間に形成されたONO膜ON1とは、異なる膜により形成されている。この点において、本変形例は図22に示す構造と異なる。つまり、制御ゲート電極CGとメモリゲート電極MGとの間に設けられたONO膜ON2と、メモリゲート電極MGと半導体基板SBとの間に形成されたONO膜ON1とは、一体になっていないため、ONO膜ON1はL字型の断面を有していない。
 図26に示す本変形例のメモリセルMC3の構造は、前記変形例1の製造工程において、絶縁膜IF11(図24参照)の代わりにONO膜ON2を形成することで得ることができる。ONO膜ON2は、メモリゲート電極MGの側壁から、制御ゲート電極CGの側壁側に向かって、順に酸化シリコン膜OX3、窒化シリコン膜NT1および酸化シリコン膜OX4を積層した膜である。ここでも、シリサイド層S1の底面には、シリサイド層S2の底面よりも多くPt(白金)が偏析しており、シリサイド層S1は、シリサイド層S2よりも引張応力が大きい。このように、ONO膜ON1およびON2を有するメモリセルMC3を含む半導体装置においても、図1~図22を用いて説明した効果と同様の効果を得ることができる。
 (実施の形態2)
 以下では、前記実施の形態1と異なり、シングルゲート型のMONOSメモリを形成し、ソース・ドレイン領域の上のシリサイド層と、シングルゲート電極の上部のシリサイド層とを作り分けることについて、図27~図29を用いて説明する。図27~図29は、本実施の形態の半導体装置の製造工程を説明する断面図である。図27~図29では、図1~図22と同様に、メモリセル領域1Aおよび周辺回路領域1Bを示している。
 本実施の形態の製造工程では、まず、図27に示すように、半導体基板SB上に、絶縁膜IF1、ポリシリコン膜PS1を順に形成した後、フォトリソグラフィ技術およびエッチング法を用いてポリシリコン膜PS1および絶縁膜IF1を加工する。これにより、周辺回路領域1Bのポリシリコン膜PS1および絶縁膜IF1を残し、メモリセル領域1Aのポリシリコン膜PS1および絶縁膜IF1を除去する。その後、半導体基板SBの主面の全面上にONO膜ONを形成する。ONO膜ONは、酸化シリコン膜OX1、窒化シリコン膜NTおよび酸化シリコン膜OX2を順に積層した積層膜である。
 次に、図28に示すように、ONO膜ON上にポリシリコン膜を形成した後、当該ポリシリコン膜およびONO膜ONを加工することで、メモリセル領域1Aに、当該ポリシリコン膜からなる制御ゲート電極CGを形成する。このとき、ONO膜ONは制御ゲート電極CGと半導体基板SBとの間に残り、メモリセル領域1Aにおいて制御ゲート電極CGに覆われていない領域では、半導体基板SBの上面が露出する。また、周辺回路領域1Bの当該ポリシリコン膜およびONO膜ONは除去され、ポリシリコン膜PS1が露出する。
 次に、図29に示すように、図11から図22を用いて説明した工程と同様の工程を行うことで、メモリセル領域1Aにシングルゲート型のMONOSメモリであるメモリセルMC4を有し、周辺回路領域1BにMISFETQ1を有する本実施の形態の半導体装置を形成する。
 つまり、周辺回路領域1Bのポリシリコン膜PS1を加工してダミーゲート電極を形成した後、制御ゲート電極CGおよび当該ダミーゲート電極のそれぞれの横のサイドウォールおよびソース・ドレイン領域を形成した後、当該ソース・ドレイン領域上にシリサイド層S1を形成する。続いて、層間絶縁膜IL1を形成し、層間絶縁膜IL1の上面を研磨することで、制御ゲート電極CGおよび当該ダミーゲート電極のそれぞれの上面を露出させる。このとき、制御ゲート電極CGの上面にシリサイド層S1が形成されていたとしても、当該研磨工程により制御ゲート電極CG上のシリサイド層S1は除去される。
 その後、ダミーゲート電極を除去してメタルゲート電極に入れ替えた後、制御ゲート電極CGの上面に応力の小さいシリサイド層S2を形成する。続いて、層間絶縁膜IL2および複数のコンタクトプラグを形成する。これにより、図29に示す構造を得る。
 メモリセルMC4は、前記実施の形態1とは異なり、制御ゲート電極CGの他にゲート電極を有していない。メモリセルMC4の書き込み動作および消去動作には、例えばファウラーノルドハイム型トンネル現象が利用される。なお、ホットエレクトロンやホットホールを用いて書き込み動作や消去動作させることも可能である。メモリセルMC4の書き込み動作時などには、メモリセルMC4に高い電位差(12V程度)を印加するため、メモリセルMC4を構成するMONOS型トランジスタは、相対的に高い耐圧が要求される。
 次に、メモリセルMC4の消去、書き込みおよび読み出し動作を説明する。
