WO2016086468A1 - 一种高剥离强度挠性覆铜板及其制作方法 - Google Patents

一种高剥离强度挠性覆铜板及其制作方法 Download PDF

Info

Publication number
WO2016086468A1
WO2016086468A1 PCT/CN2014/094379 CN2014094379W WO2016086468A1 WO 2016086468 A1 WO2016086468 A1 WO 2016086468A1 CN 2014094379 W CN2014094379 W CN 2014094379W WO 2016086468 A1 WO2016086468 A1 WO 2016086468A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polymer film
organic polymer
forming
conditioning
Prior art date
Application number
PCT/CN2014/094379
Other languages
English (en)
French (fr)
Inventor
苏陟
Original Assignee
广州方邦电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州方邦电子有限公司 filed Critical 广州方邦电子有限公司
Priority to KR1020177001362A priority Critical patent/KR101994855B1/ko
Priority to US15/318,946 priority patent/US20170273188A1/en
Publication of WO2016086468A1 publication Critical patent/WO2016086468A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/144Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers using layers with different mechanical or chemical conditions or properties, e.g. layers with different thermal shrinkage, layers under tension during bonding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0723Electroplating, e.g. finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/282Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane

Definitions

  • the invention relates to a high peel strength flexible copper clad laminate and a manufacturing method thereof.
  • Flexible printed circuit is a special basic material for connecting electronic components. It has excellent properties such as lightness, thinness, various structures and bending resistance. It can be widely used in high-end fields such as folding mobile phones, liquid crystal displays, notebook computers, and IC package substrates.
  • the traditional FCCL is mainly a three-layer structure consisting of copper, adhesive and PI film, which is a glue type product, referred to as 3L-FCCL.
  • the adhesives in 3L-FCCL are mostly epoxy, and the thermal stability is relatively poor compared with the PI substrate, resulting in thermal stability of the FCCL, dimensional stability, and a large thickness of the substrate.
  • electronic products have been further miniaturized, lightweight, and assembled with high density. The industry has begun to pay close attention to the research and application of adhesive-free flexible copper clad laminates.
  • the non-adhesive flexible copper clad plate does not require an adhesive, so the heat resistance is good, the dimensional stability is good, and the reliability is high; at the same time, the non-adhesive flexible copper clad plate is thin and resistant to bending. high.
  • Coating method Polyimide is coated on the surface of the copper foil to form a cured product.
  • a conductive underlayer is formed on the surface of the polyimide film, and then a copper metal layer is formed.
  • the coating method cannot prepare the double panel; the lamination method has various structures and the peeling strength is large, but the thickness of the copper foil is limited, and the ultra-thin copper foil cannot be used, and if the ultra-thin copper foil is used, the coating or layer is applied. It is easy to produce wrinkles when pressed, and even breaks, making it HDI (High Density Interconnect Substrate) Technology and COF (Chip on Flex, Flexible Chip)
  • HDI High Density Interconnect Substrate
  • COF Chip on Flex, Flexible Chip
  • the application of technology-based liquid crystal (plasma) displays and liquid crystal (plasma) TVs in medium and high-end precision electronic products has been limited.
  • the sputtering method can prepare single and double panels, and the copper foil can be thin, the thickness can be customized, and is suitable for ultra-fine lines, and is the most promising method for preparing the rubber-free flexible copper-clad laminate.
  • glueless flexible copper clad laminates formed by plating The following are several types of glueless flexible copper clad laminates formed by plating:
  • the publication number is CN 1329186C
  • the invention patent entitled "Preparation Method of a Flexible Copper Clad Sheet” discloses a glueless flexible copper clad plate whose structure is vacuum plating a conductor layer on the surface of a polymer film, and then continuously composite metal plating layer.
  • the advantage of the method is that the metal layer can be thin and uniform in thickness, but the peel strength is low and cannot meet the requirements for use.
  • the publication number is CN 1124203C, the product of the invention entitled "Adhesive-Free Flexible Laminate and Process for Making Same” discloses a product structure in which at least one side of a polymer film is in contact with a plasma containing ionized oxygen generated by an unplated metal cathode.
  • the surface is plasma treated, a nickel or nickel alloy bonding layer is deposited on the plasma surface, and a copper layer is deposited on the nickel bonding layer.
  • the invention utilizes plasma treatment technology to increase the peel strength of the rubber-free flexible copper clad laminate, but the peel strength is still not satisfactory, and the use requirements cannot be satisfied, and the treated surface is unstable, and is not suitable for large-volume roll production.
  • the public number is CN 102717554 A.
  • the invention patent entitled "A two-layer flexible copper clad laminate” discloses a two-layer flexible copper clad laminate covering a copper layer on the surface of an organic polymer film. The invention passes ion implantation before forming a copper layer. The peel strength of the non-adhesive flexible copper clad plate is increased, but the peel strength is only 6-7 N/cm, which cannot be used.
  • the peeling strength of the copper clad laminate obtained by this method is extremely low, only 3-5 N/cm; in order to improve the organic polymer film After bonding with the metal layer, or after plasma treatment on the surface of the polymer film, the underlayer and the metal layer are formed again; or the ion implantation process is added before the metal layer is formed, but the above methods are not solved without glue.
  • a high peel strength flexible copper clad laminate comprising: a layer of an organic polymer film, an adjustment layer disposed on at least one side of the layer of the organic polymer film, a transition layer disposed on a surface of the conditioning layer, disposed at a copper layer on the surface of the transition layer; wherein the number of layers of the transition layer is one or more layers.
  • the organic polymer film layer has a thickness of 5-125 microns; the organic polymer film layer is made of polyimide, polyethylene terephthalate or polybutylene terephthalate. At least one of an ester, polysulfone, polyphenylene sulfide, polyetheretherketone, polyphenylene ether, polytetrafluoroethylene, liquid crystal polymer, and polyoxourea.
  • the conditioning layer is one of the following I)-VII):
  • the adjustment layer is made of at least one of a thermoplastic polyimide, a modified epoxy resin, a modified acrylic, a modified polyurethane, and a modified phenol resin, and has a thickness of 0.05-30.
  • the adjustment layer is made of a mixture of a matrix resin and a filler, the adjustment layer has a thickness of 0.05-30 micrometers;
  • the matrix resin is a thermoplastic polyimide, a modified epoxy resin, a modified acrylic, At least one of a modified polyurethane and a modified phenolic resin;
  • the filler is silica, aluminum hydroxide, calcium carbonate, titanium dioxide, aluminum oxide, magnesium hydroxide, magnesium carbonate, silicon carbide, barium sulfate, mica powder, At least one of silicon micropowder, talc, and kaolin; the filler accounts for 1% to 50% by volume of the resin;
  • the adjustment layer is made of a resin and a catalyst solution, the adjustment layer has a thickness of 0.05-30 micrometers;
  • the resin is a thermoplastic polyimide, a modified epoxy resin, a modified acrylic, a modified polyurethane At least one of a class and a modified phenolic resin;
  • the conditioning layer is made of at least one of a coupling agent, a surfactant, a silicone, an organic oligomer surface modifier, and has a thickness of 10 to 100 nm;
  • the adjustment layer is a combination of two types of adjustment layers I) and IV), the thickness is 0.05-30 microns;
  • the adjustment layer is a combination of two types of adjustment layers II) and IV), a thickness of 0.05-30 microns;
  • the conditioning layer is a combination of two types of conditioning layers, III) and IV), having a thickness of 0.05-30 microns.
  • the transition layer is a single layer, the thickness thereof is 0.01-0.5 micrometer; when the number of layers of the transition layer is more than one layer, the total thickness is 0.01-0.5 micrometer; the transition layer is a metal material, a ferrite, a carbon nanotube One of the materials; wherein the metal material is one of these metal elements: aluminum, titanium, zinc, iron, nickel, chromium, cobalt, copper, silver, gold, molybdenum; or Forming at least two of the alloys; the formation of the transition layer is selected from the group consisting of electroless plating, PVD, CVD, evaporation, sputtering, electroplating, or a composite thereof; the formation of the copper layer is selected from electroless plating Mode, PVD, CVD, evaporation plating, sputter plating, electroplating or a composite process thereof.
  • a method for manufacturing a high peel strength flexible copper clad laminate comprises the following steps:
  • a method for manufacturing a high peel strength flexible copper clad laminate comprises the following steps:
  • a metal copper layer is formed on the surface of the outermost transition layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate comprises the following steps:
  • a method for manufacturing a high peel strength flexible copper clad laminate comprises the following steps:
  • the surface modification method of the organic polymer film layer or the adjustment layer is selected from the group consisting of chemical etching, plasma treatment, ion implantation, surface grafting, ion beam irradiation, excimer laser etching, or a composite process thereof.
  • a method for manufacturing a high peel strength flexible copper clad laminate further comprises the steps of: forming a metal copper layer, forming an anti-oxidation protective layer on the surface of the metal copper layer as needed; or roughening the metal copper layer.
  • the invention has the beneficial effects that the copper clad plate with higher peel strength is formed by the plating method, and the copper foil of the copper clad laminate can be thin.
  • the peel strength of the copper plate can greatly increase the peel strength of the flexible copper clad laminate compared with the conventional surface treatment method (such as chemical etching), and at the same time, can be prepared without excessively damaging the physical and mechanical properties of the organic polymer film.
  • the peel strength and copper foil thickness are uniform and customizable, and it is suitable for flexible copper clad laminates with ultra-fine lines.
  • Figure 1 is a schematic view showing the layer structure of a flexible copper clad laminate of the present invention.
  • FIG. 2 is a schematic view showing the structure of another high peel strength flexible copper clad laminate according to the present invention.
  • a high peel strength flexible copper clad laminate comprising: an organic polymer film layer, an adjustment layer disposed on at least one side of the organic polymer film layer, a transition layer disposed on a surface of the conditioning layer, and a setting a copper layer on the surface of the transition layer; wherein the number of layers of the transition layer is more than one layer; preferably, the copper layer is a roughened copper layer.
  • it consists of an organic polymer film layer, an adjustment layer disposed on at least one side of the organic polymer film layer, a transition layer disposed on the surface of the adjustment layer, and a copper layer disposed on the surface of the transition layer. And an anti-oxidation protective layer disposed on the surface of the copper layer; wherein the number of layers of the transition layer is one or more layers; preferably, the copper layer is a roughened copper layer.
  • the organic polymer film layer has a thickness of 5-125 microns; the organic polymer film layer is made of polyimide, polyethylene terephthalate or polybutylene terephthalate. At least one of an ester, a polysulfone, a polyphenylene sulfide, a polyetheretherketone, a polyphenylene ether, a polytetrafluoroethylene, a liquid crystal polymer, and a polyoxourea; preferably, the organic polymer film layer The thickness is 5-50 microns.
  • the conditioning layer is one of the following I)-VII):
  • the adjustment layer is made of at least one of a thermoplastic polyimide, a modified epoxy resin, a modified acrylic, a modified polyurethane, and a modified phenol resin, and has a thickness of 0.05-30. Micron; preferably 0.5-5 microns;
  • the conditioning layer is made of a mixture of a matrix resin and a filler, the conditioning layer has a thickness of 0.05-30 micrometers; preferably 0.5-6 micrometers;
  • the matrix resin is a thermoplastic polyimide, a modified epoxy resin At least one of a class, a modified acrylic, a modified polyurethane, and a modified phenolic resin;
  • the filler is silica, aluminum hydroxide, calcium carbonate, titanium oxide, aluminum oxide, magnesium hydroxide, magnesium carbonate, silicon carbide , at least one of barium sulfate, mica powder, silicon micropowder, talc powder, kaolin;
  • the filler percentage of the resin is from 1% to 50%; preferably from 3% to 20%;
  • the conditioning layer is made of a resin and a catalyst solution, the conditioning layer has a thickness of 0.05-30 micrometers; preferably 0.5-10 micrometers; the resin is a thermoplastic polyimide, a modified epoxy resin, At least one of acrylic, modified polyurethane, and modified phenolic resin;
