WO2016079872A1 - 可変ノズル機構および可変容量型ターボチャージャ - Google Patents

可変ノズル機構および可変容量型ターボチャージャ Download PDF

Info

Publication number
WO2016079872A1
WO2016079872A1 PCT/JP2014/080944 JP2014080944W WO2016079872A1 WO 2016079872 A1 WO2016079872 A1 WO 2016079872A1 JP 2014080944 W JP2014080944 W JP 2014080944W WO 2016079872 A1 WO2016079872 A1 WO 2016079872A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
annular member
nozzle mechanism
exhaust gas
variable nozzle
Prior art date
Application number
PCT/JP2014/080944
Other languages
English (en)
French (fr)
Inventor
永護 加藤
慶吾 坂本
林 慎之
大之 有水
斉顕 清家
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2014/080944 priority Critical patent/WO2016079872A1/ja
Priority to JP2016559773A priority patent/JP6239787B2/ja
Priority to CN201480081563.6A priority patent/CN106605053B/zh
Priority to EP14906614.4A priority patent/EP3173599B1/en
Priority to US15/507,109 priority patent/US20180230851A1/en
Publication of WO2016079872A1 publication Critical patent/WO2016079872A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/171Steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • F05D2300/5021Expansivity
    • F05D2300/50212Expansivity dissimilar
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a variable nozzle mechanism and a variable displacement turbocharger.
  • variable nozzle mechanism of the variable displacement turbocharger adjusts the exhaust gas passage area in the turbine housing to change the flow velocity and pressure of the exhaust gas to the turbine blade to enhance the supercharging effect.
  • variable nozzle mechanism generally comprises a pair of annular plates 12, 14 disposed opposite each other to form an exhaust gas passage 24 and a pair of annular plates 12, 14.
  • a plurality of rotatably supported nozzle vanes 16 are provided, and the passage area of the exhaust gas passage 24 is adjusted by changing the blade angles of the plurality of nozzle vanes 16.
  • Patent No. 5010631 gazette
  • the annular plates 12 and 14 in the variable nozzle mechanism shown in FIG. 5 are exposed to high temperature exhaust gas as the engine is operated, so the exhaust gas is generated by engine start / stop and other load fluctuations.
  • the temperature or the flow rate of the annular plate 12 changes, the temperature distribution in the radial direction of the annular plates 12 and 14 tends to be transiently uneven.
  • the inner peripheral edge of the annular plates 12 and 14 on the side of the exhaust gas passage 24 by the repeated action of the thermal stress (see FIG. 7) caused by such uneven temperature distribution. Fatigue damage is likely to occur in the vicinity.
  • stress is likely to increase from the inner peripheral edge 12a1 of the annular plate 12 to the support hole 12h provided with the support holes 12h for rotatably supporting the nozzle vanes 16, and fatigue damage is caused. It was easy to occur (see Figure 8).
  • Patent Document 1 does not disclose any configuration for suppressing the occurrence of fatigue damage in the vicinity of the inner peripheral edge of the annular plate on the exhaust gas passage side, and fatigue damage occurs in the vicinity of the inner peripheral edge Even the issue of not being disclosed.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof relates to an annular plate forming an exhaust gas passage in a variable nozzle mechanism, and an exhaust gas passage side of the annular plate It is an object of the present invention to provide a variable nozzle mechanism capable of suppressing the occurrence of fatigue damage near the inner peripheral edge of the
  • a variable nozzle mechanism of a variable displacement turbocharger is disposed between an annular first plate and the first plate, and exhausts between the first plate and the first plate.
  • An annular second plate forming a gas passage, a plurality of nozzle vanes rotatably supported between the first plate and the second plate, and an annular member inserted on the inner peripheral side of the first plate
  • the first plate has a surface facing the exhaust gas passage, and a back surface opposite to the surface, and the annular member is a surface (a face facing the exhaust gas passage).
  • a gap is provided which extends along the thickness direction of the.
  • first plate and second plate in the present specification are one of “nozzle mount” and “nozzle plate” described in “embodiments for carrying out the invention”. And the other. Therefore, a form in which the "first plate” corresponds to the “nozzle mount” and the “second plate” corresponds to the nozzle plate, and the “first plate” corresponds to the "nozzle plate” and the “second plate” Both of the forms corresponding to “nozzle mount” are included in the variable nozzle mechanism described in the above (1). Also in the following, unless otherwise stated, the terms “first plate” and “second plate” are used to mean including the above two forms. Moreover, the wording "surface” shall mean “front surface” rather than “surface” unless otherwise stated.
  • the temperature and the flow rate of the exhaust gas change due to start, stop, and other load fluctuations of the engine, and the temperature distribution in the radial direction in the first plate and the annular member transiently Even if it becomes uneven, the thermal stress can be effectively reduced because the first plate and the annular member thermally expand without being restrained on the surface side of both members until the gap is filled. This can suppress the occurrence of fatigue damage near the inner peripheral edge on the surface side of the first plate.
  • the annular member is interference-fit to the first plate on the back surface side of the annular member rather than the gap. Have a tight fit.
  • variable nozzle mechanism it is possible to prevent the annular member from falling off from the first plate with a simple configuration while securing the above-mentioned gap between the first plate and the annular member. .
  • the annular member in the variable nozzle mechanism according to (2), is abutted against the inner peripheral surface of the first plate in the thickness direction of the first plate.
  • the stepped portion is provided, and the tight fitting portion is tightly fitted to the first plate on the back surface side of the annular member with respect to the stepped portion.
  • variable nozzle mechanism it is possible to more reliably prevent the dropout of the annular member from the first plate with a simple configuration.
  • the annular member abuts against the inner circumferential surface of the first plate in the thickness direction of the first plate.
  • the variable nozzle mechanism further includes a biasing member that biases the annular member toward the stepped portion.
  • the annular member can be prevented from coming off from the first plate while securing the above-mentioned gap between the first plate and the annular member.
  • variable nozzle mechanism in the variable nozzle mechanism according to (4), the inner peripheral edge of the back surface of the first plate and the annular member between the first plate and the annular member A second gap is provided extending from the outer peripheral edge of the back surface to the step along the thickness direction of the first plate.
  • the fitting between the first plate and the annular member is fitting with a gap over the entire area in the thickness direction of the first plate. Thermal stress near the inner circumferential surface can be effectively reduced. Therefore, the occurrence of fatigue damage in the vicinity of the inner peripheral surface of the first plate can be effectively suppressed.
  • the stepped portion is provided over the entire circumference of the inner peripheral surface of the first plate.