 まず、消去動作から説明する。例えば、メモリセルMC4に蓄積されたデータを消去する場合を考える。選択されたp型ウエルの電位を1.5V、制御ゲート電極CGの電位を-8.5V、ソース領域の電位を1.5V、ドレイン領域をフローティングにする。すると、メモリセルMC4の制御ゲート電極CGの下の電荷蓄積部、つまり窒化シリコン膜NTに蓄積された電荷が半導体基板SB側に引き抜かれ、データが消去される。
 次に、書き込み動作について説明する。例えば、メモリセルMC4にデータを書き込む場合を考える。選択されたp型ウエルの電位を-10.5V、制御ゲート電極CGの電位を1.5V、ソース領域の電位を-10.5V、ドレイン領域をフローティングにする。すると、制御ゲート電極CGの下の電荷蓄積部に電荷が注入され、データの書き込みが行なわれる。
 次に、読み出し動作について説明する。例えば、メモリセルMC4にデータ“1”が書き込まれトランジスタのしきい値電圧が高くなっているとする。メモリセルMC4のデータを読み出す場合、選択されたp型ウエルの電位を-2V、制御ゲート電極CGの電位を0V、ソース領域の電位を0V、ドレイン領域の電位を1Vにする。これにより、メモリセルMC4のデータを読み出す。この場合、データ“1”が書き込まれたメモリセルMC4のしきい値電圧は、データ“0”が書き込まれたメモリセルMC4のしきい値電圧に比べて高くなっているため、情報を読出すことができる。
 本実施の形態では、前記実施の形態1と異なりメモリゲート電極を設けていないが、前記実施の形態1と同様の効果を得ることができる。
 つまり、ゲートラストプロセスを用いているため、メモリセルMC4およびMISFETQ1のそれぞれのソース・ドレイン領域の上のシリサイド層S1と、制御ゲート電極CG上のシリサイド層S2とを別々の工程により形成することができる。
 ここでも、シリサイド層S1の底面には、シリサイド層S2の底面よりも多くPt(白金)が偏析しており、シリサイド層S1は、シリサイド層S2よりも引張応力が大きい。したがって、ソース・ドレイン領域に接するシリサイド層S1の引張応力を、制御ゲート電極CG上のシリサイド層S2よりも大きくすることで、各トランジスタの特性を向上させることができる。また、制御ゲート電極CG上のシリサイド層S2の引張応力を、ソース・ドレイン領域に接するシリサイド層S1よりも小さくすることで、シリサイド層S2の断線を防ぐことができる。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 その他、実施の形態に記載された内容の一部を以下に記載する。
 (1)半導体基板と、
 前記半導体基板上に第1絶縁膜を介して形成された第1ゲート電極と、
 前記第1ゲート電極の側壁に、内部に電荷蓄積部を有する第2絶縁膜を介して形成された第2ゲート電極と、
 前記半導体基板の主面に形成された第1ソース・ドレイン領域と、
 前記第1ソース・ドレイン領域の上面に接して形成された第1シリサイド層と、
 前記第1ゲート電極の上面に接して形成された第2シリサイド層と、
 前記第2ゲート電極の上面に接して形成された第3シリサイド層と、
を含むメモリセルを有し、
 前記第2ゲート電極は、前記半導体基板上に前記第2絶縁膜を介して形成され、
 前記第1~第3シリサイド層は、白金を含んでおり、
 前記第1シリサイド層の下面の単位面積当たりの白金の量は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの下面の単位面積当たりの白金の量よりも多い、半導体装置。
 (2)半導体基板と、
 前記半導体基板上に、内部に電荷蓄積部を有する第1絶縁膜を介して形成された第1ゲート電極と、
 前記半導体基板の主面に形成された第1ソース・ドレイン領域と、
 前記第1ソース・ドレイン領域の上面に接して形成された第1シリサイド層と、
 前記第1ゲート電極の上面に接して形成された第2シリサイド層と、
を含むメモリセルを有し、
 前記第2ゲート電極は、前記半導体基板上に前記第2絶縁膜を介して形成され、
 前記第1および第2シリサイド層は、白金を含んでおり、
 前記第1シリサイド層の下面の単位面積当たりの白金の量は、前記第2シリサイド層の下面の単位面積当たりの白金の量よりも多い、半導体装置。
 (3)(2)記載の半導体装置において、
 前記第1シリサイド層の引張応力は、前記第2シリサイド層の引張応力よりも大きい、半導体装置。
1A  メモリセル領域
1B  周辺回路領域
CG  制御ゲート電極
CP  コンタクトプラグ
DF  拡散領域
EX  エクステンション領域
G1  ゲート電極
GI  ゲート絶縁膜
HK  絶縁膜
IF1~IF10  絶縁膜
IL1、IL2  層間絶縁膜
MC  メモリセル
MG  メモリゲート電極
ON  ONO膜
Q1  MISFET
SB  半導体基板
S1、S2  シリサイド層
ST  素子分離領域
SW  サイドウォール
TN  金属膜

