WO2016080201A1 - 透明積層フィルム及びタッチパネルディスプレイ - Google Patents

透明積層フィルム及びタッチパネルディスプレイ Download PDF

Info

Publication number
WO2016080201A1
WO2016080201A1 PCT/JP2015/081202 JP2015081202W WO2016080201A1 WO 2016080201 A1 WO2016080201 A1 WO 2016080201A1 JP 2015081202 W JP2015081202 W JP 2015081202W WO 2016080201 A1 WO2016080201 A1 WO 2016080201A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
transparent
resin
laminated film
Prior art date
Application number
PCT/JP2015/081202
Other languages
English (en)
French (fr)
Inventor
将史 横山
隆広 榊原
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2016080201A1 publication Critical patent/WO2016080201A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present invention relates to a transparent laminated film that can be used for a display device (such as a touch panel display) having a patterned transparent conductive layer, and a capacitive touch panel display provided with the film.
  • a display device such as a touch panel display
  • a capacitive touch panel display provided with the film.
  • a touch panel is a device that inputs predetermined information or the like to a computer or the like by pressing a predetermined position with an input means such as a finger or a pen.
  • an optical method, an ultrasonic method, a capacitance method, etc. Can be classified into resistive film type.
  • the electrostatic capacitance method is a method for detecting a position by using a change in electrostatic capacitance.
  • the electrostatic capacitance method adopts an ITO grid method because of its excellent functionality.
  • Capacitive touch panels are in the spotlight as they are used in mobile devices such as smartphones, mobile phones, electronic paper, tablet personal computers (PCs), pen tablets, and game machines.
  • high-definition display devices are beginning to spread in smartphones and tablet PCs.
  • 4K television high-definition television
  • 4K television high-resolution television
  • the capacitive touch panel requires high optical characteristics, but in the capacitive touch panel, the transparent conductive layer is patterned on the entire surface of the display unit, and the pattern portion and the non-pattern portion are Due to the color difference, a phenomenon in which the pattern is visually recognized (so-called “pattern appearance” or “bone appearance” phenomenon) easily occurs. Therefore, as a method for suppressing the bone appearance phenomenon, a method using a combination of a high refractive index layer and a low refractive index layer as an index matching layer is widely used. However, in this method, since the high refractive index layer and the low refractive index layer are laminated as the index matching layer, the layer structure of the touch panel is complicated, and it is difficult to meet the recent demand for thinning. Therefore, a method of using a high refractive index layer alone as an index matching layer has also been proposed.
  • Patent Document 1 discloses a transparent film in which a hard coat layer and an intermediate layer are laminated in order from one surface of a transparent base film, and the intermediate layer includes titanium oxide fine particles or oxide It is composed of zirconium fine particles and an active energy ray-curable resin, has a refractive index of light of 1.65 to 1.90 and a film thickness of 60 to 115 nm, and a patterned indium tin oxide layer is the intermediate layer.
  • a transparent conductive film which is laminated on the outer surface of a layer, and the indium tin oxide layer has a light refractive index of 1.85 to 2.35 and a film thickness of 5 to 50 nm at a wavelength of 400 nm.
  • This document describes that a hard coat layer, an antiglare layer, a fingerprint familiar layer, a self-healing layer, an antireflection layer or an antiglare reflection layer are laminated as a functional layer on the other surface of the transparent substrate film. Has been.
  • this transparent conductive film cannot exhibit high-level optical characteristics, and for example, even if an antiglare antireflection layer is used as a functional layer, glare cannot be effectively suppressed. It is also difficult to achieve both low haze and anti-watermark (AWM) properties.
  • ABM anti-watermark
  • an object of the present invention is to provide a transparent laminated film having a patterned transparent conductive layer and having a thin structure, high translucency, and suppressing the pattern from being visually recognized due to a color difference. And it is providing the electrostatic capacitance type touch panel display provided with this film.
  • Another object of the present invention is to prevent the generation of watermarks even in low haze in a capacitive touch panel display having a void layer inside, and to suppress glare even when applied to a high-definition display device. It is in providing a transparent laminated film and a capacitive touch panel display provided with this film.
  • the present inventors have made a first easy-adhesive layer having a specific refractive index and thickness, a high high refractive index and thickness on one surface of the transparent resin layer.
  • a refractive index layer is sequentially laminated, and on the other surface of the transparent resin layer, a second easy adhesion layer having a specific refractive index and thickness, a hard coat layer, and a low refractive index layer having a specific refractive index and thickness.
  • a transparent resin layer and a first easy-adhesion layer and a high refractive index layer are sequentially laminated on one surface of the transparent resin layer, and on the other surface of the transparent resin layer.
  • the high refractive index layer has a refractive index of 1.6 to 1.8 and a thickness of 120 to 2000 nm
  • the low refractive index layer has a refractive index of 1.2 to 1.5.
  • the thickness is 10 to 200 nm.
  • the transparent laminated film of the present invention may have a haze of about 0.05 to 1%.
  • the surface of the low refractive index layer has an arithmetic average roughness Ra1 calculated from a measurement area of 10 ⁇ m ⁇ 10 ⁇ m in a measurement area of 10 ⁇ m ⁇ 10 ⁇ m and a measurement area of 500 ⁇ m ⁇ 500 ⁇ m.
  • the roughness Ra2 may be 10 to 50 nm.
  • the hard coat layer may be formed of a cured product of a curable composition containing a curable resin, a thermoplastic resin, and metal oxide particles having an average primary particle size of 1 to 50 nm.
  • a patterned, transparent conductive layer having a refractive index of 1.8 to 2.3 and a thickness of 10 to 60 nm, and a transparent adhesive layer having a refractive index of 1.4 to 2.3 are sequentially laminated on the high refractive index layer. May be.
  • the reflection color difference ⁇ E depending on the presence or absence of the transparent conductive layer represented by the following formula may be 10 or less.
  • the transparent laminated film of the present invention may have a total light transmittance of 90% or more.
  • the water contact angle on the surface of the low refractive index layer may be about 65 to 80 °.
  • the high refractive index layer may be formed of a curable composition containing inorganic fine particles.
  • the present invention includes a capacitive touch panel display provided with the transparent laminated film.
  • the thickness of each layer means an average thickness and can be measured by an instantaneous multi-photometry system (“MCPD-3700” manufactured by Otsuka Electronics Co., Ltd.).
  • a first easy-adhesion layer having a specific refractive index and thickness and a high refractive index layer having a specific refractive index and thickness are sequentially laminated on one surface of the transparent resin layer, and the transparent resin layer
  • a transparent laminated film in which a second easy-adhesion layer having a specific refractive index and thickness, a hard coat layer, and a low refractive index layer having a specific refractive index and thickness are sequentially laminated on the other surface of the film is patterned. Even if it has a transparent conductive layer and has a simple structure, it is thin and highly translucent, and it can be suppressed that a pattern is visually recognized due to a color difference.
  • the transparent laminated film of the present invention prevents the generation of watermarks even when the haze is low in a capacitive touch panel display having a void layer inside, and is also glaring even when applied to a high-definition display device. Can be suppressed.
  • the transparent laminated film of this invention contains a transparent resin layer (or base material layer).
  • a transparent resin layer a plastic film or sheet (unstretched or stretched plastic film) formed of a transparent resin having high flexibility and superior crack resistance than glass can be used.
  • a resin similar to the thermoplastic resin exemplified in the hard coat layer described later can be used.
  • Preferred transparent resins include, for example, cellulose derivatives [cellulose triacetate (TAC), cellulose acetate such as cellulose diacetate], polyester resins [PET, polybutylene terephthalate (PBT), polyarylate resins, etc.], polysulfone resins [Polysulfone, Polyethersulfone, etc.], Polyetherketone resin [Polyetherketone, Polyetheretherketone, etc.], Polycarbonate resin (Bisphenol A type polycarbonate, etc.), Polyolefin resin (Polyethylene, Polypropylene, etc.), Cyclic polyolefin type Resins [TOPAS (registered trademark), ARTON (registered trademark), ZEONEX (registered trademark), etc.], halogen-containing resins ( Such as Li vinylidene chloride), (meth) acrylic resin (polymethyl methacrylate resin), a styrene-based resin (polystyrene), vinyl acetate or vinyl alcohol resin (pol
  • Optically isotropic transparent plastic films include, for example, polyesters, cellulose derivatives, and the like, and in particular, poly C 2-4 such as PET and PEN from the viewpoint of excellent balance of heat resistance and transparency. Films formed with alkylene arylates are preferred. Further, the transparent resin layer may be a biaxially stretched film.
  • various conventional additives such as stabilizers (antioxidants, ultraviolet absorbers, etc.), surfactants, water-soluble polymers, leveling agents, fillers, crosslinking agents, coupling agents, Colorants, flame retardants, lubricants, waxes, preservatives, viscosity modifiers, thickeners, antifoaming agents and the like may be included.
  • the ratio of the additive is, for example, about 0.01 to 10% by weight (particularly 0.1 to 5% by weight) with respect to the entire transparent resin layer.
  • the refractive index of the transparent resin layer is, for example, about 1.5 to 1.8, preferably about 1.55 to 1.75, and more preferably about 1.6 to 1.7.
  • the refractive index can be measured using a metricon prism coupler at a wavelength of 633 nm in accordance with JIS K7142.
  • the thickness (average thickness) of the transparent resin layer is, for example, about 20 to 200 ⁇ m, preferably about 25 to 150 ⁇ m, more preferably about 30 to 120 ⁇ m (particularly 40 to 100 ⁇ m). If the transparent resin layer is too thin, a watermark tends to occur when used for a touch panel, and if it is too thick, it may be difficult to produce a thinned device.
  • a first easy-adhesion layer is laminated on one surface of the transparent resin layer.
  • the first easy-adhesion layer is usually composed of an adhesive resin.
  • the adhesive resin examples include olefin resins [eg, polyethylene, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid ester copolymer, ethylene- (meth) acrylic acid copolymer, ionomer resin, ethylene- Polyethylene resins such as vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-acrylonitrile-acrylic acid copolymer, amorphous polypropylene resin, etc.], vinyl chloride resin (vinyl chloride-vinyl acetate copolymer) Vinylidene chloride resins (vinylidene chloride-vinyl chloride copolymers, vinylidene chloride- (meth) acrylic acid ester copolymers, vinylidene chloride-acrylonitrile copolymers, etc.), acrylic resins [for example, (meth) Acrylic monomers (eg (meth) acrylic acid (Meth) acrylic acid ester) or a copolymer
  • These adhesive resins can be used alone or in combination of two or more. These adhesive resins can be appropriately selected according to the type of the transparent resin layer, but acrylic resins, polyester resins, urethane resins, and the like are generally used.
  • the first easy-adhesion layer may be formed of a curable resin exemplified in the paragraph of a high refractive index layer described later.
  • a curable resin exemplified in the paragraph of a high refractive index layer described later.
  • the refractive index of the first easy-adhesion layer is, for example, 1.5 to 1.7, preferably 1.52 to 1.69, more preferably 1.55 to 1.68 (particularly 1.6 to 1.67). Degree.
  • the thickness (average thickness) of the first easy-adhesion layer is, for example, about 30 to 200 nm, preferably about 40 to 180 nm, and more preferably about 50 to 150 nm.
  • a high refractive index layer is further laminated on the first easy-adhesion layer.
  • the high refractive index layer mainly has an index matching function, and contributes to suppressing the visual recognition of the pattern due to the color difference even if the device includes a patterned transparent conductive layer.
  • a transparent curable composition containing inorganic fine particles can be used as the high refractive index layer.
  • the curable composition usually contains a curable resin as a resin component.
  • the curable resin (curable monomer or curable resin precursor) is a compound having a functional group that reacts with heat or active energy rays (such as ultraviolet rays or electron beams), and is cured by heat or active energy rays.
  • heat or active energy rays such as ultraviolet rays or electron beams
  • Various curable compounds that can be crosslinked to form a resin can be used.
  • the curable resin include thermosetting compounds or resins [low molecular weight compounds having epoxy groups, polymerizable groups, isocyanate groups, alkoxysilyl groups, silanol groups, etc. (for example, epoxy resins, unsaturated polyester resins).
  • photocurable compounds curable with actinic rays such as ultraviolet rays
  • photocurable monomers, ultraviolet curable compounds such as oligomers may be an EB (electron beam) curable compound.
  • EB electron beam
  • the photocurable compound includes, for example, a monomer and an oligomer (or a resin, particularly a low molecular weight resin).
  • the monomer can be classified into, for example, a monofunctional monomer having one polymerizable group and a polyfunctional monomer having at least two polymerizable groups.
  • Examples of the monofunctional monomer include (meth) acrylic monomers such as (meth) acrylic acid esters, vinyl monomers such as vinylpyrrolidone, isobornyl (meth) acrylate, and adamantyl (meth) acrylate. Examples include (meth) acrylate having a bridged cyclic hydrocarbon group.
  • the polyfunctional monomer includes a polyfunctional monomer having about 2 to 8 polymerizable groups.
  • the bifunctional monomer include ethylene glycol di (meth) acrylate, propylene glycol di (meth) ) Acrylate, butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, alkylene glycol di (meth) acrylate such as hexanediol di (meth) acrylate; diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) ) Acrylates, (poly) oxyalkylene glycol di (meth) acrylates such as polyoxytetramethylene glycol di (meth) acrylate; bridge rings such as tricyclodecane dimethanol di (meth) acrylate and adamantane di (meth) acrylate And di (meth) acrylate having a hydrocarbon group.
  • Examples of the tri- to 8-functional monomer include glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth). ) Acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and the like.
  • oligomers or resins examples include (meth) acrylates of bisphenol A-alkylene oxide adducts, epoxy (meth) acrylates (bisphenol A type epoxy (meth) acrylates, novolac type epoxy (meth) acrylates, etc.), polyester (meth) acrylates ( For example, aliphatic polyester (meth) acrylate, aromatic polyester (meth) acrylate, etc.), (poly) urethane (meth) acrylate (polyester type urethane (meth) acrylate, polyether type urethane (meth) acrylate etc.), silicone ( Examples thereof include (meth) acrylate.
  • These (meth) acrylate oligomers or resins may contain copolymerizable monomers such as styrene monomers, vinyl ester monomers, maleic anhydride, maleic acid, and fumaric acid. These photocurable compounds can be used alone or in combination of two or more.
  • UV curable resins such as pentaerythritol tri (meth) acrylate and polyfunctional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate are preferable.
  • the molecular weight of the curable resin is, for example, about 5000 or less (for example, 100 to 5000), preferably about 2000 or less (for example, 200 to 2000), and more preferably about 1000 or less (for example, 300 to 1000).
  • the molecular weight is a weight average molecular weight measured in terms of polystyrene in gel permeation chromatography (GPC), and the low molecular weight can be calculated from the molecular formula.
  • the particle size of the inorganic fine particles may be a nanometer size.
  • the number average primary particle size can be selected from the range of about 1 to 100 nm, for example, 2 to 50 nm, preferably 3 to 40 nm, more preferably 5 to 30 nm. (Especially about 8 to 20 nm). If the particle size of the inorganic fine particles is too small, the light scattering may be reduced, and the effect of suppressing visual recognition of the pattern due to the color difference may be reduced. If the particle size is too large, the light scattering may be increased and the transparency may be reduced. is there.
  • the average particle size of the inorganic fine particles is determined using a particle size distribution meter, for example, a dynamic light scattering method, using a particle size measuring device (“PAR-III” manufactured by Otsuka Electronics Co., Ltd.). It can be measured by the method.
  • a particle size distribution meter for example, a dynamic light scattering method
  • PAR-III manufactured by Otsuka Electronics Co., Ltd.
  • the shape of the inorganic fine particles is not particularly limited, and examples thereof include a spherical shape, an ellipsoidal shape, a polygonal shape (polygonal pyramid shape, a rectangular parallelepiped shape, a rectangular parallelepiped shape, etc.), a plate shape, a rod shape, and an indefinite shape.
  • Isotropic shapes such as a substantially spherical shape are preferred from the viewpoint of improving the visibility.
  • the inorganic compound constituting the inorganic fine particles for example, a metal simple substance, a metal oxide, and a metal oxide are preferable from the viewpoint of an effect of increasing the refractive index.
  • the metal oxide examples include Group 4A metal oxides (eg, titanium oxide, zirconium oxide, etc.), Group 5A metal oxides (eg, vanadium oxide), and Group 6A metal oxides (molybdenum oxide, oxide). Tungsten), Group 7A metal oxides (manganese oxide, etc.), Group 8 metal oxides (nickel oxide, iron oxide, etc.), Group 1B metal oxides (copper oxide, etc.), Group 2B metal oxides ( Zinc oxide, etc.), Group 3B metal oxides (aluminum oxide, indium oxide, etc.), Group 4B metal oxides (silicon oxide, tin oxide, etc.), Group 5B metal oxides (antimony oxide, etc.) and the like. . These metal oxides can be used alone or in combination of two or more.
  • Group 4A metal oxides eg, titanium oxide, zirconium oxide, etc.
  • Group 5A metal oxides eg, vanadium oxide
  • Group 6A metal oxides mobdenum oxide, oxide.
  • the refractive index of the high refractive index layer can be increased at a small ratio, and even if the amount added is increased, the increase in haze can be suppressed, so that periodic table 4A such as titanium oxide and zirconium oxide can be used.
  • periodic table 4A such as titanium oxide and zirconium oxide can be used.
  • Group metal oxides are preferred, and zirconium oxide is particularly preferred.
  • the inorganic fine particles are preferably particles that are not surface-treated from the viewpoint of suppressing aggregation.
  • the ratio of the inorganic fine particles is, for example, about 170 to 700 parts by weight, preferably about 200 to 500 parts by weight, and more preferably about 233 to 500 parts by weight with respect to 100 parts by weight of the curable resin. If the proportion of the inorganic fine particles is too small, the refractive index cannot be improved, and if it is too large, the mechanical properties may be deteriorated.
  • the curable composition may contain a curing agent depending on the type of the curable resin.
  • the thermosetting resin may contain a curing agent such as amines and polyvalent carboxylic acids
  • the photocurable resin may contain a photopolymerization initiator.
  • the photopolymerization initiator include conventional components such as acetophenones or propiophenones, benzyls, benzoins, benzophenones, thioxanthones, acylphosphine oxides, and the like.
  • the content of a curing agent such as a photocuring agent is 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, more preferably 1 to 8 parts by weight (particularly 1 part by weight) with respect to 100 parts by weight of the curable resin. About 5 to 5 parts by weight), or about 3 to 8 parts by weight.
  • the curable composition may contain a curing accelerator.
  • the photocurable resin may contain a photocuring accelerator, for example, a tertiary amine (such as a dialkylaminobenzoic acid ester), a phosphine photopolymerization accelerator, and the like.
  • the proportion of the curing accelerator may be 0.001 to 50 parts by weight, preferably 0.005 to 30 parts by weight, and more preferably about 0.01 to 10 parts by weight with respect to 100 parts by weight of the curable resin. Good.
  • the curable composition may contain a conventional additive exemplified in the section of the transparent resin layer.
  • the ratio of the additive is, for example, about 0.01 to 10% by weight (particularly 0.1 to 5% by weight) with respect to the entire high refractive index layer.
  • the refractive index of the high refractive index layer is, for example, about 1.6 to 1.8, preferably about 1.65 to 1.78, more preferably about 1.7 to 1.76 (particularly about 1.72 to 1.75). is there. If the refractive index is too small, the effect of suppressing the visual recognition of the pattern due to the color difference may be reduced, and if it is too large, the transparency may also be reduced.
  • the thickness (average thickness) of the high refractive index layer is, for example, about 120 to 2000 nm, preferably about 150 to 1500 nm (for example, 200 to 1000 nm), and more preferably about 300 to 800 nm (particularly 400 to 600 nm). If the high refractive index layer is too thin, pattern recognition due to color difference occurs. If it is too thick, it is difficult to reduce the thickness of the device, and transparency may be lowered.
  • a transparent conductive layer may be further laminated on the high refractive index layer.
  • the transparent conductive layer include metal oxides such as indium oxide-tin oxide composite oxide (ITO), fluorine-doped tin oxide (FTO), InO 2 , SnO 2 , ZnO, gold, silver, platinum, and palladium. It is comprised with the layer (especially metal oxide layers, such as ITO film
  • Such a transparent conductive layer can be formed by a conventional method such as sputtering, vapor deposition, chemical vapor deposition (usually sputtering).
  • the transparent conductive layer is usually formed in a planar shape in the analog method and in a stripe shape in the digital method, depending on the type of the touch panel.