  • the stepped portion is provided only on a part of the inner peripheral surface of the first plate by providing the stepped portion over the entire circumference of the inner peripheral surface of the first plate. Compared to the case, the thermal stress in the vicinity of the stepped portion is made uniform, and the occurrence of fatigue damage in the vicinity of the stepped portion of the first plate can be suppressed.
  • the first plate and the annular member are formed of stainless steel.
  • variable nozzle mechanism In the variable nozzle mechanism according to the above (1) to (6), the occurrence of fatigue damage in the vicinity of the inner peripheral edge on the surface side of the first plate can be suppressed. Therefore, as described in the above (7), even when the inexpensive stainless steel having a material strength lower than that of the nickel base alloy is used for the first plate and the annular member, near the inner peripheral edge on the surface side of the first plate The occurrence of fatigue damage can be suppressed. Therefore, it is possible to suppress the occurrence of fatigue damage in the vicinity of the inner peripheral edge on the surface side of the first plate, and to suppress the increase in the manufacturing cost of the variable nozzle mechanism.
  • the first plate is a nozzle mount that constitutes a hub sidewall of the exhaust gas passage
  • the second plate The plate is a nozzle plate constituting a shroud side wall of the exhaust gas passage
  • the first plate is provided with a plurality of support holes for rotatably supporting the shaft portions of the plurality of nozzle vanes.
  • the nozzle mount that constitutes the hub side wall of the exhaust gas passage is provided with a support hole for rotatably supporting the nozzle vane, and the inner peripheral edge of the nozzle mount to the support hole is as shown in FIG.
  • the stress was likely to increase and fatigue damage was likely to occur.
  • the variable nozzle mechanism described in (8) by providing the gap, the occurrence of fatigue damage can be effectively suppressed even in a nozzle mount in which such fatigue damage is likely to occur.
  • the linear expansion coefficient of the material forming the annular member is smaller than the linear expansion coefficient of the material forming the first plate .
  • variable nozzle mechanism described in the above (9), even if the temperature of the annular member becomes temporarily higher than the temperature of the nozzle mount with the operation of the engine, the thermal deformation of the annular member and the thermal deformation of the nozzle mount It is possible to suppress the increase in the amount difference and to suppress the increase in the thermal stress. Therefore, the occurrence of fatigue damage near the inner peripheral edge of the nozzle mount can be suppressed.
  • the annular member is formed of a nickel base alloy, and the first plate is formed of stainless steel.
  • the annular member in which the thermal stress is likely to be relatively high is formed of an expensive nickel-based alloy with high material strength, and the nozzle mount in which the thermal stress is unlikely to be relatively high
  • the stainless steel having low strength and low cost, it is possible to efficiently suppress the occurrence of fatigue damage in the vicinity of the inner peripheral edge of the nozzle mount while suppressing an increase in the manufacturing cost of the variable nozzle mechanism.
  • a variable nozzle mechanism of a variable displacement turbocharger is disposed between an annular first plate and the first plate, and exhausts between the first plate and the first plate.
  • An annular second plate forming a gas passage, a plurality of nozzle vanes rotatably supported between the first plate and the second plate, and an annular member inserted on the inner peripheral side of the first plate
  • the first plate is a nozzle mount constituting a hub side wall of the exhaust gas passage
  • the second plate is a nozzle plate constituting a shroud side wall of the exhaust gas passage
  • the first plate Are provided with a plurality of support holes for rotatably supporting the shaft portions of the plurality of nozzle vanes, respectively, and the linear expansion relationship of the material forming the annular member is provided. It is smaller than the linear expansion coefficient of the material forming the first plate.
  • the annular member is formed along with the operation of the engine by forming the annular member with a material having a linear expansion coefficient smaller than the linear expansion coefficient of the material forming the nozzle mount Even if the temperature of the nozzle mount temporarily becomes higher than the temperature of the nozzle mount, it is possible to suppress the increase in the difference between the thermal deformation of the annular member and the thermal deformation of the nozzle mount and to suppress the increase in thermal stress. Therefore, the occurrence of fatigue damage near the inner peripheral edge of the nozzle mount can be suppressed.
  • a variable displacement turbocharger includes a turbine rotor, and a turbine housing that accommodates the turbine rotor and forms a scroll flow passage into which exhaust gas from an engine flows.
  • the variable nozzle mechanism according to any one of 1 to 11, wherein exhaust gas having passed through the scroll flow path is supplied to the turbine rotor via the variable nozzle mechanism.
  • variable displacement turbocharger described in the above (12)
  • the occurrence of fatigue damage in the vicinity of the inner peripheral edge on the surface side of the first plate is suppressed, so maintenance for repair or replacement of the first plate, etc.
  • At least one embodiment of the present invention relates to an annular plate forming an exhaust gas passage in a variable nozzle mechanism, wherein the variable nozzle is capable of suppressing the occurrence of fatigue damage in the vicinity of the inner peripheral edge of the annular plate on the exhaust gas passage side.
  • a mechanism is provided.
  • expressions that indicate that things such as “identical”, “equal” and “homogeneous” are equal states not only represent strictly equal states, but also have tolerances or differences with which the same function can be obtained. It also represents the existing state.
  • expressions representing shapes such as quadrilateral shapes and cylindrical shapes not only represent shapes such as rectangular shapes and cylindrical shapes in a geometrically strict sense, but also uneven portions and chamfers within the range where the same effect can be obtained. The shape including a part etc. shall also be expressed.
  • the expressions “comprising”, “having”, “having”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.
  • FIG. 1 is a view schematically showing a partial cross section along a rotation axis of a variable displacement turbocharger 100 according to an embodiment of the present invention.
  • the variable displacement turbocharger 100 includes a turbine rotor 2 provided coaxially with a compressor (not shown), a turbine casing 4 accommodating the turbine rotor 2, a bearing housing 6 rotatably supporting the turbine rotor 2, and a turbine casing
  • the variable nozzle mechanism 8 is provided between the bearing 4 and the bearing housing 6.
  • the scroll passage 10 is formed in the turbine casing 4, and exhaust gas from an engine (not shown) is supplied to the turbine rotor 2 through the variable nozzle mechanism 8 after passing through the scroll passage 10.
  • the variable nozzle mechanism 8 includes a nozzle mount 12, a nozzle plate 14, a plurality of nozzle vanes 16, a plurality of lever plates 18, a drive ring 19, a plurality of nozzle supports 20, and an annular member 22.
  • the nozzle mount 12 is an annular plate provided on the outer peripheral side of the turbine rotor 2 and configured to rotatably support a plurality of nozzle vanes 16.
  • the nozzle mount 12 is provided with a plurality of support holes 12 h (through holes) for rotatably supporting the shaft portions 16 a of the plurality of nozzle vanes 16.