Claims (20)

  1.  不揮発性メモリのメモリセルを備える半導体装置の製造方法であって、
    (a)半導体基板を用意する工程、
    (b)前記半導体基板上に第1絶縁膜を介して形成された第1ゲート電極と、前記半導体基板上に、内部に前記電荷蓄積部を有する第2絶縁膜を介して形成された第2ゲート電極と、前記第1ゲート電極および前記第2ゲート電極の間に介在する第3絶縁膜とを設け、前記第1ゲート電極および前記第2ゲート電極を挟むように、前記半導体基板の主面に第1ソース・ドレイン領域を形成する工程、
    (c)第1熱処理によりシリサイド化を行うことで、前記第1ソース・ドレイン領域の上面に接する第1シリサイド層を形成する工程、
    (d)前記(c)工程後、前記半導体基板上に層間絶縁膜を形成する工程、
    (e)前記層間絶縁膜を研磨して、前記第1ゲート電極および前記第2ゲート電極のそれぞれの上面を露出させる工程、
    (f)前記(e)工程後、第2熱処理によりシリサイド化を行うことで、前記第1ゲート電極の上面に接する第2シリサイド層と、前記第2ゲート電極の上面に接する第3シリサイド層とを形成する工程、
    を有し、
     前記第1ソース・ドレイン領域、前記第1ゲート電極、前記第2ゲート電極および前記第2絶縁膜は、前記メモリセルを構成し、
     前記第2熱処理は、前記第1熱処理よりも高い温度で行う、半導体装置の製造方法。
  2.  請求項1記載の半導体装置の製造方法において、
     前記第1~第3シリサイド層は、白金を含んでおり、
     前記第1シリサイド層の下面の単位面積当たりの白金の量は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの下面の単位面積当たりの白金の量よりも多い、半導体装置の製造方法。
  3.  請求項1記載の半導体装置の製造方法において、
     前記第1シリサイド層の引張応力は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの引張応力よりも大きい、半導体装置の製造方法。
  4.  請求項1記載の半導体装置の製造方法において、
     前記第1~第3シリサイド層は、多結晶構造を有しており、
     前記第1シリサイド層内の単位体積当たりの(010)配向粒の数は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの内部の単位体積当たりの(010)配向粒の数よりも多い、半導体装置の製造方法。
  5.  請求項1記載の半導体装置の製造方法において、
     前記第1~第3シリサイド層は、白金を含んでおり、
     前記第1シリサイド層の上面の単位面積当たりの白金の量は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの上面の単位面積当たりの白金の量よりも少ない、半導体装置の製造方法。
  6.  請求項1記載の半導体装置の製造方法において、
     前記(c)工程は、
    (c1)前記半導体基板上に、ニッケルおよび白金を含む第1金属膜を形成する工程、
    (c2)前記第1熱処理を行うことで、前記第1金属膜と前記半導体基板とを反応させて、前記第1シリサイド層を形成する工程、
    (c3)前記(c2)工程の後、未反応の前記第1金属膜を除去する工程、
    を有し、
     前記(f)工程は、
    (f1)前記半導体基板上に、ニッケルおよび白金を含む第2金属膜を形成する工程、
    (f2)前記第2熱処理を行うことで、前記第2金属膜と前記第1ゲート電極および前記第2ゲート電極とを反応させて、前記第2シリサイド層および前記第3シリサイド層を形成する工程、
    (f3)前記(f2)工程の後、未反応の前記第2金属膜を除去する工程、
    を有する、半導体装置の製造方法。
  7.  請求項1記載の半導体装置の製造方法において、
     前記(b)工程は、
    (b1)前記半導体基板上に、前記第1絶縁膜を介して、第1半導体膜を含む前記第1ゲート電極を形成する工程、
    (b2)前記第1ゲート電極の側壁と、前記側壁に隣接して前記第1絶縁膜から露出する前記半導体基板を覆うように、内部に前記電荷蓄積部を有する前記第2絶縁膜と、第2半導体膜とを順に形成する工程、
    (b3)前記第2半導体膜を加工することで、前記第1ゲート電極の側壁に、前記第2絶縁膜を介して、前記第2半導体膜を含む前記第2ゲート電極を形成する工程、
    (b4)前記第1ゲート電極、前記第2ゲート電極、前記第1絶縁膜および前記第2絶縁膜を挟むように、前記半導体基板の主面に第1ソース・ドレイン領域を形成する工程、
