WO2016076379A1 - スラグ排出装置及びスラグ排出方法 - Google Patents

スラグ排出装置及びスラグ排出方法 Download PDF

Info

Publication number
WO2016076379A1
WO2016076379A1 PCT/JP2015/081806 JP2015081806W WO2016076379A1 WO 2016076379 A1 WO2016076379 A1 WO 2016076379A1 JP 2015081806 W JP2015081806 W JP 2015081806W WO 2016076379 A1 WO2016076379 A1 WO 2016076379A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
screen
water flow
discharge device
crushing
Prior art date
Application number
PCT/JP2015/081806
Other languages
English (en)
French (fr)
Inventor
恭行 宮田
小山 智規
早田 泰雄
柴田 泰成
北田 昌司
治人 篠田
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201580058996.4A priority Critical patent/CN107109262A/zh
Priority to US15/523,793 priority patent/US20170342337A1/en
Priority to KR1020177012405A priority patent/KR20170077149A/ko
Publication of WO2016076379A1 publication Critical patent/WO2016076379A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/523Ash-removing devices for gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/526Ash-removing devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • C10J2300/1634Ash vitrification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only

Definitions

  • the present invention relates to a slag discharging apparatus and a slag discharging method.
  • an ash hopper for collecting slag (molten slag) generated and dropped by the combustor (Patent Documents 1 and 2).
  • the ash hopper is provided with a slag crusher provided with a screen and a spreader.
  • the slag falling from the combustor is rapidly cooled and solidified with water and falls to the upper surface of the screen provided in the slag crusher.
  • the screen is provided to intersect the slug falling direction and has a plurality of openings. Thereby, the screen passes slag smaller than the diameter of the opening and drops it to the lower part of the ash hopper.
  • slag larger than the diameter of the opening and slag lumps which are deposits of slag smaller than the diameter of the opening are deposited.
  • the slag lumps are bonded by the cross-linking by the frictional force or the powder pressure in the particle layer of the slag.
  • a spreader provided on the upper surface of the screen moves on the upper surface of the screen by, for example, a hydraulic cylinder, and breaks down the slag deposited on the upper surface of the screen by applying a force to pass through the screen.
  • Slag that has fallen and accumulated from the opening of the screen to the lower part of the ash hopper is discharged from the gasification furnace through the lock hopper to the outside of the system.
  • the deposited slag may not be crushed and may only be gathered in the working direction of the slag crusher and not pass through the screen. Then, the amount of deposited slag on the upper surface of the screen increases, so that the slag may not be discharged from the gasification furnace and the ash hopper may be filled with the slag. In this case, it is difficult to continue the operation of the gasification furnace, and the gasification furnace is to be stopped.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a slag discharge device and a slag discharge method which can more easily pass slag deposited on the upper surface of the screen from the opening of the screen. I assume.
  • the slag discharge device and slag discharge method of the present invention adopt the following means.
  • the slag discharge device is provided in a combustor of a gasification furnace for gasifying a carbon-containing fuel, and is a slag discharge device which discharges slag generated and dropped by the combustor from the gasification furnace
  • a screen which is provided to intersect the falling direction of the slag and which has a plurality of openings, and which passes the slag smaller than the diameter of the openings; moving the upper surface of the screen, the screen And crusher means for crushing the slag deposited on the upper surface of the gutter, and water flow forming means for flowing a liquid to the slag deposited on the screen to form a water flow.
  • the slag discharge device is provided in a combustor of a gasification furnace that gasifies carbon-containing fuel, and discharges slag generated and dropped by the combustor from the gasification furnace.
  • a slag discharge device is equipped with a screen which is provided to intersect with the falling direction of the slag and has a plurality of openings. Slag smaller than the diameter of the opening of the screen passes through the opening and drops. On the other hand, the slag deposited on the upper surface of the screen without passing through the opening is broken by the crushing means moving on the upper surface of the screen.
  • the slag deposited on the upper surface of the screen includes a slag lump in which slag smaller than the diameter of the opening is bonded by the cross-linking by the frictional force or the powder pressure.
  • a liquid is flowed to the slag deposited on the upper surface of the screen to form a water flow.
  • the pressurized liquid is ejected from the particles of the slag bonded by the crosslinking, whereby the bond due to the crosslinking is broken.
  • the slag fluidizes slowly from the stationary state.
  • the liquid jetted to the slag is, for example, water.
  • the slag which has become easy to flow is made to flow by the liquid from the water flow forming means. Thereby, the slag falls together with the liquid from the opening of the screen without moving the crushing means. In addition, slag can be easily dropped from the opening also by moving the crushing means.
  • this configuration can more easily pass the slag deposited on the upper surface of the screen from the opening of the screen.
  • the water flow forming means be provided on the side wall of the screen, which is provided in parallel with the operating direction of the crushing means.
  • the pressurized liquid can be ejected easily and uniformly to the deposited slag.
  • the water flow forming means is preferably provided in the crushing means.
  • the liquid pressurized more reliably is ejected to the slag crushed by the crushing means, so that the bond due to the crosslinking of the deposited slag is cut and the slag easily passes through the screen .
  • the said crushing means is equipped with the inclined surface forwardly inclined with respect to the crushing direction of the said slag.
  • the water flow forming means be provided on the inclined surface and eject the liquid in the direction of the screen.
  • the water flow forming means is preferably provided to the screen.
  • the deposition of slag on the upper surface of the screen can be suppressed, and the pressurized liquid can be ejected easily and uniformly to the deposited slag.
  • the water flow forming means eject gas instead of liquid.
  • the movement of the crushing means can be stabilized, for example, by preventing the floating of the crushing means when moving.
  • a plurality of the crushing means are provided adjacent to the upper surface of the screen, and the screen is divided by the dividing means between the adjacent crushing means and divided for each divided area
  • the water flow forming means is provided below.
  • the other adjacent breaking means is provided by the water flow from the water flow forming means provided below the region corresponding to the predetermined breaking means.
  • the slag is moved to the area corresponding to.
  • the relatively small slag is flowed to the area corresponding to the other crushing means by the water flow from the water flow forming means and is dropped from the screen there. And since the operating crushing means crushes relatively large slag not flowed by the water flow, it is possible to prevent large slag from remaining on the screen.
  • the lower end portion of the crushing unit is formed so as to be in surface contact with the facing surface in the width direction when moving.
  • this configuration can more reliably crush the slag on the screen, thereby preventing the large slag from remaining on the screen.
  • the gas is ejected from the upper surface of the screen in a state in which the upper surface of the screen is filled with water, whereby the bond due to the crosslinking of the slag is cut by the rise of the air bubbles.
  • the slag is fluidized, the slag deposited on the upper surface of the screen is more likely to pass through the opening of the screen.
  • a slag discharge method is a slag discharge device provided in a combustor of a gasification furnace for gasifying a carbon-containing fuel, and discharging slag generated and dropped by the combustor from the gasification furnace.
  • the slag discharging method used is to flow a liquid from the water flow forming means to form a water flow with respect to the slag deposited on the upper surface of the screen provided so as to intersect the falling direction of the slag and having a plurality of openings.
  • the first step, and a crushing step of crushing the slag deposited on the upper surface of the screen includes a second step of moving the upper surface of the screen.
  • FIG. 1 is a longitudinal sectional view of a gasification furnace 10 according to the first embodiment.
  • the carbon-containing fuel applied to the gasification furnace 10 according to the first embodiment includes heavy fuel such as coal, petroleum coke, coal coke, asphalt, pitch, oil shale, etc., waste tires, plastics, etc. Waste is an example.
  • heavy fuel such as coal, petroleum coke, coal coke, asphalt, pitch, oil shale, etc., waste tires, plastics, etc. Waste is an example.
  • the carbon-containing fuel to be gasified is coal will be described.
  • pulverized coal supplied from a coal supply facility (not shown) and a dust removing device (not shown) are recovered.
  • the char supplied is reacted with the oxidant.
  • the pulverized coal is burned at a high temperature in the combustor 12 to generate coal gas, which is a combustible gas, and to generate the slag 14 in which the ash in the pulverized coal is melted.
  • the high temperature coal gas obtained by the high temperature combustion of the combustor 12 flows into the reductor 16 provided on the upper stage of the combustor 12.
  • pulverized coal and char are supplied, and the supplied pulverized coal and char are further gasified to generate combustible gas by coal gas.
  • the combustor 12 which concerns on the 1st Embodiment of this invention is a spouted bed type, not only this but a fluidized bed type and a fixed bed type may be sufficient.
  • an ash hopper 18 is provided which collects the slag 14 produced and dropped by the combustor 12.