  • the nozzle plate 14 is an annular plate disposed to face the nozzle mount 12 and is configured to form an exhaust gas passage 24 with the nozzle mount 12.
  • the nozzle plate 14 is provided with a spring seal 25 between the nozzle mount 12 and the turbine housing on the opposite side.
  • the nozzle mount 12 constitutes a hub sidewall 28 of the exhaust gas passage 24, and the nozzle plate 14 constitutes a shroud sidewall 30 of the exhaust gas passage 24.
  • the nozzle mount 12 and the nozzle plate 14 are connected by a nozzle support 20.
  • the plurality of nozzle vanes 16 are disposed between the nozzle mount 12 and the nozzle plate 14 and rotatably supported by the nozzle mount 12.
  • the variable nozzle mechanism 8 is configured to adjust the passage area of the exhaust gas passage 24 by changing the blade angles of the plurality of nozzle vanes 16.
  • the drive ring 19 is rotationally driven by a driving force transmitted from an actuator (not shown).
  • the lever plate 18 engaged with the drive ring 19 rotates the shaft portion 16 a of the nozzle vane 16.
  • the nozzle vane 16 rotates and the blade angle of the nozzle vane 16 changes.
  • the annular member 22 is inserted on the inner peripheral side of the nozzle mount 12 so as to have a minute gap with the outer peripheral end of the turbine rotor 2.
  • the hub side wall 28 of the exhaust gas passage 24 is configured together with the nozzle mount 12.
  • FIG. 2 is a partially enlarged view showing one configuration example of the variable nozzle mechanism shown in FIG.
  • FIG. 3 is a partially enlarged view showing another configuration example of the variable nozzle mechanism shown in FIG.
  • the surface of the nozzle mount 12 facing the exhaust gas passage 24 (the surface facing the nozzle plate 14) is a surface 12 a (herein, Unless stated otherwise, the wording "surface” shall mean “front surface” rather than “surface”, and the surface opposite to the surface 12a shall be the back surface 12b.
  • the nozzle mount 12 and the annular member 22 Between the inner peripheral edge 12a1 of the surface 12a of the nozzle mount 12 and the outer peripheral edge 22a1 of the surface 22a of the annular member 22, a gap extending along the thickness direction of the nozzle mount 12 26 is provided.
  • variable nozzle mechanism 8 the temperature and flow rate of the exhaust gas change due to start and stop of the engine (not shown) and other load fluctuations, and the hub side wall of the exhaust gas passage 24 (nozzle mount 12 and Even if the temperature distribution in the radial direction in the annular member 22) 28 becomes transiently uneven, the nozzle mount 12 and the annular member 22 thermally expand without being restrained to each other until the gap 26 is filled, so thermal stress is effective.
  • both the nozzle mount 12 and the annular member 22 may be formed of a nickel-based alloy, or the annular member 22 which is likely to have a relatively high thermal stress is formed of a nickel-based alloy
  • the nozzle mount 12 whose thermal stress is less likely to be relatively high may be formed of stainless steel.
  • the inner circumferential surface 12 c of the nozzle mount 12 is provided with a stepped portion 12 c 1 over the entire circumference, and on the surface 12 a side of the stepped portion 12 c 1
  • the inner diameter of the nozzle mount 12 is smaller than the inner diameter of the nozzle mount 12 on the back surface 12b side than the stepped portion 12c1.
  • a stepped portion 22c1 is provided over the entire circumference of the outer peripheral surface 22c of the annular member 22, and the outer diameter of the annular member 22 on the surface 22a side of the stepped portion 22c1 is on the back surface 22b side of the stepped portion 22c1. Smaller than the outer diameter of the annular member 22 in FIG.
  • the stepped portion 22c1 of the annular member 22 abuts against the stepped portion 12c1 of the nozzle mount 12 in the thickness direction of the nozzle mount 12, whereby the annular member 22 is positioned in the thickness direction of the nozzle mount 12 and the exhaust gas passage Falling of the annular member 22 to the side 24 is prevented.
  • the annular member 22 has an interference fit portion 32 which is interference-fit to the nozzle mount 12 on the back surface 22 b side of the annular member 22 rather than the gap 26. Thereby, the drop of the annular member 22 from the nozzle mount 12 can be prevented with a simple configuration while securing the gap 26 between the nozzle mount 12 and the annular member 22.
  • the interference fit portion 32 is interference fit with the nozzle mount 12 on the back surface 22 b side of the annular member 22 more than the step 12 c 1. Thereby, drop-off
  • variable nozzle mechanism 8 further includes a biasing member 34 that biases the annular member 22 toward the step 12 c 1.
  • the annular member 22 can be prevented from coming off the nozzle mount 12 while securing the gap 26 between the nozzle mount 12 and the annular member 22.
  • a step 22d1 is provided on the inner peripheral surface 22d of the annular member 22, and the inner diameter of the annular member 22 on the surface 22a side of the step 22d1 is a step The inner diameter of the annular member 22 on the back surface 22b side is smaller than 22d1.
  • the biasing member 34 is configured such that one end is supported by the bearing housing 6 and the other end is in contact with the step 22 d 1 to bias the annular member 22.
  • the annular member 22 can be stably held on the inner peripheral side of the nozzle mount 12.
  • an annular spring plate may be used as the biasing member 34.
  • the annular member 22 may be formed of a material having a linear expansion coefficient smaller than that of the material forming the nozzle mount 12. good.
  • the nozzle mount 12 is formed of stainless steel and the annular member 22 is formed of a nickel-based alloy, the above-described magnitude relation of the linear expansion coefficient holds.
  • the above-mentioned gap 26 shown in FIGS. 2 and 3 is not provided.
  • the annular member 22 by forming the annular member 22 with a material having a linear expansion coefficient smaller than the linear expansion coefficient of the material forming the nozzle mount 12, fatigue near the inner peripheral edge 12a1 of the nozzle mount 12 The occurrence of damage can be suppressed.
  • the linear expansion coefficient of the annular member 22 is made smaller than the linear expansion coefficient of the nozzle mount 12 In some cases, the occurrence of fatigue damage may not be sufficiently suppressed.
  • the size (depth) of the gap 26 in the thickness direction of the nozzle mount 12 is, for example, at least 1/10 of the thickness of the nozzle mount 12 (or the size of the annular member 22 in the thickness direction of the nozzle mount). It may be less than one, preferably more than one half and less than three quarters. Further, the size of the gap 26 in the radial direction of the nozzle mount 12 may be, for example, 10 ⁇ m or more, and preferably 50 ⁇ m or more.
  • the present invention is not limited to the above-described embodiments, and includes the embodiments in which the above-described embodiments are modified, and the embodiments in which these embodiments are appropriately combined.
  • the nozzle mount 12 not only the nozzle mount 12 but also the nozzle plate 14 is exposed to high temperature exhaust gas with the operation of the engine (not shown), so if the temperature or flow rate of the exhaust gas changes due to engine start / stop or other load fluctuation, The temperature distribution in the radial direction of the nozzle plate 14 transiently becomes uneven.
  • the form in which the annular member 22 is inserted on the inner peripheral side of the nozzle plate 14 can suppress the occurrence of fatigue damage in the vicinity of the inner peripheral edge of the nozzle plate 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Abstract