    を有し、
     前記第3絶縁膜は、前記第2絶縁膜の一部を構成する、半導体装置の製造方法。
  8.  請求項7記載の半導体装置の製造方法において、
     前記(b)工程では、前記半導体基板の第1領域に、前記第1絶縁膜、第1ゲート電極、前記第2絶縁膜、前記第2ゲート電極および前記第1ソース・ドレイン領域を形成し、前記第1領域とは異なる第2領域の前記半導体基板上に、第4絶縁膜を介してダミーゲート電極を形成し、前記ダミーゲート電極の横の前記半導体基板の主面に第2ソース・ドレイン領域を形成し、
     前記(c)工程では、第1熱処理によりシリサイド化を行うことで、前記第1シリサイド層と、前記第2ソース・ドレイン領域の上面に接する第4シリサイド層とを形成し、
     前記(e)工程では、前記層間絶縁膜を研磨して、前記第1ゲート電極、前記第2ゲート電極および前記ダミーゲート電極のそれぞれの上面を露出させ、
    (e1)前記(e)工程の後、前記(f)工程の前に、前記ダミーゲート電極を除去することで溝を形成した後、前記溝内に金属ゲート電極を埋め混む工程をさらに有し、
     前記第2ソース・ドレイン領域および前記金属ゲート電極は、電界効果トランジスタを構成する、半導体装置の製造方法。
  9.  請求項8記載の半導体装置の製造方法において、
     前記第1~第4シリサイド層は、白金を含んでおり、
     前記第4シリサイド層の下面の単位面積当たりの白金の量は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの下面の単位面積当たりの白金の量よりも多い、半導体装置の製造方法。
  10.  不揮発性メモリのメモリセルを備える半導体装置の製造方法であって、
    (a)半導体基板を用意する工程、
    (b)前記半導体基板上に、内部に前記電荷蓄積部を有する第1絶縁膜を介して第1ゲート電極を形成し、前記第1ゲート電極を挟むように、前記半導体基板の主面に第1ソース・ドレイン領域を形成する工程、
    (c)第1熱処理によりシリサイド化を行うことで、前記第1ソース・ドレイン領域の上面に接する第1シリサイド層を形成する工程、
    (d)前記(c)工程後、前記半導体基板上に層間絶縁膜を形成する工程、
    (e)前記層間絶縁膜を研磨して、前記第1ゲート電極の上面を露出させる工程、
    (f)前記(e)工程後、第2熱処理によりシリサイド化を行うことで、前記第1ゲート電極の上面に接する第2シリサイド層を形成する工程、
    を有し、
     前記第1ソース・ドレイン領域、前記第1ゲート電極および前記第1絶縁膜は、前記メモリセルを構成し、
     前記第2熱処理は、前記第1熱処理よりも高い温度で行う、半導体装置の製造方法。
  11.  請求項10記載の半導体装置の製造方法において、
     前記第1および第2シリサイド層は、白金を含んでおり、
     前記第1シリサイド層の下面の単位面積当たりの白金の量は、前記第2シリサイド層の下面の単位面積当たりの白金の量よりも多い、半導体装置の製造方法。
  12.  請求項10記載の半導体装置の製造方法において、
     前記第1シリサイド層の引張応力は、前記第2シリサイド層の引張応力よりも大きい、半導体装置の製造方法。
  13.  半導体基板と、
     前記半導体基板上に第1絶縁膜を介して形成された第1ゲート電極と、
     前記第1ゲート電極と隣り合うように、前記半導体基板上に、内部に電荷蓄積部を有する前記第2絶縁膜を介して形成された第2ゲート電極と、
     前記第1ゲート電極と前記第2ゲート電極との間に介在する第3絶縁膜と、
     前記半導体基板の主面に形成された第1ソース・ドレイン領域と、
     前記第1ソース・ドレイン領域の上面に接して形成された第1シリサイド層と、
     前記第1ゲート電極の上面に接して形成された第2シリサイド層と、
     前記第2ゲート電極の上面に接して形成された第3シリサイド層と、
    を含むメモリセルを有し、
     前記第1~第3シリサイド層は、白金を含んでおり、
     前記第1シリサイド層の下面の単位面積当たりの白金の量は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの下面の単位面積当たりの白金の量よりも多い、半導体装置。
  14.  請求項13記載の半導体装置において、
     前記第1シリサイド層の引張応力は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの引張応力よりも大きい、半導体装置。
  15.  請求項13記載の半導体装置において、
