WO2016080245A1 - 殺菌作用を備えた表面を有する合成高分子膜 - Google Patents

殺菌作用を備えた表面を有する合成高分子膜 Download PDF

Info

Publication number
WO2016080245A1
WO2016080245A1 PCT/JP2015/081608 JP2015081608W WO2016080245A1 WO 2016080245 A1 WO2016080245 A1 WO 2016080245A1 JP 2015081608 W JP2015081608 W JP 2015081608W WO 2016080245 A1 WO2016080245 A1 WO 2016080245A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic polymer
film
polymer film
bacteria
aluminum
Prior art date
Application number
PCT/JP2015/081608
Other languages
English (en)
French (fr)
Inventor
美穂 山田
箕浦 潔
隆裕 中原
賢 厚母
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201580015728.4A priority Critical patent/CN106133033B/zh
Priority to JP2016514182A priority patent/JP5933151B1/ja
Priority to US15/126,078 priority patent/US10251393B2/en
Publication of WO2016080245A1 publication Critical patent/WO2016080245A1/ja
Priority to US16/275,072 priority patent/US20190174752A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/12Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a synthetic polymer film having a surface having a bactericidal action, a sterilization method using the surface of the synthetic polymer film, a mold for producing the synthetic polymer film, and a method for producing the mold.
  • the “mold” here includes molds used in various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
  • Non-Patent Document 1 The physical structure of the nanopillars of black silicon, cicada and dragonfly wings is said to exert bactericidal action.
  • black silicon has the strongest bactericidal action against Gram-negative bacteria, and becomes weaker in the order of dragonfly wings and cicada wings.
  • Black silicon has nanopillars with a height of 500 nm, and semi and dragonfly wings have nanopillars with a height of 240 nm.
  • the static contact angle of water on these surfaces (hereinafter sometimes simply referred to as “contact angle”) is 80 ° for black silicon, whereas 153 ° for dragonfly, 159 °.
  • Black silicon is mainly formed from silicon, and the wings of cicada and dragonfly are considered to be formed from chitin.
  • the composition of the surface of black silicon is approximately silicon oxide, and the composition of the surfaces of semi- and dragonfly wings is lipid.
  • Non-Patent Document 1 From the results described in Non-Patent Document 1, the mechanism by which bacteria are killed by nanopillars is not clear. In addition, the reason why black silicon has a stronger bactericidal action than dragonflies and semi-wings is the difference in height and shape of nanopillars, or the difference in surface free energy (which can be evaluated by contact angle). It is unclear whether it is in the constituent material or the chemical nature of the surface.
  • black silicon has a problem that it is poor in mass productivity and has low formability because it is hard and brittle.
  • the present invention has been made to solve the above-mentioned problems, and its main purpose is a synthetic polymer film having a surface having a bactericidal action, a sterilization method using the surface of the synthetic polymer film, and a synthesis.
  • An object of the present invention is to provide a mold and a mold manufacturing method for manufacturing a polymer film.
  • a synthetic polymer film according to an embodiment of the present invention is a synthetic polymer film having a surface having a plurality of convex portions, and when viewed from the normal direction of the synthetic polymer film, 2 of the plurality of convex portions.
  • the dimensional size is in the range of more than 20 nm and less than 500 nm, the surface has a bactericidal effect, and the concentration of nitrogen element contained in the surface is 0.7 at% or more.
  • the synthetic polymer film includes a urethane resin.
  • the urethane resin has less than 10 functional groups.
  • the urethane resin has less than 6 functional groups.
  • the synthetic polymer film has any one of an amino group, an isocyanate group, and a cyano group.
  • the synthetic polymer film may have any one of an amino group, an isocyanate group, and a cyano group on the surface.
  • the synthetic polymer film includes a compound whose terminal functional group is —NH 2 or —NHR (wherein R represents a hydrocarbon group).
  • the synthetic polymer film includes a coupling agent having any of an amino group, an isocyanate group, and a cyano group.
  • the synthetic polymer film has the coupling agent on the surface, and the concentration of nitrogen atoms contained in the coupling agent is 0.7 at% or more.
  • the synthetic polymer film includes an alkali metal salt or an alkaline earth metal salt.
  • the synthetic polymer film includes a lithium salt.
  • a synthetic polymer film according to another embodiment of the present invention is a synthetic polymer film having a surface having a plurality of protrusions, and the plurality of protrusions when viewed from the normal direction of the synthetic polymer film.
  • the two-dimensional size is in the range of more than 20 nm and less than 500 nm, the surface has a bactericidal effect, and the concentration of sulfur element contained in the surface is 3.7 at% or more.
  • the synthetic polymer film has a mercapto group.
  • the synthetic polymer film may have a mercapto group on the surface.
  • the synthetic polymer film includes a compound whose terminal functional group is —SH.
  • the synthetic polymer film includes a coupling agent having a mercapto group.
  • the synthetic polymer film has the coupling agent on the surface, and the concentration of sulfur element contained in the coupling agent is 3.7 at% or more.
  • a synthetic polymer film according to still another embodiment of the present invention is a synthetic polymer film having a surface having a plurality of first protrusions, and when viewed from the normal direction of the synthetic polymer film, The two-dimensional size of the plurality of first protrusions is in the range of more than 20 nm and less than 500 nm, and the surface has a bactericidal effect.
  • the distance between the adjacent first convex portions is more than 20 nm and not more than 1000 nm.
  • the height of the plurality of first protrusions is 50 nm or more and less than 500 nm.
  • the plurality of first protrusions may have a height of 150 nm or less.
  • it further includes a plurality of second protrusions formed so as to overlap the plurality of first protrusions, and the two-dimensional size of the plurality of second protrusions is the plurality of It is smaller than the two-dimensional size of the first convex portion and does not exceed 100 nm.
  • the plurality of second convex portions include a substantially conical portion.
  • the height of the plurality of second convex portions is more than 20 nm and not more than 100 nm.
  • a gas or a liquid is brought into contact with the surface of any one of the above synthetic polymer films.
  • a mold according to an embodiment of the present invention is a mold comprising a surface having a plurality of first recesses and a plurality of second recesses formed in the plurality of first recesses, the mold of the mold When viewed from the normal direction of the surface, the two-dimensional size of the plurality of first recesses is in the range of more than 20 nm and less than 500 nm, and the two-dimensional size of the plurality of second recesses is , Smaller than the two-dimensional size of the plurality of first recesses and does not exceed 100 nm.
  • a mold manufacturing method is a method for manufacturing the above mold, wherein (a) preparing an aluminum film deposited on an aluminum substrate or a support; An anodizing step of forming a porous alumina layer having a first recess by applying a first level voltage while the surface of the aluminum substrate or the aluminum film is in contact with the electrolytic solution; ) After the step (b), the porous alumina layer is brought into contact with an etching solution to enlarge the first recess, and (d) after the step (c), the porous alumina layer is Forming a second recess in the first recess by applying a voltage at a second level lower than the first level in contact with the electrolyte; It encompasses.
  • the first level is greater than 40V and the second level is 20V or less.
  • the electrolytic solution is an aqueous oxalic acid solution.
  • a synthetic polymer film having a surface having a bactericidal action a sterilization method using the surface of the synthetic polymer film, a mold for producing the synthetic polymer film, and a method for producing the mold are provided. Is done.
  • (A) And (b) is typical sectional drawing of the synthetic polymer membranes 34A and 34B by embodiment of this invention, respectively.
  • (A)-(e) is a figure for demonstrating the manufacturing method of the moth-eye type
  • (A)-(c) is a figure for demonstrating the manufacturing method of the moth-eye type
  • (A) shows sample film No. 1 in Experiment 1. 1 is a graph showing the results of evaluating the bactericidal properties of Sample No. 1 in FIG.
  • sample film No. 1-No. 5 is a graph showing the results of evaluating the bactericidal property of No. 5, the horizontal axis is the standing time (hours), and the vertical axis indicates the number of bacteria (CFU / mL) in the bacterial dilution B2.
  • the horizontal axis is the standing time (hours), and the vertical axis indicates the number of bacteria (CFU / mL) in the bacterial diluent B2.
  • (A) shows sample film No. 1 in Experiment 6.
  • 19-No. 21 is a graph showing the results of evaluating the bactericidal properties of Sample No. 21, and (b) shows the sample film No. It is a graph which shows the result of having evaluated the bactericidal property of 22.
  • the horizontal axis represents the standing time (hours)
  • the vertical axis represents the number of bacteria (CFU / mL) in the bacterial dilution B2.
  • A shows the SEM image of the surface of an aluminum base material
  • (b) shows the SEM image of the surface of an aluminum film
  • (c) shows the SEM image of the cross section of an aluminum film.
  • (A) is a typical top view of the type
  • (b) is typical sectional drawing
  • (c) is a figure which shows the SEM image of the prototype
  • “Sterilization (microbicidal)” refers to reducing the effective number of objects such as objects and liquids and the number of proliferating microorganisms contained in a limited space.
  • Microorganism includes viruses, bacteria, and fungi.
  • Antimicrobial broadly includes inhibiting and preventing the growth of microorganisms, and includes inhibiting darkening and slimming caused by microorganisms.
  • the present applicant has developed a method of manufacturing an antireflection film (antireflection surface) having a moth-eye structure using an anodized porous alumina layer.
  • anodized porous alumina layer By using the anodized porous alumina layer, a mold having an inverted moth-eye structure can be manufactured with high mass productivity (for example, Patent Documents 1 to 4).
  • Patent Documents 1 to 4 For reference, the entire disclosure of Patent Documents 1 to 4 is incorporated herein by reference.
  • the antireflection film disposed on the surface of the liquid crystal television manufactured and sold by the present applicant has hydrophilicity. This is for facilitating wiping off oil such as fingerprints attached to the moth-eye structure. If the moth-eye structure is not hydrophilic, the aqueous cleaning liquid cannot effectively enter between the convex parts of the moth-eye structure, and the oil and fat cannot be wiped off.
  • the present inventor has developed a synthetic polymer film having a bactericidal effect on the surface by applying the above technique.
  • FIGS. 1A and 1B are schematic cross-sectional views of synthetic polymer membranes 34A and 34B according to an embodiment of the present invention, respectively.
  • the synthetic polymer films 34A and 34B exemplified here are both formed on the base films 42A and 42B, respectively, but of course not limited thereto.
  • Synthetic polymer films 34A and 34B can be formed directly on the surface of any object.
  • a film 50A shown in FIG. 1A includes a base film 42A and a synthetic polymer film 34A formed on the base film 42A.
  • the synthetic polymer film 34A has a plurality of convex portions 34Ap on the surface, and the plurality of convex portions 34Ap constitutes a moth-eye structure.
  • the two-dimensional size D p of the convex portion 34Ap is in the range of more than 20 nm and less than 500 nm.
  • the “two-dimensional size” of the protrusion 34Ap refers to the area equivalent circle diameter of the protrusion 34Ap when viewed from the normal direction of the surface.
  • the two-dimensional size of the convex portion 34Ap corresponds to the diameter of the bottom surface of the cone.
  • a typical inter-adjacent distance D int of the convex portion 34Ap is more than 20 nm and not more than 1000 nm.
  • the two-dimensional size D p of the portion 34Ap is equal to the inter-adjacent distance D int .
  • a typical height D h of the convex portion 34Ap is not less than 50 nm and less than 500 nm. As will be described later, even if the height D h of the convex portion 34Ap is 150 nm or less, the bactericidal action is exhibited. There is no particular limitation on the thickness t s of the synthetic polymer film 34A, be greater than the height D h of the convex portion 34Ap.
  • the surface of the synthetic polymer film 34A has bactericidal properties.
  • the concentration of nitrogen element contained on the surface of the synthetic polymer film 34A is 0.7 at% or more.
  • the surface of the synthetic polymer film 34A has a physical structure (convex portion 34Ap) and the chemical properties of the surface of the synthetic polymer film 34A containing nitrogen element.
  • the molecular film 34A has an excellent bactericidal effect.
  • the convex portion 34Ap is considered to be capable of causing death by destroying the cell wall of Pseudomonas aeruginosa, which is a kind of Gram-negative bacteria. .
  • a more excellent bactericidal effect can be obtained depending on the chemical properties of the surface of the synthetic polymer film 34A. Details will be described later.
  • the surface of the synthetic polymer film 34A may contain 3.7 at% or more of sulfur element instead of containing 0.7 at% or more of nitrogen element.
  • the surface of the synthetic polymer film 34A may contain 0.7 at% or more of nitrogen and 3.7 at% or more of sulfur.
  • the synthetic polymer film 34A shown in FIG. 1A has a moth-eye structure similar to that of the antireflection film described in Patent Documents 1 to 4.
  • the surface has no flat portion and the convex portions 34Ap are densely arranged.
  • the convex portion 34Ap has a shape in which a cross-sectional area (a cross section parallel to the plane orthogonal to the incident light beam, for example, a cross section parallel to the surface of the base film 42A) increases from the air side toward the base film 42A side, for example, A conical shape is preferred.
  • the protrusions 34Ap preferably randomly so as not to have regularity.
  • the convex portions 34A need not be densely arranged, and may be regularly arranged.
  • the shape and arrangement of the convex portions 34Ap are preferably selected so as to effectively act on microorganisms.
  • the 1B includes a base film 42B and a synthetic polymer film 34B formed on the base film 42B.
  • the synthetic polymer film 34B has a plurality of protrusions 34Bp on the surface, and the plurality of protrusions 34Bp constitutes a moth-eye structure.
  • the structure of the convex part 34Bp of the synthetic polymer film 34B is different from the structure of the convex part 34Ap of the synthetic polymer film 34A of the film 50A. Description of features common to the film 50A may be omitted.
  • the two-dimensional size D p of the convex portion 34Bp is in the range of more than 20 nm and less than 500 nm.
  • a typical inter-adjacent distance D int of the convex portion 34Bp is more than 20 nm and not more than 1000 nm, and D p ⁇ D int . That is, in the synthetic polymer film 34B, there is a flat portion between the adjacent convex portions 34Bp.
  • the convex portion 34Bp has a cylindrical shape having a conical portion on the air side, and a typical height D h of the convex portion 34Bp is 50 nm or more and less than 500 nm.
  • the convex portions 34Bp may be regularly arranged or irregularly arranged. When the convex portions 34Bp are regularly arranged, D int also represents the period of the arrangement. Of course, the same applies to the synthetic polymer film 34A.
  • the “moth eye structure” is a convex having a shape in which the cross-sectional area (cross section parallel to the film surface) increases like the convex portion 34Ap of the synthetic polymer film 34A shown in FIG.
  • the cross-sectional area (cross section parallel to the film surface) is similar to the convex part 34Bp of the synthetic polymer film 34B shown in FIG.
  • the conical tip does not necessarily have a nano surface structure, and may have a roundness (about 60 nm) that is about the size of a nano pillar that constitutes the nano surface structure of a semi-wing.
  • the bactericidal properties of the synthetic polymer films 34A and 34B are not only the physical structure of the synthetic polymer films 34A and 34B but also the chemical properties of the synthetic polymer films 34A and 34B.
  • the chemical properties of the synthetic polymer film include, for example, the composition of the synthetic polymer film, the components contained in the synthetic polymer film, and the compounds of the synthetic polymer film (including polymer compounds and low molecular compounds). Functional group of According to the study of the present inventors, in order for the synthetic polymer films 34A and 34B to have excellent bactericidal properties, for example, it is preferable to have any of the following chemical properties.
  • a synthetic polymer film is formed using an ultraviolet curable resin (for example, an acrylic resin (including a methacrylic resin))
  • an ultraviolet curable resin for example, an acrylic resin (including a methacrylic resin)
  • other photocurable resins, thermosetting resins, and electron beams are exemplified. The same applies to the case of using a cured resin.
  • the concentration of nitrogen element (N) contained in the surfaces of the synthetic polymer films 34A and 34B is preferably 0.7 at% or more.
  • the concentration of nitrogen element contained on the surfaces of the synthetic polymer films 34A and 34B can be adjusted by selecting the resin material itself that forms the synthetic polymer films 34A and 34B, or a plurality of resin materials are mixed. It can also be adjusted. Or it can also adjust by mixing the material (for example, the following surface treating agent) containing a nitrogen element with the resin material. Any of the above can be combined.
  • the synthetic polymer film is formed using the resin material (including the mixture) having the nitrogen element concentration adjusted to 0.7 at% or more, and thus included in the synthetic polymer films 34A and 34B.
  • the concentration of nitrogen element is 0.7 at% or more. If such a resin material is uniformly used, the concentration of nitrogen element contained in the surfaces of the synthetic polymer films 34A and 34B can be 0.7 at% or more.
  • the concentration of the nitrogen element contained in the resin material (including the mixture) forming the synthetic polymer films 34A and 34B is less than 0.7 at%, the surfaces of the synthetic polymer films 34A and 34B are treated.
  • the concentration of the nitrogen element contained on the surfaces of the synthetic polymer films 34A and 34B can be 0.7 at% or more.
  • a surface treatment agent for example, containing a silane coupling agent, a release agent, an antistatic agent, etc.
  • a thin polymer film is formed on the surfaces of the synthetic polymer films 34A and 34B.
  • the surfaces of the synthetic polymer films 34A and 34B may be modified using plasma or the like.
  • a functional group containing nitrogen element or nitrogen element can be imparted to the surfaces of the synthetic polymer films 34A and 34B by plasma treatment.
  • the above-described surface treatment may be performed in combination with the selection of resin materials (including a mixture) for forming the synthetic polymer films 34A and 34B or independently.
  • the synthetic polymer films 34A and 34B include, for example, a urethane resin.
  • the synthetic polymer films 34A and 34B include, for example, urethane (meth) acrylate, cyano (meth) acrylate, and the like. It is preferable that the urethane resin has, for example, less than 10 functional groups.
  • the number of functional groups of the urethane resin is more preferably less than 6, for example. If the number of functional groups of the urethane resin is large, the viscosity of the resin may increase. In this case, the resin may not easily enter the inverted moth eye structure of the moth eye mold (the mold for forming the moth eye structure on the surface).
  • the antireflection function of the formed antireflection film is effective.
  • the problem of suppression may occur.
  • the molecular weight of the monomer in the resin can be reduced.
  • the crosslink density of the resin is increased, which may cause a problem that it is difficult to peel (separate) the formed antireflection film from the moth-eye mold (decrease in releasability).
  • the resin (part of the film) remains in the inverted moth-eye structure on the surface of the moth-eye mold and / or the workpiece having the resin on the surface (for example, FIG. 1).
  • the base films 42A and 42B) may break.
  • the synthetic polymer films 34A and 34B are composed of an amino group (—NH 2 , —NHR, or —NRR ′: R and R ′ each represent a hydrocarbon group), an isocyanate group (—N ⁇ C ⁇ O) and It preferably has any of cyano groups (—C ⁇ N).
  • the synthetic polymer films 34A and 34B may have a polymer compound having any of the above functional groups, or a surface treatment agent having any of the above functional groups (for example, a silane coupling agent, a release agent). Agent, antistatic agent, etc.).
  • the polymer compound or the surface treatment agent may have a compound in which any one of the above functional groups reacts with and binds to another functional group.
  • the surface treatment agent may be applied to the surfaces of the synthetic polymer films 34A and 34B, or may be mixed with a monomer that forms the synthetic polymer films 34A and 34B.
  • the synthetic polymer films 34A and 34B may include a polymer containing NH in the main chain.
  • the synthetic polymer films 34A and 34B are formed of alkali metal salts (including lithium (Li) salts, sodium (Na) salts, potassium (K) salts), alkaline earth metal salts (for example, calcium (Ca) salts) or magnesium. You may have a salt.
  • the synthetic polymer films 34A and 34B may have, for example, a quaternary ammonium salt.
  • the synthetic polymer membranes 34A and 34B can have more excellent bactericidal properties by having these salts (including metal salts).
  • the synthetic polymer films 34A and 34B may be formed of a polymer containing, for example, an alkali metal salt, an alkaline earth metal salt, a magnesium salt, or a quaternary ammonium salt.
  • a polymer for example, a known antistatic agent (antistatic agent) or conductive agent can be used.
  • antistatic agent antistatic agent
  • the lithium salt for example, LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiSO 3 C 4 F 9, LiC (SO 2 CF 3 ) 3 and LiB (C 6 H 5 ) 4 are included.
  • the above salts may exist as cations (alkali metal ions, alkaline earth metal ions, magnesium ions, or quaternary ammonium cations).
  • the synthetic polymer films 34A and 34B preferably further include, for example, a polymer having an ether bond (for example, polyethylene oxide) and / or a lubricant.
  • the concentration of sulfur element (S) contained on the surfaces of the synthetic polymer films 34A and 34B is 3.7 at% or more.
  • the synthetic polymer film preferably has a mercapto group (—SH).
  • the synthetic polymer film may have a polymer compound having a mercapto group, or may have a surface treatment agent having a mercapto group (for example, a silane coupling agent and a release agent are included).
  • the surface treatment agent may be applied to the surface of the synthetic polymer film or may be mixed with a monomer that forms the synthetic polymer film.
  • the synthetic polymer film preferably contains a compound having —SH at the terminal functional group.
  • the synthetic polymer film may be formed of, for example, an acrylic resin containing copper sulfide.
  • the synthetic polymer membrane may have any one of the first and second chemical properties or both.
  • the present inventor considered the reason why the synthetic polymer film has an excellent bactericidal effect by having the first or second chemical property as follows.
  • the nitrogen element (N) has an electron configuration of (1s) 2 (2s) 2 (2p) 3 and has five valence electrons. Three of these are unpaired electrons, and have one lone electron pair (unshared electron pair).
  • an amino nitrogen element also has a set of lone pairs.
  • the amino group can be coordinated with a hydrogen ion (H + ) because the nitrogen element has a lone pair of electrons. Thereby, an amino group shows basicity.