  • a method for forming the transparent conductive layer into a planar shape or a stripe shape for example, after forming the transparent conductive layer on the entire surface of the glass substrate, it is patterned into a planar shape, a stripe shape, or a lattice shape (diamond or rhombus shape) by etching. And a method of forming a pattern in advance. Since the transparent laminated film of the present invention can effectively suppress the bone appearance phenomenon, a patterned transparent conductive layer is preferable.
  • the refractive index of the transparent conductive layer is, for example, about 1.8 to 2.3, preferably about 1.85 to 2.25, and more preferably about 1.9 to 2.2.
  • the thickness (average thickness) of the transparent conductive layer is, for example, about 10 to 60 nm, preferably about 15 to 50 nm, and more preferably about 20 to 40 nm.
  • a transparent adhesive layer may be further laminated on the transparent conductive layer.
  • the transparent adhesive layer may be formed of a transparent binder resin.
  • the transparent binder resin include a conventional adhesive resin or adhesive resin.
  • the adhesive resin examples include thermoplastic resins (polyolefin, cyclic polyolefin, acrylic resin, styrene resin, vinyl acetate resin, polyester, polyamide, thermoplastic polyurethane, etc.), thermosetting resins (epoxy resin, phenol resin, Polyurethane, unsaturated polyester, vinyl ester resin, diallyl phthalate resin, polyfunctional (meth) acrylate, urethane (meth) acrylate, silicone (meth) acrylate, silicone resin, amino resin, cellulose derivative and the like. These adhesive resins can be used alone or in combination of two or more.
  • the adhesive resin examples include terpene resin, rosin resin, petroleum resin, rubber adhesive, modified polyolefin, acrylic adhesive, and silicone adhesive. These adhesive resins may have a crosslinkable group (an isocyanate group, a hydroxyl group, a carboxyl group, an amino group, an epoxy group, a methylol group, an alkoxysilyl group, etc.). These adhesive resins can be used alone or in combination of two or more.
  • acrylic adhesives and silicone adhesives are preferred from the viewpoint of excellent optical properties and handleability.
  • acrylic pressure-sensitive adhesive for example, a pressure-sensitive adhesive composed of an acrylic copolymer mainly composed of a C 2-10 alkyl ester of acrylic acid such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate or the like can be used.
  • Examples of the copolymerizable monomer of the acrylic copolymer include (meth) acrylic monomers [for example, (meth) acrylic acid, methyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) ) Acrylate, dimethylaminoethyl (meth) acrylate, glycidyl (meth) acrylate, (meth) acrylamide, N-methylolacrylamide, etc.], polymerizable nitrile compound [eg (meth) acrylonitrile, etc.], unsaturated dicarboxylic acid or derivative thereof (Eg, maleic anhydride, itaconic acid, etc.), vinyl esters (eg, vinyl acetate, vinyl propionate, etc.), aromatic vinyls (eg, styrene, etc.) and the like.
  • acrylic monomers for example, (meth) acrylic acid, methyl (meth) acrylate, hydroxyethyl
  • silicone-based pressure-sensitive adhesive examples include a silicone rubber component [monofunctional R 3 SiO 1/2 (wherein, R represents an alkyl group such as a methyl group, an aryl group such as a phenyl group, etc., the same applies hereinafter). And MQ resin composed of tetrafunctional SiO 2 ] and a silicone resin component (bifunctional R 2 SiO alone or bifunctional R 2 SiO and monofunctional R 3 SiO 1/2 combined oily or gum) And the like can be used.
  • the silicone rubber component may be cross-linked.
  • the transparent adhesive layer may contain the conventional additives exemplified in the section of the transparent resin layer in the proportion described in the section of the transparent resin layer.
  • the refractive index of the transparent adhesive layer is, for example, about 1.3 to 1.7, preferably 1.4 to 1.6, and more preferably about 1.45 to 1.55.
  • the thickness (average thickness) of the transparent adhesive layer is, for example, about 1 to 100 ⁇ m, preferably about 2 to 80 ⁇ m, more preferably about 3 to 70 ⁇ m (especially 5 to 50 ⁇ m).
  • a second easy adhesion layer is laminated on the other surface of the transparent resin layer.
  • the second easy-adhesion layer is formed of the resin component exemplified in the first easy-adhesion layer, and may be the same resin component as the first easy-adhesion layer or a different resin component. Good.
  • the refractive index of the second easy-adhesion layer is, for example, about 1.3 to 1.7, preferably about 1.45 to 1.65, and more preferably about 1.55 to 1.62.
  • the thickness of the second easy-adhesion layer can be selected from the same range as that of the first easy-adhesion layer, and may be different from the first easy-adhesion layer.
  • a hard coat layer is further laminated on the second easy-adhesion layer.
  • a transparent curable composition containing a curable resin can be used as the hard coat layer.
  • curable resin The curable resin exemplified in the first hard coat layer can be used as the curable resin contained in the hard coat layer.
  • Preferred curable resins are photocurable compounds that can be cured in a short time, for example, ultraviolet curable compounds (monomers, oligomers, resins that may have a low molecular weight, etc.), and EB curable compounds.
  • a practically advantageous curable resin is an ultraviolet curable resin.
  • the curable resin has a bifunctional or higher functional group (for example, about 2 to 10 functional groups), preferably a trifunctional or higher functional group (for example, about 3 to 8 functional groups). It is preferable to include a curable resin having a polyfunctional (meth) acrylate, for example, a trifunctional or higher (particularly 4 to 8 functional) (meth) acrylate (for example, dipentaerythritol hexa (meth) acrylate).
  • a curable resin having a polyfunctional (meth) acrylate for example, a trifunctional or higher (particularly 4 to 8 functional) (meth) acrylate (for example, dipentaerythritol hexa (meth) acrylate).
  • a curable resin having a polymerizable group having 4 or less functional groups preferably 2 to 4 functional groups, more preferably about 3 to 4 functional groups
  • 5 or more functional groups for example 5 to 10 functional groups. It is preferable to combine with a curable resin having a polymerizable group of preferably 5 to 8 functional groups, more preferably about 5 to 7 functional groups.
  • bifunctional to tetrafunctional (meth) acrylates [especially, trifunctional to tetrafunctional (meth) acrylates such as pentaerythritol tri (meth) acrylate] and 5-functional (meth) acrylates [particularly dipentaerythritol hexa (meta And 5-7 functional (meth) acrylates such as acrylate].
  • hard coat properties can be improved by combining curable resins having a specific number of functional groups at such a ratio.
  • thermoplastic resin In the curable composition, in addition to the curable resin, in order to improve mechanical properties such as flexibility, a thermoplastic resin, for example, a reactive group involved in the curing reaction of the curable resin (particularly ethylene). A thermoplastic resin having no polymerizable group such as a polymerizable unsaturated bond) may be blended.
  • thermoplastic resins examples include styrene resins [polystyrene, copolymers of styrene and (meth) acrylic monomers, AS resins, styrene-butadiene copolymers, etc.], (meth) acrylic resins, and the like.
  • Poly (meth) acrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth) acrylic acid copolymer, (meth) acrylic acid ester-styrene copolymer (MS resin, etc.), (meth) acrylic acid-methyl (meth) acrylate- (meth) acrylic acid isobornyl copolymer, etc.
  • Organic acid vinyl ester resin [ethylene-vinyl acetate copolymer, vinyl acetate-vinyl chloride copolymer, vinegar Vinyl- (meth) acrylic acid ester copolymer, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal resin, etc.], vinyl ether resins (polyvinyl methyl ether, polyvinyl ethyl ether, polyvinyl propyl ether, polyvinyl t-butyl ether, etc.) ), Halogen-containing resins [polyvinyl chloride, polyvinylidene fluoride, vinyl chloride-vinyl acetate copolymer, vinyl chloride- (meth) acrylic acid ester copolymer, vinylidene chloride- (meth) acrylic acid ester copolymer, etc.] , Olefin resins [Ethylene homopolymers such as polyethylene and polypropylene, ethylene-vinyl acetate
  • thermoplastic resins styrene resins, (meth) acrylic resins, alicyclic olefin resins, polyester resins, cellulose derivatives, etc. are widely used, but they are excellent in transparency and heat resistance and flexible. From the point that mechanical characteristics such as can be improved, cellulose derivatives are preferred.
  • Cellulose derivatives include cellulose esters, cellulose ethers, and cellulose carbamates.
  • cellulose esters examples include aliphatic organic acid esters (cellulose acetate such as cellulose diacetate and cellulose triacetate; C 2-6 such as cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate). Acylate, etc.), aromatic organic acid esters (C 7-12 aromatic carboxylic acid esters such as cellulose phthalate, cellulose benzoate, etc.), inorganic acid esters (eg, cellulose nitrate, cellulose phosphate, cellulose sulfate, etc.) it can.
  • the cellulose esters may be mixed acid esters such as acetic acid and cellulose nitrate esters.
  • cellulose ethers include cyanoethyl cellulose; hydroxy C 2-4 alkyl cellulose such as hydroxyethyl cellulose and hydroxypropyl cellulose; C 1-6 alkyl cellulose such as methyl cellulose and ethyl cellulose; carboxymethyl cellulose or a salt thereof, benzyl cellulose, acetylalkyl A cellulose etc. can be illustrated.
  • cellulose carbamates include cellulose phenyl carbamate.
  • cellulose derivatives can be used alone or in combination of two or more.
  • cellulose esters particularly cellulose C 2-6 acylates such as cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate are preferable.
  • it is highly soluble in solvents, making it easy to prepare coating liquids, and can easily adjust the viscosity of coating liquids by adding a small amount, while suppressing excessive aggregation of fine particles in the coating liquid.
  • cellulose C 2-4 acylates such as cellulose diacetate, cellulose acetate propionate, and cellulose acetate butyrate (in particular, cellulose acetate C 3-4 acylate such as cellulose acetate propionate) are used. preferable.
  • the ratio of the thermoplastic resin is, for example, 0.1 to 30 parts by weight, preferably 0.1 to 10 parts by weight (eg 0.3 to 5 parts by weight), and more preferably 0 to 100 parts by weight of the curable resin. About 5 to 3 parts by weight (particularly 0.8 to 2 parts by weight).
  • the ratio of the thermoplastic resin it is possible to adjust the balance between the scratch resistance and mechanical properties such as shock absorption and cushioning properties.
  • the curable composition preferably contains metal oxide fine particles in order to impart AWM properties to the low refractive index layer.
  • metal oxide fine particles By adding a smaller amount of metal oxide fine particles to the hard coat layer than the high refractive index layer, convection occurs and the distribution of the metal oxide in the resin component becomes non-uniform, resulting in the resin component rising and minute irregularities. A structure can be formed. Such a concavo-convex structure can suppress the occurrence of watermarks and the occurrence of glare on the surface of the low refractive index layer following the shape. Furthermore, the metal oxide fine particles are excellent in transparency and scratch resistance, and can also improve the adhesion to the low refractive index layer.
  • the metal oxide fine particles can be used alone or in combination of two or more.
  • metal oxides containing antimony, tin, zinc such as antimony trioxide, antimony tetroxide, antimony pentoxide, antimony-containing tin oxide (antimony-doped tin oxide), tin oxide, zinc oxide, etc.
  • fine particles composed of at least one selected from the group consisting of antimony-containing tin oxide, antimony oxide, tin oxide and zinc oxide (particularly antimony-containing tin oxide particles (ATO particles)) are particularly preferable.
  • the metal oxide fine particles may be in the form of a dispersion dispersed in a solvent.
  • the solvent include water, alcohols (lower alcohols such as methanol, ethanol, isopropanol, butanol, cyclohexanol, etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), esters (methyl acetate, acetic acid, etc.).
  • solvents can be used alone or in combination of two or more.
  • the concentration of the metal oxide fine particles in the dispersion is, for example, about 0.1 to 50% by weight, preferably about 1 to 40% by weight, and more preferably about 5 to 30% by weight.
  • a conventional surface treatment may be performed.
  • the shape of the metal oxide fine particles is not particularly limited, and examples thereof include a spherical shape, an ellipsoidal shape, a polygonal shape (polygonal pyramid shape, a rectangular parallelepiped shape, a rectangular parallelepiped shape, etc.), a plate shape, a rod shape, and an indefinite shape. From the viewpoint of forming a rough structure, an isotropic shape such as a substantially spherical shape is preferable.
  • the number average primary particle size of the metal oxide fine particles is, for example, about 1 to 50 nm, preferably about 1.5 to 40 nm (for example, 2 to 30 nm), and more preferably about 3 to 15 nm (particularly 5 to 10 nm). If the primary particle size is too small, it will be difficult to form a concavo-convex structure on the surface of the hard coat layer, and if it is too large, it will be difficult to form a fine concavo-convex structure and will be larger than the wavelength of light. This may cause glare.
  • a fine concavo-convex structure can be formed by producing a hard coat layer under specific conditions using nanometer-sized particles without using particles having a large particle diameter.
  • the proportion of the metal oxide fine particles is, for example, 0.05 to 10 parts by weight, preferably 0.1 to 5 parts by weight, more preferably 0.15 to 3 parts by weight (particularly 0 to 100 parts by weight of the curable resin). .2 to 1 part by weight). If the proportion of the fine particles is too small, it is difficult to form a concavo-convex structure on the surface of the hard coat layer, and if it is too large, it is difficult to form a fine concavo-convex structure. In the present invention, it is possible to form a concavo-convex structure capable of realizing AWM properties even if the proportion of fine particles is small. Therefore, the optical display device provided with the transparent laminated film of the present invention has low haze and can suppress glare.
  • the ratio of the thermoplastic resin is, for example, about 100 to 1000 parts by weight, preferably about 150 to 500 parts by weight, and more preferably about 200 to 400 parts by weight with respect to 100 parts by weight of the metal oxide fine particles.
  • the curable composition includes the curing agent exemplified in the paragraph of the high refractive index layer, the curing accelerator, and the conventional additives exemplified in the paragraph of the transparent resin layer in the terms of the high refractive index layer and the transparent resin layer. It may be included in the ratio.
  • the ratio of the additive is, for example, about 0.01 to 10% by weight (particularly 0.1 to 5% by weight) with respect to the entire hard coat layer.
  • the refractive index of the hard coat layer is, for example, about 1.4 to 1.6, preferably about 1.45 to 1.57, and more preferably about 1.49 to 1.54.
  • the thickness (average thickness) of the hard coat layer is, for example, about 100 to 2000 nm, preferably 300 to 1800 nm, and more preferably about 500 to 1500 nm (particularly 800 to 1200 nm). If the hard coat layer is too thin, the productivity of the transparent laminated film decreases, and if it is too thick, it may be difficult to reduce the thickness of the device.
  • a low refractive index layer is further laminated on the hard coat layer.
  • the low refractive index layer can reduce the reflectance at the surface and improve the transmittance of outgoing light to the outside. Furthermore, when a specific uneven structure is formed by adding metal oxide fine particles to the hard coat layer, the low refractive index layer can suppress glare and improve AWM properties.
  • the low refractive index layer As the low refractive index layer, a conventional low refractive index layer, for example, a low refractive index layer described in JP-A Nos. 2001-100006 and 2008-58723 can be used.
  • the low refractive index layer is generally composed of a combination of a low refractive index resin, a curable resin exemplified for the high refractive index layer, a fluorine-containing compound, or a low refractive index inorganic filler.
  • low refractive index resin examples include fluorine resins such as methylpentene resin, diethylene glycol bis (allyl carbonate) resin, polyvinylidene fluoride (PVDF), and polyvinyl fluoride (PVF).
  • fluorine resins such as methylpentene resin, diethylene glycol bis (allyl carbonate) resin, polyvinylidene fluoride (PVDF), and polyvinyl fluoride (PVF).
  • the low refractive index layer usually preferably contains a fluorine-containing compound or a low refractive index inorganic filler.
  • a fluorine-containing compound or a low refractive index inorganic filler is used, the refractive index of the low refractive index layer is desired. It can be reduced according to.
  • the fluorine-containing compound has a fluorine atom and a functional group (such as a curable group such as a crosslinkable group or a polymerizable group) that reacts with heat, active energy rays (such as ultraviolet rays or electron beams), and the like. And a fluorine-containing resin precursor that can be cured or crosslinked by an active energy ray or the like to form a fluorine-containing resin (particularly a cured or crosslinked resin).
  • a fluorine-containing resin precursor that can be cured or crosslinked by an active energy ray or the like to form a fluorine-containing resin (particularly a cured or crosslinked resin).
  • fluorine-containing resin precursors examples include fluorine atom-containing thermosetting compounds or resins [with fluorine atoms, reactive groups (epoxy groups, isocyanate groups, carboxyl groups, hydroxyl groups, etc.), polymerizable groups (vinyl). Group, allyl group, (meth) acryloyl group, etc.)], fluorine atom-containing photocurable compound or resin (photocurable fluorine-containing monomer or oligomer, etc.) curable by actinic rays (such as ultraviolet rays) Examples thereof include ultraviolet curable compounds.
  • thermosetting compound or resin for example, a low molecular weight resin obtained using at least a fluorine-containing monomer, for example, a fluorine-containing polyol (particularly a diol) is used instead of a part or all of the polyol component as a constituent monomer.
  • a fluorine-containing monomer for example, a fluorine-containing polyol (particularly a diol) is used instead of a part or all of the polyol component as a constituent monomer.
  • Polyester-based fluorine-containing resin A urethane-based fluorine-containing resin obtained by using a fluorine atom-containing polyol and / or a polyisocyanate component instead of a part or all of the polyol and / or polyisocyanate component can be exemplified. These thermosetting compounds or resins can be used alone or in combination of two or more.
  • Examples of the photocurable compound include monomers and oligomers (or resins, particularly low molecular weight resins).
  • the monomers include monofunctional monofunctional compounds exemplified in the section of the high refractive index layer.
  • Fluorine atom-containing monomers corresponding to monomers and polyfunctional monomers [Fluorine atom-containing (meth) acrylic monomers such as fluorinated alkyl esters of (meth) acrylic acid, vinyl-based monomers such as fluoroolefins Monofunctional monomers such as monomers; di (meth) acrylates of fluorinated alkylene glycols such as 1-fluoro-1,2-di (meth) acryloyloxyethylene].
  • the fluorine atom containing oligomer or resin etc. corresponding to the oligomer or resin illustrated by the term of the said high refractive index layer can be used.
  • These photocurable compounds can be used alone or in combination of two or more.
  • the ratio of the fluorine-containing compound in the low refractive index layer may be, for example, 1% by weight or more with respect to the entire low refractive index layer, for example, about 5 to 90% by weight.
  • the filler described in JP-A-2001-100006 can be used, but a low-refractive index filler such as silica or magnesium fluoride, particularly silica is preferable.
  • the silica may be a hollow silica described in JP-A-2001-233611, JP-A-2003-192994, and the like. Hollow silica not only has a large effect of improving transmittance, but also has an excellent effect of improving AWM properties.
  • the number average primary particle size of the inorganic filler is 100 nm or less, preferably 80 nm or less (for example, 10 to 80 nm), more preferably about 20 to 70 nm.
  • the proportion of the low refractive index inorganic filler in the low refractive index layer may be, for example, 1% by weight or more with respect to the entire low refractive index layer, for example, about 5 to 90% by weight.
  • the inorganic filler having a low refractive index may be surface-modified with a coupling agent (titanium coupling agent or silane coupling agent).
  • the low refractive index layer may contain other inorganic fillers in order to improve the coating film strength.
  • the low refractive index layer preferably has a fine concavo-convex structure on the surface from the viewpoint that the AWM property can be improved.
  • the uneven structure of the low refractive index layer is usually formed by following the uneven structure of the hard coat layer.
  • the low refractive index layer preferably has a relatively small uneven structure on the surface, and the arithmetic average roughness Ra1 calculated in a measurement area of 10 ⁇ m ⁇ 10 ⁇ m is 0.7 nm or more and less than 5 nm (for example, 0.75 nm).
  • the arithmetic average roughness Ra1 calculated in a measurement area of 10 ⁇ m ⁇ 10 ⁇ m is 0.7 nm or more and less than 5 nm (for example, 0.75 nm).
  • even a minute concavo-convex structure of less than 1.5 nm can exhibit AWM properties, preferably 0.8 nm or more and less than 1.5 nm, more preferably 0.85 to 1.4 nm ( In particular, it may be about 0.9 to 1.2 nm. If Ra1 is too small, the AWM property decreases, and if it is too large, glare is likely to occur on a high-definition display.
  • the low refractive index layer has a larger concavo-convex structure (swell) in addition to the fine concavo-convex structure, and an arithmetic average roughness Ra2 calculated in a measurement area of 500 ⁇ m ⁇ 500 ⁇ m is 10 to 50 nm (for example, 11 to 45 nm).
  • an arithmetic average roughness Ra2 calculated in a measurement area of 500 ⁇ m ⁇ 500 ⁇ m is 10 to 50 nm (for example, 11 to 45 nm).
  • even a minute concavo-convex structure of 30 nm or less can exhibit AWM properties, and may preferably be about 10 to 30 nm, more preferably about 11 to 20 nm.
  • Ra2 is too small, the AWM property decreases, and if it is too large, glare is likely to occur on a high-definition display.
  • Ra2 which is a undulating structure in such a range makes it possible to achieve both AWM properties and suppression of gla