     前記第1~第3シリサイド層は、多結晶構造を有しており、
     前記第1シリサイド層内の単位体積当たりの(010)配向粒の数は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの内部の単位体積当たりの(010)配向粒の数よりも多い、半導体装置。
  16.  請求項13記載の半導体装置において、
     前記第1~第3シリサイド層は、白金を含んでおり、
     前記第1シリサイド層の上面の単位面積当たりの白金の量は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの上面の単位面積当たりの白金の量よりも少ない、半導体装置。
  17.  請求項13記載の半導体装置において、
     前記半導体基板上に第4絶縁膜を介して形成された金属ゲート電極と、
     前記半導体基板の主面に形成された第2ソース・ドレイン領域と、
     前記第2ソース・ドレイン領域の上面に接して形成された第4シリサイド層と、
    を含む電界効果トランジスタを有し、
     前記第1~第4シリサイド層は、白金を含んでおり、
     前記第4シリサイド層の下面の単位面積当たりの白金の量は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの下面の単位面積当たりの白金の量よりも多い、半導体装置。
  18.  請求項17記載の半導体装置において、
     前記第4シリサイド層の引張応力は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの引張応力よりも大きい、半導体装置。
  19.  請求項17記載の半導体装置において、
     前記第1~第4シリサイド層は、多結晶構造を有しており、
     前記第4シリサイド層内の単位体積当たりの(010)配向粒の数は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの内部の単位体積当たりの(010)配向粒の数よりも多い、半導体装置。
  20.  請求項17記載の半導体装置において、
     前記第1~第4シリサイド層は、白金を含んでおり、
     前記第4シリサイド層の上面の単位面積当たりの白金の量は、前記第2シリサイド層および前記第3シリサイド層のそれぞれの上面の単位面積当たりの白金の量よりも少ない、半導体装置。
PCT/JP2014/081839 2014-12-02 2014-12-02 半導体装置の製造方法および半導体装置 WO2016088196A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/081839 WO2016088196A1 (ja) 2014-12-02 2014-12-02 半導体装置の製造方法および半導体装置
JP2016562121A JP6311033B2 (ja) 2014-12-02 2014-12-02 半導体装置の製造方法および半導体装置
US15/505,563 US10014410B2 (en) 2014-12-02 2014-12-02 Method for producing semiconductor device and semiconductor device
TW104138667A TW201631711A (zh) 2014-12-02 2015-11-23 半導體裝置之製造方法及半導體裝置
US15/952,956 US10121895B2 (en) 2014-12-02 2018-04-13 Method for producing semiconductor device and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081839 WO2016088196A1 (ja) 2014-12-02 2014-12-02 半導体装置の製造方法および半導体装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/505,563 A-371-Of-International US10014410B2 (en) 2014-12-02 2014-12-02 Method for producing semiconductor device and semiconductor device
US15/952,956 Continuation US10121895B2 (en) 2014-12-02 2018-04-13 Method for producing semiconductor device and semiconductor device

Publications (1)

Publication Number Publication Date
WO2016088196A1 true WO2016088196A1 (ja) 2016-06-09

Family

ID=56091175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081839 WO2016088196A1 (ja) 2014-12-02 2014-12-02 半導体装置の製造方法および半導体装置

Country Status (4)

Country Link
US (2) US10014410B2 (ja)
JP (1) JP6311033B2 (ja)
TW (1) TW201631711A (ja)
WO (1) WO2016088196A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668126A (zh) * 2019-03-07 2020-09-15 西安电子科技大学 一种化合物misfet器件热空穴效应的测试结构及表征方法
JP2020528663A (ja) * 2017-07-19 2020-09-24 サイプレス セミコンダクター コーポレーション 埋め込み不揮発性メモリデバイス、およびその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026914B2 (ja) * 2013-02-12 2016-11-16 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US9755057B1 (en) * 2016-07-28 2017-09-05 United Microelectronics Corp. Method of fabricating a semiconductor device
KR20180022361A (ko) * 2016-08-24 2018-03-06 삼성전자주식회사 반도체 소자 및 그 제조 방법
US10644125B2 (en) * 2018-06-14 2020-05-05 Taiwan Semiconductor Manufacturing Co., Ltd. Metal gates and manufacturing methods thereof
US11705455B2 (en) * 2020-07-16 2023-07-18 Globalfoundries U.S. Inc. High voltage extended drain MOSFET (EDMOS) devices in a high-k metal gate (HKMG)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519217A (ja) * 2003-06-23 2007-07-12 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド 半導体デバイスおよびその製造方法
JP2009141214A (ja) * 2007-12-07 2009-06-25 Toshiba Corp 半導体装置およびその製造方法
JP2014154790A (ja) * 2013-02-12 2014-08-25 Renesas Electronics Corp 半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519217A (ja) * 2003-06-23 2007-07-12 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド 半導体デバイスおよびその製造方法
JP2009141214A (ja) * 2007-12-07 2009-06-25 Toshiba Corp 半導体装置およびその製造方法
JP2014154790A (ja) * 2013-02-12 2014-08-25 Renesas Electronics Corp 半導体装置の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528663A (ja) * 2017-07-19 2020-09-24 サイプレス セミコンダクター コーポレーション 埋め込み不揮発性メモリデバイス、およびその製造方法
JP7027463B2 (ja) 2017-07-19 2022-03-01 サイプレス セミコンダクター コーポレーション 埋め込み不揮発性メモリデバイス、およびその製造方法
CN111668126A (zh) * 2019-03-07 2020-09-15 西安电子科技大学 一种化合物misfet器件热空穴效应的测试结构及表征方法
CN111668126B (zh) * 2019-03-07 2023-04-25 西安电子科技大学 一种化合物misfet器件热空穴效应的测试结构及表征方法

Also Published As

Publication number Publication date
US10014410B2 (en) 2018-07-03
TW201631711A (zh) 2016-09-01
US20170271513A1 (en) 2017-09-21
JP6311033B2 (ja) 2018-04-11
US20180233592A1 (en) 2018-08-16
US10121895B2 (en) 2018-11-06
JPWO2016088196A1 (ja) 2017-07-20

Similar Documents

Publication Publication Date Title
US10263005B2 (en) Method of manufacturing a semiconductor device
US10483114B2 (en) Method of manufacturing semiconductor device having a nonvolatile memory and a MISFET
US9831259B2 (en) Semiconductor device
JP6407651B2 (ja) 半導体装置の製造方法
JP6393104B2 (ja) 半導体装置およびその製造方法
US10121895B2 (en) Method for producing semiconductor device and semiconductor device
JP6359386B2 (ja) 半導体装置の製造方法および半導体装置
JP6778607B2 (ja) 半導体装置の製造方法
US20160064507A1 (en) Semiconductor device and method of manufacturing same
US10490445B2 (en) Semiconductor device and method of manufacturing the same
US10204789B2 (en) Manufacturing method of semiconductor device and semiconductor device
US10446569B2 (en) Semiconductor device and manufacturing method thereof
JP2017139375A (ja) 半導体装置の製造方法
JP6640632B2 (ja) 半導体装置の製造方法
JP6613183B2 (ja) 半導体装置の製造方法
US10229998B2 (en) Semiconductor device and method of manufacturing the same
JP2018182156A (ja) 半導体装置およびその製造方法
JP2019071462A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907258

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15505563

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016562121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907258

Country of ref document: EP

Kind code of ref document: A1