  • the catalyst solution is a solution of a salt of an iron-based element and/or a platinum-based element and an organic solvent;
  • the adjustment layer is prepared by mixing a resin with a palladium salt solution of ethanol or acetone, curing at 160-180 ° C, and then curing the plate after the conditioning layer is cured. Soak in a reducing agent solution (such as sodium hypophosphite solution) at 60-80 ° C for 1-60 min, remove and dry;
  • a reducing agent solution such as sodium hypophosphite solution
  • At least some zero-valent Pd is present on the surface of the resin, so that when the transition layer is formed on the adjustment layer, the bonding force of the adjustment layer and the transition layer can be enhanced;
  • the conditioning layer is made of at least one of a coupling agent, a surfactant, a silicone, an organic oligomer surface modifier, and has a thickness of 10 to 100 nm; preferably 10 to 50 nm;
  • the adjustment layer is a combination of two types of adjustment layers I) and IV), having a thickness of 0.05-30 microns; preferably 0.5-5 microns;
  • the conditioning layer is a combination of two types of conditioning layers II) and IV) having a thickness of from 0.05 to 30 microns; preferably from 0.5 to 6 microns.
  • the conditioning layer is a combination of two types of conditioning layers, III) and IV), having a thickness of from 0.05 to 30 microns; preferably from 0.5 to 10 microns.
  • the thickness thereof is 0.01-0.5 micrometers; preferably 0.05-0.3 micrometers; when the number of layers of the transition layer is more than one layer, the total thickness is 0.01-0.5 micrometers; preferably 0.05-0.3 micrometers.
  • the transition layer is made of one of a metal material, a ferrite, and a carbon nanotube; wherein the metal material is one of these metal elements: aluminum, titanium, zinc, iron, nickel, chromium, cobalt , copper, silver, gold, molybdenum; or an alloy formed of at least two of these metal elements; the transition layer is formed by electroless plating, PVD, CVD, evaporation, sputtering, electroplating or The composite process; the copper layer is formed by an electroless plating method, PVD, CVD, evaporation plating, sputtering plating, electroplating or a composite process thereof; the copper layer has a thickness of 0.5 to 50 ⁇ m; preferably 5 to 20 ⁇ m.
  • a method for manufacturing a high peel strength flexible copper clad laminate comprises the following steps:
  • a method for manufacturing a high peel strength flexible copper clad laminate comprises the following steps:
  • a metal copper layer is formed on the surface of the outermost transition layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate comprises the following steps:
  • a method for manufacturing a high peel strength flexible copper clad laminate comprises the following steps:
  • the surface modification method of the organic polymer film layer or the adjustment layer is selected from the group consisting of chemical etching, plasma treatment, ion implantation, surface grafting, ion beam irradiation, excimer laser etching, or a composite process thereof.
  • a method for manufacturing a high peel strength flexible copper clad laminate may further include the steps of: forming an anti-oxidation protective layer on the surface of the metal copper layer after forming the metal copper layer; or roughening the metal copper layer.
  • FIG. 1 is a schematic view showing a layer structure of a copper clad laminate according to the present invention.
  • One side surface of the organic polymer film layer 1 is provided with an adjustment layer 2, and the other side surface of the adjustment layer 2 is provided with a transition layer 3.
  • the other side surface of the transition layer 3 is provided with a copper layer 4; that is, an adjustment layer, a transition layer, and a copper layer are sequentially formed on one surface of the organic polymer film layer.
  • FIG. 2 it is another schematic diagram of the layer structure of the copper clad laminate of the present invention.
  • One side surface of the organic polymer film layer 1 is provided with a first adjustment layer 21, and the other side surface of the first adjustment layer 21 is disposed.
  • a first adjustment layer, a second adjustment layer, a transition layer, and a copper layer are sequentially formed.
  • the first conditioning layer 21 is selected from the conditioning layer described in the aforementioned I), the second conditioning layer 22 is the conditioning layer described in the aforementioned IV); or, conversely, the first conditioning layer 21 is described in the aforementioned IV) Adjustment layer, the second adjustment layer is the adjustment layer described in the above I);
  • the first conditioning layer 21 is selected from the conditioning layer described in the aforementioned II
  • the second conditioning layer 22 is the conditioning layer described in the aforementioned IV
  • the first conditioning layer 21 is as described in the aforementioned IV
  • the conditioning layer, the second conditioning layer 22 is the conditioning layer described in the aforementioned II).
  • the first conditioning layer 21 is the conditioning layer described in the aforementioned IV
  • the second conditioning layer 22 is the conditioning layer described in the aforementioned III).
  • the transition layer of the copper clad laminate of the present invention may be more than one layer, and the total thickness thereof may be 0.01-0.5 micrometers (preferably 0.05-0.3 micrometers); in addition, FIGS.
  • the adjustment layer, the transition layer, and the copper layer are sequentially disposed on one surface of the organic polymer film layer, in practice, the adjustment layer and the layer may be sequentially disposed on both sides of the organic polymer film layer of the present invention. Transition layer, copper layer.
  • a high peel strength flexible copper clad laminate comprising: an organic polymer film layer having an adjustment layer disposed on at least one side of the organic polymer film layer, and a transition layer on the other side of the adjustment layer, the transition layer The other side is provided with a copper layer.
  • the adjustment layer can improve the peel strength of the organic polymer film layer and the metal layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate includes the following specific manufacturing steps:
  • the organic polymer film layer has a thickness of 5 to 125 ⁇ m, preferably 5 to 50 ⁇ m; and the organic polymer film layer is made of polyimide, Polyethylene terephthalate, polybutylene terephthalate, polysulfone, polyphenylene sulfide, polyetheretherketone, polyphenylene ether, polytetrafluoroethylene, liquid crystal polymer, polyoxalyl At least one of urea;
  • the property of the conditioning layer is one of the following seven conditions: I) The material from which the conditioning layer is made is selected from one of the following resins: thermoplastic polyimide, modified epoxy resin a modified acrylic, a modified polyurethane, a modified phenolic resin, having a thickness of 0.05 to 30 ⁇ m, preferably 0.5 to 5 ⁇ m; II) or, the conditioning layer is composed of a matrix resin and a filler, and has a thickness of 0.05-30 micrometer
  • the catalyst solution is a solution of a salt of an iron-based element and/or a platinum-based element and an organic solvent;
  • the adjusting layer is prepared by mixing the resin with a palladium salt solution of ethanol or acetone, curing at 160-180 ° C, and then immersing the cured layer in a reducing agent solution (such as sodium hypophosphite) at 60-80 ° C. Treat in solution for 1-60min, remove and dry;
  • a reducing agent solution such as sodium hypophosphite
  • At least some zero-valent Pd is present on the surface of the resin, so that when the transition layer is formed on the adjustment layer, the bonding force between the adjustment layer and the transition layer can be enhanced;
  • the conditioning layer is made of at least one of a coupling agent, a surfactant, a silicone, and an organic oligomer surface modifier, and has a thickness of 10 to 100 nm; preferably 10 to 50.
  • the conditioning layer is a combination of two types of conditioning layers I) and IV), having a thickness of 0.05-30 microns; preferably 0.5-5 microns; VI) or, the conditioning layer is II And IV) superposition of two types of conditioning layers, having a thickness of from 0.05 to 30 microns; preferably from 0.5 to 6 microns.
  • the conditioning layer is a combination of two types of conditioning layers, III) and IV), having a thickness of from 0.05 to 30 microns; preferably from 0.5 to 10 microns.
  • the peel strength of the organic polymer film layer and the transition layer is increased by the adjustment layer.
  • the thickness of the transition layer is 0.01-0.5 micrometers (ie, when the transition layer is a single layer, the thickness of the single-layer transition layer is 0.01-0.5 micrometers, and the transition layer is more than one In the case of a layer, the total thickness of the transition layer is 0.01-0.5 micrometers, the following embodiments relate to the thickness of the transition layer, which is the meaning), preferably 0.05-0.3 micrometer;
  • the material used for the transition layer is metal material, ferrite, One of the carbon nanotubes; wherein the metal material is one of these metal elements: aluminum, titanium, zinc, iron, nickel, chromium, cobalt, copper, silver, gold, molybdenum; or these metals An alloy formed of at least two of the elements.
  • the formation of the transition layer is selected from one of the following modes: electroless plating, PVD, CVD, evaporation plating, sputter plating, electroplating, or a composite process thereof.
  • the copper layer has a thickness of from 0.5 to 50 microns, preferably from 5 to 20 microns.
  • the copper layer 4 is formed in a manner selected from the group consisting of electroless plating, PVD, CVD, evaporation plating, sputter plating, electroplating, or a composite process thereof.
  • a high peel strength flexible copper clad laminate comprising: an organic polymer film layer having an adjustment layer disposed on at least one side of the organic polymer film layer, and a transition layer on the other side of the adjustment layer, the transition layer The other side is provided with a copper layer.
  • the adjustment layer can improve the peel strength of the organic polymer film layer and the metal layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate includes the following specific manufacturing steps:
  • the organic polymer film layer has a thickness of 5 to 125 ⁇ m, preferably 5 to 50 ⁇ m; and the organic polymer film layer is made of a polyimide Amine, polyethylene terephthalate, polybutylene terephthalate, polysulfone, polyphenylene sulfide, polyetheretherketone, polyphenylene ether, polytetrafluoroethylene, liquid crystal polymer, polyethyl b At least one of diacid ureas.
  • the surface modification method of the organic polymer film layer is chemical etching, plasma treatment, ion implantation, surface grafting, ion beam irradiation, excimer laser etching or a composite process thereof, in order to improve the organic polymer film layer and Adjust the peel strength of the layer.
  • the material for forming the conditioning layer is selected from one of the following resins: thermoplastic polyimides, modified epoxy resins, modified acrylics, modified polyurethanes, modified phenolic resins, and thicknesses. 0.05-30 microns, preferably 0.5-5 microns;
  • the conditioning layer consists of a matrix resin and a filler having a thickness of 0.05-30 microns, preferably 0.5-6 microns;
  • the matrix resin is a thermoplastic polyimide, At least one of a modified epoxy resin, a modified acrylic resin, a modified polyurethane resin, and a modified phenolic resin;
  • the filler is silica, aluminum hydroxide, calcium carbonate, titanium oxide, aluminum oxide, magnesium hydroxide, At least one of magnesium carbonate, silicon carbide, barium sulfate, mica powder, silicon micropowder, talc, kaolin;
  • the filler accounts for 1%-50%, preferably 3%-20% by volume of the matrix resin;
  • the adjusting layer is made
  • the catalyst solution is a solution of a salt of an iron-based element and/or a platinum-based element and an organic solvent;
  • the adjusting layer is prepared by mixing the resin with a palladium salt solution of ethanol or acetone, curing at 160-180 ° C, and then immersing the cured layer in a reducing agent solution (such as sodium hypophosphite) at 60-80 ° C. Treat in solution for 1-60min, remove and dry;
  • a reducing agent solution such as sodium hypophosphite
  • At least some zero-valent Pd is present on the surface of the resin, so that when the transition layer is formed on the adjustment layer, the bonding force between the adjustment layer and the transition layer can be enhanced;
  • the conditioning layer is made of at least one of a coupling agent, a surfactant, a silicone, and an organic oligomer surface modifier, and has a thickness of 10 to 100 nm; preferably 10 to 50.
  • the conditioning layer is a combination of two types of conditioning layers I) and IV), having a thickness of 0.05-30 microns; preferably 0.5-5 microns; VI) or, the conditioning layer is II And IV) superposition of two types of conditioning layers, having a thickness of from 0.05 to 30 microns; preferably from 0.5 to 6 microns.
  • the conditioning layer is a combination of two types of conditioning layers, III) and IV), having a thickness of from 0.05 to 30 microns; preferably from 0.5 to 10 microns.
  • the peel strength of the organic polymer film layer and the transition layer is increased by the adjustment layer.
  • the thickness of the transition layer is 0.01-0.5 micrometers, preferably 0.05-0.3 micrometers;
  • the material used for the transition layer is one of a metal material, a ferrite, and a carbon nanotube; Wherein the metal material is one of the metal elements: aluminum, titanium, zinc, iron, nickel, chromium, cobalt, copper, silver, gold, molybdenum; or formed of at least two of these metal elements alloy.