可変容量型ターボチャージャの可変ノズル機構であって、環状の第1プレート(12)と、第1プレート(12)と対向して配置され、第1プレート(12)との間に排気ガス通路(24)を形成する環状の第2プレート(14)と、第1プレート(12)及び第2プレート(14)の間に回動可能に支持された複数のノズルベーン(16)と、第1プレート(12)の内周側に挿入された環状部材(22)とを備え、第1プレート(12)は、排気ガス通路(24)に面する表面(12a)と、表面(12a)と反対側の裏面(12b)とを有し、環状部材(22)は、排気ガス通路(24)に面する表面(22a)と、表面(22a)と反対側の裏面(22b)とを有し、第1プレート(12)と環状部材(22)との間には、第1プレート(12)の表面(12a)の内周縁(12a1)と、環状部材(22)の表面(22a)の外周縁(22a1)との間から、第1プレート(12)の厚さ方向に沿って延在する隙間(26)が設けられる。

Description

可変ノズル機構および可変容量型ターボチャージャ
 本開示は、可変ノズル機構および可変容量型ターボチャージャに関する。
 可変容量型ターボチャージャの可変ノズル機構は、タービンハウジング内の排気ガス通路面積を調節することで、タービンブレードへの排気ガスの流速や圧力を変化させて過給効果を高めるものである。
 図5に示すように、可変ノズル機構は、一般に、排気ガス通路24を形成するように互いに対向して配置された一対の環状のプレート12,14と、一対の環状プレート12,14の間に回動可能に支持された複数のノズルベーン16とを備えており、複数のノズルベーン16の翼角を変化させることにより排気ガス通路24の通路面積を調節するよう構成されている。
 かかる可変ノズル機構を備えたターボチャージャの一例としては、例えば、本出願人によって出願された特許第5010631号公報に開示されている。
特許第5010631号公報
 本発明者の知見によれば、図5に示す可変ノズル機構における環状プレート12,14は、エンジンの運転に伴い高温の排気ガスに晒されるため、エンジンの起動、停止その他の負荷変動によって排気ガスの温度や流量が変化すると、環状プレート12,14の径方向の温度分布が過渡的に不均一になりやすい。例えば、環状プレート12の排気ガス通路24側の内周縁12a1付近では、環状プレート12の排気ガス通路24側の面12aと環状プレート12の内周面12cの二つの面が排気ガスに晒されるため、エンジンの起動時に環状プレート12の他の箇所と比較して温度が速く上昇し、図6に示すように環状プレート12の径方向の温度分布が不均一になりやすい(径方向内側に向かうにつれて温度が高くなりやすい)。
 また、本発明者の知見によれば、このような温度分布の不均一に起因する熱応力(図7参照)が繰り返し作用することにより、環状プレート12,14における排気ガス通路24側の内周縁付近に疲労損傷が発生しやすい。特に、ノズルベーン16を回動可能に支持するための支持穴12hが設けられている環状プレート12の内周縁12a1から支持穴12hにかけては、図7に示すように応力が大きくなりやすく、疲労損傷が発生しやすかった(図8参照)。
 この点、特許文献1には、上記環状プレートの排気ガス通路側の内周縁付近における疲労損傷の発生を抑制するための構成は何ら開示されておらず、該内周縁付近に疲労損傷が発生するという課題すら開示されていない。
 本発明は、上述したような従来の課題に鑑みなされたものであって、その目的とするところは、可変ノズル機構における排気ガス通路を形成する環状プレートに関し、該環状プレートのうち排気ガス通路側の内周縁付近における疲労損傷の発生を抑制可能な可変ノズル機構を提供することである。
 (1)本発明の少なくとも一実施形態に係る可変容量型ターボチャージャの可変ノズル機構は、環状の第1プレートと、前記第1プレートと対向して配置され、前記第1プレートとの間に排気ガス通路を形成する環状の第2プレートと、前記第1プレートおよび前記第2プレートの間に回動可能に支持された複数のノズルベーンと、前記第1プレートの内周側に挿入された環状部材と、を備え、前記第1プレートは、前記排気ガス通路に面する表面と、前記表面と反対側の裏面と、を有し、前記環状部材は、前記排気ガス通路に面する表面(おもてめん)と、前記表面と反対側の裏面と、を有し、前記第1プレートと前記環状部材との間には、前記第1プレートの表面の内周縁と、前記環状部材の表面の外周縁との間から、前記第1プレートの厚さ方向に沿って延在する隙間が設けられる。
 なお、本明細書における「第1プレート」及び「第2プレート」との文言は、特記しない限り、「発明を実施するための形態」に記載する「ノズルマウント」と「ノズルプレート」のうち一方及び他方にそれぞれ対応する。したがって、「第1プレート」が「ノズルマウント」に対応するとともに「第2プレート」がノズルプレート」に対応する形態と、「第1プレート」が「ノズルプレート」に対応するとともに「第2プレート」が「ノズルマウント」に対応する形態の両方が上記(1)に記載の可変ノズル機構に含まれる。以下においても、特記しない限りは上記二つの形態を含む意味で「第1プレート」及び「第2プレート」との文言を用いることとする。また、「表面」との文言は、特記しない限り「ひょうめん(surface)」ではなく「おもてめん(front surface)」を意味することとする。
 上記(1)に記載の可変ノズル機構によれば、エンジンの起動、停止その他の負荷変動によって排気ガスの温度や流量が変化し、第1プレート及び環状部材における径方向の温度分布が過渡的に不均一になっても、上記隙間が埋まるまでは第1プレート及び環状部材が両部材の表面側において互いに拘束せずに熱膨張するので、熱応力を効果的に低減することが可能となる。これにより、第1プレートの表面側の内周縁付近での疲労損傷の発生を抑制することができる。
 (2)幾つかの実施形態では、上記(1)に記載の可変ノズル機構において、前記環状部材は、前記隙間よりも前記環状部材の前記裏面側に、前記第1プレートに対して締まり嵌めされた締嵌部を有する。
 上記(2)に記載の可変ノズル機構によれば、第1プレートと環状部材との間に上記隙間を確保しつつ、第1プレートからの環状部材の脱落を簡易な構成で防止することができる。
 (3)幾つかの実施形態では、上記(2)に記載の可変ノズル機構において、前記第1プレートの内周面には、前記第1プレートの厚さ方向に前記環状部材が突き当たるように構成された段差部が設けられ、前記締嵌部は、前記段差部よりも前記環状部材の前記裏面側にて前記第1プレートに対して締り嵌めされる。
 上記(3)に記載の可変ノズル機構によれば、第1プレートからの環状部材の脱落を簡易な構成でより確実に防止することができる。
 (4)幾つかの実施形態では、上記(1)に記載の可変ノズル機構において、前記第1プレートの内周面には、前記第1プレートの厚さ方向に前記環状部材が突き当たるように構成された段差部が設けられ、前記可変ノズル機構は、前記環状部材を前記段差部に向けて付勢する付勢部材を更に有する。
 上記(4)に記載の可変ノズル機構によれば、第1プレートと環状部材との間に上記隙間を確保しつつ、第1プレートからの環状部材の脱落を防止することができる。
 (5)幾つかの実施形態では、上記(4)に記載の可変ノズル機構において、前記第1プレートと前記環状部材との間には、前記第1プレートの裏面の内周縁と、前記環状部材の裏面の外周縁との間から、前記第1プレートの厚さ方向に沿って、前記段差部まで延在する第2の隙間が設けられる。
 上記(5)に記載の可変ノズル機構によれば、第1プレートと環状部材との嵌め合いが第1プレートの厚さ方向全域に亘って隙間を持った嵌め合いとなるので、第1プレートの内周面付近での熱応力を効果的に低減することができる。したがって、第1プレートの内周面付近での疲労損傷の発生を効果的に抑制することができる。
 (6)幾つかの実施形態では、上記(3)乃至(5)に記載の可変ノズル機構において、前記段差部は、前記第1プレートの内周面の全周に亘って設けられる。
 上記(6)に記載の可変ノズル機構によれば、第1プレートの内周面の全周に亘って段差部を設けることによって、第1プレートの内周面の一部にのみ段差部を設ける場合と比較して、段差部付近の熱応力が均一化され、第1プレートの段差部付近での疲労損傷の発生を抑制することができる。
 (7)幾つかの実施形態では、上記(1)乃至(6)に記載の可変ノズル機構において、前記第1プレート及び前記環状部材はステンレス鋼で形成される。