  • an amino group having a lone pair has nucleophilicity.
  • a compound having an amino group having a lone pair of electrons can act as a ligand and can be coordinated to a metal.
  • a compound containing a nitrogen element can have properties due to a lone pair of electrons contained in the nitrogen element.
  • a nitrogen element of a cyano group (—C ⁇ N) has a pair of lone electrons.
  • the nitrogen element of the isocyanate group (—N ⁇ C ⁇ O) has one set of lone electron pairs, and the oxygen element has two sets of lone electron pairs.
  • Each nitrogen element of the ureido group (—NHC ( ⁇ O) NH 2 ), which is a functional group containing an amino group, has one set of lone electron pairs, and the oxygen element has two sets of lone electron pairs.
  • nitrogen element since nitrogen element has a relatively large electronegativity, it has a large force to attract electrons when combined with other elements (including coordination bonds). That is, a molecule in which a nitrogen element and another element are bonded (including a coordinate bond) often has polarity.
  • the synthetic polymer film containing elemental nitrogen has excellent bactericidal properties because of the characteristics of having the above-mentioned lone pair and having a large electronegativity. . These characteristics are also applicable to elemental sulfur.
  • the elemental sulfur has six valence electrons and two pairs of lone electrons.
  • the synthetic polymer film according to the embodiment of the present invention is not limited to the one having the first or second chemical property.
  • the synthetic polymer film according to the embodiment of the present invention is not limited to a nitrogen element and a sulfur element, and may have any one of a group 15 element, a group 16 element, and a group 17 element on the surface.
  • Group 15 elements for example, nitrogen element (N), phosphorus element (P), etc.
  • Group 16 elements for example, oxygen element (O), sulfur element (S), etc.
  • the group 17 element for example, fluorine element (F), chlorine element (Cl), etc.
  • those having a small atomic number for example, F, O, N, Cl, S, P, etc.
  • the present applicant forms a synthetic polymer film formed from a fluorine-containing acrylic resin or a urethane acrylate-containing acrylic resin mixed with a fluorine-based lubricant and having a moth-eye structure on the surface.
  • Bactericidal properties are recognized. It can be considered that these synthetic polymer membranes have a bactericidal effect because they have three pairs of lone electrons and a fluorine element having a large electronegativity on the surface. I may be able to do it.
  • a mold for forming a moth-eye structure as illustrated in FIGS. 1A and 1B on the surface (hereinafter referred to as “moth-eye mold”) is an inverted moth-eye structure obtained by inverting the moth-eye structure.
  • the moth-eye structure can be manufactured at low cost.
  • a moth-eye structure can be efficiently manufactured by a roll-to-roll method.
  • Such moth-eye molds can be manufactured by the methods described in Patent Documents 2 to 4.
  • an aluminum substrate 12 As a mold substrate, an aluminum substrate 12, an inorganic material layer 16 formed on the surface of the aluminum substrate 12, and aluminum deposited on the inorganic material layer 16 are used.
  • a mold substrate 10 having a film 18 is prepared.
  • a relatively rigid aluminum substrate having an aluminum purity of 99.50 mass% or more and less than 99.99 mass% is used.
  • impurities contained in the aluminum substrate 12 iron (Fe), silicon (Si), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), titanium (Ti), lead (Pb) It is preferable that at least one element selected from the group consisting of tin (Sn) and magnesium (Mg) is included, and Mg is particularly preferable.
  • the mechanism by which pits (dents) are formed in the etching process is a local cell reaction, and therefore ideally contains no noble elements than aluminum and is a base metal, Mg (standard electrode potential ⁇ It is preferable to use an aluminum substrate 12 containing 2.36V) as an impurity element. If the content of an element nobler than aluminum is 10 ppm or less, it can be said that the said element is not included substantially from an electrochemical viewpoint.
  • the Mg content is preferably 0.1% by mass or more, and more preferably in the range of about 3.0% by mass or less. If the Mg content is less than 0.1 mass%, sufficient rigidity cannot be obtained. On the other hand, when the content rate increases, Mg segregation easily occurs.
  • Mg forms an anodic oxide film having a form different from that of aluminum, which causes defects.
  • the content rate of an impurity element according to the rigidity required according to the shape of the aluminum base material 12, thickness, and a magnitude
  • an appropriate Mg content is about 3.0 mass%, and the aluminum substrate 12 having a three-dimensional structure such as a cylinder is produced by extrusion.
  • the content rate of Mg is 2.0 mass% or less. If the Mg content exceeds 2.0 mass%, extrusion processability generally decreases.
  • a cylindrical aluminum tube formed of JIS A1050, Al—Mg alloy (for example, JIS A5052), or Al—Mg—Si alloy (for example, JIS A6063) is used as the aluminum substrate 12.
  • the surface of the aluminum substrate 12 is preferably subjected to cutting by cutting. If, for example, abrasive grains remain on the surface of the aluminum base 12, electrical conduction between the aluminum film 18 and the aluminum base 12 is facilitated in a portion where the abrasive grains exist. In addition to the abrasive grains, where there are irregularities, local conduction between the aluminum film 18 and the aluminum substrate 12 is likely to occur. When local conduction is made between the aluminum film 18 and the aluminum base 12, there is a possibility that a battery reaction occurs locally between the impurities in the aluminum base 12 and the aluminum film 18.
  • the inorganic material layer 16 for example, tantalum oxide (Ta 2 O 5 ) or silicon dioxide (SiO 2 ) can be used.
  • the inorganic material layer 16 can be formed by sputtering, for example.
  • the thickness of the tantalum oxide layer is, for example, 200 nm.
  • the thickness of the inorganic material layer 16 is preferably 100 nm or more and less than 500 nm. If the thickness of the inorganic material layer 16 is less than 100 nm, defects (mainly voids, that is, gaps between crystal grains) may occur in the aluminum film 18 in some cases. Further, when the thickness of the inorganic material layer 16 is 500 nm or more, the aluminum base 12 and the aluminum film 18 are easily insulated from each other depending on the surface state of the aluminum base 12. In order to anodize the aluminum film 18 by supplying current to the aluminum film 18 from the aluminum substrate 12 side, it is necessary that a current flow between the aluminum substrate 12 and the aluminum film 18.
  • the aluminum film 18 can be uniformly anodized over the entire surface without causing a problem that it is difficult to be supplied.
  • the thick inorganic material layer 16 it is generally necessary to lengthen the film formation time.
  • the film formation time is lengthened, the surface temperature of the aluminum base 12 is unnecessarily increased. As a result, the film quality of the aluminum film 18 is deteriorated, and defects (mainly voids) may occur. If the thickness of the inorganic material layer 16 is less than 500 nm, the occurrence of such a problem can be suppressed.
  • the aluminum film 18 is, for example, a film formed of aluminum having a purity of 99.99 mass% or more (hereinafter, also referred to as “high-purity aluminum film”) as described in Patent Document 3. .
  • the aluminum film 18 is formed using, for example, a vacuum deposition method or a sputtering method.
  • the thickness of the aluminum film 18 is preferably in the range of about 500 nm or more and about 1500 nm or less, for example, about 1 ⁇ m.
  • an aluminum alloy film described in Patent Document 4 may be used instead of the high-purity aluminum film.
  • the aluminum alloy film described in Patent Document 4 includes aluminum, a metal element other than aluminum, and nitrogen.
  • the “aluminum film” includes not only a high-purity aluminum film but also an aluminum alloy film described in Patent Document 4.
  • the average grain size of the crystal grains constituting the aluminum alloy film as viewed from the normal direction of the aluminum alloy film is, for example, 100 nm or less, and the maximum surface roughness Rmax of the aluminum alloy film is 60 nm or less.
  • the content rate of nitrogen contained in the aluminum alloy film is, for example, not less than 0.5 mass% and not more than 5.7 mass%.
  • the absolute value of the difference between the standard electrode potential of a metal element other than aluminum contained in the aluminum alloy film and the standard electrode potential of aluminum is 0.64 V or less, and the content of the metal element in the aluminum alloy film is 1.0 mass. % Or more and 1.9 mass% or less is preferable.
  • the metal element is, for example, Ti or Nd.
  • the metal element is not limited to this, and other metal elements whose absolute value of the difference between the standard electrode potential of the metal element and the standard electrode potential of aluminum is 0.64 V or less (for example, Mn, Mg, Zr, V, and Pb).
  • the metal element may be Mo, Nb, or Hf.
  • the aluminum alloy film may contain two or more of these metal elements.
  • the aluminum alloy film is formed by, for example, a DC magnetron sputtering method.
  • the thickness of the aluminum alloy film is also preferably in the range of about 500 nm to about 1500 nm, for example, about 1 ⁇ m.
  • the surface 18s of the aluminum film 18 is anodized to form a porous alumina layer 14 having a plurality of recesses (pores) 14p.
  • the porous alumina layer 14 has a porous layer having a recess 14p and a barrier layer (the bottom of the recess (pore) 14p). It is known that the interval between the adjacent recesses 14p (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization. This relationship also holds for the final porous alumina layer 14 shown in FIG.
  • the porous alumina layer 14 is formed, for example, by anodizing the surface 18s in an acidic electrolytic solution.
  • the electrolytic solution used in the step of forming the porous alumina layer 14 is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, sulfuric acid, chromic acid, citric acid, and malic acid.
  • the porous alumina layer 14 is formed by anodizing the surface 18 s of the aluminum film 18 using an oxalic acid aqueous solution (concentration 0.3 mass%, liquid temperature 10 ° C.) at an applied voltage of 80 V for 55 seconds.
  • the porous alumina layer 14 is brought into contact with an alumina etchant and etched by a predetermined amount to enlarge the opening of the recess 14p.
  • the amount of etching (that is, the size and depth of the recess 14p) can be controlled by adjusting the type / concentration of the etching solution and the etching time.
  • an etchant for example, 10 mass% phosphoric acid, an organic acid such as formic acid, acetic acid, or citric acid, an aqueous solution of sulfuric acid, or a mixed aqueous solution of chromic phosphoric acid can be used.
  • etching is performed for 20 minutes using a phosphoric acid aqueous solution (10 mass%, 30 ° C.).
  • the aluminum film 18 is partially anodized again to grow the recesses 14p in the depth direction and to thicken the porous alumina layer 14.
  • the side surface of the recess 14p is stepped.
  • the porous alumina layer 14 is further etched by bringing it into contact with an alumina etchant to further enlarge the hole diameter of the recess 14p.
  • an alumina etchant it is preferable to use the above-described etchant, and in practice, the same etch bath may be used.
  • anodizing step and etching step were alternately repeated a plurality of times (for example, 5 times: anodizing 5 times and etching 4 times), thereby being inverted as shown in FIG.
  • a moth-eye mold 100A having a porous alumina layer 14 having a moth-eye structure is obtained.
  • the bottom of the recess 14p can be pointed. That is, a mold capable of forming a convex part with a sharp tip is obtained.
  • the porous alumina layer 14 (thickness t p ) shown in FIG. 2 (e) has a porous layer (thickness corresponds to the depth D d of the recess 14p) and a barrier layer (thickness t b ). Since the porous alumina layer 14 has a structure obtained by inverting the moth-eye structure of the synthetic polymer film 34A, the same symbol may be used for the corresponding parameter characterizing the size.
  • the concave portion 14p of the porous alumina layer 14 is, for example, conical and may have stepped side surfaces.
  • Two-dimensional size of the recess 14p is D p (area equivalent circle diameter of the recess when viewed from the direction normal to the surface) is less than 20nm ultra 500 nm, the depth D d in the order of less than 50nm over 1000 nm (1 [mu] m) Preferably there is.
  • the bottom part of the recessed part 14p is pointed (the bottom is a point).
  • the adjacent circles overlap with each other, and a flange portion is formed between the adjacent recesses 14p. It is formed.
  • two-dimensional size D p of the concave portion 14p is equal to the distance between adjacent D int.
  • the thickness t p of the porous alumina layer 14 is, for example, about 1 ⁇ m or less.
  • an aluminum remaining layer 18r that has not been anodized in the aluminum film 18 is present.
  • the aluminum film 18 may be anodized substantially completely so that the remaining aluminum layer 18r does not exist.
  • the inorganic material layer 16 is thin, current can be easily supplied from the aluminum substrate 12 side.
  • the moth-eye mold manufacturing method exemplified here can manufacture a mold for producing an antireflection film described in Patent Documents 2 to 4.
  • Anti-reflective coatings used in high-definition display panels are required to have high uniformity. Therefore, as described above, the selection of the aluminum base material, mirror finishing of the aluminum base, and control of the purity and composition of the aluminum film.
  • the above-described mold manufacturing method can be simplified. For example, the surface of the aluminum substrate may be directly anodized.
  • a mold having a low regularity of the arrangement of the concave portions suitable for the production of the antireflection film can be manufactured.
  • the regularity of the arrangement of the convex portions does not affect.
  • a mold for forming a moth-eye structure having regularly arranged convex portions can be manufactured as follows, for example.
  • the produced porous alumina layer is removed by etching, and then anodization is performed under conditions for producing the porous alumina layer described above.
  • the porous alumina layer having a thickness of 10 ⁇ m is formed by increasing the anodic oxidation time.
  • the porous alumina layer is regularly arranged without being affected by irregularities or processing strain caused by grains present on the surface of the aluminum film or the aluminum substrate.
  • a porous alumina layer having a concave portion can be formed.
  • liquid mixture of chromic acid and phosphoric acid for the removal of a porous alumina layer.
  • galvanic corrosion may occur, but a mixed solution of chromic acid and phosphoric acid has an effect of suppressing galvanic corrosion.
  • the moth-eye mold for forming the synthetic polymer film 34B shown in FIG. 1B can also be basically manufactured by combining the above-described anodizing step and etching step. With reference to FIGS. 3A to 3C, a method of manufacturing the moth-eye mold 100B for forming the synthetic polymer film 34B will be described.
  • the mold base 10 is prepared, and the surface 18s of the aluminum film 18 is anodized, whereby a plurality of recesses (pores) are prepared.
  • a porous alumina layer 14 having 14p is formed.
  • the porous alumina layer 14 is brought into contact with an alumina etchant to be etched by a predetermined amount to enlarge the opening of the recess 14p.
  • the etching amount is reduced as compared with the etching process described with reference to FIG. That is, the size of the opening of the recess 14p is reduced.
  • etching is performed for 10 minutes using a phosphoric acid aqueous solution (10 mass%, 30 ° C.).
  • the aluminum film 18 is partially anodized again to grow the recesses 14p in the depth direction and to thicken the porous alumina layer 14.
  • the recess 14p is grown deeper than in the anodic oxidation step described with reference to FIG.
  • anodic oxidation is performed for 165 seconds at an applied voltage of 80 V using an oxalic acid aqueous solution (concentration: 0.3 mass%, liquid temperature: 10 ° C. (55 seconds in FIG. 2D)).
  • the etching process and the anodic oxidation process are alternately repeated a plurality of times.
  • a moth-eye mold 100B having a porous alumina layer 14 having an inverted moth-eye structure is obtained as shown in FIG. It is done.
  • the two-dimensional size D p of the recess 14p is smaller than the inter-adjacent distance D int (D p ⁇ D int ).
  • FIG. 4 is a schematic cross-sectional view for explaining a method for producing a synthetic polymer film by a roll-to-roll method.
  • a cylindrical moth-eye mold 100 is prepared.
  • the cylindrical moth-eye mold 100 is manufactured, for example, by the manufacturing method described with reference to FIG.
  • ultraviolet curing is performed by irradiating the ultraviolet curable resin 34 ′ with ultraviolet rays (UV) in a state where the base film 42 with the ultraviolet curable resin 34 ′ applied to the surface is pressed against the moth-eye mold 100.
  • Resin 34 ' is cured.
  • an acrylic resin can be used as the ultraviolet curable resin 34 ′.
  • the base film 42 is, for example, a PET (polyethylene terephthalate) film or a TAC (triacetyl cellulose) film.
  • the base film 42 is unwound from an unillustrated unwinding roller, and then an ultraviolet curable resin 34 'is applied to the surface by, for example, a slit coater. As shown in FIG.
  • the base film 42 is supported by support rollers 46 and 48.
  • the support rollers 46 and 48 have a rotation mechanism and convey the base film 42.
  • the cylindrical moth-eye mold 100 is rotated in the direction indicated by the arrow in FIG. 4 at a rotational speed corresponding to the transport speed of the base film 42.
  • the synthetic polymer film 34 to which the inverted moth-eye structure of the moth-eye mold 100 is transferred is formed on the surface of the base film 42.
  • the base film 42 having the synthetic polymer film 34 formed on the surface is wound up by a winding roller (not shown).
  • the surface of the synthetic polymer film 34 has a moth-eye structure obtained by inverting the nano-surface structure of the moth-eye mold 100.
  • the synthetic polymer films 34A and 34B shown in FIGS. 1A and 1B can be produced.
  • the material for forming the synthetic polymer film 34 is not limited to an ultraviolet curable resin, and a photocurable resin that can be cured with visible light can be used, and a thermosetting resin can also be used.
  • a synthetic polymer film having a conical convex portion such as the convex portion 34Ap of the film 50A shown in FIG. 1A was produced using a die produced according to the above-described mold manufacturing method.
  • D p was about 200 nm
  • D int was about 200 nm
  • D h was about 150 nm (see, for example, FIG. 8).
  • the difference between D p and D int is, for example, preferably 0 to 2 times D p . 5 to 2 times is more preferable.
  • D p , D int , and D h indicate average values obtained from SEM images.
  • a field emission scanning electron microscope (S-4700, manufactured by Hitachi, Ltd.) was used for photographing the SEM image.
  • An ultraviolet curable resin was used as a resin material for forming the synthetic polymer film.
  • acrylic resins having different ratios of nitrogen element sample film No. 1-No. 3 was produced.
  • the atomic concentration in each sample film was measured by XPS (X-ray photoelectron spectroscopy).
  • Sample film No. No. 1 was prepared using an acrylic resin A that does not contain a nitrogen element.
  • the acrylic resin A does not contain urethane acrylate.
  • the functional group which the acrylic resin A has is 3.43 (tetramethylol methane triacrylate 57 mol%, tetramethylol methane tetraacrylate 43 mol%).
  • Sample film No. 2 was produced using acrylic resin B containing urethane acrylate.
  • the atomic concentration of nitrogen element in the urethane acrylate-containing acrylic resin B is 0.7 at%.
  • the urethane acrylate-containing acrylic resin B is 31.8 mass% of a resin having 3 functional groups, 28.2 mass% of the acrylic resin A having 3.43 functional groups, and 40.0 mass of a resin having 4 functional groups. % Is included.
  • Sample film No. 3 was produced using acrylic resin C containing urethane acrylate.
  • the atomic concentration of the nitrogen element in the urethane acrylate-containing acrylic resin C is 2.2 at%.
  • the urethane acrylate-containing acrylic resin C has three functional groups.
  • sample film No. 1 and no. 2 was evaluated for bactericidal properties.
  • the bactericidal evaluation was performed according to the following procedure.
  • / 500NB medium NB medium (Eiken Chemical Co., Ltd., normal bouillon medium E-MC35) diluted 500 times with sterilized water
  • Bacteria Diluent A Bacteria Stock Solution 500 ⁇ L + Sterile Water 49.5 mL 7).
  • Bacteria Diluent B by adding 1 / 500NB medium as nutrient source to Bacteria Diluent A (based on JISZ2801 5.4a) 8). 400 ⁇ L of the bacterial dilution B (the number of bacteria in the bacterial dilution B at this time may be referred to as the initial bacterial count) is dropped on each sample film, and a cover (for example, a cover glass) is placed on the bacterial dilution B 8.
  • a cover for example, a cover glass
  • Adjust the amount of bacterial dilution B per unit area Leave in an environment of constant temperature 37 ° C and relative humidity 100% (Leave time: 5 minutes, 4 hours, 24 hours or 48 hours) 10. Put the entire sample film with the bacterium dilution solution B and 9.6 mL of sterilized water into a filter bag, and rub it by hand from above the filter bag to thoroughly wash away the bacteria on the sample film.
  • the washing solution in the filter bag is obtained by diluting the bacterium dilution solution B 25 times. This washing solution may be referred to as a bacteria dilution solution B2.
  • the bacterial dilution B2 When there is no increase / decrease in the number of bacteria in the bacterial dilution B, the bacterial dilution B2 is in the order of 1E + 04 CFU / mL. 11.
  • a bacterial dilution C is prepared by diluting the bacterial dilution B2 10 times. Specifically, 120 ⁇ L of the washing solution (bacterial dilution solution B2) is prepared in 1.08 mL of sterilized water. The bacterial dilution C is in the order of 1E + 03 CFU / mL when the bacterial count in the bacterial dilution B does not increase or decrease.
  • the bacterial dilution C is diluted 10 times to prepare the bacterial dilution D.
  • the bacterial dilution D is in the order of 1E + 02 CFU / mL when the number of bacteria in the bacterial dilution B does not increase or decrease.
  • the bacterial dilution D is prepared by diluting the bacterial dilution D ten times.
  • the bacterial dilution E is in the order of 1E + 01 CFU / mL when the bacterial count in the bacterial dilution B is not increased or decreased. 13.
  • phosphate buffered saline is used when preparing the diluted solution, but in Experiment 1, sterile water was used.
  • sterilized water it is considered that the difference in osmotic pressure from the intracellular solution of the microorganism, not the physical structure and chemical properties of the surface of the sample film, may cause the bacteria to die.
  • the sample film No. described later is used.
  • PET PET
  • Sample film No. for sample No. 1 the initial bacterial count was 3.1E + 05 CFU / mL, and sample film No. For 2, the initial bacterial count was 1.4E + 05 CFU / mL, and bactericidal evaluation was performed. Sample film No. For 1, the measurement was not performed when the standing time was 5 minutes.
  • FIG. 5A shows a sample film No. in Experiment 1. It is a graph which shows the result of having evaluated the bactericidal property of 1.
  • FIG. 5B shows a sample film No. 1 in Experiment 1. It is a graph which shows the result of having evaluated the bactericidal property of 2.
  • FIG. 5 the horizontal axis represents the standing time (hours), and the vertical axis represents the number of bacteria (CFU / mL) in the bacteria dilution B2. In FIG. 5, for ease of viewing, when the number of bacteria is 0, it is plotted as 0.1.
  • sample film No. 1 formed of a resin containing nitrogen element is used.
  • No. 2 shows bactericidal properties, whereas sample film No. 2 formed of a resin containing no nitrogen element. 1 did not show bactericidal properties.
  • the synthetic polymer film has bactericidal properties when it contains nitrogen element. It has been found that the synthetic polymer film preferably contains, for example, 0.7 at% or more of nitrogen element.