  • the average interval Sm of the unevenness is, for example, 10 to 300 ⁇ m, preferably 20 to 250 ⁇ m, and more preferably about 50 to 200 ⁇ m. If Sm is too small, it approximates the pixel size of a high-definition display, and thus there is a possibility of causing interference and glare. On the other hand, if Sm is too large, the AWM property is deteriorated and there is a possibility that glare occurs.
  • the arithmetic average inclination ⁇ a of the uneven structure is, for example, about 0.01 to 1 °, preferably 0.02 to 0.5 °, and more preferably about 0.03 to 0.1 °. If ⁇ a is too large, glare is likely to occur on a high-definition display, and if it is too small, the AWM property may be reduced.
  • the ten-point average roughness Rz of the concavo-convex structure is about 10 to 200 nm, preferably about 30 to 150 nm, and more preferably about 50 to 100 nm. If Rz is too small, the AWM property decreases, and if it is too large, glare is likely to occur on a high-definition display.
  • Ra, Sm, ⁇ a and Rz can be measured by a method based on JIS B0601.
  • the low refractive index layer has excellent surface wettability, and has a water contact angle of 80 ° or less (eg, 65 to 80 °), for example, 69 to 80 °, preferably 70 to 75 °, and more preferably 71. About 74 °. If the water contact angle is too low, the slipping property is lowered, so that the scratch resistance may be lowered. In the present invention, the water contact angle can be measured using an automatic / dynamic contact angle meter, and can be measured in detail by the method described in the examples described later.
  • the refractive index of the low refractive index layer is, for example, about 1.2 to 1.5, preferably about 1.25 to 1.45, and more preferably about 1.3 to 1.4.
  • the thickness (average thickness) of the low refractive index layer is, for example, about 10 to 200 nm, preferably 30 to 180 nm, more preferably 50 to 150 nm (particularly 80 to 120 nm).
  • the transparent laminated film of the present invention has excellent optical properties, and the reflection color difference ⁇ E depending on the presence or absence of the transparent conductive layer represented by the following formula may be 10 or less, for example, 0.1 to 10, preferably 0. It is about 5 to 9, more preferably about 1 to 5 (especially 2 to 4). If ⁇ E is too high, the effect of suppressing the visual recognition of the pattern due to the color difference may be reduced.
  • L a * , L b * , a a * , b a * , a b * , and b b * are measured using an integrating sphere reflection intensity measuring device (“U-3300” manufactured by Hitachi High-Technologies Corporation). It can be measured.
  • the transparent laminated film (laminated film having no transparent conductive layer) of the present invention may have a total light transmittance of 80% or more (particularly 90% or more) in accordance with JIS K7361 at a thickness of 100 ⁇ m. It is about 100 to 100%, preferably about 85 to 99%, and more preferably about 90 to 95%.
  • the transparent laminated film (laminated film having no transparent conductive layer) of the present invention has a small haze, and has a haze ratio according to JIS K7136 at a thickness of 100 ⁇ m, for example, 0.05 to 1%, preferably 0.1 to It is about 0.8% (for example, 0.12 to 0.5%), more preferably about 0.13 to 0.3% (particularly 0.15 to 0.25%).
  • a low haze value by having such a low haze value, glare can be suppressed even in a high-definition display, and visibility can be improved.
  • the transparent laminated film of the present invention may be further combined with other optical elements (for example, various optical elements disposed in an optical path such as a glass substrate, a polarizing plate, a retardation plate, a light guide plate).
  • other optical elements for example, various optical elements disposed in an optical path such as a glass substrate, a polarizing plate, a retardation plate, a light guide plate.
  • the transparent laminated film of the present invention can be produced, for example, by laminating each layer on a transparent resin layer having an easy adhesion layer.
  • the hard coat layer is a coating step of applying a curable composition to one surface (on the second easy-adhesion layer) of the transparent resin layer, drying the applied curable composition, and then active energy rays. Can be manufactured through a curing step of curing by irradiation.
  • the curable composition is usually composed of a mixed solution (particularly a liquid composition such as a uniform solution) containing a curable resin, a thermoplastic resin, metal oxide fine particles, and a solvent.
  • the mixed liquid contains a photocurable resin, a thermoplastic resin, metal oxide fine particles, a photopolymerization initiator, and a solvent soluble in the photocurable resin and the thermoplastic resin. Things are used.
  • the solvent can be selected according to the type and solubility of the curable resin and the thermoplastic resin, and can be a solvent that can uniformly dissolve at least solids (curable resin, thermoplastic resin, reaction initiator, other additives). That's fine.
  • solvents include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.), alicyclic hydrocarbons ( Cyclohexane etc.), aromatic hydrocarbons (toluene, xylene etc.), halogenated carbons (dichloromethane, dichloroethane etc.), esters (methyl acetate, ethyl acetate, butyl acetate etc.), water, alcohols (ethanol, isopropanol, Butanol, cyclohexano
  • solvents can be used alone or in combination of two or more, and may be a mixed solvent.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • alcohols such as butanol and 1-methoxy-2-propanol are preferable, and these may be mixed.
  • the ratio of the ketones and the alcohols to the former / the latter 90/10 to 10/90, preferably 80/20 to 40/60, more preferably 70/30 to 50/50 (weight ratio). ).
  • the degree of aggregation of metal oxide fine particles may be controlled by appropriately combining solvents.
  • a surface structure having a fine concavo-convex structure and a wavy structure can be formed on the surface of the hard coat layer by combining the solvent at such a ratio.
  • the concentration of the solute (curable resin, thermoplastic resin, metal oxide fine particles, reaction initiator, and other additives) in the mixed solution can be selected within a range that does not impair the castability and coating properties, for example, 1 to 80 weights %, Preferably 5 to 60% by weight, more preferably 15 to 40% by weight (particularly 20 to 40% by weight).
  • a coating method conventional methods such as roll coater, air knife coater, blade coater, rod coater, reverse coater, bar coater, comma coater, dip squeeze coater, die coater, gravure coater, micro gravure coater, silk screen coater. Method, dip method, spray method, spinner method and the like. Of these methods, the bar coater method and the gravure coater method are widely used. If necessary, the coating solution may be applied a plurality of times.
  • the mixture is further cast or coated, and then the solvent is evaporated.
  • the solvent may be evaporated usually at a temperature of about 40 to 150 ° C., preferably 50 to 120 ° C., more preferably about 60 to 100 ° C., depending on the boiling point of the solvent.
  • the applied curable composition is finally cured by actinic rays (ultraviolet rays, electron beams, etc.) or heat to form a hard coat layer.
  • actinic rays ultraviolet rays, electron beams, etc.
  • the curing of the curable resin may be combined with heating, light irradiation, or the like depending on the type of the curable resin.
  • the heating temperature can be selected from an appropriate range, for example, about 50 to 150 ° C.
  • the light irradiation can be selected according to the type of the photocuring component or the like, and usually ultraviolet rays, electron beams, etc. can be used.
  • a general-purpose exposure source is usually an ultraviolet irradiation device.
  • a Deep UV lamp for example, in the case of ultraviolet rays, a Deep UV lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a halogen lamp, a laser light source (light source such as helium-cadmium laser or excimer laser), etc. may be used. it can.
  • a laser light source light source such as helium-cadmium laser or excimer laser
  • Irradiation light amount (irradiation energy) differs by the thickness of the coating film 10 ⁇ 10000mJ / cm 2 may be selected from the range of about, for example, 10 ⁇ 5000mJ / cm 2, preferably 30 ⁇ 3000 mJ / It may be about cm 2 , more preferably about 50 to 1000 mJ / cm 2 .
  • light irradiation may be performed in an inert gas atmosphere if necessary.
  • photocuring not only can the resin be fixed immediately by curing the curable resin, but also the precipitation of low molecular components such as oligomers from the inside of the transparent resin layer due to heat can be suppressed.
  • an actinic ray is usually applied after applying or casting a coating solution in the same manner as the hard coat layer. It can be formed by curing using heat or the like.
  • a method for forming the easy-adhesion layer and the transparent adhesive layer a conventional method can be used, and a method of applying or casting a coating liquid can be used in the same manner as the hard coat layer.
  • each layer may be subjected to a surface treatment in order to improve adhesion between layers.
  • a surface treatment include conventional surface treatments such as corona discharge treatment, flame treatment, plasma treatment, ozone and ultraviolet irradiation treatment.
  • the transparent conductive layer is not particularly limited as long as it is a method capable of forming a thin film containing a metal or a metal compound, and can be formed using a conventional film forming method.
  • a film forming method for example, physical vapor deposition (PVD) method [for example, vacuum deposition method, flash deposition method, electron beam deposition method, ion beam deposition method, ion plating method (for example, HCD method, electron beam] RF method, arc discharge method, etc.), sputtering method (eg, DC discharge method, radio frequency (RF) discharge method, magnetron method, etc.), molecular beam epitaxy method, laser ablation method, etc.], chemical vapor deposition (CVD) method [For example, thermal CVD method, plasma CVD method, MOCVD method (metal organic chemical vapor deposition method), photo CVD method, etc.], ion beam mixing method, ion implantation method and the like can be exemplified.
  • PVD physical vapor de
  • Average thickness of each layer The average thickness of each layer was measured using an instantaneous multi-photometry system (“MCPD-3700” manufactured by Otsuka Electronics Co., Ltd.).
  • Total light transmittance and haze Using a haze meter (trade name “NDH-5000W” manufactured by Nippon Denshoku Co., Ltd.), the total light transmittance was measured according to JIS K7361, and the haze was measured according to JIS K7136.
  • the reflection color difference ⁇ E was calculated based on the Lab value measured using an integrating sphere reflection intensity measuring device (“U-3300” manufactured by Hitachi High-Technologies Corporation).
  • the transparent laminated films obtained in Examples and Comparative Examples were attached to a transparent glass plate having a thickness of 3 mm via an adhesive layer of the transparent laminated film, and a 5-inch LCD monitor (pixel number 1920) ⁇ 1080, resolution 440 ppi) was placed so that the transparent laminated film surface and the monitor face each other, and the glare when visually observed from the front of the monitor with a green display was evaluated according to the following criteria.
  • a 0.7 mm transparent glass plate was bonded to the transparent laminated film through the adhesive layer of the transparent laminated film obtained in Examples and Comparative Examples. Next, a 10-inch size polarizing plate having a 1 cm width and a 0.2 mm gap on the outer periphery was overlapped facing the low refractive index layer (second hard coat layer) of the transparent laminated film. Finally, the central portion of the transparent glass plate was pressed with a load of 20 N / cm 2 for 10 seconds and released, and the state after 10 seconds was evaluated according to the following criteria.
  • The transparent laminated film and the transparent glass plate are not in close contact.
  • The transparent laminated film and the transparent glass plate are in close contact with each other.
  • Both of them are in close contact.
  • [Arithmetic mean roughness Ra1] In accordance with JIS B0601, from the adhesive layer side of the transparent laminated film obtained in Examples and Comparative Examples, the surface (uneven surface) on the low refractive index layer side (second hard coat layer side) of the transparent laminated film.
  • the arithmetic average roughness was measured by the following procedure. That is, using a scanning probe microscope (manufactured by SII Nano Technology), a silicon cantilever was used as a probe, the measurement mode was set to Taping mode, and the measurement area was set to 10 ⁇ m ⁇ 10 ⁇ m to capture an image.
  • the arithmetic average roughness Ra2 was measured using a non-contact surface shape measurement system (“VertScan 2.0” manufactured by Ryoka System Co., Ltd.) with a measurement area of 500 ⁇ m ⁇ 500 ⁇ m.
  • a photopolymerization initiator (“Irgacure 184” manufactured by BASF Japan) and 1 part by weight of a photopolymerization initiator (“Irgacure 907” manufactured by BASF Japan) were added and dissolved.
  • Dispersion 1.5 parts by weight was added and stirred for 1 hour to prepare a hard coat layer coating solution: HC-1a (or HC-2a).
  • Photo-curing resin-containing coating agent (“LiodurasTYZ” manufactured by Toyo Ink Co., Ltd., containing nanometer-sized zirconium oxide fine particles)
  • Low refractive index layer coating solution: LR layer A commercially available hollow silica fine particle dispersion (manufactured by JGC Catalysts & Chemicals, “ELCOM P-5063”, solid content 3% by weight) was used.
  • the thickness of the high refractive index layer was adjusted by adjusting the concentration of the coating solution.
  • Comparative Example 1 As the transparent resin layer, a PET film (“UH13” manufactured by Toray Industries, Inc., PET film with an easy-adhesion layer, thickness 50 ⁇ m) was used, and an HC-1a layer coating solution was applied to one surface of this film by a bar coater. After coating with # 8, it was dried at 80 ° C. for 1 minute. The coated film was passed through an ultraviolet irradiation device (Ushio Electric Co., Ltd., high-pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2 ) to carry out ultraviolet curing treatment to form an HC-1a layer. The thickness of the HC-1a layer in the obtained transparent laminated film was 1.0 ⁇ m.
  • the HC-2a layer coating solution was applied to the other surface of the PET film using a bar coater # 8, and then dried at 80 ° C. for 1 minute.
  • the coated film is passed through an ultraviolet irradiation device (USHIO INC., High-pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2 ) to carry out ultraviolet curing treatment to form an HC-2a layer. Obtained.
  • the thickness of the HC-2a layer in the obtained transparent laminated film was 1.0 ⁇ m.
  • Comparative Example 2 The LR layer coating solution was applied onto the HC-2a layer of the transparent laminated film obtained in Comparative Example 1 using a bar coater # 4 and dried at 120 ° C. for 1 minute. Thereafter, the coating film was passed through an ultraviolet irradiation device (USHIO INC., High pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2 ) to carry out ultraviolet curing treatment to form a low refractive index layer. The thickness of the LR layer in the obtained transparent laminated film was 100 nm.
  • an ultraviolet irradiation device USHIO INC., High pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2
  • Comparative Example 3 As the transparent resin layer, a PET film (manufactured by Toray Industries, Inc., PET film with an easy-adhesion layer, thickness 50 ⁇ m) was used, and an IM layer coating solution was applied to one side of this film using a bar coater # 5. After coating, it was dried at 80 ° C. for 2 minutes. The coating film was passed through a UV irradiation device (USHIO INC., High pressure mercury lamp, UV irradiation amount: 500 mJ / cm 2 ) to perform UV curing treatment to form an IM layer to obtain a transparent laminated film . The thickness of the IM layer in the obtained transparent laminated film was 0.9 ⁇ m.
  • Example 1 As the transparent resin layer, a PET film (manufactured by Toray Industries, Inc., PET film with an easy-adhesion layer, thickness 50 ⁇ m) was used, and an IM layer coating solution was applied to one side of this film using a bar coater # 5. After coating, it was dried at 80 ° C. for 2 minutes. The coating film was passed through a UV irradiation device (USHIO INC., High pressure mercury lamp, UV irradiation amount: 500 mJ / cm 2 ) to perform UV curing treatment to form an IM layer to obtain a transparent laminated film . The thickness of the IM layer in the obtained transparent laminated film was 0.5 ⁇ m.
  • a UV irradiation device USHIO INC., High pressure mercury lamp, UV irradiation amount: 500 mJ / cm 2
  • the HC-2a layer coating solution was applied to the other surface of the PET film using a bar coater # 8, and then dried at 80 ° C. for 1 minute.
  • the coated film is passed through an ultraviolet irradiation device (USHIO INC., High-pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2 ) to carry out ultraviolet curing treatment to form an HC-2a layer. Obtained.
  • the thickness of the HC-2a layer in the obtained transparent laminated film was 1.0 ⁇ m.
  • the LR layer coating solution was applied onto the HC-2a layer of the obtained transparent laminated film using a bar coater # 4 and dried at 80 ° C. for 1 minute. Thereafter, the coating film was passed through an ultraviolet irradiation device (USHIO INC., High pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2 ) to carry out ultraviolet curing treatment to form a low refractive index layer.
  • the thickness of the LR layer in the obtained transparent laminated film was 100 nm.
  • Example 2 A transparent laminated film was obtained in the same manner as in Example 1 except that the thickness of the IM layer was 0.7 ⁇ m.
  • Example 3 A transparent laminated film was obtained in the same manner as in Example 1 except that the thickness of the IM layer was 0.9 ⁇ m.
  • Example 4 A transparent laminated film was obtained in the same manner as in Example 1 except that the refractive index of the IM layer was 1.70.
  • Comparative Example 4 As the transparent resin layer, (Toray Industries, Inc., PET film with an easy-adhesion layer, thickness 50 ⁇ m) was used, and HC-1b layer coating solution was applied to one side of this film using a bar coater # 8. After coating, it was dried at 80 ° C. for 1 minute. The coated film was passed through an ultraviolet irradiation device (Ushio Electric Co., Ltd., high pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2 ) to carry out ultraviolet curing treatment to form an HC-1b layer. The thickness of the HC-1b layer in the obtained transparent laminated film was 1.0 ⁇ m.
  • an ultraviolet irradiation device Ushio Electric Co., Ltd., high pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2
  • the HC-2b layer coating solution was applied to the other surface of the PET film using a bar coater # 8, and then dried at 80 ° C. for 1 minute.
  • the coating film is passed through an ultraviolet irradiation device (USHIO ELECTRIC CO., LTD., High-pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2 ) to perform ultraviolet curing treatment to form an HC-2b layer. Obtained.
  • the thickness of the HC-2b layer in the obtained transparent laminated film was 1.0 ⁇ m.
  • Comparative Example 5 A transparent laminated film was obtained in the same manner as in Comparative Example 4 except that the HC-1c layer and the HC-2c layer were used instead of the HC-1b layer and the HC-2b layer.
  • Comparative Example 6 The LR layer coating solution was applied onto the HC-2c layer of the transparent laminated film obtained in Comparative Example 5 using a bar coater # 4 and dried at 120 ° C. for 1 minute. Thereafter, the coating film was passed through an ultraviolet irradiation device (USHIO INC., High pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2 ) to carry out ultraviolet curing treatment to form a low refractive index layer. The thickness of the LR layer in the obtained transparent laminated film was 100 nm.
  • an ultraviolet irradiation device USHIO INC., High pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2
  • Comparative Example 7 As the transparent resin layer, a PET film (manufactured by Toray Industries, Inc., PET film with an easy-adhesion layer, thickness 50 ⁇ m) was used, and an HC-1d layer coating solution was applied to one side of this film with a bar coater # 8. After coating using, it was dried at 80 ° C. for 1 minute. The coated film was passed through an ultraviolet irradiation device (Ushio Electric Co., Ltd., high pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2 ) to perform ultraviolet curing treatment to form an HC-1d layer. The thickness of the HC-1d layer in the obtained transparent laminated film was 1.0 ⁇ m.
  • an ultraviolet irradiation device Ushio Electric Co., Ltd., high pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2
  • the HC-2d layer coating solution was applied to the other surface of the PET film using a bar coater # 8, and then dried at 80 ° C. for 1 minute.
  • the coated film is passed through an ultraviolet irradiation device (USHIO INC., High-pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2 ) to perform ultraviolet curing treatment to form an HC-2d layer, and to form a transparent laminated film. Obtained.
  • the thickness of the HC-2d layer in the obtained transparent laminated film was 1.0 ⁇ m.
  • the LR layer coating solution was coated on the HC-2d layer of the obtained transparent laminated film using a bar coater # 4 and dried at 120 ° C. for 1 minute. Thereafter, the coating film was passed through an ultraviolet irradiation device (USHIO INC., High pressure mercury lamp, ultraviolet irradiation amount: 500 mJ / cm 2 ) to carry out ultraviolet curing treatment to form a low refractive index layer.
  • the thickness of the LR layer in the obtained transparent laminated film was 100 nm.
  • the reflection color difference ⁇ E of the transparent laminated films obtained in Comparative Examples 1 to 3 and Examples was measured. The obtained results are shown in Table 1. Further, the reflectance, glare, AWM property, water contact angle, and surface roughness Ra of the transparent laminated films obtained in Comparative Examples 4 to 7 and Examples were measured. The obtained results are shown in Table 2.
  • the transparent laminated film of the example has higher transparency and a smaller color difference ⁇ E than the comparative example.
  • the transparent laminated films of the examples have low haze, small glare, and excellent AWM properties as compared with the comparative examples.
  • the transparent laminated film of the present invention can be used in various optical display devices that use the transparent conductive layer in a pattern, such as a personal computer, a television, a mobile phone (smartphone), electronic paper, a game machine, a mobile device, a watch, Touch panel (resistive film type touch panel, capacitive touch panel) used in combination with a display device (liquid crystal display device, plasma display device, organic or inorganic EL display device, etc.) in the display part of electric / electronic or precision equipment such as a calculator Etc.).
  • a display device liquid crystal display device, plasma display device, organic or inorganic EL display device, etc.
  • it is useful for a projected capacitive touch panel that employs an ITO grid method because of its excellent visibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