 上記(1)乃至(6)に記載の可変ノズル機構では、第1プレートの表面側の内周縁付近での疲労損傷の発生を抑制することができる。このため、上記(7)に記載のように、ニッケル基合金よりも材料強度の低く廉価なステンレス鋼を第1プレート及び環状部材に用いた場合でも、第1プレートの表面側の内周縁付近での疲労損傷の発生を抑制することができる。このため、第1プレートの表面側の内周縁付近での疲労損傷の発生を抑制するとともに、可変ノズル機構の製造コストの増大を抑制することができる。
 (8)幾つかの実施形態では、上記(1)乃至(7)に記載の可変ノズル機構において、前記第1プレートは、前記排気ガス通路のハブ側壁を構成するノズルマウントであり、前記第2プレートは、前記排気ガス通路のシュラウド側壁を構成するノズルプレートであり、第1プレートには、前記複数のノズルベーンの軸部をそれぞれ回動可能に支持するための複数の支持穴が設けられている。
 排気ガス通路のハブ側壁を構成するノズルマウントには、ノズルベーンを回動可能に支持するための支持穴が設けられており、このノズルマウントの内周縁から支持穴にかけては、図7に示すように応力が大きくなりやすく、疲労損傷が発生しやすかった。上記(8)に記載の可変ノズル機構によれば、上記隙間を設けたことにより、このような疲労損傷が発生しやすいノズルマウントにおいても該疲労損傷の発生を効果的に抑制することができる。
 (9)幾つかの実施形態では、上記(8)に記載の可変ノズル機構において、前記環状部材を形成する材料の線膨張係数は、前記第1プレートを形成する材料の線膨張係数よりも小さい。
 上記(9)に記載の可変ノズル機構によれば、エンジンの運転に伴って環状部材の温度がノズルマウントの温度より一時的に高くなっても、環状部材の熱変形量とノズルマウントの熱変形量の差の増大を抑制し、熱応力の増大を抑制することができる。したがって、ノズルマウントの内周縁付近での疲労損傷の発生を抑制することができる。
 (10)幾つかの実施形態では、上記(9)に記載の可変ノズル機構において、前記環状部材はニッケル基合金で形成され、前記第1プレートはステンレス鋼で形成される。
 上記(10)に記載の可変ノズル機構によれば、熱応力が比較的高くなりやすい環状部材を材料強度が高く高価なニッケル基合金で形成し、熱応力が比較的高くなりにくいノズルマウントを材料強度が低く廉価なステンレス鋼で形成することにより、可変ノズル機構の製造コストの増大を抑制しつつ、ノズルマウントの内周縁付近での疲労損傷の発生を効率的に抑制することができる。
 (11)本発明の少なくとも一実施形態に係る可変容量型ターボチャージャの可変ノズル機構は、環状の第1プレートと、前記第1プレートと対向して配置され、前記第1プレートとの間に排気ガス通路を形成する環状の第2プレートと、前記第1プレートおよび前記第2プレートの間に回動可能に支持された複数のノズルベーンと、前記第1プレートの内周側に挿入された環状部材と、を備え、前記第1プレートは、前記排気ガス通路のハブ側壁を構成するノズルマウントであり、前記第2プレートは、前記排気ガス通路のシュラウド側壁を構成するノズルプレートであり、第1プレートには、前記複数のノズルベーンの軸部をそれぞれ回転可能に支持するための複数の支持穴が設けられており、前記環状部材を形成する材料の線膨張係数は、前記第1プレートを形成する材料の線膨張係数よりも小さい。
 上記(11)に記載の可変ノズル機構によれば、ノズルマウントを形成する材料の線膨張係数よりも小さな線膨張係数を有する材料で環状部材を形成することにより、エンジンの運転に伴って環状部材の温度がノズルマウントの温度より一時的に高くなっても、環状部材の熱変形量とノズルマウントの熱変形量の差の増大を抑制し、熱応力の増大を抑制することができる。したがって、ノズルマウントの内周縁付近での疲労損傷の発生を抑制することができる。
 (12)本発明の少なくとも一実施形態に係る可変容量型ターボチャージャは、タービンロータと、前記タービンロータを収容し、エンジンからの排気ガスが流入するスクロール流路を形成するタービンハウジングと、請求項1乃至11の何れか1項に記載の可変ノズル機構と、を備え、前記スクロール流路を通過した排気ガスが前記可変ノズル機構を介して前記タービンロータに供給されるよう構成される。
 上記(12)に記載の可変容量型ターボチャージャによれば、第1プレートの表面側の内周縁付近での疲労損傷の発生が抑制されるため、第1プレートの補修や交換等のためのメンテナンスに要する労力や時間を削減することができる。
 本発明の少なくとも一つの実施形態によれば、可変ノズル機構における排気ガス通路を形成する環状プレートに関し、該環状プレートのうち排気ガス通路側の内周縁付近における疲労損傷の発生を抑制可能な可変ノズル機構が提供される。
本発明の一実施形態に係る可変容量型ターボチャージャの回転軸線に沿った一部断面を模式的に示す図である。 図1に示した可変ノズル機構の一構成例を模式的に示す部分拡大図である。 図1に示した可変ノズル機構の一構成例を模式的に示す部分拡大図である。 図1に示した可変ノズル機構の一構成例を模式的に示す部分拡大図である。 従来の可変ノズル機構の構成例を模式的に示す部分拡大図である。 環状プレートの半径座標と温度との関係の一例を示す図である。 環状プレートの半径座標と応力の関係の一例を示す図である。 環状プレートの排気通路側の内周縁付近に疲労損傷が発生した状態を説明するための図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1は、本発明の一実施形態に係る可変容量型ターボチャージャ100の回転軸線に沿った一部断面を模式的に示す図である。
 可変容量型ターボチャージャ100は、不図示のコンプレッサと同軸に設けられたタービンロータ2と、タービンロータ2を収容するタービンケーシング4と、タービンロータ2を回転可能に支持する軸受ハウジング6と、タービンケーシング4と軸受ハウジング6との間に設けられた可変ノズル機構8とを備えている。
 タービンケーシング4には、スクロール流路10が形成されており、不図示のエンジンからの排気ガスは、スクロール流路10を通った後に可変ノズル機構8を介してタービンロータ2に供給される。
 可変ノズル機構8は、ノズルマウント12、ノズルプレート14、複数のノズルベーン16、複数のレバープレート18、ドライブリング19、複数のノズルサポート20、及び環状部材22を備えている。
 ノズルマウント12は、タービンロータ2の外周側に設けられる環状のプレートであり、複数のノズルベーン16を回動可能に支持するよう構成されている。ノズルマウント12には、複数のノズルベーン16の軸部16aをそれぞれ回動可能に支持するための複数の支持穴12h(貫通穴)が設けられている。
 ノズルプレート14は、ノズルマウント12と対向して配置される環状のプレートであり、ノズルマウント12との間に排気ガス通路24を形成するよう構成されている。ノズルプレート14には、ノズルマウント12と反対側においてタービンハウジングとの間にスプリングシール25が設けられている。
 ノズルマウント12は、排気ガス通路24のハブ側壁28を構成しており、ノズルプレート14は、排気ガス通路24のシュラウド側壁30を構成している。ノズルマウント12とノズルプレート14とはノズルサポート20によって連結されている。
 複数のノズルベーン16は、ノズルマウント12とノズルプレート14の間に配置されており、ノズルマウント12に回動可能に支持されている。可変ノズル機構8は、複数のノズルベーン16の翼角を変化させることにより排気ガス通路24の通路面積を調節するよう構成されている。
 斯かる可変ノズル機構8では、不図示のアクチュエータから伝達される駆動力によってドライブリング19が回転駆動される。ドライブリング19が回動すると、ドライブリング19に係合しているレバープレート18がノズルベーン16の軸部16aを回動させ、その結果、ノズルベーン16が回動して該ノズルベーン16の翼角が変化する。
 環状部材22は、タービンロータ2の外周端との間に微小な隙間を有するように、ノズルマウント12の内周側に挿入されている。そして、ノズルマウント12とともに排気ガス通路24のハブ側壁28を構成している。
 図2は、図1に示した可変ノズル機構の一構成例を示す部分拡大図である。図3は、図1に示した可変ノズル機構の他の構成例を示す部分拡大図である。