  • Example 2 Next, by changing the value of the initial number of bacteria, the sample film No. 2 and no. 3 was evaluated for bactericidal properties. In Experiment 1, it was on the order of 1E + 05 CFU / mL, whereas in Experiment 2, the initial bacterial count was on the order of 1E + 06 CFU / mL.
  • the evaluation procedure is basically the same as in Experiment 1. However, the time for leaving in an environment of 37 ° C. and 100% relative humidity (leaving time) was 67.5 hours.
  • sample film No. 2 did not provide a sufficient bactericidal effect.
  • No. 3 bactericidal properties were observed.
  • sample film No. Although bactericidal property of 2 was recognized, it is considered that a sufficient bactericidal effect was not obtained in Experiment 2 due to an increase in the initial number of bacteria. The relationship between the initial number of bacteria and the bactericidal effect will be described later.
  • the synthetic polymer film further preferably contains 2.2 at% or more of nitrogen element.
  • sample film No. 1 was prepared under the conditions where the initial number of bacteria was 2.5E + 06 CFU / mL and the nutrient source in the bacteria dilution B was increased 10 times that of Experiment 1.
  • 1-No. 5 was evaluated for bactericidal properties. That is, 1/50 NB medium (NB medium (manufactured by Eiken Chemical Co., Ltd., normal bouillon medium E-MC35) diluted 50-fold with sterilized water) as a nutrient source is added to the above-mentioned bacterial dilution liquid A. B was prepared.
  • Sample film No. 4 is a sample film No. It was prepared using the same urethane acrylate-containing acrylic resin B as 2. Sample film No. No. 4 is a sample film No. 4 in that the surface does not have a moth-eye structure. Different from 2.
  • Sample film No. 5 is a sample film No. 1-No. 4 is a PET film used as a base film.
  • the evaluation procedure is basically the same as in Experiment 1.
  • FIG. 6 shows sample film No. 1 in Experiment 3. 1-No. It is a graph which shows the result of having evaluated the bactericidal property of 5.
  • FIG. 6 the horizontal axis represents the standing time (hours), and the vertical axis represents the number of bacteria (CFU / mL) in the bacteria diluent B2.
  • sample film No. 1 formed from a resin having a high atomic concentration of nitrogen element (2.2 at%). 3 is the sample film No. The antibacterial effect is superior to 2 (0.7 at%).
  • sample film No. 2 and no. 4 is compared, the sample film No. 2 has a moth-eye structure on its surface, so that sample film No. It can be seen that the antibacterial effect is superior to 4. It can be seen that the synthetic polymer film has an excellent bactericidal effect and / or antibacterial effect due to the fact that the synthetic polymer film has a moth-eye structure on the surface and the synthetic polymer film contains nitrogen element.
  • n represents a positive integer.
  • the generation time T 0 varies depending on the type of bacteria and the culture conditions. For example, the generation time of Pseudomonas aeruginosa under conditions suitable for growth is approximately 30-40 minutes.
  • Equation (3) the bacterial count N (t) at time t is expressed as in equation (3).
  • the bacterial count increases logarithmically with time.
  • Formula (4) is a form in which the term (-DT 0 ) representing the bactericidal effect is introduced into the above formula (1). By transforming equation (4), equation (5) is obtained.
  • Equation (6) is a simplified model, it may be necessary to consider elements that are not reflected in Equation (6).
  • the number of sterilizations D per unit time is constant regardless of the number of bacteria, but may vary depending on the number of bacteria.
  • Microorganisms generally have a surface structure that tends to adhere to the surface of an object in order to increase the probability of contact with organic substances that are nutrient sources. Therefore, when there are few nutrient sources, it is possible that the ease of attachment to the surface of an object is amplified. Thereby, it is conceivable that the surface of the synthetic polymer film is more efficiently sterilized.
  • Cells generally have a mechanism for taking up polar substances (including nutrients) (endocytosis). Actually, as will be described later with reference to FIG. 8, it appears as if the convex portion of the synthetic polymer film was taken into the cell wall. When there are few nutrient sources, the efficiency by which the convex part of a synthetic polymer film is taken in a cell wall is amplified, and it is also considered that it is sterilized on the surface of a synthetic polymer film efficiently.
  • the induction period in which the number of bacteria hardly changes may appear before the logarithmic phase (logarithmic growth phase) as described in the formulas (1) to (6).
  • the induction period is considered to be a period in which bacteria undergo little division and are ready for division (eg, cell repair, enzyme biosynthesis) and adaptation to the medium.
  • FIG. 1-No. No. 4 shows the behavior in which the number of bacteria decreases after 3 hours of standing, whereas the number of bacteria increases after 24 hours. These behaviors may also reflect the transition from the induction period to the logarithmic period.
  • Example 4 In Experiment 4, seven types of sample film Nos. Shown in Table 1 below were used. 10-No. 16 was evaluated for bactericidal properties.
  • Sample film No. 10-No. 16 was produced using the same mold as before.
  • Sample film No. 10-No. No. 16 was prepared using a resin obtained by mixing a silicone-based lubricant with an acrylic resin D (different from the above acrylic resin A).
  • the acrylic resin D mixed with a silicone-based lubricant does not contain a nitrogen element.
  • Sample film No. No surface treating agent is applied to the surface of 10.
  • Sample film No. 11-No. No. 16 has different synthetic chemical properties (functional groups of the silane coupling agent applied to the surface) by adding different silane coupling agents to the surface of the obtained synthetic polymer film.
  • a molecular film was prepared.
  • Silane coupling agent S0 is KBM-1003 manufactured by Shin-Etsu Chemical Co., Ltd., and is represented by the following chemical formula (7). Since the silane coupling agent S0 is applied to the surface, the sample film No. The surface of 11 synthetic polymer film does not contain nitrogen element.
  • the silane coupling agent S0 has a vinyl group (—CH ⁇ CH 2 ). (CH 3 O) 3 SiCH ⁇ CH 2 (7)
  • Silane coupling agent S1 is KBM-603 manufactured by Shin-Etsu Chemical Co., Ltd., and is represented by the following chemical formula (8). Since the silane coupling agent S1 is applied to the surface, the sample film No. The concentration of elemental nitrogen contained in the surface of the 12 synthetic polymer films is 5.6 at%.
  • the silane coupling agent S1 has an amino group (—NH 2 ). (CH 3 O) 3 SiC 3 H 6 NHC 2 H 4 NH 2 (8)
  • Silane coupling agent S2 is KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd., and is represented by the following chemical formula (9). Since the silane coupling agent S2 is applied to the surface, the sample film No. The concentration of nitrogen element contained in the surface of 13 synthetic polymer films is 3.6 at%.
  • the silane coupling agent S2 has an amino group (—NH 2 ). (CH 3 O) 3 SiC 3 H 6 NH 2 (9)
  • Silane coupling agent S3 is KBE-585 manufactured by Shin-Etsu Chemical Co., Ltd., which is an alcohol solution of the following chemical formula (10).
  • R represents a hydrocarbon group.
  • the silane coupling agent S3 has a ureido group (—NHC ( ⁇ O) NH 2 ).
  • the ureido group is a functional group containing an amino group (—NH 2 ).
  • Silane coupling agent S4 is KBM-803 manufactured by Shin-Etsu Chemical Co., Ltd., and is represented by the following chemical formula (11). Since the silane coupling agent S4 is applied to the surface, the sample film No. The concentration of sulfur element contained in the surface of 15 synthetic polymer films is 3.7 at%.
  • the silane coupling agent S4 has a mercapto group (—SH). (CH 3 O) 3 SiC 3 H 6 SH (11)
  • Silane coupling agent S5 is KBE-9007 manufactured by Shin-Etsu Chemical Co., Ltd., and is represented by the following chemical formula (12). Since the silane coupling agent S5 is applied to the surface, the sample film No. The concentration of nitrogen element contained in the surface of 16 synthetic polymer films is 2.7 at%.
  • the silane coupling agent S5 has an isocyanate group (—N ⁇ C ⁇ O). (C 2 H 5 O) 3 SiC 3 H 6 N ⁇ C ⁇ O (12)
  • FIG. 7 shows sample film No. 10-No. It is a graph which shows the result of having evaluated the bactericidal property of 16, a horizontal axis is leaving time (hour), and a vertical axis
  • shaft shows the number of bacteria (CFU / mL) in microbe dilution liquid B2.
  • CFU / mL the number of bacteria
  • FIG. No. 10 has bactericidal properties even though the surface of the synthetic polymer film does not contain nitrogen element. There is a possibility that the silicone-based lubricant mixed in the resin has a bactericidal effect for some reason.
  • Sample film No. 12-No. All 16 have bactericidal and / or antibacterial properties.
  • sample film No. 1 having an amino group (—NH 2 ). 12 and no. It turns out that 13 has the outstanding bactericidal property.
  • Sample film No. 12-No. No. 16 is considered that the functional group of the silane coupling agent applied to the surface of the synthetic polymer film has a bactericidal effect.
  • Sample film No. 12-No. In No. 16 the surface of the synthetic polymer film has a nitrogen element content of 0.7 at% or more by applying a silane coupling agent to the surface of the synthetic polymer film. It is thought that the nitrogen element which the surface of a synthetic polymer film has has a bactericidal effect.
  • sample film No. 11 did not show bactericidal properties. The reason is considered that the surface of the synthetic polymer film does not contain nitrogen element. The bactericidal effect due to the vinyl group imparted to the surface was not observed. Sample film No. 10 and sample film no. 11 is compared with the surface of the synthetic polymer film, it can be seen that the bactericidal effect is not recognized when the silane coupling agent S0 is applied.
  • FIG. 8 (a) and 8 (b) show the sample film No. The example which observed the Pseudomonas aeruginosa dead on the surface which has 10 moth-eye structures by SEM (scanning electron microscope) is shown.
  • FIG. 8B is an enlarged view of FIG.
  • An opening may be formed in a portion close to the convex portion, and the convex portion may have entered the opening.
  • the convex part may be taken in by the mechanism (endocytosis) which takes in the substance (including a nutrient source) which has polarity which a cell has.
  • sample film No. shown in Table 2 below. 17 and no. 18 was evaluated for bactericidal properties.
  • Sample film No. 17 and no. 18 gave the same material to the surface, but differs in whether it has a moth-eye structure on the surface.
  • Sample film No. No. 17 was prepared using an acrylic resin D mixed with a silicone-based lubricant (same as that used for the previous sample films No. 10 to No. 16) and using the same mold as before. Cyanoacrylate was added to the surface of the resulting synthetic polymer film. Cyanoacrylate is applied by preparing a mixture of 1 g of instant adhesive (product name: strong instant adhesive, importer: Polymer Shoji Co., Ltd.) in 50 mL of acetone, and using the mixture as the surface of the synthetic polymer film. It was given to pour over. It was confirmed by observing with a scanning electron microscope (SEM) that the moth-eye structure on the surface was not filled with the liquid mixture.
  • SEM scanning electron microscope
  • Sample film No. 18 is a sample film No. 10-No. On the surface of the PET film used as the base film No. 17, sample film No. It was prepared by applying the same liquid mixture as No.17. Therefore, the sample film No. No. 18 is sample film No. in surface chemistry. 17 is the same as Sample Film No. 17 in that the surface does not have a moth-eye structure. 17 and different.
  • the procedure for evaluating bactericidal properties is basically the same as in Experiment 1 above.
  • the initial bacterial count was 3.0E + 05 CFU / mL for both sample films.
  • FIG. 9 shows sample film No. 17 and no. It is a graph which shows the result of having evaluated 18 bactericidal property, a horizontal axis is leaving time (hour), and a vertical axis
  • shaft shows the number of bacteria (CFU / mL) in microbe dilution liquid B2.
  • CFU / mL the number of bacteria
  • sample film No. No. 18 does not have bactericidal properties.
  • the presence or absence of bactericidal properties varies depending on the presence or absence of the moth-eye structure on the surface. That is, the synthetic polymer film does not have bactericidal properties only by having a cyano group on the surface, and both the physical structure of the surface (moth eye structure) and the cyano group attached to the surface contribute to bactericidal properties. Can be considered.
  • Sample film No. 20-No. No. 22 was produced using the same mold as above. Sample film No. 19-No. No surface treatment agent is applied to the surface of 22.
  • Sample film No. 19 is a sample film No. PET film used as a base film of 20-22.
  • Sample film No. No. 20 was produced using urethane acrylate-containing acrylic resin B (the same as that used for the previous sample film No. 2).
  • Sample film No. 21 is a sample film No. This was prepared using a resin obtained by mixing the same urethane acrylate-containing acrylic resin B as No. 20 with a silicone oil containing lithium salt (antistatic agent, manufactured by Maruhishi Oil Chemical Co., Ltd., product name: PC-3662).
  • Sample film No. 22 is prepared using a resin obtained by mixing acrylic resin A (same as that used for sample film No. 1) with silicone oil containing lithium salt (same as that used for sample film No. 21). did.
  • FIG. 10A shows a sample film No. in Experiment 6.
  • 19-No. 21 is a graph showing the results of evaluating the bactericidal property of No. 21, and FIG. It is a graph which shows the result of having evaluated the bactericidal property of 22.
  • the horizontal axis represents the standing time (hours)
  • the vertical axis represents the number of bacteria (CFU / mL) in the bacterial diluent B2.
  • CFU / mL the number of bacteria
  • sample film No. 20 and no. All 21 have bactericidal properties.
  • Sample film No. 20 and no. When the results of 21 are compared, it can be seen that the lithium salt is contained in the synthetic polymer film, so that it has more excellent bactericidal properties.
  • the synthetic polymer film according to the embodiment of the present invention is suitably used, for example, for applications that suppress the occurrence of slimming of the surface that comes into contact with water.
  • a synthetic polymer film to the inner wall of a water container used in a humidifier or ice making machine, it is possible to suppress the occurrence of sliminess on the inner wall of the container.
  • Slimming is caused by a biofilm formed by extracellular polysaccharide (EPS) secreted by bacteria attached to the inner wall or the like. Therefore, the occurrence of sliminess can be suppressed by killing bacteria attached to the inner wall or the like.
  • EPS extracellular polysaccharide
  • the liquid can be sterilized by bringing the liquid into contact with the surface of the synthetic polymer film according to the embodiment of the present invention.
  • the gas can be sterilized by bringing the gas into contact with the surface of the synthetic polymer film.
  • Microorganisms generally have a surface structure that tends to adhere to the surface of an object in order to increase the probability of contact with organic matter that is a nutrient source. Therefore, when a gas or liquid containing microorganisms is brought into contact with the bactericidal surface of the synthetic polymer film according to the embodiment of the present invention, the microorganisms try to adhere to the surface of the synthetic polymer film. It will be sterilized.
  • the bactericidal action of the synthetic polymer membrane according to the embodiment of the present invention has been described for Pseudomonas aeruginosa, which is a gram-negative bacterium, but is not limited to gram-negative bacteria, and also sterilizes against gram-positive bacteria and other microorganisms. It is considered to have an action.
  • Gram-negative bacteria have one feature in that they have a cell wall containing an outer membrane, but Gram-positive bacteria and other microorganisms (including those that do not have a cell wall) also have a cell membrane, and the cell membrane is also outside of Gram-negative bacteria. Like the membrane, it is composed of a lipid bilayer membrane. Therefore, the interaction between the convex portions on the surface of the synthetic polymer membrane according to the embodiment of the present invention and the cell membrane is considered to be basically the same as the interaction with the outer membrane.
  • the size of microorganisms varies depending on the type.
  • the size of Pseudomonas aeruginosa exemplified here is about 1 ⁇ m, but some bacteria have a size of several hundred nm to about 5 ⁇ m, and fungi are several ⁇ m or more.
  • the convex part (two-dimensional size is about 200 nm) of the synthetic polymer film exemplified above is considered to have a bactericidal action against microorganisms having a size of about 0.5 ⁇ m or more. For bacteria with a size of 1, the convex part is too large, and there is a possibility that sufficient bactericidal action is not exhibited.
  • the size of the virus is several tens nm to several hundreds nm, and many of them are 100 nm or less.
  • the virus does not have a cell membrane, but has a protein shell called a capsid that surrounds the viral nucleic acid.
  • Viruses can be divided into viruses having a membrane-like envelope outside the shell and viruses not having an envelope.
  • the envelope is mainly composed of lipid, it is considered that the convex portion acts on the envelope in the same manner.
  • examples of the virus having an envelope include influenza virus and Ebola virus.
  • viruses that do not have an envelope it is thought that the convex portion acts on the protein shell called capsid in the same manner.
  • affinity with a protein composed of amino acids may be increased.
  • the convex portion of the synthetic polymer film exemplified above having a two-dimensional size in the range of more than 20 nm and less than 500 nm is referred to as a first convex portion.
  • the convex part formed so as to overlap the first convex part is called a second convex part
  • the two-dimensional size of the second convex part is the two-dimensional size of the first convex part. Smaller than 100 nm and not exceeding 100 nm.
  • the concave portion of the mold corresponding to the first convex portion is referred to as a first concave portion
  • the concave portion of the mold corresponding to the second convex portion is referred to as a second concave portion.
  • the method for forming the first concave portion having a predetermined size and shape is applied as it is by alternately performing the above-described anodizing step and etching step, the second concave portion cannot be formed.
  • FIG. 11A shows an SEM image of the surface of the aluminum substrate (reference numeral 12 in FIG. 2)
  • FIG. 11B shows an SEM image of the surface of the aluminum film (reference numeral 18 in FIG. 2).
  • FIG. 11C shows an SEM image of a cross section of the aluminum film (reference numeral 18 in FIG. 2).
  • grains are present on the surface of the aluminum substrate and the surface of the aluminum film.
  • the grain of the aluminum film forms irregularities on the surface of the aluminum film. The unevenness on the surface affects the formation of the recess during anodic oxidation, thus preventing the formation of the second recess with D p or D int smaller than 100 nm.
  • a mold manufacturing method includes: (a) a step of preparing an aluminum film deposited on an aluminum substrate or support; and (b) an electrolysis of the surface of the aluminum substrate or aluminum film.
  • the first level is above 40V and the second level is below 20V.
  • a first recess having a size that is not affected by the grain of the aluminum base material or the aluminum film is formed in the anodizing process at the first level voltage, and then the thickness of the barrier layer is reduced by etching.
  • the second recess is formed in the first recess by an anodic oxidation step at a second level voltage lower than the first level.
  • FIG. 12A is a schematic plan view of a porous alumina layer of the mold
  • FIG. 12B is a schematic cross-sectional view
  • FIG. 12C shows an SEM image of the prototype mold.
  • the surface of the mold according to the present embodiment has a plurality of first recesses 14pa whose two-dimensional size is in the range of more than 20 nm and less than 500 nm, and a plurality of It further has a plurality of second recesses 14pb formed so as to overlap the first recess 14pa.
  • the two-dimensional size of the plurality of second recesses 14pb is smaller than the two-dimensional size of the plurality of first recesses 14pa and does not exceed 100 nm.
  • the height of the second recess 14pb is, for example, more than 20 nm and not more than 100 nm.
  • the second recess 14pb preferably includes a substantially conical portion.
  • the porous alumina layer shown in FIG. 12 (c) was manufactured as follows.
  • an aluminum film containing 1 mass% of Ti was used as the aluminum film.
  • An oxalic acid aqueous solution (concentration 0.3 mass%, temperature 10 ° C.) was used as the anodizing solution, and an phosphoric acid aqueous solution (concentration 10 mass%, temperature 30 ° C.) was used as the etching solution.
  • etching was performed for 25 minutes, followed by anodic oxidation at a voltage of 80 V for 52 seconds and etching for 25 minutes. Thereafter, anodic oxidation at 20 V was performed for 52 seconds, etching was performed for 5 minutes, and anodic oxidation at 20 V was further performed for 52 seconds.
  • the inside D p is in the first recess of about 200 nm, a second recess of D p is about 50nm is formed.
  • the first level voltage is changed from 80 V to 45 V to form a porous alumina layer
  • the first recess having D p of about 100 nm is formed in the first recess having D p of about 50 nm. Two recesses were formed.
  • a synthetic polymer film When a synthetic polymer film is produced using such a mold, a synthetic polymer having a convex portion obtained by inverting the structure of the first concave portion 14pa and the second concave portion 14pb shown in FIGS. A membrane is obtained. That is, a synthetic polymer film further having a plurality of second protrusions formed so as to overlap with the plurality of first protrusions is obtained.
  • the synthetic polymer film having the first convex portion and the second convex portion formed so as to overlap the first convex portion is made from a relatively small microorganism of about 100 nm to a relatively large size of 5 ⁇ m or more. Can have bactericidal action against microorganisms.
  • a mold for forming such a convex portion can be manufactured as follows, for example.
  • Anodic oxidation using neutral salt aqueous solution such as ammonium borate, ammonium citrate, etc.
  • neutral salt aqueous solution such as ammonium tartrate aqueous solution and organic acids (maleic acid, malonic acid, phthalic acid, citric acid, tartaric acid, etc.) with low ion dissociation
  • the barrier type anodic oxide film is formed, the barrier type anodic oxide film is removed by etching, and then anodized at a predetermined voltage (the second level voltage described above).
  • Recesses in the range of more than 20 nm and less than 100 nm can be formed.
  • an aluminum film containing 1 mass% of Ti is used as the aluminum film, and an anodization is performed at 100 V for 2 minutes using an aqueous tartaric acid solution (concentration: 0.1 mol / l, temperature: 23 ° C.). Form. Thereafter, the barrier type anodic oxide film is removed by etching for 25 minutes using a phosphoric acid aqueous solution (concentration: 10 mass%, temperature: 30 ° C.). Thereafter, in the same manner as described above, an oxalic acid aqueous solution (concentration: 0.3 mass%, temperature: 10 ° C.) was used as the anodizing solution.
  • Anodizing at 20 V was performed for 52 seconds, and etching using the etching solution was alternately performed for 5 minutes. By repeating the anodic oxidation 5 times and the etching 4 times, it is possible to uniformly form a recess having a two-dimensional size of about 50 nm.
  • the synthetic polymer film having a bactericidal surface according to an embodiment of the present invention can be used in various applications such as a sterilizing surface around water.
  • a synthetic polymer film having a bactericidal surface according to an embodiment of the present invention can be manufactured at low cost.
  • 34A, 34B Synthetic polymer film 34Ap, 34Bp Convex part 42A, 42B Base film 50A, 50B Film 100, 100A, 100B Moss eye mold

Abstract

 複数の凸部(34Ap)、(34Bp)を有する表面を備える合成高分子膜(34A)、(34B)であって、合成高分子膜(34A)、(34B)の法線方向から見たとき、複数の凸部(34Ap)、(34Bp)の2次元的な大きさは20nm超500nm未満の範囲内にあり、表面が殺菌効果を有し、表面に含まれる窒素元素の濃度が0.7at%以上である。

Description

殺菌作用を備えた表面を有する合成高分子膜
 本発明は、殺菌作用を備えた表面を有する合成高分子膜、合成高分子膜の表面を用いた殺菌方法、合成高分子膜を製造するための型および型の製造方法に関する。ここでいう「型」は、種々の加工方法(スタンピングやキャスティング)に用いられる型を包含し、スタンパということもある。また、印刷(ナノプリントを含む)にも用いられ得る。
 最近、ブラックシリコン、セミやトンボの羽が有するナノ表面構造が殺菌作用を有することが発表された(非特許文献1)。ブラックシリコン、セミやトンボの羽が有するナノピラーの物理的な構造が、殺菌作用を発現するとされている。
 非特許文献1によると、グラム陰性菌に対する殺菌作用は、ブラックシリコンが最も強く、トンボの羽、セミの羽の順に弱くなる。ブラックシリコンは、高さが500nmのナノピラーを有し、セミやトンボの羽は、高さが240nmのナノピラーを有している。また、これらの表面の水に対する静的接触角(以下、単に「接触角」ということがある。)は、ブラックシリコンが80°であるのに対し、トンボの羽は153°、セミの羽は159°である。また、ブラックシリコンは主にシリコンから形成され、セミやトンボの羽はキチン質から形成されていると考えられる。非特許文献1によると、ブラックシリコンの表面の組成はほぼ酸化シリコン、セミおよびトンボの羽の表面の組成は脂質である。
特許第4265729号公報 特開2009-166502号公報 国際公開第2011/125486号 国際公開第2013/183576号
Ivanova, E. P. et al., "Bactericidal activity of black silicon", Nat. Commun. 4:2838 doi: 10.1038/ncomms3838(2013).
 非特許文献1に記載の結果からは、ナノピラーによって細菌が殺されるメカニズムは明らかではない。さらに、ブラックシリコンがトンボやセミの羽よりも強い殺菌作用を有する理由が、ナノピラーの高さや形状の違いにあるのか、表面自由エネルギー(接触角で評価され得る)の違いにあるのか、ナノピラーを構成する物質にあるのか、表面の化学的性質にあるのか、不明である。
 また、ブラックシリコンの殺菌作用を利用するにしても、ブラックシリコンは、量産性に乏しく、また、硬く脆いので、形状加工性が低いという問題がある。
 本発明は、上記の課題を解決するためになされたものであり、その主な目的は、殺菌作用を備えた表面を有する合成高分子膜、合成高分子膜の表面を用いた殺菌方法、合成高分子膜を製造するための型および型の製造方法を提供することにある。
 本発明の実施形態による合成高分子膜は、複数の凸部を有する表面を備える合成高分子膜であって、前記合成高分子膜の法線方向から見たとき、前記複数の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、前記表面が殺菌効果を有し、前記表面に含まれる窒素元素の濃度が0.7at%以上である。
 ある実施形態において、前記合成高分子膜は、ウレタン樹脂を含む。
 ある実施形態において、前記ウレタン樹脂が有する官能基は10個未満である。
 ある実施形態において、前記ウレタン樹脂が有する官能基は6個未満である。
 ある実施形態において、前記合成高分子膜は、アミノ基、イソシアネート基およびシアノ基のいずれかを有する。前記合成高分子膜は、アミノ基、イソシアネート基およびシアノ基のいずれかを前記表面に有してもよい。
 ある実施形態において、前記合成高分子膜は、末端官能基が-NH2または-NHR(ここで、Rは炭化水素基を表す)である化合物を含む。
 ある実施形態において、前記合成高分子膜は、アミノ基、イソシアネート基およびシアノ基のいずれかを有するカップリング剤を含む。
 ある実施形態において、前記合成高分子膜は、前記カップリング剤を前記表面に有し、前記カップリング剤に含まれる窒素原子の濃度が0.7at%以上である。
 ある実施形態において、前記合成高分子膜は、アルカリ金属塩またはアルカリ土類金属塩を含む。
 ある実施形態において、前記合成高分子膜は、リチウム塩を含む。
 本発明の他の実施形態による合成高分子膜は、複数の凸部を有する表面を備える合成高分子膜であって、前記合成高分子膜の法線方向から見たとき、前記複数の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、前記表面が殺菌効果を有し、前記表面に含まれる硫黄元素の濃度が3.7at%以上である。
 ある実施形態において、前記合成高分子膜は、メルカプト基を有する。前記合成高分子膜は、メルカプト基を前記表面に有してもよい。
 ある実施形態において、前記合成高分子膜は、末端官能基が-SHである化合物を含む。
 ある実施形態において、前記合成高分子膜は、メルカプト基を有するカップリング剤を含む。
 ある実施形態において、前記合成高分子膜は、前記カップリング剤を前記表面に有し、前記カップリング剤に含まれる硫黄元素の濃度が3.7at%以上である。
 本発明のさらに他の実施形態による合成高分子膜は、複数の第1の凸部を有する表面を備える合成高分子膜であって、前記合成高分子膜の法線方向から見たとき、前記複数の第1の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、前記表面が殺菌効果を有する。
 ある実施形態において、前記複数の第1の凸部の隣接間距離は20nm超1000nm以下である。
 ある実施形態において、前記複数の第1の凸部の高さは、50nm以上500nm未満である。前記複数の第1の凸部の高さは、150nm以下であってもよい。
 ある実施形態において前記複数の第1の凸部に重畳して形成された複数の第2の凸部をさらに有し、前記複数の第2の凸部の2次元的な大きさは、前記複数の第1の凸部の2次元的な大きさよりも小さく、かつ、100nmを超えない。
 ある実施形態において、前記複数の第2の凸部は略円錐形の部分を含む。
 ある実施形態において、前記複数の第2の凸部の高さは、20nm超100nm以下である。
 本発明の実施形態による気体または液体を殺菌する方法は、上記のいずれかの合成高分子膜の前記表面に、気体または液体を接触させる。
 本発明の実施形態による型は、複数の第1の凹部と、前記複数の第1の凹部内に形成された複数の第2の凹部とを有する表面を備える型であって、前記型の前記表面の法線方向から見たとき、前記複数の第1の凹部の2次元的な大きさは20nm超500nm未満の範囲内にあり、前記複数の第2の凹部の2次元的な大きさは、前記複数の第1の凹部の2次元的な大きさよりも小さく、かつ、100nmを超えない。
 本発明の実施形態による型の製造方法は、上記の型を製造する方法であって、(a)アルミニウム基材または支持体の上に堆積されたアルミニウム膜を用意する工程と、(b)前記アルミニウム基材または前記アルミニウム膜の表面を電解液に接触させた状態で、第1のレベルの電圧を印加することによって、第1の凹部を有するポーラスアルミナ層を形成する陽極酸化工程と、(c)前記工程(b)の後に、前記ポーラスアルミナ層をエッチング液に接触させることによって、前記第1の凹部を拡大させるエッチング工程と、(d)前記工程(c)の後に、前記ポーラスアルミナ層を電解液に接触させた状態で、前記第1のレベルよりも低い第2のレベルの電圧を印加することによって、前記第1の凹部内に、第2の凹部を形成する工程とを包含する。
 ある実施形態において、前記第1のレベルは、40V超であり、前記第2のレベルは、20V以下である。
 ある実施形態において、前記電解液は蓚酸水溶液である。
 本発明の実施形態によると、殺菌作用を備えた表面を有する合成高分子膜、合成高分子膜の表面を用いた殺菌方法、合成高分子膜を製造するための型および型の製造方法が提供される。
(a)および(b)は、それぞれ本発明の実施形態による合成高分子膜34Aおよび34Bの模式的な断面図である。 (a)~(e)は、モスアイ用型100Aの製造方法およびモスアイ用型100Aの構造を説明するための図である。 (a)~(c)は、モスアイ用型100Bの製造方法およびモスアイ用型100Bの構造を説明するための図である。 モスアイ用型100を用いた合成高分子膜の製造方法を説明するための図である。 (a)は、実験1において試料フィルムNo.1の殺菌性を評価した結果を示すグラフであり、(b)は、実験1において試料フィルムNo.2の殺菌性を評価した結果を示すグラフである。(a)および(b)において、横軸は放置時間(時間)であり、縦軸は、菌希釈液B2中の菌数(CFU/mL)を示している。 実験3において試料フィルムNo.1~No.5の殺菌性を評価した結果を示すグラフであり、横軸は放置時間(時間)であり、縦軸は、菌希釈液B2中の菌数(CFU/mL)を示している。 実験4において試料フィルムNo.10~No.16の殺菌性を評価した結果を示すグラフであり、横軸は放置時間(時間)であり、縦軸は、菌希釈液B2中の菌数(CFU/mL)を示している。 (a)および(b)は、試料フィルムNo.10のモスアイ構造を有する表面で死に至った緑膿菌をSEM(走査型電子顕微鏡)で観察したSEM像を示す図である。 実験5において試料フィルムNo.17およびNo.18の殺菌性を評価した結果を示すグラフであり、横軸は放置時間(時間)であり、縦軸は、菌希釈液B2中の菌数(CFU/mL)を示している。 (a)は、実験6において試料フィルムNo.19~No.21の殺菌性を評価した結果を示すグラフであり、(b)は、実験6において試料フィルムNo.22の殺菌性を評価した結果を示すグラフである。(a)および(b)において、横軸は放置時間(時間)であり、縦軸は、菌希釈液B2中の菌数(CFU/mL)を示している。 (a)はアルミニウム基材の表面のSEM像を示し、(b)はアルミニウム膜の表面のSEM像を示し、(c)はアルミニウム膜の断面のSEM像を示す。 (a)は型のポーラスアルミナ層の模式的な平面図であり、(b)は模式的な断面図であり、(c)は試作した型のSEM像を示す図である。
 以下、図面を参照して、本発明の実施形態による、表面が殺菌効果を有する合成高分子膜および合成高分子膜の表面を用いた殺菌方法、さらには、合成高分子膜を製造するための型および型の製造方法を説明する。
 なお、本明細書においては、以下の用語を用いることにする。
 「殺菌(sterilization(microbicidal))」は、物体や液体といった対象物や、限られた空間に含まれる、増殖可能な微生物(microorganism)の数を、有効数減少させることをいう。
 「微生物」は、ウィルス、細菌(バクテリア)、真菌(カビ)を包含する。
 「抗菌(antimicrobial)」は、微生物の繁殖を抑制・防止することを広く含み、微生物に起因する黒ずみやぬめりを抑制することを含む。
 本出願人は、陽極酸化ポーラスアルミナ層を用いて、モスアイ構造を有する反射防止膜(反射防止表面)を製造する方法を開発した。陽極酸化ポーラスアルミナ層を用いることによって、反転されたモスアイ構造を有する型を高い量産性で製造することができる(例えば、特許文献1~4)。参考のために、特許文献1~4の開示内容のすべてを本明細書に援用する。なお、これまでに、本出願人が製造販売している液晶テレビの表面に配置されている反射防止膜は、親水性を有している。これは、モスアイ構造に付着した指紋などの油脂を拭き取りやすくするためである。モスアイ構造が親水性でないと、水系の洗浄液が、モスアイ構造の凸部の間に効果的に侵入できず、油脂を拭き取ることができない。
 本発明者は、上記の技術を応用することによって、表面が殺菌効果を有する合成高分子膜を開発するに至った。
 図1(a)および(b)を参照して、本発明の実施形態による合成高分子膜の構造を説明する。
 図1(a)および(b)は、本発明の実施形態による合成高分子膜34Aおよび34Bの模式的な断面図をそれぞれ示す。ここで例示する合成高分子膜34Aおよび34Bは、いずれもベースフィルム42Aおよび42B上にそれぞれ形成されているが、もちろんこれに限られない。合成高分子膜34Aおよび34Bは、任意の物体の表面に直接形成され得る。
 図1(a)に示すフィルム50Aは、ベースフィルム42Aと、ベースフィルム42A上に形成された合成高分子膜34Aとを有している。合成高分子膜34Aは、表面に複数の凸部34Apを有しており、複数の凸部34Apは、モスアイ構造を構成している。合成高分子膜34Aの法線方向から見たとき、凸部34Apの2次元的な大きさDpは20nm超500nm未満の範囲内にある。ここで、凸部34Apの「2次元的な大きさ」とは、表面の法線方向から見たときの凸部34Apの面積円相当径を指す。例えば、凸部34Apが円錐形の場合、凸部34Apの2次元的な大きさは、円錐の底面の直径に相当する。また、凸部34Apの典型的な隣接間距離Dintは20nm超1000nm以下である。図1(a)に例示するように、凸部34Apが密に配列されており、隣接する凸部34Ap間に間隙が存在しない(例えば、円錐の底面が部分的に重なる)場合には、凸部34Apの2次元的な大きさDpは隣接間距離Dintと等しい。凸部34Apの典型的な高さDhは、50nm以上500nm未満である。後述するように、凸部34Apの高さDhが150nm以下であっても殺菌作用を発現する。合成高分子膜34Aの厚さtsに特に制限はなく、凸部34Apの高さDhより大きければよい。
 合成高分子膜34Aの表面は、殺菌性を有している。合成高分子膜34Aの表面に含まれる窒素元素の濃度は、0.7at%以上である。後で実験例を示して説明するように、合成高分子膜34Aの表面の物理的構造(凸部34Ap)と、窒素元素を含む合成高分子膜34Aの表面の化学的性質とにより、合成高分子膜34Aは優れた殺菌効果を有する。例えば図8(a)および(b)を参照して後述するように、凸部34Apは、例えばグラム陰性菌の一種である緑膿菌の細胞壁を破壊することによって、死に至らしめ得ると考えられる。このとき、合成高分子膜34Aの表面の化学的性質によって、より優れた殺菌効果が得られる。詳細は後述する。
 後述するように、合成高分子膜34Aの表面は、窒素元素を0.7at%以上含むのに代えて、硫黄元素を3.7at%以上含んでもよい。合成高分子膜34Aの表面は、窒素元素を0.7at%以上含み、かつ、硫黄元素を3.7at%以上含んでももちろんよい。
 図1(a)に示した合成高分子膜34Aは、特許文献1~4に記載されている反射防止膜と同様のモスアイ構造を有している。反射防止機能を発現させるためには、表面に平坦な部分がなく、凸部34Apが密に配列されていることが好ましい。また、凸部34Apは、空気側からベースフィルム42A側に向かって、断面積(入射光線に直交する面に平行な断面、例えばベースフィルム42Aの面に平行な断面)が増加する形状、例えば、円錐形であることが好ましい。また、光の干渉を抑制するために、凸部34Apを規則性がないように、好ましくはランダムに、配列することが好ましい。しかしながら、合成高分子膜34Aの殺菌作用をもっぱら利用する場合には、これらの特徴は必要ではない。例えば、凸部34Apは密に配列される必要はなく、また、規則的に配列されてもよい。ただし、凸部34Apの形状や配置は、微生物に効果的に作用するように選択されることが好ましい。
 図1(b)に示すフィルム50Bは、ベースフィルム42Bと、ベースフィルム42B上に形成された合成高分子膜34Bとを有している。合成高分子膜34Bは、表面に複数の凸部34Bpを有しており、複数の凸部34Bpは、モスアイ構造を構成している。フィルム50Bは、合成高分子膜34Bが有する凸部34Bpの構造が、フィルム50Aの合成高分子膜34Aが有する凸部34Apの構造と異なっている。フィルム50Aと共通の特徴については説明を省略することがある。
 合成高分子膜34Bの法線方向から見たとき、凸部34Bpの2次元的な大きさDpは20nm超500nm未満の範囲内にある。また、凸部34Bpの典型的な隣接間距離Dintは20nm超1000nm以下であり、かつ、Dp<Dintである。すなわち、合成高分子膜34Bでは、隣接する凸部34Bpの間に平坦部が存在する。凸部34Bpは、空気側に円錐形の部分を有する円柱状であり、凸部34Bpの典型的な高さDhは、50nm以上500nm未満である。また、凸部34Bpは、規則的に配列されていてもよいし、不規則に配列されていてもよい。凸部34Bpが規則的に配列されている場合、Dintは配列の周期をも表すことになる。このことは、当然ながら、合成高分子膜34Aについても同じである。
 なお、本明細書において、「モスアイ構造」は、図1(a)に示した合成高分子膜34Aの凸部34Apの様に、断面積(膜面に平行な断面)が増加する形状の凸部で構成される、優れた反射機能を有するナノ表面構造だけでなく、図1(b)に示した合成高分子膜34Bの凸部34Bpの様に、断面積(膜面に平行な断面)が一定の部分を有する凸部で構成されるナノ表面構造も包含する。なお、微生物の細胞壁および/または細胞膜を破壊するためには、円錐形の部分を有することが好ましい。ただし、円錐形の先端は、ナノ表面構造である必要は必ずしもなく、セミの羽が有するナノ表面構造を構成するナノピラー程度の丸み(約60nm)を有していてもよい。
 後に実験例を示して説明するように、合成高分子膜34Aおよび34Bの殺菌性は、合成高分子膜34Aおよび34Bの物理的構造のみならず、合成高分子膜34Aおよび34Bの化学的性質とも相関関係を有する。ここで、合成高分子膜の化学的性質とは、例えば、合成高分子膜の組成、合成高分子膜に含まれる成分、合成高分子膜が有する化合物(高分子化合物および低分子化合物を含む)の官能基等を含む。本発明者の検討によると、合成高分子膜34Aおよび34Bが優れた殺菌性を有するためには、例えば、以下の化学的性質のいずれかを有することが好ましい。
 なお、ここでは、紫外線硬化樹脂(例えばアクリル樹脂(メタクリル樹脂を包含する))を用いて合成高分子膜を形成する場合を例示するが、他の光硬化性樹脂や熱硬化性樹脂、電子線硬化樹脂を用いる場合も同様である。
 第1の化学的性質:合成高分子膜34Aおよび34Bの表面に含まれる窒素元素(N)の濃度が0.7at%以上であることが好ましい。
 合成高分子膜34Aおよび34Bの表面に含まれる窒素元素の濃度は、合成高分子膜34Aおよび34Bを形成する樹脂材料そのものを選択することによって調整することもできるし、複数の樹脂材料を混ぜ合わせることによって調整することもできる。あるいは、樹脂材料に、窒素元素を含む材料(例えば下記の表面処理剤)を混合することによって調整することもできる。上記のいずれかを組み合わせることもできる。
 このようにして調整された、窒素元素の濃度が0.7at%以上である樹脂材料(混合物を含む)を用いて合成高分子膜が形成されることで、合成高分子膜34Aおよび34Bに含まれる窒素元素の濃度が0.7at%以上となる。このような樹脂材料が一様に用いられていると、合成高分子膜34Aおよび34Bの表面に含まれる窒素元素の濃度が、0.7at%以上になり得る。
 合成高分子膜34Aおよび34Bを形成する樹脂材料(混合物を含む)に含まれる窒素元素の濃度が0.7at%未満であっても、合成高分子膜34Aおよび34Bの表面が処理されることによって、合成高分子膜34Aおよび34Bの表面に含まれる窒素元素の濃度を0.7at%以上とすることができる。
 例えば、合成高分子膜34Aおよび34Bの表面に、表面処理剤(例えばシランカップリング剤、離型剤、帯電防止剤等を含む)を付与してもよい。表面処理剤の種類によっては、合成高分子膜34Aおよび34Bの表面に薄い高分子膜が形成される。また、合成高分子膜34Aおよび34Bの表面をプラズマなどを用いて改質してもよい。例えば、プラズマ処理によって、合成高分子膜34Aおよび34Bの表面に窒素元素を含む官能基や窒素元素を付与することができる。
 合成高分子膜34Aおよび34Bを形成する樹脂材料(混合物を含む)の選択と併用して、または、独立に、上述の表面処理を施してもよい。
 合成高分子膜34Aおよび34Bは、例えば、ウレタン樹脂を含む。合成高分子膜34Aおよび34Bは、例えば、ウレタン(メタ)アクリレート、シアノ(メタ)アクリレート等を含む。ウレタン樹脂が有する官能基は、例えば10個未満であることが好ましい。ウレタン樹脂が有する官能基は、例えば6個未満であることがさらに好ましい。ウレタン樹脂が有する官能基の数が多いと、樹脂の粘度が高くなることがある。この場合、モスアイ用型(モスアイ構造を表面に形成するための型)の表面の反転されたモスアイ構造に樹脂が入り込みにくくなることがあり、その結果、形成される反射防止膜の反射防止機能が抑制されるという問題(転写性の低下)が生じることがある。この問題に対処するために、すなわち樹脂の粘度を低くするために、例えば、樹脂中のモノマーの分子量を小さくすることができる。モノマーの分子量を小さくすると、樹脂の架橋密度が高くなるので、形成された反射防止膜をモスアイ用型から剥離(分離)させにくくなる(離型性の低下)という問題が生じ得る。反射防止膜の離型性が低下すると、モスアイ用型の表面の反転されたモスアイ構造に樹脂(膜の一部)が残留する、および/または、樹脂を表面に有する被加工物(例えば図1のベースフィルム42Aおよび42B)が破断するという問題が生じることがある。
 合成高分子膜34Aおよび34Bは、アミノ基(-NH2、-NHR、または-NRR’:RおよびR’は、それぞれ、炭化水素基を表す)、イソシアネート基(-N=C=O)およびシアノ基(-C≡N)のいずれかを有することが好ましい。
 合成高分子膜34Aおよび34Bは、上記の官能基のいずれかを有する高分子化合物を有してもよいし、上記の官能基のいずれかを有する表面処理剤(例えばシランカップリング剤、離型剤、帯電防止剤等を含む)を有してもよい。高分子化合物または表面処理剤は、上記の官能基のいずれかが他の官能基と反応し結合した化合物を有してもよい。表面処理剤は、合成高分子膜34Aおよび34Bの表面に付与されてもよいし、合成高分子膜34Aおよび34Bを形成するモノマーに混合されてもよい。
 合成高分子膜34Aおよび34Bは、末端官能基にアミノ基(-NH2、-NHR、または-NRR’:RおよびR’は、それぞれ、炭化水素基を表す)、イソシアネート基(-N=C=O)およびシアノ基(-C≡N)のいずれかを有する化合物(高分子化合物および表面処理剤を含む)を含むことが好ましい。合成高分子膜34Aおよび34Bは、末端官能基に-NH2または-NHR(Rは炭化水素基を表す)を有する化合物を含むことが、さらに好ましい。合成高分子膜34Aおよび34Bは、主鎖にNHを含む高分子を含んでもよい。
 合成高分子膜34Aおよび34Bは、アルカリ金属塩(例えばリチウム(Li)塩、ナトリウム(Na)塩、カリウム(K)塩を含む)またはアルカリ土類金属塩(例えばカルシウム(Ca)塩)もしくはマグネシウム塩を有してもよい。合成高分子膜34Aおよび34Bは、例えば第4級アンモニウム塩を有してもよい。合成高分子膜34Aおよび34Bは、これらの塩(金属塩を含む)を有することにより、より優れた殺菌性を有し得る。
 合成高分子膜34Aおよび34Bは、例えば、アルカリ金属塩、アルカリ土類金属塩、マグネシウム塩、または第4級アンモニウム塩を含む高分子から形成されてもよい。このような高分子として、例えば公知の帯電防止剤(静電防止剤)または導電剤を用いることができる。アルカリ金属塩のうち、リチウム塩には、例えば、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiSO3CF3、LiN(SO2CF32、LiSO349、LiC(SO2CF33、およびLiB(C654が含まれる。
 合成高分子膜34Aおよび34Bの中で、上記の塩(金属塩を含む)は、カチオン(アルカリ金属イオン、アルカリ土類金属イオン、マグネシウムイオン、または第4級アンモニウムカチオン)として存在していてもよい。合成高分子膜34Aおよび34Bは、例えば、エーテル結合を有する高分子(例えばポリエチレンオキシド)および/または潤滑剤をさらに有することが好ましい。
 第2の化学的性質:合成高分子膜34Aおよび34Bの表面に含まれる硫黄元素(S)の濃度が3.7at%以上である。
 例えば、合成高分子膜は、メルカプト基(-SH)を有することが好ましい。合成高分子膜は、メルカプト基を有する高分子化合物を有してもよいし、メルカプト基を有する表面処理剤(例えばシランカップリング剤、離型剤を含む)を有してもよい。表面処理剤は、合成高分子膜の表面に付与されてもよいし、合成高分子膜を形成するモノマーに混合されてもよい。合成高分子膜は、末端官能基に-SHを有する化合物を含むことが好ましい。
 合成高分子膜は、例えば硫化銅を含むアクリル樹脂から形成されてもよい。
 合成高分子膜は、上記第1および第2の化学的性質のいずれか1つを有してもよいし、両方を有してもよい。
 本発明者は、上記第1または第2の化学的性質を有することにより、合成高分子膜が優れた殺菌効果を持つ理由について以下のように考察した。
 窒素元素(N)は、(1s)2(2s)2(2p)3の電子配置を取り、価電子を5個有する。これらのうち3個は不対電子であり、孤立電子対(非共有電子対)を1組有する。例えば、アミノ基の窒素元素も1組の孤立電子対を有する。アミノ基は、窒素元素が孤立電子対を有するので、水素イオン(H+)と配位結合することができる。これによりアミノ基は塩基性を示す。同様に、孤立電子対を有するアミノ基は、求核性を有する。また、孤立電子対を有するアミノ基を有する化合物は、配位子として作用し、金属と配位結合することができる。
 このように、窒素元素を有する化合物(窒素元素を含む官能基を有する化合物を含む)は、窒素元素の有する孤立電子対に起因した性質を有し得る。上述したアミノ基に限られず、例えば、シアノ基(-C≡N)の窒素元素は1組の孤立電子対を有する。イソシアネート基(-N=C=O)の窒素元素は1組の孤立電子対を有し、酸素元素は2組の孤立電子対を有する。アミノ基を含む官能基であるウレイド基(-NHC(=O)NH2)の窒素元素はそれぞれ1組の孤立電子対を有し、酸素元素は2組の孤立電子対を有する。
 また、窒素元素は比較的大きな電気陰性度を有するので、他の元素と結合(配位結合を含む)したときに電子を引き寄せる力が大きい。すなわち、窒素元素と他の元素とが結合(配位結合を含む)した分子は極性を有することが多い。
 窒素元素を表面に含む合成高分子膜が優れた殺菌性を有するのは、上述の孤立電子対を有する点および大きな電気陰性度を有する点という特徴に起因している可能性があると考えられる。これらの特徴は、硫黄元素にも当てはまる特徴である。硫黄元素は、価電子を6個有し、孤立電子対を2組有する。
 このように考えると、本発明の実施形態による合成高分子膜は、上記第1または第2の化学的性質を有するものに限られない。本発明の実施形態による合成高分子膜は、窒素元素および硫黄元素に限られず、第15族元素、第16元素、または第17族元素のいずれかの元素を表面に有していてもよい。第15族元素(例えば窒素元素(N)、リン元素(P)等)は、孤立電子対を1組有し、第16族元素(例えば酸素元素(O)、硫黄元素(S)等)は、孤立電子対を2組有し、第17族元素(例えばフッ素元素(F)、塩素元素(Cl)等)は、孤立電子対を3組有するという特徴を有する。また、これらの元素のうち原子番号の小さいもの(例えばF、O、N、Cl、S、P等)は電気陰性度が大きいという特徴を有するので、特に好ましい。
 本出願人が特許第5788128号に記載しているように、フッ素含有アクリル樹脂またはフッ素系潤滑剤を混合したウレタンアクリレート含有アクリル樹脂から形成され、かつ、表面にモスアイ構造を有する合成高分子膜に殺菌性が認められている。これらの合成高分子膜が殺菌効果を有するのは、孤立電子対を3組有し、かつ、大きい電気陰性度を有するフッ素元素を表面に有していることが寄与しているとも考えることができるかもしれない。
 図1(a)および(b)に例示したようなモスアイ構造を表面に形成するための型(以下、「モスアイ用型」という。)は、モスアイ構造を反転させた、反転されたモスアイ構造を有する。反転されたモスアイ構造を有する陽極酸化ポーラスアルミナ層をそのまま型として利用すると、モスアイ構造を安価に製造することができる。特に、円筒状のモスアイ用型を用いると、ロール・ツー・ロール方式によりモスアイ構造を効率良く製造することができる。このようなモスアイ用型は、特許文献2~4に記載されている方法で製造することができる。
 図2(a)~(e)を参照して、合成高分子膜34Aを形成するための、モスアイ用型100Aの製造方法を説明する。
 まず、図2(a)に示すように、型基材として、アルミニウム基材12と、アルミニウム基材12の表面に形成された無機材料層16と、無機材料層16の上に堆積されたアルミニウム膜18とを有する型基材10を用意する。
 アルミニウム基材12としては、アルミニウムの純度が99.50mass%以上99.99mass%未満である比較的剛性の高いアルミニウム基材を用いる。アルミニウム基材12に含まれる不純物としては、鉄(Fe)、ケイ素(Si)、銅(Cu)、マンガン(Mn)、亜鉛(Zn)、ニッケル(Ni)、チタン(Ti)、鉛(Pb)、スズ(Sn)およびマグネシウム(Mg)からなる群から選択された少なくとも1つの元素を含むことが好ましく、特にMgが好ましい。エッチング工程におけるピット(窪み)が形成されるメカニズムは、局所的な電池反応であるので、理想的にはアルミニウムよりも貴な元素を全く含まず、卑な金属であるMg(標準電極電位が-2.36V)を不純物元素として含むアルミニウム基材12を用いることが好ましい。アルミニウムよりも貴な元素の含有率が10ppm以下であれば、電気化学的な観点からは、当該元素を実質的に含んでいないと言える。Mgの含有率は、全体の0.1mass%以上であることが好ましく、約3.0mass%以下の範囲であることがさらに好ましい。Mgの含有率が0.1mass%未満では十分な剛性が得られない。一方、含有率が大きくなると、Mgの偏析が起こり易くなる。モスアイ用型を形成する表面付近に偏析が生じても電気化学的には問題とならないが、Mgはアルミニウムとは異なる形態の陽極酸化膜を形成するので、不良の原因となる。不純物元素の含有率は、アルミニウム基材12の形状、厚さおよび大きさに応じて、必要とされる剛性に応じて適宜設定すればよい。例えば圧延加工によって板状のアルミニウム基材12を作製する場合には、Mgの含有率は約3.0mass%が適当であるし、押出加工によって円筒などの立体構造を有するアルミニウム基材12を作製する場合には、Mgの含有率は2.0mass%以下であることが好ましい。Mgの含有率が2.0mass%を超えると、一般に押出加工性が低下する。
 アルミニウム基材12として、例えば、JIS A1050、Al-Mg系合金(例えばJIS A5052)、またはAl-Mg-Si系合金(例えばJIS A6063)で形成された円筒状のアルミニウム管を用いる。
 アルミニウム基材12の表面は、バイト切削が施されていることが好ましい。アルミニウム基材12の表面に、例えば砥粒が残っていると、砥粒が存在する部分において、アルミニウム膜18とアルミニウム基材12との間で導通しやすくなる。砥粒以外にも、凹凸が存在するところでは、アルミニウム膜18とアルミニウム基材12との間で局所的に導通しやすくなる。アルミニウム膜18とアルミニウム基材12との間で局所的に導通すると、アルミニウム基材12内の不純物とアルミニウム膜18との間で局所的に電池反応が起こる可能性がある。
 無機材料層16の材料としては、例えば酸化タンタル(Ta25)または二酸化シリコン(SiO2)を用いることができる。無機材料層16は、例えばスパッタ法により形成することができる。無機材料層16として、酸化タンタル層を用いる場合、酸化タンタル層の厚さは、例えば、200nmである。
 無機材料層16の厚さは、100nm以上500nm未満であることが好ましい。無機材料層16の厚さが100nm未満であると、アルミニウム膜18に欠陥(主にボイド、すなわち結晶粒間の間隙)が生じることがある。また、無機材料層16の厚さが500nm以上であると、アルミニウム基材12の表面状態によって、アルミニウム基材12とアルミニウム膜18との間が絶縁されやすくなる。アルミニウム基材12側からアルミニウム膜18に電流を供給することによってアルミニウム膜18の陽極酸化を行うためには、アルミニウム基材12とアルミニウム膜18との間に電流が流れる必要がある。円筒状のアルミニウム基材12の内面から電流を供給する構成を採用すると、アルミニウム膜18に電極を設ける必要がないので、アルミニウム膜18を全面にわたって陽極酸化できるとともに、陽極酸化の進行に伴って電流が供給され難くなるという問題も起こらず、アルミニウム膜18を全面にわたって均一に陽極酸化することができる。
 また、厚い無機材料層16を形成するためには、一般的には成膜時間を長くする必要がある。成膜時間が長くなると、アルミニウム基材12の表面温度が不必要に上昇し、その結果、アルミニウム膜18の膜質が悪化し、欠陥(主にボイド)が生じることがある。無機材料層16の厚さが500nm未満であれば、このような不具合の発生を抑制することもできる。
 アルミニウム膜18は、例えば、特許文献3に記載されているように、純度が99.99mass%以上のアルミニウムで形成された膜(以下、「高純度アルミニウム膜」ということがある。」)である。アルミニウム膜18は、例えば、真空蒸着法またはスパッタ法を用いて形成される。アルミニウム膜18の厚さは、約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。
 また、アルミニウム膜18として、高純度アルミニウム膜に代えて、特許文献4に記載されている、アルミニウム合金膜を用いてもよい。特許文献4に記載のアルミニウム合金膜は、アルミニウムと、アルミニウム以外の金属元素と、窒素とを含む。本明細書において、「アルミニウム膜」は、高純度アルミニウム膜だけでなく、特許文献4に記載のアルミニウム合金膜を含むものとする。
 上記アルミニウム合金膜を用いると、反射率が80%以上の鏡面を得ることができる。アルミニウム合金膜を構成する結晶粒の、アルミニウム合金膜の法線方向から見たときの平均粒径は、例えば、100nm以下であり、アルミニウム合金膜の最大表面粗さRmaxは60nm以下である。アルミニウム合金膜に含まれる窒素の含有率は、例えば、0.5mass%以上5.7mass%以下である。アルミニウム合金膜に含まれるアルミニウム以外の金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値は0.64V以下であり、アルミニウム合金膜中の金属元素の含有率は、1.0mass%以上1.9mass%以下であることが好ましい。金属元素は、例えば、TiまたはNdである。但し、金属元素はこれに限られず、金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値が0.64V以下である他の金属元素(例えば、Mn、Mg、Zr、VおよびPb)であってもよい。さらに、金属元素は、Mo、NbまたはHfであってもよい。アルミニウム合金膜は、これらの金属元素を2種類以上含んでもよい。アルミニウム合金膜は、例えば、DCマグネトロンスパッタ法で形成される。アルミニウム合金膜の厚さも約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。
 次に、図2(b)に示すように、アルミニウム膜18の表面18sを陽極酸化することによって、複数の凹部(細孔)14pを有するポーラスアルミナ層14を形成する。ポーラスアルミナ層14は、凹部14pを有するポーラス層と、バリア層(凹部(細孔)14pの底部)とを有している。隣接する凹部14pの間隔(中心間距離)は、バリア層の厚さのほぼ2倍に相当し、陽極酸化時の電圧にほぼ比例することが知られている。この関係は、図2(e)に示す最終的なポーラスアルミナ層14についても成立する。
 ポーラスアルミナ層14は、例えば、酸性の電解液中で表面18sを陽極酸化することによって形成される。ポーラスアルミナ層14を形成する工程で用いられる電解液は、例えば、蓚酸、酒石酸、燐酸、硫酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む水溶液である。例えば、アルミニウム膜18の表面18sを、蓚酸水溶液(濃度0.3mass%、液温10℃)を用いて、印加電圧80Vで55秒間陽極酸化を行うことにより、ポーラスアルミナ層14を形成する。
 次に、図2(c)に示すように、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより凹部14pの開口部を拡大する。エッチング液の種類・濃度、およびエッチング時間を調整することによって、エッチング量(すなわち、凹部14pの大きさおよび深さ)を制御することができる。エッチング液としては、例えば10mass%の燐酸や、蟻酸、酢酸、クエン酸などの有機酸や硫酸の水溶液やクロム酸燐酸混合水溶液を用いることができる。例えば、燐酸水溶液(10mass%、30℃)を用いて20分間エッチングを行う。
 次に、図2(d)に示すように、再び、アルミニウム膜18を部分的に陽極酸化することにより、凹部14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。ここで凹部14pの成長は、既に形成されている凹部14pの底部から始まるので、凹部14pの側面は階段状になる。
 さらにこの後、必要に応じて、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによってさらにエッチングすることにより凹部14pの孔径をさらに拡大する。エッチング液としては、ここでも上述したエッチング液を用いることが好ましく、現実的には、同じエッチング浴を用いればよい。
 このように、上述した陽極酸化工程およびエッチング工程を交互に複数回(例えば5回:陽極酸化を5回とエッチングを4回)繰り返すことによって、図2(e)に示すように、反転されたモスアイ構造を有するポーラスアルミナ層14を有するモスアイ用型100Aが得られる。陽極酸化工程で終わることによって、凹部14pの底部を点にできる。すなわち、先端が尖った凸部を形成することができる型が得られる。
 図2(e)に示すポーラスアルミナ層14(厚さtp)は、ポーラス層(厚さは凹部14pの深さDdに相当)とバリア層(厚さtb)とを有する。ポーラスアルミナ層14は、合成高分子膜34Aが有するモスアイ構造を反転した構造を有するので、その大きさを特徴づける対応するパラメータに同じ記号を用いることがある。
 ポーラスアルミナ層14が有する凹部14pは、例えば円錐形であり、階段状の側面を有してもよい。凹部14pの二次元的な大きさ(表面の法線方向から見たときの凹部の面積円相当径)Dpは20nm超500nm未満で、深さDdは50nm以上1000nm(1μm)未満程度であることが好ましい。また、凹部14pの底部は尖っている(最底部は点になっている)ことが好ましい。凹部14pは密に充填されている場合、ポーラスアルミナ層14の法線方向から見たときの凹部14pの形状を円と仮定すると、隣接する円は互いに重なり合い、隣接する凹部14pの間に鞍部が形成される。なお、略円錐形の凹部14pが鞍部を形成するように隣接しているときは、凹部14pの二次元的な大きさDpは隣接間距離Dintと等しい。ポーラスアルミナ層14の厚さtpは、例えば、約1μm以下である。
 なお、図2(e)に示すポーラスアルミナ層14の下には、アルミニウム膜18のうち、陽極酸化されなかったアルミニウム残存層18rが存在している。必要に応じて、アルミニウム残存層18rが存在しないように、アルミニウム膜18を実質的に完全に陽極酸化してもよい。例えば、無機材料層16が薄い場合には、アルミニウム基材12側から容易に電流を供給することができる。
 ここで例示したモスアイ用型の製造方法は、特許文献2~4に記載の反射防止膜を作製するための型を製造することができる。高精細な表示パネルに用いられる反射防止膜には、高い均一性が要求されるので、上記のようにアルミニウム基材の材料の選択、アルミニウム基材の鏡面加工、アルミニウム膜の純度や成分の制御を行うことが好ましいが、殺菌作用に高い均一性は求められないので、上記の型の製造方法を簡略化することができる。例えば、アルミニウム基材の表面を直接、陽極酸化してもよい。また、このときアルミニウム基材に含まれる不純物の影響でピットが形成されても、最終的に得られる合成高分子膜34Aのモスアイ構造に局所的な構造の乱れが生じるだけで、殺菌作用に与える影響はほとんどないと考えられる。
 また、上述の型の製造方法によると、反射防止膜の作製に好適な、凹部の配列の規則性が低い型を製造することができる。モスアイ構造の殺菌性を利用する場合には、凸部の配列の規則性は影響しないと考えられる。規則的に配列された凸部を有するモスアイ構造を形成するための型は、例えば、以下のようにして製造することができる。