  • the formation of the transition layer is selected from the group consisting of electroless plating, PVD, CVD, evaporation, sputtering, electroplating, or a composite process thereof.
  • the copper layer has a thickness of from 0.5 to 50 microns, preferably from 5 to 20 microns.
  • the copper layer is formed in a manner selected from the group consisting of electroless plating, PVD, CVD, evaporation, sputtering, electroplating, or a composite thereof.
  • a high peel strength flexible copper clad laminate comprising: an organic polymer film layer having an adjustment layer disposed on at least one side of the organic polymer film layer, and a transition layer on the other side of the adjustment layer, the transition layer The other side is provided with a copper layer.
  • the adjustment layer can improve the peel strength of the organic polymer film layer and the metal layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate includes the following specific manufacturing steps:
  • the organic polymer film layer has a thickness of 5 to 125 ⁇ m, preferably 5 to 50 ⁇ m; and the organic polymer film layer is made of polyimide, Polyethylene terephthalate, polybutylene terephthalate, polysulfone, polyphenylene sulfide, polyetheretherketone, polyphenylene ether, polytetrafluoroethylene, liquid crystal polymer, polyoxalyl At least one of urea.
  • the characteristics of the conditioning layer are one of the following seven cases: I) The material from which the conditioning layer is made is selected from one of the following resins: thermoplastic polyimides, modified epoxy resins, modified acrylics, The modified polyurethane-based, modified phenolic resin-based resin has a thickness of 0.05-30 micrometers, preferably 0.5-5 micrometers; II) or the conditioning layer is composed of a matrix resin and a filler, and has a thickness of 0.05-30 micrometers, preferably 0.5.
  • the matrix resin is at least one of thermoplastic polyimides, modified epoxy resins, modified acrylics, modified polyurethanes, and modified phenolic resins
  • the filler is silica, hydroxide At least one of aluminum, calcium carbonate, titanium dioxide, aluminum oxide, magnesium hydroxide, magnesium carbonate, silicon carbide, barium sulfate, mica powder, silicon micropowder, talc, kaolin; the filler accounts for 1% by volume of the matrix resin - 50%, preferably 3%-20%; III)
  • the conditioning layer is made of a resin and a catalyst solution, the conditioning layer having a thickness of 0.05-30 microns; preferably 0.5-10 microns;
  • the resin is a thermoplastic polymer Imide, modified epoxy resin, change At least one of acrylic, modified polyurethane, and modified phenolic resin;
  • the catalyst solution is a solution of a salt of an iron-based element and/or a platinum-based element and an organic solvent;
  • the adjusting layer is prepared by mixing the resin with a palladium salt solution of ethanol or acetone, curing at 160-180 ° C, and then immersing the cured layer in a reducing agent solution (such as sodium hypophosphite) at 60-80 ° C. Treat in solution for 1-60min, remove and dry;
  • a reducing agent solution such as sodium hypophosphite
  • At least some zero-valent Pd is present on the surface of the resin, so that when the transition layer is formed on the adjustment layer, the bonding force between the adjustment layer and the transition layer can be enhanced;
  • the conditioning layer is made of at least one of a coupling agent, a surfactant, a silicone, and an organic oligomer surface modifier, and has a thickness of 10 to 100 nm; preferably 10 to 50.
  • the conditioning layer is a combination of two types of conditioning layers I) and IV), having a thickness of 0.05-30 microns; preferably 0.5-5 microns; VI) or, the conditioning layer is II And IV) superposition of two types of conditioning layers, having a thickness of from 0.05 to 30 microns; preferably from 0.5 to 6 microns.
  • the conditioning layer is a combination of two types of conditioning layers, III) and IV), having a thickness of from 0.05 to 30 microns; preferably from 0.5 to 10 microns.
  • the peel strength of the organic polymer film layer and the transition layer is increased by the adjustment layer.
  • the surface modification method of the adjustment layer is chemical etching, plasma treatment, ion implantation, surface grafting, ion beam irradiation, excimer laser etching or a composite process thereof
  • the peel strength of the conditioning layer and the transition layer is chemical etching, plasma treatment, ion implantation, surface grafting, ion beam irradiation, excimer laser etching or a composite process thereof.
  • the thickness of the transition layer is 0.01-0.5 micrometers, preferably 0.05-0.3 micrometers;
  • the material used for the transition layer is one of a metal material, a ferrite, and a carbon nanotube; Wherein the metal material is one of the metal elements: aluminum, titanium, zinc, iron, nickel, chromium, cobalt, copper, silver, gold, molybdenum; or formed of at least two of these metal elements alloy.
  • the formation of the transition layer is selected from the group consisting of electroless plating, PVD, CVD, evaporation, sputtering, electroplating, or a composite process thereof.
  • the copper layer has a thickness of from 0.5 to 50 microns, preferably from 5 to 20 microns.
  • the copper layer 4 is formed in a manner selected from the group consisting of electroless plating, PVD, CVD, evaporation plating, sputter plating, electroplating, or a composite process thereof.
  • a high peel strength flexible copper clad laminate comprising: an organic polymer film layer having an adjustment layer disposed on at least one side of the organic polymer film layer, and a transition layer on the other side of the adjustment layer, the transition layer The other side is provided with a copper layer.
  • the adjustment layer can improve the peel strength of the organic polymer film layer and the metal layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate includes the following specific manufacturing steps:
  • the organic polymer film layer has a thickness of 5 to 125 ⁇ m, preferably 5 to 50 ⁇ m; and the organic polymer film layer is made of a polyimide Amine, polyethylene terephthalate, polybutylene terephthalate, polysulfone, polyphenylene sulfide, polyetheretherketone, polyphenylene ether, polytetrafluoroethylene, liquid crystal polymer, polyethyl b At least one of diacid ureas.
  • the surface modification method of the organic polymer film layer is selected from the group consisting of chemical etching, plasma treatment, ion implantation, surface grafting, ion beam irradiation, excimer laser etching or a composite process thereof to improve the organic polymer film layer. Peel strength with the conditioning layer.
  • the material for forming the conditioning layer is selected from one of the following resins: thermoplastic polyimides, modified epoxy resins, modified acrylics, modified polyurethanes, modified phenolic resins, and thicknesses. 0.05-30 microns, preferably 0.5-5 microns;
  • the conditioning layer consists of a matrix resin and a filler having a thickness of 0.05-30 microns, preferably 0.5-6 microns;
  • the matrix resin is a thermoplastic polyimide, At least one of a modified epoxy resin, a modified acrylic resin, a modified polyurethane resin, and a modified phenolic resin;
  • the filler is silica, aluminum hydroxide, calcium carbonate, titanium oxide, aluminum oxide, magnesium hydroxide, At least one of magnesium carbonate, silicon carbide, barium sulfate, mica powder, silicon micropowder, talc, kaolin;
  • the filler accounts for 1%-50%, preferably 3%-20% by volume of the matrix resin;
  • the adjusting layer is made
  • the catalyst solution is a solution of a salt of an iron-based element and/or a platinum-based element and an organic solvent;
  • the adjusting layer is prepared by mixing the resin with a palladium salt solution of ethanol or acetone, curing at 160-180 ° C, and then immersing the cured layer in a reducing agent solution (such as sodium hypophosphite) at 60-80 ° C. Treat in solution for 1-60min, remove and dry;
  • a reducing agent solution such as sodium hypophosphite
  • At least some zero-valent Pd is present on the surface of the resin, so that when the transition layer is formed on the adjustment layer, the bonding force between the adjustment layer and the transition layer can be enhanced;
  • the conditioning layer is made of at least one of a coupling agent, a surfactant, a silicone, and an organic oligomer surface modifier, and has a thickness of 10 to 100 nm; preferably 10 to 50.
  • the conditioning layer is a combination of two types of conditioning layers I) and IV), having a thickness of 0.05-30 microns; preferably 0.5-5 microns; VI) or, the conditioning layer is II And IV) superposition of two types of conditioning layers, having a thickness of from 0.05 to 30 microns; preferably from 0.5 to 6 microns.
  • the conditioning layer is a combination of two types of conditioning layers, III) and IV), having a thickness of from 0.05 to 30 microns; preferably from 0.5 to 10 microns.
  • the peel strength of the organic polymer film layer and the transition layer is increased by the adjustment layer.
  • the surface modification method of the conditioning layer is selected from the group consisting of chemical etching, plasma processing, ion implantation, surface grafting, ion beam irradiation, excimer laser etching, or a composite process thereof. Increase the peel strength of the conditioning layer and the transition layer.
  • the thickness of the transition layer is 0.01-0.5 micrometers, preferably 0.05-0.3 micrometers;
  • the material used for the transition layer is one of a metal material, a ferrite, and a carbon nanotube; Wherein the metal material is one of the metal elements: aluminum, titanium, zinc, iron, nickel, chromium, cobalt, copper, silver, gold, molybdenum; or formed of at least two of these metal elements alloy.
  • the formation of the transition layer is selected from the group consisting of electroless plating, PVD, CVD, evaporation, sputtering, electroplating, or a composite process thereof.
  • the copper layer has a thickness of from 0.5 to 50 microns, preferably from 5 to 20 microns.
  • the copper layer is formed in a manner selected from the group consisting of electroless plating, PVD, CVD, evaporation, sputtering, electroplating, or a composite thereof.
  • a high peel strength flexible copper clad laminate comprising: a polymer film layer, an adjustment layer is disposed on one surface of one side of the organic polymer film layer, a transition layer is disposed on the other side of the adjustment layer, and another layer of the transition layer A copper layer is provided on one side.
  • the adjustment layer can improve the peel strength of the organic polymer film layer and the metal layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate the specific production steps are as follows:
  • the organic polymer film layer is a polyimide film of 12.5 micrometers
  • the adjustment layer is a modified polyurethane layer formed by a coating method, and the thickness is 1 micron.
  • transition layer is a 0.02 micron copper layer formed by sputtering.
  • the copper layer has a thickness of 8 micrometers and is formed by a composite process of sputtering plating and electroplating.
  • the peeling strength of the flexible copper clad laminate was 10 N/cm, and the peel strength after rinsing for 10 seconds at 288 ° C was 9.2 N/cm.
  • step 1) changes the surface roughness of the organic polymer film layer by a 1 micrometer thick adjustment layer in order to improve the peel strength of the flexible copper clad laminate, compared with the existing methods (chemical etching, surface grafting, etc.)
  • the peeling strength becomes large without affecting the physical and mechanical properties of the product, and the surface of the regulating layer is very stable, which is suitable for large-volume roll production.
  • surface treatment of the organic polymer film layer or surface treatment of the conditioning layer before the formation of the conditioning layer further improves the peeling strength while performing surface treatment on the organic polymer film layer and the conditioning layer. Treatment, the peel strength is greater.
  • a high peel strength flexible copper clad laminate comprising: a polymer film layer provided with an adjustment layer on a surface of one side of the organic polymer film layer, and a transition layer on the other side of the adjustment layer, the transition layer The other side is provided with a copper layer.
  • the adjustment layer can improve the peel strength of the organic polymer film layer and the metal layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate the specific production steps are as follows:
  • the organic polymer film layer is a polyimide film of 12.5 ⁇ m
  • the adjustment layer is made of a mixture of modified polyurethane and mica powder, mica powder
  • the volume percentage of the modified polyurethane was 3%
  • the thickness of the conditioning layer was 1 ⁇ m.
  • transition layer is a 0.02 micron copper layer formed by sputtering.
  • the copper layer has a thickness of 8 micrometers and is a composite process of sputtering plating and electroplating.
  • the peeling strength of the flexible copper clad laminate was 11.5 N/cm, and the peel strength was 10 N/cm after swelling at 288 ° C for 10 seconds.
  • the present embodiment has a larger surface roughness of the organic polymer film layer and a higher peeling strength of the flexible copper clad plate due to the addition of a small amount of filler in the conditioning layer.
  • surface treatment of the organic polymer film layer or surface treatment of the conditioning layer before the formation of the conditioning layer further improves the peeling strength while performing surface treatment on the organic polymer film layer and the conditioning layer. Treatment, the peel strength is greater.