 幾つかの実施形態では、図2及び図3に示すように、ノズルマウント12のうち、排気ガス通路24に面する面(ノズルプレート14に対向する面)を表面12a(本明細書においては、「表面」との記載は、特記しないかぎり「ひょうめん(surface)」ではなく「おもてめん(front surface)」を意味することとする)とし、表面12aと反対側の面を裏面12bとし、環状部材22のうち、排気ガス通路24に面する面(ノズルプレート14に対向する面)を表面22aとし、表面22aと反対側の面を裏面22bとすると、ノズルマウント12と環状部材22との間には、ノズルマウント12の表面12aの内周縁12a1と、環状部材22の表面22aの外周縁22a1との間から、ノズルマウント12の厚さ方向に沿って延在する隙間26が設けられている。
 図2及び図3に示す可変ノズル機構8によれば、不図示のエンジンの起動、停止その他の負荷変動によって排気ガスの温度や流量が変化し、排気ガス通路24のハブ側壁(ノズルマウント12及び環状部材22)28における径方向の温度分布が過渡的に不均一になっても、隙間26が埋まるまではノズルマウント12及び環状部材22が互いに拘束せずに熱膨張するので、熱応力を効果的に低減することが可能となる。これにより、例えばニッケル基合金((例えばインコネル(商品名))よりも材料強度の低く廉価なステンレス鋼をノズルマウント12及び環状部材22に用いた場合でも、ノズルマウント12の表面12a側の内周縁12a1付近での疲労損傷の発生を抑制することができる。このため、ノズルマウント12の表面12a側の内周縁12a1付近での疲労損傷の発生を抑制するとともに、可変ノズル機構8の製造コストの増大を抑制することができる。
 なお、コスト上の制約が問題なければ、ノズルマウント12及び環状部材22の両方をニッケル基合金で形成してもよいし、熱応力が比較的高くなりやすい環状部材22をニッケル基合金で形成し、熱応力が比較的高くなりにくいノズルマウント12をステンレス鋼で形成してもよい。
 幾つかの実施形態では、例えば図2及び図3に示すように、ノズルマウント12の内周面12cには、段差部12c1が全周に亘って設けられ、段差部12c1よりも表面12a側でのノズルマウント12の内径は、段差部12c1よりも裏面12b側でのノズルマウント12の内径よりも小さい。また、環状部材22の外周面22cには、段差部22c1が全周に亘って設けられ、段差部22c1よりも表面22a側での環状部材22の外径は、段差部22c1よりも裏面22b側での環状部材22の外径よりも小さい。そして、環状部材22の段差部22c1がノズルマウント12の段差部12c1に対してノズルマウント12の厚さ方向に突き当たることにより、ノズルマウント12の厚さ方向に環状部材22が位置決めされ、排気ガス通路24側への環状部材22の脱落が防止される。
 一実施形態では、例えば図2に示すように、環状部材22は、隙間26よりも環状部材22の裏面22b側に、ノズルマウント12に対して締まり嵌めされた締嵌部32を有する。これにより、ノズルマウント12と環状部材22との間に隙間26を確保しつつ、ノズルマウント12からの環状部材22の脱落を簡易な構成で防止することができる。
 一実施形態では、例えば図2に示すように、締嵌部32は、段差部12c1よりも環状部材22の裏面22b側にてノズルマウント12に対して締り嵌めされている。これにより、ノズルマウント12からの環状部材22の脱落を簡易な構成でより確実に防止することができる。
 一実施形態では、例えば図3に示すように、可変ノズル機構8は、環状部材22を段差部12c1に向けて付勢する付勢部材34を更に有する。これにより、ノズルマウント12と環状部材22との間に隙間26を確保しつつ、ノズルマウント12からの環状部材22の脱落を防止することができる。
 一実施形態では、例えば図3に示すように、ノズルマウント12と環状部材22との間には、ノズルマウント12の裏面12bの内周縁12b1と、環状部材22の裏面22bの外周縁22b1との間から、ノズルマウント12の厚さ方向に沿って、段差部12c1まで延在する第2の隙間36が設けられる。これにより、ノズルマウント12と環状部材22との嵌め合いがノズルマウント12の厚さ方向全域に亘って隙間を持った嵌め合いとなるので、図3に示す実施形態よりもさらに熱応力を効果的に低減することができる。したがって、ノズルマウント12の内周面12及びその付近での疲労損傷の発生を効果的に抑制することができる。
 一実施形態では、例えば図3に示すように、環状部材22の内周面22dには、段差部22d1が設けられ、段差部22d1よりも表面22a側での環状部材22の内径は、段差部22d1よりも裏面22b側での環状部材22の内径よりも小さい。そして、付勢部材34は、一端側が軸受ハウジング6に支持され、他端側が段差部22d1に当接して環状部材22を付勢するよう構成されている。これにより、ノズルマウント12の内周側に環状部材22を安定して保持することができる。なお、付勢部材34としては、例えば環状のスプリングプレートを用いても良い。
 幾つかの実施形態では、例えば図2~図4に示す可変ノズル機構8において、ノズルマウント12を形成する材料の線膨張係数よりも小さな線膨張係数を有する材料で環状部材22を形成しても良い。例えば、上述したようにノズルマウント12をステンレス鋼で形成し、環状部材22をニッケル基合金で形成する場合も、線膨張係数についての上記大小関係が成り立つ。
 これにより、不図示のエンジンの運転に伴って環状部材22の温度がノズルマウント12の温度より一時的に高くなっても、環状部材22の熱変形量とノズルマウント12の熱変形量の差の増大を抑制し、熱応力の増大を抑制することができる。したがって、ノズルマウント12の内周縁12a1付近での疲労損傷の発生を抑制することができる。
 なお、図4に示す可変ノズル機構8では、図2及び図3に示した上述の隙間26は設けられていない。このような場合であっても、ノズルマウント12を形成する材料の線膨張係数よりも小さな線膨張係数を有する材料で環状部材22を形成することにより、ノズルマウント12の内周縁12a1付近での疲労損傷の発生を抑制することができる。ただし、不図示のエンジンの運転に伴ってノズルマウント12と環状部材22との温度差が過度に大きくなる場合には、ノズルマウント12の線膨張係数よりも環状部材22の線膨張係数を小さくするのみでは、疲労損傷の発生を十分に抑制できないことがある。
 これに対し、図2及び図3に示す可変ノズル機構8では、ノズルマウント12の厚さ方向や半径方向における隙間26の大きさを適宜設定することにより、疲労損傷の発生を容易に抑制することができる。ノズルマウント12の厚さ方向における隙間26の大きさ(深さ)は、例えば、ノズルマウント12の厚さ(又はノズルマウントの厚さ方向における環状部材22の大きさ)の10分の1以上1未満、好ましくは2分の1以上4分の3未満としてもよい。また、ノズルマウント12の半径方向における隙間26の大きさは、例えば10μm以上としてもよく、好ましくは50μm以上としてもよい。
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 例えば、ノズルマウント12に限らずノズルプレート14も、不図示のエンジンの運転に伴い高温の排気ガスに晒されるため、エンジンの起動、停止その他の負荷変動によって排気ガスの温度や流量が変化すると、ノズルプレート14の径方向の温度分布が過渡的に不均一になる。このため、ノズルマウント12の場合と同様に、ノズルプレート14の内周側に環状部材22が挿入された形態によって、ノズルプレート14の内周縁付近での疲労損傷の発生を抑制することができる。
2 タービンロータ
4 タービンケーシング
6 軸受ハウジング
8 可変ノズル機構
10 スクロール流路
12 ノズルマウント(環状プレート)
 12a 表面
  12a1 内周縁
 12b 裏面
  12b1 内周縁
 12c 内周面
  12c1 段差部
 12h 支持穴
14 ノズルプレート(環状プレート)
16 ノズルベーン
 16a 軸部
18 レバープレート
19 ドライブリング
20 ノズルサポート
22 環状部材
 22a 表面
  22a1 外周縁
 22b 裏面
  22b1 外周縁
 22c 外周面
  22c1 段差部
 22d 内周面
  22d1 段差部
24 排気ガス通路
25 スプリングシール
26 隙間
28 ハブ側壁
30 シュラウド側壁
32 締嵌部
34 付勢部材
36 第2の隙間
100 可変容量型ターボチャージャ