 例えば厚さが約10μmのポーラスアルミナ層を形成した後、生成されたポーラスアルミナ層をエッチングにより除去してから、上述のポーラスアルミナ層を生成する条件で陽極酸化を行えばよい。厚さが10μmのポーラスアルミナ層は、陽極酸化時間を長くすることによって形成される。このように比較的厚いポーラスアルミナ層を生成し、このポーラスアルミナ層を除去すると、アルミニウム膜またはアルミニウム基材の表面に存在するグレインによる凹凸や加工ひずみの影響を受けることなく、規則的に配列された凹部を有するポーラスアルミナ層を形成することができる。なお、ポーラスアルミナ層の除去には、クロム酸と燐酸との混合液を用いることが好ましい。長時間にわたるエッチングを行うとガルバニック腐食が発生することがあるが、クロム酸と燐酸との混合液はガルバニック腐食を抑制する効果がある。
 図1(b)に示した合成高分子膜34Bを形成するためのモスアイ用型も、基本的に、上述した陽極酸化工程とエッチング工程とを組み合わせることによって製造することができる。図3(a)~(c)を参照して、合成高分子膜34Bを形成するための、モスアイ用型100Bの製造方法を説明する。
 まず、図2(a)および(b)を参照して説明したのと同様に、型基材10を用意し、アルミニウム膜18の表面18sを陽極酸化することによって、複数の凹部(細孔)14pを有するポーラスアルミナ層14を形成する。
 次に、図3(a)に示すように、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより凹部14pの開口部を拡大する。このとき、図2(c)を参照して説明したエッチング工程よりも、エッチング量を少なくする。すなわち、凹部14pの開口部の大きさを小さくする。例えば、燐酸水溶液(10mass%、30℃)を用いて10分間エッチングを行う。
 次に、図3(b)に示すように、再び、アルミニウム膜18を部分的に陽極酸化することにより、凹部14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。このとき、図2(d)を参照して説明した陽極酸化工程よりも、凹部14pを深く成長させる。例えば、蓚酸水溶液(濃度0.3mass%、液温10℃)を用いて、印加電圧80Vで165秒間陽極酸化を行う(図2(d)では55秒間)。
 その後、図2(e)を参照して説明したのと同様に、エッチング工程および陽極酸化工程を交互に複数回くり返す。例えば、エッチング工程を3回、陽極酸化工程を3回、交互に繰り返すことによって、図3(c)に示すように、反転されたモスアイ構造を有するポーラスアルミナ層14を有するモスアイ用型100Bが得られる。このとき、凹部14pの二次元的な大きさDpは隣接間距離Dintより小さい(Dp<Dint)。
 続いて、図4を参照して、モスアイ用型100を用いた合成高分子膜の製造方法を説明する。図4は、ロール・ツー・ロール方式により合成高分子膜を製造する方法を説明するための模式的な断面図である。
 まず、円筒状のモスアイ用型100を用意する。なお、円筒状のモスアイ用型100は、例えば図2を参照して説明した製造方法で製造される。
 図4に示すように、紫外線硬化樹脂34'が表面に付与されたベースフィルム42を、モスアイ用型100に押し付けた状態で、紫外線硬化樹脂34'に紫外線(UV)を照射することによって紫外線硬化樹脂34'を硬化する。紫外線硬化樹脂34'としては、例えばアクリル系樹脂を用いることができる。ベースフィルム42は、例えば、PET(ポリエチレンテレフタレート)フィルムまたはTAC(トリアセチルセルロース)フィルムである。ベースフィルム42は、図示しない巻き出しローラから巻き出され、その後、表面に、例えばスリットコータ等により紫外線硬化樹脂34'が付与される。ベースフィルム42は、図4に示すように、支持ローラ46および48によって支持されている。支持ローラ46および48は、回転機構を有し、ベースフィルム42を搬送する。また、円筒状のモスアイ用型100は、ベースフィルム42の搬送速度に対応する回転速度で、図4に矢印で示す方向に回転される。
 その後、ベースフィルム42からモスアイ用型100を分離することによって、モスアイ用型100の反転されたモスアイ構造が転写された合成高分子膜34がベースフィルム42の表面に形成される。表面に合成高分子膜34が形成されたベースフィルム42は、図示しない巻き取りローラにより巻き取られる。
 合成高分子膜34の表面は、モスアイ用型100のナノ表面構造を反転したモスアイ構造を有する。用いるモスアイ用型100のナノ表面構造に応じて、図1(a)および(b)に示した合成高分子膜34Aおよび34Bを作製することができる。合成高分子膜34を形成する材料は、紫外線硬化性樹脂に限られず、可視光で硬化可能な光硬化性樹脂を用いることもできるし、熱硬化性樹脂を用いることもできる。
 以下に、実験例を示して、上述のモスアイ構造を有する表面を備える合成高分子膜が殺菌性を有することを説明する。
 上述の型の製造方法に従って作製した型を用いて、図1(a)に示したフィルム50Aの凸部34Apのような円錐形の凸部を有する合成高分子膜を作製した。殺菌作用の評価に供した試料フィルムにおけるDpは約200nm、Dintは約200nm、Dhは約150nmであった(例えば図8参照)。細胞壁に局所的な変形を生じさせるためには、隣接する凸部は離れていることが好ましく、DpとDintとの差は、例えば、Dpの0倍~2倍が好ましく、0.5倍~2倍がより好ましい。ここで、Dp、Dint、およびDhはSEM像から求めた平均値を指す。SEM像の撮影には、電界放出型走査電子顕微鏡(日立製作所製のS-4700)を用いた。
 合成高分子膜を形成する樹脂材料としては、紫外線硬化樹脂を用いた。窒素元素の割合が異なるアクリル樹脂を用いて、試料フィルムNo.1~No.3を作製した。それぞれの試料フィルム中の原子濃度は、XPS(X線光電子分光)によって測定した。
 試料フィルムNo.1は、窒素元素を含まないアクリル樹脂Aを用いて作製した。アクリル樹脂Aは、ウレタンアクリレートを含有しない。アクリル樹脂Aが有する官能基は3.43個(テトラメチロールメタントリアクリレート57mol%、テトラメチロールメタンテトラアクリレート43mol%)である。
 試料フィルムNo.2は、ウレタンアクリレートを含有するアクリル樹脂Bを用いて作製した。ウレタンアクリレート含有アクリル樹脂B中の窒素元素の原子濃度は0.7at%である。ウレタンアクリレート含有アクリル樹脂Bは、官能基を3個有する樹脂を31.8mass%、官能基を3.43個有する上記アクリル樹脂Aを28.2mass%、官能基を4個有する樹脂を40.0mass%含む。
 試料フィルムNo.3は、ウレタンアクリレートを含有するアクリル樹脂Cを用いて作製した。ウレタンアクリレート含有アクリル樹脂C中の窒素元素の原子濃度は2.2at%である。ウレタンアクリレート含有アクリル樹脂Cが有する官能基は3個である。
 以下の実験1から実験3においては、主に、合成高分子膜に含まれる窒素元素の濃度と合成高分子膜の殺菌効果との関係に注目した。
 (実験1)
 まず、試料フィルムNo.1およびNo.2について殺菌性を評価した。殺菌性の評価は、以下の手順で行った。
 1.冷凍保存された緑膿菌付きのビーズ(独立行政法人 製品評価技術基盤機構から購入)を37℃の培養液中に24時間浸漬することによって解凍
 2.遠心分離(3000rpm、10分間)
 3.培養液の上澄み液を捨てる
 4.滅菌水を入れて撹拌した後、再び遠心分離
 5.上記2~4の操作を3回繰り返すことによって菌原液(菌数は1E+07CFU/mLのオーダー)を得る
 6.1/500NB培地および菌希釈液A(菌数は1E+05CFU/mLのオーダー)を調製
  1/500NB培地:NB培地(栄研化学株式会社製、普通ブイヨン培地E-MC35)を滅菌水で500倍に希釈
  菌希釈液A:菌原液500μL+滅菌水49.5mL
 7.菌希釈液Aに、栄養源として1/500NB培地を添加した菌希釈液Bを調製(JISZ2801の5.4a)に準拠)
 8.菌希釈液B(この時の菌希釈液B中の菌数を初期菌数ということがある)を各試料フィルム上に400μLを滴下し、菌希釈液B上にカバー(例えばカバーガラス)を配置し、単位面積当たりの菌希釈液Bの量を調整
 9.一定時間37℃、相対湿度100%の環境で放置する(放置時間:5分、4時間、24時間または48時間)
 10.菌希釈液Bが付いた試料フィルム全体と滅菌水9.6mLとを濾過袋に入れ、濾過袋の上から手で揉んで、試料フィルムの菌を十分に洗い流す。濾過袋の中の洗い出し液は、菌希釈液Bが25倍に希釈されたものである。この洗い出し液を菌希釈液B2ということがある。菌希釈液B2は、菌希釈液B中の菌数の増減がない場合は、菌数1E+04CFU/mLのオーダーとなる。
 11.菌希釈液B2を10倍希釈して菌希釈液Cを調製する。具体的には、洗い出し液(菌希釈液B2)120μLを滅菌水1.08mLに入れて調製する。菌希釈液Cは、菌希釈液B中の菌数の増減がない場合は、菌数1E+03CFU/mLのオーダーとなる。
 12.菌希釈液Cの調製と同じ方法で、菌希釈液Cを10倍希釈して菌希釈液Dを調製する。菌希釈液Dは、菌希釈液B中の菌数の増減がない場合は、菌数1E+02CFU/mLのオーダーとなる。さらに、菌希釈液Dを10倍希釈して菌希釈液Eを調製する。菌希釈液Eは、菌希釈液B中の菌数の増減がない場合は、菌数1E+01CFU/mLのオーダーとなる。
 13.菌希釈液B2および菌希釈液C~Eをペトリフィルム(登録商標)培地(3M社製、製品名:生菌数測定用ACプレート)に1mLを滴下して、37℃、相対湿度100%で培養して48時間後に菌希釈液B2中の菌数をカウントする。
 なお、JISZ2801の5.6h)では、希釈液を調製する際にリン酸緩衝生理食塩水を用いるが、実験1においては滅菌水を用いた。滅菌水を用いた場合、試料フィルムの表面の物理的構造および化学的性質ではなく、微生物の細胞内の溶液と浸透圧が異なることが、菌が死滅する原因になる可能性が考えられる。これに対しては、後述する試料フィルムNo.5(PET)において菌が死滅しないことを確認できた。滅菌水を用いても、試料フィルムの表面の物理的構造および化学的性質による殺菌効果を調べられることを確認している。
 試料フィルムNo.1については、初期菌数を3.1E+05CFU/mLとして、試料フィルムNo.2については、初期菌数を1.4E+05CFU/mLとして、殺菌性の評価を行った。試料フィルムNo.1については、放置時間5分の場合の測定は行っていない。
 結果を図5に示す。図5(a)は、実験1において試料フィルムNo.1の殺菌性を評価した結果を示すグラフである。図5(b)は、実験1において試料フィルムNo.2の殺菌性を評価した結果を示すグラフである。図5において、横軸は放置時間(時間)であり、縦軸は菌希釈液B2中の菌数(CFU/mL)を示す。なお、図5において、見やすさのために、菌数が0の場合は0.1としてプロットしている。
 図5(a)および図5(b)から分かるように、窒素元素が含まれている樹脂で形成された試料フィルムNo.2は、殺菌性を示すのに対し、窒素元素が含まれていない樹脂で形成された試料フィルムNo.1は、殺菌性を示さなかった。
 実験結果より、合成高分子膜が窒素元素を含むと殺菌性を有することが分かる。合成高分子膜は、窒素元素を例えば0.7at%以上含むことが好ましいことが分かった。
 (実験2)
 次に、初期菌数の値を変更して、試料フィルムNo.2およびNo.3の殺菌性を評価した。実験1では1E+05CFU/mLオーダーであったのに対し、実験2においては初期菌数を1E+06CFU/mLオーダーとした。評価の手順は、実験1と基本的に同じである。ただし、37℃、相対湿度100%の環境で放置する時間(放置時間)は67.5時間とした。
 実験の結果、試料フィルムNo.2においては十分な殺菌効果が得られなかったが、試料フィルムNo.3においては殺菌性が認められた。実験1においては、試料フィルムNo.2の殺菌性が認められていたが、初期菌数が増加したことにより、実験2においては十分に殺菌効果が得られなかったと考えられる。初期菌数と殺菌効果との関係については、後述する。
 また、実験2の結果から、合成高分子膜に含まれる窒素元素の原子濃度が高い方が、より強い殺菌性を有することが分かる。合成高分子膜は、窒素元素を2.2at%以上含むことがさらに好ましいことが分かった。
 (実験3)
 続いて、初期菌数を2.5E+06CFU/mLとし、かつ、菌希釈液B中の栄養源を実験1の10倍に増加させた条件で、試料フィルムNo.1~No.5の殺菌性を評価した。すなわち、上記菌希釈液Aに、栄養源として1/50NB培地(NB培地(栄研化学株式会社製、普通ブイヨン培地E-MC35)を滅菌水で50倍に希釈)を添加して菌希釈液Bを調製した。
 試料フィルムNo.4は、試料フィルムNo.2と同じウレタンアクリレート含有アクリル樹脂Bを用いて作製した。試料フィルムNo.4は、表面にモスアイ構造を有していない点において、試料フィルムNo.2と異なる。
 試料フィルムNo.5は、試料フィルムNo.1~No.4のベースフィルムとして用いたPETフィルムである。
 評価の手順は、実験1と基本的に同じである。
 結果を図6に示す。図6は、実験3において試料フィルムNo.1~No.5の殺菌性を評価した結果を示すグラフである。図6において、横軸は放置時間(時間)であり、縦軸は菌希釈液B2中の菌数(CFU/mL)を示す。
 図6から分かるように、試料フィルムNo.2およびNo.3においては、放置時間が3時間から24時間へ変化する際に菌数は減少しなかったものの、最も菌数の増加が認められた試料フィルムNo.5と比較すると、菌数の増加が抑制されていることが分かる。すなわち、窒素元素を含む試料フィルムNo.2およびNo.3においては、菌数の増加を抑制することができる抗菌効果(静菌効果)が認められた。また、窒素元素の原子濃度が高い(2.2at%)樹脂から形成された試料フィルムNo.3の方が、試料フィルムNo.2(0.7at%)よりも優れた抗菌効果を示している。
 また、試料フィルムNo.2およびNo.4の結果を比較すると、試料フィルムNo.2は、表面にモスアイ構造を有することによって、試料フィルムNo.4よりも優れた抗菌効果を有していることが分かる。合成高分子膜が表面にモスアイ構造を有することと、合成高分子膜に窒素元素が含まれることとによって、合成高分子膜が優れた殺菌効果および/または抗菌効果を有することが分かる。
 発明者は、初期菌数と殺菌効果との関係について、以下のように考察した。
 細菌の増殖は、世代時間T0ごとに1個の細菌が2個に分裂して、その数が2倍になるという方式である。つまり、以下の式(1)に表すように、時刻t=nT0における細菌数N(nT0)は、時刻t=(n-1)T0における細菌数N((n-1)T0)の2倍になる。ここで、nは正の整数を表す。
Figure JPOXMLDOC01-appb-M000001
世代時間T0は、細菌の種類や培養条件によって異なる。例えば、増殖に適した条件下における緑膿菌の世代時間は、およそ30分~40分である。式(1)は、時刻t=0における細菌数N(0)を用いて、式(2)のように表すことができる。
Figure JPOXMLDOC01-appb-M000002
式(2)から、時刻tにおける細菌数N(t)は、式(3)のように表される。細菌数は、経過時間とともに対数的に増加する。
Figure JPOXMLDOC01-appb-M000003
 上記の増殖の考え方に基づいて、殺菌効果を有する合成高分子膜上の細菌数を考察する。単位時間当たりに合成高分子膜(試料フィルム)の表面で殺菌される細菌の数をDとすると、時刻t=nT0における細菌数N(nT0)は、以下の式(4)のように表される。
Figure JPOXMLDOC01-appb-M000004
式(4)は、上記式(1)に殺菌効果を表す項(-DT0)が導入された形である。式(4)を変形することにより、式(5)を得る。
Figure JPOXMLDOC01-appb-M000005
式(5)から、時刻tにおける細菌数N(t)は、式(6)のように表される。
Figure JPOXMLDOC01-appb-M000006
 式(6)によると、時刻t=0における細菌数(すなわち初期菌数)N(0)と、世代時間当たりに殺菌される菌数DT0との大小関係によって、時刻tにおける細菌数N(t)が決定される。初期菌数N(0)が、世代時間当たりに殺菌される菌数DT0よりも大きければ(N(0)>DT0)、時刻tが大きくなるとともに細菌数は増加し続ける。初期菌数N(0)が、世代時間当たりに殺菌される菌数DT0よりも小さければ(N(0)<DT0)、時刻tが大きくなると細菌数は減少し、有限の時間経過後に細菌数は0になる。
 上述したように、実験1においては、試料フィルムNo.2の殺菌効果が認められていたが、初期菌数を増加させた実験2においては、十分に試料フィルムNo.2の殺菌効果が得られなかった。これらの結果は、式(6)によって説明することができる。実験1における初期菌数は、試料フィルムNo.2が世代時間当たりに殺菌することができる菌数よりも小さかったのに対し、実験2における初期菌数は、試料フィルムNo.2が世代時間当たりに殺菌することができる菌数よりも大きかったことが考えられる。
 なお、式(6)は簡略化されたモデルであるので、式(6)に反映されていない要素を考慮する必要がある場合もある。例えば、式(6)においては、単位時間当たりの殺菌数Dを、細菌数によらずに一定としたが、細菌数によって変化する可能性もある。
 細菌の栄養源(例えば有機物)の量が殺菌効果に与える影響も考慮する必要がある場合がある。例えば、栄養源を増加させた実験3においては、試料フィルムNo.2およびNo.3は、実験2と比較して十分な殺菌効果を示さず、菌数の増加を抑制するにとどまった。一般には、例えばモノーの式(Monod equation)によると、栄養源が増加すると増殖速度が速くなる。すなわち、栄養源が増加すると世代時間T0が短くなる。この場合、式(6)からは、殺菌効果を得るためにはより少ない初期菌数であることが必要になることが考えられる。
 微生物は一般に栄養源である有機物と接触する確率を増やすために、物体の表面に付着しやすい表面構造を有している。従って、栄養源が少ない場合には、物体の表面への付着しやすさが増幅されることも考えられる。これにより、より効率よく合成高分子膜の表面で殺菌されることも考えられる。
 細胞は一般に極性を有する物質(栄養源を含む)を取り込む機構を有している(エンドサイトーシス)。実際に、図8を参照して後述するように、合成高分子膜の凸部が細胞壁に取り込まれたかのように見える。栄養源が少ない場合には、合成高分子膜の凸部が細胞壁に取り込まれる効率が増幅され、効率よく合成高分子膜の表面で殺菌されることも考えられる。
 なお、細菌を培養すると、全ての培養時間において、式(1)~式(6)で記述されるように対数的に細菌が増殖するわけではない。式(1)~式(6)で記述されるような対数期(対数増殖期)の前に、ほとんど細菌の数が変化しない誘導期が現れることがある。誘導期は、細菌は分裂をほとんど行わずに、分裂のための準備(例えば細胞の修復、酵素の生合成)や培地への適応を行う期間であると考えられている。例えば、図6に示す実験3の結果において、試料フィルムNo.1~No.4は、放置時間3時間後には菌数が減少しているのに対し、24時間後には菌数が増加する振舞いを示している。これらの振舞いは、誘導期から対数期への遷移を反映しているとも考えられる。
 以下の実験4および実験5においては、合成高分子膜の表面にシランカップリング剤を付与することによって、合成高分子膜の表面の化学的性質を変化させ、合成高分子膜が有する殺菌効果を評価した。特に、合成高分子膜の表面に含まれる化合物が有する官能基と、合成高分子膜の殺菌効果との関係に注目した。
 (実験4)
 実験4においては、下記の表1に示す7種類の試料フィルムNo.10~No.16について、殺菌性を評価した。
Figure JPOXMLDOC01-appb-T000007
 試料フィルムNo.10~No.16は、先と同じ型を用いて作製した。試料フィルムNo.10~No.16は、アクリル樹脂D(上記のアクリル樹脂Aと異なる)にシリコーン系潤滑剤を混合した樹脂を用いて作製した。シリコーン系潤滑剤を混合したアクリル樹脂Dは窒素元素を含まない。試料フィルムNo.10の表面には、表面処理剤を付与していない。試料フィルムNo.11~No.16は、得られた合成高分子膜の表面に、それぞれ異なるシランカップリング剤を付与することで、表面の化学的性質(表面に付与されたシランカップリング剤が有する官能基)が異なる合成高分子膜を作製した。
 試料フィルムNo.11には、シランカップリング剤S0を付与した。シランカップリング剤S0は、信越化学工業株式会社製のKBM-1003であり、以下の化学式(7)で表される。シランカップリング剤S0が表面に付与されているので、試料フィルムNo.11の合成高分子膜の表面には窒素元素が含まれない。シランカップリング剤S0は、ビニル基(-CH=CH2)を有する。
 (CH3O)3SiCH=CH2   (7)
 試料フィルムNo.12には、シランカップリング剤S1を付与した。シランカップリング剤S1は、信越化学工業株式会社製のKBM-603であり、以下の化学式(8)で表される。シランカップリング剤S1が表面に付与されているので、試料フィルムNo.12の合成高分子膜の表面に含まれる窒素元素の濃度は5.6at%である。シランカップリング剤S1は、アミノ基(-NH2)を有する。
 (CH3O)3SiC36NHC24NH2   (8)
 試料フィルムNo.13には、シランカップリング剤S2を付与した。シランカップリング剤S2は、信越化学工業株式会社製のKBM-903であり、以下の化学式(9)で表される。シランカップリング剤S2が表面に付与されているので、試料フィルムNo.13の合成高分子膜の表面に含まれる窒素元素の濃度は3.6at%である。シランカップリング剤S2は、アミノ基(-NH2)を有する。
 (CH3O)3SiC36NH2   (9)
 試料フィルムNo.14には、シランカップリング剤S3を付与した。シランカップリング剤S3は、信越化学工業株式会社製のKBE-585であり、以下の化学式(10)のアルコール溶液である。化学式(10)において、Rは炭化水素基を表す。シランカップリング剤S3は、ウレイド基(-NHC(=O)NH2)を有する。ウレイド基はアミノ基(-NH2)を含む官能基である。
 (RO)3SiC36NHC(=O)NH2  (10)
 試料フィルムNo.15には、シランカップリング剤S4を付与した。シランカップリング剤S4は、信越化学工業株式会社製のKBM-803であり、以下の化学式(11)で表される。シランカップリング剤S4が表面に付与されているので、試料フィルムNo.15の合成高分子膜の表面に含まれる硫黄元素の濃度は3.7at%である。シランカップリング剤S4は、メルカプト基(-SH)を有する。
 (CH3O)3SiC36SH   (11)
 試料フィルムNo.16には、シランカップリング剤S5を付与した。シランカップリング剤S5は、信越化学工業株式会社製のKBE-9007であり、以下の化学式(12)で表される。シランカップリング剤S5が表面に付与されているので、試料フィルムNo.16の合成高分子膜の表面に含まれる窒素元素の濃度は2.7at%である。シランカップリング剤S5は、イソシアネート基(-N=C=O)を有する。
 (C25O)3SiC36N=C=O   (12)
 殺菌性の評価の手順は、上記の実験1と基本的に同じである。実験4においては、試料フィルムNo.10については、初期菌数を1.4E+05CFU/mLとし、試料フィルムNo.11~No.16については、初期菌数は3.0E+05CFU/mLとした。
 結果を図7に示す。図7は、実験4において試料フィルムNo.10~No.16の殺菌性を評価した結果を示すグラフであり、横軸は放置時間(時間)であり、縦軸は菌希釈液B2中の菌数(CFU/mL)を示す。なお、図7において、見やすさのために、菌数が0の場合は0.1としてプロットしている。
 図7から明らかなように、試料フィルムNo.10は、合成高分子膜の表面に窒素元素を含まないにもかかわらず、殺菌性を有する。樹脂に混合されたシリコーン系潤滑剤が何らかの理由で殺菌効果を有する可能性が考えられる。
 試料フィルムNo.12~No.16は、いずれも殺菌性および/または抗菌性を有する。特に、アミノ基(-NH2)を有する試料フィルムNo.12およびNo.13は、優れた殺菌性を有することが分かる。試料フィルムNo.12~No.16は、合成高分子膜の表面に付与されたシランカップリング剤が有する官能基が殺菌効果を有すると考えられる。また、試料フィルムNo.12~No.16においては、合成高分子膜の表面にシランカップリング剤が付与されることで、合成高分子膜の表面が窒素元素を0.7at%以上有している。合成高分子膜の表面が有する窒素元素が殺菌効果を有するとも考えられる。
 一方で、試料フィルムNo.11は、殺菌性を示さなかった。合成高分子膜の表面に窒素元素が含まれていないことがその理由として考えられる。表面に付与されたビニル基による殺菌効果は認められなかった。試料フィルムNo.10と試料フィルムNo.11とを比較すると、合成高分子膜の表面にシランカップリング剤S0が付与されることで、殺菌効果が認められなくなったことが分かる。
 図8(a)および図8(b)は、試料フィルムNo.10のモスアイ構造を有する表面で死に至った緑膿菌をSEM(走査型電子顕微鏡)で観察した例を示す。図8(b)は、図8(a)を拡大したものである。
 これらのSEM像を見ると、凸部の先端部分が緑膿菌の細胞壁(外膜)内に侵入している様子が見て取れる。また、図8(a)および図8(b)を見ると、凸部が細胞壁を突き破ったように見えず、凸部が細胞壁に取り込まれたかのように見える。これは、非特許文献1のSupplemental Informationにおいて示唆されているメカニズムで説明されるかもしれない。すなわち、グラム陰性菌の外膜(脂質二重膜)が凸部と近接して変形することによって、脂質二重膜が局所的に1次の相転移に似た転移(自発的な再配向)を起こし、凸部に近接する部分に開口が形成され、この開口に凸部が侵入したのかもしれない。あるいは、細胞が有する、極性を有する物質(栄養源を含む)を取り込む機構(エンドサイトーシス)によって、凸部が取り込まれたのかもしれない。
 (実験5)
 次に、下記の表2に示す試料フィルムNo.17およびNo.18について、殺菌性を評価した。
Figure JPOXMLDOC01-appb-T000008
 試料フィルムNo.17およびNo.18は、表面に同じ物質を付与したが、表面のモスアイ構造を有するか否かにおいて異なる。
 試料フィルムNo.17は、シリコーン系潤滑剤を混合したアクリル樹脂D(先の試料フィルムNo.10~No.16に用いたものと同じ)を用い、先と同じ型を用いて作製した。得られた合成高分子膜の表面に、シアノアクリレートを付与した。シアノアクリレートの付与は、1gの瞬間接着剤(製品名:強力瞬間接着剤、輸入元:高分子商事株式会社)をアセトン50mLに混合した混合液を調製し、混合液を合成高分子膜の表面にかけ流すように付与した。表面のモスアイ構造が混合液によって埋まっていないことを走査型電子顕微鏡(SEM)で観察して確認した。
 試料フィルムNo.18は、試料フィルムNo.10~No.17のベースフィルムとして用いたPETフィルムの表面に、試料フィルムNo.17と同じ混合液を付与することによって作製した。従って、試料フィルムNo.18は、表面の化学的性質において試料フィルムNo.17と同じであるが、表面にモスアイ構造を有していない点において、試料フィルムNo.17と異なる。
 殺菌性の評価の手順は、上記の実験1と基本的に同じである。実験5において、どちらの試料フィルムの場合も、初期菌数は3.0E+05CFU/mLとした。
 結果を図9に示す。図9は、実験5において試料フィルムNo.17およびNo.18の殺菌性を評価した結果を示すグラフであり、横軸は放置時間(時間)であり、縦軸は菌希釈液B2中の菌数(CFU/mL)を示す。なお、図9において、見やすさのために、菌数が0の場合は0.1としてプロットしている。
 図9から明らかなように、試料フィルムNo.17は殺菌性を有するのに対し、試料フィルムNo.18は殺菌性を有していない。表面のモスアイ構造の有無によって、殺菌性の有無が異なる。すなわち、表面にシアノ基を有するのみでは合成高分子膜は殺菌性を有さず、表面の物理的構造(モスアイ構造)および表面に付与されたシアノ基の両方が殺菌性に寄与していることが考えられる。
 (実験6)
 次に、下記の表3に示す試料フィルムNo.19~No.22について、殺菌性を評価した。
Figure JPOXMLDOC01-appb-T000009
 試料フィルムNo.20~No.22は、先と同じ型を用いて作製した。試料フィルムNo.19~No.22の表面には、表面処理剤を付与していない。
 試料フィルムNo.19は、試料フィルムNo.20~22のベースフィルムとして用いたPETフィルムである。
 試料フィルムNo.20は、ウレタンアクリレート含有アクリル樹脂B(先の試料フィルムNo.2に用いたものと同じ)を用いて作製した。
 試料フィルムNo.21は、試料フィルムNo.20と同じウレタンアクリレート含有アクリル樹脂Bに、リチウム塩を含むシリコーンオイル(帯電防止剤、丸菱油化工業株式会社製、製品名:PC-3662)を混合した樹脂を用いて作製した。
 試料フィルムNo.22は、アクリル樹脂A(先の試料フィルムNo.1に用いたものと同じ)に、リチウム塩を含むシリコーンオイル(試料フィルムNo.21に用いたものと同じ)を混合した樹脂を用いて作製した。
 殺菌性の評価の手順は、上記の実験1と基本的に同じである。試料フィルムNo.19~No.20については、初期菌数を1.4E+05CFU/mLとし、試料フィルムNo.21については、初期菌数を3.0E+05CFU/mLとし、試料フィルムNo.22については、初期菌数を2.5E+06CFU/mLとした。
 結果を図10(a)および(b)に示す。図10(a)は、実験6において試料フィルムNo.19~No.21の殺菌性を評価した結果を示すグラフであり、図10(b)は、実験6において試料フィルムNo.22の殺菌性を評価した結果を示すグラフである。図10において、横軸は放置時間(時間)であり、縦軸は菌希釈液B2中の菌数(CFU/mL)を示す。なお、図10において、見やすさのために、菌数が0の場合は0.1としてプロットしている。
 図10(a)および(b)から明らかなように、試料フィルムNo.20およびNo.21は、いずれも殺菌性を有する。試料フィルムNo.20およびNo.21の結果を比較すると、合成高分子膜にリチウム塩が含まれることで、より優れた殺菌性を有することが分かる。
 試料フィルムNo.21およびNo.22の結果を比較すると、合成高分子膜がウレタンアクリレートを含むことで殺菌性を有するように見える。ただし、試料フィルムNo.22の初期菌数は、試料フィルムNo.21の初期菌数のおよそ10倍であるので、実験6においては試料フィルムNo.22の殺菌性が十分に確認できなかった可能性も考えられる。
 本発明の実施形態による合成高分子膜は、例えば、水に接触する表面のぬめりの発生を抑制する用途に好適に用いられる。例えば、加湿器や製氷機に用いられる水用の容器の内壁に合成高分子膜を貼り付けることによって、容器の内壁にぬめりが発生することを抑制できる。ぬめりは、内壁等に付着した細菌が分泌する細胞外多糖(EPS)によって形成されるバイオフィルムに起因している。したがって、内壁等へ付着した細菌を殺すことによって、ぬめりの発生を抑制することができる。
 上述したように、本発明の実施形態による合成高分子膜の表面に液体を接触させることによって、液体を殺菌することができる。同様に、合成高分子膜の表面に気体を接触させることによって、気体を殺菌することもできる。微生物は一般に栄養源である有機物と接触する確率を増やすために、物体の表面に付着しやすい表面構造を有している。したがって、本発明の実施形態による合成高分子膜の殺菌性を有する表面に、微生物を含む気体や液体を接触させると、微生物は合成高分子膜の表面に付着しようとするので、その際に、殺菌作用を受けることになる。
 ここでは、グラム陰性菌である緑膿菌について、本発明の実施形態による合成高分子膜の殺菌作用を説明したが、グラム陰性菌に限られず、グラム陽性菌や他の微生物に対しても殺菌作用を有すると考えられる。グラム陰性菌は、外膜を含む細胞壁を有する点に1つの特徴を有するが、グラム陽性菌や他の微生物(細胞壁を有しないものを含む)も細胞膜を有し、細胞膜もグラム陰性菌の外膜と同様に脂質二重膜で構成されている。したがって、本発明の実施形態による合成高分子膜の表面の凸部と細胞膜との相互作用は、基本的には、外膜との相互作用と同様であると考えられる。
 ただし、微生物の大きさはその種類によって異なる。ここで例示した緑膿菌の大きさは約1μmであるが、細菌には、数100nm~約5μmの大きさのものがあり、真菌は数μm以上である。上記で例示した合成高分子膜が有する凸部(2次元的な大きさが約200nm)は、約0.5μm以上の大きさの微生物に対しては殺菌作用を有すると考えられるが、数100nmの大きさの細菌に対しては、凸部が大きすぎるために十分な殺菌作用を発現しない可能性がある。また、ウィルスの大きさは数10nm~数100nmであり、100nm以下のものも多い。なお、ウィルスは細胞膜を有しないが、ウィルス核酸を取り囲むカプシドと呼ばれるタンパク質の殻を有している。ウィルスは、この殻の外側に膜状のエンベロープを有するウィルスと、エンベロープを有しないウィルスとに分けられる。エンベロープを有するウィルスにおいては、エンベロープは主として脂質からなるので、エンベロープに対して凸部が同様に作用すると考えられる。エンベロープを有するウィルスとして、例えば、インフルエンザウィルスやエボラウィルスが挙げられる。エンベロープを有しないウィルスにおいては、このカプシドと呼ばれるタンパク質の殻に対して凸部が同様に作用すると考えられる。凸部が窒素元素を有すると、アミノ酸から構成されるタンパク質との親和性が強くなり得る。
 そこで、数100nm以下の微生物に対しても殺菌作用を発現し得る凸部を有する合成高分子膜の構造およびその製造方法を以下に説明する。
 以下では、上記で例示した合成高分子膜が有する、2次元的な大きさが20nm超500nm未満の範囲にある凸部を第1の凸部という。また、第1の凸部に重畳して形成された凸部を第2の凸部といい、第2の凸部の2次元的な大きさは、第1の凸部の2次元的な大きさよりも小さく、かつ、100nmを超えない。なお、第1の凸部の2次元的な大きさが100nm未満、特に50nm未満の場合には、第2の凸部を設ける必要はない。また、第1の凸部に対応する型の凹部を第1の凹部といい、第2の凸部に対応する型の凹部を第2の凹部という。
 上述の陽極酸化工程とエッチング工程とを交互に行うことによって、所定の大きさおよび形状の第1の凹部を形成する方法をそのまま適用しても、第2の凹部を形成することができない。
 図11(a)にアルミニウム基材(図2中の参照符号12)の表面のSEM像を示し、図11(b)にアルミニウム膜(図2中の参照符号18)の表面のSEM像を示し、図11(c)にアルミニウム膜(図2中の参照符号18)の断面のSEM像を示す。これらのSEM像からわかるように、アルミニウム基材の表面およびアルミニウム膜の表面に、グレイン(結晶粒)が存在している。アルミニウム膜のグレインは、アルミニウム膜の表面に凹凸を形成している。この表面の凹凸は、陽極酸化時の凹部の形成に影響を与えるので、DpまたはDintが100nmよりも小さい第2の凹部の形成を妨げる。
 そこで、本発明の実施形態による型の製造方法は、(a)アルミニウム基材または支持体の上に堆積されたアルミニウム膜を用意する工程と、(b)アルミニウム基材またはアルミニウム膜の表面を電解液に接触させた状態で、第1のレベルの電圧を印加することによって、第1の凹部を有するポーラスアルミナ層を形成する陽極酸化工程と、(c)工程(b)の後に、ポーラスアルミナ層をエッチング液に接触させることによって、第1の凹部を拡大させるエッチング工程と、(d)工程(c)の後に、ポーラスアルミナ層を電解液に接触させた状態で、第1のレベルよりも低い第2のレベルの電圧を印加することによって、第1の凹部内に、第2の凹部を形成する工程とを包含する。例えば、第1のレベルは、40V超であり、第2のレベルは、20V以下である。
 すなわち、第1のレベルの電圧での陽極酸化工程で、アルミニウム基材またはアルミニウム膜のグレインの影響を受けない大きさを有する第1の凹部を形成し、その後、エッチングによってバリア層の厚さを小さくしてから、第1のレベルよりも低い第2のレベルの電圧での陽極酸化工程で、第1の凹部内に第2の凹部を形成する。このような方法で、第2の凹部を形成すると、グレインによる影響が排除される。
 図12を参照して、第1の凹部14paと、第1の凹部14pa内に形成された第2の凹部14pbとを有する型を説明する。図12(a)は型のポーラスアルミナ層の模式的な平面図であり、図12(b)は模式的な断面図であり、図12(c)は試作した型のSEM像を示す。
 図12(a)および(b)に示すように、本実施形態による型の表面は、2次元的な大きさは20nm超500nm未満の範囲内にある複数の第1の凹部14paと、複数の第1の凹部14paに重畳して形成された複数の第2の凹部14pbをさらに有している。複数の第2の凹部14pbの2次元的な大きさは、複数の第1の凹部14paの2次元的な大きさよりも小さく、かつ、100nmを超えない。第2の凹部14pbの高さは、例えば、20nm超100nm以下である。第2の凹部14pbも、第1の凹部14paと同様に、略円錐形の部分を含むことが好ましい。
 図12(c)に示すポーラスアルミナ層は、以下の様にして製造した。
 アルミニウム膜として、Tiを1mass%含むアルミニウム膜を用いた。陽極酸化液には蓚酸水溶液(濃度0.3mass%、温度10℃)を使用して、エッチング液には、燐酸水溶液(濃度10mass%、温度30℃)を使用した。電圧80Vにおける陽極酸化を52秒間行った後、エッチングを25分間、続いて、電圧80Vにおける陽極酸化を52秒間、エッチング25分間を行った。この後、20Vにおける陽極酸化を52秒間、エッチングを5分間、さらに、20Vにおける陽極酸化を52秒間行った。
 図12(c)からわかるように、Dpが約200nmの第1の凹部の中に、Dpが約50nmの第2の凹部が形成されている。上記の製造方法において、第1のレベルの電圧を80Vから45Vに変更して、ポーラスアルミナ層を形成したところ、Dpが約100nmの第1の凹部の中に、Dpが約50nmの第2の凹部が形成された。
 このような型を用いて合成高分子膜を作製すると、図12(a)および(b)に示した第1の凹部14paおよび第2の凹部14pbの構造を反転した凸部を有する合成高分子膜が得られる。すなわち、複数の第1の凸部に重畳して形成された複数の第2の凸部をさらに有する合成高分子膜が得られる。
 このように第1の凸部と、第1の凸部に重畳して形成された第2の凸部を有する合成高分子膜は、100nm程度の比較的小さな微生物から、5μm以上の比較的大きな微生物に対して殺菌作用を有し得る。
 もちろん、対象とする微生物の大きさに応じて、2次元的な大きさが20nm超100nm未満の範囲内にある凹部だけを形成してもよい。このような凸部を形成するための型は、例えば、以下の様にして作製することができる。
 酒石酸アンモニウム水溶液などの中性塩水溶液(ホウ酸アンモニウム、クエン酸アンモニウムなど)や、イオン解離度の小さい有機酸(マレイン酸、マロン酸、フタル酸、クエン酸、酒石酸など)を用いて陽極酸化を行い、バリア型陽極酸化膜を形成し、バリア型陽極酸化膜をエッチングによって除去した後、所定の電圧(上記の第2のレベルの電圧)で陽極酸化することによって、2次元的な大きさが20nm超100nm未満の範囲内にある凹部を形成することができる。
 例えば、アルミニウム膜として、Tiを1mass%含むアルミニウム膜を用い、酒石酸水溶液(濃度0.1mol/l、温度23℃)を用いて、100Vにおいて2分間、陽極酸化を行うことによってバリア型陽極酸化膜を形成する。この後、燐酸水溶液(濃度10mass%、温度30℃)を用いて25分間、エッチングすることによって、バリア型陽極酸化膜を除去する。その後、上記と同様に、陽極酸化液には蓚酸水溶液(濃度0.3mass%、温度10℃)を使用し、20Vにおける陽極酸化を52秒間、上記エッチング液を用いたエッチングを5分間、交互に、陽極酸化を5回、エッチングを4回繰り返すことによって、2次元的な大きさが約50nmの凹部を均一に形成することができる。
 本発明の実施形態による殺菌性表面を有する合成高分子膜は、例えば、水回りの表面を殺菌する用途など、種々の用途に用いられ得る。本発明の実施形態による殺菌性表面を有する合成高分子膜は、安価に製造され得る。
 34A、34B  合成高分子膜
 34Ap、34Bp  凸部
 42A、42B  ベースフィルム
 50A、50B  フィルム
 100、100A、100B モスアイ用型

Claims (15)

  1.  複数の凸部を有する表面を備える合成高分子膜であって、
     前記合成高分子膜の法線方向から見たとき、前記複数の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、前記表面が殺菌効果を有し、
     前記表面に含まれる窒素元素の濃度が0.7at%以上である、合成高分子膜。
  2.  ウレタン樹脂を含む、請求項1に記載の合成高分子膜。
  3.  前記ウレタン樹脂が有する官能基は10個未満である、請求項2に記載の合成高分子膜。
  4.  前記ウレタン樹脂が有する官能基は6個未満である、請求項2または3に記載の合成高分子膜。
  5.  アミノ基、イソシアネート基およびシアノ基のいずれかを有する、請求項1から4のいずれかに記載の合成高分子膜。
  6.  末端官能基が-NH2または-NHR(ここで、Rは炭化水素基を表す)である化合物を含む、請求項1から5のいずれかに記載の合成高分子膜。
  7.  アミノ基、イソシアネート基およびシアノ基のいずれかを有するカップリング剤を含む、請求項1から6のいずれかに記載の合成高分子膜。
  8.  前記カップリング剤を前記表面に有し、前記カップリング剤に含まれる窒素原子の濃度が0.7at%以上である、請求項7に記載の合成高分子膜。
  9.  アルカリ金属塩またはアルカリ土類金属塩を含む、請求項1から8のいずれかに記載の合成高分子膜。
  10.  リチウム塩を含む、請求項1から9のいずれかに記載の合成高分子膜。
  11.  複数の凸部を有する表面を備える合成高分子膜であって、
     前記合成高分子膜の法線方向から見たとき、前記複数の凸部の2次元的な大きさは20nm超500nm未満の範囲内にあり、前記表面が殺菌効果を有し、
     前記表面に含まれる硫黄元素の濃度が3.7at%以上である、合成高分子膜。
  12.  メルカプト基を有する、請求項11に記載の合成高分子膜。
  13.  末端官能基が-SHである化合物を含む、請求項11または12に記載の合成高分子膜。
  14.  メルカプト基を有するカップリング剤を含む、請求項11から13のいずれかに記載の合成高分子膜。
  15.  前記カップリング剤を前記表面に有し、前記カップリング剤に含まれる硫黄元素の濃度が3.7at%以上である、請求項14に記載の合成高分子膜。
PCT/JP2015/081608 2014-11-20 2015-11-10 殺菌作用を備えた表面を有する合成高分子膜 WO2016080245A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580015728.4A CN106133033B (zh) 2014-11-20 2015-11-10 具有具备杀菌作用的表面的合成高分子膜
JP2016514182A JP5933151B1 (ja) 2014-11-20 2015-11-10 殺菌作用を備えた表面を有する合成高分子膜および合成高分子膜の表面を用いた殺菌方法
US15/126,078 US10251393B2 (en) 2014-11-20 2015-11-10 Synthetic polymer film having surface provided with bactericidal activity
US16/275,072 US20190174752A1 (en) 2014-11-20 2019-02-13 Synthetic polymer film having surface provided with bactericidal activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014236010 2014-11-20
JP2014-236010 2014-11-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/126,078 A-371-Of-International US10251393B2 (en) 2014-11-20 2015-11-10 Synthetic polymer film having surface provided with bactericidal activity
US16/275,072 Continuation US20190174752A1 (en) 2014-11-20 2019-02-13 Synthetic polymer film having surface provided with bactericidal activity

Publications (1)

Publication Number Publication Date
WO2016080245A1 true WO2016080245A1 (ja) 2016-05-26

Family

ID=56013790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081608 WO2016080245A1 (ja) 2014-11-20 2015-11-10 殺菌作用を備えた表面を有する合成高分子膜

Country Status (5)

Country Link
US (2) US10251393B2 (ja)
JP (2) JP5933151B1 (ja)
CN (2) CN106133033B (ja)
TW (2) TWI802900B (ja)
WO (1) WO2016080245A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175170A1 (ja) * 2015-04-30 2016-11-03 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜
WO2016208540A1 (ja) * 2015-06-23 2016-12-29 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜
WO2017014086A1 (ja) * 2015-07-17 2017-01-26 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜およびそれを備えるフィルム
WO2017179531A1 (ja) * 2016-04-15 2017-10-19 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜
WO2018051845A1 (ja) * 2016-09-14 2018-03-22 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜およびその製造方法
EP3459353A1 (en) 2017-09-26 2019-03-27 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
JP2019059907A (ja) * 2017-09-26 2019-04-18 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜、光硬化性樹脂組成物、合成高分子膜の製造方法、および合成高分子膜の表面を用いた殺菌方法
US10934405B2 (en) 2018-03-15 2021-03-02 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, plastic product which includes synthetic polymer film, sterilization method with use of surface of synthetic polymer film, photocurable resin composition, and manufacturing method of synthetic polymer film
US11364673B2 (en) 2018-02-21 2022-06-21 Sharp Kabushiki Kaisha Synthetic polymer film and production method of synthetic polymer film
US11883999B2 (en) 2015-09-17 2024-01-30 Sharp Kabushiki Kaisha Synthetic polymer film provided with surface having sterilizing effect, method for manufacturing synthetic polymer film and sterilization method using surface of synthetic polymer film

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6581159B2 (ja) * 2017-09-14 2019-09-25 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜を備えるプラスチック製品の製造方法
US11785943B2 (en) * 2017-09-22 2023-10-17 Uchicago Argonne, Llc Tunable nanotextured materials
WO2020067500A1 (ja) 2018-09-28 2020-04-02 株式会社三菱ケミカルホールディングス 抗菌材、積層体、抗菌性積層体、医療用部材、抗菌材の製造方法、抗菌性積層体の製造方法及び抗菌方法
EP4117737A1 (en) * 2020-03-13 2023-01-18 Ricoh Company, Ltd. Anti-pathogen structure, method for producing anti-pathogen structure, apparatus for producing anti-pathogen structure, and liquid composition
WO2021222159A1 (en) * 2020-04-27 2021-11-04 Glint Photonics, Inc. Method for producing optical article with anti-reflective surface, and optical article with anti-reflective surface

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097454A1 (ja) * 2006-02-27 2007-08-30 Zeon Corporation 微細凹凸形状を有するフィルム、およびその製造方法
JP2009166502A (ja) * 2004-12-03 2009-07-30 Sharp Corp 反射防止材、スタンパ、スタンパの製造方法およびスタンパを用いた反射防止材の製造方法
JP2012514239A (ja) * 2008-12-30 2012-06-21 スリーエム イノベイティブ プロパティズ カンパニー ナノ構造化物品及びナノ構造化物品の作製方法
JP2012208169A (ja) * 2011-03-29 2012-10-25 Konica Minolta Holdings Inc ハードコートフィルムと、それを用いた熱線遮断フィルム及び有機素子デバイス
WO2012161315A1 (ja) * 2011-05-26 2012-11-29 三菱レイヨン株式会社 微細凹凸構造を表面に有する物品の製造方法
JP2014509967A (ja) * 2011-03-14 2014-04-24 スリーエム イノベイティブ プロパティズ カンパニー ナノ構造化物品
JP2014511779A (ja) * 2011-03-14 2014-05-19 スリーエム イノベイティブ プロパティズ カンパニー 多層のナノ構造化物品
JP2014202955A (ja) * 2013-04-05 2014-10-27 三菱レイヨン株式会社 微細凹凸構造体、硬化性組成物、加飾シート、および加飾樹脂成形体、並びに微細凹凸構造体、および加飾樹脂成形体の製造方法
WO2015163018A1 (ja) * 2014-04-22 2015-10-29 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜、合成高分子膜を有する積層体、合成高分子膜の表面を用いた殺菌方法、合成高分子膜の表面の再活性化方法、合成高分子膜を製造するための型および型の製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824843A (ja) 1994-07-15 1996-01-30 Nippondenso Co Ltd 浄水器
DE10020877C1 (de) 2000-04-28 2001-10-25 Alcove Surfaces Gmbh Prägewerkzeug, Verfahren zum Herstellen desselben, Verfahren zur Strukturierung einer Oberfläche eines Werkstücks und Verwendung einer anodisch oxidierten Oberflächenschicht
US7066234B2 (en) 2001-04-25 2006-06-27 Alcove Surfaces Gmbh Stamping tool, casting mold and methods for structuring a surface of a work piece
CA2366066A1 (en) 2001-12-21 2002-07-30 Adolf Eberl Absorbent filter material matrices and their arrangements in filter cartridges
JP3852429B2 (ja) 2003-08-06 2006-11-29 株式会社日立製作所 空気清浄機
CA2653963A1 (en) * 2006-06-02 2007-12-13 Werner Hoelzl Antimicrobial acids and salts
EP1938690B1 (de) 2006-12-22 2013-10-23 Preentec AG Sterilisierung und Konservierung von Fluiden
JP5283846B2 (ja) 2007-02-09 2013-09-04 三菱レイヨン株式会社 成形体とその製造方法
JP2010000719A (ja) 2008-06-20 2010-01-07 Mitsubishi Rayon Co Ltd フィルム状レプリカモールド、その製造方法および微細凹凸構造を有するフィルム製品の製造方法
JP2010018666A (ja) 2008-07-09 2010-01-28 Fujifilm Corp ナノインプリント用組成物、パターンおよびパターン形成方法
JP5439783B2 (ja) 2008-09-29 2014-03-12 ソニー株式会社 光学素子、反射防止機能付き光学部品、および原盤
CN201329050Y (zh) 2008-12-22 2009-10-21 佛山市顺德区阿波罗环保器材有限公司 一种冰箱抗菌除臭保鲜盒
JP5075234B2 (ja) * 2009-09-02 2012-11-21 ソニー株式会社 光学素子、および表示装置
JP5027346B2 (ja) 2010-03-31 2012-09-19 シャープ株式会社 型および型の製造方法ならびに反射防止膜の製造方法
US9429685B2 (en) 2010-05-25 2016-08-30 Sharp Kabushiki Kaisha Laminate
JP5754105B2 (ja) 2010-09-30 2015-07-22 大日本印刷株式会社 反射防止フィルム用組成物
JP6138441B2 (ja) 2011-09-21 2017-05-31 株式会社Nbcメッシュテック 浮遊ウイルス除去ユニット
JP5797334B2 (ja) 2012-06-06 2015-10-21 シャープ株式会社 型基材、型基材の製造方法、型の製造方法および型
JP5947379B2 (ja) 2012-06-22 2016-07-06 シャープ株式会社 反射防止構造体、その製造方法及び表示装置
JP2014029391A (ja) 2012-07-31 2014-02-13 Dainippon Printing Co Ltd 反射防止物品、画像表示装置及び反射防止物品の製造用金型
KR102111381B1 (ko) 2012-07-31 2020-05-15 다이니폰 인사츠 가부시키가이샤 반사 방지 물품, 화상 표시 장치, 반사 방지 물품의 제조용 금형 및 반사 방지 물품의 제조용 금형의 제조 방법
JP2014066975A (ja) 2012-09-27 2014-04-17 Asahi Kasei E-Materials Corp 微細凹凸成形体及び微細凹凸成形鋳型並びにそれらの製造方法
JP6380102B2 (ja) 2013-04-18 2018-08-29 東レ株式会社 熱可塑性フィルムの製造方法
JP6218019B2 (ja) 2013-07-25 2017-10-25 大日本印刷株式会社 包装材料用撥水性フィルムの製造方法、包装材料用積層体の製造方法、および包装材料の製造方法
EP3041787B1 (en) 2013-09-05 2020-01-08 Global Orthopaedic Technology Pty Limited A synthetic biocidal surface comprising an array of nanospikes
US10875235B2 (en) 2014-04-01 2020-12-29 The Regents Of The University Of California Bactericidal surface patterns

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166502A (ja) * 2004-12-03 2009-07-30 Sharp Corp 反射防止材、スタンパ、スタンパの製造方法およびスタンパを用いた反射防止材の製造方法
WO2007097454A1 (ja) * 2006-02-27 2007-08-30 Zeon Corporation 微細凹凸形状を有するフィルム、およびその製造方法
JP2012514239A (ja) * 2008-12-30 2012-06-21 スリーエム イノベイティブ プロパティズ カンパニー ナノ構造化物品及びナノ構造化物品の作製方法
JP2014509967A (ja) * 2011-03-14 2014-04-24 スリーエム イノベイティブ プロパティズ カンパニー ナノ構造化物品
JP2014511779A (ja) * 2011-03-14 2014-05-19 スリーエム イノベイティブ プロパティズ カンパニー 多層のナノ構造化物品
JP2012208169A (ja) * 2011-03-29 2012-10-25 Konica Minolta Holdings Inc ハードコートフィルムと、それを用いた熱線遮断フィルム及び有機素子デバイス
WO2012161315A1 (ja) * 2011-05-26 2012-11-29 三菱レイヨン株式会社 微細凹凸構造を表面に有する物品の製造方法
JP2014202955A (ja) * 2013-04-05 2014-10-27 三菱レイヨン株式会社 微細凹凸構造体、硬化性組成物、加飾シート、および加飾樹脂成形体、並びに微細凹凸構造体、および加飾樹脂成形体の製造方法
WO2015163018A1 (ja) * 2014-04-22 2015-10-29 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜、合成高分子膜を有する積層体、合成高分子膜の表面を用いた殺菌方法、合成高分子膜の表面の再活性化方法、合成高分子膜を製造するための型および型の製造方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016175170A1 (ja) * 2015-04-30 2018-04-12 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜
WO2016175170A1 (ja) * 2015-04-30 2016-11-03 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜
US10907019B2 (en) 2015-06-23 2021-02-02 Sharp Kabushiki Kaisha Synthetic polymer film provided with surface having sterilizing activity
JPWO2016208540A1 (ja) * 2015-06-23 2018-04-12 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜
WO2016208540A1 (ja) * 2015-06-23 2016-12-29 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜
JPWO2017014086A1 (ja) * 2015-07-17 2018-07-05 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜およびそれを備えるフィルム
US10375953B2 (en) 2015-07-17 2019-08-13 Sharp Kabushiki Kaisha Synthetic polymer film having surface that is provided with bactericidal action, and film comprising same
WO2017014086A1 (ja) * 2015-07-17 2017-01-26 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜およびそれを備えるフィルム
US11883999B2 (en) 2015-09-17 2024-01-30 Sharp Kabushiki Kaisha Synthetic polymer film provided with surface having sterilizing effect, method for manufacturing synthetic polymer film and sterilization method using surface of synthetic polymer film
WO2017179531A1 (ja) * 2016-04-15 2017-10-19 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜
JPWO2017179531A1 (ja) * 2016-04-15 2018-11-29 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜
WO2018051845A1 (ja) * 2016-09-14 2018-03-22 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜およびその製造方法
CN109790305A (zh) * 2016-09-14 2019-05-21 夏普株式会社 具有具备杀菌作用的表面的合成高分子膜及其制造方法
JPWO2018051845A1 (ja) * 2016-09-14 2019-06-27 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜の製造方法
JP2019059907A (ja) * 2017-09-26 2019-04-18 シャープ株式会社 殺菌作用を備えた表面を有する合成高分子膜、光硬化性樹脂組成物、合成高分子膜の製造方法、および合成高分子膜の表面を用いた殺菌方法
KR20190035594A (ko) 2017-09-26 2019-04-03 샤프 가부시키가이샤 살균 작용을 구비한 표면을 갖는 합성 고분자막, 광 경화성 수지 조성물, 합성 고분자막의 제조 방법 및 합성 고분자막의 표면을 사용한 살균 방법
US10968292B2 (en) 2017-09-26 2021-04-06 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
EP3459353A1 (en) 2017-09-26 2019-03-27 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, photocurable resin composition, manufacturing method of synthetic polymer film, and sterilization method with use of surface of synthetic polymer film
US11364673B2 (en) 2018-02-21 2022-06-21 Sharp Kabushiki Kaisha Synthetic polymer film and production method of synthetic polymer film
US10934405B2 (en) 2018-03-15 2021-03-02 Sharp Kabushiki Kaisha Synthetic polymer film whose surface has microbicidal activity, plastic product which includes synthetic polymer film, sterilization method with use of surface of synthetic polymer film, photocurable resin composition, and manufacturing method of synthetic polymer film

Also Published As

Publication number Publication date
US20170258081A1 (en) 2017-09-14
US20190174752A1 (en) 2019-06-13
CN106133033A (zh) 2016-11-16
JP6650822B2 (ja) 2020-02-19
US10251393B2 (en) 2019-04-09
TWI729976B (zh) 2021-06-11
JP2016153510A (ja) 2016-08-25
JPWO2016080245A1 (ja) 2017-04-27
CN106133033B (zh) 2019-10-25
CN110591334B (zh) 2022-02-25
TWI802900B (zh) 2023-05-21
JP5933151B1 (ja) 2016-06-08
TW201625320A (zh) 2016-07-16
CN110591334A (zh) 2019-12-20
TW202134327A (zh) 2021-09-16

Similar Documents

Publication Publication Date Title
JP5933151B1 (ja) 殺菌作用を備えた表面を有する合成高分子膜および合成高分子膜の表面を用いた殺菌方法
JP6453517B1 (ja) 合成高分子膜、合成高分子膜を有する積層体、合成高分子膜の表面を用いた殺菌方法および合成高分子膜の表面の再活性化方法
JP6470410B2 (ja) 殺菌作用を備えた表面を有する合成高分子膜
JP5851076B1 (ja) 殺菌作用を有するフィルター
JP6470413B2 (ja) 殺菌作用を備えた表面を有する合成高分子膜およびそれを備えるフィルム
JP6449996B2 (ja) 殺菌作用を備えた表面を有する合成高分子膜
JP6581296B2 (ja) 殺菌作用を備えた表面を有する合成高分子膜
WO2017047344A1 (ja) 殺菌作用を備えた表面を有する合成高分子膜、合成高分子膜の製造方法および合成高分子膜の表面を用いた殺菌方法
JP7042278B2 (ja) 殺菌作用を備えた表面を有する合成高分子膜および合成高分子膜の表面を用いた殺菌方法
WO2018051845A1 (ja) 殺菌作用を備えた表面を有する合成高分子膜およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016514182

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860370

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15126078

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860370

Country of ref document: EP

Kind code of ref document: A1