 透明樹脂層の一方の面に、第1の易接着層、高屈折率層を順次積層し、前記透明樹脂層の他方の面に、第2の易接着層、ハードコート層、低屈折率層が順次積層する。前記第1及び第2の易接着層を、それぞれ屈折率1.5~1.7及び厚み30~200nmに調整し、前記高屈折率層は、屈折率1.6~1.8及び厚み120~2000nmに調整し、前記低屈折率層は、屈折率1.2~1.5及び厚み10~200nmに調整する。得られた透明積層フィルムは、パターン化された透明導電層を備え、かつ簡単な構造であっても、薄肉で透光性が高く、かつ色差によるパターンの視認を抑制できると共に、内部に空隙層を有する静電容量方式タッチパネルディスプレイにおいて、低ヘイズであってもウォーターマークの発生を防止し、かつ高精細表示装置に適用してもギラツキを抑制できる。

Description

透明積層フィルム及びタッチパネルディスプレイ
 本発明は、パターン化された透明導電層を有する表示装置(タッチパネルディスプレイなど)に利用できる透明積層フィルム及びこのフィルムを備えた静電容量方式タッチパネルディスプレイに関する。
 マンマシンインターフェースとしての電子ディスプレイの進歩に伴い、対話型の入力システムが普及し、なかでもタッチパネル(座標入力装置)をディスプレイと一体化した装置がATM(現金自動受払機)、商品管理、アウトワーク(外交、セールス)、案内表示、娯楽機器などで広く使用されている。液晶ディスプレイなどの軽量・薄型ディスプレイでは、キーボードレスにでき、その特長が生きることから、モバイル機器にもタッチパネルが使用されるケースが増えている。タッチパネルは、指やペンなどの入力手段によって所定位置を押圧することにより、コンピュータなどに所定の情報等を入力する装置であり、位置検出の方法により、光学方式、超音波方式、静電容量方式、抵抗膜方式などに分類できる。
 これらの方式のうち、静電容量方式は、静電容量の変化を利用し、位置の検出を行う方式であるが、近年、機能性に優れる点から、ITOグリッド方式を採用する投影型静電容量方式タッチパネルが、スマートフォン、携帯電話、電子ペーパー、タブレット型パーソナルコンピュータ(PC)、ペンタブレット、遊戯機器などのモバイル機器で採用されて脚光を浴びている。特に、スマートフォンやタブレット型PCなどでは、高精細な表示装置も普及し始めている。また、表示パネルの画素数がフルハイビジョンテレビの4倍ある高解像度のテレビ(4Kテレビ)のディスプレイにタッチパネルを搭載したテレビや、建築分野や医療分野で利用される高解像度のペン入力デバイスも開発されている。
 そのため、このようなデバイスでは、高度な透明性や防眩性などの光学特性も要求される。特に、内部に隙間(空隙層)を有するデバイスでは、指やペンで表示面に接触すると、空隙層の対向面同士が密着して離れずに、黒くなる現象(黒点)が発生する。この現象はウォーターマーク(WM)と称されるが、静電容量方式タッチパネルは、空隙層を有するデバイスが多いため、アンチウォーターマーク(AWM)性も要求される。
 このように静電容量方式タッチパネルでも高度な光学特性が要求されているが、静電容量方式タッチパネルでは、透明導電層が表示部の全面でパターン化されており、パターン部と非パターン部との色差により、パターンが視認されてしまう現象(いわゆる「パターン見え」又は「骨見え」現象)が生じ易い。そこで、骨見え現象を抑制するための方法として、インデックスマッチング層として、高屈折率層と低屈折率層とを組み合わせて用いる方法が汎用されている。しかし、この方法では、インデックスマッチング層として、高屈折率層と低屈折率層とを積層するため、タッチパネルの層構造が複雑であり、近年の薄肉化の要求に応えるのが困難である。そこで、インデックスマッチング層として高屈折率層を単独で用いる方法も提案されている。
 特開2012-25066号公報(特許文献1)には、透明基材フィルムの一面から順に、ハードコート層及び中間層が積層された透明フィルムであって、前記中間層が、酸化チタン微粒子又は酸化ジルコニウム微粒子と活性エネルギー線硬化型樹脂とからなり、かつ波長400nmの光の屈折率が1.65~1.90、膜厚が60~115nmであり、パターン化された錫酸化インジウム層が前記中間層の外面上に積層されており、前記錫酸化インジウム層は波長400nmの光の屈折率が1.85~2.35、膜厚が5~50nmである透明導電性フィルムが開示されている。この文献には、前記透明基材フィルムの他面に、機能層として、ハードコート層、防眩層、指紋なじみ層、自己修復層、反射防止層又は防眩性反射層を積層することが記載されている。
 しかし、この透明導電性フィルムでは、高度な光学特性を発現できず、例えば、機能層として防眩性反射防止層を用いても、ギラツキを有効に抑制できない。また、低ヘイズとアンチウォーターマーク(AWM)性とを両立するのも困難である。
特開2012-25066号公報(特許請求の範囲)
 従って、本発明の目的は、パターン化された透明導電層を備え、かつ簡単な構造であっても、薄肉で透光性が高く、かつ色差によりパターンが視認されるのを抑制できる透明積層フィルム及びこのフィルムを備えた静電容量方式タッチパネルディスプレイを提供することにある。
 本発明の他の目的は、内部に空隙層を有する静電容量方式タッチパネルディスプレイにおいて、低ヘイズであってもウォーターマークの発生を防止し、かつ高精細表示装置に適用してもギラツキを抑制できる透明積層フィルム及びこのフィルムを備えた静電容量方式タッチパネルディスプレイを提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討の結果、透明樹脂層の一方の面に、特定の屈折率及び厚みを有する第1の易接着層、特定の屈折率及び厚みを有する高屈折率層が順次積層され、さらに前記透明樹脂層の他方の面に、特定の屈折率及び厚みを有する第2の易接着層、ハードコート層、特定の屈折率及び厚みを有する低屈折率層が順次積層された透明積層フィルムが、パターン化された透明導電層を備え、かつ簡単な構造であっても、薄肉で透光性が高く、かつ色差によりパターンが視認されるのを抑制できることを見出し、本発明を完成した。
 すなわち、本発明の透明積層フィルムは、透明樹脂層と、この透明樹脂層の一方の面に、第1の易接着層、高屈折率層が順次積層され、前記透明樹脂層の他方の面に、第2の易接着層、ハードコート層、低屈折率層が順次積層された透明積層フィルムであって、前記第1及び第2の易接着層が、それぞれ屈折率1.5~1.7及び厚み30~200nmであり、前記高屈折率層が、屈折率1.6~1.8及び厚み120~2000nmであり、かつ前記低屈折率層が、屈折率1.2~1.5及び厚み10~200nmである。本発明の透明積層フィルムは、ヘイズが0.05~1%程度であってもよい。本発明の透明積層フィルムは、前記低屈折率層の表面が、測定エリア10μm×10μmで算出した算術平均粗さRa1が0.7nm以上5nm未満、かつ測定エリア500μm×500μmで算出した算術平均粗さRa2が10~50nmである凹凸構造を有していてもよい。前記ハードコート層は、硬化性樹脂、熱可塑性樹脂及び平均一次粒径1~50nmの金属酸化物粒子を含む硬化性組成物の硬化物で形成されていてもよい。前記高屈折率層の上に、パターン化され、かつ屈折率1.8~2.3及び厚み10~60nmの透明導電層、屈折率1.4~2.3の透明接着層を順次積層してもよい。本発明の透明積層フィルムは、下記式で表される透明導電層の有無による反射色差ΔEが10以下であってもよい。
  ΔE=((L -L )+(a -a )+(b -b ))1/2
(式中、L ,a ,b は透明導電層積層部分の10°反射L,a,bであり、L ,a ,b は透明導電層非積層部分の10°反射L,a,bである)。
 本発明の透明積層フィルムは、全光線透過率が90%以上であってもよい。前記低屈折率層の表面の水接触角が65~80°程度であってもよい。前記高屈折率層は無機微粒子を含む硬化性組成物で形成されていてもよい。
 本発明には、前記透明積層フィルムを備えた静電容量方式タッチパネルディスプレイも含まれる。
 なお、本明細書では、各層の厚みは、平均厚みを意味し、瞬間マルチ測光システム(大塚電子(株)製「MCPD-3700」)によって測定できる。
 本発明では、透明樹脂層の一方の面に、特定の屈折率及び厚みを有する第1の易接着層、特定の屈折率及び厚みを有する高屈折率層が順次積層され、さらに前記透明樹脂層の他方の面に、特定の屈折率及び厚みを有する第2の易接着層、ハードコート層、特定の屈折率及び厚みを有する低屈折率層が順次積層された透明積層フィルムは、パターン化された透明導電層を備え、かつ簡単な構造であっても、薄肉で透光性が高く、かつ色差によりパターンが視認されるのを抑制できる。さらに、本発明の透明積層フィルムは、内部に空隙層を有する静電容量方式タッチパネルディスプレイにおいて、低ヘイズであってもウォーターマークの発生を防止し、かつ高精細表示装置に適用してもギラツキを抑制できる。
 [透明樹脂層]
 本発明の透明積層フィルムは透明樹脂層(又は基材層)を含む。透明樹脂層としては、可撓性が高く、ガラスよりも耐割れ性に優れる透明樹脂で形成されたプラスチックフィルム又はシート(未延伸又は延伸プラスチックフィルム)を利用できる。透明樹脂としては、後述するハードコート層の項で例示された熱可塑性樹脂と同様の樹脂を使用できる。好ましい透明樹脂としては、例えば、セルロース誘導体[セルローストリアセテート(TAC)、セルロースジアセテートなどのセルロースアセテートなど]、ポリエステル系樹脂[PET、ポリブチレンテレフタレート(PBT)、ポリアリレート系樹脂など]、ポリスルホン系樹脂[ポリスルホン、ポリエーテルスルホンなど]、ポリエーテルケトン系樹脂[ポリエーテルケトン、ポリエーテルエーテルケトンなど]、ポリカーボネート系樹脂(ビスフェノールA型ポリカーボネートなど)、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレンなど)、環状ポリオレフィン系樹脂[トパス(TOPAS)(登録商標)、アートン(ARTON)(登録商標)、ゼオネックス(ZEONEX)(登録商標)など]、ハロゲン含有樹脂(ポリ塩化ビニリデンなど)、(メタ)アクリル系樹脂(ポリメタクリル酸メチル系樹脂など)、スチレン系樹脂(ポリスチレンなど)、酢酸ビニル又はビニルアルコール系樹脂(ポリビニルアルコールなど)などが挙げられる。これらの透明樹脂で形成されたプラスチックフィルムは1軸又は2軸延伸されていてもよい。
 光学的に等方性の透明プラスチックフィルムには、例えば、ポリエステル、セルロース誘導体類などが含まれ、特に、耐熱性や透明性などのバランスに優れる点から、PETやPENなどのポリC2-4アルキレンアリレートで形成されたフィルムが好ましい。さらに、透明樹脂層は、2軸延伸したフィルムであってもよい。
 透明樹脂層には、種々の慣用の添加剤、例えば、安定剤(酸化防止剤、紫外線吸収剤など)、界面活性剤、水溶性高分子、レベリング剤、充填剤、架橋剤、カップリング剤、着色剤、難燃剤、滑剤、ワックス、防腐剤、粘度調整剤、増粘剤、消泡剤などが含まれていてもよい。添加剤の割合は、例えば、透明樹脂層全体に対して0.01~10重量%(特に0.1~5重量%)程度である。
 透明樹脂層の屈折率は、例えば1.5~1.8、好ましくは1.55~1.75、さらに好ましくは1.6~1.7程度である。
 なお、本発明では、屈折率は、JIS K 7142に準拠して、波長633nmにおいて、メトリコンプリズムカプラーを用いて測定できる。
 透明樹脂層の厚み(平均厚み)は、例えば20~200μm、好ましくは25~150μm、さらに好ましくは30~120μm(特に40~100μm)程度である。透明樹脂層が薄すぎると、タッチパネルに利用した際にウォーターマークが発生し易く、厚すぎると、薄肉化デバイスの製造が困難となる虞がある。
 [第1の易接着層]
 前記透明樹脂層の一方の面には、第1の易接着層が積層されている。第1の易接着層は、通常、接着性樹脂で構成されている。
 接着性樹脂としては、例えば、オレフィン系樹脂[例えば、ポリエチレン、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸エステル共重合体、エチレン-(メタ)アクリル酸共重合体、アイオノマー樹脂、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリロニトリル-アクリル酸共重合体などのポリエチレン系樹脂、非晶性ポリプロピレン系樹脂など]、塩化ビニル系樹脂(塩化ビニル-酢酸ビニル共重合体など)、塩化ビニリデン系樹脂(塩化ビニリデン-塩化ビニル共重合体、塩化ビニリデン-(メタ)アクリル酸エステル共重合体、塩化ビニリデン-アクリロニトリル共重合体など)、アクリル系樹脂[例えば、(メタ)アクリル系単量体(例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル)の単独又は共重合体、これらの(メタ)アクリル系単量体と共重合性単量体(スチレン系単量体、酢酸ビニルなどのビニルエステル系単量体、不飽和ジカルボン酸又はそのエステルなど)との共重合体など]、酢酸ビニル系樹脂[ポリ酢酸ビニル、酢酸ビニルと他の共重合性単量体(オレフィン系単量体、(メタ)アクリル酸エステル、不飽和ジカルボン酸又はそのエステルなど)との共重合体など]、スチレン系樹脂[例えば、スチレン-(メタ)アクリル酸エステル共重合体、スチレン-(メタ)アクリル酸エステル-(メタ)アクリル酸共重合体など]、ポリエステル系樹脂[低分子量のポリエステル系樹脂、脂肪族ポリエステル樹脂、非晶性ポリエステル樹脂(例えば、非晶性脂肪族又は芳香族ポリエステル)など]、ウレタン系樹脂(熱可塑性ウレタン系樹脂、イソシアネート基含有ポリマーなど)、ゴム状重合体(スチレン-ブタジエン共重合体など)、イミノ基含有ポリマー(ポリエチレンイミンなどのポリアルキレンイミンなど)などが挙げられる。
 これらの接着性樹脂は、単独で又は二種以上組み合わせて使用できる。これらの接着性樹脂は、透明樹脂層の種類に応じて適宜選択できるが、アクリル系樹脂、ポリエステル系樹脂、ウレタン系樹脂などが汎用される。
 第1の易接着層は、後述する高屈折率層の項で例示される硬化性樹脂で形成されていてもよい。例えば、硬化性樹脂のうち、透明樹脂層との接着力が高い硬化性樹脂で構成された層を薄膜として形成することにより、易接着層として用いてもよい。
 第1の易接着層の屈折率は、例えば1.5~1.7、好ましくは1.52~1.69、さらに好ましくは1.55~1.68(特に1.6~1.67)程度である。
 第1の易接着層の厚み(平均厚み)は、例えば30~200nm、好ましくは40~180nm、さらに好ましくは50~150nm程度である。
 [高屈折率層]
 前記第1の易接着層の上には、さらに高屈折率層が積層されている。高屈折率層は、主として、インデックスマッチング機能を有しており、デバイスがパターン化された透明導電層を備えていても、色差によるパターンの視認を抑制するのに寄与する。高屈折率層としては、無機微粒子を含む透明な硬化性組成物を利用できる。
 (硬化性樹脂)
 硬化性組成物は、通常、樹脂成分として、硬化性樹脂を含む。硬化性樹脂(硬化性モノマー又は硬化性樹脂前駆体)としては、熱や活性エネルギー線(紫外線や電子線など)などにより反応する官能基を有する化合物であり、熱や活性エネルギー線などにより硬化又は架橋して樹脂(特に硬化又は架橋樹脂)を形成可能な種々の硬化性化合物が使用できる。前記硬化性樹脂としては、例えば、熱硬化性化合物又は樹脂[エポキシ基、重合性基、イソシアネート基、アルコキシシリル基、シラノール基などを有する低分子量化合物(例えば、エポキシ系樹脂、不飽和ポリエステル系樹脂、ウレタン系樹脂、シリコーン系樹脂など)]、活性光線(紫外線など)により硬化可能な光硬化性化合物(光硬化性モノマー、オリゴマーなどの紫外線硬化性化合物など)などが例示でき、光硬化性化合物は、EB(電子線)硬化性化合物などであってもよい。なお、光硬化性モノマー、オリゴマーや低分子量であってもよい光硬化性樹脂などの光硬化性化合物を、単に「光硬化性樹脂」という場合がある。
 光硬化性化合物には、例えば、単量体、オリゴマー(又は樹脂、特に低分子量樹脂)が含まれる。単量体は、例えば、1つの重合性基を有する単官能単量体と、少なくとも2つの重合性基を有する多官能単量体とに分類できる。
 単官能単量体としては、例えば、(メタ)アクリル酸エステルなどの(メタ)アクリル系単量体、ビニルピロリドンなどのビニル系単量体、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレートなどの橋架環式炭化水素基を有する(メタ)アクリレートなどが挙げられる。
 多官能単量体には、2~8程度の重合性基を有する多官能単量体が含まれ、2官能単量体としては、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレートなどのアルキレングリコールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリオキシテトラメチレングリコールジ(メタ)アクリレートなどの(ポリ)オキシアルキレングリコールジ(メタ)アクリレート;トリシクロデカンジメタノールジ(メタ)アクリレート、アダマンタンジ(メタ)アクリレートなどの橋架環式炭化水素基を有するジ(メタ)アクリレートなどが挙げられる。
 3~8官能単量体としては、例えば、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。
 オリゴマー又は樹脂としては、ビスフェノールA-アルキレンオキサイド付加体の(メタ)アクリレート、エポキシ(メタ)アクリレート(ビスフェノールA型エポキシ(メタ)アクリレート、ノボラック型エポキシ(メタ)アクリレートなど)、ポリエステル(メタ)アクリレート(例えば、脂肪族ポリエステル(メタ)アクリレート、芳香族ポリエステル(メタ)アクリレートなど)、(ポリ)ウレタン(メタ)アクリレート(ポリエステル型ウレタン(メタ)アクリレート、ポリエーテル型ウレタン(メタ)アクリレートなど)、シリコーン(メタ)アクリレートなどが例示できる。これらの(メタ)アクリレートオリゴマー又は樹脂には、スチレン系単量体、ビニルエステル系単量体、無水マレイン酸、マレイン酸、フマル酸などの共重合性単量体が含まれていてもよい。これらの光硬化性化合物は単独で又は二種以上組み合わせて使用できる。
 これらの硬化性樹脂のうち、紫外線硬化性樹脂、例えば、ペンタエリスリトールトリ(メタ)アクリレートに、ジペンタエリスリトールヘキサ(メタ)アクリレートなどの多官能(メタ)アクリレートが好ましい。
 硬化性樹脂の分子量は、例えば5000以下(例えば100~5000)、好ましくは2000以下(例えば200~2000)、さらに好ましくは1000以下(例えば300~1000)程度である。分子量は、ゲルパーミエーションクロマトグラフィ(GPC)において、ポリスチレン換算で測定した重量平均分子量であり、低分子は分子式から算出できる。
 (無機微粒子)
 無機微粒子の粒径はナノメーターサイズであればよく、詳しくは、個数平均一次粒径が1~100nm程度の範囲から選択でき、例えば2~50nm、好ましくは3~40nm、さらに好ましくは5~30nm(特に8~20nm)程度である。無機微粒子の粒径が小さすぎると、光散乱が小さくなり、色差によるパターンの視認を抑制する効果が小さくなる虞があり、大きすぎると、光散乱が大きくなるとともに、透明性も低下する虞がある。
 なお、本発明では、無機微粒子の平均粒径は、粒度分布計、例えば、動的光散乱法に基づき、粒度測定装置(大塚電子(株)製「PAR-III」)を用いて、慣用の方法で測定できる。
 無機微粒子の形状は、特に限定されず、球状、楕円体状、多角体形(多角錘状、正方体状、直方体状など)、板状、棒状、不定形などが挙げられるが、等方的に光を散乱し、視認性を向上できる点から、略球状などの等方形状が好ましい。
 無機微粒子を構成する無機化合物としては、例えば、金属単体、金属酸化物、屈折率を上昇できる効果の点から、金属酸化物が好ましい。
 金属酸化物としては、例えば、周期表第4A族金属酸化物(例えば、酸化チタン、酸化ジルコニウムなど)、第5A族金属酸化物(酸化バナジウムなど)、第6A族金属酸化物(酸化モリブデン、酸化タングステンなど)、第7A族金属酸化物(酸化マンガンなど)、第8族金属酸化物(酸化ニッケル、酸化鉄など)、第1B族金属酸化物(酸化銅など)、第2B族金属酸化物(酸化亜鉛など)、第3B族金属酸化物(酸化アルミニウム、酸化インジウムなど)、第4B族金属酸化物(酸化ケイ素、酸化錫など)、第5B族金属酸化物(酸化アンチモンなど)などが挙げられる。これらの金属酸化物は、単独で又は二種以上組み合わせて使用できる。
 これらの金属酸化物のうち、少ない割合で高屈折率層の屈折率を上昇でき、かつ添加量が増加してもヘイズの上昇を抑制できる点から、酸化チタンや酸化ジルコニウムなどの周期表第4A族金属酸化物が好ましく、酸化ジルコニウムが特に好ましい。
 無機微粒子(特に酸化チタン及び酸化ジルコニウム)は、凝集を抑制する点から、表面処理されていない粒子が好ましい。
 無機微粒子の割合は、硬化性樹脂100重量部に対して、例えば170~700重量部、好ましくは200~500重量部、さらに好ましくは233~500重量部程度である。無機微粒子の割合が少なすぎると、屈折率を向上できず、多すぎると、機械的特性が低下する虞がある。
 (他の添加剤)
 硬化性組成物は、硬化性樹脂の種類に応じて、硬化剤を含んでいてもよい。例えば、熱硬化性樹脂では、アミン類、多価カルボン酸類などの硬化剤を含んでいてもよく、光硬化性樹脂では光重合開始剤を含んでいてもよい。光重合開始剤としては、慣用の成分、例えば、アセトフェノン類又はプロピオフェノン類、ベンジル類、ベンゾイン類、ベンゾフェノン類、チオキサントン類、アシルホスフィンオキシド類などが例示できる。光硬化剤などの硬化剤の含有量は、硬化性樹脂100重量部に対して0.1~20重量部、好ましくは0.5~10重量部、さらに好ましくは1~8重量部(特に1~5重量部)程度であり、3~8重量部程度であってもよい。
 さらに、硬化性組成物は硬化促進剤を含んでいてもよい。光硬化性樹脂は、光硬化促進剤、例えば、第三級アミン類(ジアルキルアミノ安息香酸エステルなど)、ホスフィン系光重合促進剤などを含んでいてもよい。硬化促進剤の割合は、硬化性樹脂100重量部に対して、0.001~50重量部、好ましくは0.005~30重量部、さらに好ましくは0.01~10重量部程度であってもよい。
 硬化性組成物は、透明樹脂層の項で例示された慣用の添加剤を含んでいてもよい。添加剤の割合は、例えば、高屈折率層全体に対して0.01~10重量%(特に0.1~5重量%)程度である。
 (高屈折率層の特性)
 高屈折率層の屈折率は、例えば1.6~1.8、好ましくは1.65~1.78、さらに好ましくは1.7~1.76(特に1.72~1.75)程度である。屈折率が小さすぎると、色差によるパターンの視認を抑制する効果が小さくなる虞があり、大きすぎると、透明性も低下する虞がある。
 高屈折率層の厚み(平均厚み)は、例えば120~2000nm、好ましくは150~1500nm(例えば200~1000nm)、さらに好ましくは300~800nm(特に400~600nm)程度である。高屈折率層が薄すぎると、色差によるパターンの視認が発生し、厚すぎると、デバイスの薄肉化が困難となる上に、透明性が低下する虞がある。
 [透明導電層]
 前記高屈折率層の上には、さらに透明導電層が積層されていてもよい。透明導電層としては、例えば、酸化インジウム-酸化錫系複合酸化物(ITO)、フッ素ドープ酸化錫(FTO)、InO、SnO、ZnOなどの金属酸化物や、金、銀、白金、パラジウムなどの金属で構成された層(特に、ITO膜などの金属酸化物層)で構成されている。このような透明導電層は、慣用の方法、例えば、スパッタリング、蒸着、化学的気相成長法など(通常、スパッタリング)により形成できる。
 透明導電層は、タッチパネルの種類に応じて、通常、アナログ方式では面状に形成され、デジタル方式ではストライプ状に形成される。透明導電層を面状又はストライプ状に形成する方法としては、例えば、ガラス基板の全面に透明導電層を形成した後、エッチングにより面状、ストライプ状又は格子状(ダイヤ又は菱形形状)にパターン化する方法、予めパターン状に形成する方法などが挙げられる。本発明の透明積層フィルムは骨見え現象を有効に抑制できるため、パターン化された透明導電層が好ましい。
 透明導電層の屈折率は、例えば1.8~2.3、好ましくは1.85~2.25、さらに好ましくは1.9~2.2程度である。
 透明導電層の厚み(平均厚み)は、例えば10~60nm、好ましくは15~50nm、さらに好ましくは20~40nm程度である。
 [透明接着層]
 前記透明導電層の上には、さらに透明接着層が積層されていてもよい。透明接着層は、透明バインダー樹脂で形成されていてもよい。透明バインダー樹脂としては、例えば、慣用の接着性樹脂又は粘着性樹脂などが例示できる。
 接着性樹脂としては、例えば、熱可塑性樹脂(ポリオレフィン、環状ポリオレフィン、アクリル樹脂、スチレン系樹脂、酢酸ビニル系樹脂、ポリエステル、ポリアミド、熱可塑性ポリウレタンなど)、熱硬化性樹脂(エポキシ樹脂、フェノール樹脂、ポリウレタン、不飽和ポリエステル、ビニルエステル樹脂、ジアリルフタレート樹脂、多官能(メタ)アクリレート、ウレタン(メタ)アクリレート、シリコーン(メタ)アクリレート、シリコーン樹脂、アミノ樹脂、セルロース誘導体など)などが挙げられる。これらの接着性樹脂は、単独で又は二種以上組み合わせて使用できる。
 粘着性樹脂としては、例えば、テルペン樹脂、ロジン系樹脂、石油樹脂、ゴム系粘着剤、変性ポリオレフィン、アクリル系粘着剤、シリコーン系粘着剤などが挙げられる。これらの粘着性樹脂は、架橋性基(イソシアネート基、ヒドロキシル基、カルボキシル基、アミノ基、エポキシ基、メチロール基、アルコキシシリル基など)を有していてもよい。これらの粘着性樹脂は、単独で又は二種以上組み合わせて使用できる。
 これらの透明バインダー樹脂のうち、光学特性及び取り扱い性に優れる点から、アクリル系粘着剤、シリコーン系粘着剤(特にアクリル系粘着剤)が好ましい。
 アクリル系粘着剤としては、例えば、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレートなどのアクリル酸C2-10アルキルエステルを主成分とするアクリル系共重合体で構成された粘着剤を使用できる。アクリル系共重合体の共重合性モノマーとしては、例えば、(メタ)アクリル系単量体[例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、(メタ)アクリルアミド、N-メチロールアクリルアミドなど]、重合性ニトリル化合物[例えば、(メタ)アクリロニトリルなど]、不飽和ジカルボン酸又はその誘導体(例えば、無水マレイン酸、イタコン酸など)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニルなど)、芳香族ビニル類(例えば、スチレンなど)などが挙げられる。
 シリコーン系粘着剤としては、例えば、シリコーンゴム成分[一官能のRSiO1/2(式中、Rは、メチル基などのアルキル基、フェニル基などのアリール基などを示す。以下、同じ)と四官能のSiOからなるMQレジンなど]及びシリコーンレジン成分(二官能のRSiO単独、又は二官能のRSiOと一官能のRSiO1/2とを組み合わせたオイル状又はガム状成分など)を有機溶媒に溶解した粘着剤などを使用できる。前記シリコーンゴム成分は架橋されていてもよい。
 透明接着層は、前記透明樹脂層の項で例示された慣用の添加剤を、透明樹脂層の項で記載された割合で含んでいてもよい。
 透明接着層の屈折率は、例えば1.3~1.7、好ましくは1.4~1.6、さらに好ましくは1.45~1.55程度である。
 透明接着層の厚み(平均厚み)は、例えば1~100μm、好ましくは2~80μm、さらに好ましくは3~70μm(特に5~50μm)程度である。
 [第2の易接着層]
 前記透明樹脂層の他方の面には、第2の易接着層が積層されている。第2の易接着層は、第1の易接着層で例示された樹脂成分で形成されており、第1の易接着層と同一の樹脂成分であってもよく、異なる樹脂成分であってもよい。第2の易接着層の屈折率は、例えば1.3~1.7、好ましくは1.45~1.65、さらに好ましくは1.55~1.62程度である。第2の易接着層の厚みは第1の易接着層と同一の範囲から選択でき、第1の易接着層と異なっていてもよい。
 [ハードコート層]
 前記第2の易接着層の上には、さらにハードコート層が積層されている。ハードコート層としては、硬化性樹脂を含む透明な硬化性組成物を利用できる。
 (硬化性樹脂)
 ハードコート層に含まれる硬化性樹脂は、第1のハードコート層で例示された硬化性樹脂利用できる。好ましい硬化性樹脂は、短時間で硬化できる光硬化性化合物、例えば、紫外線硬化性化合物(モノマー、オリゴマーや低分子量であってもよい樹脂など)、EB硬化性化合物である。特に、実用的に有利な硬化性樹脂は、紫外線硬化性樹脂である。
 また、ハードコート層の耐擦傷性を向上させるため、硬化性樹脂は、2官能以上(例えば、2~10官能程度)、好ましくは3官能以上(例えば3~8官能程度)の重合性基を有する硬化性樹脂、特に、多官能(メタ)アクリレート、例えば、3官能以上(特に4~8官能)の(メタ)アクリレート(例えば、ジペンタエリスリトールヘキサ(メタ)アクリレートなど)を含むのが好ましい。
 さらに、ハードコート性などの点から、4官能以下(好ましくは2~4官能、さらに好ましくは3~4官能程度)の重合性基を有する硬化性樹脂と、5官能以上(例えば5~10官能、好ましくは5~8官能、さらに好ましくは5~7官能程度)の重合性基を有する硬化性樹脂とを組み合わせるのが好ましい。特に、2~4官能(メタ)アクリレート[特に、ペンタエリスリトールトリ(メタ)アクリレートなどの3~4官能(メタ)アクリレート]と、5~8官能(メタ)アクリレート[特に、ジペンタエリスリトールヘキサ(メタ)アクリレートなどの5~7官能(メタ)アクリレート]とを組み合わせてもよい。
 4官能以下の重合性基を有する硬化性樹脂(例えば2~4官能(メタ)アクリレート)と、5官能以上の重合性基を有する硬化性樹脂(例えば5~10官能(メタ)アクリレート)との重量割合は、前者/後者=99/1~1/99、好ましくは90/10~10/90、さらに好ましくは70/30~30/70(特に60/40~40/60)程度である。本発明では、特定の官能基数の硬化性樹脂をこのような割合で組み合わせることにより、ハードコート性を向上できる。
 (熱可塑性樹脂)
 硬化性組成物には、前記硬化性樹脂に加えて、柔軟性などの機械的特性を向上させるために、熱可塑性樹脂、例えば、前記硬化性樹脂の硬化反応に関与する反応性基(特にエチレン性不飽和結合などの重合性基)を有さない熱可塑性樹脂を配合してもよい。
 このような熱可塑性樹脂としては、例えば、スチレン系樹脂[ポリスチレン、スチレンと(メタ)アクリル系単量体との共重合体、AS樹脂、スチレン-ブタジエン共重合体など]、(メタ)アクリル系樹脂[ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸エステル-スチレン共重合体(MS樹脂など)、(メタ)アクリル酸-(メタ)アクリル酸メチル-(メタ)アクリル酸イソボルニル共重合体など]、有機酸ビニルエステル系樹脂[エチレン-酢酸ビニル共重合体、酢酸ビニル-塩化ビニル共重合体、酢酸ビニル-(メタ)アクリル酸エステル共重合体、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール樹脂など]、ビニルエーテル系樹脂(ポリビニルメチルエーテル、ポリビニルエチルエーテル、ポリビニルプロピルエーテル、ポリビニルt-ブチルエーテルなど)、ハロゲン含有樹脂[ポリ塩化ビニル、ポリフッ化ビニリデン、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-(メタ)アクリル酸エステル共重合体、塩化ビニリデン-(メタ)アクリル酸エステル共重合体など]、オレフィン系樹脂[ポリエチレン、ポリプロピレンなどのオレフィンの単独重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、脂環式オレフィン系樹脂など]、ポリカーボネート系樹脂(ビスフェノールA型ポリカーボネートなど)、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリC2-4アルキレンアリレート、C2-4アルキレンアリレート系コポリエステルなどの非晶性ポリエステルなど)、ポリアミド系樹脂(ポリアミド46、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12などの脂肪族ポリアミドなど)、熱可塑性ポリウレタン樹脂(ポリエステル型ウレタン系樹脂など)、ポリスルホン系樹脂(ポリエーテルスルホン、ポリスルホンなど)、ポリフェニレンエーテル系樹脂(2,6-キシレノールの重合体など)、セルロース誘導体(セルロースエステルなど)、シリコーン樹脂(ポリジメチルシロキサン、ポリメチルフェニルシロキサンなど)、ゴム又はエラストマー(ポリブタジエン、ポリイソプレンなどのジエン系ゴム、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、アクリルゴム、ウレタンゴム、シリコーンゴムなど)などが例示できる。これらの熱可塑性樹脂は、単独で又は二種以上組み合わせて使用できる。
 これらの熱可塑性樹脂のうち、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体などが汎用されるが、透明性及び耐熱性に優れるとともに、柔軟性などの機械的特性も向上できる点から、セルロース誘導体が好ましい。
 セルロース誘導体には、セルロースエステル類、セルロースエーテル類、セルロースカーバメート類が含まれる。
 セルロースエステル類としては、例えば、脂肪族有機酸エステル(セルロースジアセテート、セルローストリアセテートなどのセルロースアセテート;セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのC2-6アシレートなど)、芳香族有機酸エステル(セルロースフタレート、セルロースベンゾエートなどのC7-12芳香族カルボン酸エステルなど)、無機酸エステル類(例えば、硝酸セルロース、リン酸セルロース、硫酸セルロースなど)などが例示できる。セルロースエステル類は、酢酸・硝酸セルロースエステルなどの混合酸エステルであってもよい。
 セルロースエーテル類としては、例えば、シアノエチルセルロース;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのヒドロキシC2-4アルキルセルロース;メチルセルロース、エチルセルロースなどのC1-6アルキルセルロース;カルボキシメチルセルロース又はその塩、ベンジルセルロース、アセチルアルキルセルロースなどが例示できる。セルロースカーバメート類としては、例えば、セルロースフェニルカーバメートなどが例示できる。
 これらのセルロース誘導体は、単独で又は二種以上組み合わせて使用できる。これらのセルロース誘導体のうち、セルロースエステル類、特に、セルロースジアセテート、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロースC2-6アシレートが好ましい。なかでも、溶剤への溶解性が高く、塗工液の調製がし易い上に、少量の添加によって塗工液の粘度調節が容易にできるとともに、塗工液での微粒子の過度の凝集を抑制し、保存安定性を高めるため、セルロースジアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロースC2-4アシレート(特に、セルロースアセテートプロピオネートなどのセルロースアセテートC3-4アシレート)が好ましい。
 熱可塑性樹脂の割合は、硬化性樹脂100重量部に対して、例えば0.1~30重量部、好ましくは0.1~10重量部(例えば0.3~5重量部)、さらに好ましくは0.5~3重量部(特に0.8~2重量部)程度である。本発明では、熱可塑性樹脂の割合を調整することにより、耐擦傷性と、衝撃吸収性やクッション性などの機械的特性とのバランスを調整でき、この範囲にあると、両者のバランスに優れる。