Claims (12)

  1.  可変容量型ターボチャージャの可変ノズル機構であって、
     環状の第1プレートと、
     前記第1プレートと対向して配置され、前記第1プレートとの間に排気ガス通路を形成する環状の第2プレートと、
     前記第1プレートおよび前記第2プレートの間に回動可能に支持された複数のノズルベーンと、
     前記第1プレートの内周側に挿入された環状部材と、
     を備え、
     前記第1プレートは、前記排気ガス通路に面する表面と、前記表面と反対側の裏面と、を有し、
     前記環状部材は、前記排気ガス通路に面する表面と、前記表面と反対側の裏面と、を有し、
     前記第1プレートと前記環状部材との間には、前記第1プレートの表面の内周縁と、前記環状部材の表面の外周縁との間から、前記第1プレートの厚さ方向に沿って延在する隙間が設けられた可変ノズル機構。
  2.  前記環状部材は、前記隙間よりも前記環状部材の前記裏面側に、前記第1プレートに対して締まり嵌めされた締嵌部を有する請求項1に記載の可変ノズル機構。
  3.  前記第1プレートの内周面には、前記第1プレートの厚さ方向に前記環状部材が突き当たるように構成された段差部が設けられ、
     前記締嵌部は、前記段差部よりも前記環状部材の前記裏面側にて前記第1プレートに対して締り嵌めされた請求項2に記載の可変ノズル機構。
  4.  前記第1プレートの内周面には、前記第1プレートの厚さ方向に前記環状部材が突き当たるように構成された段差部が設けられ、
     前記可変ノズル機構は、前記環状部材を前記段差部に向けて付勢する付勢部材を更に有する請求項1に記載の可変ノズル機構。
  5.  前記第1プレートと前記環状部材との間には、前記第1プレートの裏面の内周縁と、前記環状部材の裏面の外周縁との間から、前記第1プレートの厚さ方向に沿って、前記段差部まで延在する第2の隙間が設けられた請求項4に記載の可変ノズル機構。
  6.  前記段差部は、前記第1プレートの内周面の全周に亘って設けられる請求項3乃至5の何れか1項に記載の可変ノズル機構。
  7.  前記第1プレート及び前記環状部材はステンレス鋼で形成された請求項1乃至6の何れか1項に記載の可変ノズル機構。
  8.  前記第1プレートは、前記排気ガス通路のハブ側壁を構成するノズルマウントであり、
     前記第2プレートは、前記排気ガス通路のシュラウド側壁を構成するノズルプレートであり、
     第1プレートには、前記複数のノズルベーンの軸部をそれぞれ回動可能に支持するための複数の支持穴が設けられている請求項1乃至7の何れか1項に記載の可変ノズル機構。
  9.  前記環状部材を形成する材料の線膨張係数は、前記第1プレートを形成する材料の線膨張係数よりも小さい請求項8に記載の可変ノズル機構。
  10.  前記環状部材はニッケル基合金で形成され、前記第1プレートはステンレス鋼で形成された請求項9に記載の可変ノズル機構。
  11.  可変容量型ターボチャージャの可変ノズル機構であって、
     環状の第1プレートと、
     前記第1プレートと対向して配置され、前記第1プレートとの間に排気ガス通路を形成する環状の第2プレートと、
     前記第1プレートおよび前記第2プレートの間に回動可能に支持された複数のノズルベーンと、
     前記第1プレートの内周側に挿入された環状部材と、
     を備え、
     前記第1プレートは、前記排気ガス通路のハブ側壁を構成するノズルマウントであり、
     前記第2プレートは、前記排気ガス通路のシュラウド側壁を構成するノズルプレートであり、
     第1プレートには、前記複数のノズルベーンの軸部をそれぞれ回転可能に支持するための複数の支持穴が設けられており、
     前記環状部材を形成する材料の線膨張係数は、前記第1プレートを形成する材料の線膨張係数よりも小さい可変ノズル機構。
  12.  タービンロータと、
     前記タービンロータを収容し、エンジンからの排気ガスが流入するスクロール流路を形成するタービンハウジングと、
     請求項1乃至11の何れか1項に記載の可変ノズル機構と、
    を備え、
     前記スクロール流路を通過した排気ガスが前記可変ノズル機構を介して前記タービンロータに供給されるよう構成された可変容量型ターボチャージャ。
     