  • the ash hopper 18 is provided with a slag crusher 20 that crushes the slag 14 and discharges it from the gasification furnace 10.
  • the lower part of the gasification furnace 10 is filled with water up to the area where the slag crusher 20 is provided.
  • FIG. 2 is a longitudinal sectional view showing the configuration of the slag crusher 20 according to the first embodiment.
  • the slag crusher 20 includes a screen 22 (also referred to as crusher mesh), a spreader 24, and a nozzle 26.
  • the slag 14 falling from the combustor 12 is rapidly cooled and solidified by water (hereinafter referred to as "ash hopper water”) ejected from the ash hopper water supply pipe 28, and falls onto the upper surface of the screen 22 provided in the slag crusher 20.
  • ash hopper water water
  • the screen 22 is provided to intersect with the falling direction of the slug 14 and has a plurality of openings 30 and passes the slug 14 smaller than the diameter of the opening 30.
  • the screen 22 is, for example, a plate-like member having an opening 30.
  • the shape of the opening 30 is not particularly limited, and is, for example, a circle, a polygon, or the like.
  • the slag 14 which has passed through the opening 30 falls to the lower part of the ash hopper 18 together with the ash hopper water.
  • the lock hopper 34 is connected to the lower part of the ash hopper 18 as shown in FIG. 1, and the slag 14 dropped to the lower part of the ash hopper 18 is discharged out of the system through the lock hopper 34.
  • the gasification furnace 10 of FIG. 1 employ
  • the spreader 24 is moved on the upper surface of the screen 22 by the hydraulic cylinder 36 and the guide rod 37 to break up the slag 14 deposited on the upper surface of the screen 22.
  • the position of the spreader 24 shown in FIG. 2 is a standby position before moving the upper surface of the screen 22.
  • a support plate 38 is provided on the opposite side of the standby position of the spreader 24. That is, the spreader 24 scrapes the slag 14 deposited on the upper surface of the screen 22 by moving from the standby position to the backing plate 38. Then, the spreader 24 crushes the deposited slag 14 by sandwiching the slag 14 with the receiving plate 38.
  • a protrusion 40 is provided on the front of the spreader 24 in order to facilitate the crushing of the slag 14.
  • protrusion 40 shown by FIG. 2 is a conical shape as an example, it may not only be this but for example, frusto-conical shape, a polygon drooping shape, a polygon drooping shape etc.
  • the spreader 24 which concerns on the 1st Embodiment of this invention is equipped with the inclined surface 24A inclined forward with respect to the crushing direction of the slag 14. As shown in FIG.
  • the inclined surface 24A is provided at the lower portion of the spreader 24.
  • the spreader 24 mainly scrapes the deposited slag 14 by the inclined surface 24A.
  • Above the inclined surface 24A is a vertical surface 24B perpendicular to the screen 22.
  • the nozzle 26 is a water flow forming means for flowing the slag 14 deposited on the screen 22 to form a water flow, and as a specific example, is a jet hole for jetting a pressurized liquid.
  • the nozzle 26 according to the first embodiment is provided on the inclined surface 24A of the spreader 24. As shown in the front view of the spreader 24 of FIG. 3, the nozzles 26 are horizontally provided on the inclined surface 24A, for example.
  • the pressurized liquid ejected from the nozzle 26 is, for example, water, but it is not limited to this, and may be any liquid that can cut the crosslinking of the slag 14 as described later.
  • pressurized water is referred to as high pressure water in the following description.
  • the pressure of high pressure water is, for example, 3 to 5 MPa.
  • a water supply pipe 42 for supplying high pressure water to the ash hopper water supply pipe 28 is branched and connected to the nozzle 26. More specifically, the branched water supply pipe 42 is connected to the high pressure hose 44.
  • the high pressure hose 44 is flexible to accommodate the movement of the spreader 24 and is supported by the high pressure hose receiver 46.
  • the high pressure hose 44 is connected to the high pressure water header 48.
  • the high pressure water header 48 supplies high pressure water to the plurality of nozzles 26.
  • the slag 14 produced by the combustor 12 falls on the top surface of the screen 22.
  • the slug 14 smaller than the diameter of the opening 30 of the screen 22 passes through the opening 30 and falls to the lower part of the ash hopper 18, that is, the lower part of the gasification furnace 10 .
  • slag 14 which is larger than the diameter of the opening 30 and slag lumps which are deposits of slag 14 smaller than the diameter of the opening 30 can not pass through the opening 30 and is deposited on the upper surface of the screen 22. Therefore, the spreader 24 moves the upper surface of the screen 22 from the standby position to the support plate 38 at predetermined time intervals. As a result, the spreader 24 fractures the deposited slag 14 so that the slag 14 can easily pass through the opening 30.
  • the spreader 24 since the spreader 24 according to the first embodiment applies a downward force to the deposited slag 14 by the inclined surface 24A, the deposited slag 14 can be crushed more reliably.
  • slag lumps in which small slags 14 are linked by crosslinking may not be crushed by the spreader 24 and may be gathered in the moving direction of the spreader 24 without passing through the opening 30. Therefore, high pressure water is jetted from the nozzle 26 provided on the inclined surface 24A of the spreader 24 toward the slag 14. The high pressure water is ejected to the particles of the slag 14 bonded by the crosslinking, whereby the bond due to the crosslinking is cut. As a result, the slag 14 fluidizes slowly from the stationary state.
  • the nozzle 26 on the inclined surface 24A, the high pressure water is more reliably ejected to the slag 14 crushed by the spreader 24, so that the deposited slag 14 can be crushed more reliably.
  • the high-pressure water jetted from the nozzle 26 may be synchronized with the time interval in which the spreader 24 moves, or may be performed intermittently or continuously regardless of the time interval in which the spreader 24 moves.
  • the slag 14 which became easy to flow is flowed by the high pressure water which ejects from the nozzle 26. As shown in FIG. As a result, the slag 14 falls together with the high pressure water from the opening 30 of the screen 22 without moving the spreader 24. In addition, the slag 14 is easily dropped from the opening 30 also by moving the spreader 24.
  • the slag crusher 20 is provided so as to intersect the falling direction of the slag 14 and has a plurality of openings 30 and is smaller than the diameter of the openings 30.
  • a spreader 24 for moving the upper surface of the screen 22 and breaking the slag 14 deposited on the upper surface of the screen 22; a nozzle 26 for injecting high pressure water to the slag 14 deposited on the screen 22; And.
  • the slag crusher 20 can more easily pass the slag 14 deposited on the upper surface of the screen 22 from the opening 30 of the screen 22. Thereby, even if the slag 14 is deposited on the upper surface of the screen 22, the slag crusher 20 can more reliably discharge the slag 14. As a result, it is possible to prevent the operation of the gasifier 10 from being stopped due to the deposition of the slag 14, and the continuous operation of the gasifier 10 becomes possible.
  • the slag crusher 20 which concerns on the 1st embodiment of this invention equips the inclined surface 24A of the spreader 24 with the nozzle 26, you may provide the nozzle 26 not only with this but the perpendicular surface 24B of the spreader 24.
  • FIG. 1 the slag crusher 20 which concerns on the 1st embodiment of this invention equips the inclined surface 24A of the spreader 24 with the nozzle 26.
  • the configuration of the gasification furnace 10 according to the second embodiment is the same as the configuration of the gasification furnace 10 according to the first embodiment shown in FIG.
  • FIG. 4 is a longitudinal sectional view of the spreader 24 according to the second embodiment, as viewed from the side.
  • FIG. 5 is a longitudinal cross-sectional view of the spreader 24 according to the second embodiment as viewed from the front, and is a cross-sectional view taken along the line AA of FIG.
  • the same reference numerals as in FIGS. 2 and 3 denote the same parts in FIGS. 4 and 5 as in FIGS. 2 and 3, and a description thereof will be omitted.
  • the nozzle 26 according to the second embodiment is provided on the inclined surface 24A and spouts high pressure water in the direction of the screen 22.
  • a header 50 is provided inside the spreader 24.
  • a plurality of downwardly directed nozzles 26 are connected to the header 50, and high pressure water is jetted from the nozzles 26 to the upper surface of the screen 22.
  • the high-pressure water jetted from the nozzle 26 may be synchronized with the time interval in which the spreader 24 moves, or may be performed intermittently or continuously regardless of the time interval in which the spreader 24 moves.
  • the header 50 may not be provided.
  • the slag crusher 20 can crush the deposited slag 14 more reliably because the downward force is applied to the slag 14 crushed by the spreader 24 even by the high pressure water.
  • the configuration of the gasification furnace 10 according to the third embodiment is the same as the configuration of the gasification furnace 10 according to the first embodiment shown in FIG.
  • the screen 22 is provided with a nozzle 60 for spouting high pressure water.
  • FIG. 6 is an example of a longitudinal sectional view of the screen 22 according to the third embodiment.
  • the side surface of the opening 30 of the screen 22 is provided with a nozzle 60 to which high pressure water is supplied via the header 62.
  • a water supply pipe 42 for supplying high pressure water to the ash hopper water supply pipe 28 is branched and connected.
  • FIG. 7 is a longitudinal sectional view of a screen 22 according to a modification of the third embodiment.
  • the top surface of the screen 22 is provided with a nozzle 60 to which high pressure water is supplied via the header 62.
  • the ejection of high pressure water from the nozzle 60 may be synchronized with the time interval in which the spreader 24 moves, or may be performed intermittently or continuously regardless of the time interval in which the spreader 24 moves.
  • the high pressure water is ejected to the particles of the slag 14 bonded by the crosslinking, whereby the bond due to the crosslinking is cut.
  • the deposited slag 14 becomes easy to fluidize.
  • high pressure water is spouted from the lower side to the upper side of the screen 22, so that the deposition of the slag 14 on the upper surface of the screen 22 can be suppressed, and the pressurized liquid can be simplified with respect to the deposited slag 14 It can spout uniformly.
  • the configuration of the gasification furnace 10 according to the fourth embodiment is the same as the configuration of the gasification furnace 10 according to the first embodiment shown in FIG.
  • FIGS. 8 and 9 are longitudinal sectional views of the screen 22 according to the fourth embodiment.
  • the same reference numerals as in FIGS. 6 and 7 denote the same parts in FIGS. 8 and 9 as in FIGS.
  • the screen 22 according to the fourth embodiment ejects high pressure gas (hereinafter referred to as “high pressure gas”) from the nozzle 60 instead of high pressure water. For this reason, the header 62 is connected to a high pressure gas supply pipe 42 for supplying high pressure gas.
  • high pressure gas high pressure gas
  • the high pressure gas may be jetted from the nozzle 60 synchronously with the time interval of movement of the spreader 24 or intermittently or continuously regardless of the time interval of movement of the spreader 24.
  • the upper surface of the screen 22 is filled with water by high-pressure water jetted from the nozzle 60 provided to the spreader 24 and water from the ash hopper water supply pipe 28. Then, in the slag crusher 20 according to the fourth embodiment, bubbles of high pressure gas rise from the upper surface of the screen 22 when the gas is spouted from the upper surface of the screen 22 in a state where water is applied to the upper surface of the screen 22 Do. The rise of the bubbles breaks the bond of the slag 14 due to the crosslinking. For this reason, since the slag 14 is fluidized, the slag 14 deposited on the upper surface of the screen 22 can pass through the opening 30 of the screen 22 more easily.
  • the configuration of the gasification furnace 10 according to the fifth embodiment is the same as the configuration of the gasification furnace 10 according to the first embodiment shown in FIG.
  • FIG. 10 is a top view of the slag crusher 20 according to the fifth embodiment.
  • FIG. 11 is a longitudinal sectional view of the screen 22 and the side wall 70 according to the fifth embodiment, and is an AA sectional view of FIG.
  • the same reference numerals as in FIGS. 2 and 3 denote the same parts in FIGS. 10 and 11 as in FIGS. 2 and 3, and a description thereof will be omitted.
  • the slag crusher 20 has a nozzle 72 for spouting high pressure water on the side wall 70 of the screen 22 erected in parallel with the operating direction of the spreader 24. As shown in FIG. 11, the nozzle 72 is provided at the lower part of the side wall 70 as an example.
  • the slag crusher 20 can eject high pressure water simply and uniformly to the deposited slag 14. Further, since the nozzle 72 is provided on the side wall 70, it can be easily installed on the slag crusher 20. The high pressure water jetted from the nozzle 72 may be used as the ash hopper water.
  • the configuration of the gasification furnace 10 according to the sixth embodiment is the same as the configuration of the gasification furnace 10 according to the first embodiment shown in FIG.
  • the slag crusher 20 according to the sixth embodiment is provided with a guide 80 for limiting the moving direction of the spreader 24, as shown in FIGS. That is, the guide 80 is provided along the moving direction of the spreader 24.
  • 13, 14 and 15 are respectively a top view, a longitudinal sectional view of a side view and a longitudinal sectional view of a front view of the slag crusher 20 according to the present sixth embodiment.
  • the slag crusher 20 has a configuration in which the two spreaders 24 opposed to each other form a pair, and the pair of spreaders 24 crush the slag 14 by moving on the upper surface of the screen 22.
  • first chamber 82_1 first chamber 82_1
  • second chamber 82_2 second chamber 82_2
  • the slag crusher 20 may be provided with three or more pairs of spreaders 24. In this case, the two or more partitions 81 divide the area into three or more areas.
  • the guide 80 is formed by side plates 80A provided on both sides of the spreader 24 and an upper plate 80B provided on the upper part of the spreader 24.
  • the upper plate 80B covers a part of the upper part of the movement range of the spreader 24.
  • the partitioning portion 81 since the partitioning portion 81 is provided on the side surface of the spreader 24, the partitioning portion 81 partitions the screen 22 and also has a function of the guide 80.
  • the side plate 80A may be integrated with the side wall 70 of the screen 22.
  • the movement of the spreader 24 is more stable.
  • the spreader 24 is suppressed from rising by the upper plate 80B, the spreader 24 is prevented from being in the front.
  • the purge nozzle 83 is provided below the screen 22 near the approximate center of the first chamber 82_1 and the second chamber 82_2, and from below the screen 22 to the slag 14 liquid (for example, water, hereinafter referred to as "purge water"). Flow to form a stream of water.
  • the relatively small slag 14 (light slag 14) of the slag 14 on the screen 22 is lifted up from the screen 22 by the purge water.
  • the slag crusher 20 operates the pair of spreaders 24 alternately. That is, the slag crushers 20 of the second and fourth systems do not operate during the operation of the slag crushers 20 of the first and third systems. On the other hand, the slag crushers 20 of the first and third systems do not operate during the operation of the slag crushers 20 of the second and fourth systems.
  • the slag crusher 20 moves to the area corresponding to the other adjacent spreader 24 by the water flow from the purge nozzle 83 provided below the area corresponding to the predetermined spreader 24.
  • the slag 14 is moved.
  • purge water flows from a purge nozzle 83 provided below the first chamber 82_1. Since the slag 14 on the screen 22 of the first chamber 82_1 is lifted by this water flow, and both sides of the slag crusher 20 are the inner wall of the gasification furnace 10, the lifted slag 14 moves to the second chamber 82_2. At this time, the slag 14 moving to the second chamber 82_2 is a relatively small (light) slag 14 and the relatively large (heavy) slag 14 remains in the first chamber 82_1. The slag 14 moved to the second chamber 82_2 falls from the opening 30 of the screen 22 of the second chamber 82_2.
  • the slag 14 remaining in the first chamber 82_1 is crushed by the operation of the spreaders 24 of the first and third systems, and falls from the opening 30 of the screen 22 of the first chamber 82_1.
  • the slag crusher 20 operates the second and fourth spreaders 24 after the first and third spreaders 24 operate.
  • purge water flows from the purge nozzle 83 provided below the second chamber 82_2, and the slag 14 on the screen 22 of the second chamber 82_2 becomes the first chamber.
  • the second and fourth spreaders 24 will be activated.
  • the slag crusher 20 causes the small slag 14 to flow to the area corresponding to the other spreader 24 by the water flow from the purge nozzle 83 and drop from the screen 22 there. And since the spreader 24 which works operates fractures the relatively large slag 14 which was not flowed by the water flow, the large slag 14 can be prevented from remaining on the screen 22.
  • the configuration of the gasification furnace 10 according to the seventh embodiment is the same as the configuration of the gasification furnace 10 according to the first embodiment shown in FIG.
  • the slag crusher 20 according to the seventh embodiment the two spreaders 24 opposed to each other form a pair, and the slag 14 is crushed by moving the upper surface of the pair of screens 22.
  • FIG. 16 is a longitudinal cross-sectional view for explaining the residual state of the slag 14. As shown in FIG. 16, even if the spreader 24 moves, if there is a gap between the lowermost projection 40 and the screen 22, the slag 14 may remain in this gap.
  • the lower end portion of the spreader 24 according to the seventh embodiment is formed with a projecting portion 90 so as to make a cross-surface contact in the width direction with the opposite surface when moving.
  • the protrusion 90 is, for example, a rectangular parallelepiped shape extending in the width direction of the spreader 24.
  • FIG. 17 is a longitudinal cross-sectional view of the slag crusher 20 according to the seventh embodiment as viewed from the side, in which (A) shows the state before the spreader 24 moves and (B) shows the state after the spreader 24 moves. It is a state. Then, as shown in FIG. 17B, when the spreader 24 moves, the surfaces of the projecting portions 90 of the opposing spreaders 24 contact each other in the width direction, so there is a gap between the opposing spreaders 24. It disappears.
  • the slag crusher 20 according to the seventh embodiment can crush the slag 14 on the screen 22 more reliably, the large slag 14 can be prevented from remaining on the screen 22.
  • the present invention is limited to this.
  • a spreader 24 may be provided, and the pair of spreaders 24 may break the slag 14 by moving on the upper surface of the screen 22.
  • the spreader 24 faces each other and the pair of spreaders 24 move the upper surface of the screen 22 to crush the slag 14, but the present invention is limited to this. Instead, the spreader 24 and the support plate 38 may be opposed to each other, and the spreader 24 may be moved toward the support plate 38.
  • the slag crusher 20 includes the nozzles 26, 60 and 72 described in the first to fifth embodiments, and the nozzles 26, 60 and 72 appropriately use high pressure water or high pressure gas. It may be in a form of spouting. For example, when the spreader 24 does not operate, the nozzles 26, 60, 72 eject high pressure water or high pressure gas.
  • the nozzles 26, 60, 72 and the purge nozzle 83 describe the form of flowing water or gas, but the purity of water is not particularly limited, and for the purpose of facilitating the discharge of the slag 14 It may be an aqueous solution or a solution.
  • the gas is, for example, air or an inert gas (nitrogen gas, argon gas or the like), but is not particularly limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