 (金属酸化物微粒子)
 硬化性組成物には、前記硬化性樹脂及び熱可塑性樹脂に加えて、低屈折率層にAWM性を付与するため、金属酸化物微粒子を含むのが好ましい。ハードコート層に高屈折率層よりも少量の金属酸化物微粒子を配合することにより、対流が発生し樹脂成分中の金属酸化物の分布が均一でなくなることにより樹脂成分が隆起して微小な凹凸構造を形成できる。このような凹凸構造はその形状を追従した低屈折率層の表面において、ウォーターマークの発生を抑制でき、かつギラツキの発生を抑制できる。さらに、この金属酸化物微粒子は、透明性及び耐擦傷性に優れる上に、低屈折率層との密着性も向上できる。
 金属酸化物微粒子としては、前記高屈折率層で例示された金属酸化物微粒子を、単独で又は二種以上組み合わせて使用できる。前記金属酸化物微粒子のうち、アンチモン、錫、亜鉛を含む金属酸化物、例えば、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン含有酸化錫(アンチモンドープ酸化錫)、酸化錫、酸化亜鉛などが好ましく、アンチモン含有酸化錫、酸化アンチモン、酸化錫及び酸化亜鉛からなる群から選択された少なくとも一種で構成された微粒子(特にアンチモン含有酸化錫粒子(ATO粒子))が特に好ましい。
 金属酸化物微粒子は、溶媒中に分散された分散液の形態であってもよい。溶媒としては、例えば、水、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノールなどの低級アルコールなど)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、エステル類(酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、ギ酸メチル、ギ酸エチルなど)、エーテル類(ジエチルエーテル、ジオキサン、テトラヒドロフランなど)、脂肪族炭化水素類(ヘキサンなど)、脂環式炭化水素類(シクロヘキサンなど)、芳香族炭化水素類(ベンゼンなど)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタンなど)、セロソルブ類(メチルセロソルブ、エチルセロソルブなど)、セロソルブアセテート類、アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)などが挙げられる。これらの溶媒は、単独で又は二種以上組み合わせて使用できる。これらの溶媒のうち、エタノールやイソプロパノールなどの低級アルコール(例えば、重量比で、エタノール/イソプロパノール=90/10~50/50(特に80/20~60/40)程度の混合溶媒)が汎用される。分散液中の金属酸化物微粒子の濃度は、例えば0.1~50重量%、好ましくは1~40重量%、さらに好ましくは5~30重量%程度である。金属酸化物微粒子の表面は、これらの溶媒に分散させるために、慣用の表面処理がされていてもよい。
 金属酸化物微粒子の形状は、特に限定されず、球状、楕円体状、多角体形(多角錘状、正方体状、直方体状など)、板状、棒状、不定形などが挙げられるが、表面に均一な凹凸構造を形成する点から、略球状などの等方形状が好ましい。
 金属酸化物微粒子の個数平均一次粒径は、例えば1~50nm、好ましくは1.5~40nm(例えば2~30nm)、さらに好ましくは3~15nm(特に5~10nm)程度である。一次粒径が小さすぎると、ハードコート層の表面に凹凸構造を形成するのが困難となり易く、大きすぎると、微小な凹凸構造を形成するのが困難となる上に、光の波長よりも大きくなり、ギラツキの発生原因となる虞がある。本発明では、粒径の大きな粒子を用いることなく、ナノメータサイズの粒子を用いて特定の条件でハードコート層を製造することにより、微小な凹凸構造を形成できる。
 金属酸化物微粒子の割合は、硬化性樹脂100重量部に対して、例えば0.05~10重量部、好ましくは0.1~5重量部、さらに好ましくは0.15~3重量部(特に0.2~1重量部)程度である。微粒子の割合が少なすぎると、ハードコート層の表面に凹凸構造を形成するのが困難となり易く、多すぎると、微小な凹凸構造を形成するのが困難となる。本発明では、微粒子の割合が少なくても、AWM性を実現できる凹凸構造を形成できる。そのため、本発明の透明積層フィルムを備えた光学表示装置は、低ヘイズであり、ギラツキも抑制できる。
 熱可塑性樹脂の割合は、金属酸化物微粒子100重量部に対して、例えば100~1000重量部、好ましくは150~500重量部、さらに好ましくは200~400重量部程度である。
 (他の添加剤)
 硬化性組成物は、高屈折率層の項で例示された硬化剤、硬化促進剤、透明樹脂層の項で例示された慣用の添加剤を、高屈折率層及び透明樹脂層の項で記載された割合で含んでいてもよい。添加剤の割合は、例えば、ハードコート層全体に対して0.01~10重量%(特に0.1~5重量%)程度である。
 (ハードコート層の特性)
 ハードコート層の屈折率は、例えば1.4~1.6、好ましくは1.45~1.57、さらに好ましくは1.49~1.54程度である。
 ハードコート層の厚み(平均厚み)は、例えば100~2000nm、好ましくは300~1800nm、さらに好ましくは500~1500nm(特に800~1200nm)程度である。ハードコート層が薄すぎると、透明積層フィルムの生産性などが低下し、厚すぎると、デバイスの薄肉化が困難となる虞がある。
 [低屈折率層]
 前記ハードコート層の上には、さらに低屈折率層が積層されている。低屈折率層は、表面での反射率を下げて、外部への出射光の透過率を向上できる。さらに、ハードコート層に金属酸化物微粒子を添加することにより、特定の凹凸構造を形成すると、低屈折率層は、ギラツキを抑制するとともに、AWM性も向上できる。
 低屈折率層は、慣用の低屈折率層、例えば、特開2001-100006号公報、特開2008-58723号公報に記載の低屈折率層などが使用できる。低屈折率層は、通常、低屈折率樹脂や、高屈折率層で例示された硬化性樹脂とフッ素含有化合物又は低屈折率の無機フィラーとの組み合わせなどで構成されている。
 低屈折率樹脂としては、例えば、メチルペンテン樹脂、ジエチレングリコールビス(アリルカーボネート)樹脂、ポリビニリデンフルオライド(PVDF)、ポリビニルフルオライド(PVF)などのフッ素樹脂などが挙げられる。
 また、低屈折率層は、通常、フッ素含有化合物や低屈折率の無機フィラーを含有するのが好ましく、フッ素含有化合物や低屈折率の無機フィラーを用いると、低屈折率層の屈折率を所望に応じて低減できる。
 前記フッ素含有化合物としては、フッ素原子と、熱や活性エネルギー線(紫外線や電子線など)などにより反応する官能基(架橋性基又は重合性基などの硬化性基など)とを有し、熱や活性エネルギー線などにより硬化又は架橋してフッ素含有樹脂(特に硬化又は架橋樹脂)を形成可能なフッ素含有樹脂前駆体が挙げられる。
 このようなフッ素含有樹脂前駆体としては、例えば、フッ素原子含有熱硬化性化合物又は樹脂[フッ素原子とともに、反応性基(エポキシ基、イソシアネート基、カルボキシル基、ヒドロキシル基など)、重合性基(ビニル基、アリル基、(メタ)アクリロイル基など)などを有する低分子量化合物]、活性光線(紫外線など)により硬化可能なフッ素原子含有光硬化性化合物又は樹脂(光硬化性フッ素含有モノマー又はオリゴマーなどの紫外線硬化性化合物など)などが例示できる。
 前記熱硬化性化合物又は樹脂としては、例えば、少なくともフッ素含有モノマーを用いて得られる低分子量樹脂、例えば、構成モノマーとしてのポリオール成分の一部又は全部に代えてフッ素含有ポリオール(特にジオール)を用いて得られるエポキシ系フッ素含有樹脂;同様に、ポリオール及び/又はポリカルボン酸成分の一部又は全部に代えて、フッ素原子含有ポリオール及び/又はフッ素原子含有ポリカルボン酸成分を用いて得られる不飽和ポリエステル系フッ素含有樹脂;ポリオール及び/又はポリイソシアネート成分の一部又は全部に代えて、フッ素原子含有ポリオール及び/又はポリイソシアネート成分を用いて得られるウレタン系フッ素含有樹脂などが例示できる。これらの熱硬化性化合物又は樹脂は、単独で又は二種以上組み合わせて使用できる。
 前記光硬化性化合物には、例えば、単量体、オリゴマー(又は樹脂、特に低分子量樹脂)が含まれ、単量体としては、例えば、前記高屈折率層の項で例示の単官能性単量体及び多官能性単量体に対応するフッ素原子含有単量体[(メタ)アクリル酸のフッ化アルキルエステルなどのフッ素原子含有(メタ)アクリル系単量体、フルオロオレフィン類などのビニル系単量体などの単官能性単量体;1-フルオロ-1,2-ジ(メタ)アクリロイルオキシエチレンなどのフッ化アルキレングリコールのジ(メタ)アクリレートなど]が例示できる。また、オリゴマー又は樹脂としては、前記高屈折率層の項で例示のオリゴマー又は樹脂に対応するフッ素原子含有オリゴマー又は樹脂などが使用できる。これらの光硬化性化合物は単独で又は二種以上組み合わせて使用できる。
 低屈折率層中におけるフッ素含有化合物の割合は、例えば、低屈折率層全体に対して1重量%以上であってもよく、例えば、5~90重量%程度である。
 低屈折率の無機フィラーとしては、例えば、前記特開2001-100006号公報に記載のフィラーなどが使用できるが、シリカやフッ化マグネシウムなどの低屈折率のフィラー、特にシリカが好ましい。シリカは、特開2001-233611号公報、特開2003-192994号公報などに記載されている中空シリカであってもよい。中空シリカは、透過率の向上効果が大きいだけでなく、AWM性の向上効果も優れている。
 無機フィラーの個数平均一次粒径は100nm以下、好ましくは80nm以下(例えば10~80nm)、さらに好ましくは20~70nm程度である。
 低屈折率層中における低屈折率の無機フィラーの割合は、例えば、低屈折率層全体に対して1重量%以上であってもよく、例えば5~90重量%程度である。また、低屈折率の無機フィラーは、カップリング剤(チタンカップリング剤、シランカップリング剤)により表面改質されていてもよい。さらに、低屈折率層は、塗膜強度を向上させるために、他の無機フィラーを含んでいてもよい。
 低屈折率層は、AWM性を向上できる点から、表面に微細な凹凸構造を有しているのが好ましい。低屈折率層の凹凸構造は、通常、前記ハードコート層の凹凸構造を追従することにより形成される。
 詳しくは、低屈折率層は、表面に比較的小さい凹凸構造を有しているのが好ましく、測定エリア10μm×10μmで算出した算術平均粗さRa1が0.7nm以上5nm未満(例えば0.75nm以上2nm未満)であり、特に1.5nm未満の微小な凹凸構造であっても、AWM性を発現でき、好ましくは0.8nm以上1.5nm未満、さらに好ましくは0.85~1.4nm(特に0.9~1.2nm)程度であってもよい。Ra1が小さすぎると、AWM性が低下し、大きすぎると、高精細ディスプレイでギラツキが発生し易い。
 低屈折率層は、前記微細な凹凸構造に加えて、より大きな凹凸構造(うねり)も有しており、測定エリア500μm×500μmで算出した算術平均粗さRa2が10~50nm(例えば11~45nm)であり、特に30nm以下の微小な凹凸構造であっても、AWM性を発現でき、好ましくは10~30nm、さらに好ましくは11~20nm程度であってもよい。Ra2が小さすぎると、AWM性が低下し、大きすぎると、高精細ディスプレイでギラツキが発生し易い。微細な凹凸構造である前記Ra1に加えて、うねり構造であるRa2をこのような範囲で有することにより、AWM性とギラツキの抑制とを両立できる。
 凹凸の平均間隔Smは、例えば10~300μmであり、好ましくは20~250μm、さらに好ましくは50~200μm程度である。Smが小さすぎると、高精細ディスプレイの画素のサイズに近似するため、干渉してギラツキが発生する虞がある。一方、Smが大きすぎると、AWM性が低下する上に、ギラツキも発生する虞がある。
 凹凸構造の算術平均傾斜Δaは、例えば0.01~1°、好ましくは0.02~0.5°、さらに好ましくは0.03~0.1°程度である。Δaが大きすぎると、高精細ディスプレイでギラツキが発生し易く、小さすぎると、AWM性が低下する虞がある。
 凹凸構造の十点平均粗さRzは10~200nm、好ましくは30~150nm、さらに好ましくは50~100nm程度である。Rzが小さすぎると、AWM性が低下し、大きすぎると、高精細ディスプレイでギラツキが発生し易い。
 なお、本発明では、これらのRa,Sm,Δa及びRzは、JIS B0601に準拠した方法で測定できる。
 低屈折率層は、表面の濡れ性にも優れており、水接触角が80°以下(例えば65~80°)であり、例えば69~80°、好ましくは70~75°、さらに好ましくは71~74°程度である。水接触角が低すぎると、滑り性が低下するため、耐擦傷性が低下する虞がある。なお、本発明では、水接触角は、自動・動的接触角計を用いて測定でき、詳細には、後述する実施例に記載の方法で測定できる。
 低屈折率層の屈折率は、例えば1.2~1.5、好ましくは1.25~1.45、さらに好ましくは1.3~1.4程度である。
 低屈折率層の厚み(平均厚み)は、例えば10~200nm、好ましくは30~180nm、さらに好ましくは50~150nm(特に80~120nm)程度である。
 [透明積層フィルム及びその製造方法]
 本発明の透明積層フィルムは、光学特性に優れており、下記式で表される透明導電層の有無による反射色差ΔEが10以下であってもよく、例えば0.1~10、好ましくは0.5~9、さらに好ましくは1~5(特に2~4)程度である。ΔEが高すぎると、色差によるパターンの視認を抑制する効果が小さくなる虞がある。
  ΔE=((L -L )+(a -a )+(b -b ))1/2
(式中、L ,a ,b は透明導電層積層部分の10°反射L,a,bであり、L ,a ,b は透明導電層非積層部分の10°反射L,a,bである)。
 なお、L ,L ,a ,b 、a ,b は、積分球反射強度測定装置((株)日立ハイテクノロジーズ製「U-3300」)を用いて測定できる。
 本発明の透明積層フィルム(透明導電層を有さない積層フィルム)は、厚み100μmにおいて、JIS K7361に準拠した全光線透過率が80%以上(特に90%以上)であってもよく、例えば80~100%、好ましくは85~99%、さらに好ましくは90~95%程度である。
 本発明の透明積層フィルム(透明導電層を有さない積層フィルム)は、ヘイズも小さく、厚み100μmにおいて、JIS K7136に準拠したヘイズ率が、例えば0.05~1%、好ましくは0.1~0.8%(例えば0.12~0.5%)、さらに好ましくは0.13~0.3%(特に0.15~0.25%)程度である。本発明では、このような低いヘイズ値を有することにより、高精細ディスプレイでもギラツキを抑制でき、視認性を向上できる。
 本発明の透明積層フィルムは、さらに他の光学要素(例えば、ガラス基板、偏光板、位相差板、導光板などの光路内に配設される種々の光学要素)と組み合わせてもよい。
 本発明の透明積層フィルムは、例えば、易接着層を有する透明樹脂層の上に各層を積層することにより積層することにより製造できる。
 詳しくは、ハードコート層は、透明樹脂層の一方の面(第2の易接着層の上)に、硬化性組成物を塗布する塗布工程、塗布した硬化性組成物を乾燥後、活性エネルギー線を照射して硬化する硬化工程を経て製造できる。
 塗布工程において、硬化性組成物は、通常、硬化性樹脂と熱可塑性樹脂と金属酸化物微粒子と溶媒とを含む混合液(特に均一溶液などの液状組成物)で構成されている。好ましい態様では、前記混合液として、光硬化性樹脂と、熱可塑性樹脂と、金属酸化物微粒子と、光重合開始剤と、前記光硬化性樹脂及び熱可塑性樹脂を可溶な溶媒とを含む組成物が使用される。
 溶媒は、前記硬化性樹脂及び熱可塑性樹脂の種類及び溶解性に応じて選択でき、少なくとも固形分(硬化性樹脂、熱可塑性樹脂、反応開始剤、その他添加剤)を均一に溶解できる溶媒であればよい。そのような溶媒としては、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、エーテル類(ジオキサン、テトラヒドロフランなど)、脂肪族炭化水素類(ヘキサンなど)、脂環式炭化水素類(シクロヘキサンなど)、芳香族炭化水素類(トルエン、キシレンなど)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタンなど)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチルなど)、水、アルコール類(エタノール、イソプロパノール、ブタノール、シクロヘキサノールなど)、セロソルブ類(メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル(1-メトキシ-2-プロパノール)など)、セロソルブアセテート類、スルホキシド類(ジメチルスルホキシドなど)、アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)などが例示できる。これらの溶媒は、単独で又は二種以上組み合わせて使用でき、混合溶媒であってもよい。これらの溶媒のうち、メチルエチルケトンやシクロヘキサノンなどのケトン類、ブタノールや1-メトキシ-2-プロパノールなどのアルコール類が好ましく、これらを混合してもよい。例えば、前記ケトン類と前記アルコール類とを、前者/後者=90/10~10/90、好ましくは80/20~40/60、さらに好ましくは70/30~50/50程度の割合(重量比)で混合してもよい。さらに、メチルエチルケトンなどのアルカンケトン類と、シクロヘキサノンなどのシクロアルカンケトン類とを、前者/後者=95/5~50/50(特に90/10~70/30)程度の割合(重量比)で混合してもよい。また、ブタノールなどのアルカノールと、1-メトキシ-2-プロパノールなどのセロソルブ類とを、前者/後者=5/95~50/50(特に10/90~30/70)程度の割合(重量比)で混合してもよい。本発明では、溶媒を適宜組み合わせることにより、金属酸化物微粒子の凝集の程度を制御してもよい。本発明では、特に、このような割合で溶媒を組み合わせることにより、ハードコート層の表面に、微細な凹凸構造とうねり構造とを有する表面構造を形成できる。
 混合液中の溶質(硬化性樹脂、熱可塑性樹脂、金属酸化物微粒子、反応開始剤、その他添加剤)の濃度は、流延性やコーティング性などを損なわない範囲で選択でき、例えば1~80重量%、好ましくは5~60重量%、さらに好ましくは15~40重量%(特に20~40重量%)程度である。
 塗布方法としては、慣用の方法、例えば、ロールコーター、エアナイフコーター、ブレードコーター、ロッドコーター、リバースコーター、バーコーター、コンマコーター、ディップ・スクイズコーター、ダイコーター、グラビアコーター、マイクログラビアコーター、シルクスクリーンコーター法、ディップ法、スプレー法、スピナー法などが挙げられる。これらの方法のうち、バーコーター法やグラビアコーター法などが汎用される。なお、必要であれば、塗布液は複数回に亘り塗布してもよい。
 塗布工程では、さらに前記混合液を流延又は塗布した後、溶媒を蒸発させる。溶媒の蒸発は、通常、溶媒の沸点に応じて、例えば40~150℃、好ましくは50~120℃、さらに好ましくは60~100℃程度の温度で行ってもよい。
 硬化工程では、塗布した硬化性組成物を、活性光線(紫外線、電子線など)や熱などにより最終的に硬化し、ハードコート層を形成する。硬化性樹脂の硬化は、硬化性樹脂の種類に応じて、加熱、光照射などを組合せてもよい。
 加熱温度は、適当な範囲、例えば50~150℃程度から選択できる。光照射は、光硬化成分などの種類に応じて選択でき、通常、紫外線、電子線などが利用できる。汎用的な露光源は、通常、紫外線照射装置である。
 光源としては、例えば、紫外線の場合は、Deep UV ランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、ハロゲンランプ、レーザー光源(ヘリウム-カドミウムレーザー、エキシマレーザーなどの光源)などを用いることができる。照射光量(照射エネルギー)は、塗膜の厚みにより異なり10~10000mJ/cm(例えば50~1000mJ/cm)程度の範囲から選択でき、例えば10~5000mJ/cm、好ましくは30~3000mJ/cm、さらに好ましくは50~1000mJ/cm程度であってもよい。
 なお、光照射は、必要であれば、不活性ガス雰囲気中で行ってもよい。特に、光硬化を利用した場合、硬化性樹脂を硬化させることにより直ちに固定化できるだけでなく、透明樹脂層の内部から熱によりオリゴマーなどの低分子成分が析出することも抑制できる。
 高屈折率層を形成する場合や、ハードコート層の上に低屈折率層を形成する場合も、通常、ハードコート層と同様の方法で、塗工液を塗布又は流延した後、活性光線や熱などを用いて硬化することにより形成できる。易接着層や透明接着層の形成方法も、慣用の方法を利用でき、前記ハードコート層と同様の方法で、塗工液を塗布又は流延する方法などを利用できる。
 本発明では、層間の密着性を向上させるために、各層を表面処理に供してもよい。表面処理としては、慣用の表面処理、例えば、コロナ放電処理、火炎処理、プラズマ処理、オゾンや紫外線照射処理などが挙げられる。
 透明導電層は、金属又は金属化合物を含む薄膜を形成可能な方法であれば、特に限定されず、慣用の成膜方法を利用して形成できる。成膜方法としては、例えば、物理的気相成長(PVD)法[例えば、真空蒸着法、フラッシュ蒸着法、電子ビーム蒸着法、イオンビーム蒸着法、イオンプレーティング法(例えば、HCD法、エレクトロンビームRF法、アーク放電法など)、スパッタリング法(例えば、直流放電法、高周波(RF)放電法、マグネトロン法など)、分子線エピタキシー法、レーザーアブレーション法など]、化学的気相成長(CVD)法[例えば、熱CVD法、プラズマCVD法、MOCVD法(有機金属気相成長法)、光CVD法など]、イオンビームミキシング法、イオン注入法などが例示できる。これらの成膜方法のうち、真空蒸着法、イオンプレーティング法、スパッタリング法などの物理的気相成長法、化学的気相成長法などが汎用され、スパッタリング法、プラズマCVD法(特にスパッタリング法)が好ましい。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例及び比較例で得られた透明積層フィルムを以下の項目で評価した。
 [各層の平均厚み]
 各層の平均厚みは、瞬間マルチ測光システム(大塚電子(株)製「MCPD-3700」を用いて測定した。
 [屈折率]
 JIS K7142に準拠して、屈折率計(メトリコン社製「Metriconモデル2010プリズムカプラー」を用いて、407nm、633nm(He-Neレーザー)、826nmの条件で各層の屈折率を測定した。
 [全光線透過率及びヘイズ]
 ヘイズメーター(日本電色(株)製、商品名「NDH-5000W」)を用いて、JIS K7361に準拠して、全光線透過率を測定し、JIS K7136に準拠して、ヘイズを測定した。
 [反射色差ΔE]
 反射色差ΔEは、積分球反射強度測定装置((株)日立ハイテクノロジーズ製「U-3300」)を用いて測定したLab値に基づいて算出した。
 [反射率]
 透明積層フィルムの高屈折率層側に黒フィルムを貼り合わせ、積分球反射強度測定装置((株)日立ハイテクノロジーズ製「U-3300」)を用いて、積分反射率(視感度換算)を測定した。
 [ギラツキの評価]
 表示面におけるギラツキの判定は、厚み3mmの透明ガラス板に実施例及び比較例で得られた透明積層フィルムを、透明積層フィルムの粘着層を介して貼り、5インチサイズのLCDモニター(画素数1920×1080、解像度440ppi)上に、透明積層フィルム面とモニターとが対向するように載置し、モニターを緑表示としてモニター正面から目視で観察したときのギラツキを以下の基準で評価した。
  ◎:ギラツキが感じられない
  ○:ギラツキが僅かに感じられる
  △:ギラツキが感じられる
  ×:強いギラツキが感じられる。
 [アンチウォーターマーク(AWM)性]
 実施例及び比較例で得られた透明積層フィルムの粘着層を介して0.7mmの透明ガラス板を前記透明積層フィルムに貼り合わせた。次に、外周に1cm幅で0.2mmのギャップを設けた10インチサイズ偏光板を前記透明積層フィルムの低屈折率層(第2のハードコート層)と対向させて重ね合わせた。最後に、前記透明ガラス板の中心部を20N/cmの荷重で10秒間押し、離して10秒後の状態を以下の基準で評価した。
  ◎:透明積層フィルムと透明ガラス板とが密着していない
  ○:透明積層フィルムと透明ガラス板とが僅かな部分で密着している
  ×:両者の全体が密着している。
 [低屈折率層側表面の水接触角]
 自動・動的接触角計(協和界面科学(株)製「型式DCA-UZ」)を使用し、低屈折率層側表面に対し、約3μLの各液の接触角を5点測定して平均した。
 [算術平均粗さRa1]
 JIS B0601に準拠して、実施例及び比較例で得られた透明積層フィルムの粘着層側から、透明積層フィルムの低屈折率層側(第2のハードコート層側)の表面(凹凸面)の算術平均粗さを以下の手順で測定した。すなわち、走査プローブ顕微鏡(エスアイアイ・ナノテクノロジー社製)を用い、プローブとしてシリコンカンチレバーを使用し、測定モードをTappingモードとし、測定エリアを10μm×10μmとして画像の取り込みを行った。得られた画像について、前記走査プローブ顕微鏡に付属の解析ソフトウェアを用いて、うねりを除去するための加増処理としてFlaatten処理(0次)を1回、及びPlanefit処理(XY)を1回行った後、算術平均粗さRa1を算出した。
 [算術平均粗さRa2]
 JIS B0601に準拠して、非接触表面形状測定システム((株)菱化システム製「VertScan2.0」)を用いて、測定エリアを500μm×500μmとして算術平均粗さRa2を測定した。
 [塗工液]
 (ハードコート層塗工液の製造例1:HC-1a又はHC-2a)
 ジペンタエリスリトールヘキサアクリレート(ダイセル・オルネクス(株)製「DPHA」)50重量部、ペンタエリスリトールトリアクリレート(ダイセル・オルネクス(株)製「PETRA」)50重量部、セルロースアセテートプロピオネート(イーストマン社製「CAP」)1.2重量部を、メチルエチルケトン(MEK)131重量部、1-メトキシ-2-プロパノール(MMPG)65重量部、1-ブタノール(BuOH)22重量部及びシクロヘキサノン24重量部の混合溶媒に溶解した。この溶液に、光重合開始剤(BASFジャパン(株)製「イルガキュア184」)2重量部及び光重合開始剤(BASFジャパン(株)製「イルガキュア907」)1重量部を加えて溶解した。さらに、この溶液に、ATO粒子分散液(日揮触媒化成(株)製「ELCOM SH-1212ATV」、一次粒径8nm、20重量%のアルコール(エタノール/イソプロパノール=80/20(重量比)の混合溶媒)分散液)1.5重量部を加えて、1時間攪拌し、ハードコート層塗工液:HC-1a(又はHC-2a)を調製した。
 (ハードコート層塗工液の製造例2:HC-1b又はHC-2b)
 ATO粒子分散液の添加量を0.5重量部に変更する以外は製造例1と同様にして、ハードコート層塗工液:HC-1b(又はHC-2b)を調製した。
 (ハードコート層塗工液の製造例3:HC-1c又はHC-2c)
 ATO粒子分散液1.5重量部の代わりにアクリル粒子分散液(積水化学工業(株)製「K-001」、固形分20重量%)1.5重量部を用いる以外は製造例1と同様にして、ハードコート層塗工液:HC-1c(又はHC-2c)を調製した。
 (ハードコート層塗工液の製造例4:HC-1d又はHC-2d)
 ATO粒子分散液の添加量を20重量部に変更する以外は製造例1と同様にして、ハードコート層塗工液:HC-1d(又はHC-2d)を調製した。
 (高屈折率層塗工液:IM層)
 光硬化性樹脂含有コート剤(東洋インキ(株)製「LiodurasTYZ」、ナノメータサイズの酸化ジルコニウム微粒子含有)
 (低屈折率層塗工液:LR層)
 市販の中空シリカ微粒子分散液(日揮触媒化成(株)製、「ELCOM P-5063」、固形分3重量%)を用いた。
 なお、以下の比較例及び実施例において、コート液の濃度を調整することにより高屈折率層の厚みを調整した。
 比較例1
 透明樹脂層として、PETフィルム(東レ(株)製「UH13」、易接着層を備えたPETフィルム、厚み50μm)を用い、このフィルムの一方の面に、HC-1a層塗工液をバーコーター♯8を用いて塗工した後、80℃で1分間乾燥した。塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、HC-1a層を形成した。得られた透明積層フィルムにおけるHC-1a層の厚みは1.0μmであった。
 さらに、PETフィルムの他方の面に、HC-2a層塗工液をバーコーター♯8を用いて塗工した後、80℃で1分間乾燥した。塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、HC-2a層を形成し、透明積層フィルムを得た。得られた透明積層フィルムにおけるHC-2a層の厚みは1.0μmであった。
 比較例2
 比較例1で得られた透明積層フィルムのHC-2a層の上に、LR層塗工液をバーコーター♯4を用いて塗工し、120℃で1分間乾燥した。その後、塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、低屈折率層を形成した。得られた透明積層フィルムにおけるLR層の厚みは100nmであった。
 比較例3
 透明樹脂層として、PETフィルム(東レ(株)製、易接着層を備えたPETフィルム、厚み50μm)を用い、このフィルムの一方の面に、IM層塗工液をバーコーター♯5を用いて塗工した後、80℃で2分間乾燥した。塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、IM層を形成し、透明積層フィルムを得た。得られた透明積層フィルムにおけるIM層の厚みは0.9μmであった。
 実施例1
 透明樹脂層として、PETフィルム(東レ(株)製、易接着層を備えたPETフィルム、厚み50μm)を用い、このフィルムの一方の面に、IM層塗工液をバーコーター♯5を用いて塗工した後、80℃で2分間乾燥した。塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、IM層を形成し、透明積層フィルムを得た。得られた透明積層フィルムにおけるIM層の厚みは0.5μmであった。
 また、PETフィルムの他方の面に、HC-2a層塗工液をバーコーター♯8を用いて塗工した後、80℃で1分間乾燥した。塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、HC-2a層を形成し、透明積層フィルムを得た。得られた透明積層フィルムにおけるHC-2a層の厚みは1.0μmであった。
 さらに、得られた透明積層フィルムのHC-2a層の上に、LR層塗工液をバーコーター♯4を用いて塗工し、80℃で1分間乾燥した。その後、塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、低屈折率層を形成した。得られた透明積層フィルムにおけるLR層の厚みは100nmであった。
 実施例2
 IM層の厚みを0.7μmとする以外は実施例1と同様にして透明積層フィルムを得た。
 実施例3
 IM層の厚みを0.9μmとする以外は実施例1と同様にして透明積層フィルムを得た。
 実施例4
 IM層の屈折率を1.70とする以外は実施例1と同様にして透明積層フィルムを得た。
 比較例4
 透明樹脂層として、(東レ(株)製、易接着層を備えたPETフィルム、厚み50μm)を用い、このフィルムの一方の面に、HC-1b層塗工液をバーコーター♯8を用いて塗工した後、80℃で1分間乾燥した。塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、HC-1b層を形成した。得られた透明積層フィルムにおけるHC-1b層の厚みは1.0μmであった。
 さらに、PETフィルムの他方の面に、HC-2b層塗工液をバーコーター♯8を用いて塗工した後、80℃で1分間乾燥した。塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、HC-2b層を形成し、透明積層フィルムを得た。得られた透明積層フィルムにおけるHC-2b層の厚みは1.0μmであった。
 比較例5
 HC-1b層及びHC-2b層の代わりにHC-1c層及びHC-2c層を用いる以外は比較例4と同様にして透明積層フィルムを得た。
 比較例6
 比較例5で得られた透明積層フィルムのHC-2c層の上に、LR層塗工液をバーコーター♯4を用いて塗工し、120℃で1分間乾燥した。その後、塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、低屈折率層を形成した。得られた透明積層フィルムにおけるLR層の厚みは100nmであった。
 比較例7
 透明樹脂層として、PETフィルム(東レ(株)製、易接着層を備えたPETフィルム、厚み50μm)を用い、このフィルムの一方の面に、HC-1d層塗工液をバーコーター♯8を用いて塗工した後、80℃で1分間乾燥した。塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、HC-1d層を形成した。得られた透明積層フィルムにおけるHC-1d層の厚みは1.0μmであった。
 さらに、PETフィルムの他方の面に、HC-2d層塗工液をバーコーター♯8を用いて塗工した後、80℃で1分間乾燥した。塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、HC-2d層を形成し、透明積層フィルムを得た。得られた透明積層フィルムにおけるHC-2d層の厚みは1.0μmであった。
 得られた透明積層フィルムのHC-2d層の上に、LR層塗工液をバーコーター♯4を用いて塗工し、120℃で1分間乾燥した。その後、塗工フィルムを紫外線照射装置(ウシオ電機(株)製、高圧水銀ランプ、紫外線照射量:500mJ/cm)に通して、紫外線硬化処理を行い、低屈折率層を形成した。得られた透明積層フィルムにおけるLR層の厚みは100nmであった。
 比較例及び実施例で得られた透明積層フィルムの全光線透過率及びヘイズを測定した後、比較例及び実施例で得られた透明積層フィルムのHC-1a~1d層又はIM層の上に、InO及びSnOの複合酸化物(ITO)をスパッタリング処理して透明導電層を形成した後、1Nの塩酸に浸漬することによりITO膜を除去して透明導電層が形成されていない領域を作成した。さらに、ITO膜の上に、粘着層用塗工液(日東電工(株)製「LUCIACS CS9621T」)を貼り付け、厚み25μmの透明接着層を形成した。比較例1~3及び実施例で得られた透明積層フィルムの反射色差ΔEを測定した。得られた結果を表1に示す。さらに、比較例4~7及び実施例で得られた透明積層フィルムの反射率、ギラツキ、AWM性、水接触角、表面粗さRaを測定した。得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、比較例に比べて、実施例の透明積層フィルムは、透明性が高く、かつ色差ΔEも小さい。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、比較例に比べて、実施例の透明積層フィルムは、低ヘイズであり、ギラツキが小さく、AWM性も優れている。
 本発明の透明積層フィルムは、透明導電層をパターン化して利用する各種の光学表示装置に利用でき、例えば、パーソナルコンピューター、テレビ、携帯電話(スマートフォン)、電子ペーパー、遊技機器、モバイル機器、時計、電卓などの電気・電子又は精密機器の表示部において、表示装置(液晶表示装置、プラズマディスプレイ装置、有機又は無機EL表示装置など)と組み合わせて用いられるタッチパネル(抵抗膜方式タッチパネル、静電容量方式タッチパネルなど)に利用できる。特に、優れた視認性から、ITOグリッド方式を採用する投影型静電容量方式タッチパネルに有用である。

Claims (10)

  1.  透明樹脂層と、この透明樹脂層の一方の面に、第1の易接着層、高屈折率層が順次積層され、前記透明樹脂層の他方の面に、第2の易接着層、ハードコート層、低屈折率層が順次積層された透明積層フィルムであって、前記第1及び第2の易接着層が、それぞれ屈折率1.5~1.7及び厚み30~200nmであり、前記高屈折率層が、屈折率1.6~1.8及び厚み120~2000nmであり、かつ前記低屈折率層が、屈折率1.2~1.5及び厚み10~200nmである透明積層フィルム。
  2.  ヘイズが0.05~1%である請求項1記載の透明積層フィルム。
  3.  低屈折率層の表面が、測定エリア10μm×10μmで算出した算術平均粗さRa1が0.7nm以上5nm未満、かつ測定エリア500μm×500μmで算出した算術平均粗さRa2が10~50nmである凹凸構造を有する請求項1又は2記載の透明積層フィルム。
  4.  ハードコート層が、硬化性樹脂、熱可塑性樹脂及び平均一次粒径1~50nmの金属酸化物粒子を含む硬化性組成物の硬化物で形成されている請求項1~3のいずれかに記載の透明積層フィルム。
  5.  高屈折率層の上に、パターン化され、かつ屈折率1.8~2.3及び厚み10~60nmの透明導電層、屈折率1.4~2.3の透明接着層を順次積層した請求項1~4のいずれかに記載の透明積層フィルム。
  6.  下記式で表される透明導電層の有無による反射色差ΔEが10以下である請求項5記載の透明積層フィルム。
      ΔE=((L -L )+(a -a )+(b -b ))1/2
    (式中、L ,a ,b は透明導電層積層部分の10°反射L,a,bであり、L ,a ,b は透明導電層非積層部分の10°反射L,a,bである)。
  7.  全光線透過率が90%以上である請求項1~6のいずれかに記載の透明積層フィルム。
  8.  低屈折率層の表面の水接触角が65~80°である請求項1~7のいずれかに記載の透明積層フィルム。
  9.  高屈折率層が無機微粒子を含む硬化性組成物の硬化物で形成されている請求項1~8のいずれかに記載の透明積層フィルム。
  10.  請求項1~9のいずれかに記載の透明積層フィルムを備えた静電容量方式タッチパネルディスプレイ。
PCT/JP2015/081202 2014-11-19 2015-11-05 透明積層フィルム及びタッチパネルディスプレイ WO2016080201A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014234822A JP2016099730A (ja) 2014-11-19 2014-11-19 透明積層フィルム及びタッチパネルディスプレイ
JP2014-234822 2014-11-19

Publications (1)

Publication Number Publication Date
WO2016080201A1 true WO2016080201A1 (ja) 2016-05-26

Family

ID=56013752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081202 WO2016080201A1 (ja) 2014-11-19 2015-11-05 透明積層フィルム及びタッチパネルディスプレイ

Country Status (3)

Country Link
JP (1) JP2016099730A (ja)
TW (1) TW201622982A (ja)
WO (1) WO2016080201A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097529A (ja) * 2014-11-19 2016-05-30 株式会社ダイセル 透明積層フィルム及びタッチパネルディスプレイ
CN111045546A (zh) * 2019-11-21 2020-04-21 苏州市灵通玻璃制品有限公司 一种智能触摸屏玻璃面板制作工艺
WO2020134854A1 (zh) * 2018-12-25 2020-07-02 华为技术有限公司 一种膜片、终端壳体以及终端
JP2022163121A (ja) * 2018-11-13 2022-10-25 株式会社ダイセル 光学部材、該光学部材を含むレーザーモジュール及びレーザーデバイス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718654B (zh) * 2019-09-04 2021-02-11 郡宏光電股份有限公司 觸控裝置用之導電板
CN111421936B (zh) * 2020-02-28 2023-11-03 江苏晶华新材料科技有限公司 一种ito镀膜用反射率匹配硬化膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334891A (ja) * 2002-03-15 2003-11-25 Kimoto & Co Ltd 透明ハードコートフィルム、透明導電性ハードコートフィルム、このフィルムを用いたタッチパネル、および、このタッチパネルを用いた液晶表示装置
JP2008185956A (ja) * 2007-01-31 2008-08-14 Sumitomo Osaka Cement Co Ltd 反射防止膜および反射防止膜付き透明基材
JP2012118936A (ja) * 2010-12-03 2012-06-21 Dainippon Printing Co Ltd 透明シート付タッチパネルセンサ
JP2013107214A (ja) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd 透明導電積層体
JP2013127546A (ja) * 2011-12-19 2013-06-27 Panasonic Corp 透明電極付き反射防止フィルム
JP2014091277A (ja) * 2012-11-05 2014-05-19 Sekisui Chem Co Ltd 光透過性導電性フィルム及びそれを有する静電容量型タッチパネル
JP5549966B1 (ja) * 2014-03-18 2014-07-16 大日本印刷株式会社 導電性フィルム、およびタッチパネルセンサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334891A (ja) * 2002-03-15 2003-11-25 Kimoto & Co Ltd 透明ハードコートフィルム、透明導電性ハードコートフィルム、このフィルムを用いたタッチパネル、および、このタッチパネルを用いた液晶表示装置
JP2008185956A (ja) * 2007-01-31 2008-08-14 Sumitomo Osaka Cement Co Ltd 反射防止膜および反射防止膜付き透明基材
JP2012118936A (ja) * 2010-12-03 2012-06-21 Dainippon Printing Co Ltd 透明シート付タッチパネルセンサ
JP2013107214A (ja) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd 透明導電積層体
JP2013127546A (ja) * 2011-12-19 2013-06-27 Panasonic Corp 透明電極付き反射防止フィルム
JP2014091277A (ja) * 2012-11-05 2014-05-19 Sekisui Chem Co Ltd 光透過性導電性フィルム及びそれを有する静電容量型タッチパネル
JP5549966B1 (ja) * 2014-03-18 2014-07-16 大日本印刷株式会社 導電性フィルム、およびタッチパネルセンサ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016097529A (ja) * 2014-11-19 2016-05-30 株式会社ダイセル 透明積層フィルム及びタッチパネルディスプレイ
JP2022163121A (ja) * 2018-11-13 2022-10-25 株式会社ダイセル 光学部材、該光学部材を含むレーザーモジュール及びレーザーデバイス
US11862936B2 (en) 2018-11-13 2024-01-02 Daicel Corporation Optical member, laser module including said optical member, and laser device
WO2020134854A1 (zh) * 2018-12-25 2020-07-02 华为技术有限公司 一种膜片、终端壳体以及终端
CN111045546A (zh) * 2019-11-21 2020-04-21 苏州市灵通玻璃制品有限公司 一种智能触摸屏玻璃面板制作工艺
CN111045546B (zh) * 2019-11-21 2023-09-05 苏州市灵通玻璃制品有限公司 一种智能触摸屏玻璃面板制作工艺

Also Published As

Publication number Publication date
JP2016099730A (ja) 2016-05-30
TW201622982A (zh) 2016-07-01

Similar Documents

Publication Publication Date Title
JP6656799B2 (ja) アンチニュートンリング積層体およびそのアンチニュートンリング積層体を用いた静電容量式タッチパネル
TWI500952B (zh) 光學薄膜及其製造方法
JP6313096B2 (ja) 透明積層フィルム及びその製造方法並びにタッチパネル用電極
JP5880762B2 (ja) 光学フィルム及びタッチパネル
WO2016080201A1 (ja) 透明積層フィルム及びタッチパネルディスプレイ
JP5778997B2 (ja) 光学フィルム及びその製造方法
JP6533791B2 (ja) アンチウォーターマークフィルム及びタッチパネルディスプレイ
JP6349235B2 (ja) 透明積層フィルム及びタッチパネルディスプレイ
JP2015108862A (ja) タッチパネル付き表示装置
JP6269304B2 (ja) 貼りつき防止機能を有した全光線透過率向上フィルム。
CN112119331B (zh) 防牛顿环膜以及其制造方法及用途
WO2016051247A1 (ja) アンチ二ュートンリング積層体およびそのアンチ二ュートンリング積層体を用いた静電容量式タッチパネル
TWI794430B (zh) 牛頓環防止薄膜以及其製造方法及用途
JP2005193496A (ja) 防眩フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861849

Country of ref document: EP

Kind code of ref document: A1