  • a high peel strength flexible copper clad laminate comprising: a polymer film layer provided with an adjustment layer on a surface of one side of the organic polymer film layer, and a transition layer on the other side of the adjustment layer, the transition layer The other side is provided with a copper layer.
  • the adjustment layer can improve the peel strength of the organic polymer film layer and the metal layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate the specific production steps are as follows:
  • the organic polymer film layer is a polyimide film of 12.5 ⁇ m
  • the adjustment layer is made of a mixture of an ethanol solution of palladium dichloride and a polyurethane resin
  • the adjustment layer is prepared by mixing the resin with an ethanol solution of palladium dichloride, curing at 160-180 ° C, and immersing the plate after curing of the conditioning layer in a reducing agent solution at 60-80 ° C (such as The sodium phosphate solution was treated for 1-60 min and the final adjustment layer was 5 microns thick.
  • transition layer is a 0.02 micron copper layer.
  • a copper layer having a thickness of 8 ⁇ m was formed by an electroplating process.
  • the peeling strength of the flexible copper clad laminate was 11.8 N/cm, and the peel strength was 10 N/cm after swelling at 288 ° C for 10 seconds.
  • the embodiment has at least zero-valent Pd distributed on the surface of the adjustment layer, and then forms a transition layer, and then forms a metal copper layer.
  • This method can improve the bonding force between the adjustment layer and the transition layer, thereby improving the scratching. Peel strength of the copper clad laminate.
  • surface treatment of the organic polymer film layer or surface treatment of the conditioning layer before the formation of the conditioning layer further improves the peeling strength while performing surface treatment on the organic polymer film layer and the conditioning layer. Treatment, the peel strength is greater.
  • a high peel strength flexible copper clad laminate comprising: a polymer film layer provided with an adjustment layer on a surface of one side of the organic polymer film layer, and a transition layer on the other side of the adjustment layer, the transition layer The other side is provided with a copper layer.
  • the adjustment layer can improve the peel strength of the organic polymer film and the metal layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate includes the following specific manufacturing steps:
  • the organic polymer film layer is a polyimide film of 12.5 micrometers, and the adjustment layer is a 0.01 micrometer adjustment layer formed by an organic oligomer surface modifier.
  • the peel strength of the organic polymer film layer and the transition layer is increased by adjusting the layer.
  • transition layer is a 0.02 micron copper layer formed by sputtering.
  • the copper layer has a thickness of 8 micrometers and is a composite process of sputtering plating and electroplating.
  • the peeling strength of the flexible copper clad laminate was 9.9 N/cm, and the peel strength was 8 N/cm after swelling at 288 ° C for 10 seconds.
  • step 1) is to apply a 0.01 micron organic oligomer surface modifier on the surface of the organic polymer film layer, which is to increase the surface polar group of the organic polymer film layer by a chemical method, thereby improving Peel strength of flexible copper clad laminates.
  • surface treatment of the organic polymer film layer or surface treatment of the conditioning layer before the formation of the conditioning layer further improves the peeling strength while performing surface treatment on the organic polymer film layer and the conditioning layer. Treatment, the peel strength is greater.
  • a high peel strength flexible copper clad laminate comprising: a polymer film layer having a first conditioning layer disposed on a surface of one side of the organic polymer film layer, and a second conditioning layer disposed on the other side of the first conditioning layer, The other side of the second conditioning layer is provided with a transition layer, the other side of which is provided with a copper layer.
  • the adjustment layer can improve the peel strength of the organic polymer film and the metal layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate includes the following specific manufacturing steps:
  • the organic polymer film layer is a 12.5 micron polyimide film
  • the first conditioning layer is a 10 nm thick adjustment layer formed by a silane coupling agent The peel strength of the organic polymer film layer and the second conditioning layer is increased by the first conditioning layer.
  • the second adjustment layer is a modified polyurethane having a thickness of 3 ⁇ m, and increasing the peel strength of the organic polymer film layer and the transition layer through the first and second adjustment layers .
  • the transition layer is a 0.02 micron copper layer formed by sputtering.
  • the copper layer has a thickness of 8 micrometers and is a composite process of sputtering plating and electroplating.
  • the peeling strength of the flexible copper clad laminate was 12.5 N/cm, and the peel strength was 10 N/cm after swelling for 10 seconds at 288 °C.
  • step 1) is to apply a 10 nm thick silane coupling agent to form a first conditioning layer on the surface of the organic polymer film layer, and then apply a modified polyurethane on the surface of the first conditioning layer through step 2), which is First, the surface polar group of the organic polymer film layer is chemically increased, the peeling strength of the organic polymer film layer is increased, and the surface roughness of the organic polymer film layer is changed by providing the second regulating layer, and finally The purpose of improving the peel strength of the flexible copper clad laminate.
  • the inventors of the present invention found that the surface treatment of the organic polymer film layer or the surface treatment of the second conditioning layer further improves the peel strength, while the organic polymer film layer and the second layer are formed before the formation of the conditioning layer.
  • the conditioning layer is surface treated for greater peel strength.
  • a high peel strength flexible copper clad laminate comprising: a polymer film layer having a first conditioning layer disposed on a surface of one side of the organic polymer film layer, and a second conditioning layer disposed on the other side of the first conditioning layer, The other side of the second conditioning layer is provided with a transition layer, the other side of which is provided with a copper layer.
  • the adjustment layer can improve the peel strength of the organic polymer film layer and the metal layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate includes the following specific manufacturing steps:
  • the organic polymer film layer is a 12.5 micron polyimide film
  • the first conditioning layer is a 10 nm thick adjustment layer formed by a silane coupling agent The peel strength of the organic polymer film layer and the second conditioning layer is increased by the first conditioning layer.
  • the second adjustment layer is made of a mixture of modified polyurethane and mica powder, and the mica powder accounts for 3% by volume of the modified polyurethane, and the second adjustment layer is The thickness is 3 micrometers, and the peeling strength of the organic polymer film layer and the transition layer is increased by the first and second conditioning layers.
  • the transition layer is a 0.02 micron copper layer formed by sputtering.
  • the copper layer has a thickness of 8 micrometers and is a composite process of sputtering plating and electroplating.
  • the peeling strength of the flexible copper clad laminate was 13.2 N/cm, and the peel strength after shearing for 10 seconds at 288 ° C was 11 N/cm.
  • step 1) is to apply a 10 nm thick silane coupling agent to form a first conditioning layer on the surface of the organic polymer film layer, and then apply a modified polyurethane containing a filler to the surface of the first conditioning layer through step 2).
  • the significance is that the surface polar group of the organic polymer film layer is first chemically increased, the peeling strength of the organic polymer film layer is increased, and the surface roughness of the organic polymer film layer is changed by providing the second regulating layer.
  • the second conditioning layer contains a small amount of filler, the surface roughness of the organic polymer film layer is larger than that of the embodiment 8, and the peeling strength of the flexible copper clad laminate is higher.
  • the inventors of the present invention found that the surface treatment of the organic polymer film layer or the surface treatment of the second conditioning layer further improves the peel strength, while the organic polymer film layer and the second layer are formed before the formation of the conditioning layer.
  • the conditioning layer is surface treated for greater peel strength.
  • a high peel strength flexible copper clad laminate comprising: a polymer film layer having a first conditioning layer disposed on a surface of one side of the organic polymer film layer, and a second conditioning layer disposed on the other side of the first conditioning layer, The other side of the second conditioning layer is provided with a transition layer, the other side of which is provided with a copper layer.
  • the adjustment layer can improve the peel strength of the organic polymer film layer and the metal layer.
  • a method for manufacturing a high peel strength flexible copper clad laminate includes the following specific manufacturing steps:
  • the organic polymer film layer is a 12.5 micron polyimide film
  • the first conditioning layer is a 10 nm thick adjustment layer formed by a silane coupling agent The peel strength of the organic polymer film layer and the second conditioning layer is increased by the first conditioning layer.
  • the second conditioning layer is made of a mixture of an ethanol solution of palladium dichloride and a polyurethane resin, and the conditioning layer is formed by: resin and dichlorination Palladium in ethanol solution, solidify at 160-180 ° C, and then immerse the plate after curing of the conditioning layer in a reducing agent solution (such as sodium hypophosphite solution) at 60-80 ° C for 1-60 min, remove and dry; The thickness of the conditioning layer was 5 microns.
  • a reducing agent solution such as sodium hypophosphite solution
  • the transition layer is a 0.02 micron copper layer.
  • a metallic copper layer on the surface of the transition layer is formed by an electroplating process.
  • the peeling strength of the flexible copper clad laminate was 13.7 N/cm, and the peel strength after shearing for 10 seconds at 288 ° C was 11 N/cm.
  • step 1) is to form a first adjustment layer by coating a surface of the organic polymer film layer with a 10 nm thick silane coupling agent, and then forming a modified polyurethane containing a catalyst on the surface of the first adjustment layer by step 2).
  • the significance is that the surface polar group of the organic polymer film layer is first chemically increased, and the peeling strength of the organic polymer film layer is increased, and the surface of the second regulating layer is distributed with at least zero-valent Pd, and then a transition is formed.
  • the layer is then formed into a metallic copper layer. This method can improve the bonding force between the conditioning layer and the transition layer, thereby improving the peel strength of the flexible copper clad laminate.
  • the inventors of the present invention found that the surface treatment of the organic polymer film layer or the surface treatment of the second conditioning layer further improves the peel strength, while the organic polymer film layer and the second layer are formed before the formation of the conditioning layer.
  • the conditioning layer is surface treated for greater peel strength.
  • the copper layer protection method is not limited. According to actual needs, an anti-oxidation protection layer may be disposed on the surface of the metal copper layer, or the metal copper layer may be roughened to facilitate laser drilling. Any minor modifications, equivalent changes and modifications made to the above embodiments in accordance with the technical spirit of the present invention and the copper layer protection method are still within the scope of the technical solutions of the present invention.
  • Coating lamination method coating a 5 micron thermoplastic polyimide solution (TPI) on the surface of a 12 micron copper foil, and then combining 12.5 micron PI with the pressure to obtain a peeling strength of the obtained flexible copper clad laminate product. 11.1 N/cm, compared with Example 5 to Example 11, the peel strength was lower than that of Examples 6-7 and 9-11, slightly higher than that of Example 5 and Example 8, but the thickness of the copper foil was the thinnest.
  • TPI thermoplastic polyimide solution
  • the flexible copper clad laminates produced in Examples 5 to 9 not only have high peel strength, but also have a copper foil thickness of only 8 ⁇ m, which is suitable for ultra-fine lines and HDI circuit boards.
  • the plating method is adopted: the surface of the polyimide film is modified by ion implantation to increase the surface activity thereof, the thickness of the polyimide film is 12.5 ⁇ m, and then the modified polyimide is formed by sputtering.
  • a metal primer layer (0.02 ⁇ m nickel-copper alloy layer) was formed on the surface of the amine film, and a copper foil of 8 ⁇ m was finally plated, and the peel strength was only 6 N/cm. Compared with Example 5 to Example 11, the peel strength was extremely low and could not be satisfied. use.
  • Example Example 5 Example 6
  • Example 7 Example 8
  • Example 9 Example 10
  • Example 11 Comparative example 1 Comparative example 2 Peel strength (N/cm) 10 11.5 11.8 9.9 12.5 13.2 13.7 11.1 6

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

一种高剥离强度挠性覆铜板及其制作方法,覆铜板包括以下层结构:有机聚合物膜层(1)、调节层(2)、过渡层(3)、铜层(4);其制备方法为:1)在有机聚合物膜层至少一面形成调节层;2)形成过渡层;3)形成铜层;或者为:1)对有机聚合物膜层的表面改性,再于膜层至少一面形成调节层;2)形成过渡层;3)形成铜层;或者为:1)在有机聚合物膜层至少一面形成调节层;2)表面改性;3)形成过渡层;4)形成金属铜层。或者为:1)将有机聚合物膜层的至少一面进行表面改性;2)形成调节层;3)表面改性;4)形成过渡层;5)形成铜层。通过镀覆法,形成了较高剥离强度的覆铜板,且覆铜板的铜箔厚度可以很薄。

Description

一种高剥离强度挠性覆铜板及其制作方法
技术领域
本发明涉及一种高剥离强度挠性覆铜板及其制作方法。
背景技术
挠性印制电路(FPC)作为一种连接电子元器件的特殊基础材料,它具有轻,薄,结构多样,耐弯曲等优异性能。可广泛应用于折叠手机,液晶显示,笔记本电脑,带载IC封装基板等高端领域。
传统的FCCL主要是有胶型产品,主要由铜,胶粘剂,PI膜组成的三层结构,简称3L-FCCL。3L-FCCL中胶粘剂多为环氧类,热稳定性相对PI基材较差,导致FCCL的热稳定性,尺寸稳定性均随之下降,基材的厚度较大。近年来,随着电子工业的迅速发展,电子产品进一步向小型化,轻量化,组装高密度化发展,业界开始密切关注无胶挠性覆铜板的研究与应用。与有胶型覆铜板相比,无胶挠性覆铜板不需要粘结剂,因此耐热性好,尺寸稳定性好,可靠性高;同时,无胶挠性覆铜板很薄,耐弯曲性高。
目前,无胶挠性覆铜板主要有以下几种制作方法:
1)涂布法:在铜箔表面涂布聚酰亚胺,固化成型。
2)压合法:高温下,将带有聚酰亚胺的铜箔进行层压成型。
3)镀覆法:在聚酰亚胺膜表面形成导电打底层,然后形成铜金属层。
以上三种方法中,仅涂布法无法制备双面板;层压法结构多样,剥离强度大,但是铜箔厚度有限,不能采用超薄铜箔,若采用超薄铜箔,在涂布或层压时容易产生皱褶,甚至出现断裂,使得其在以 HDI(高密度互联基板)技术和COF(Chip on Flex,柔性芯片) 技术为基础的液晶(等离子)显示器、液晶(等离子)电视等中高档精密电子产品中的应用受到了一定的限制。而溅射法可制备单、双面板,而且铜箔可以很薄,厚度可定制化,适用于超细线路,是最有前景的一种制备无胶挠性覆铜板的方法。
下面为几种以镀覆法形成的无胶挠性覆铜板:
公开号为CN 1329186C,名称为《一种挠性覆铜板的制备方法》的发明专利公开一种无胶挠性覆铜板,其结构是在聚合物膜表面真空镀导体层,然后连续复合镀金属层,这种方法的优点是金属层可以很薄,厚度均匀,但是剥离强度较低,无法满足使用要求。
公开号为CN 1124203C,名称为《无粘合剂柔韧层合制品及其制作方法》的发明专利公开的产品结构为在聚合物膜的至少一面与包含由无镀金属阴极产生的电离氧的等离子体接触,形成等离子体处理表面,在等离子体表面沉积镍或镍合金粘结层,在镍粘结层上沉积铜层。该发明是利用等离子体处理技术,增加无胶挠性覆铜板的剥离强度,但是剥离强度仍不理想,无法满足使用要求,同时处理的表面不稳定,不适合大批量卷状生产。
公开号为CN 102717554 A,名称为《一种两层型挠性覆铜板》的发明专利公开一种在有机聚合物薄膜表面覆盖铜层的两层结构挠性覆铜板,该发明在形成铜层之前通过离子注入,增加无胶挠性覆铜板的剥离强度,但是剥离强度仅有6-7N/cm,无法使用。
以上三种具体方法中,或者是在聚合物膜表面直接形成导体打底层,然后形成铜层,这种方法所得覆铜板的剥离强度极低,仅3-5N/cm;为了提高有机聚合物膜与金属层之间的结合力,或者对聚合物膜表面进行等离子处理后,再一次形成打底层和金属层;或者是在形成金属层之前,增加离子注入工序,但是上述方法均未解决无胶挠性覆铜板的剥离强度低的问题。
为了解决镀覆法的技术瓶颈,提高无胶挠性覆铜板的剥离强度是迫切需求。
发明内容
本发明的目的在于提供一种高剥离强度挠性覆铜板及其制作方法。
本发明所采取的技术方案是:
一种高剥离强度挠性覆铜板,包括以下层结构:有机聚合物膜层、设置在该有机聚合物膜层至少一面之上的调节层、设置在该调节层表面上的过渡层、设置在过渡层表面上的铜层;其中,所述的过渡层的层数为一层以上。
所述的有机聚合物膜层的厚度为5-125微米;所述的有机聚合物膜层的材料为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚砜、聚苯硫醚、聚醚醚酮、聚苯醚、聚四氟乙烯、液晶聚合物、聚乙二酰脲中的至少一种。
所述的调节层为以下Ⅰ)-Ⅶ)所列举的一种:
Ⅰ)所述调节层由热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类树脂中的至少一种制成,厚度为0.05-30微米;
Ⅱ)所述调节层由基体树脂和填料的混合物制成,所述调节层的厚度为0.05-30微米;基体树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;填料为二氧化硅、氢氧化铝、碳酸钙、二氧化钛、氧化铝、氢氧化镁、碳酸镁、碳化硅、硫酸钡、云母粉、硅微粉、滑石粉、高岭土中的至少一种;填料占树脂的体积百分比为1%-50%;
Ⅲ)所述调节层由树脂和催化剂溶液制成,所述调节层的厚度为0.05-30微米;树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;
Ⅳ)所述调节层由偶联剂、表面活性剂、有机硅、有机低聚物表面改性剂中的至少一种制成,其厚度为10-100纳米;
Ⅴ)所述调节层为Ⅰ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;
Ⅵ)所述调节层为Ⅱ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;
Ⅶ)所述调节层为Ⅲ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米。
所述过渡层为单层时,其厚度为0.01-0.5微米;过渡层的层数多于一层时,其总厚度为0.01-0.5微米;过渡层为金属材料、铁氧体、碳纳米管中的一种制成;其中,所述的金属材料为这些金属单质中的一种:铝、钛、锌、铁、镍、铬、钴、铜、银、金、钼;或者为这些金属单质中的至少两种形成的合金;所述过渡层的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺;所述铜层的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺。
一种高剥离强度挠性覆铜板的制作方法,包括以下步骤:
1)在有机聚合物膜层至少一面形成调节层;
2)在调节层表面形成一层以上过渡层;
3)在过渡层的表面形成金属铜层。
一种高剥离强度挠性覆铜板的制作方法,包括以下步骤:
1)将有机聚合物膜层的至少一面进行表面改性;
2)在改性后的有机聚合物膜层至少一面形成调节层;
3)在调节层表面形成一层以上过渡层;
4)在最外层过渡层的表面形成金属铜层。
一种高剥离强度挠性覆铜板的制作方法,包括以下步骤:
1)在有机聚合物膜层至少一面形成调节层;
2)将所述调节层进行表面改性;
3)在改性的调节层表面形成一层以上过渡层;
4)在过渡层的表面形成金属铜层。
一种高剥离强度挠性覆铜板的制作方法,包括以下步骤:
1)将有机聚合物膜层的至少一面进行表面改性;
2)在改性后的有机聚合物膜层至少一面形成调节层;
3)将所述调节层进行表面改性;
4)在改性的调节层表面形成一层以上过渡层;
5)在过渡层的表面形成金属铜层。
所述的有机聚合物膜层或调节层的表面改性方法选自化学蚀刻、等离子处理、离子注入、表面接枝、离子束辐照、准分子激光蚀刻或其复合工艺。
一种高剥离强度挠性覆铜板的制作方法,还包括步骤:形成金属铜层后,根据需要在金属铜层表面形成抗氧化保护层;或者,将金属铜层粗糙化。
本发明的有益效果是:本发明通过镀覆法,形成了较高剥离强度的覆铜板,且覆铜板的铜箔厚度可以很薄。
具体来说:
在有机聚合物膜上形成调节层,通过调节层控制有机聚合物膜的粗糙度,改变有机聚合物膜的表面亲水性,实现物理加的方式改性有机聚合物膜,增大挠性覆铜板的剥离强度,与以往减的表面处理方法(如化学蚀刻等)相比,更大幅度提高挠性覆铜板的剥离强度,同时,不过度破坏有机聚合物膜的物理机械性能,可制备高剥离强度、铜箔厚度均匀且可定制化,适合超细线路的挠性覆铜板。
附图说明
图1是本发明一种挠性覆铜板的层结构示意图。
图2为本发明另一种高剥离强度挠性覆铜板结构示意图。
具体实施方式
一种高剥离强度挠性覆铜板,由以下层结构组成:有机聚合物膜层、设置在该有机聚合物膜层至少一面之上的调节层、设置在该调节层表面上的过渡层、设置在过渡层表面上的铜层;其中,所述的过渡层的层数为一层以上;优选的,所述的铜层为经过粗糙化处理的铜层。
或者,由以下层结构组成:有机聚合物膜层、设置在该有机聚合物膜层至少一面之上的调节层、设置在该调节层表面上的过渡层、设置在过渡层表面上的铜层、设置在铜层表面的抗氧化保护层;其中,所述的过渡层的层数为一层以上;优选的,所述的铜层为经过粗糙化处理的铜层。
所述的有机聚合物膜层的厚度为5-125微米;所述的有机聚合物膜层的材料为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚砜、聚苯硫醚、聚醚醚酮、聚苯醚、聚四氟乙烯、液晶聚合物、聚乙二酰脲中的至少一种;优选的,所述的有机聚合物膜层的厚度为5-50微米。
所述的调节层为以下Ⅰ)-Ⅶ)所列举的一种:
Ⅰ)所述调节层由热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类树脂中的至少一种制成,厚度为0.05-30微米;优选为0.5-5微米;
Ⅱ)所述调节层由基体树脂和填料的混合物制成,所述调节层的厚度为0.05-30微米;优选为0.5-6微米;基体树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;填料为二氧化硅、氢氧化铝、碳酸钙、二氧化钛、氧化铝、氢氧化镁、碳酸镁、碳化硅、硫酸钡、云母粉、硅微粉、滑石粉、高岭土中的至少一种;填料占树脂的体积百分比为1%-50%;优选为3%-20%;
Ⅲ)所述调节层由树脂和催化剂溶液制成,所述调节层的厚度为0.05-30微米;优选为0.5-10微米;树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;
优选的,所述的催化剂溶液为铁系元素和/或铂系元素的盐与有机溶剂形成的溶液;
进一步优选的,为钯盐与乙醇或丙酮形成的溶液;调节层的制成方法为:将树脂与钯盐的乙醇或丙酮溶液混合,160-180℃下固化,再将调节层固化后的板浸泡在60-80℃的还原剂溶液(如次磷酸钠溶液)中处理1-60min,取出干燥即可;
从而,使得至少在树脂的表面有一些零价Pd,这样,在此调节层上形成过渡层时,可以增强调节层与过渡层的结合力;
Ⅳ)所述调节层由偶联剂、表面活性剂、有机硅、有机低聚物表面改性剂中的至少一种制成,其厚度为10-100纳米;优选为10-50纳米;
Ⅴ)所述调节层为Ⅰ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-5微米;
Ⅵ)所述调节层为Ⅱ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-6微米。
Ⅶ)所述调节层为Ⅲ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-10微米。
所述过渡层为单层时,其厚度为0.01-0.5微米;优选为0.05-0.3微米;过渡层的层数多于一层时,其总厚度为0.01-0.5微米;优选为0.05-0.3微米;过渡层为金属材料、铁氧体、碳纳米管中的一种制成;其中,所述的金属材料为这些金属单质中的一种:铝、钛、锌、铁、镍、铬、钴、铜、银、金、钼;或者为这些金属单质中的至少两种形成的合金;所述过渡层的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺;所述铜层的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺;铜层的厚度为0.5-50微米;优选为5-20微米。
对应的,一种高剥离强度挠性覆铜板的制作方法,包括以下步骤:
1)在有机聚合物膜层至少一面形成调节层;
2)在调节层表面形成一层以上过渡层;
3)在过渡层的表面形成金属铜层。
对应的,一种高剥离强度挠性覆铜板的制作方法,包括以下步骤:
1)将有机聚合物膜层的至少一面进行表面改性,在改性后的有机聚合物膜层至少一面形成调节层;优选的,在改性后的有机聚合物膜层的改性面上形成调节层;
2)在调节层表面形成一层以上过渡层;
3)在最外层过渡层的表面形成金属铜层。
对应的,一种高剥离强度挠性覆铜板的制作方法,包括以下步骤:
1)在有机聚合物膜层至少一面形成调节层;
2)将所述调节层进行表面改性;
3)在改性的调节层表面形成一层以上过渡层;
4)在过渡层的表面形成金属铜层。
对应的,一种高剥离强度挠性覆铜板的制作方法,包括以下步骤:
1)将有机聚合物膜层的至少一面进行表面改性;
2)在改性后的有机聚合物膜层至少一面形成调节层;优选的,在改性后的有机聚合物膜层的改性面上形成调节层;
3)将所述调节层进行表面改性;
4)在改性的调节层表面形成一层以上过渡层;
5)在过渡层的表面形成金属铜层。
所述的有机聚合物膜层或调节层的表面改性方法选自化学蚀刻、等离子处理、离子注入、表面接枝、离子束辐照、准分子激光蚀刻或其复合工艺。
一种高剥离强度挠性覆铜板的制作方法,根据实际需要,还可包括步骤:形成金属铜层后,在金属铜层表面形成抗氧化保护层;或者,将金属铜层粗糙化。
下面结合附图说明本发明覆铜板的其中两种的结构:
如图1所示,是本发明覆铜板的一种层结构示意图,有机聚合物膜层1的一侧表面设置有调节层2,所述调节层2的另一侧表面设置有一层过渡层3,所述过渡层3的另一侧表面设置铜层4;即在有机聚合物膜层的一侧表面上依次形成有调节层、过渡层、铜层。
如图2所示,是本发明覆铜板的另一种层结构示意图,有机聚合物膜层1的一侧表面设置有第一调节层21,所述第一调节层21的另一侧表面设置有第二调节层22,第二调节层22的另一侧表面设置有过度层3,所述过渡层3的另一侧表面设置铜层4;即在有机聚合物膜层的一侧表面上依次形成有第一调节层、第二调节层、过渡层、铜层。
特别的,第一调节层21选自前述Ⅰ)所描述的调节层,第二调节层22为前述Ⅳ)所描述的调节层;或者,反过来,第一调节层21为前述Ⅳ)所描述的调节层,第二调节层为前述Ⅰ)所描述的调节层;
或者,第一调节层21选自前述Ⅱ)所描述的调节层,第二调节层22为前述Ⅳ)所描述的调节层;或者,反过来,第一调节层21为前述Ⅳ)所描述的调节层,第二调节层22为前述Ⅱ)所描述的调节层。
或者,第一调节层21为前述Ⅳ)所描述的调节层,第二调节层22为前述Ⅲ)所描述的调节层。
当然,如前所述,本发明的覆铜板的过渡层可以为多于一层,其总厚度在0.01-0.5微米(优选为0.05-0.3微米)即可;另外,图1、2也只显示了有机聚合物膜层其中一面上依次设置调节层、过渡层、铜层的情形,而实际上,本发明的有机聚合物膜层的两侧表面上均可依次设置调节层、一层以上的过渡层、铜层。
下面结合具体实施例对本发明做进一步的说明:
实施例1:
一种高剥离强度挠性覆铜板:包括有机聚合物膜层,有机聚合物膜层至少一面之上设置有调节层,所述调节层的另一侧设置有一层以上过渡层,所述过渡层的另一侧设置有铜层。其中,所述调节层可提高有机聚合物膜层与金属层的剥离强度。
一种高剥离强度挠性覆铜板的制作方法,其包括的具体制作步骤如下:
1)在有机聚合物膜层至少一面形成调节层;所述有机聚合物膜层的厚度为5-125微米,优选5-50微米;所述有机聚合物膜层的材料为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚砜、聚苯硫醚、聚醚醚酮、聚苯醚、聚四氟乙烯、液晶聚合物、聚乙二酰脲中的至少一种;所述调节层的特性为以下七种情形之一:Ⅰ)制成调节层的材料选自下列树脂中的一种:热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类树脂,厚度为0.05-30微米,优选0.5-5微米;Ⅱ)或是,所述调节层由基体树脂和填料组成,厚度为0.05-30微米,优选0.5-6微米;基体树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;填料为二氧化硅、氢氧化铝、碳酸钙、二氧化钛、氧化铝、氢氧化镁、碳酸镁、碳化硅、硫酸钡、云母粉、硅微粉、滑石粉、高岭土中的至少一种;填料占基体树脂的体积百分比为1%-50%,优选3%-20%;Ⅲ)或是,所述调节层由树脂和催化剂溶液制成,所述调节层的厚度为0.05-30微米;优选为0.5-10微米;树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;
优选的,所述的催化剂溶液为铁系元素和/或铂系元素的盐与有机溶剂形成的溶液;
进一步优选的,为钯盐与乙醇或丙酮形成的溶液;
调节层的制成方法为:将树脂与钯盐的乙醇或丙酮溶液混合,160-180℃下固化,再将调节层固化后的板浸泡在60-80℃的还原剂溶液(如次磷酸钠溶液)中处理1-60min,取出干燥即可;
从而,至少在树脂的表面有一些零价Pd,这样,在此调节层上形成过渡层时,可以增强调节层与过渡层的结合力;
Ⅳ)或是,所述调节层由偶联剂、表面活性剂、有机硅、有机低聚物表面改性剂中的至少一种制成,其厚度为10-100纳米;优选为10-50纳米;Ⅴ)或是,所述调节层为Ⅰ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-5微米;Ⅵ)或是,所述调节层为Ⅱ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-6微米。Ⅶ)或是,所述调节层为Ⅲ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-10微米。通过调节层增加有机聚合物膜层与过渡层的剥离强度。
2)在调节层表面形成一层以上过渡层;所述过渡层厚度为0.01-0.5微米(即过渡层为单层时,单层过渡层的厚度为0.01-0.5微米,过渡层为多于一层时,过渡层的总厚度为0.01-0.5微米,下面的实施例涉及过渡层的厚度限定时,均是此含义),优选0.05-0.3微米;过渡层所用材料为金属材料、铁氧体、碳纳米管中的一种;其中,所述的金属材料为这些金属单质中的一种:铝、钛、锌、铁、镍、铬、钴、铜、银、金、钼;或者为这些金属单质中的至少两种形成的合金。所述过渡层的形成方式选自下列方式之一:化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺。
3)在过渡层表面形成金属铜层。所述铜层的厚度为0.5-50微米,优选5-20微米。所述铜层4的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺。
实施例2:
一种高剥离强度挠性覆铜板:包括有机聚合物膜层,有机聚合物膜层至少一面之上设置有调节层,所述调节层的另一侧设置有一层以上过渡层,所述过渡层的另一侧设置有铜层。其中,所述调节层可提高有机聚合物膜层与金属层的剥离强度。
一种高剥离强度挠性覆铜板的制作方法,其包括的具体制作步骤如下:
1)将有机聚合物膜层的至少一面进行表面改性;所述有机聚合物膜层的厚度为5-125微米,优选5-50微米;所述有机聚合物膜层的材料为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚砜、聚苯硫醚、聚醚醚酮、聚苯醚、聚四氟乙烯、液晶聚合物、聚乙二酰脲中的至少一种。所述的有机聚合物膜层的表面改性方法为化学蚀刻、等离子处理、离子注入、表面接枝、离子束辐照、准分子激光蚀刻或其复合工艺,以便于提高有机聚合物膜层与调节层的剥离强度。
2)在改性的有机聚合物膜层的改性面上形成调节层;所述调节层的特性为以下七种情形之一:
Ⅰ)制成调节层的材料选自下列树脂中的一种:热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类树脂,厚度为0.05-30微米,优选0.5-5微米;Ⅱ)或是,所述调节层由基体树脂和填料组成,厚度为0.05-30微米,优选0.5-6微米;基体树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;填料为二氧化硅、氢氧化铝、碳酸钙、二氧化钛、氧化铝、氢氧化镁、碳酸镁、碳化硅、硫酸钡、云母粉、硅微粉、滑石粉、高岭土中的至少一种;填料占基体树脂的体积百分比为1%-50%,优选3%-20%;Ⅲ)或是,所述调节层由树脂和催化剂溶液制成,所述调节层的厚度为0.05-30微米;优选为0.5-10微米;树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;
优选的,所述的催化剂溶液为铁系元素和/或铂系元素的盐与有机溶剂形成的溶液;
进一步优选的,为钯盐与乙醇或丙酮形成的溶液;
调节层的制成方法为:将树脂与钯盐的乙醇或丙酮溶液混合,160-180℃下固化,再将调节层固化后的板浸泡在60-80℃的还原剂溶液(如次磷酸钠溶液)中处理1-60min,取出干燥即可;
从而,至少在树脂的表面有一些零价Pd,这样,在此调节层上形成过渡层时,可以增强调节层与过渡层的结合力;
Ⅳ)或是,所述调节层由偶联剂、表面活性剂、有机硅、有机低聚物表面改性剂中的至少一种制成,其厚度为10-100纳米;优选为10-50纳米;Ⅴ)或是,所述调节层为Ⅰ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-5微米;Ⅵ)或是,所述调节层为Ⅱ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-6微米。Ⅶ)或是,所述调节层为Ⅲ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-10微米。通过调节层增加有机聚合物膜层与过渡层的剥离强度。
3)在调节层表面形成一层以上过渡层;所述过渡层厚度为0.01-0.5微米,优选0.05-0.3微米;过渡层所用材料为金属材料、铁氧体、碳纳米管中的一种;其中,所述的金属材料为这些金属单质中的一种:铝、钛、锌、铁、镍、铬、钴、铜、银、金、钼;或者为这些金属单质中的至少两种形成的合金。所述过渡层的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺。
4)在过渡层表面形成金属铜层。所述铜层的厚度为0.5-50微米,优选5-20微米。所述铜层的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺。
实施例3:
一种高剥离强度挠性覆铜板:包括有机聚合物膜层,有机聚合物膜层至少一面之上设置有调节层,所述调节层的另一侧设置有一层以上过渡层,所述过渡层的另一侧设置有铜层。其中,所述调节层可提高有机聚合物膜层与金属层的剥离强度。
一种高剥离强度挠性覆铜板的制作方法,其包括的具体制作步骤如下:
1)在有机聚合物膜层至少一面形成调节层;所述有机聚合物膜层的厚度为5-125微米,优选5-50微米;所述有机聚合物膜层的材料为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚砜、聚苯硫醚、聚醚醚酮、聚苯醚、聚四氟乙烯、液晶聚合物、聚乙二酰脲中的至少一种。所述调节层的特性为以下七种情形之一:Ⅰ)制成调节层的材料选自下列树脂中的一种:热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类树脂,厚度为0.05-30微米,优选0.5-5微米;Ⅱ)或是,所述调节层由基体树脂和填料组成,厚度为0.05-30微米,优选0.5-6微米;基体树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;填料为二氧化硅、氢氧化铝、碳酸钙、二氧化钛、氧化铝、氢氧化镁、碳酸镁、碳化硅、硫酸钡、云母粉、硅微粉、滑石粉、高岭土中的至少一种;填料占基体树脂的体积百分比为1%-50%,优选3%-20%;Ⅲ)或是,所述调节层由树脂和催化剂溶液制成,所述调节层的厚度为0.05-30微米;优选为0.5-10微米;树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;
优选的,所述的催化剂溶液为铁系元素和/或铂系元素的盐与有机溶剂形成的溶液;
进一步优选的,为钯盐与乙醇或丙酮形成的溶液;
调节层的制成方法为:将树脂与钯盐的乙醇或丙酮溶液混合,160-180℃下固化,再将调节层固化后的板浸泡在60-80℃的还原剂溶液(如次磷酸钠溶液)中处理1-60min,取出干燥即可;
从而,至少在树脂的表面有一些零价Pd,这样,在此调节层上形成过渡层时,可以增强调节层与过渡层的结合力;
Ⅳ)或是,所述调节层由偶联剂、表面活性剂、有机硅、有机低聚物表面改性剂中的至少一种制成,其厚度为10-100纳米;优选为10-50纳米;Ⅴ)或是,所述调节层为Ⅰ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-5微米;Ⅵ)或是,所述调节层为Ⅱ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-6微米。Ⅶ)或是,所述调节层为Ⅲ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-10微米。通过调节层增加有机聚合物膜层与过渡层的剥离强度。
2)将所述调节层进行表面改性;所述调节层的表面改性方法为化学蚀刻、等离子处理、离子注入、表面接枝、离子束辐照、准分子激光蚀刻或其复合工艺,提高调节层与过渡层的剥离强度。
3)在改性的调节层表面形成过渡层;所述过渡层厚度为0.01-0.5微米,优选0.05-0.3微米;过渡层所用材料为金属材料、铁氧体、碳纳米管中的一种;其中,所述的金属材料为这些金属单质中的一种:铝、钛、锌、铁、镍、铬、钴、铜、银、金、钼;或者为这些金属单质中的至少两种形成的合金。所述过渡层的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺。
4)在过渡层表面形成金属铜层。所述铜层的厚度为0.5-50微米,优选5-20微米。所述铜层4的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺。
实施例4:
一种高剥离强度挠性覆铜板:包括有机聚合物膜层,有机聚合物膜层至少一面之上设置有调节层,所述调节层的另一侧设置有一层以上过渡层,所述过渡层的另一侧设置有铜层。其中,所述调节层可提高有机聚合物膜层与金属层的剥离强度。
一种高剥离强度挠性覆铜板的制作方法,其包括的具体制作步骤如下:
1)将有机聚合物膜层的至少一面进行表面改性;所述有机聚合物膜层的厚度为5-125微米,优选5-50微米;所述有机聚合物膜层的材料为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚砜、聚苯硫醚、聚醚醚酮、聚苯醚、聚四氟乙烯、液晶聚合物、聚乙二酰脲中的至少一种。所述的有机聚合物膜层的表面改性方法选自化学蚀刻、等离子处理、离子注入、表面接枝、离子束辐照、准分子激光蚀刻或其复合工艺,以便于提高有机聚合物膜层与调节层的剥离强度。
2)在改性的有机聚合物膜层的改性面上形成调节层;所述调节层的特性为以下七种情形之一:
Ⅰ)制成调节层的材料选自下列树脂中的一种:热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类树脂,厚度为0.05-30微米,优选0.5-5微米;Ⅱ)或是,所述调节层由基体树脂和填料组成,厚度为0.05-30微米,优选0.5-6微米;基体树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;填料为二氧化硅、氢氧化铝、碳酸钙、二氧化钛、氧化铝、氢氧化镁、碳酸镁、碳化硅、硫酸钡、云母粉、硅微粉、滑石粉、高岭土中的至少一种;填料占基体树脂的体积百分比为1%-50%,优选3%-20%;Ⅲ)或是,所述调节层由树脂和催化剂溶液制成,所述调节层的厚度为0.05-30微米;优选为0.5-10微米;树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;
优选的,所述的催化剂溶液为铁系元素和/或铂系元素的盐与有机溶剂形成的溶液;
进一步优选的,为钯盐与乙醇或丙酮形成的溶液;
调节层的制成方法为:将树脂与钯盐的乙醇或丙酮溶液混合,160-180℃下固化,再将调节层固化后的板浸泡在60-80℃的还原剂溶液(如次磷酸钠溶液)中处理1-60min,取出干燥即可;
从而,至少在树脂的表面有一些零价Pd,这样,在此调节层上形成过渡层时,可以增强调节层与过渡层的结合力;
Ⅳ)或是,所述调节层由偶联剂、表面活性剂、有机硅、有机低聚物表面改性剂中的至少一种制成,其厚度为10-100纳米;优选为10-50纳米;Ⅴ)或是,所述调节层为Ⅰ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-5微米;Ⅵ)或是,所述调节层为Ⅱ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-6微米。Ⅶ)或是,所述调节层为Ⅲ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;优选为0.5-10微米。通过调节层增加有机聚合物膜层与过渡层的剥离强度。
3)将所述调节层进行表面改性;所述调节层的表面改性方法选自化学蚀刻、等离子处理、离子注入、表面接枝、离子束辐照、准分子激光蚀刻或其复合工艺,提高调节层与过渡层的剥离强度。
4)在改性的调节层表面形成过渡层;所述过渡层厚度为0.01-0.5微米,优选0.05-0.3微米;过渡层所用材料为金属材料、铁氧体、碳纳米管中的一种;其中,所述的金属材料为这些金属单质中的一种:铝、钛、锌、铁、镍、铬、钴、铜、银、金、钼;或者为这些金属单质中的至少两种形成的合金。所述过渡层的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺。
5)在过渡层表面形成金属铜层。所述铜层的厚度为0.5-50微米,优选5-20微米。所述铜层的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺。
实施例5:
一种高剥离强度挠性覆铜板:包括聚合物膜层,有机聚合物膜层一侧表面上设置有调节层,所述调节层的另一侧设置有一层过渡层,所述过渡层的另一侧设置有铜层。其中,所述调节层可提高有机聚合物膜层与金属层的剥离强度。
一种高剥离强度挠性覆铜板的制作方法,其具体制作步骤如下:
1)在有机聚合物膜层一侧表面上形成调节层;所述有机聚合物膜层为12.5微米的聚酰亚胺薄膜,所述调节层为涂覆方法形成的改性聚氨酯层,厚度为1微米。
2)在调节层表面形成过渡层;所述过渡层是通过溅射的方法形成的0.02微米的铜层。
3)在过渡层表面形成金属铜层。所述铜层的厚度为8微米,形成方式为采用溅射镀与电镀的复合工艺。挠性覆铜板的剥离强度为10N/cm,288℃漂锡10秒之后剥离强度为9.2N/cm。
其中,步骤1)通过1微米厚的调节层改变有机聚合物膜层的表面粗糙度,以便于提高挠性覆铜板的剥离强度,与现有的方法(化学蚀刻、表面接枝等)相比,剥离强度变大的同时不影响产品的物理机械性能,而且调节层的表面非常稳定,适合大批量卷状生产。
同时,本发明的发明人发现在形成调节层之前,对有机聚合物膜层进行表面处理,或对调节层进行表面处理均会进一步提高剥离强度,同时对有机聚合物膜层和调节层进行表面处理,剥离强度更大。
实施例6:
一种高剥离强度挠性覆铜板:包括聚合物膜层,其在有机聚合物膜层一侧表面设置有调节层,所述调节层的另一侧设置有一层过渡层,所述过渡层的另一侧设置有铜层。其中,所述调节层可提高有机聚合物膜层与金属层的剥离强度。
一种高剥离强度挠性覆铜板的制作方法,其具体制作步骤如下:
1)在有机聚合物膜层一侧表面形成调节层;所述有机聚合物膜层为12.5微米的聚酰亚胺薄膜,所述调节层为改性聚氨酯和云母粉的混合物制成,云母粉占改性聚氨酯的体积百分比为3%,调节层的厚度为1微米。
2)在调节层表面形成过渡层;所述过渡层是通过溅射的方法形成的0.02微米的铜层。
3)在过渡层表面形成金属铜层。所述铜层的厚度为8微米,采用溅射镀与电镀的复合工艺。挠性覆铜板的剥离强度为11.5N/cm,288℃漂锡10秒之后剥离强度为10N/cm。
本实施例与实施例5相比,由于调节层中少量填料的加入使得有机聚合物膜层的表面粗糙度更大,挠性覆铜板的剥离强度更大。
同时,本发明的发明人发现在形成调节层之前,对有机聚合物膜层进行表面处理,或对调节层进行表面处理均会进一步提高剥离强度,同时对有机聚合物膜层和调节层进行表面处理,剥离强度更大。
实施例7:
一种高剥离强度挠性覆铜板:包括聚合物膜层,其在有机聚合物膜层一侧表面设置有调节层,所述调节层的另一侧设置有一层过渡层,所述过渡层的另一侧设置有铜层。其中,所述调节层可提高有机聚合物膜层与金属层的剥离强度。
一种高剥离强度挠性覆铜板的制作方法,其具体制作步骤如下:
1)在有机聚合物膜层一侧表面形成调节层;所述有机聚合物膜层为12.5微米的聚酰亚胺薄膜,所述调节层为二氯化钯的乙醇溶液和聚氨酯树脂的混合物制成,调节层的制成方法为:将树脂与二氯化钯的乙醇溶液混合,160-180℃下固化,再将调节层固化后的板浸泡在60-80℃的还原剂溶液(如次磷酸钠溶液)中处理1-60min,最后调节层的厚度为5微米。
2)在调节层表面形成过渡层;所述过渡层是0.02微米的铜层。
3)在过渡层表面形成金属铜层。采用电镀工艺形成厚度为8微米铜层。挠性覆铜板的剥离强度为11.8N/cm,288℃漂锡10秒之后剥离强度为10N/cm。
本实施例与实施例6相比,由于调节层的表面至少分布有零价Pd,再形成过渡层,然后形成金属铜层,这种方法可以提高调节层与过渡层的结合力,进而提高挠性覆铜板的剥离强度。
同时,本发明的发明人发现在形成调节层之前,对有机聚合物膜层进行表面处理,或对调节层进行表面处理均会进一步提高剥离强度,同时对有机聚合物膜层和调节层进行表面处理,剥离强度更大。
实施例8:
一种高剥离强度挠性覆铜板:包括聚合物膜层,其在有机聚合物膜层一侧表面设置有调节层,所述调节层的另一侧设置有一层过渡层,所述过渡层的另一侧设置有铜层。其中,所述调节层可提高有机聚合物膜与金属层的剥离强度。
一种高剥离强度挠性覆铜板的制作方法,其包括的具体制作步骤如下:
1)在有机聚合物膜层表面形成调节层;所述有机聚合物膜层为12.5微米的聚酰亚胺薄膜,调节层为用有机低聚物表面改性剂形成的0.01微米的调节层,通过调节层,增加有机聚合物膜层与过渡层的剥离强度。
2)在调节层表面形成过渡层;所述过渡层是通过溅射的方法形成的0.02微米的铜层。
3)在过渡层表面形成金属铜层。所述铜层的厚度为8微米,采用溅射镀与电镀的复合工艺。挠性覆铜板的剥离强度为9.9N/cm,288℃漂锡10秒之后剥离强度为8N/cm。
其中,步骤1)是在有机聚合物膜层表面涂覆0.01微米的有机低聚物类表面改性剂,其意义在于通过化学的方法增加有机聚合物膜层的表面极性基团,进而提高挠性覆铜板的剥离强度。
同时,本发明的发明人发现在形成调节层之前,对有机聚合物膜层进行表面处理,或对调节层进行表面处理均会进一步提高剥离强度,同时对有机聚合物膜层和调节层进行表面处理,剥离强度更大。
实施例9:
一种高剥离强度挠性覆铜板:包括聚合物膜层,其在有机聚合物膜层一侧表面设置有第一调节层,第一调节层的另一侧设置有第二调节层,所述第二调节层的另一侧设置有一层过渡层,所述过渡层的另一侧设置有铜层。其中,所述调节层可提高有机聚合物膜与金属层的剥离强度。
一种高剥离强度挠性覆铜板的制作方法,其包括的具体制作步骤如下:
1)在有机聚合物膜层表面形成第一调节层;所述有机聚合物膜层为12.5微米的聚酰亚胺薄膜,第一调节层为用硅烷偶联剂形成的10纳米厚的调节层,通过第一调节层,增加有机聚合物膜层与第二调节层的剥离强度。
2)在第一调节层表面形成第二调节层;所述第二调节层为改性聚氨酯,厚度为3微米,通过第一、第二调节层增加有机聚合物膜层与过渡层的剥离强度。
3)在第二调节层表面形成过渡层;所述过渡层是通过溅射的方法形成的0.02微米的铜层。
4)在过渡层表面形成金属铜层。所述铜层的厚度为8微米,采用溅射镀与电镀的复合工艺。挠性覆铜板的剥离强度为12.5N/cm,288℃漂锡10秒之后剥离强度为10N/cm。
其中,步骤1)是在有机聚合物膜层表面先涂覆10纳米厚的硅烷偶联剂形成第一调节层,再通过步骤2)在第一调节层表面涂覆改性聚氨酯,其意义在于先通过化学的方法增加有机聚合物膜层的表面极性基团,增大其与第二调节层的剥离强度,进而通过设置第二调节层改变有机聚合物膜层的表面粗糙度,最终达到提高挠性覆铜板的剥离强度的目的。
同时,本发明的发明人发现在形成调节层之前,对有机聚合物膜层进行表面处理,或对第二调节层进行表面处理均会进一步提高剥离强度,同时对有机聚合物膜层和第二调节层进行表面处理,剥离强度更大。
实施例10:
一种高剥离强度挠性覆铜板:包括聚合物膜层,其在有机聚合物膜层一侧表面设置有第一调节层,第一调节层的另一侧设置有第二调节层,所述第二调节层的另一侧设置有一层过渡层,所述过渡层的另一侧设置有铜层。其中,所述调节层可提高有机聚合物膜层与金属层的剥离强度。
一种高剥离强度挠性覆铜板的制作方法,其包括的具体制作步骤如下:
1)在有机聚合物膜层表面形成第一调节层;所述有机聚合物膜层为12.5微米的聚酰亚胺薄膜,第一调节层为用硅烷偶联剂形成的10纳米厚的调节层,通过第一调节层,增加有机聚合物膜层与第二调节层的剥离强度。
2)在第一调节层表面形成第二调节层;所述第二调节层为改性聚氨酯和云母粉的混合物制成,云母粉占改性聚氨酯的体积百分比为3%,第二调节层的厚度为3微米,通过第一、第二调节层增加有机聚合物膜层与过渡层的剥离强度。
3)在第二调节层表面形成过渡层;所述过渡层是通过溅射的方法形成的0.02微米的铜层。
4)在过渡层表面形成金属铜层。所述铜层的厚度为8微米,采用溅射镀与电镀的复合工艺。挠性覆铜板的剥离强度为13.2N/cm,288℃漂锡10秒之后剥离强度为11N/cm。
其中,步骤1)是在有机聚合物膜层表面先涂覆10纳米厚的硅烷偶联剂形成第一调节层,再通过步骤2)在第一调节层表面涂覆包含填料的改性聚氨酯,其意义在于是先通过化学的方法增加有机聚合物膜层的表面极性基团,增大其与第二调节层的剥离强度,进而通过设置第二调节层改变有机聚合物膜层的表面粗糙度,由于第二调节层中含有少量填料,与实施例8相比,有机聚合物膜层的表面粗糙度更大,挠性覆铜板的剥离强度更高。
同时,本发明的发明人发现在形成调节层之前,对有机聚合物膜层进行表面处理,或对第二调节层进行表面处理均会进一步提高剥离强度,同时对有机聚合物膜层和第二调节层进行表面处理,剥离强度更大。
实施例11:
一种高剥离强度挠性覆铜板:包括聚合物膜层,其在有机聚合物膜层一侧表面设置有第一调节层,第一调节层的另一侧设置有第二调节层,所述第二调节层的另一侧设置有一层过渡层,所述过渡层的另一侧设置有铜层。其中,所述调节层可提高有机聚合物膜层与金属层的剥离强度。
一种高剥离强度挠性覆铜板的制作方法,其包括的具体制作步骤如下:
1)在有机聚合物膜层表面形成第一调节层;所述有机聚合物膜层为12.5微米的聚酰亚胺薄膜,第一调节层为用硅烷偶联剂形成的10纳米厚的调节层,通过第一调节层,增加有机聚合物膜层与第二调节层的剥离强度。
2)在第一调节层表面形成第二调节层;所述第二调节层为二氯化钯的乙醇溶液和聚氨酯树脂的混合物制成,调节层的制成方法为:将树脂与二氯化钯的乙醇溶液混合,160-180℃下固化,再将调节层固化后的板浸泡在60-80℃的还原剂溶液(如次磷酸钠溶液)中处理1-60min,取出干燥即可;最后调节层的厚度为5微米。
3)在第二调节层表面形成过渡层;所述过渡层是0.02微米的铜层。
4)在过渡层表面形成金属铜层。采用电镀工艺形成厚度为8微米铜层。挠性覆铜板的剥离强度为13.7N/cm,288℃漂锡10秒之后剥离强度为11N/cm。
其中,步骤1)是在有机聚合物膜层表面先涂覆10纳米厚的硅烷偶联剂形成第一调节层,再通过步骤2)在第一调节层表面形成包含催化剂的改性聚氨酯,其意义在于是先通过化学的方法增加有机聚合物膜层的表面极性基团,增大其与第二调节层的剥离强度,第二调节层的表面至少分布有零价Pd,再再形成过渡层,然后形成金属铜层,这种方法可以提高调节层与过渡层的结合力,进而提高挠性覆铜板的剥离强度。
同时,本发明的发明人发现在形成调节层之前,对有机聚合物膜层进行表面处理,或对第二调节层进行表面处理均会进一步提高剥离强度,同时对有机聚合物膜层和第二调节层进行表面处理,剥离强度更大。
以上所述实施例中,没有对铜层的保护方法做任何限定,根据实际需要可在所述金属铜层表面设置抗氧化保护层,或是将金属铜层粗糙化,便于激光打孔。任何依据本发明的技术实质和铜层保护方法对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
比较例1:
采用涂布层压法:在12微米的铜箔表面涂布5微米的热塑性聚酰亚胺溶液(TPI),进而将12.5微米的PI与其压合并固化,所得挠性覆铜板产品的剥离强度高达11.1N/cm,与实施例5至实施例11相比,剥离强度比实施例6-7、实施例9-11低,比实施例5和实施例8略高,但是其铜箔厚度最薄为12微米,因为超薄铜箔在涂布或层压时容易产生皱褶,甚至出现断裂,很难使用更薄的铜箔进行涂布或层压,使得其在以 HDI(高密度互联基板)技术和COF(Chip on Flex,柔性芯片) 技术为基础的液晶(等离子)显示器、液晶(等离子)电视等中高档精密电子产品中的应用受到了一定的限制,这是涂布与层压法的技术瓶颈。而实施例5至实施例9生产的挠性覆铜板不但剥离强度高,而且铜箔厚度仅8微米,适用于超细线路,HDI线路板。
比较例2:
采用镀覆法:用离子注入的方式改性聚酰亚胺膜的表面,增大其表面活性,聚酰亚胺膜的厚度为12.5微米,然后通过溅射法在已改性的聚酰亚胺膜表面形成金属打底层(0.02微米的镍铜合金层),最终电镀8微米的铜箔,剥离强度仅6N/cm,与实施例5至实施例11相比,剥离强度极低,无法满足使用。
实施例 实施例5 实施例6 实施例7 实施例8 实施例9 实施例10 实施例11 对比例1 对比例2
剥离强度(N/cm) 10 11.5 11.8 9.9 12.5 13.2 13.7 11.1 6

Claims (10)

  1. 一种高剥离强度挠性覆铜板,其特征在于:包括以下层结构:有机聚合物膜层、设置在该有机聚合物膜层至少一面之上的调节层、设置在该调节层表面上的过渡层、设置在过渡层表面上的铜层;其中,所述的过渡层的层数为一层以上。
  2. 根据权利要求1所述的一种高剥离强度挠性覆铜板,其特征在于:所述的有机聚合物膜层的厚度为5-125微米;所述的有机聚合物膜层的材料为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚砜、聚苯硫醚、聚醚醚酮、聚苯醚、聚四氟乙烯、液晶聚合物、聚乙二酰脲中的至少一种。
  3. 根据权利要求1所述的一种高剥离强度挠性覆铜板,其特征在于:所述的调节层为以下Ⅰ)-Ⅶ)所列举的一种:
    Ⅰ)所述调节层由热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类树脂中的至少一种制成,厚度为0.05-30微米;
    Ⅱ)所述调节层由基体树脂和填料的混合物制成,所述调节层的厚度为0.05-30微米;基体树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;填料为二氧化硅、氢氧化铝、碳酸钙、二氧化钛、氧化铝、氢氧化镁、碳酸镁、碳化硅、硫酸钡、云母粉、硅微粉、滑石粉、高岭土中的至少一种;填料占树脂的体积百分比为1%-50%;
    Ⅲ)所述调节层由树脂和催化剂溶液制成,所述调节层的厚度为0.05-30微米;树脂为热塑性聚酰亚胺类、改性环氧树脂类、改性丙烯酸类、改性聚氨酯类、改性酚醛树脂类中的至少一种;
    Ⅳ)所述调节层由偶联剂、表面活性剂、有机硅、有机低聚物表面改性剂中的至少一种制成,其厚度为10-100纳米;
    Ⅴ)所述调节层为Ⅰ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;
    Ⅵ)所述调节层为Ⅱ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米;
    Ⅶ)所述调节层为Ⅲ)与Ⅳ)两类调节层的叠合,厚度为0.05-30微米。
  4. 根据权利要求1所述的一种高剥离强度挠性覆铜板,其特征在于:所述过渡层为单层时,其厚度为0.01-0.5微米;过渡层的层数多于一层时,其总厚度为0.01-0.5微米;过渡层为金属材料、铁氧体、碳纳米管中的一种制成;其中,所述的金属材料为这些金属单质中的一种:铝、钛、锌、铁、镍、铬、钴、铜、银、金、钼;或者为这些金属单质中的至少两种形成的合金;所述过渡层的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺;所述铜层的形成方式选自化学镀方式、PVD、CVD、蒸发镀、溅射镀、电镀或者其复合工艺。
  5. 权利要求1所述的一种高剥离强度挠性覆铜板的制作方法,其特征在于:包括以下步骤:
    1)在有机聚合物膜层至少一面形成调节层;
    2)在调节层表面形成一层以上过渡层;
    3)在过渡层的表面形成金属铜层。
  6. 权利要求1所述的一种高剥离强度挠性覆铜板的制作方法,其特征在于:包括以下步骤:
    1)将有机聚合物膜层的至少一面进行表面改性,在改性后的有机聚合物膜层至少一面形成调节层;
    2)在调节层表面形成一层以上过渡层;
    3)在过渡层的表面形成金属铜层。
  7. 权利要求1所述的一种高剥离强度挠性覆铜板的制作方法,其特征在于:包括以下步骤:
    1)在有机聚合物膜层至少一面形成调节层;
    2)将所述调节层进行表面改性;
    3)在改性的调节层表面形成一层以上过渡层;
    4)在过渡层的表面形成金属铜层。
  8. 权利要求1所述的一种高剥离强度挠性覆铜板的制作方法,其特征在于:包括以下步骤:
    1)将有机聚合物膜层的至少一面进行表面改性;
    2)在改性后的有机聚合物膜层至少一面形成调节层;
    3)将所述调节层进行表面改性;
    4)在改性的调节层表面形成一层以上过渡层;
    5)在过渡层的表面形成金属铜层。
  9. 根据权利要求5-8中任一项所述一种高剥离强度挠性覆铜板的制作方法,其特征在于:所述的有机聚合物膜层或调节层的表面改性方法选自化学蚀刻、等离子处理、离子注入、表面接枝、离子束辐照、准分子激光蚀刻或其复合工艺。
  10. 根据权利要求5-8中任一项所述的一种高剥离强度挠性覆铜板的制作方法,其特征在于:还包括步骤:形成金属铜层后,根据需要在金属铜层表面形成抗氧化保护层;或者,将金属铜层粗糙化。
PCT/CN2014/094379 2014-12-02 2014-12-19 一种高剥离强度挠性覆铜板及其制作方法 WO2016086468A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177001362A KR101994855B1 (ko) 2014-12-02 2014-12-19 고박리강도의 연성 동박 적층판 및 그의 제조방법
US15/318,946 US20170273188A1 (en) 2014-12-02 2014-12-19 Flexible Copper Clad Laminate Having High Peel Strength and Manufacturing Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410723337.5 2014-12-02
CN201410723337.5A CN104476847B (zh) 2014-12-02 2014-12-02 一种高剥离强度挠性覆铜板及其制作方法

Publications (1)

Publication Number Publication Date
WO2016086468A1 true WO2016086468A1 (zh) 2016-06-09

Family

ID=52751516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094379 WO2016086468A1 (zh) 2014-12-02 2014-12-19 一种高剥离强度挠性覆铜板及其制作方法

Country Status (4)

Country Link
US (1) US20170273188A1 (zh)
KR (1) KR101994855B1 (zh)
CN (1) CN104476847B (zh)
WO (1) WO2016086468A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534802A (zh) * 2020-04-21 2020-08-14 江西沃格光电股份有限公司 柔性复合膜及其制备方法、电子器件

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267870B (zh) * 2016-12-30 2021-03-30 财团法人工业技术研究院 铜箔复材
CN106658957A (zh) * 2017-03-20 2017-05-10 成都多吉昌新材料股份有限公司 一种全聚酰亚胺型可挠性覆铜基板及集成电路板
CN107728392B (zh) * 2017-10-26 2020-08-14 合肥鑫晟光电科技有限公司 一种阵列基板及其制备方法、液晶显示面板
CN108842136A (zh) * 2018-06-21 2018-11-20 张家港康得新光电材料有限公司 柔性覆铜板及其制造工艺
CN108697007A (zh) * 2018-06-21 2018-10-23 张家港康得新光电材料有限公司 一种柔性覆铜板
KR102135093B1 (ko) * 2018-08-10 2020-07-17 엘지전자 주식회사 플렉서블 투명 디스플레이 시트 및 이를 구비하는 영상표시장치
CN110862567A (zh) * 2019-10-30 2020-03-06 深圳丹邦科技股份有限公司 一种超柔韧高导电导热性柔性基材及其制备方法
WO2021087992A1 (zh) * 2019-11-08 2021-05-14 常德菲尔美化工技术有限公司 基于聚酰亚胺的微孔材料的制作方法
TW202206286A (zh) 2020-07-28 2022-02-16 美商聖高拜塑膠製品公司 介電基板及其形成方法
CN116530220A (zh) 2020-12-16 2023-08-01 美国圣戈班性能塑料公司 介电基板及其形成方法
CN113500834B (zh) * 2021-04-08 2023-04-28 中山新高电子材料股份有限公司 一种高剥离强度氟系柔性覆铜板及其制备方法
CN113692111B (zh) * 2021-08-24 2022-08-23 江苏耀鸿电子有限公司 一种高耐蚀性柔性覆铜板及其制备方法
CN113667952B (zh) * 2021-08-27 2022-07-12 江苏耀鸿电子有限公司 一种磁控溅射柔性覆铜基板及其制备方法
CN114013059B (zh) * 2021-11-08 2023-08-04 芜湖精益达模塑股份有限公司 一种注塑高频覆铜板的制造方法
CN113926703A (zh) * 2021-11-17 2022-01-14 陈波 一种电成型筛网的制作方法
CN114290769B (zh) * 2021-12-30 2023-04-21 电子科技大学中山学院 一种金属板、绝缘金属板及其制备方法和应用
CN116512699B (zh) * 2023-07-03 2023-09-01 山东森荣新材料股份有限公司 一种双面柔性覆铜板的制备方法及应用
CN118136854B (zh) * 2024-05-08 2024-08-23 常州欣盛半导体技术股份有限公司 复合集流体及其制备方法、电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340774A (zh) * 2008-08-01 2009-01-07 浙江大学 柔性无胶覆铜板及其制备方法
CN101374388A (zh) * 2008-03-28 2009-02-25 苏陟 一种高剥离强度的细线路挠性电路板的制作方法
KR20090081908A (ko) * 2008-01-25 2009-07-29 엘에스엠트론 주식회사 연성 동박 적층판
WO2010010892A1 (ja) * 2008-07-22 2010-01-28 古河電気工業株式会社 フレキシブル銅張積層板
JP2012004448A (ja) * 2010-06-18 2012-01-05 Fujitsu Semiconductor Ltd 半導体装置の製造方法
CN103772704A (zh) * 2013-11-12 2014-05-07 天津市天缘电工材料有限责任公司 一种低摩擦系数高粘结力聚酰亚胺薄膜的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348574A (en) * 1993-07-02 1994-09-20 Monsanto Company Metal-coated polyimide
WO2002059209A1 (fr) * 2001-01-24 2002-08-01 Toray Engineering Company,Limited Solution de precurseur de resines polyimides, lamines pour composants electroniques fabriques a l'aide desdites solutions, et procede de production desdits lamines
US7749611B2 (en) * 2002-12-05 2010-07-06 Gbc Metals, L.L.C. Peel strength enhancement of copper laminates
TW200500204A (en) * 2002-12-05 2005-01-01 Kaneka Corp Laminate, printed circuit board and method for manufacturing them
CN1329186C (zh) * 2004-05-20 2007-08-01 山东天诺光电材料有限公司 一种绕性覆铜板的制备方法
JP5133724B2 (ja) * 2008-02-04 2013-01-30 新日鉄住金化学株式会社 ポリイミド樹脂積層体の製造方法及び金属張積層板の製造方法
KR101064816B1 (ko) * 2009-04-03 2011-09-14 주식회사 두산 폴리아믹산 용액, 폴리이미드 수지 및 이를 이용한 연성 금속박 적층판
CN102009506A (zh) * 2010-07-16 2011-04-13 广东生益科技股份有限公司 双面挠性覆铜板及其制作方法
CN102975425B (zh) * 2012-11-22 2015-04-15 云南云天化股份有限公司 具有过渡结合层的聚酰亚胺薄膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090081908A (ko) * 2008-01-25 2009-07-29 엘에스엠트론 주식회사 연성 동박 적층판
CN101374388A (zh) * 2008-03-28 2009-02-25 苏陟 一种高剥离强度的细线路挠性电路板的制作方法
WO2010010892A1 (ja) * 2008-07-22 2010-01-28 古河電気工業株式会社 フレキシブル銅張積層板
CN101340774A (zh) * 2008-08-01 2009-01-07 浙江大学 柔性无胶覆铜板及其制备方法
JP2012004448A (ja) * 2010-06-18 2012-01-05 Fujitsu Semiconductor Ltd 半導体装置の製造方法
CN103772704A (zh) * 2013-11-12 2014-05-07 天津市天缘电工材料有限责任公司 一种低摩擦系数高粘结力聚酰亚胺薄膜的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534802A (zh) * 2020-04-21 2020-08-14 江西沃格光电股份有限公司 柔性复合膜及其制备方法、电子器件
CN111534802B (zh) * 2020-04-21 2023-01-24 江西沃格光电股份有限公司 柔性复合膜及其制备方法、电子器件

Also Published As

Publication number Publication date
CN104476847A (zh) 2015-04-01
CN104476847B (zh) 2017-05-17
KR101994855B1 (ko) 2019-07-01
KR20170018951A (ko) 2017-02-20
US20170273188A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
WO2016086468A1 (zh) 一种高剥离强度挠性覆铜板及其制作方法
US7818877B2 (en) Formation method of metal layer on resin layer
US4555414A (en) Process for producing composite product having patterned metal layer
US5800650A (en) Flexible multilayer printed circuit boards and methods of manufacture
US7507434B2 (en) Method and apparatus for laminating a flexible printed circuit board
KR100951939B1 (ko) 연성인쇄회로기판의 제조방법
US20050118438A1 (en) Process for preparing metal-coated aromatic polyimide film
KR100727716B1 (ko) 연성금속 적층판 및 그 제조방법
JP2002280684A (ja) フレキシブル銅張回路基板とその製造方法
JP4301924B2 (ja) 多角形状の剛性フレームと、該フレームに接着されて広がっている誘電体材料で作られた可撓性フィルムとを備える組立体
JP2004273577A (ja) シールドフィルムおよびその製造方法
WO2002094558A1 (en) Heat-resistant resin film with metal layer and wiring board, and method for manufacturing them
KR20060124505A (ko) 연성금속 적층판 및 그 제조방법
US20020092163A1 (en) Mounting a flexible printed circuit to a heat sink
JP2003127275A (ja) 銅張積層基板
JPH10173342A (ja) 多層フレックスリジッド配線板及びその製造方法
KR102259097B1 (ko) 접착 필름, 이를 포함하는 접착 필름 부착 적층체 및 이를 포함하는 금속박 적층체
JP2006283023A (ja) 蒸着法による金属薄膜形成用のポリイミドフィルム
KR20120068112A (ko) 고 접착력 연성금속적층판의 제조방법
JP4032831B2 (ja) 放電処理ポリイミドフィルム、放電処理方法、金属薄膜付きポリイミドフィルムおよびその製造方法
US20040110024A1 (en) Electro-conductive metal plated polyimide substrate
WO2005051652A1 (ja) 金属被覆基板及びその製造方法
JPH08148825A (ja) 配線板の製造方法
JP2006310643A (ja) フレキシブルプリント配線板
KR101603318B1 (ko) 기능성 필름, 이를 포함하는 연성회로기판, 및 기판에 대한 기능성 필름 접지 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15318946

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177001362

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907349

Country of ref document: EP

Kind code of ref document: A1