スラグクラッシャ(20)は、炭素含有燃料をガス化させるガス化炉(10)のコンバスタに設けられ、コンバスタで生成されて落下したスラグをガス化炉(10)から排出する。スラグクラッシャ(20)は、スラグの落下方向に対して交差するように設けられると共に複数の開口部(30)を有し、開口部(30)の径より小さなスラグを通過させるスクリーン(22)と、スクリーン(22)の上面を移動し、スクリーン(22)の上面に堆積したスラグを破砕するスプレッダ(24)と、スクリーン(22)に堆積したスラグに対して高圧水を噴出するノズル(26)と、を備える。これにより、スクリーン(22)の上面に堆積したスラグは、スクリーン(22)の開口部(30)からより通過し易くなる

Description

スラグ排出装置及びスラグ排出方法
 本発明は、スラグ排出装置及びスラグ排出方法に関するものである。
 石炭等の炭素含有燃料をガス化させるガス化炉の下部には、コンバスタで生成されて落下したスラグ(溶融スラグ)を集めるアッシュホッパが備えられている(特許文献1,2)。
 アッシュホッパには、スクリーン及びスプレッダを備えるスラグクラッシャが設けられる。コンバスタから落下するスラグは、水で急速に冷却されて固化し、スラグクラッシャが備えるスクリーンの上面に落下する。
 このスクリーンは、スラグの落下方向に対して交差するように設けられると共に複数の開口部を備えている。これにより、スクリーンは、開口部の径より小さなスラグを通過させ、アッシュホッパの下部へ落下させる。
 一方、スクリーンの上面には、開口部の径よりも大きなスラグや、開口部の径よりも小さなスラグの堆積であるスラグ塊が堆積する。スラグ塊は、スラグの粒子層内での摩擦力や粉体圧による架橋により結合している。
 そこで、スクリーンの上面に設けられたスプレッダが、例えば油圧シリンダによってスクリーンの上面を移動し、スクリーンの上面に堆積したスラグに力を加えることで破砕し、スクリーンを通過させる。
 スクリーンの開口部からアッシュホッパの下部へ落下し堆積したスラグは、ガス化炉からロックホッパを介して系外へ排出される。
特開平7-247484号公報 特開平9-38510号公報
 しかしながら、スプレッダを作動させても、堆積したスラグが破砕されず、スラグクラッシャの作動方向に寄せ集められるだけで、スクリーンを通過しないことがある。
 そして、スクリーンの上面でのスラグの堆積量が多くなり、ガス化炉からスラグが排出されず、アッシュホッパ内にスラグが充満する場合がある。この場合、ガス化炉の運転継続が困難となり、ガス化炉を停止することとなる。
 本発明は、このような事情に鑑みてなされたものであって、スクリーンの上面に堆積したスラグをスクリーンの開口部からより通過し易くできる、スラグ排出装置及びスラグ排出方法を提供することを目的とする。
 上記課題を解決するために、本発明のスラグ排出装置及びスラグ排出方法は以下の手段を採用する。
 本発明の第一態様に係るスラグ排出装置は、炭素含有燃料をガス化させるガス化炉のコンバスタに設けられ、前記コンバスタで生成されて落下したスラグを前記ガス化炉から排出するスラグ排出装置あって、前記スラグの落下方向に対して交差するように設けられると共に複数の開口部を有し、該開口部の径より小さな前記スラグを通過させるスクリーンと、前記スクリーンの上面を移動し、前記スクリーンの上面に堆積した前記スラグを破砕する破砕手段と、前記スクリーンに堆積した前記スラグに対して液体を流し水流を形成する水流形成手段と、を備える。
 本構成に係るスラグ排出装置は、炭素含有燃料をガス化させるガス化炉のコンバスタに設けられ、コンバスタで生成されて落下したスラグをガス化炉から排出する。
 そして、スラグ排出装置は、スラグの落下方向に対して交差するように設けられると共に複数の開口部を有するスクリーンを備える。スクリーンの開口部の径より小さなスラグが開口部を通過して落下する。一方、開口部を通過せずに、スクリーンの上面に堆積したスラグは、スクリーンの上面を移動する破砕手段によって破砕される。
 ここで、スクリーンの上面に堆積するスラグには、開口部の径よりも小さなスラグが摩擦力や粉体圧による架橋により結合したスラグ塊が含まれる。
 堆積するスラグを除去するために水流形成手段から、スクリーンの上面に堆積したスラグに対して液体を流し水流が形成される。架橋によって結合したスラグの粒子に加圧された液体が噴出されることで、架橋による結合が切断される。これにより、スラグが静置状態から緩やかに流動化する。なお、スラグに噴出される液体は、例えば水である。
 そして、流動し易くなったスラグは、水流形成手段からの液体によって流される。これにより、スラグは、破砕手段を移動させることなく、スクリーンの開口部から液体と共に落下することとなる。また、スラグは、破砕手段を移動させることによっても、簡易に開口部から落下し易くなる。
 以上のように、本構成は、スクリーンの上面に堆積したスラグをスクリーンの開口部からより通過し易くできる。
 上記第一態様では、前記水流形成手段が、前記破砕手段の作動方向に対して並行に立設された前記スクリーンの側壁に備えられることが好ましい。
 本構成によれば、堆積したスラグに対して、加圧された液体を簡易かつ均一に噴出できる。
 上記第一態様では、前記水流形成手段が、前記破砕手段に備えられることが好ましい。
 本構成によれば、破砕手段によって破砕されるスラグに対して、より確実に加圧された液体が噴出されるので、堆積したスラグの架橋による結合を切断し、スクリーンをスラグが通過し易くする。
 上記第一態様では、前記破砕手段が、前記スラグの破砕方向に対して前傾した傾斜面を備えることが好ましい。
 本構成によれば、堆積したスラグに対して下向きの力が加わるので、堆積したスラグの架橋による結合を切断し、スクリーンをスラグが通過し易くする。
 上記第一態様では、前記水流形成手段が、前記傾斜面に設けられ、前記スクリーンの方向へ液体を噴出することが好ましい。
 本構成によれば、破砕手段によって破砕されるスラグに対して、噴出する液体によっても下向きの力が加わるので、堆積したスラグをより確実に破砕できる。
 上記第一態様では、前記水流形成手段が、前記スクリーンに備えられることが好ましい。
 本構成によれば、スクリーンの上面でのスラグの堆積を抑制でき、かつ堆積したスラグに対して、加圧された液体を簡易かつ均一に噴出できる。
 上記第一態様では、前記水流形成手段が、液体の替わりに気体を噴出することが好ましい。
 上記第一態様では、前記破砕手段の移動方向を制限するガイドを備えることが好ましい。
 本構成によれば、破砕手段が移動する際における浮き上がりを防止する等、破砕手段の移動を安定にすることができる。
 上記第一態様では、前記スクリーンの上面に複数の前記破砕手段を隣接して備えると共に、隣接する前記破砕手段の間で前記スクリーンが仕切り手段によって仕切られことで区分けされ、区分けされた領域毎の下方に前記水流形成手段を備えることが好ましい。
 本構成によれば、水流形成手段が形成する水流によってスクリーン上のスラグが流されるので、スラグがスクリーンに残留することを防止できる。
 上記第一態様では、所定の前記破砕手段を作動させる前に、該所定の前記破砕手段に対応する前記領域の下方に備えられた前記水流形成手段からの水流によって、隣接する他の前記破砕手段に対応する前記領域へ前記スラグを移動させることが好ましい。
 本構成によれば、水流形成手段からの水流によって相対的に小さなスラグが他の破砕手段に対応する領域へ流されそこでスクリーンから落下する。そして、作動する破砕手段は、水流によって流されなかった相対的に大きなスラグを破砕するので、大きなスラグがスクリーンに残留することを防止できる。
 上記第一態様では、前記破砕手段の下端部が、移動したときに対向する面と幅方向に渡り面接触するように形成されることが好ましい。
 本構成によれば、破砕手段の下端部が、移動したときに対向する面と幅方向に渡り面接触するので、破砕手段の下端部とその対向面との間に隙間が無くなる。従って、本構成は、スクリーン上のスラグをより確実に破砕することができるので、大きなスラグがスクリーンに残留することを防止できる。
 本構成によれば、スクリーンの上面に水が張られた状態で、スクリーンの上面から気体が噴出することにより、気泡の上昇によってスラグの架橋による結合が切断される。これにより、スラグが流動化するので、スクリーンの上面に堆積したスラグは、スクリーンの開口部をより通過し易くなる。
 本発明の第二態様に係るスラグ排出方法は、炭素含有燃料をガス化させるガス化炉のコンバスタに設けられ、前記コンバスタで生成されて落下したスラグを前記ガス化炉から排出するスラグ排出装置を用いたスラグ排出方法あって、前記スラグの落下方向に対して交差するように設けられると共に複数の開口部を有するスクリーンの上面に堆積したスラグ対して、水流形成手段から液体を流し水流を形成する第1工程と、前記スクリーンの上面に堆積した前記スラグを破砕する破砕手段が、前記スクリーンの上面を移動する第2工程と、を含む。
 本発明によれば、スクリーンの上面に堆積したスラグをスクリーンの開口部からより通過し易くできる、という優れた効果を有する。
本発明の第1実施形態に係るガス化炉の縦断面図である。 本発明の第1実施形態に係るスラグクラッシャの縦断面図である。 本発明の第1実施形態に係るスプレッダの正面図である。 本発明の第2実施形態に係るスプレッダの側面視の縦断面図である。 本発明の第2実施形態に係るスプレッダの正面視の縦断面図である。 本発明の第3実施形態に係るスクリーンの縦断面図である。 本発明の第3実施形態の変形例に係るスクリーンの縦断面図である。 本発明の第4実施形態に係るスクリーンの縦断面図である。 本発明の第4実施形態の変形例に係るスクリーンの縦断面図である。 本発明の第5実施形態に係るスラグクラッシャの上面図である。 本発明の第5実施形態に係るスクリーン及び側壁の縦断面図である。 スプレッダの浮き上がりを説明するための縦断面図である。 本発明の第6実施形態に係るスラグクラッシャの上面図である。 本発明の第6実施形態に係るスラグクラッシャの側面視の縦断面図である。 本発明の第6実施形態に係るスラグクラッシャの正面視の縦断面図である。 スラグの残留状態を説明するための側面視の縦断面図である。 本発明の第7実施形態に係るスラグクラッシャの側面視の縦断面図である。
 以下に、本発明に係るスラグ排出装置及びスラグ排出方法の一実施形態について、図面を参照して説明する。
〔第1実施形態〕
 以下、本発明の第1実施形態について説明する。
 図1は、本第1実施形態に係るガス化炉10の縦断面図である。
 本第1実施形態に係るガス化炉10に適用される炭素含有燃料は、石炭、石油コーク、石炭コークス、アスファルト、ピッチ、オイルシェール等の重質系燃料の外、廃タイヤ、プラスティックス等の廃棄物が一例として挙げられる。以下の各実施形態では、ガス化させる炭素含有燃料を石炭とする場合について説明する。
 ガス化炉10では、灰融点以上の1500~1800℃程度の高温雰囲気とされるコンバスタ12において、石炭供給設備(不図示)から供給される微粉炭と、脱塵装置(不図示)で回収されて供給されるチャーとが、酸化剤と反応する。これにより、コンバスタ12では、微粉炭が高温燃焼されることによって、可燃性ガスである石炭ガスが生成されると共に、微粉炭中の灰分が溶融したスラグ14が生成される。
 そして、コンバスタ12の高温燃焼により得られた高温の石炭ガスが、コンバスタ12の上段に設けられたリダクタ16に流れ込む。このリダクタ16においても、微粉炭とチャーとが供給され、供給された微粉炭及びチャーが更にガス化して、石炭ガスによる可燃性ガスが生成される。なお、本第1実施形態に係るコンバスタ12は、噴流床式であるが、これに限らず、流動床式や固定床式でもよい。
 ガス化炉10の下部には、コンバスタ12で生成されて落下したスラグ14を集めるアッシュホッパ18が備えられている。
 アッシュホッパ18には、スラグ14を破砕してガス化炉10から排出するスラグクラッシャ20が設けられる。なお、ガス化炉10の下部は、スラグクラッシャ20が備えられる領域まで、水で満たされた状態とされている。
 図2は、本第1実施形態に係るスラグクラッシャ20の構成を示す縦断面図である。
 スラグクラッシャ20は、スクリーン22(クラッシャメッシュともいう。)、スプレッダ24、及びノズル26を備える。
 コンバスタ12から落下するスラグ14は、アッシュホッパ給水管28から噴出する水(以下「アッシュホッパ水」という。)で急速に冷却されて固化し、スラグクラッシャ20が備えるスクリーン22の上面に落下する。
 スクリーン22は、スラグ14の落下方向に対して交差するように設けられると共に複数の開口部30を有し、開口部30の径より小さなスラグ14を通過させる。スクリーン22は、開口部30を有する、例えば板状の部材である。なお、開口部30の形状は特に限定されず、例えば、円形や多角形等である。
 開口部30を通過したスラグ14は、アッシュホッパ水と共にアッシュホッパ18の下部へ落下する。アッシュホッパ18の下部には、図1に示されるようにロックホッパ34が接続されており、アッシュホッパ18の下部に落下したスラグ14は、ロックホッパ34を介して系外へ排出される。
 なお、図1のガス化炉10は、一例として、スラグ14をロックホッパ34まで落下させることで系外へ排出する重力落下方式を採用しているが、これに限らず、スラグ14をロックホッパ34へ落下させることなく、取り出して再利用する横吸出方式が採用されてもよい。
 スプレッダ24は、油圧シリンダ36及びガイドロッド37によってスクリーン22の上面を移動し、スクリーン22の上面に堆積したスラグ14を破砕する。なお、図2に示されるスプレッダ24の位置は、スクリーン22の上面を移動する前の待機位置である。
 スプレッダ24の待機位置の反対側には、受板38が備えられる。すなわち、スプレッダ24は、待機位置から受板38まで移動することによって、スクリーン22の上面に堆積したスラグ14をかき集める。そして、スプレッダ24は、受板38とでスラグ14を挟み込むことによって、堆積したスラグ14を破砕する。なお、スプレッダ24の正面には、スラグ14を破砕し易くするために、突起物40が設けられる。なお、図2に示される突起物40は、一例として円錐形状であるが、これに限らず、例えば円錐台形状、多角垂形状、又は多角垂台形状等であってもよい。
 また、本第1実施形態に係るスプレッダ24は、スラグ14の破砕方向に対して前傾した傾斜面24Aを備える。傾斜面24Aは、スプレッダ24の下部に設けられている。スプレッダ24は、堆積したスラグ14を主に傾斜面24Aによってかき集めることとなる。傾斜面24Aの上方は、スクリーン22に対して垂直とされた垂直面24Bとなっている。
 また、ノズル26は、スクリーン22に堆積したスラグ14に対して流し水流を形成する水流形成手段であり、具体例として加圧された液体を噴出する噴出孔である。本第1実施形態に係るノズル26は、スプレッダ24の傾斜面24Aに備えられる。ノズル26は、図3のスプレッダ24の正面図にも示されるように、一例として、傾斜面24Aに水平に複数設けられる。
 ノズル26から噴出される加圧された液体は、一例として水であるが、これに限らず、後述するようにスラグ14の架橋を切断できる液体であればよい。また、加圧された水を以下の説明において高圧水と称呼する。高圧水の圧力は、一例として3~5MPaである。
 アッシュホッパ給水管28へ高圧水を供給する給水管42は、分岐してノズル26へ接続される。より具体的には、分岐した給水管42は、高圧ホース44に接続される。高圧ホース44は、スプレッダ24の移動に対応するために柔軟性を有しており、高圧ホース受け46によって支えられる。
 高圧ホース44は、高圧水ヘッダ48に接続される。高圧水ヘッダ48は、複数のノズル26へ高圧水を供給する。
 次に本第1実施形態に係るスラグクラッシャ20の作用について説明する。
 コンバスタ12で生成されたスラグ14は、スクリーン22の上面に落下する。
 スクリーン22の上面に落下したスラグ14のうち、スクリーン22の開口部30の径より小さなスラグ14は、開口部30を通過して、アッシュホッパ18の下部、すなわちガス化炉10の下部へ落下する。
 一方、開口部30の径よりも大きなスラグ14や、開口部30の径よりも小さなスラグ14の堆積であるスラグ塊は、開口部30を通過できずにスクリーン22の上面に堆積する。
 そこで、スプレッダ24が所定の時間間隔毎にスクリーン22の上面を待機位置から受板38まで移動する。これにより、スプレッダ24が、堆積したスラグ14を破砕し、スラグ14を開口部30から通過し易くする。
 また、本第1実施形態に係るスプレッダ24は、傾斜面24Aにより、堆積したスラグ14に対して下向きの力を加えるので、堆積したスラグ14をより確実に破砕できる。
 しかし、小さなスラグ14が架橋により結合したようなスラグ塊は、スプレッダ24によっても破砕されず、開口部30を通過せずに、スプレッダ24の移動方向に寄せ集められ場合がある。
 そこで、スプレッダ24の傾斜面24Aに備えられるノズル26からスラグ14に向けて高圧水が噴出される。架橋によって結合したスラグ14の粒子に高圧水が噴出されることで、架橋による結合が切断される。これにより、スラグ14が静置状態から緩やかに流動化する。
 また、ノズル26が傾斜面24Aに備えられることによって、スプレッダ24によって破砕されるスラグ14に対して、より確実に高圧水が噴出されるので、堆積したスラグ14をより確実に破砕できる。
 なお、ノズル26からの高圧水の噴出は、スプレッダ24が移動する時間間隔と同期されてもよいし、スプレッダ24が移動する時間間隔と関係なく、間欠又は連続的に行われてもよい。
 そして、流動し易くなったスラグ14は、ノズル26から噴出される高圧水によって流される。これにより、スラグ14は、スプレッダ24を移動させることなく、スクリーン22の開口部30から高圧水と共に落下することとなる。また、スラグ14は、スプレッダ24を移動させることによっても、簡易に開口部30から落下し易くなる。
 以上説明したように、本第1実施形態に係るスラグクラッシャ20は、スラグ14の落下方向に対して交差するように設けられると共に複数の開口部30を有し、開口部30の径より小さなスラグ14を通過させるスクリーン22と、スクリーン22の上面を移動し、スクリーン22の上面に堆積したスラグ14を破砕するスプレッダ24と、スクリーン22に堆積したスラグ14に対して高圧水を噴出するノズル26と、を備える。
 従って、スラグクラッシャ20は、スクリーン22の上面に堆積したスラグ14をスクリーン22の開口部30からより通過し易くできる。これにより、スラグ14がスクリーン22の上面に堆積してもスラグクラッシャ20により、より確実にスラグ14の排出が可能となる。その結果、スラグ14の堆積によりガス化炉10の運転が停止されることを抑制でき、ガス化炉10の継続的な運転が可能となる。
 なお、本第1実施形態に係るスラグクラッシャ20は、スプレッダ24の傾斜面24Aにノズル26を備えるが、これに限らず、スプレッダ24の垂直面24Bにノズル26を備えてもよい。
〔第2実施形態〕
 以下、本発明の第2実施形態について説明する。
 本第2実施形態に係るガス化炉10の構成は、図1に示す第1実施形態に係るガス化炉10の構成と同様であるので説明を省略する。
 図4は、本第2実施形態に係るスプレッダ24の側面視の縦断面図である。図5は、本第2実施形態に係るスプレッダ24の正面視の縦断面図であり、図4のA-A断面図である。なお、図4,5における図2,3と同一の構成部分については図2,3と同一の符号を付して、その説明を省略する。
 本第2実施形態に係るノズル26は、傾斜面24Aに設けられ、スクリーン22の方向へ高圧水を噴出する。
 一例として、スプレッダ24の内部にはヘッダ50が設けられる。ヘッダ50には、下方向を向いた複数のノズル26が接続され、このノズル26から高圧水がスクリーン22の上面に噴出される。なお、ノズル26からの高圧水の噴出は、スプレッダ24が移動する時間間隔と同期されてもよいし、スプレッダ24が移動する時間間隔と関係なく、間欠又は連続的に行われてもよい。なお、スラグクラッシャ20に高圧水ヘッダ48が備えられている場合は、ヘッダ50が備えられなくてもよい。
 これにより、本第2実施形態に係るスラグクラッシャ20は、スプレッダ24によって破砕されるスラグ14に対して、高圧水によっても下向きの力が加わるので、堆積したスラグ14をより確実に破砕できる。
〔第3実施形態〕
 以下、本発明の第3実施形態について説明する。
 本第3実施形態に係るガス化炉10の構成は、図1に示す第1実施形態に係るガス化炉10の構成と同様であるので説明を省略する。
 本第3実施形態に係るスラグクラッシャ20は、高圧水を噴出するノズル60がスクリーン22に備えられる。
 図6は、本第3実施形態に係るスクリーン22の縦断面図の一例である。
 図6の例では、スクリーン22の開口部30の側面に、ヘッダ62を介して高圧水が供給されるノズル60が備えられる。ヘッダ62は、アッシュホッパ給水管28へ高圧水を供給する給水管42が分岐されて接続される。
 図7は、本第3実施形態の変形例に係るスクリーン22の縦断面図である。
 図7の例では、スクリーン22の上面に、ヘッダ62を介して高圧水が供給されるノズル60が備えられる。
 なお、ノズル60からの高圧水の噴出は、スプレッダ24が移動する時間間隔と同期されてもよいし、スプレッダ24が移動する時間間隔と関係なく、間欠又は連続的に行われてもよい。
 本第3実施形態に係るスラグクラッシャ20は、架橋によって結合したスラグ14の粒子に高圧水が噴出されることで、架橋による結合が切断される。これにより、堆積したスラグ14が流動化し易くなる。
 また、スクリーン22の下方向から上方向へ高圧水が噴出されるので、スクリーン22の上面でのスラグ14の堆積を抑制でき、かつ堆積したスラグ14に対して、加圧された液体を簡易かつ均一に噴出できる。
〔第4実施形態〕
 以下、本発明の第4実施形態について説明する。
 本第4実施形態に係るガス化炉10の構成は、図1に示す第1実施形態に係るガス化炉10の構成と同様であるので説明を省略する。
 図8,9は、本第4実施形態に係るスクリーン22の縦断面図である。なお、図8,9における図6,7と同一の構成部分については図6,7と同一の符号を付して、その説明を省略する。
 本第4実施形態に係るスクリーン22は、ノズル60から高圧水の替わりに高圧の気体(以下「高圧気体」という。)を噴出する。このため、ヘッダ62は、高圧気体を供給する高圧気体給水管42に接続される。
 なお、ノズル60からの高圧気体の噴出は、スプレッダ24が移動する時間間隔と同期されてもよいし、スプレッダ24が移動する時間間隔と関係なく、間欠又は連続的に行われてもよい。
 スクリーン22の上面は、スプレッダ24に備えられたノズル60から噴出する高圧水や、アッシュホッパ給水管28からの水により、水が張られた状態となる。
 そして、本第4実施形態に係るスラグクラッシャ20は、スクリーン22の上面に水が張られた状態で、スクリーン22の上面から気体が噴出することにより、高圧気体の気泡がスクリーン22の上面から上昇する。この気泡の上昇によってスラグ14の架橋による結合が切断される。このため、スラグ14が流動化するので、スクリーン22の上面に堆積したスラグ14が、スクリーン22の開口部30をより通過し易くなる。
〔第5実施形態〕
 以下、本発明の第5実施形態について説明する。
 本第5実施形態に係るガス化炉10の構成は、図1に示す第1実施形態に係るガス化炉10の構成と同様であるので説明を省略する。
 図10は、本第5実施形態に係るスラグクラッシャ20の上面図である。図11は、本第5実施形態に係るスクリーン22及び側壁70の縦断面図であり、図10のA-A断面図である。なお、図10,11における図2,3と同一の構成部分については図2,3と同一の符号を付して、その説明を省略する。
 本第5実施形態に係るスラグクラッシャ20は、高圧水を噴出するノズル72を、スプレッダ24の作動方向に対して並行に立設されたスクリーン22の側壁70に備える。
 図11に示されるように、ノズル72は、一例として、側壁70の下部に備えられる。
 本第5実施形態に係るスラグクラッシャ20は、堆積したスラグ14に対して、高圧水を簡易かつ均一に噴出できる。また、ノズル72は、側壁70に備えられるため、簡易にスラグクラッシャ20へ設置可能である。
 なお、ノズル72から噴出される高圧水は、アッシュホッパ水と兼用されてもよい。
〔第6実施形態〕
 以下、本発明の第6実施形態について説明する。
 本第6実施形態に係るガス化炉10の構成は、図1に示す第1実施形態に係るガス化炉10の構成と同様であるので説明を省略する。
 ここで、図12に示されるように、スプレッダ24がスラグ14を破砕する際、スプレッダ24の下部でスラグ14を破砕することで、スプレッダ24が前のめりになり、ガイドロッド37等に負荷が生じて破損する可能性がある。
 そこで、本第6実施形態に係るスラグクラッシャ20は、図13~15に示されるように、スプレッダ24の移動方向を制限するガイド80を備える。すなわち、ガイド80は、スプレッダ24の移動方向に沿って設けられる。
 なお、図13,14,15は、各々本第6実施形態に係るスラグクラッシャ20の上面図、側面視の縦断面図、正面視の縦断面図である。
 また、本第6実施形態に係るスラグクラッシャ20は、対向する2つのスプレッダ24を一対とし、一対のスプレッダ24がスクリーン22の上面を移動することでスラグ14を破砕する形態とする。
 そして、本第6実施形態に係るスラグクラッシャ20は、一例として、スクリーン22の上面に一対のスプレッダ24が2組隣接して備えられると共に、隣接するスプレッダ24の間でスクリーン22が仕切り部81によって仕切られことで区分けされる。そして、区分けされた領域(以下「第1室82_1」、「第2室82_2」ともいう。)毎の下方にパージノズル83が備えられる。図13に示されるように、第1系統と第3系統のスプレッダ24が一対とされ、第2系統と第4系統のスプレッダ24が一対とされる。
 なお、スラグクラッシャ20は、一対のスプレッダ24を3組以上備えてもよい。この場合、2つ以上の仕切り部81によって3つ以上の領域に区分けされることとなる。
 図14,15に示されるように、ガイド80は、スプレッダ24の両側面に設けられる側板80Aとスプレッダ24の上部に設けられる上板80Bによって形成される。
 上板80Bは、スプレッダ24の移動範囲の上部のうち一部を覆うものである。なお、仕切り部81は、スプレッダ24の側面に設けられることとなるため、スクリーン22を仕切ると共に、ガイド80の機能も有する。また、側板80Aは、スクリーン22の側壁70と一体化されてもよい。
 ガイド80が設けられることによって、スプレッダ24の移動がより安定になる。特に、上板80Bによってスプレッダ24が浮き上がることが抑制されるので、スプレッダ24が前のめりになることが防がれる。
 パージノズル83は、第1室82_1及び第2室82_2の略中央付近においてスクリーン22の下方に備えられ、スクリーン22の下方からスラグ14に対して液体(一例として水、以下「パージ水」という。)を流し水流を形成する。このパージ水によって、スクリーン22上にあるスラグ14のうち、相対的に小さいスラグ14(軽いスラグ14)は、スクリーン22から浮き上がることとなる。
 次に、本第6実施形態に係るスラグクラッシャ20の作動方法について説明する。
 本第6実施形態に係るスラグクラッシャ20は、一対のスプレッダ24を交互に作動させる。すなわち、第1系統と第3系統のスラグクラッシャ20の作動中には、第2系統と第4系統のスラグクラッシャ20は作動しない。一方、第2系統と第4系統のスラグクラッシャ20の作動中には、第1系統と第3系統のスラグクラッシャ20は作動しない。
 そして、スラグクラッシャ20は、所定のスプレッダ24を作動させる前に、該所定のスプレッダ24に対応する領域の下方に備えられたパージノズル83からの水流によって、隣接する他のスプレッダ24に対応する領域へスラグ14を移動させる。
 図15を参照して具体的に説明する。
 第1,3系統のスプレッダ24が作動する前に、第1室82_1の下方に備えられるパージノズル83からパージ水が流される。この水流によって第1室82_1のスクリーン22上のスラグ14は浮き上がり、スラグクラッシャ20の両側はガス化炉10の内壁であるため、浮き上がったスラグ14は第2室82_2に移動する。このとき第2室82_2に移動するスラグ14は、相対的に小さな(軽い)スラグ14であり、相対的に大きな(重い)スラグ14は、第1室82_1に残る。
 第2室82_2に移動したスラグ14は、第2室82_2のスクリーン22の開口部30から落下することとなる。
 一方、第1室82_1に残ったスラグ14は、第1,3系統のスプレッダ24が作動することによって破砕され、第1室82_1のスクリーン22の開口部30から落下することとなる。
 そして、スラグクラッシャ20は、第1,3系統のスプレッダ24の作動後に、第2,4系統のスプレッダ24を作動させる。この場合、第2,4系統のスプレッダ24を作動させる前に、第2室82_2の下方に備えられるパージノズル83からパージ水が流され、第2室82_2のスクリーン22上のスラグ14を第1室82_1に移動させた後、第2,4系統のスプレッダ24を作動させることとなる。
 このように、本第6実施形態に係るスラグクラッシャ20は、パージノズル83からの水流によって小さなスラグ14が他のスプレッダ24に対応する領域へ流されそこでスクリーン22から落下する。そして、作動するスプレッダ24は、水流によって流されなかった相対的に大きなスラグ14を破砕するので、大きなスラグ14がスクリーン22に残留することを防止できる。
〔第7実施形態〕
 以下、本発明の第7実施形態について説明する。
 本第7実施形態に係るガス化炉10の構成は、図1に示す第1実施形態に係るガス化炉10の構成と同様であるので説明を省略する。なお、本第7実施形態に係るスラグクラッシャ20は、対向する2つのスプレッダ24を一対とし、一対のスクリーン22の上面を移動することでスラグ14を破砕する形態とする。
 ここで、図16は、スラグ14の残留状態を説明するための縦断面図である。
 図16に示されるように、スプレッダ24が移動しても、最下部の突起物40とスクリーン22との間に隙間が生じていると、この隙間にスラグ14が残留する場合があった。
 そこで、図17に示されるように、本第7実施形態に係るスプレッダ24の下端部は、移動したときに対向する面と幅方向に渡り面接触するように突出部90が形成されている。突出部90は、一例として、スプレッダ24の幅方向に延在する直方体形状である。
 なお、図17は、本第7実施形態に係るスラグクラッシャ20の側面視の縦断面図であり、(A)はスプレッダ24が移動する前の状態、(B)はスプレッダ24が移動した後の状態である。
 そして、図17(B)に示されるように、スプレッダ24が移動すると、対向するスプレッダ24の突出部90の面同士が幅方向に渡り面接触するので、対向するスプレッダ24との間に隙間が無くなる。
 従って、本第7実施形態に係るスラグクラッシャ20は、スクリーン22上のスラグ14をより確実に破砕することができるので、大きなスラグ14がスクリーン22に残留することを防止できる。
 以上、本発明を、上記各実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。また、複数の上記実施形態を組み合わせてもよい。
 例えば、上記第1~第5実施形態では、スプレッダ24と受板38とが対向し、スプレッダ24が受板38へ向かって移動する形態について説明したが、本発明は、これに限定されるものではなく、受板38の替わりにスプレッダ24が設けられ、一対のスプレッダ24がスクリーン22の上面を移動することでスラグ14を破砕する形態としてもよい。
 また、上記第6,第7実施形態では、スプレッダ24が対向し、一対のスプレッダ24がスクリーン22の上面を移動することでスラグ14を破砕する形態について説明したが、本発明は、これに限定されるものではなく、スプレッダ24と受板38とが対向し、スプレッダ24が受板38へ向かって移動する形態としてもよい。
 また、上記第6,第7実施形態では、スラグクラッシャ20が第1~第5実施形態で説明したノズル26,60,72を備え、これらノズル26,60,72が高圧水又は高圧気体を適宜噴出する形態としてもよい。例えば、スプレッダ24が作動しない場合に、ノズル26,60,72が高圧水又は高圧気体を噴出する。
 また、上記各実施形態では、ノズル26,60,72及びパージノズル83が水又は気体を流す形態について説明したが、水の純度は特に限定されず、スラグ14を排出し易くする等の目的のために、水溶液又は溶液等であってもよい。また、気体は、例えば、空気や不活性ガス(窒素ガスやアルゴンガス等)であるが、特に限定されるものではない。
 10  ガス化炉
 12  コンバスタ
 14  スラグ
 20  スラグクラッシャ
 22  スクリーン
 24  スプレッダ
 24A 傾斜面
 26  ノズル
 30  開口部
 60  ノズル
 70  側壁
 72  ノズル
 80  ガイド
 81  仕切り部
 83  パージノズル

Claims (12)

  1.  炭素含有燃料をガス化させるガス化炉のコンバスタに設けられ、前記コンバスタで生成されて落下したスラグを前記ガス化炉から排出するスラグ排出装置あって、
     前記スラグの落下方向に対して交差するように設けられると共に複数の開口部を有し、該開口部の径より小さな前記スラグを通過させるスクリーンと、
     前記スクリーンの上面を移動し、前記スクリーンの上面に堆積した前記スラグを破砕する破砕手段と、
     前記スクリーンに堆積した前記スラグに対して液体を流し水流を形成する水流形成手段と、
    を備えるスラグ排出装置。
  2.  前記水流形成手段は、前記破砕手段の作動方向に対して並行に立設された前記スクリーンの側壁に備えられる請求項1記載のスラグ排出装置。
  3.  前記水流形成手段は、前記破砕手段に備えられる請求項1又は請求項2記載のスラグ排出装置。
  4.  前記破砕手段は、前記スラグの破砕方向に対して前傾した傾斜面を備える請求項1から請求項3の何れか1項記載のスラグ排出装置。
  5.  前記水流形成手段は、前記傾斜面に設けられ、前記スクリーンの方向へ液体を噴出する請求項4記載のスラグ排出装置。
  6.  前記水流形成手段は、前記スクリーンに備えられる請求項1から請求項5の何れか1項記載のスラグ排出装置。
  7.  前記水流形成手段は、液体の替わりに気体を噴出する請求項6記載のスラグ排出装置。
  8.  前記破砕手段の移動方向を制限するガイドを備える請求項1から請求項7の何れか1項記載のスラグ排出装置。
  9.  前記スクリーンの上面に複数の前記破砕手段を隣接して備えると共に、隣接する前記破砕手段の間で前記スクリーンが仕切り手段によって仕切られことで区分けされ、区分けされた領域毎の下方に前記水流形成手段を備える請求項1から請求項8の何れか1項記載のスラグ排出装置。
  10.  所定の前記破砕手段を作動させる前に、該所定の前記破砕手段に対応する前記領域の下方に備えられた前記水流形成手段からの水流によって、隣接する他の前記破砕手段に対応する前記領域へ前記スラグを移動させる請求項9記載のスラグ排出装置。
  11.  前記破砕手段の下端部は、移動したときに対向する面と幅方向に渡り面接触するように形成される請求項1から請求項10の何れか1項記載のスラグ排出装置。
  12.  炭素含有燃料をガス化させるガス化炉のコンバスタに設けられ、前記コンバスタで生成されて落下したスラグを前記ガス化炉から排出するスラグ排出装置を用いたスラグ排出方法あって、
     前記スラグの落下方向に対して交差するように設けられると共に複数の開口部を有するスクリーンの上面に堆積したスラグ対して、水流形成手段から液体を流し水流を形成する第1工程と、
     前記スクリーンの上面に堆積した前記スラグを破砕する破砕手段が、前記スクリーンの上面を移動する第2工程と、
    を含むスラグ排出方法。
PCT/JP2015/081806 2013-11-15 2015-11-12 スラグ排出装置及びスラグ排出方法 WO2016076379A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580058996.4A CN107109262A (zh) 2013-11-15 2015-11-12 炉渣排出装置及炉渣排出方法
US15/523,793 US20170342337A1 (en) 2013-11-15 2015-11-12 Slag discharge apparatus and slag discharge method
KR1020177012405A KR20170077149A (ko) 2013-11-15 2015-11-12 슬래그 배출 장치 및 슬래그 배출 방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013236893 2013-11-15
JP2014-230857 2014-11-13
JP2014230857A JP2015117373A (ja) 2013-11-15 2014-11-13 スラグ排出装置及びスラグ排出方法

Publications (1)

Publication Number Publication Date
WO2016076379A1 true WO2016076379A1 (ja) 2016-05-19

Family

ID=53057164

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/073999 WO2015072219A1 (ja) 2013-11-15 2014-09-10 スラグ排出装置及びスラグ排出方法
PCT/JP2015/081806 WO2016076379A1 (ja) 2013-11-15 2015-11-12 スラグ排出装置及びスラグ排出方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073999 WO2015072219A1 (ja) 2013-11-15 2014-09-10 スラグ排出装置及びスラグ排出方法

Country Status (5)

Country Link
US (2) US20160257895A1 (ja)
JP (1) JP2015117373A (ja)
KR (2) KR101813419B1 (ja)
CN (2) CN105658772B (ja)
WO (2) WO2015072219A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072219A1 (ja) * 2013-11-15 2015-05-21 三菱日立パワーシステムズ株式会社 スラグ排出装置及びスラグ排出方法
JP6173508B1 (ja) * 2016-03-04 2017-08-02 三菱日立パワーシステムズ株式会社 スラグクラッシャ
JP6782919B2 (ja) * 2016-10-18 2020-11-11 清水建設株式会社 メタンハイドレート採掘装置
CN107398323A (zh) * 2017-08-31 2017-11-28 中国电力工程顾问集团西北电力设计院有限公司 一种气动破碎式筛分器
JP7039785B2 (ja) * 2018-02-23 2022-03-23 三菱重工業株式会社 スラグ排出装置及びガス化炉並びにスラグ排出方法
CN108571744A (zh) * 2018-06-15 2018-09-25 江苏国信泗阳生物质发电有限公司 能防止扬尘的锅炉用间歇式出渣控制系统及控制方法
JP7171417B2 (ja) * 2018-12-21 2022-11-15 三菱重工業株式会社 スラグクラッシャ、ガス化炉、ガス化複合発電設備、及びスラグクラッシャの組立方法
CN112111382A (zh) * 2020-09-23 2020-12-22 徐展展 一种高效沼气发酵系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247484A (ja) * 1994-01-20 1995-09-26 Mitsubishi Heavy Ind Ltd 石炭ガス化炉の挟み込みスラグ破砕機
JPH0938510A (ja) * 1995-07-26 1997-02-10 Mitsubishi Heavy Ind Ltd クラッシャの作動検知装置
JPH10121063A (ja) * 1996-10-18 1998-05-12 Mitsubishi Heavy Ind Ltd 石炭ガス化装置
JP2014136768A (ja) * 2013-01-17 2014-07-28 Babcock-Hitachi Co Ltd 石炭ガス化装置及びスラグの排出方法
JP2014195768A (ja) * 2013-03-29 2014-10-16 株式会社栗本鐵工所 スラグ破砕機
WO2015072219A1 (ja) * 2013-11-15 2015-05-21 三菱日立パワーシステムズ株式会社 スラグ排出装置及びスラグ排出方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294433A (en) * 1978-11-21 1981-10-13 Vanjukov Andrei V Pyrometallurgical method and furnace for processing heavy nonferrous metal raw materials
JP4370464B2 (ja) * 2003-10-24 2009-11-25 電源開発株式会社 ガス化処理装置及び方法
CN2670362Y (zh) * 2003-11-20 2005-01-12 西北化工研究院 气流床反应器排灰装置
DE102008033095A1 (de) * 2008-07-15 2010-01-28 Uhde Gmbh Vorrichtung zur Schlackeabführung aus einem Kohlevergasungsreaktor
CN101648091A (zh) * 2009-06-30 2010-02-17 宜昌英汉超声电气有限公司 反冲过滤螺旋排渣机
CN202131288U (zh) * 2011-06-07 2012-02-01 上海锅炉厂有限公司 一种气化炉排渣装置
CN102580832B (zh) * 2012-02-03 2013-10-16 山东电力研究院 适用于干式排渣机的隔离碎渣装置及其方法
CN103277806A (zh) * 2013-06-09 2013-09-04 郭古金 一种连通管布风炉排
CN103351889B (zh) * 2013-07-18 2015-01-28 孙吉章 一种生物质气化炉排渣方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247484A (ja) * 1994-01-20 1995-09-26 Mitsubishi Heavy Ind Ltd 石炭ガス化炉の挟み込みスラグ破砕機
JPH0938510A (ja) * 1995-07-26 1997-02-10 Mitsubishi Heavy Ind Ltd クラッシャの作動検知装置
JPH10121063A (ja) * 1996-10-18 1998-05-12 Mitsubishi Heavy Ind Ltd 石炭ガス化装置
JP2014136768A (ja) * 2013-01-17 2014-07-28 Babcock-Hitachi Co Ltd 石炭ガス化装置及びスラグの排出方法
JP2014195768A (ja) * 2013-03-29 2014-10-16 株式会社栗本鐵工所 スラグ破砕機
WO2015072219A1 (ja) * 2013-11-15 2015-05-21 三菱日立パワーシステムズ株式会社 スラグ排出装置及びスラグ排出方法

Also Published As

Publication number Publication date
CN107109262A (zh) 2017-08-29
CN105658772B (zh) 2018-04-03
US20160257895A1 (en) 2016-09-08
KR101813419B1 (ko) 2017-12-28
KR20160064170A (ko) 2016-06-07
CN105658772A (zh) 2016-06-08
JP2015117373A (ja) 2015-06-25
WO2015072219A1 (ja) 2015-05-21
KR20170077149A (ko) 2017-07-05
US20170342337A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2016076379A1 (ja) スラグ排出装置及びスラグ排出方法
CN108883418B (zh) 碎渣机
JP5638582B2 (ja) 粉体搬送装置及びチャー回収装置
JP2544584B2 (ja) 石炭ガス化炉及び石炭ガス化炉の使用方法
US8646664B2 (en) Method and device for the metered removal of a fine to coarse-grained solid matter or solid matter mixture from a storage container
JP2008230825A (ja) 粉体輸送方法および粉体輸送装置
AU607010B2 (en) Water bath wetting device
JP7248238B2 (ja) 懸濁液濾過機、スラグ水濾過循環システム、ガス化炉、ガス化複合発電設備、及び懸濁液濾過方法
US8939093B2 (en) Boiler grate and a boiler
CN205652669U (zh) 料仓清堵装置和料仓
KR101865029B1 (ko) 가스화 반응기 및 방법
KR101245325B1 (ko) 유동 환원로 및 유동 환원로의 분산판 이물 제거방법
CN206927270U (zh) 一种用于斜溜槽清堵的喷射系统
JP5688569B2 (ja) ガス化炉
US11286437B2 (en) Slag discharge device, gasifier furnace and integrated gasification combined cycle, and slag discharge method
JPH03233206A (ja) 原料噴出バーナ
KR101569378B1 (ko) 부분 용융형 미분탄 가스화 장치 및 미분탄 가스화 방법
JPH11106761A (ja) ガス化設備
CN202709129U (zh) 垃圾焚烧炉渣斗破拱装置
JPH0794668B2 (ja) 石炭ガス化装置及びスラグ移動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15523793

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177012405

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859449

Country of ref document: EP

Kind code of ref document: A1