WO2016078321A1 - 大尺寸Yb-YAG激光晶体泡生法制备方法 - Google Patents

大尺寸Yb-YAG激光晶体泡生法制备方法 Download PDF

Info

Publication number
WO2016078321A1
WO2016078321A1 PCT/CN2015/077069 CN2015077069W WO2016078321A1 WO 2016078321 A1 WO2016078321 A1 WO 2016078321A1 CN 2015077069 W CN2015077069 W CN 2015077069W WO 2016078321 A1 WO2016078321 A1 WO 2016078321A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
crucible
yag
furnace
temperature
Prior art date
Application number
PCT/CN2015/077069
Other languages
English (en)
French (fr)
Inventor
丁雨憧
付昌禄
佘建军
何晔
Original Assignee
中国电子科技集团公司第二十六研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第二十六研究所 filed Critical 中国电子科技集团公司第二十六研究所
Publication of WO2016078321A1 publication Critical patent/WO2016078321A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B17/00Single-crystal growth onto a seed which remains in the melt during growth, e.g. Nacken-Kyropoulos method

Definitions

  • the invention relates to an improvement of laser crystal growth technology, in particular to a method for preparing a large-sized yttrium-doped yttrium aluminum garnet laser crystal (hereinafter referred to as Yb:YAG) having a diameter of ⁇ 180 mm or more, which belongs to the technical field of crystal growth.
  • Yb:YAG yttrium-doped yttrium aluminum garnet laser crystal
  • Yb:YAG crystal which is a core gain medium, has excellent optical, thermal and mechanical properties. Compared with the conventional Nd:YAG crystal, it also has the advantage of having a wider absorption band (18 nm) near 940 nm.
  • Nd: YAG crystal is more than three times, which is conducive to energy storage; no concentration quenching effect; no excited state absorption and upconversion effect.
  • European high-power laser energy research institutes have planned to use diode-pumped Yb:YAG crystal lasers to obtain high-energy lasers of 100kJ or higher. The goal is to gradually increase the laser power and finally achieve laser fusion ignition. On similar large laser devices, large-sized Yb:YAG laser crystals are required.
  • the main methods for growing Yb:YAG crystals are the Czochralski method, the temperature gradient method (TGT), and the horizontal directional solidification method.
  • the pulling method is the most common method for crystal growth of high melting point, which has the advantages of observable growth process, fast growth rate and no parasitic nucleation.
  • the limitation of the growth of large-sized Yb:YAG crystals by the Czochralski method is that the melting point of the Yb:YAG crystal is about 1950 ° C, the melting point of yttrium is 2440 ° C, and the maximum critical temperature for using ruthenium without causing any damage is 2300 ° C.
  • a large radial temperature gradient is necessary for the preparation of optical quality crystals, and thus a large diameter is grown from the crucible by the pulling method.
  • the Yb:YAG crystal is very difficult; another important disadvantage of growing the Yb:YAG crystal by the pull-up method is the presence of a core in the center of the crystal, resulting in a decrease in crystal utilization.
  • the technique of the pulling method has been improved, for example, as described in Chinese Patent No. 101338453A, the Yb:YAG crystal is grown by the electric heating molybdenum crucible, but the crystal diameter obtained is still only 35 to 50 mm.
  • the horizontal directional solidification method is different from the pulling method in that the raw material is loaded into a boat-shaped crucible made of molybdenum, and after the raw material is melted, the crucible is slowly moved in the hot zone, and the raw material is moved from the hot zone to the cold zone to solidify and crystallize the raw material.
  • the size and shape of the crystal grown by this method is determined by ⁇ , usually crystal into flakes, literature [M.Arzakantsyan, N.Ananyan, et al,Growth of large 90mm diameter Yb:YAG single crystals with Bagdasarov method.Optical Materials Express, 2012, 2(9): 1219-1225] reported the growth of a 90 mm diameter Yb:YAG laser crystal.
  • the temperature gradient method is a patent obtained in 1985. It is mainly used to grow gemstone crystals (101705516A Chinese patent), but has not obtained sufficiently high optical quality in growing garnet crystals.
  • the Yb:YAG crystal size grown by this method is the largest. ⁇ 75 mm ⁇ 45 mm [XDXu, ZW Zhao, et al, Comparison of Yb: YAG crystals grown by Cz and TGT method, Journal of Crystal Growth, 2003, 257 (3-4): 297-300].
  • the above method has difficulty in obtaining a large-sized Yb:YAG crystal, and the crystal quality is also defective due to the inherent characteristics of the method.
  • the crystal grown by the temperature gradient method and the horizontal directional solidification method is always in contact with the crucible wall, and is easy. Parasitic nucleation will also cause crystal stress and even crystal cracking due to inconsistent heat shrinkage during the cooling stage. Crystals grown by the pull-up method tend to have many defects such as crystal dislocations and affect laser performance.
  • an object of the present invention is to provide a method for preparing a large-sized Yb-YAG laser crystal bubble generation method, which can grow a Yb-YAG laser crystal having a diameter of more than 180 mm.
  • the method Yb:YAG crystal growth is carried out in a high-temperature furnace, the furnace body has a cooling water inlet port, the furnace body is provided with a ring-shaped insulation layer, and the heat preservation A tray is placed in the layer, and a seed rod is arranged on the furnace cover.
  • the upper end of the seed rod is connected with a weight sensor, a pulling motor and a rotating motor.
  • the preparation steps of the Yb-YAG laser crystal are as follows.
  • Loading furnace The prepared Yb:YAG bulk pre-crystallized raw material is placed in a tungsten crucible, and then the crucible is placed on the tray, and the seed crystal is loaded, and the furnace is finished, and the high-temperature furnace is evacuated to ⁇ 5 ⁇ 10 ⁇ 3 Pa; Yb:YAG pre-crystallized raw material, the doping concentration of Yb ions is any value in the range of 0.1 to 50.0 at.%;
  • Equal diameter growth adjust the heating power to increase the crystal weight evenly, and increase the rate to 250-900 g/h until the weight no longer increases, at which time the crystal growth ends;
  • Cooling During the cooling process, the initial cooling rate is 10-30 ° C / h, the heating power is turned off when the temperature is 200 ⁇ 400 ° C, and then argon gas is charged to increase the spontaneous cooling rate until the crystal is cooled to room temperature;
  • Annealing After removing the crystal from the high temperature furnace, the crystal is placed in a muffle furnace and annealed in an O 2 +N 2 atmosphere or an air atmosphere. If it is an O 2 +N 2 atmosphere, the O 2 concentration is 0.1. ⁇ 30%, annealing temperature is 1200 ⁇ 1350°C, constant temperature time is 30 ⁇ 48h, heating rate is 40 ⁇ 50°C/h, and cooling rate is 20 ⁇ 30°C/h.
  • the crucible is cylindrical, the inner diameter of the upper part of the crucible is larger than 2-20% of the inner diameter of the bottom, and the inner diameter of the bottom of the crucible is ⁇ 200 mm
  • the direction of the seed crystal used in the method is the [111] direction or the [100] direction.
  • the method has certain similarity with the pulling method, and has a growth process to be observed; the defect of the seed crystal extending into the crystal can be reduced by the necking process; the crystal is not in contact with the crucible, and there is no parasitic nucleation, and the temperature is not lowered when the temperature is lowered.
  • this method also has the following advantages that the Lifting Method does not have:
  • a large-sized Yb:YAG crystal with a diameter of ⁇ 180 mm or more can be grown, and the crystal size is similar to the diameter of the crucible.
  • the crystal After entering the equal diameter growth stage, the crystal does not rotate, and the pulling speed is extremely slow (not higher than 0.3mm/h), avoiding the fluctuation of the solid-liquid interface caused by mechanical vibration, making the growth interface more stable and the crystal quality higher. .
  • the growth interface is a cone type that is convex toward the melt, and the growth core area is small.
  • the growth cost of the invention is lower than the pulling method.
  • the Yb:YAG crystal grown by the bubble method has the advantages of large size, low defect density, no core (or small core), high utilization rate, low cost, etc., and can satisfy large-scale high-power laser devices.
  • the promotion of this technology also has obvious economic and social benefits.
  • Figure 1 is a schematic diagram of a bubble furnace for growing Yb:YAG crystals.
  • the Yb:YAG crystal is grown by the bubble method of the present invention, which is carried out in a high temperature furnace, and the structure of the high temperature furnace is as shown in FIG.
  • the furnace body 2 of the high-temperature furnace has a cooling water inlet port 1 in which a tungsten crucible 4 is disposed, and the crucible 4 is disposed on a tray supported by a support rod 8 installed at the center of the furnace.
  • the upper end of the seed crystal rod 6 is connected with a weight sensor, a pulling motor and a rotating electric machine, and the lower end of the seed crystal rod 6 is provided with a YAG seed crystal 7.
  • Reference numeral 5 is a heating electrode. The invention proceeds as follows:
  • Furnace loading The prepared Yb:YAG bulk pre-crystallized raw materials are placed in a tungsten crucible, and then the crucible is lifted into the tray in the furnace of the bubble furnace, and then the heat preservation cover and the seed crystal are sequentially installed. And the furnace cover. Finally, evacuate to ⁇ 5 ⁇ 10 -3 Pa.
  • Equal diameter growth adjust the heating power to increase the crystal weight evenly, and increase the rate to 250-900 g/h until the weight is no longer increased.
  • Cooling During the cooling process, the initial cooling rate is 10-30 ° C / h, the heating power is turned off when the temperature is 200 ⁇ 400 ° C, and then filled with high purity argon gas to increase the spontaneous cooling rate until the crystal cools to Room temperature.
  • Annealing After removing the crystal from the high temperature furnace, the crystal is placed in a muffle furnace and annealed in an atmosphere of O 2 +N 2 (O 2 concentration of 0.1 to 30%) or an air atmosphere, and the annealing temperature is 1200 ⁇ . 1350 ° C, constant temperature time is 30 ⁇ 48h, the heating rate is 40 ⁇ 50 ° C / h, the cooling rate is 20 ⁇ 30 ° C / h.
  • the doping concentration of the Yb ions in the Yb:YAG pre-crystallized raw material in the above step (1) may be any value in the range of 0.1 to 50.0 at.%.
  • the weight of the raw material is 36 to 100 kg, which is related to the doping concentration of Yb ions and the size of niobium.
  • the tungsten crucible is cylindrical, the inner diameter of the upper portion of the crucible is larger than 2 to 20% of the inner diameter of the bottom portion, and the inner diameter of the bottom portion of the crucible is 200 mm or more.
  • the direction of the seed crystal used in the above step (3) is the [111] direction or the [100] direction.
  • the rotation speed of the crystal is zero, the pulling speed is lower than 0.3 mm/h, or the pulling speed is zero.
  • the relative deviation between the center of the seed crystal and the geometric center of the crucible is not more than 10mm. Observe whether the seed head has melting phenomenon. If there is melting, the temperature is too high. , need to reduce the heating power.
  • the YAG seed crystal is immersed in the melt, and the heating power is adjusted so that the seed crystal does not grow or melt, that is, the seeding process is completed. The heating power is reduced by 1 kW.
  • the diameter of the seed crystal head is about 2 cm, the seed crystal rod is manually pulled for necking, and the height of each pulling is 2 mm, and the neck is constricted 10 times.
  • the pulling speed is adjusted to 0.3 mm/h, and the heating power is adjusted so that the weight is 30 g/h (0 to 500 g), 70 g/h (500 g to 2 kg), and 120 g/h (2 to 4 kg, respectively).
  • the way is increased until the crystal diameter is about 190 mm, that is, the shoulder is completed.
  • the growth rate is set to 0.07 mm/h. After the crystal quality is no longer increased, the crystal growth ends. The entire growth process is carried out under vacuum.
  • the Yb:YAG crystal blank taken out from the bubble furnace has a diameter of 190 mm, and the crystal is pale blue because of the color center caused by Yb 2+ ions.
  • the Yb:YAG crystal blank obtained above was placed in a muffle furnace, heated to 1250 ° C at a rate of 50 ° C / h in an air atmosphere, and then kept at a constant temperature of 48 h, and then cooled to room temperature at a cooling rate of 25 ° C / h. The crystal was taken out and the crystal was colorless and transparent.
  • the relative deviation between the center of the seed crystal and the geometric center of the crucible is not more than 10mm. Observe whether the seed head has melting phenomenon. If there is melting, the temperature is too high. , need to reduce the heating power.
  • the YAG seed crystal is immersed in the melt, and the heating power is adjusted so that the seed crystal does not grow or melt, that is, the seeding process is completed. The heating power is reduced by 1 kW.
  • the diameter of the seed crystal head is about 2 cm, the seed crystal rod is manually pulled for necking, and the height of each pulling is 2 mm, and the neck is constricted 10 times.
  • the pulling speed is adjusted to 0.3 mm/h, and the heating power is adjusted so that the weight is respectively 35 g/h (0 to 560 g), 80 g/h (560 g to 2.3 kg), and 135 g/h (2.3 to The way of 4.5kg) is increased until the crystal diameter is about 190mm, that is, the shoulder is completed. Then, at a rate of 400 g/h, the growth of the equal diameter is entered. At this time, the pulling speed is set to 0.07 mm/h, and after the crystal quality is no longer increased, the crystal growth ends. The entire growth process is carried out under vacuum.
  • the Yb:YAG crystal blank taken out from the bubble furnace has a diameter of 190 mm, and the crystal is pale blue because of the color center caused by Yb 2+ ions.
  • the Yb:YAG crystal blank obtained above was placed in a muffle furnace, heated to 1250 ° C at a rate of 50 ° C / h in an air atmosphere, and then kept at a constant temperature of 48 h, and then cooled to room temperature at a cooling rate of 25 ° C / h. The crystal was taken out and the crystal was colorless and transparent.

Abstract

本发明公开了一种大尺寸Yb-YAG激光晶体泡生法制备方法,其步骤包括装炉、化料、引晶、缩颈、放肩、等径生长、冷却和退火。放肩时,晶体的转速为零,放肩及其以后各阶段,晶体都不转动。把拉速控制在0.05~0.3mm/h范围内,重量增加速率控制在10~250g/h范围内,待晶体直径长至所需直径,即完成放肩过程。等径生长时,调节加热功率,使晶体重量均匀增加,增加速率为250~900g/h,直到重量不再增加为止,此时晶体生长结束。本方法生长的Yb:YAG晶体,具有尺寸大、缺陷密度低、无核心、利用率高、成本低等突出优点,能满足大型高功率激光装置对大尺寸Yb:YAG晶体的需求。

Description

大尺寸Yb-YAG激光晶体泡生法制备方法 技术领域
本发明涉及激光晶体生长技术改进,具体指一种直径Φ180mm以上的大尺寸掺镱钇铝石榴石激光晶体(以下简称Yb:YAG)的泡生法制备方法,属于晶体生长技术领域。
背景技术
在激光惯性约束核聚变等大型激光工程的推动下(例如:欧洲高功率激光能源研究机构HiPER、美国劳伦斯利弗莫尔实验室的国家点火装置NIF),激光二极管泵浦的Yb:YAG晶体激光器是发展高效、高功率固体激光器的一个主要研究方向。其中作为核心增益介质的Yb:YAG晶体除了具有优异的光学、热学和机械性能外,它与传统的Nd:YAG晶体相比还具有如下优势:在940nm附近有更宽的吸收带(18nm),能与InGaAs激光二极管有效的耦合;量子缺陷小(~8.6%),无辐射弛豫引起的材料热负荷低,仅为Nd:YAG晶体的1/3;荧光寿命长(951μs),是Nd:YAG晶体的3倍多,有利于储能;无浓度淬灭效应;无激发态吸收和上转换效应。目前,欧洲高功率激光能源研究机构已计划采用二极管泵浦Yb:YAG晶体激光器来获得100kJ级以上的高能激光,其目标是逐步提升激光功率最终实现激光聚变点火。在类似的大型激光装置上,都需要大尺寸的Yb:YAG激光晶体。
目前生长Yb:YAG晶体的主要方法有提拉法(Czochralski法)、温度梯度法(TGT)和水平定向凝固法。其中提拉法是最常见的高熔点晶体生长方法,它具有生长过程可观察、生长速度快、无寄生成核等优点。提拉法生长大尺寸Yb:YAG晶体的局限性在于:Yb:YAG晶体的熔点约1950℃,铱的熔点是2440℃,而使用铱坩埚不会造成任何损坏的最大临界温度是2300℃。由于大的径向温度梯度(坩埚壁与其中间处的熔体温度的差),而大的径向温度梯度对制备光学品质的晶体是必须的,因而通过提拉法从铱坩埚来生长大直径的Yb:YAG晶体非常困难;用提拉法生长Yb:YAG晶体的另一个重要缺点是在晶体中心存在核心,导致晶体的利用率降低。尽管已有对提拉法技术进行改进,例如中国专利101338453A所述,用电阻加热钼坩埚实现平界面生长Yb:YAG晶体,但获得的晶体直径仍只有35~50mm。水平定向凝固法与提拉法不同,它是将原料装入钼制的舟型坩埚中,待原料融化之后在热区中缓慢移动坩埚,从热区移动到冷区使原料凝固结晶。该方法生长的晶体尺寸和形状由坩埚决定,通常晶体成片状,文献[M.Arzakantsyan,N.Ananyan,et al,Growth of large 90mm diameter Yb:YAG single crystals with Bagdasarov method.Optical Materials  Express,2012,2(9):1219-1225]报道生长出了直径90mm的Yb:YAG激光晶体。温度梯度法是1985年获得的专利,主要用来生长宝石晶体(101705516A中国专利),而在生长石榴石晶体方面还未获得足够高的光学品质,采用此法生长的Yb:YAG晶体尺寸最大为Φ75mm×45mm[X.D.Xu,Z.W.Zhao,et al,Comparison of Yb:YAG crystals grown by Cz and TGT method,Journal of Crystal Growth,2003,257(3-4):297-300]。以上所述方法除了在获得大尺寸Yb:YAG晶体方面有困难,而且晶体品质也因方法固有的特点而存在缺陷,例如:温度梯度法和水平定向凝固法生长的晶体与坩埚壁始终接触,容易寄生成核,也会在降温阶段由于热收缩不一致引起晶体应力,甚至引起晶体开裂;而提拉法生长的晶体往往因为温度梯度过大,晶体位错等缺陷较多,影响激光性能。
发明内容
针对现有技术存在的上述不足,本发明的目的在于提供一种大尺寸Yb-YAG激光晶体泡生法制备方法,本方法可以生长直径大于180mm的Yb-YAG激光晶体。
为了实现上述目的,本发明采用的技术方案如下:
大尺寸Yb-YAG激光晶体泡生法制备方法,本方法Yb:YAG晶体生长在高温炉中进行,该高温炉的炉体上有冷却水接入口,炉体内设有环状的保温层,保温层内设有放置坩埚的托盘,炉盖上设有籽晶杆,籽晶杆上端与重量传感器、提拉电机和旋转电机相连,Yb-YAG激光晶体制备步骤如下,
(1)装炉:将配制好的Yb:YAG块状预结晶原料装入钨制坩埚内,再把坩埚放置在托盘上,并装上籽晶,装炉完毕,将高温炉抽真空至≤5×10-3Pa;Yb:YAG预结晶原料中Yb离子的掺杂浓度为0.1~50.0at.%范围内的任意值;
(2)化料:打开加热电源,将坩埚温度升高至原料熔点之上5~10℃;待原料全部熔化后,调节加热功率使熔体对流形态稳定,再保持1~5h;
(3)引晶:打开提拉电机,缓慢下降籽晶杆,使籽晶下端与熔体表面接触,控制引晶温度使籽晶既不生长也不融化;
(4)缩颈:引晶熔接后,观察结盘情况,判定冷心位置是否在坩埚中心,如果不在坩埚中心,则通过旋转电机旋转籽晶使盘的位置向坩埚中心生长,结盘直径小于3cm;结盘位置在坩埚中心后,再采用手动提拉的方式达到缩颈的目的,每次提拉1~3mm,颈的总体高度为2~4cm;调整好功率以后,进入放肩过程;
(5)放肩:放肩时,晶体的转速为零,放肩及其以后各阶段,晶体都不转动;把拉速控制 在0.05~0.3mm/h范围内,重量增加速率控制在10~250g/h范围内,待晶体直径长至所需直径,即完成放肩过程;
(6)等径生长:调节加热功率,使晶体重量均匀增加,增加速率为250~900g/h,直到重量不再增加为止,此时晶体生长结束;
(7)冷却:在冷却过程中,初始降温速率为10~30℃/h,温度为200~400℃时关闭加热电源,再充入氩气,以增加自发降温速率,直到晶体冷却至室温;
(8)退火:从高温炉中取出晶体后,再把晶体放入马弗炉中在O2+N2气氛或空气气氛下退火,如果是O2+N2气氛,则O2浓度为0.1~30%,退火温度为1200~1350℃,恒温时间为30~48h,升温速率为40~50℃/h,降温速率为20~30℃/h。
所述坩埚为圆筒状,坩埚上部内径大于底部内径的2~20%,坩埚底部内径≥200mm。
本方法所使用的籽晶的方向为[111]方向或[100]方向。
本方法与提拉法相比有一定的相似性,都具有生长过程可观察;可以通过缩颈工艺减少籽晶延伸到晶体内部的缺陷;晶体不与坩埚接触,无寄生成核,降温时不会引起应力等优点。除此之外,本方法还有提拉法所不具备的以下优点:
1、可以生长直径Φ180mm以上的大尺寸Yb:YAG晶体,晶体尺寸与坩埚直径相近。
2、晶体生长时温度梯度小(≤10℃/cm),能得到低位错密度的高品质Yb:YAG晶体,而在小的温度梯度下不会出现组分过冷的原因是Yb3+离子在YAG晶体中的分凝系数接近于1.0。
3、进入等径生长阶段后,晶体不转动,拉速极慢(不高于0.3mm/h),避免了因机械振动引起的固液界面的波动,使生长界面更稳定,晶体品质更高。
4、生长界面为凸向熔体的锥型,生长核心面积小。
5、本发明生长成本比提拉法低。
综上所述,采用泡生法生长的Yb:YAG晶体,具有尺寸大、缺陷密度低、无核心(或核心小)、利用率高、成本低等突出优点,能满足大型高功率激光装置对大尺寸Yb:YAG晶体的需求。同时,该技术的推广,也具有明显的经济效益和社会效益。
附图说明
图1为生长Yb:YAG晶体的泡生炉示意图。
图中,1-冷却水接入口,2-炉体,3-保温层,4-坩埚,5-加热电极,6-籽晶杆,7-YAG 籽晶,8-支撑杆。
具体实施方式
下面结合附图对本发明作进一步详细说明。
本发明泡生法生长Yb:YAG晶体,它在高温炉中进行,高温炉结构如图1所示。高温炉的炉体2上有冷却水接入口1,炉体2内设有钨制坩埚4,坩埚4设置在一个托盘上,托盘由安装在炉膛中心的支撑杆8支撑。坩埚和炉体之间有保温层3,炉盖上设有籽晶杆6,籽晶杆6上端与重量传感器、提拉电机和旋转电机相连,籽晶杆6下端装有YAG籽晶7。标号5为加热电极。本发明按以下步骤进行:
(1)装炉:将配制好的Yb:YAG块状预结晶原料装入钨制坩埚内,再把坩埚用叉车吊入泡生炉炉膛中的托盘上,再依次装上保温罩、籽晶和炉盖。最后抽真空至≤5×10-3Pa。
(2)化料:打开加热电源,将坩埚温度升高至原料熔点之上5~10℃。待原料全部熔化后,调节加热功率使熔体对流形态稳定,再保持1~5h。
(3)引晶:打开提拉电机,缓慢下降籽晶杆,使籽晶下端与熔体表面接触,若籽晶既不生长也不融化时,温度为最佳引晶温度。
(4)缩颈:引晶熔接后,通过观察结盘情况,判定冷心位置是否在坩埚中心,确定是否由旋转电机旋转籽晶使盘的位置向坩埚中心生长,结盘直径尽量小,直径小于3cm,确定盘位置在坩埚中心后,开始采用手动提拉的方式达到缩颈的目的,每次提拉在1~3mm,颈的总体高度为2~4cm。调整好功率以后,进入放肩过程。
(5)放肩:把拉速控制在0.05~0.3mm/h范围内,重量增加速率控制在10~250g/h范围内,待晶体直径长至所需直径,即完成放肩过程。
(6)等径生长:调节加热功率,使晶体重量均匀增加,增加速率为250~900g/h,直到重量不再增加为止。
(7)冷却:在冷却过程中,初始降温速率为10~30℃/h,温度为200~400℃时关闭加热电源,再充入高纯氩气,以增加自发降温速率,直到晶体冷却至室温。
(8)退火:从高温炉中取出晶体后,再把晶体放入马弗炉中在O2+N2(O2浓度为0.1~30%)气氛或空气气氛下退火,退火温度为1200~1350℃,恒温时间为30~48h,升温速率为40~50℃/h,降温速率为20~30℃/h。
上述步骤(1)中Yb:YAG预结晶原料中Yb离子的掺杂浓度可以是0.1~50.0at.%范围内的任意值。原料的重量为36~100kg,这与Yb离子的掺杂浓度和坩埚大小有关。
上述步骤(1)中钨坩埚为圆筒状,坩埚上部内径大于底部内径的2~20%,坩埚底部内径为200mm或更大。
上述步骤(3)中所使用的籽晶的方向为[111]方向或[100]方向。
上述步骤(5)中,晶体的转速为零,拉速低于0.3mm/h,或者拉速为零。
以下给出两实施例以帮助进一步理解本发明。
实施例1:
将预结晶高纯块状Yb:YAG原料37kg装入酒精洗涤过的钨坩埚内,进行装炉。原料中Yb3+离子的浓度为2.0at.%,钨坩埚上部内径为230mm,下部内径为200mm,内高为325mm。装完炉后,炉膛抽真空至5×10-3Pa时,按6kW/h的速率进行电阻加热升温,直到原料全部熔化,观察到熔体中有稳定的液流线时,保温1h。缓慢调节YAG籽晶使其下端下降至熔体液面上方5mm处,籽晶中心与坩埚的几何中心相对偏差不大于10mm,并观察籽晶头是否有熔化现象,若有熔化现象则温度过高,需降低加热功率。将YAG籽晶浸入熔体中,调节加热功率,使籽晶既不长大也不熔化,即完成引晶过程。降低加热功率1kW,待籽晶头结盘直径约2cm时,手动提拉籽晶杆进行缩颈,每次提拉高度为2mm,共缩颈10次。缩颈完毕后,将提拉速度调节到0.3mm/h,并调节加热功率,使重量分别按30g/h(0~500g)、70g/h(500g~2kg)、120g/h(2~4kg)的方式增加,直到晶体直径约190mm时,即完成放肩。然后再按350g/h的速率进入等径生长阶段,此时拉速设为0.07mm/h,等晶体质量不再增加后,晶体生长结束。整个生长过程在真空下进行。然后调节加热功率,按30℃/h的速率降温,待炉内温度为300℃时,关闭加热电源,再通入高纯Ar气,使炉膛内的压力与大气压相等,再过48h后取出晶体毛坯。从泡生炉中取出的Yb:YAG晶体毛坯直径为190mm,因为Yb2+离子引起的色心存在,晶体呈淡蓝色。
将上面得到的Yb:YAG晶体毛坯放入马弗炉内,在空气气氛下按50℃/h的速率升温至1250℃,再恒温48h,再按25℃/h的降温速率降温至室温,最后取出晶体,晶体无色透明。
实施例2:
将预结晶高纯块状Yb:YAG原料41kg装入酒精洗涤过的钨坩埚内,进行装炉。原料中Yb3+离子的浓度为30.0at.%,钨坩埚上部内径为230mm,下部内径为200mm,内高为325mm。装完炉后,炉膛抽真空至5×10-3Pa时,按6kW/h的速率进行电阻加热升温,直到原料全部熔化,观察到熔体中有稳定的液流线时,保温1h。缓慢调节YAG籽晶使其下端下降至熔体液面上方5mm处,籽晶中心与坩埚的几何中心相对偏差不大于10mm,并观察籽 晶头是否有熔化现象,若有熔化现象则温度过高,需降低加热功率。将YAG籽晶浸入熔体中,调节加热功率,使籽晶既不长大也不熔化,即完成引晶过程。降低加热功率1kW,待籽晶头结盘直径约2cm时,手动提拉籽晶杆进行缩颈,每次提拉高度为2mm,共缩颈10次。缩颈完毕后,将提拉速度调节到0.3mm/h,并调节加热功率,使重量分别按35g/h(0~560g)、80g/h(560g~2.3kg)、135g/h(2.3~4.5kg)的方式增加,直到晶体直径约190mm时,即完成放肩。然后再按400g/h的速率进入等径生长阶段,此时拉速设为0.07mm/h,等晶体质量不再增加后,晶体生长结束。整个生长过程在真空下进行。然后调节加热功率,按30℃/h的速率降温,待炉内温度为300℃时,关闭加热电源,再通入高纯Ar气,使炉膛内的压力与大气压相等,再过48h后取出晶体毛坯。从泡生炉中取出的Yb:YAG晶体毛坯直径为190mm,因为Yb2+离子引起的色心存在,晶体呈淡蓝色。
将上面得到的Yb:YAG晶体毛坯放入马弗炉内,在空气气氛下按50℃/h的速率升温至1250℃,再恒温48h,再按25℃/h的降温速率降温至室温,最后取出晶体,晶体无色透明。
本发明的上述实施例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (4)

  1. 大尺寸Yb-YAG激光晶体泡生法制备方法,其特征在于:本方法Yb:YAG晶体生长在高温炉中进行,该高温炉的炉体上有冷却水接入口,炉体内设有环状的保温层,保温层内设有放置坩埚的托盘,炉盖上设有籽晶杆,籽晶杆上端与重量传感器、提拉电机和旋转电机相连,Yb-YAG激光晶体制备步骤如下,
    (1)装炉:将配制好的Yb:YAG块状预结晶原料装入钨制坩埚内,再把坩埚放置在托盘上,并装上籽晶,装炉完毕,将高温炉抽真空至≤5×10-3Pa;
    (2)化料:打开加热电源,将坩埚温度升高至原料熔点之上5~10℃;待原料全部熔化后,调节加热功率使熔体对流形态稳定,再保持1~5h;
    (3)引晶:打开提拉电机,缓慢下降籽晶杆,使籽晶下端与熔体表面接触,控制引晶温度使籽晶既不生长也不融化;
    (4)缩颈:引晶熔接后,观察结盘情况,判定冷心位置是否在坩埚中心,如果不在坩埚中心,则通过旋转电机旋转籽晶使盘的位置向坩埚中心生长,结盘直径小于3cm;结盘位置在坩埚中心后,再采用手动提拉的方式达到缩颈的目的,每次提拉1~3mm,颈的总体高度为2~4cm;调整好功率以后,进入放肩过程;
    (5)放肩:放肩时,晶体的转速为零,把拉速控制在0.05~0.3mm/h范围内,重量增加速率控制在10~250g/h范围内,待晶体直径长至所需直径,即完成放肩过程;
    (6)等径生长:调节加热功率,使晶体重量均匀增加,增加速率为250~900g/h,直到重量不再增加为止,此时晶体生长结束;
    (7)冷却:在冷却过程中,初始降温速率为10~30℃/h,温度为200~400℃时关闭加热电源,再充入氩气,以增加自发降温速率,直到晶体冷却至室温;
    (8)退火:从高温炉中取出晶体后,再把晶体放入马弗炉中在O2+N2气氛或空气气氛下退火,如果是O2+N2气氛,则O2浓度为0.1~30%,退火温度为1200~1350℃,恒温时间为30~48h,升温速率为40~50℃/h,降温速率为20~30℃/h。
  2. 根据权利要求1所述的大尺寸Yb-YAG激光晶体泡生法制备方法,其特征在于:所述坩埚为圆筒状,坩埚上部内径大于底部内径的2~20%,坩埚底部内径≥200mm。
  3. 根据权利要求1所述的大尺寸Yb-YAG激光晶体泡生法制备方法,其特征在于:本方法所使用的籽晶的方向为[111]方向或[100]方向。
  4. 根据权利要求1所述的大尺寸Yb-YAG激光晶体泡生法制备方法,其特征在于:Yb:YAG预结晶原料中Yb离子的掺杂浓度为0.1~50.0at.%范围内的任意值。
PCT/CN2015/077069 2014-11-21 2015-04-21 大尺寸Yb-YAG激光晶体泡生法制备方法 WO2016078321A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410671892.8A CN104357899B (zh) 2014-11-21 2014-11-21 大尺寸Yb‑YAG激光晶体泡生法制备方法
CN201410671892.8 2014-11-21

Publications (1)

Publication Number Publication Date
WO2016078321A1 true WO2016078321A1 (zh) 2016-05-26

Family

ID=52525200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077069 WO2016078321A1 (zh) 2014-11-21 2015-04-21 大尺寸Yb-YAG激光晶体泡生法制备方法

Country Status (2)

Country Link
CN (1) CN104357899B (zh)
WO (1) WO2016078321A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284187A (zh) * 2018-03-19 2019-09-27 夕心科技(上海)有限公司 感应泡生法晶体生长装置及其控制方法
CN113122908A (zh) * 2021-03-23 2021-07-16 桂林百锐光电技术有限公司 一种复合yag晶体的制备方法
CN114836821A (zh) * 2021-02-01 2022-08-02 浙江大学杭州国际科创中心 一种低位错密度氧化镓体块单晶的生长方法
CN116575114A (zh) * 2023-07-14 2023-08-11 内蒙古晶环电子材料有限公司 一种引晶方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104357899B (zh) * 2014-11-21 2017-03-29 中国电子科技集团公司第二十六研究所 大尺寸Yb‑YAG激光晶体泡生法制备方法
CN106048733A (zh) * 2016-08-03 2016-10-26 成都新源汇博光电科技有限公司 一种提高Nd3+:YAG晶体激光输出功率的退火方法
CN108107490A (zh) * 2018-01-04 2018-06-01 中国电子科技集团公司第二十六研究所 一种钇铝石榴石晶体镜片及其加工方法
CN110067025A (zh) * 2018-01-20 2019-07-30 河北胤丞光电科技有限公司 一种高输出功率的yag晶体的制备方法
CN108531979A (zh) * 2018-04-25 2018-09-14 上海翌波光电科技股份有限公司 一种晶体制造炉及晶体制造工艺
CN109280974A (zh) * 2018-12-12 2019-01-29 上海超硅半导体有限公司 一种大尺寸yag激光晶体的制备方法
CN112296511B (zh) * 2020-09-30 2023-06-20 北京石榴果科技有限公司 宝石的微缩标识加工、读取、检测方法及加工装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441092A (zh) * 2003-03-28 2003-09-10 中国科学院上海光学精密机械研究所 掺镱钇铝石榴石晶体的退火方法
CN101338453A (zh) * 2008-07-16 2009-01-07 成都东骏激光有限责任公司 大尺寸无核心yag系列激光晶体的生长装置及其生长方法
CN101705516A (zh) * 2009-09-25 2010-05-12 上海元亮光电科技有限公司 顶部籽晶温度梯度法生长大尺寸高温氧化物晶体的方法
CN102703970A (zh) * 2012-07-11 2012-10-03 浙江特锐新能源有限公司 泡生法生长掺钛蓝宝石晶体
CN103370452A (zh) * 2011-02-17 2013-10-23 克莱托斯波尔公司 制备具有高达500mm直径的掺杂石榴石结构的单晶
CN104357899A (zh) * 2014-11-21 2015-02-18 中国电子科技集团公司第二十六研究所 大尺寸Yb-YAG激光晶体泡生法制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1233882C (zh) * 2003-04-11 2005-12-28 中国科学院上海光学精密机械研究所 Yb:YAG激光晶体的生长方法
CN103059860B (zh) * 2012-09-17 2015-01-07 温州大学 一种锰掺杂钇铝石榴石单晶材料及其应用
CN103074685A (zh) * 2013-02-01 2013-05-01 中山大学 一种高浓度Nd掺杂YAG激光晶体生长方法
CN103469298A (zh) * 2013-08-22 2013-12-25 昆山开威电子有限公司 一种泡生法生长掺铈钇铝石榴石单晶的方法及高温炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441092A (zh) * 2003-03-28 2003-09-10 中国科学院上海光学精密机械研究所 掺镱钇铝石榴石晶体的退火方法
CN101338453A (zh) * 2008-07-16 2009-01-07 成都东骏激光有限责任公司 大尺寸无核心yag系列激光晶体的生长装置及其生长方法
CN101705516A (zh) * 2009-09-25 2010-05-12 上海元亮光电科技有限公司 顶部籽晶温度梯度法生长大尺寸高温氧化物晶体的方法
CN103370452A (zh) * 2011-02-17 2013-10-23 克莱托斯波尔公司 制备具有高达500mm直径的掺杂石榴石结构的单晶
CN102703970A (zh) * 2012-07-11 2012-10-03 浙江特锐新能源有限公司 泡生法生长掺钛蓝宝石晶体
CN104357899A (zh) * 2014-11-21 2015-02-18 中国电子科技集团公司第二十六研究所 大尺寸Yb-YAG激光晶体泡生法制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, XIAOYANG: "The Studies on Yb: YAG Laser Crystal Growth and Laser Properties", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE , CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 February 2009 (2009-02-15), pages 21 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284187A (zh) * 2018-03-19 2019-09-27 夕心科技(上海)有限公司 感应泡生法晶体生长装置及其控制方法
CN114836821A (zh) * 2021-02-01 2022-08-02 浙江大学杭州国际科创中心 一种低位错密度氧化镓体块单晶的生长方法
CN114836821B (zh) * 2021-02-01 2023-08-29 杭州镓仁半导体有限公司 一种低位错密度氧化镓体块单晶的生长方法
CN113122908A (zh) * 2021-03-23 2021-07-16 桂林百锐光电技术有限公司 一种复合yag晶体的制备方法
CN116575114A (zh) * 2023-07-14 2023-08-11 内蒙古晶环电子材料有限公司 一种引晶方法
CN116575114B (zh) * 2023-07-14 2023-11-28 内蒙古晶环电子材料有限公司 一种引晶方法

Also Published As

Publication number Publication date
CN104357899A (zh) 2015-02-18
CN104357899B (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2016078321A1 (zh) 大尺寸Yb-YAG激光晶体泡生法制备方法
CN101323978B (zh) 大尺寸蓝宝石晶体制备工艺及其生长装置
CN104562183B (zh) 大尺寸稀土掺杂氟化钇钡单晶生长方法
CN103849928A (zh) 一种多片式导模法蓝宝石晶片生长工艺
CN107460539A (zh) 一种加热器及应用该加热器的单晶硅生产方法
CN102220633A (zh) 一种半导体级单晶硅生产工艺
CN104818524A (zh) 一种改善直拉法生长单晶硅质量的方法以及加热器
CN108166060A (zh) 一种锑化铟<211>方向单晶的制备方法
CN102758244A (zh) 复合加热式直拉多晶硅或单晶硅制备工艺
CN113957537A (zh) 一种vb法与vgf法结合快速生长低位错砷化镓单晶的生长装置及方法
CN110205672B (zh) 一种类单晶硅晶体生长方法和热场结构
CN104073875A (zh) 一种大尺寸蓝宝石晶体动态温度场制备方法
CN103422165A (zh) 一种多晶硅及其制备方法
CN104120488A (zh) 一种大尺寸c轴蓝宝石晶体动态温度场制备方法
CN108588832B (zh) 制备蓝宝石晶体的改进的泡生法及晶体生长炉
CN111041558A (zh) 一种稀土倍半氧化物激光晶体生长方法
CN103469304B (zh) 多支成形蓝宝石长晶装置及其长晶方法
WO2014129414A1 (ja) サファイア単結晶コアおよびその製造方法
JP5861770B2 (ja) 多結晶シリコンおよびその鋳造方法
CN102758245A (zh) 除氧型单晶炉
TW202113167A (zh) ScAlMgO4單晶及其製作方法和自支撐基板
CN102817071A (zh) 防热辐射直拉多或单晶硅制备工艺
TWI737997B (zh) 矽晶錠的製造方法及矽晶錠的製造裝置
US9234296B2 (en) Apparatus having heat insulating cylinder with step portion for manufacturing semiconductor single crystal
CN102758253A (zh) 直拉多或单晶硅制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860724

Country of ref document: EP

Kind code of ref document: A1