PCT/JP2014/080944 2014-11-21 2014-11-21 可変ノズル機構および可変容量型ターボチャージャ WO2016079872A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/080944 WO2016079872A1 (ja) 2014-11-21 2014-11-21 可変ノズル機構および可変容量型ターボチャージャ
JP2016559773A JP6239787B2 (ja) 2014-11-21 2014-11-21 可変ノズル機構および可変容量型ターボチャージャ
CN201480081563.6A CN106605053B (zh) 2014-11-21 2014-11-21 可变喷嘴机构及可变容量式涡轮增压器
EP14906614.4A EP3173599B1 (en) 2014-11-21 2014-11-21 Variable nozzle mechanism and variable displacement turbocharger
US15/507,109 US20180230851A1 (en) 2014-11-21 2014-11-21 Variable nozzle mechanism and variable capacity turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/080944 WO2016079872A1 (ja) 2014-11-21 2014-11-21 可変ノズル機構および可変容量型ターボチャージャ

Publications (1)

Publication Number Publication Date
WO2016079872A1 true WO2016079872A1 (ja) 2016-05-26

Family

ID=56013472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080944 WO2016079872A1 (ja) 2014-11-21 2014-11-21 可変ノズル機構および可変容量型ターボチャージャ

Country Status (5)

Country Link
US (1) US20180230851A1 (ja)
EP (1) EP3173599B1 (ja)
JP (1) JP6239787B2 (ja)
CN (1) CN106605053B (ja)
WO (1) WO2016079872A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019123565A1 (ja) * 2017-12-20 2020-12-17 三菱重工エンジン&ターボチャージャ株式会社 タービン及びターボチャージャ
US11162412B2 (en) * 2017-03-24 2021-11-02 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Casing for exhaust turbocharger turbine, exhaust turbocharger turbine, and manufacturing method thereof
US11326615B2 (en) * 2017-03-17 2022-05-10 Ihi Corporation Seal structure of variable nozzle unit, and variable capacity type turbocharger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019003480B4 (de) * 2018-07-11 2024-01-18 Ihi Corporation Turbolader mit einem Mechanismus mit variablem Fassungsvermögen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187015A (ja) * 2006-01-11 2007-07-26 Toyota Motor Corp 可変容量型ターボチャージャ
WO2011074039A1 (ja) * 2009-12-17 2011-06-23 株式会社Ihi ターボチャージャ
JP5010631B2 (ja) * 2009-02-27 2012-08-29 三菱重工業株式会社 可変容量型排気ターボ過給機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3100879A1 (de) * 1981-01-14 1982-08-05 Audi Nsu Auto Union Ag, 7107 Neckarsulm Abgasturbolader fuer brennkraftmaschinen
JPS5932130U (ja) * 1982-08-23 1984-02-28 日産自動車株式会社 タ−ボチヤ−ジヤ
JPS62214232A (ja) * 1986-03-17 1987-09-21 Hitachi Ltd 内燃機関の排気ガスによつて駆動されるタ−ビン
US5076766A (en) * 1989-12-12 1991-12-31 Allied-Signal Inc. Turbocharger bearing retention and lubrication system
JP2003277976A (ja) * 2002-03-26 2003-10-02 Osaka Gas Co Ltd 耐熱部材およびその製造方法
US7559199B2 (en) * 2006-09-22 2009-07-14 Honeywell International Inc. Variable-nozzle cartridge for a turbocharger
KR101473204B1 (ko) * 2007-04-19 2014-12-16 닛신 세이코 가부시키가이샤 노즐 베인식 터보과급기의 배기 가이드 부품
DE102007027455A1 (de) * 2007-06-14 2008-12-24 Continental Automotive Gmbh Turbolader mit wenigstens einem Einstellteil zum Einstellen eines Spalts an einem Laufrad
DE102008000852A1 (de) * 2008-03-27 2009-10-01 Bosch Mahle Turbo Systems Gmbh & Co. Kg Abgasturbolader für ein Kraftfahrzeug
DE102008032808A1 (de) * 2008-07-11 2010-01-14 Bosch Mahle Turbo Systems Gmbh & Co. Kg Abgasturbolader für ein Kraftfahrzeug
JP2012062808A (ja) * 2010-09-15 2012-03-29 Toyota Motor Corp 可変容量型ターボチャージャ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187015A (ja) * 2006-01-11 2007-07-26 Toyota Motor Corp 可変容量型ターボチャージャ
JP5010631B2 (ja) * 2009-02-27 2012-08-29 三菱重工業株式会社 可変容量型排気ターボ過給機
WO2011074039A1 (ja) * 2009-12-17 2011-06-23 株式会社Ihi ターボチャージャ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326615B2 (en) * 2017-03-17 2022-05-10 Ihi Corporation Seal structure of variable nozzle unit, and variable capacity type turbocharger
US11162412B2 (en) * 2017-03-24 2021-11-02 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Casing for exhaust turbocharger turbine, exhaust turbocharger turbine, and manufacturing method thereof
JPWO2019123565A1 (ja) * 2017-12-20 2020-12-17 三菱重工エンジン&ターボチャージャ株式会社 タービン及びターボチャージャ
US11236669B2 (en) 2017-12-20 2022-02-01 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine and turbocharger

Also Published As

Publication number Publication date
CN106605053A (zh) 2017-04-26
JP6239787B2 (ja) 2017-11-29
JPWO2016079872A1 (ja) 2017-04-27
US20180230851A1 (en) 2018-08-16
EP3173599B1 (en) 2019-10-02
CN106605053B (zh) 2019-06-04
EP3173599A1 (en) 2017-05-31
EP3173599A4 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
US10519967B2 (en) Seal ring mounting method for turbocharger, and turbocharger
WO2016079872A1 (ja) 可変ノズル機構および可変容量型ターボチャージャ
US9347460B2 (en) Rotary machine
JP2008223569A (ja) ターボチャージャ
JP4729299B2 (ja) タービンエンジンシェルの半径方向間隙を最適化するための方法
WO2016071959A1 (ja) タービンハウジングおよびタービンハウジングの製造方法
US10641125B2 (en) Nozzle drive mechanism, turbocharger, and variable-capacity turbocharger
JPWO2012036122A1 (ja) 固定翼式ターボチャージャ
JP2013002466A (ja) スラスト軸受構造及び過給機
JP2012145106A (ja) タービンシステム用軸方向保持装置
JP5863894B2 (ja) 動翼体及び回転機械
JP6096639B2 (ja) 回転機械
US20160290354A1 (en) Impeller, rotary machine, and impeller manufacturing method
WO2017168523A1 (ja) 可変容量型ターボチャージャ
JP6368057B2 (ja) 可変ノズル機構および可変容量型ターボチャージャ
JP6218232B2 (ja) タービンホイール
JP6525063B2 (ja) ノズル駆動機構および過給機
JP2013104412A (ja) 可変ノズル機構
WO2019187474A1 (ja) 過給機
JP2010071138A (ja) ターボチャージャ
JP2010249070A (ja) 遠心圧縮機
JP2011163266A (ja) 可変ノズル構造の製造方法
JP5881430B2 (ja) 翼根バネ、これを備えているタービンロータ及びガスタービン
JP2010242710A (ja) タービンの冷却構造
JP2014129816A (ja) 動翼及び回転機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016559773

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014906614

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014906614

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15507109

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE