WO2016072362A1 - 型の製造方法および反射防止膜の製造方法 - Google Patents

型の製造方法および反射防止膜の製造方法 Download PDF

Info

Publication number
WO2016072362A1
WO2016072362A1 PCT/JP2015/080777 JP2015080777W WO2016072362A1 WO 2016072362 A1 WO2016072362 A1 WO 2016072362A1 JP 2015080777 W JP2015080777 W JP 2015080777W WO 2016072362 A1 WO2016072362 A1 WO 2016072362A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
height
moth
manufacturing
antireflection film
Prior art date
Application number
PCT/JP2015/080777
Other languages
English (en)
French (fr)
Inventor
信明 山田
林 秀和
美穂 山田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2016557744A priority Critical patent/JP6415590B2/ja
Priority to CN201580059895.9A priority patent/CN107148335B/zh
Priority to US15/524,385 priority patent/US10695955B2/en
Publication of WO2016072362A1 publication Critical patent/WO2016072362A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • B29C33/72Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0096Trouble-shooting during starting or stopping moulding or shaping apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3814Porous moulds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids

Definitions

  • the present invention relates to a mold manufacturing method and an antireflection film manufacturing method, for example, a mold manufacturing method having an inverted moth-eye structure on the surface and an antireflection film manufacturing method manufactured using the mold.
  • the “mold” here includes molds used in various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
  • An optical element such as a display device or a camera lens used for a television or a mobile phone is usually provided with an antireflection technique in order to reduce surface reflection and increase light transmission.
  • an antireflection technique in order to reduce surface reflection and increase light transmission. For example, when light passes through the interface of a medium with a different refractive index, such as when light enters the interface between air and glass, the amount of transmitted light is reduced due to Fresnel reflection, and visibility is reduced. is there.
  • the two-dimensional size of the convex portions constituting the concavo-convex pattern exhibiting the antireflection function is 10 nm or more and less than 500 nm.
  • the “two-dimensional size” of the convex portion refers to the area equivalent circle diameter of the convex portion when viewed from the normal direction of the surface. For example, when the convex portion has a conical shape, The two-dimensional size corresponds to the diameter of the bottom surface of the cone. The same applies to the “two-dimensional size” of the recess.
  • This method utilizes the principle of a so-called moth-eye structure, and the refractive index for light incident on the substrate is determined from the refractive index of the incident medium along the depth direction of the irregularities. For example, reflection in the visible light region is suppressed by continuously changing the refractive index.
  • the moth-eye structure has an advantage that it can exhibit an antireflection effect with a small incident angle dependency over a wide wavelength range, can be applied to many materials, and can form an uneven pattern directly on a substrate. As a result, a low-cost and high-performance antireflection film (or antireflection surface) can be provided.
  • the present applicant has developed a method using an anodized porous alumina layer obtained by anodizing aluminum as a method for producing an antireflection film (or antireflection surface) having a moth-eye structure (Patent Documents 2 to 5). ).
  • a mold for forming a moth-eye structure on the surface (hereinafter referred to as “moth-eye mold”) can be easily manufactured.
  • the surface of the anodized aluminum film is used as a mold as it is, the effect of reducing the manufacturing cost is great.
  • the surface structure of the moth-eye mold that can form the moth-eye structure is referred to as an “inverted moth-eye structure”.
  • Patent Documents 1 to 5 All the disclosures of Patent Documents 1 to 5 are incorporated herein by reference.
  • JP-T-2001-517319 Special Table 2003-531962 JP 2009-166502 A International Publication No. 2011/125486 International Publication No. 2013/183576 JP 2014-113710 A JP 2014-71312 A
  • the present invention has been made to solve the above problems, and its main purpose is to provide a mold manufacturing method capable of improving the manufacturing yield of a film having a surface having a moth-eye structure. And it is providing the method which can manufacture such a film
  • a mold manufacturing method is a mold manufacturing method having a plurality of recesses on the surface having a two-dimensional size of 10 nm or more and less than 500 nm when viewed from the normal direction of the surface.
  • Preparing a mold substrate having a substrate and an aluminum alloy layer formed on the metal substrate, and partially anodizing the aluminum alloy layer, thereby producing a plurality of fine The step (b) of forming a porous alumina layer having recesses, and the step (b), the porous alumina layer is brought into contact with an etching solution, thereby enlarging the plurality of fine recesses of the porous alumina layer.
  • step (c) a step (d) of detecting a protrusion formed on the surface of the porous alumina layer or the mold base, and a step of detecting the protrusion detected in the step (d).
  • step (e) for determining whether or not the height of the protrusion is higher than a predetermined height, and in the step (e), it is determined that the height of the protruding portion is higher than the predetermined height.
  • the method includes a step (f) of irradiating the projecting portion with laser light so that the height of the projecting portion is lower than the predetermined height.
  • the step (d) is a step of detecting a protrusion formed on the surface of the porous alumina layer, and the step (d), the step (e), and the step (f) It is performed after the step (b) and the step (c).
  • the step (d) is a step of detecting a protrusion formed on the surface of the mold base, and the step (d), the step (e), and the step (f) It is performed before the step (b) and the step (c).
  • the predetermined height is not less than 3 ⁇ m and not more than 200 ⁇ m.
  • the predetermined height is not less than 10 ⁇ m and not more than 30 ⁇ m.
  • the mold base further includes an inorganic base layer formed between the metal base and the aluminum alloy layer.
  • the mold manufacturing method further includes a step (g) of growing the plurality of fine recesses by further anodizing after the step (c).
  • step (b) and the step (c) are further performed after the step (g).
  • An antireflection film manufacturing method includes a step of preparing a mold manufactured by any of the above-described mold manufacturing methods, a step of preparing a workpiece, the mold and the target Forming the photo-curing resin by irradiating the photo-curing resin with light in a state where the photo-curing resin is provided between the surface of the workpiece and the photo-curing resin obtained by curing the mold Separating from the antireflection film formed.
  • the photocurable resin is applied to a surface of the workpiece, and the thickness of the photocurable resin applied to the surface of the workpiece is the same as the predetermined height or the It is larger than a predetermined height.
  • the thickness of the photocurable resin applied to the surface of the workpiece is 3 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the photocurable resin applied to the surface of the workpiece is 10 ⁇ m or more and 30 ⁇ m or less.
  • a mold capable of improving the production yield of a film having a surface having a moth-eye structure can be produced.
  • a method capable of efficiently producing the above-described film is provided.
  • (A)-(e) is typical sectional drawing for demonstrating the manufacturing method of the moth-eye type
  • (A)-(d) is typical sectional drawing for demonstrating the manufacturing method of the moth-eye type
  • (A)-(c) is typical sectional drawing for demonstrating the manufacturing method of the moth-eye type
  • (A) is the image which observed the surface of the part corresponding to the defect of an antireflection film among the surfaces of the moth-eye type
  • (b) is a moth eye.
  • FIG. 4A is an SEM image of the surface of the moth-eye mold 200 corresponding to the defect of the antireflection film, which is observed with a scanning electron microscope (SEM).
  • FIG. 4B is an SEM image of a cross section of a portion of the surface of the moth-eye mold 200 corresponding to the defect of the antireflection film.
  • FIG.4 (c) is a graph which shows the result of having performed the composition analysis using the energy dispersive X-ray analyzer (EDS) in the part of the round mark of the deposit
  • EDS energy dispersive X-ray analyzer
  • the moth-eye mold 200 has a shape in which a sphere is crushed on the surface of a portion corresponding to a defect in the antireflection film (such as a circular cushion). Shape) deposits.
  • the size of the deposit is several tens of ⁇ m.
  • the size of the deposit is approximately 60 ⁇ m.
  • the size of the deposit is defined as an equivalent circle diameter when viewed from the normal direction of the surface of the moth-eye mold.
  • defects were generated over a range of several hundred ⁇ m to several mm (for example, 200 ⁇ m to 3 mm), and thus it was found that the defect had a size several tens to several hundreds times that of the deposit.
  • defects may occur over a range of several hundred ⁇ m to several mm. Since defects generated over this range are visually recognized by an observer, the antireflection film can be a defective product.
  • the size of the deposit is several tens of ⁇ m, it is difficult to find the deposit by visually inspecting the surface of the moth-eye mold before manufacturing the antireflection film. Therefore, there is a problem that it is difficult to suppress a decrease in the manufacturing yield of the antireflection film.
  • FIGS. 5A to 5C are schematic cross-sectional views for explaining that defects occur in the antireflection film manufactured using the moth-eye mold 200 of the comparative example.
  • a moth-eye mold 200 and a workpiece 42 to which a UV curable resin 32 ′ is applied are prepared.
  • the moth-eye mold 200 has an inverted moth-eye structure on the surface.
  • the surface of the moth-eye mold 200 has one or a plurality of deposits 210.
  • the shape of the deposit 210 is, for example, substantially spherical as shown in FIG.
  • the shape of the deposit 210 may be substantially spherical.
  • the ultraviolet curable resin 32 ′ is applied to the surface of the workpiece 42, for example.
  • the ultraviolet curable resin 32 ′ may be applied to the surface of the workpiece 42 with a substantially constant thickness h 32 ′.
  • the height h210 of the deposit 210 is larger than the thickness h32 'of the ultraviolet curable resin 32', for example.
  • the height h210 of the deposit 210 is the height in the normal direction of the surface of the moth-eye mold 200, and the thickness h32 ′ of the ultraviolet curable resin 32 ′ is the workpiece 42 (or the moth-eye mold 200). ) In the normal direction of the surface.
  • the size w210 of the deposit 210 is, for example, 20 ⁇ m to 200 ⁇ m.
  • the ultraviolet curable resin 32 ′ is irradiated with ultraviolet rays (UV) in a state where the workpiece 42 having the ultraviolet curable resin 32 ′ applied to the surface is pressed against the moth-eye mold 200.
  • UV ultraviolet rays
  • the ultraviolet curable resin 32 ′ has a size around the deposit 210. In the range of w32d, it becomes thicker than the surrounding area.
  • the thickness h32 ' (see FIG.
  • the thickness of the ultraviolet curable resin 32' in the peripheral region is substantially the same as the thickness h32 'of the ultraviolet curable resin 32' shown in FIG.
  • the thickness of the ultraviolet curable resin 32 ′ becomes nonuniform due to the deposit 210, so that the manufactured antireflection film 32 has a defect within the size w32d as shown in FIG. 5C. 32d is generated.
  • the size w32d of the defect 32d is several tens to several hundred times the size w210 of the deposit 210.
  • the size w32d of the defect 32d is a diameter equivalent to an area circle when viewed from the normal direction of the antireflection film 32.
  • a pinch roll 44 may be used to press the workpiece 42 against the moth-eye mold 200.
  • the ultraviolet curable resin 32 ′ for example, an acrylic resin can be used.
  • the workpiece 42 is, for example, a TAC (triacetyl cellulose) film.
  • the shape of the deposit 210 can be a shape in which a sphere is crushed.
  • the height h210 of the deposit 210 can be smaller and the size w210 of the deposit 210 can be larger than in the step shown in FIG.
  • the height h210 of the deposit 210 is larger than the thickness h32 'of the ultraviolet curable resin 32'.
  • the surface of the deposit 210 may be cracked. Cracks can occur, for example, in a streak pattern on the surface of the deposit 210.
  • bubbles 33 may be generated in the ultraviolet curable resin 32 'around the deposit 210.
  • the moth-eye mold 200 is separated (peeled) from the workpiece 42, whereby the concavo-convex structure (inverted moth-eye structure) of the moth-eye mold 200 is transferred.
  • a layer (antireflection film) 32 is formed on the surface of the workpiece 42.
  • the antireflection film 32 has a defect 32d over a range of size w32d. In the defect 32d, the thickness of the film is thicker than the periphery.
  • the defect 32d has a shape like a lens, for example.
  • the thickness h32 of the antireflection film 32 in the peripheral region of the defect 32d is substantially the same as the thickness h32 'of the ultraviolet curable resin 32' shown in FIG.
  • the term “defect” for a film includes that the thickness of a part of the film is larger than the thickness of its peripheral region.
  • a film having such a defect is attached to, for example, a display surface of a display, an image through the defective part may be distorted.
  • the present inventor examined which process occurred in the process of manufacturing the moth-eye mold 200 by the deposit 210.
  • the comparative moth-eye mold 200 can be manufactured by the methods described in Patent Documents 2 to 5.
  • the manufacturing method of the moth-eye mold 200 of the comparative example includes the following steps (A ′) to (C ′), as will be described later with reference to FIGS.
  • the deposit 210 is formed after the aluminum alloy layer 18 is formed on the surface of the moth-eye mold 200 and before the step of anodizing (that is, after the step (A ′) and the step). (Before (B ')).
  • the aluminum alloy layer 18 is formed in a chamber (vacuum chamber) using, for example, a sputtering method.
  • the interior of the chamber is opened to the atmosphere, and in the process of taking out the mold base material, lump (grains) of the aluminum alloy in the chamber adheres to the surface of the aluminum alloy layer 18. Therefore, it is considered that the deposit 210 was generated.
  • the adhesion to the aluminum alloy layer 18 is strong. There arises a problem that it is difficult to remove the deposit 210. It is difficult to completely remove the deposit 210 by washing the surface of the moth-eye mold 200 before the anodizing step.
  • a thickness of, for example, about 0 is provided between the step (A ′) and the step (B ′).
  • a step of removing the generated porous alumina layer by etching may be further performed.
  • the deposit 210 has the same composition as the aluminum alloy layer 18, so it is difficult to remove the deposit 210 substantially completely.
  • FIG. 6 is a diagram illustrating a graph in which the height h210 and the size w210 of the deposit 210 on the surface of the moth-eye mold 200 are plotted.
  • Eighteen deposits 210 of the moth-eye mold 200 at the location corresponding to the defect 32d of the antireflection film 32 formed using the moth-eye mold 200 were sampled, and the height h210 and the size w210 of each were determined. .
  • the height h210 and the size w210 were determined from SEM images observed with a scanning electron microscope (SEM) (manufactured by Hitachi High-Technologies Corporation, S-4700).
  • the thickness h 32 ′ of the ultraviolet curable resin 32 ′ was 6 ⁇ m in any case before the workpiece 42 was pressed against the moth-eye mold 200 (see FIG. 5A). As can be seen from FIG. 6, the height h210 of the deposit 210 is 6 ⁇ m or more. It is confirmed that the height h210 of the deposit 210 that causes the defect 32d of the antireflection film 32 is the same as the thickness h32 'of the ultraviolet curable resin 32' or larger than the thickness h32 'of the ultraviolet curable resin 32'. It was.
  • the measured deposit 210 is the one after the workpiece 42 is pressed against the moth-eye mold 200, and as described above, before the workpiece 42 is pressed against the moth-eye mold 200, It is considered that the height h210 of the kimono 210 was larger than the measured value. That is, it is considered that the height h210 of the deposit 210 that causes the defect 32d of the antireflection film 32 is larger than the thickness h32 'of the ultraviolet curable resin 32'.
  • the mold according to the present embodiment is a mold having a plurality of concave portions on the surface having a two-dimensional size of 10 nm or more and less than 500 nm when viewed from the normal direction of the surface.
  • the mold according to the embodiment of the present invention is, for example, a moth-eye mold having an inverted moth-eye structure on the surface.
  • the moth-eye mold may be, for example, a cylindrical shape or a plate shape.
  • the mold manufacturing method according to the first embodiment of the present invention includes the following steps (A) to (F).
  • the predetermined height in the step (E) and the step (F) is, for example, the same as the thickness h32 ′ (see FIG. 5A) of the ultraviolet curable resin 32 ′ applied to the workpiece 42. .
  • Process (D), process (E), and process (F) are performed after process (B) and process (C), for example.
  • Embodiment 1 of the present invention it is possible to selectively remove deposits that may cause defects in the antireflection film formed using the mold. Further, before forming the antireflection film using the mold, it is possible to remove in advance deposits that may cause defects in the antireflection film. A decrease in manufacturing yield of a film manufactured using the mold can be suppressed.
  • FIGS. 1 (a) to 1 (e) and FIGS. 2 (a) to 2 (d) are schematic cross-sectional views for explaining a method of manufacturing the moth-eye mold 100A of Embodiment 1 according to the present invention, respectively.
  • FIG. 1 (a) to 1 (e) are schematic views of a portion of the moth-eye mold 100A that does not have the deposit 210 on the surface in the manufacturing process.
  • FIG. 4 is a schematic view of a part of the moth-eye mold 100A having a deposit 210 on the surface in the manufacturing process.
  • a mold base 10 having a metal base 12 and an aluminum alloy layer 18 formed on the metal base 12 is prepared.
  • the surface 18 s of the mold base 10 has a deposit 210.
  • the mold base 10 may further include an inorganic base layer 16 between the metal base 12 and the aluminum alloy layer 18.
  • mold of Embodiment 1 is the process of forming the inorganic base layer 16 on the metal base material 12 after the process of preparing the metal base material 12, and before the process of forming the aluminum alloy layer 18. May further be included.
  • a relatively rigid aluminum substrate 12 having an aluminum purity of 99.50 mass% or more and less than 99.99 mass% can be used.
  • impurities contained in the aluminum substrate 12 iron (Fe), silicon (Si), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), titanium (Ti), lead (Pb) It is preferable that at least one element selected from the group consisting of tin (Sn) and magnesium (Mg) is included, and Mg is particularly preferable.
  • the mechanism by which pits (dents) are formed in the etching process is a local cell reaction, and therefore ideally contains no noble elements than aluminum and is a base metal, Mg (standard electrode potential ⁇ It is preferable to use an aluminum substrate 12 containing 2.36V) as an impurity element. If the content of an element nobler than aluminum is 10 ppm or less, it can be said that the said element is not included substantially from an electrochemical viewpoint.
  • the Mg content is preferably 0.1% by mass or more, and more preferably in the range of about 3.0% by mass or less. If the Mg content is less than 0.1 mass%, sufficient rigidity cannot be obtained. On the other hand, when the content rate increases, Mg segregation easily occurs.
  • Mg forms an anodic oxide film having a form different from that of aluminum, which causes defects.
  • the content rate of an impurity element according to the rigidity required according to the shape of the aluminum base material 12, thickness, and a magnitude
  • an appropriate Mg content is about 3.0 mass%, and the aluminum substrate 12 having a three-dimensional structure such as a cylinder is produced by extrusion.
  • the content rate of Mg is 2.0 mass% or less. If the Mg content exceeds 2.0 mass%, extrusion processability generally decreases.
  • a cylindrical aluminum tube formed of JIS A1050, Al—Mg alloy (for example, JIS A5052), or Al—Mg—Si alloy (for example, JIS A6063) is used as the aluminum substrate 12.
  • the surface of the aluminum substrate 12 is preferably subjected to cutting by cutting. If, for example, abrasive grains remain on the surface of the aluminum base 12, electrical conduction between the aluminum alloy layer 18 and the aluminum base 12 is facilitated in a portion where the abrasive grains exist. In addition to the abrasive grains, where there are irregularities, local conduction between the aluminum alloy layer 18 and the aluminum base 12 is likely to occur. When local conduction is made between the aluminum alloy layer 18 and the aluminum base material 12, a battery reaction may occur locally between the impurities in the aluminum base material 12 and the aluminum alloy layer 18.
  • the inorganic underlayer 16 As a material of the inorganic underlayer 16, for example, tantalum oxide (Ta 2 O 5 ) or silicon dioxide (SiO 2 ) can be used.
  • the inorganic underlayer 16 can be formed by sputtering, for example.
  • the tantalum oxide layer has a thickness of, for example, 200 nm.
  • the thickness of the inorganic underlayer 16 is preferably 100 nm or more and less than 500 nm. If the thickness of the inorganic underlayer 16 is less than 100 nm, defects (mainly voids, that is, gaps between crystal grains) may occur in the aluminum alloy layer 18 in some cases. Further, when the thickness of the inorganic base layer 16 is 500 nm or more, the aluminum base 12 and the aluminum alloy layer 18 are easily insulated by the surface state of the aluminum base 12. In order to perform anodic oxidation of the aluminum alloy layer 18 by supplying a current to the aluminum alloy layer 18 from the aluminum substrate 12 side, a current needs to flow between the aluminum substrate 12 and the aluminum alloy layer 18.
  • the thick inorganic underlayer 16 In order to form the thick inorganic underlayer 16, it is generally necessary to lengthen the film formation time. When the film formation time is lengthened, the surface temperature of the aluminum base 12 is unnecessarily increased. As a result, the film quality of the aluminum alloy layer 18 is deteriorated, and defects (mainly voids) may occur. If the thickness of the inorganic underlayer 16 is less than 500 nm, the occurrence of such a problem can be suppressed.
  • the aluminum alloy layer 18 is, for example, a film formed of aluminum having a purity of 99.99 mass% or more (hereinafter, also referred to as “high-purity aluminum film”) as described in Patent Document 4. .
  • the aluminum alloy layer 18 is formed using, for example, a vacuum deposition method or a sputtering method.
  • the thickness of the aluminum alloy layer 18 is preferably in the range of about 500 nm or more and about 1500 nm or less, for example, about 1 ⁇ m.
  • an aluminum alloy film described in Patent Document 5 may be used instead of the high-purity aluminum film.
  • the aluminum alloy film described in Patent Document 5 includes aluminum, a metal element other than aluminum, and nitrogen.
  • the “aluminum film” includes not only a high-purity aluminum film but also an aluminum alloy film described in Patent Document 5.
  • the average grain size of the crystal grains constituting the aluminum alloy film as viewed from the normal direction of the aluminum alloy film is, for example, 100 nm or less, and the maximum surface roughness Rmax of the aluminum alloy film is 60 nm or less.
  • the content rate of nitrogen contained in the aluminum alloy film is, for example, not less than 0.5 mass% and not more than 5.7 mass%.
  • the absolute value of the difference between the standard electrode potential of a metal element other than aluminum contained in the aluminum alloy film and the standard electrode potential of aluminum is 0.64 V or less, and the content of the metal element in the aluminum alloy film is 1.0 mass. % Or more and 1.9 mass% or less is preferable.
  • the metal element is, for example, Ti or Nd.
  • the metal element is not limited to this, and other metal elements whose absolute value of the difference between the standard electrode potential of the metal element and the standard electrode potential of aluminum is 0.64 V or less (for example, Mn, Mg, Zr, V, and Pb).
  • the metal element may be Mo, Nb, or Hf.
  • the aluminum alloy film may contain two or more of these metal elements.
  • the aluminum alloy film is formed by, for example, a DC magnetron sputtering method.
  • the thickness of the aluminum alloy film is also preferably in the range of about 500 nm to about 1500 nm, for example, about 1 ⁇ m.
  • the surface 18s of the aluminum alloy layer 18 is anodized to form a porous alumina layer 14 having a plurality of recesses (pores) 14p.
  • the porous alumina layer 14 has a porous layer having a recess 14p and a barrier layer (the bottom of the recess (pore) 14p). It is known that the interval between the adjacent recesses 14p (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization. This relationship also holds for the final porous alumina layer 14 shown in FIG.
  • the porous alumina layer 14 is formed, for example, by anodizing the surface 18s in an acidic electrolytic solution.
  • the electrolytic solution used in the step of forming the porous alumina layer 14 is, for example, an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, sulfuric acid, chromic acid, citric acid, and malic acid.
  • the porous alumina layer 14 is formed by anodizing the surface 18s of the aluminum alloy layer 18 with an oxalic acid aqueous solution (concentration 0.3 mass%, liquid temperature 10 ° C.) at an applied voltage of 80 V for 55 seconds.
  • the surface 210s of the deposit 210 is also anodized at the same time, so that a porous alumina layer 214 having a plurality of recesses (not shown) is formed. It is formed.
  • the plurality of recesses included in the porous alumina layer 214 are omitted for simplicity in FIGS. 2B to 2D, but may be the same as the plurality of recesses 14p included in the porous alumina layer 14. .
  • the porous alumina layer 14 may not be formed on the portion of the surface 18s of the aluminum alloy layer 18 that is in contact with the deposit 210.
  • the opening of the recess 14p is enlarged by etching the porous alumina layer 14 by contacting the etchant by a predetermined amount.
  • the amount of etching (that is, the size and depth of the recess 14p) can be controlled by adjusting the type / concentration of the etching solution and the etching time.
  • an etchant for example, 10 mass% phosphoric acid, an organic acid such as formic acid, acetic acid, or citric acid, an aqueous solution of sulfuric acid, or a mixed aqueous solution of chromic phosphoric acid can be used.
  • etching is performed for 20 minutes using a phosphoric acid aqueous solution (10 mass%, 30 ° C.).
  • the openings of the plurality of concave portions of the porous alumina layer 214 formed on the surface 210 s of the deposit 210 are also enlarged simultaneously.
  • the height h210 and the size w210 of the deposit 210 are considered to hardly change depending on the process in which the surface 210s of the deposit 210 is anodized and etched.
  • the aluminum alloy layer 18 is partially anodized again to grow the recess 14 p in the depth direction and to thicken the porous alumina layer 14.
  • the side surface of the recess 14p is stepped.
  • the porous alumina layer 14 is further etched by bringing it into contact with an alumina etchant to further enlarge the hole diameter of the recess 14p.
  • an alumina etchant it is preferable to use the above-described etchant, and in practice, the same etch bath may be used.
  • anodizing step and etching step were alternately repeated a plurality of times (for example, 5 times: anodizing 5 times and etching 4 times), thereby being inverted as shown in FIG.
  • a comparative moth-eye mold 200 having a porous alumina layer 14 having a moth-eye structure is obtained.
  • the portion of the moth-eye mold 200 of the comparative example that does not have the deposit 210 on the surface may be the same as the moth-eye mold 100A shown in FIG.
  • the bottom of the recess 14p can be pointed. That is, a mold capable of forming a convex part with a sharp tip is obtained.
  • a porous alumina layer 14 (thickness t p ) shown in FIG. 1 (e) has a porous layer (thickness corresponds to the depth D d of the recess 14 p) and a barrier layer (thickness t b ). Since the porous alumina layer 14 has a structure obtained by inverting the moth-eye structure of the antireflection film 32, the same symbol may be used for the corresponding parameter characterizing the size.
  • the concave portion 14p of the porous alumina layer 14 is, for example, conical and may have stepped side surfaces.
  • Two-dimensional size of the recess 14p is D p (area equivalent circle diameter of the recess when viewed from the direction normal to the surface) is less than 20nm ultra 500 nm, the depth D d in the order of less than 50nm over 1000 nm (1 [mu] m) Preferably there is.
  • the bottom part of the recessed part 14p is pointed (the bottom is a point).
  • the adjacent circles overlap with each other, and a flange portion is formed between the adjacent recesses 14p. It is formed.
  • two-dimensional size D p of the concave portion 14p is equal to the distance between adjacent D int.
  • the thickness t p of the porous alumina layer 14 is, for example, about 1 ⁇ m or less.
  • an aluminum remaining layer 18r that has not been anodized out of the aluminum alloy layer 18 is present under the porous alumina layer 14 shown in FIG. 1 (e). If necessary, the aluminum alloy layer 18 may be substantially completely anodized so that the aluminum residual layer 18r does not exist. For example, when the inorganic underlayer 16 is thin, current can be easily supplied from the aluminum substrate 12 side.
  • the moth-eye mold manufacturing method exemplified here can manufacture a mold for producing an antireflection film described in Patent Documents 2 to 5.
  • Anti-reflective coatings used in high-definition display panels are required to have high uniformity. Therefore, as described above, the selection of the aluminum base material, mirror finishing of the aluminum base, and control of the purity and composition of the aluminum film It is preferable to carry out.
  • the mold according to the embodiment of the present invention is not limited to this, and can be widely applied to the manufacture of a film having a surface having a moth-eye structure. In the case of producing a film that does not require high uniformity, the above-described mold manufacturing method can be simplified.
  • a mold having a low regularity of the arrangement of the recesses, which is suitable for manufacturing the antireflection film can be manufactured.
  • a mold for forming a moth-eye structure having regularly arranged convex portions can be manufactured as follows, for example.
  • the generated porous alumina layer is removed by etching, and then anodization is performed under the conditions for generating the porous alumina layer described above. Good.
  • the porous alumina layer having a thickness of 0.1 ⁇ m to 0.3 ⁇ m is formed by appropriately adjusting the anodic oxidation time.
  • liquid mixture of chromic acid and phosphoric acid for the removal of a porous alumina layer.
  • galvanic corrosion may occur, but a mixed solution of chromic acid and phosphoric acid has an effect of suppressing galvanic corrosion.
  • the protrusion 210 includes the deposit 210 described above.
  • the protrusion 210 and the deposit 210 may be represented by the same reference numeral.
  • the protrusion 210 to be detected for example, is used to form a component different from the deposit 210 (for example, organic matter, cellulose (for example, including a TAC film), resin (for example, the antireflection film 32). And the like which are caused by a different cause from the deposit 210.
  • the detection of the protruding portion 210 for example, a microscope (for example, including a laser scanning microscope) is used.
  • the detection of the protrusion 210 includes obtaining information indicating the position of the protrusion 210 in the moth-eye mold 200.
  • the moth-eye mold is cylindrical, the position of the moth-eye mold in the circumferential direction and the position in the direction perpendicular to the bottom surface of the moth-eye mold are acquired.
  • a marker that specifies the position of the moth-eye mold in the circumferential direction can be used as a reference.
  • the protrusion (attachment) 210 having a substantially circular shape when viewed from the normal direction of the porous alumina layer 14 may be selected and detected.
  • the deposit 210 that can cause a defect in the antireflection film has a characteristic of being almost spherical, and thus it is possible to efficiently detect the protrusion 210 that can cause the defect. . This makes it possible to efficiently suppress the occurrence of defects in the antireflection film.
  • the predetermined height h th is, for example, the same as the thickness h 32 ′ (see FIG. 5A) of the ultraviolet curable resin 32 ′ applied to the workpiece 42.
  • the predetermined height h th may be a value smaller than the thickness h 32 ′ (see FIG. 5A) of the ultraviolet curable resin 32 ′ applied to the workpiece 42, for example.
  • the predetermined height h th is not limited to this and can be set to an arbitrary value.
  • the predetermined height h th is, for example, not less than 3 ⁇ m and not more than 200 ⁇ m.
  • the predetermined height h th is, for example, not less than 10 ⁇ m and not more than 30 ⁇ m.
  • the predetermined height h th is, for example, 10 ⁇ m or less when the thickness h 32 ′ (see FIG. 5A) of the ultraviolet curable resin 32 ′ applied to the workpiece 42 is 10 ⁇ m.
  • the thickness h32 ′ (see FIG. 5A) of the ultraviolet curable resin 32 ′ applied to the workpiece 42 can also be determined according to a predetermined value of the height h th .
  • the ultraviolet curable resin 32 ′ is applied to the surface of the workpiece 42, for example. 'Thickness h32' workpiece 42 ultraviolet curable resin 32 applied to, for example, it is larger than the height h th the same value or predetermined height h th determined in advance.
  • the thickness h32 ′ of the ultraviolet curable resin 32 ′ applied to the workpiece 42 is, for example, 3 ⁇ m or more and 200 ⁇ m or less.
  • the thickness h32 ′ of the ultraviolet curable resin 32 ′ applied to the workpiece 42 is, for example, 10 ⁇ m or more and 30 ⁇ m or less.
  • the predetermined height h th is less than 3 ⁇ m, the number of protrusions (attachments) 210 to be irradiated with the laser beam is large, so that the time and / or cost required for the laser beam irradiation process increases. .
  • the predetermined height h th is preferably 3 ⁇ m or more.
  • the accuracy of the determination process can be improved. That is, the possibility of overlooking the protrusion (attachment) 210 higher than the predetermined height h th is reduced. As a result, the detection efficiency of the protrusions 210 that can cause defects can be improved.
  • the ultraviolet curable resin 32 ' having a high viscosity may be used.
  • the viscosity of the ultraviolet curable resin 32 ′ is high, the ultraviolet curable resin 32 ′ may not easily enter the inverted moth eye structure on the surface of the moth-eye mold 200.
  • the antireflection function of the formed antireflection film There may be a problem that is suppressed.
  • the thickness h32 ′ of the ultraviolet curable resin 32 ′ applied to the workpiece 42 is large, the formed antireflection film 32 becomes soft, so that the antireflection film 32 is easily deformed and / or reflected. There may be a problem that the protective film 32 is easily damaged.
  • the thickness h32 '(see FIG. 5A) of the ultraviolet curable resin 32' applied to the workpiece 42 is preferably 200 ⁇ m or less.
  • the thickness h32 '(see FIG. 5A) of the ultraviolet curable resin 32' applied to the workpiece 42 is further preferably, for example, 30 ⁇ m or less.
  • the viscosity of the ultraviolet curable resin 32 ′ can be increased by increasing the concentration of the monomer in the ultraviolet curable resin 32 ′, for example.
  • the ultraviolet curable resin 32 ′ is obtained, for example, by dissolving a monomer in a solvent.
  • the ultraviolet curable resin 32 ′ may further include a photopolymerization initiator.
  • the ultraviolet curable resin 32 ′ may further include an oligomer, for example. If the ultraviolet curable resin 32 ′ contains an oligomer in addition to the monomer, the volume decreases when the ultraviolet curable resin 32 ′ is cured and the antireflection film 32 is formed, and / or the formed reflection. It is possible to suppress the prevention film 32 from becoming hard.
  • the ultraviolet curable resin 32 ′ may further include a lubricant (including, for example, a fluorine-based lubricant, a silicone-based lubricant, etc.).
  • the determination step for example, it may be determined by directly or indirectly measured and compared to the value of height h th to a predetermined height h210 of each deposit 210 with a microscope .
  • a laser scanning microscope may be used for the measurement.
  • a confocal type laser scanning microscope has a feature that it can brightly image only a focused portion, so that it can acquire a high-resolution image. By combining with scanning in the height direction (Z-axis direction), the height can be accurately measured.
  • the protrusion (attachment) 210 is at least partially evaporated or sublimated when irradiated with laser light, and its height h210 is lowered.
  • the laser light includes, for example, ultraviolet light, visible light, and infrared light.
  • a known laser such as a solid-state laser (for example, YAG laser) or a gas laser (for example, excimer laser, CO 2 laser) can be used.
  • Laser light may be selectively irradiated only to the protruding portion 210 is determined to be higher than the height h th height h210 is predetermined.
  • the irradiation amount of the laser light can be appropriately set according to the size of the protrusion 210 and the like. For example, when a pulse laser such as a YAG laser is used, the pulse width and the number of irradiations may be adjusted.
  • the laser light may be irradiated to the protrusion 210 by moving the laser light relative to the protrusion 210.
  • the height h of the height h210 of the projecting portion 210 is predetermined.
  • the laser beam is irradiated again. These steps may be repeated up to a height h210 of the protruding portion 210 is determined to be equal to or less than a predetermined height h th.
  • the irradiation range and / or irradiation intensity may be changed for irradiation.
  • the irradiation range may be the widest in the first irradiation and the irradiation range may be the narrowest in the last irradiation.
  • the irradiation intensity may be the strongest in the first irradiation and the irradiation intensity may be the weakest in the last irradiation.
  • the projecting portion 210 may be substantially completely removed by laser light irradiation, and a portion where the projecting portion 210 is present on the surface of the moth-eye mold 200 may be concave.
  • the above-described detection process, determination process, and laser light irradiation process may be performed for each protrusion 210, and the number of protrusions 210 may be repeated. .
  • the detection step the surface of the moth-eye mold 200 may be photographed with a camera or the like through a microscope, and the protrusion 210 may be automatically detected from the photographed image.
  • the moth-eye mold 100A shown in FIGS. 1 (e) and 2 (d) is obtained by the above manufacturing method.
  • the above-mentioned patent document 6 and patent document 7 disclose a mold correction method.
  • the mold correction method of Patent Document 6 includes a foreign substance detection process for detecting foreign substances attached to the surface of the mold, and a foreign substance removal process for removing foreign substances detected in the foreign substance detection process by laser irradiation.
  • an atomic force microscope (AFM) or a scanning electron microscope (SEM) is used to detect foreign matter.
  • the mold correcting method of Patent Document 7 includes a step of filling a repairing agent in a defective portion, a step of pressing a repairing die against the repairing agent, and a step of curing the repairing agent by ultraviolet irradiation.
  • the mold correcting method of Patent Document 6 does not selectively remove only the deposits that may cause defects in the antireflection film.
  • the mold correcting method of Patent Document 7 corrects a concave defect portion and cannot remove the deposits that cause the defect of the antireflection film.
  • the mold manufacturing method of the first embodiment of the present invention it is possible to selectively remove deposits that may cause defects in the antireflection film formed using the mold. Further, before forming the antireflection film using the mold, it is possible to remove in advance deposits that may cause defects in the antireflection film. It is possible to efficiently suppress a decrease in manufacturing yield of a film manufactured using a mold.
  • the antireflection film is manufactured and the mold is corrected as follows. First, an antireflection film is formed on a part of the surface of a workpiece (for example, a TAC film).
  • the workpiece has a length of about 3000 m to about 4000 m, for example, and is wound around a winding roller.
  • an antireflection film is formed on the surface of a workpiece having a length of about 20 m to about 30 m.
  • the workpiece is unwound from the take-up roller before the ultraviolet curable resin is applied to the surface, and after the antireflection film is formed on the surface, the work is taken up by another take-up roller.
  • the formed antireflection film has a defect.
  • a defect has occurred, a part corresponding to the defect of the antireflection film is specified on the surface of the moth-eye mold, and the moth-eye mold is corrected. Since the moth-eye mold needs to be corrected only for a portion specified from the formed film, an increase in time and / or labor required for the correction process can be suppressed. In addition, the influence of the surface of the moth-eye mold (for example, the inverted moth-eye structure) due to correction (for example, laser irradiation) can be suppressed.
  • an antireflection film is formed on the surface of the remaining length of the workpiece.
  • the antireflection film formed before the correction of the moth-eye mold may have a defect, so that the manufacturing yield of the antireflection film is increased. There may be a problem of degradation.
  • the surface of the antireflection film is inspected and the moth-eye mold is corrected, and then the surface of the remaining part of the workpiece is again formed. An antireflection film is formed on the surface. In such a manufacturing process, there may be a problem that time and / or labor is increased.
  • Each of the moth-eye molds detected one deposit (protrusion) 210 and measured its height h210.
  • a confocal microscope hybrid laser microscope OPTELICS (registered trademark), HYBRID standard model L3, manufactured by Lasertec Corporation) was used.
  • the predetermined height h th was 6 ⁇ m. This is the same size as the thickness h32 ′ of the ultraviolet curable resin 32 ′ applied to the workpiece 42.
  • An antireflection film was formed from each of the moth-eye molds before laser light irradiation, and it was confirmed that a defect occurred in the antireflection film due to the deposit 210 higher than the predetermined height h th .
  • Example 1a Example 1b, and Comparative Example 1
  • the height 210 of the deposit 210 was higher than the predetermined height h th , and thus the deposit 210 was irradiated with laser light.
  • YAG laser (wavelength: 532 nm, pulse width: 6 ns) was irradiated, and HSL-5000II FS (manufactured by HOYA CANDEO OPTRONICS Co., Ltd.) was used as the laser oscillator.
  • the laser beam irradiation output was 450 mJ.
  • the beam shape of the irradiated laser light is substantially square with a side length of about 30 ⁇ m.
  • Example 1a and Example 1b the height h210 of the deposit 210, until the lower height h th previously determined (6 [mu] m), were irradiated with laser light for approximately 30 times to 50 times. Laser light irradiation was performed while appropriately changing the position of laser light irradiation according to the deposit 210.
  • a correspondence table was prepared in advance using a test sample. According to the correspondence table, for the difference between the height h th to a predetermined height h210 of the deposit 210, to determine the number of times of irradiation of the laser beam. After the laser beam was irradiated for the determined number of times, the height h210 of the deposit 210 was measured, and the laser beam irradiation was further repeated until the height h210 of the deposit 210 reached a predetermined value.
  • Comparative Example 1 the irradiation of the laser beam was stopped in a state where the height h210 of the deposit 210 was 8 ⁇ m, which is a value higher than a predetermined height h th (6 ⁇ m).
  • Example 1a and Example 1b An antireflection film was formed from each moth-eye mold after laser light irradiation. In Example 1a and Example 1b, no defect occurred in the antireflection film, but in Comparative Example 1, a defect occurred in the antireflection film.
  • the mold manufacturing method according to the second embodiment of the present invention differs from the mold manufacturing method according to the first embodiment in that the detection process, the determination process, and the laser light irradiation process are performed before the anodization process and the etching process.
  • the detection process of the mold manufacturing method of Embodiment 2 is a process of detecting a protrusion formed on the surface of the mold substrate.
  • the mold base refers to an object to be anodized and etched in the mold manufacturing process.
  • the mold manufacturing method according to the second embodiment of the present invention is the same as the mold manufacturing method according to the first embodiment except that the detection process, the determination process, and the laser beam irradiation process are performed before the anodizing process and the etching process. It may be.
  • Embodiment 2 of the present invention it is possible to selectively remove deposits that may cause defects in the antireflection film formed using the mold. Further, before forming the antireflection film using the mold, it is possible to remove in advance deposits that may cause defects in the antireflection film. A decrease in manufacturing yield of a film manufactured using the mold can be suppressed.
  • the laser beam irradiation is applied to the plurality of recesses since the deposit on the mold substrate is irradiated before forming the porous alumina layer having the plurality of recesses.
  • the influence exerted can be reduced.
  • FIGS. 1 (a) to 1 (e) and FIGS. 3 (a) to 3 (c) a mold manufacturing method according to the second embodiment of the present invention and a manufacturing method using such a manufacturing method are described.
  • 3 (a) to 3 (c) are schematic cross-sectional views for explaining a method for manufacturing the moth-eye mold 100B of the second embodiment according to the present invention.
  • 3 (a) to 3 (c) are schematic views of a portion of the moth-eye mold 100B having the deposit 210 on the surface in the manufacturing process.
  • a mold base 10 shown in FIGS. 1 (a) and 3 (a) is prepared.
  • the protrusion (adhered matter) 210 formed on the surface 18s of the mold base 10 is detected.
  • the height h210 of the detected protrusions 210 determines higher or not than the height h th determined in advance.
  • the height h210 of the protruding portion 210 is determined to be higher than the height h th determined in advance, as shown in FIG. 3 (b), by applying a laser beam to the projecting portion 210, the projecting portions lower than the height h th the predetermined height h210 of 210.
  • an anodic oxidation process and an etching process are performed.
  • the surface 210s of the deposit 210 is also anodized at the same time, and a porous alumina layer 214 having a plurality of recesses (not shown) is formed. It is formed.
  • the plurality of recesses included in the porous alumina layer 214 are omitted in FIG. 3C for simplicity, but may be the same as the plurality of recesses 14p included in the porous alumina layer 14.
  • the porous alumina layer 14 may not be formed on the portion of the surface 18s of the aluminum alloy layer 18 that is in contact with the deposit 210.
  • a moth-eye mold 100B shown in FIG. 3C is obtained.
  • a cross-sectional view of a portion of the moth-eye mold 100B that does not have the deposit 210 on the surface is the same as the moth-eye mold 100A shown in FIG.
  • the antireflection film is exemplified as the film having the surface having the moth-eye structure.
  • the mold according to the embodiment of the present invention is not limited thereto, and can be widely applied to the manufacture of the film having the surface having the moth-eye structure.
  • the film manufacturing method according to the embodiment of the present invention is not limited to the antireflection film, and can be widely applied to the manufacture of a film having a surface having a moth-eye structure.
  • the mold according to an embodiment of the present invention can be widely used for transfer in nanoimprint.
  • the mold according to the embodiment of the present invention is not limited to this, and forms, for example, a convex portion (for example, a nanopillar) with a sharp tip.
  • a convex portion for example, a nanopillar
  • the bottom of the micro concave portion is not limited to a point, and may be rounded or flat, for example.
  • the shape of the opening of the micro concave portion is not limited to a circle, and may be a rectangular shape, for example.
  • the plurality of micro concave portions may be regularly arranged, or may be irregularly (randomly) arranged.
  • the mold according to the present invention can be used for manufacturing an antireflection film (antireflection surface) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 表面の法線方向から見たときの2次元的な大きさが10nm以上500nm未満の複数の凹部を表面に有する型の製造方法は、型基材(10)を用意する工程(a)と、アルミニウム合金層(18)を部分的に陽極酸化することによって、複数の凹部(14p)を有するポーラスアルミナ層(14)を形成する工程(b)と、ポーラスアルミナ層をエッチング液に接触させることによって、複数の凹部を拡大させる工程(c)と、ポーラスアルミナ層または型基材の表面に形成された突出部(210)を検出する工程(d)と、検出された突出部の高さが予め決められた高さよりも高いか否かを判定する工程(e)と、工程(e)において高いと判定された場合に、突出部にレーザ光を照射することによって、突出部の高さを予め決められた高さよりも低くする工程(f)とを包含する。

Description

型の製造方法および反射防止膜の製造方法
 本発明は、型の製造方法および反射防止膜の製造方法に関し、例えば、反転されたモスアイ構造を表面に有する型の製造方法および型を用いて製造される反射防止膜の製造方法に関する。ここでいう「型」は、種々の加工方法(スタンピングやキャスティング)に用いられる型を包含し、スタンパということもある。また、印刷(ナノプリントを含む)にも用いられ得る。
 テレビや携帯電話などに用いられる表示装置やカメラレンズなどの光学素子には、通常、表面反射を低減して光の透過量を高めるために反射防止技術が施されている。例えば、空気とガラスとの界面を光が入射する場合のように屈折率が異なる媒体の界面を光が通過する場合、フレネル反射などによって光の透過量が低減し、視認性が低下するからである。
 近年、反射防止技術として、凹凸の周期が可視光(λ=380nm~780nm)の波長以下に制御されたミクロな凹凸パターンを基板表面に形成する方法が注目されている(特許文献1から3を参照)。反射防止機能を発現する凹凸パターンを構成する凸部の2次元的な大きさは10nm以上500nm未満である。ここで、凸部の「2次元的な大きさ」とは、表面の法線方向から見たときの凸部の面積円相当径を指し、例えば、凸部が円錐形の場合、凸部の2次元的な大きさは、円錐の底面の直径に相当する。凹部の「2次元的な大きさ」も同様である。
 この方法は、いわゆるモスアイ(Moth-eye、蛾の目)構造の原理を利用したものであり、基板に入射した光に対する屈折率を凹凸の深さ方向に沿って入射媒体の屈折率から基板の屈折率まで連続的に変化させることによって例えば可視光域の反射を抑えている。
 モスアイ構造は、広い波長域にわたって入射角依存性の小さい反射防止作用を発揮できるほか、多くの材料に適用でき、凹凸パターンを基板に直接形成できるなどの利点を有している。その結果、低コストで高性能の反射防止膜(または反射防止表面)を提供できる。
 本出願人は、モスアイ構造を有する反射防止膜(または反射防止表面)の製造方法として、アルミニウムを陽極酸化することによって得られる陽極酸化ポーラスアルミナ層を用いる方法を開発してきた(特許文献2から5)。
 陽極酸化ポーラスアルミナ膜を利用することによって、モスアイ構造を表面に形成するための型(以下、「モスアイ用型」という。)を容易に製造することができる。特に、特許文献2から5に記載されているように、アルミニウムの陽極酸化膜の表面をそのまま型として利用すると、製造コストを低減する効果が大きい。モスアイ構造を形成することができるモスアイ用型の表面の構造を「反転されたモスアイ構造」ということにする。
 特許文献1から5の開示内容の全てを参考のために本明細書に援用する。
特表2001-517319号公報 特表2003-531962号公報 特開2009-166502号公報 国際公開第2011/125486号 国際公開第2013/183576号 特開2014-113710号公報 特開2014-71312号公報
 本発明者が、モスアイ用型を用いて反射防止膜を製造したところ、200μmから3mmの範囲にわたって、反射防止膜に欠陥が生じるという問題が起きることがあった。この反射防止膜を例えばディスプレイに貼ると、反射防止膜を介した像に歪みが生じることがあった。この欠陥の詳細については、後述する。
 本発明は、上記の問題を解決するためになされたものであり、その主な目的は、モスアイ構造を有する表面を備える膜の製造歩留りを向上させることができる型の製造方法を提供すること、およびそのような膜を効率よく製造できる方法を提供することにある。
 本発明の実施形態による型の製造方法は、表面の法線方向から見たときの2次元的な大きさが10nm以上500nm未満の複数の凹部を表面に有する型の製造方法であって、金属基材と、前記金属基材の上に形成されたアルミニウム合金層とを有する型基材を用意する工程(a)と、前記アルミニウム合金層を部分的に陽極酸化することによって、複数の微細な凹部を有するポーラスアルミナ層を形成する工程(b)と、前記工程(b)の後に、前記ポーラスアルミナ層をエッチング液に接触させることによって、前記ポーラスアルミナ層の前記複数の微細な凹部を拡大させる工程(c)と、前記ポーラスアルミナ層または前記型基材の表面に形成された突出部を検出する工程(d)と、前記工程(d)において検出された前記突出部の高さが、予め決められた高さよりも高いか否かを判定する工程(e)と、前記工程(e)において、前記突出部の高さが前記予め決められた高さよりも高いと判定された場合に、前記突出部にレーザ光を照射することによって、前記突出部の高さを前記予め決められた高さよりも低くする工程(f)とを包含する。
 ある実施形態において、前記工程(d)は、前記ポーラスアルミナ層の表面に形成された突出部を検出する工程であり、前記工程(d)、前記工程(e)および前記工程(f)は、前記工程(b)および前記工程(c)の後に行われる。
 ある実施形態において、前記工程(d)は、前記型基材の表面に形成された突出部を検出する工程であり、前記工程(d)、前記工程(e)および前記工程(f)は、前記工程(b)および前記工程(c)の前に行われる。
 ある実施形態において、前記予め決められた高さは、3μm以上200μm以下である。
 ある実施形態において、前記予め決められた高さは、10μm以上30μm以下である。
 ある実施形態において、前記型基材は、前記金属基材と前記アルミニウム合金層との間に形成された無機下地層をさらに有する。
 ある実施形態において、前記型の製造方法は、前記工程(c)の後に、さらに陽極酸化することによって、前記複数の微細な凹部を成長させる工程(g)をさらに包含する。
 ある実施形態において、前記工程(g)の後に、前記工程(b)および前記工程(c)をさらに行う。
 本発明の実施形態による反射防止膜の製造方法は、上記のいずれかに記載の型の製造方法によって製造された型を用意する工程と、被加工物を用意する工程と、前記型と前記被加工物の表面との間に光硬化樹脂を付与した状態で、前記光硬化樹脂に光を照射することによって前記光硬化樹脂を硬化させる工程と、前記型を硬化させられた光硬化樹脂で形成された反射防止膜から剥離する工程とを包含する。
 ある実施形態において、前記光硬化樹脂は、前記被加工物の表面に付与され、前記被加工物の表面に付与された前記光硬化樹脂の厚さは、前記予め決められた高さと同じまたは前記予め決められた高さよりも大きい。
 ある実施形態において、前記被加工物の表面に付与された前記光硬化樹脂の厚さは、3μm以上200μm以下である。
 ある実施形態において、前記被加工物の表面に付与された前記光硬化樹脂の厚さは、10μm以上30μm以下である。
 本発明の実施形態によると、例えばモスアイ構造を有する表面を備える膜の製造歩留りを向上させることができる型を製造することができる。本発明の実施形態によると、上記のような膜を効率よく製造できる方法が提供される。
(a)~(e)は、それぞれ、本発明による実施形態1のモスアイ用型100Aの製造方法を説明するための模式的な断面図である。 (a)~(d)は、それぞれ、本発明による実施形態1のモスアイ用型100Aの製造方法を説明するための模式的な断面図である。 (a)~(c)は、それぞれ、本発明による実施形態2のモスアイ用型100Bの製造方法を説明するための模式的な断面図である。 (a)は、比較例のモスアイ用型200の表面のうち、反射防止膜の欠陥に対応する部分の表面を、走査型電子顕微鏡(SEM)で観察した像であり、(b)は、モスアイ用型200の表面のうち、反射防止膜の欠陥に対応する部分の断面のSEM像であり、(c)は、(b)中の丸印の部分において付着物の組成分析を行った結果を示すグラフである。 (a)~(c)は、比較例のモスアイ用型200を用いて製造された反射防止膜に欠陥が生じることを説明するための模式的な断面図である。 比較例のモスアイ用型200の表面の付着物210の高さh210および大きさw210をプロットしたグラフを示す図である。
 まず、本発明者が見出した、反射防止膜に欠陥が生じる原因について、図4~図6を参照して説明する。
 反射防止膜に欠陥を生じさせたモスアイ用型200(以下、比較例のモスアイ用型ということがある。)の表面を調べた。図4(a)は、モスアイ用型200の表面のうち、反射防止膜の欠陥に対応する部分の表面を、走査型電子顕微鏡(SEM)で観察したSEM像である。図4(b)は、モスアイ用型200の表面のうち、反射防止膜の欠陥に対応する部分の断面のSEM像である。図4(c)は、図4(b)中の付着物の丸印の部分において、エネルギー分散型X線分析装置(EDS)を用いた組成分析を行った結果を示すグラフである。組成分析には、エネルギー分散型X線分析装置(日本電子株式会社製、製品名:JED-2200)を用いた。
 図4(a)および図4(b)に示すように、モスアイ用型200は、反射防止膜の欠陥に対応する部分の表面に、球体が潰れたような形状(例えば円形の座布団のような形状)の付着物を有することが分かった。図4(a)から分かるように、付着物の大きさは、数十μmである。例えば、図4(a)に示す例においては、付着物の大きさは、およそ60μmである。ここで付着物の大きさとは、モスアイ用型の表面の法線方向から見たときの面積円相当径とする。反射防止膜においては、数百μmから数mm(例えば200μmから3mm)の範囲にわたって欠陥が生じていたことから、欠陥は付着物の数十倍から数百倍の大きさを有することが分かった。
 反射防止膜に生じる欠陥が、モスアイ用型の表面の付着物の数十倍から数百倍の大きさを有することによって、以下のような問題が生じる。付着物を表面に有するモスアイ用型を用いて反射防止膜を製造すると、数百μmから数mmの範囲にわたって欠陥が生じることがある。この範囲にわたって生じた欠陥は、観察者に目視で視認されるので、反射防止膜は不良品となり得る。これに対して、付着物の大きさは数十μmなので、反射防止膜を製造する前にモスアイ用型の表面を目視で検査することによって、付着物を発見することは難しい。従って、反射防止膜の製造歩留りの低下を抑制することが困難であるという問題がある。
 モスアイ用型の表面の付着物に起因して、型によって製造された反射防止膜に、付着物の数十倍から数百倍の大きさの範囲にわたって欠陥が生じるメカニズムについて、図5を参照して説明する。図5(a)~図5(c)は、比較例のモスアイ用型200を用いて製造された反射防止膜に欠陥が生じることを説明するための模式的な断面図である。
 図5(a)に示すように、反射防止膜を作製するために、モスアイ用型200、および、紫外線硬化樹脂32'が表面に付与された被加工物42を用意する。モスアイ用型200は、反転されたモスアイ構造を表面に有する。
 モスアイ用型200の表面は、1つまたは複数の付着物210を有する。付着物210がモスアイ用型200の表面に付着したとき、付着物210の形状は、図5(a)に示すように、例えばほぼ球状である。図5(b)を参照して説明する、被加工物42がモスアイ用型200に押し付けられる工程が行われるまでは、付着物210の形状は、ほぼ球状であり得る。紫外線硬化樹脂32’は、例えば、被加工物42の表面に付与される。紫外線硬化樹脂32’は、被加工物42の表面にほぼ一定の厚さh32’で付与されてもよい。付着物210の高さh210は、例えば、紫外線硬化樹脂32’の厚さh32’よりも大きい。ここで、付着物210の高さh210は、モスアイ用型200の表面の法線方向における高さであり、紫外線硬化樹脂32’の厚さh32’は、被加工物42(またはモスアイ用型200)の表面の法線方向における厚さである。付着物210の大きさw210は、例えば、20μm~200μmである。
 図5(b)に示すように、紫外線硬化樹脂32'が表面に付与された被加工物42をモスアイ用型200に押し付けた状態で、紫外線硬化樹脂32'に紫外線(UV)を照射することによって紫外線硬化樹脂32'を硬化させる。このとき、付着物210の高さh210が、紫外線硬化樹脂32’の厚さh32’(図5(a)参照)よりも大きいので、紫外線硬化樹脂32’は、付着物210を中心として大きさw32dの範囲において、その周辺領域よりも厚くなる。周辺領域の紫外線硬化樹脂32’の厚さh32’(図5(b)参照)は、図5(a)に示す紫外線硬化樹脂32’の厚さh32’とほぼ同じである。このように、付着物210によって紫外線硬化樹脂32’の厚さが不均一になることにより、図5(c)に示すように、大きさw32dの範囲において、製造された反射防止膜32に欠陥32dが生じる。欠陥32dの大きさw32dは、付着物210の大きさw210の数十倍から数百倍の大きさである。欠陥32dの大きさw32dは、反射防止膜32の法線方向から見たときの面積円相当径とする。
 被加工物42をモスアイ用型200に押し付けるために、例えば、ピンチロール44が用いられ得る。紫外線硬化樹脂32'としては、例えばアクリル系樹脂を用いることができる。被加工物42は、例えば、TAC(トリアセチルセルロース)フィルムである。
 被加工物42がモスアイ用型200に押し付けられることによって、付着物210の形状は、球体が潰れたような形状になり得る。図5(b)に示す工程においては、図5(a)に示す工程よりも、付着物210の高さh210は小さくなり、付着物210の大きさw210は大きくなり得る。これらの変化は、付着物210の高さh210が大きいほど、大きくなる傾向があった。ただし、図5(b)に示す工程においても、付着物210の高さh210は、紫外線硬化樹脂32’の厚さh32’よりも大きい。被加工物42がモスアイ用型200に押し付けられることによって、図4(a)に示すように、付着物210の表面にひび割れが生じることもある。ひび割れは、例えば、付着物210の表面に筋状に生じ得る。例えば、付着物210の高さh210が大きい場合、付着物210の周辺において、紫外線硬化樹脂32’中に気泡33が生じることもある。
 その後、図5(c)に示すように、被加工物42からモスアイ用型200を分離(剥離)することによって、モスアイ用型200の凹凸構造(反転されたモスアイ構造)が転写された硬化物層(反射防止膜)32が被加工物42の表面に形成される。反射防止膜32には、大きさw32dの範囲にわたって欠陥32dが生じる。欠陥32dにおいては、膜の厚さが周辺より厚い。欠陥32dは例えばレンズのような形状をしている。反射防止膜32を例えばディスプレイの表示面に貼ると、欠陥32dに起因して、反射防止膜32を介した像には歪みが生じ得る。欠陥32dの周辺領域の反射防止膜32の厚さh32は、図5(a)に示す紫外線硬化樹脂32’の厚さh32’とほぼ同じである。
 上記の欠陥32dのように、本明細書において、膜(例えば反射防止膜)について「欠陥」とは、膜の一部の厚さがその周辺領域の厚さよりも大きいことを含む。このような欠陥を有する膜を、例えばディスプレイの表示面に貼ると、欠陥部分を介した像に歪みが生じることがある。
 次に、本発明者は、付着物210がモスアイ用型200を製造する工程のうち、どの工程で生じたのかを検討した。
 比較例のモスアイ用型200は、特許文献2~5に記載されている方法で製造することができる。比較例のモスアイ用型200の製造方法は、図1(a)~図1(e)を参照して後述するように、下記の工程(A’)~(C’)を包含する。
 工程(A’):金属基材12と、金属基材12の上に形成された無機下地層16と、無機下地層16の上に堆積されたアルミニウム合金層18とを有する型基材10を用意する工程。
 工程(B’):アルミニウム合金層18を部分的に陽極酸化することによって、複数のミクロな凹部14pを有するポーラスアルミナ層14を形成する工程。
 工程(C’):工程(B’)の後に、ポーラスアルミナ層14をエッチング液に接触させることによって、ポーラスアルミナ層14の複数のミクロな凹部14pを拡大させる工程。
 付着物210の成分を分析すると、図4(c)に示すように、アルミニウム(Al)が主要な成分であり、付着物210はアルミニウム合金層18と同じ成分を有することが分かった。また、図4(b)に示したように、付着物210の表面には、反転されたモスアイ構造を有するポーラスアルミナ層が形成されている。これらのことから、付着物210は、モスアイ用型200の表面にアルミニウム合金層18が形成された後、陽極酸化を行う工程までの間(すなわち、上記工程(A’)の後、かつ、工程(B’)の前)に生じたと考えられる。アルミニウム合金層18の形成は、例えばスパッタ法を用いてチャンバー(真空チャンバー)内で行う。アルミニウム合金を堆積してアルミニウム合金層18を形成した後、チャンバー内を大気開放し、型基材を取り出す過程で、チャンバー内のアルミニウム合金の塊(粒)がアルミニウム合金層18の表面に付着することで、付着物210が生じたと考えられる。
 アルミニウム合金層18の表面に生じた付着物210は、アルミニウム合金層18と同じ組成を有するので、アルミニウム合金層18との密着性が強い。付着物210を除去することが困難であるという問題が生じる。陽極酸化工程を行う前に、モスアイ用型200の表面を洗浄することによっても、付着物210を完全に除去することが困難である。
 また、例えば、規則的に配列された凸部を有するモスアイ構造を形成するための型を製造するために、工程(A’)と工程(B’)との間に、例えば厚さが約0.1μm~0.3μmのポーラスアルミナ層を形成した後、生成されたポーラスアルミナ層をエッチングにより除去する工程をさらに行ってもよい。ポーラスアルミナ層を生成し、このポーラスアルミナ層を除去すると、アルミニウム膜またはアルミニウム基材の表面に存在するグレインによる凹凸や加工ひずみの影響を受けることなく、規則的に配列された凹部を有するポーラスアルミナ層を形成することができるからである。上記工程をさらに行っても、付着物210はアルミニウム合金層18と同じ組成を有するので、付着物210を実質的に完全に除去することは困難である。
 本発明者は、表面の付着物210の高さh210および大きさw210を測定した。図6は、モスアイ用型200の表面の付着物210の高さh210および大きさw210をプロットしたグラフを示す図である。
 モスアイ用型200を用いて形成した反射防止膜32の欠陥32dに対応する箇所にある、モスアイ用型200の付着物210について、18個サンプリングし、それぞれの高さh210および大きさw210を求めた。高さh210および大きさw210は、走査型電子顕微鏡(SEM)(株式会社日立ハイテクノロジーズ製、S-4700)で観察したSEM像から求めた。
 紫外線硬化樹脂32'の厚さh32’は、被加工物42がモスアイ用型200に押し付けられる前(図5(a)参照)において、いずれの場合も6μmであった。図6から分かるように、付着物210の高さh210は、いずれも6μm以上である。反射防止膜32の欠陥32dの原因となる付着物210の高さh210は、紫外線硬化樹脂32'の厚さh32’と同じまたは紫外線硬化樹脂32'の厚さh32’よりも大きいことが確かめられた。
 ここで、測定した付着物210は、被加工物42がモスアイ用型200に押し付けられた後のものなので、上述したように、被加工物42がモスアイ用型200に押し付けられる前においては、付着物210の高さh210は測定された値よりも大きかったと考えられる。すなわち、反射防止膜32の欠陥32dの原因となる付着物210の高さh210は、紫外線硬化樹脂32'の厚さh32’よりも大きいと考えられる。
 以下、図面を参照して、本発明の実施形態による型の製造方法を説明する。本実施形態の型は、表面の法線方向から見たときの2次元的な大きさが10nm以上500nm未満の複数の凹部を表面に有する型である。本発明の実施形態による型は、例えば、反転されたモスアイ構造を表面に有する、モスアイ用型である。モスアイ用型は、例えば、円筒状であってもよいし、板状であってもよい。特に、本出願人による国際公開第2011/105206号に開示されているように、円筒状のモスアイ用型を用いると、ロール・ツー・ロール方式により反射防止膜を効率良く製造することができる。参考のために、国際公開第2011/105206号の開示内容の全てを本明細書に援用する。なお、本発明は以下で例示する実施形態に限られない。以下の図面において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、その説明を省略することがある。
 (実施形態1)
 本発明による実施形態1の型の製造方法は、下記の工程(A)~工程(F)を包含する。
 工程(A):金属基材と、金属基材の上に形成されたアルミニウム合金層とを有する型基材を用意する工程。
 工程(B):アルミニウム合金層を部分的に陽極酸化することによって、複数の微細な凹部を有するポーラスアルミナ層を形成する工程(陽極酸化工程ということがある。)。
 工程(C):工程(B)の後に、ポーラスアルミナ層をエッチング液に接触させることによって、ポーラスアルミナ層の複数の微細な凹部を拡大させる工程(エッチング工程ということがある。)。
 工程(D):ポーラスアルミナ層の表面に形成された突出部を検出する工程(検出工程ということがある。)。
 工程(E):工程(D)において検出された突出部の高さが、予め決められた高さよりも高いか否かを判定する工程(判定工程ということがある。)。
 工程(F):工程(E)において、突出部の高さが予め決められた高さよりも高いと判定された場合に、突出部にレーザ光を照射することによって、突出部の高さを前記予め決められた高さよりも低くする工程(レーザ光照射工程ということがある。)。
 工程(E)および工程(F)における予め決められた高さは、例えば、被加工物42に付与された紫外線硬化樹脂32'の厚さh32’(図5(a)参照)と同じとする。
 工程(D)、工程(E)および工程(F)は、例えば、工程(B)および工程(C)の後に行われる。
 本発明による実施形態1の型の製造方法によると、型を用いて形成される反射防止膜の欠陥の原因となり得る付着物を選択的に取り除くことができる。また、型を用いて反射防止膜を形成する前に、反射防止膜の欠陥の原因となり得る付着物を予め取り除くことができる。型を用いて製造される膜の製造歩留りの低下が抑制され得る。
 次に、図1(a)~図1(e)および図2(a)~図2(d)を参照して、本発明による実施形態1の型の製造方法およびそのような製造方法によって製造される型の構造を詳細に説明する。図1(a)~図1(e)および図2(a)~図2(d)は、それぞれ、本発明による実施形態1のモスアイ用型100Aの製造方法を説明するための模式的な断面図である。図1(a)~図1(e)は、モスアイ用型100Aのうち、製造工程において表面に付着物210を有しない部分の模式図であり、図2(a)~図2(d)は、モスアイ用型100Aのうち、製造工程において表面に付着物210を有する部分の模式図である。
 まず、図1(a)に示すように、金属基材12と、金属基材12の上に形成されたアルミニウム合金層18とを有する型基材10を用意する。図2(a)に示すように、型基材10の表面18sは、付着物210を有する。
 図1(a)に例示されるように、型基材10は、金属基材12とアルミニウム合金層18との間に、無機下地層16をさらに有してもよい。実施形態1の型の製造方法は、金属基材12を用意する工程の後、かつ、アルミニウム合金層18を形成する工程の前に、金属基材12の上に無機下地層16を形成する工程をさらに包含してもよい。
 金属基材12としては、例えば、アルミニウムの純度が99.50mass%以上99.99mass%未満である比較的剛性の高いアルミニウム基材12を用いることができる。アルミニウム基材12に含まれる不純物としては、鉄(Fe)、ケイ素(Si)、銅(Cu)、マンガン(Mn)、亜鉛(Zn)、ニッケル(Ni)、チタン(Ti)、鉛(Pb)、スズ(Sn)およびマグネシウム(Mg)からなる群から選択された少なくとも1つの元素を含むことが好ましく、特にMgが好ましい。エッチング工程におけるピット(窪み)が形成されるメカニズムは、局所的な電池反応であるので、理想的にはアルミニウムよりも貴な元素を全く含まず、卑な金属であるMg(標準電極電位が-2.36V)を不純物元素として含むアルミニウム基材12を用いることが好ましい。アルミニウムよりも貴な元素の含有率が10ppm以下であれば、電気化学的な観点からは、当該元素を実質的に含んでいないと言える。Mgの含有率は、全体の0.1mass%以上であることが好ましく、約3.0mass%以下の範囲であることがさらに好ましい。Mgの含有率が0.1mass%未満では十分な剛性が得られない。一方、含有率が大きくなると、Mgの偏析が起こり易くなる。モスアイ用型を形成する表面付近に偏析が生じても電気化学的には問題とならないが、Mgはアルミニウムとは異なる形態の陽極酸化膜を形成するので、不良の原因となる。不純物元素の含有率は、アルミニウム基材12の形状、厚さおよび大きさに応じて、必要とされる剛性に応じて適宜設定すればよい。例えば圧延加工によって板状のアルミニウム基材12を作製する場合には、Mgの含有率は約3.0mass%が適当であるし、押出加工によって円筒などの立体構造を有するアルミニウム基材12を作製する場合には、Mgの含有率は2.0mass%以下であることが好ましい。Mgの含有率が2.0mass%を超えると、一般に押出加工性が低下する。
 アルミニウム基材12として、例えば、JIS A1050、Al-Mg系合金(例えばJIS A5052)、またはAl-Mg-Si系合金(例えばJIS A6063)で形成された円筒状のアルミニウム管を用いる。
 アルミニウム基材12の表面は、バイト切削が施されていることが好ましい。アルミニウム基材12の表面に、例えば砥粒が残っていると、砥粒が存在する部分において、アルミニウム合金層18とアルミニウム基材12との間で導通しやすくなる。砥粒以外にも、凹凸が存在するところでは、アルミニウム合金層18とアルミニウム基材12との間で局所的に導通しやすくなる。アルミニウム合金層18とアルミニウム基材12との間で局所的に導通すると、アルミニウム基材12内の不純物とアルミニウム合金層18との間で局所的に電池反応が起こる可能性がある。
 無機下地層16の材料としては、例えば酸化タンタル(Ta25)または二酸化シリコン(SiO2)を用いることができる。無機下地層16は、例えばスパッタ法により形成することができる。無機下地層16として、酸化タンタル層を用いる場合、酸化タンタル層の厚さは、例えば、200nmである。
 無機下地層16の厚さは、100nm以上500nm未満であることが好ましい。無機下地層16の厚さが100nm未満であると、アルミニウム合金層18に欠陥(主にボイド、すなわち結晶粒間の間隙)が生じることがある。また、無機下地層16の厚さが500nm以上であると、アルミニウム基材12の表面状態によって、アルミニウム基材12とアルミニウム合金層18との間が絶縁されやすくなる。アルミニウム基材12側からアルミニウム合金層18に電流を供給することによってアルミニウム合金層18の陽極酸化を行うためには、アルミニウム基材12とアルミニウム合金層18との間に電流が流れる必要がある。円筒状のアルミニウム基材12の内面から電流を供給する構成を採用すると、アルミニウム合金層18に電極を設ける必要がないので、アルミニウム合金層18を全面にわたって陽極酸化できるとともに、陽極酸化の進行に伴って電流が供給され難くなるという問題も起こらず、アルミニウム合金層18を全面にわたって均一に陽極酸化することができる。
 また、厚い無機下地層16を形成するためには、一般的には成膜時間を長くする必要がある。成膜時間が長くなると、アルミニウム基材12の表面温度が不必要に上昇し、その結果、アルミニウム合金層18の膜質が悪化し、欠陥(主にボイド)が生じることがある。無機下地層16の厚さが500nm未満であれば、このような不具合の発生を抑制することもできる。
 アルミニウム合金層18は、例えば、特許文献4に記載されているように、純度が99.99mass%以上のアルミニウムで形成された膜(以下、「高純度アルミニウム膜」ということがある。)である。アルミニウム合金層18は、例えば、真空蒸着法またはスパッタ法を用いて形成される。アルミニウム合金層18の厚さは、約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。
 また、アルミニウム合金層18として、高純度アルミニウム膜に代えて、特許文献5に記載されている、アルミニウム合金膜を用いてもよい。特許文献5に記載のアルミニウム合金膜は、アルミニウムと、アルミニウム以外の金属元素と、窒素とを含む。本明細書において、「アルミニウム膜」は、高純度アルミニウム膜だけでなく、特許文献5に記載のアルミニウム合金膜を含むものとする。
 上記アルミニウム合金膜を用いると、反射率が80%以上の鏡面を得ることができる。アルミニウム合金膜を構成する結晶粒の、アルミニウム合金膜の法線方向から見たときの平均粒径は、例えば、100nm以下であり、アルミニウム合金膜の最大表面粗さRmaxは60nm以下である。アルミニウム合金膜に含まれる窒素の含有率は、例えば、0.5mass%以上5.7mass%以下である。アルミニウム合金膜に含まれるアルミニウム以外の金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値は0.64V以下であり、アルミニウム合金膜中の金属元素の含有率は、1.0mass%以上1.9mass%以下であることが好ましい。金属元素は、例えば、TiまたはNdである。但し、金属元素はこれに限られず、金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値が0.64V以下である他の金属元素(例えば、Mn、Mg、Zr、VおよびPb)であってもよい。さらに、金属元素は、Mo、NbまたはHfであってもよい。アルミニウム合金膜は、これらの金属元素を2種類以上含んでもよい。アルミニウム合金膜は、例えば、DCマグネトロンスパッタ法で形成される。アルミニウム合金膜の厚さも約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。
 次に、図1(b)に示すように、アルミニウム合金層18の表面18sを陽極酸化することによって、複数の凹部(細孔)14pを有するポーラスアルミナ層14を形成する。ポーラスアルミナ層14は、凹部14pを有するポーラス層と、バリア層(凹部(細孔)14pの底部)とを有している。隣接する凹部14pの間隔(中心間距離)は、バリア層の厚さのほぼ2倍に相当し、陽極酸化時の電圧にほぼ比例することが知られている。この関係は、図1(e)に示す最終的なポーラスアルミナ層14についても成立する。
 ポーラスアルミナ層14は、例えば、酸性の電解液中で表面18sを陽極酸化することによって形成される。ポーラスアルミナ層14を形成する工程で用いられる電解液は、例えば、蓚酸、酒石酸、燐酸、硫酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む水溶液である。例えば、アルミニウム合金層18の表面18sを、蓚酸水溶液(濃度0.3mass%、液温10℃)を用いて、印加電圧80Vで55秒間陽極酸化を行うことにより、ポーラスアルミナ層14を形成する。
 図2(b)に示すように、アルミニウム合金層18の表面18sを陽極酸化する工程において、付着物210の表面210sも同時に陽極酸化され、複数の凹部(不図示)を有するポーラスアルミナ層214が形成される。ポーラスアルミナ層214が有する複数の凹部は、図2(b)~図2(d)においては簡単のために省略しているが、ポーラスアルミナ層14が有する複数の凹部14pと同じであってよい。アルミニウム合金層18の表面18sのうち、付着物210と接している部分には、ポーラスアルミナ層14が形成されない場合もある。
 次に、図1(c)に示すように、ポーラスアルミナ層14をエッチャントに接触させることによって所定の量だけエッチングすることにより凹部14pの開口部を拡大する。エッチング液の種類・濃度、およびエッチング時間を調整することによって、エッチング量(すなわち、凹部14pの大きさおよび深さ)を制御することができる。エッチング液としては、例えば10mass%の燐酸や、蟻酸、酢酸、クエン酸などの有機酸や硫酸の水溶液やクロム酸燐酸混合水溶液を用いることができる。例えば、燐酸水溶液(10mass%、30℃)を用いて20分間エッチングを行う。
 このとき、ポーラスアルミナ層14とともに、付着物210の表面210sに形成されたポーラスアルミナ層214が有する複数の凹部の開口部も同時に拡大される。ただし、付着物210の高さh210および大きさw210は、付着物210の表面210sが陽極酸化およびエッチングされる工程によっては、ほとんど変化しないと考えられる。
 次に、図1(d)に示すように、再び、アルミニウム合金層18を部分的に陽極酸化することにより、凹部14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。ここで凹部14pの成長は、既に形成されている凹部14pの底部から始まるので、凹部14pの側面は階段状になる。
 さらにこの後、必要に応じて、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによってさらにエッチングすることにより凹部14pの孔径をさらに拡大する。エッチング液としては、ここでも上述したエッチング液を用いることが好ましく、現実的には、同じエッチング浴を用いればよい。
 このように、上述した陽極酸化工程およびエッチング工程を交互に複数回(例えば5回:陽極酸化を5回とエッチングを4回)繰り返すことによって、図2(c)に示すように、反転されたモスアイ構造を有するポーラスアルミナ層14を有する比較例のモスアイ用型200が得られる。比較例のモスアイ用型200のうち、表面に付着物210を有しない部分は、図1(e)に示されるモスアイ用型100Aと同じであってよい。陽極酸化工程で終わることによって、凹部14pの底部を点にできる。すなわち、先端が尖った凸部を形成することができる型が得られる。
 図1(e)に示すポーラスアルミナ層14(厚さtp)は、ポーラス層(厚さは凹部14pの深さDdに相当)とバリア層(厚さtb)とを有する。ポーラスアルミナ層14は、反射防止膜32が有するモスアイ構造を反転した構造を有するので、その大きさを特徴づける対応するパラメータに同じ記号を用いることがある。
 ポーラスアルミナ層14が有する凹部14pは、例えば円錐形であり、階段状の側面を有してもよい。凹部14pの二次元的な大きさ(表面の法線方向から見たときの凹部の面積円相当径)Dpは20nm超500nm未満で、深さDdは50nm以上1000nm(1μm)未満程度であることが好ましい。また、凹部14pの底部は尖っている(最底部は点になっている)ことが好ましい。凹部14pは密に充填されている場合、ポーラスアルミナ層14の法線方向から見たときの凹部14pの形状を円と仮定すると、隣接する円は互いに重なり合い、隣接する凹部14pの間に鞍部が形成される。なお、略円錐形の凹部14pが鞍部を形成するように隣接しているときは、凹部14pの二次元的な大きさDpは隣接間距離Dintと等しい。ポーラスアルミナ層14の厚さtpは、例えば、約1μm以下である。
 なお、図1(e)に示すポーラスアルミナ層14の下には、アルミニウム合金層18のうち、陽極酸化されなかったアルミニウム残存層18rが存在している。必要に応じて、アルミニウム残存層18rが存在しないように、アルミニウム合金層18を実質的に完全に陽極酸化してもよい。例えば、無機下地層16が薄い場合には、アルミニウム基材12側から容易に電流を供給することができる。
 ここで例示したモスアイ用型の製造方法は、特許文献2~5に記載の反射防止膜を作製するための型を製造することができる。高精細な表示パネルに用いられる反射防止膜には、高い均一性が要求されるので、上記のようにアルミニウム基材の材料の選択、アルミニウム基材の鏡面加工、アルミニウム膜の純度や成分の制御を行うことが好ましい。ただし、本発明の実施形態による型は、これに限られず、モスアイ構造を有する表面を備える膜の製造に広く適用され得る。高い均一性が求められない膜を作製する場合は、上記の型の製造方法を簡略化することができる。また、上述の型の製造方法によると、反射防止膜の作製に好適な、凹部の配列の規則性が低い型を製造することができる。規則的に配列された凸部を有するモスアイ構造を形成するための型は、例えば、以下のようにして製造することができる。
 例えば厚さが約0.1μm~0.3μmのポーラスアルミナ層を形成した後、生成されたポーラスアルミナ層をエッチングにより除去してから、上述のポーラスアルミナ層を生成する条件で陽極酸化を行えばよい。厚さが0.1μm~0.3μmのポーラスアルミナ層は、陽極酸化時間を適宜調整することによって形成される。このようにポーラスアルミナ層を生成し、このポーラスアルミナ層を除去すると、アルミニウム膜またはアルミニウム基材の表面に存在するグレインによる凹凸や加工ひずみの影響を受けることなく、規則的に配列された凹部を有するポーラスアルミナ層を形成することができる。なお、ポーラスアルミナ層の除去には、クロム酸と燐酸との混合液を用いることが好ましい。長時間にわたるエッチングを行うとガルバニック腐食が発生することがあるが、クロム酸と燐酸との混合液はガルバニック腐食を抑制する効果がある。
 次に、図2(c)に示すモスアイ用型200の表面に形成された突出部210を検出する。突出部210は、上述した付着物210を含む。簡単のために、突出部210と付着物210を同じ参照符号で表すことがある。検出する突出部210には、付着物210の他に、例えば、付着物210とは異なる成分(例えば有機物、セルロース(例えばTACフィルムを含む)、樹脂(例えば反射防止膜32を形成するために用いられる紫外線硬化樹脂32’を含む)等)を有するものおよび付着物210とは異なる原因で生じたものも含む。
 突出部210の検出には、例えば顕微鏡(例えばレーザ走査型顕微鏡を含む)を用いる。突出部210について検出とは、突出部210のモスアイ用型200における位置を示す情報を取得することを含む。例えばモスアイ用型が円筒状である場合には、モスアイ用型の円周方向における位置、および、モスアイ用型の底面に垂直な方向における位置を取得する。この際、例えば、モスアイ用型の円周方向における位置を特定するマーカーを基準として用いることができる。
 突出部210を検出する工程において、ポーラスアルミナ層14の法線方向から見たときの形状がほぼ円形である突出部(付着物)210のみを選択して検出してもよい。上述したように、反射防止膜の欠陥の原因となり得る付着物210は、ほぼ球状であるという特徴を有しているので、欠陥の原因となり得る突出部210を効率よく検出することが可能である。これにより、効率よく反射防止膜の欠陥の発生を抑制することが可能となる。
 次に、検出した突出部210の高さh210が、予め決められた高さhthよりも高いか否かを判定する。予め決められた高さhthは、例えば、被加工物42に付与された紫外線硬化樹脂32'の厚さh32’(図5(a)参照)と同じとする。予め決められた高さhthは、例えば、被加工物42に付与された紫外線硬化樹脂32'の厚さh32’(図5(a)参照)より小さい値であってもよい。予め決められた高さhthは、これに限られず、任意の値に設定することができる。予め決められた高さhthは、例えば3μm以上200μm以下である。予め決められた高さhthは、例えば10μm以上30μm以下である。予め決められた高さhthは、例えば、被加工物42に付与された紫外線硬化樹脂32'の厚さh32’(図5(a)参照)が10μmである場合、10μm以下である。
 予め決められた高さhthの値に応じて、被加工物42に付与される紫外線硬化樹脂32’の厚さh32’(図5(a)参照)を決定することもできる。紫外線硬化樹脂32’は、例えば、被加工物42の表面に付与される。被加工物42に付与される紫外線硬化樹脂32’の厚さh32’は、例えば、予め決められた高さhthと同じ値または予め決められた高さhthよりも大きい値である。被加工物42に付与される紫外線硬化樹脂32’の厚さh32’は、例えば、3μm以上200μm以下である。被加工物42に付与される紫外線硬化樹脂32’の厚さh32’は、例えば、10μm以上30μm以下である。
 予め決められた高さhthが、3μm未満であると、レーザ光照射の対象となる突出部(付着物)210の数が多いので、レーザ光照射工程にかかる時間および/またはコストが増大する。レーザ光照射工程にかかる時間および/またはコストの観点から、予め決められた高さhthは3μm以上であることが好ましい。予め決められた高さhthが10μm以上であると、判定工程の精度が向上し得る。すなわち、予め決められた高さhthよりも高い突出部(付着物)210を見落とす可能性が低くなる。その結果、欠陥の原因となり得る突出部210の検出の効率が向上し得る。
 被加工物42に付与される紫外線硬化樹脂32’の厚さh32’を大きくする場合には、例えば、粘度の高い紫外線硬化樹脂32’を用いる場合がある。紫外線硬化樹脂32’の粘度が高いと、モスアイ用型200の表面の反転されたモスアイ構造に紫外線硬化樹脂32’が入り込みにくくなることがあり、その結果、形成される反射防止膜の反射防止機能が抑制されるという問題が生じることがある。また、被加工物42に付与される紫外線硬化樹脂32’の厚さh32’が大きいと、形成された反射防止膜32が柔らかくなるので、反射防止膜32が変形しやすい、および/または、反射防止膜32に傷が付きやすいという問題が生じることがある。
 上記の問題の発生を防ぐ観点から、被加工物42に付与される紫外線硬化樹脂32’の厚さh32’(図5(a)参照)は、200μm以下であることが好ましい。被加工物42に付与される紫外線硬化樹脂32’の厚さh32’(図5(a)参照)は、例えば30μm以下であることがさらに好ましい。
 なお、紫外線硬化樹脂32’の粘度は、例えば、紫外線硬化樹脂32’中のモノマーの濃度を高くすることで、高くすることができる。紫外線硬化樹脂32’は、例えば、溶媒にモノマーを溶解させたものである。紫外線硬化樹脂32’は、光重合開始剤をさらに含み得る。紫外線硬化樹脂32’は、例えば、オリゴマーをさらに含んでもよい。紫外線硬化樹脂32’に、モノマーに加えてオリゴマーが含まれると、紫外線硬化樹脂32’が硬化して反射防止膜32が形成される際に体積が減少すること、および/または、形成された反射防止膜32が固くなることを抑制し得る。紫外線硬化樹脂32’は、潤滑剤(例えばフッ素系潤滑剤、シリコーン系潤滑剤等を含む)をさらに含んでもよい。
 判定工程において、例えば、顕微鏡を用いてそれぞれの付着物210の高さh210を直接的にまたは間接的に測定し、予め決められた高さhthの値と比較することで判定してもよい。測定には、例えばレーザ走査型顕微鏡を用いてもよい。例えば、共焦点タイプのレーザ走査型顕微鏡は、焦点の合った箇所だけを明るく撮像することができるという特徴を有するので、高い解像度の画像を取得することができる。高さ方向(Z軸方向)のスキャンと組み合わせることによって、高さを精度良く測定することができる。
 突出部210の高さh210が予め決められた高さhthよりも高いと判定された場合は、突出部210にレーザ光を照射することによって、突出部210の高さを予め決められた高さhthよりも低くする。突出部(付着物)210は、レーザ光を照射されることにより、少なくとも部分的に蒸発または昇華し、その高さh210が低くなる。レーザ光は、例えば、紫外光、可視光および赤外光を含む。例えば、固体レーザ(例えばYAGレーザ等)または気体レーザ(例えばエキシマレーザ、CO2レーザ)等、公知のレーザを用いることができる。
 レーザ光は、例えば、高さh210が予め決められた高さhthよりも高いと判定された突出部210にのみ選択的に照射してもよい。レーザ光の照射量は、突出部210の大きさ等に応じて適宜設定され得る。例えば、YAGレーザ等のパルスレーザを用いる場合、パルス幅および照射回数を調整すればよい。また、レーザ光の照射エリアが突出部210より小さい場合には、レーザ光を突出部210に対して相対的に移動して、レーザ光を突出部210に照射すればよい。例えば、レーザ光を照射した後、突出部210の高さh210が予め決められた高さhthよりも高いか否かを判定し、突出部210の高さh210が予め決められた高さhthよりも高いと判定された場合には、レーザ光を再び照射する。これらの工程を、突出部210の高さh210が予め決められた高さhth以下であると判定されるまで繰り返してもよい。
 レーザ光を複数回照射する場合には、照射範囲および/または照射強度を変えて照射してもよい。例えば、最初の照射において最も照射範囲が広く、最後の照射において最も照射範囲が狭くてもよい。例えば、最初の照射において最も照射強度が強く、最後の照射において最も照射強度が弱くてもよい。
 レーザ光の照射により突出部210が実質的に完全に除去され、モスアイ用型200の表面において突出部210があった箇所が凹状となってもよい。
 モスアイ用型200が表面に複数の突出部210を有する場合には、それぞれの突出部210について、上述の検出工程、判定工程およびレーザ光照射工程を行い、突出部210の個数だけ繰り返してもよい。あるいは、複数の突出部210の全てについて一度に、検出工程、判定工程およびレーザ光照射工程を行ってもよい。例えば、検出工程において、顕微鏡を介してカメラ等によりモスアイ用型200の表面を撮影し、撮影画像から自動的に突出部210を検出してもよい。
 以上の製造方法によって、図1(e)および図2(d)に示すモスアイ用型100Aが得られる。
 上述の特許文献6および特許文献7は、型の修正方法を開示している。特許文献6の型の修正方法は、型の表面に付着した異物を検出する異物検出工程と、異物検出工程において検出された異物をレーザ照射により除去する異物除去工程とを有する。特許文献6の型の修正方法においては、異物を検出するために原子間力顕微鏡(AFM)または走査型電子顕微鏡(SEM)を用いることが記載されている。特許文献7の型の修正方法は、欠陥部分に補修剤を充填する工程と、補修剤に補修用型を圧接する工程と、紫外線照射により補修剤を硬化させる工程とを有する。特許文献6の型の修正方法は、反射防止膜の欠陥の原因となり得る付着物のみを選択的に取り除くものではない。特許文献7の型の修正方法は、凹状の欠陥部分を修正するものであり、反射防止膜の欠陥の原因となる付着物を除去することができない。
 これに対して、本発明による実施形態1の型の製造方法によると、型を用いて形成される反射防止膜の欠陥の原因となり得る付着物を選択的に取り除くことができる。また、型を用いて反射防止膜を形成する前に、反射防止膜の欠陥の原因となり得る付着物を予め取り除くことができる。型を用いて製造される膜の製造歩留りの低下を効率的に抑制することが可能である。
 型を用いて反射防止膜を形成する前に、反射防止膜の欠陥の原因となり得る付着物を予め取り除くことの効果を簡単に説明する。
 反射防止膜の欠陥の原因となり得る付着物を予め取り除かない場合は、例えば、以下のように、反射防止膜の製造およびその型の修正を行う。まず、被加工物(例えばTACフィルム)の一部の表面に、反射防止膜を形成する。被加工物は、例えば、約3000m~約4000mの長さを有し、巻き取りローラに巻き付けられている。このうち、例えば、約20m~約30mの長さの被加工物の表面に、反射防止膜を形成する。被加工物は、紫外線硬化樹脂が表面に付与される前に、巻き取りローラから巻き出され、表面に反射防止膜が形成された後に、別の巻き取りローラに巻き取られる。
 次に、形成された反射防止膜に欠陥が生じているか否かを調べる。欠陥が生じている場合は、反射防止膜の欠陥に対応する箇所を、モスアイ用型の表面において特定し、モスアイ用型の修正を行う。モスアイ用型の修正は、形成された膜から特定された箇所のみについて行えばよいので、修正工程にかかる時間および/または手間の増加を抑制することができる。また、修正(例えばレーザ照射)によってモスアイ用型の表面(例えば反転されたモスアイ構造)が受ける影響を抑制することができる。
 その後、残りの長さの被加工物の表面に、反射防止膜を形成する。モスアイ用型の修正を行ったことにより、残りの長さの被加工物の表面に形成される反射防止膜については、欠陥の発生が抑制される。
 上記の反射防止膜の製造方法およびその型の修正方法によると、モスアイ用型の修正を行う前に形成された反射防止膜は、欠陥を有する可能性があるので、反射防止膜の製造歩留りが低下するという問題が生じることがある。また、上記方法では、被加工物の一部の表面に反射防止膜を形成した後、反射防止膜の表面の検査およびモスアイ用型の修正を行い、その後再び被加工物の残りの部分の表面に反射防止膜を形成する。このような製造工程では、時間および/または手間が増加するという問題が生じることがある。
 これに対して、型を用いて反射防止膜を形成する前に、反射防止膜の欠陥の原因となり得る付着物を予め取り除くことができると、上記2点の問題の発生を抑制することができる。反射防止膜の欠陥の原因となり得る付着物を予め取り除くことは、予め取り除く対象となる付着物の数が少ない場合に、上記2点の問題の発生を抑制する観点からは、より有効であると考えられる。本発明の実施形態による型の製造方法では、上述してきたように、型を用いて反射防止膜を形成する前に、反射防止膜の欠陥の原因となり得る付着物を予め取り除くことができる。
 以下の表1に示す実施例1a、実施例1bおよび比較例1のモスアイ用型を作製し、それぞれのモスアイ用型から反射防止膜を形成した。
Figure JPOXMLDOC01-appb-T000001
 それぞれのモスアイ用型が有する1つの付着物(突出部)210を検出し、その高さh210を測定した。高さh210の測定には、共焦点顕微鏡(ハイブリッドレーザーマイクロスコープOPTELICS(登録商標) HYBRIDスタンダードモデルL3、レーザーテック株式会社製)を用いた。
 付着物210の高さh210を予め決められた高さhthと比較することで、判定工程を行った。予め決められた高さhthは6μmとした。これは、被加工物42に付与された紫外線硬化樹脂32’の厚さh32’と同じ大きさである。レーザ光照射前のそれぞれのモスアイ用型から、反射防止膜を形成し、予め決められた高さhthよりも高い付着物210によって、反射防止膜に欠陥が生じることを確かめた。
 実施例1a、実施例1bおよび比較例1のそれぞれにおいて、付着物210の高さh210は、予め決められた高さhthよりも高いので、付着物210にレーザ光を照射した。YAGレーザ(波長:532nm、パルス幅:6ns)を照射し、レーザ発振器には、HSL-5000II FS(HOYA CANDEO OPTRONICS株式会社製)を用いた。レーザ光の照射出力は、450mJとした。照射したレーザ光のビーム形状は、一辺の長さが約30μmのほぼ正方形である。実施例1aおよび実施例1bにおいては、付着物210の高さh210が、予め決められた高さhth(6μm)よりも低くなるまで、およそ30回~50回にわたってレーザ光を照射した。レーザ光を照射する位置を、付着物210に合わせて適宜変更しながら、レーザ光の照射を行った。
 レーザ光の照射強度および/または照射回数と、付着物210の高さh210の減少値との関係については、予めテストサンプルを用いて対応表を作成しておいた。対応表に従って、付着物210の高さh210と予め決められた高さhthとの差に対する、レーザ光の照射回数を決定した。決定した回数レーザ光を照射した後に、付着物210の高さh210を測定し、付着物210の高さh210が所定の値になるまで、さらにレーザ光の照射を繰り返した。
 比較例1においては、付着物210の高さh210が、予め決められた高さhth(6μm)よりも高い値である8μmの状態でレーザ光の照射を止めた。
 レーザ光照射後のそれぞれのモスアイ用型から、反射防止膜を形成した。実施例1aおよび実施例1bにおいては、反射防止膜に欠陥が生じなかったが、比較例1においては、反射防止膜に欠陥が生じた。
 (実施形態2)
 本発明による実施形態2の型の製造方法は、検出工程、判定工程およびレーザ光照射工程を、陽極酸化工程およびエッチング工程の前に行う点において、実施形態1の型の製造方法と異なる。実施形態2の型の製造方法の検出工程は、型基材の表面に形成された突出部を検出する工程である。本明細書において、型基材とは、型の製造工程において、陽極酸化およびエッチングされる対象をいう。本発明による実施形態2の型の製造方法は、検出工程、判定工程およびレーザ光照射工程を、陽極酸化工程およびエッチング工程の前に行う点を除いて、実施形態1の型の製造方法と同じであってよい。
 本発明による実施形態2の型の製造方法によると、型を用いて形成される反射防止膜の欠陥の原因となり得る付着物を選択的に取り除くことができる。また、型を用いて反射防止膜を形成する前に、反射防止膜の欠陥の原因となり得る付着物を予め取り除くことができる。型を用いて製造される膜の製造歩留りの低下が抑制され得る。
 本発明の実施形態2の型の製造方法によると、複数の凹部を有するポーラスアルミナ層を形成する前に、型基材の付着物にレーザ光を照射するので、レーザ光照射が複数の凹部に与える影響を低減することができる。
 次に、図1(a)~図1(e)および図3(a)~図3(c)を参照して、本発明による実施形態2の型の製造方法およびそのような製造方法によって製造される型の構造を説明する。ただし、実施形態1の型の製造方法と実質的に同じ内容については説明を省略する。図3(a)~図3(c)は、それぞれ、本発明による実施形態2のモスアイ用型100Bの製造方法を説明するための模式的な断面図である。図3(a)~図3(c)は、モスアイ用型100Bのうち、製造工程において表面に付着物210を有する部分の模式図である。
 まず、図1(a)および図3(a)に示す型基材10を用意する。
 次に、型基材10の表面18sに形成された突出部(付着物)210を検出する。
 次に、検出した突出部210の高さh210が、予め決められた高さhthよりも高いか否かを判定する。
 突出部210の高さh210が予め決められた高さhthよりも高いと判定された場合は、図3(b)に示すように、突出部210にレーザ光を照射することによって、突出部210の高さh210を予め決められた高さhthよりも低くする。
 この後、図1(b)~図1(e)および図3(c)に示すように、陽極酸化工程およびエッチング工程を行う。アルミニウム合金層18の表面18sを陽極酸化する工程において、図3(c)に示すように、付着物210の表面210sも同時に陽極酸化され、複数の凹部(不図示)を有するポーラスアルミナ層214が形成される。ポーラスアルミナ層214が有する複数の凹部は、図3(c)においては簡単のために省略しているが、ポーラスアルミナ層14が有する複数の凹部14pと同じであってよい。アルミニウム合金層18の表面18sのうち、付着物210と接している部分には、ポーラスアルミナ層14が形成されない場合もある。
 以上の製造方法により、図3(c)に示すモスアイ用型100Bが得られる。モスアイ用型100Bのうち、表面に付着物210を有しない部分の断面図は、図1(e)に示すモスアイ用型100Aと同じである。
 上記では、モスアイ構造を有する表面を備える膜として、反射防止膜を例示したが、本発明の実施形態による型は、これに限られず、モスアイ構造を有する表面を備える膜の製造に広く適用され得る。また、本発明の実施形態による膜の製造方法は、反射防止膜に限られず、モスアイ構造を有する表面を備える膜の製造に広く適用され得る。本発明の実施形態による型は、広くナノインプリントにおける転写に用いられ得る。
 また、上記では、モスアイ構造を形成するためのモスアイ用型を例示したが、本発明の実施形態による型は、これに限られず、例えば先端が尖っていない凸部(例えばナノピラー)などを形成するための型に広く用いることができる。すなわち、本発明の実施形態による型が表面に有するミクロな凹部の形状は、略円錐に限られず、例えば略円錐台であってもよいし、略円柱であってもよい。ミクロな凹部の底部は、点に限られず、例えば丸みを帯びていてもよいし、平面であってもよい。ミクロな凹部の開口部の形状は、円に限られず、例えば矩形状であってもよい。また、複数のミクロな凹部は、規則的に配置されていてもよいし、不規則に(ランダムに)配置されていてもよい。
 本発明による型は、反射防止膜(反射防止表面)などの製造に用いられ得る。
 10  型基材
 12  金属基材
 14、214  ポーラスアルミナ層
 14p 凹部
 16  無機下地層
 18  アルミニウム合金層
 18s、210s  表面
 100A、100B、200  モスアイ用型
 210 付着物(突出部)

Claims (12)

  1.  表面の法線方向から見たときの2次元的な大きさが10nm以上500nm未満の複数の凹部を表面に有する型の製造方法であって、
     金属基材と、前記金属基材の上に形成されたアルミニウム合金層とを有する型基材を用意する工程(a)と、
     前記アルミニウム合金層を部分的に陽極酸化することによって、複数の微細な凹部を有するポーラスアルミナ層を形成する工程(b)と、
     前記工程(b)の後に、前記ポーラスアルミナ層をエッチング液に接触させることによって、前記ポーラスアルミナ層の前記複数の微細な凹部を拡大させる工程(c)と、
     前記ポーラスアルミナ層または前記型基材の表面に形成された突出部を検出する工程(d)と、
     前記工程(d)において検出された前記突出部の高さが、予め決められた高さよりも高いか否かを判定する工程(e)と、
     前記工程(e)において、前記突出部の高さが前記予め決められた高さよりも高いと判定された場合に、前記突出部にレーザ光を照射することによって、前記突出部の高さを前記予め決められた高さよりも低くする工程(f)と
    を包含する、型の製造方法。
  2.  前記工程(d)は、前記ポーラスアルミナ層の表面に形成された突出部を検出する工程であり、前記工程(d)、前記工程(e)および前記工程(f)は、前記工程(b)および前記工程(c)の後に行われる、請求項1に記載の型の製造方法。
  3.  前記工程(d)は、前記型基材の表面に形成された突出部を検出する工程であり、前記工程(d)、前記工程(e)および前記工程(f)は、前記工程(b)および前記工程(c)の前に行われる、請求項1に記載の型の製造方法。
  4.  前記予め決められた高さは、3μm以上200μm以下である、請求項1から3のいずれかに記載の型の製造方法。
  5.  前記予め決められた高さは、10μm以上30μm以下である、請求項1から4のいずれかに記載の型の製造方法。
  6.  前記型基材は、前記金属基材と前記アルミニウム合金層との間に形成された無機下地層をさらに有する、請求項1から5のいずれかに記載の型の製造方法。
  7.  前記工程(c)の後に、さらに陽極酸化することによって、前記複数の微細な凹部を成長させる工程(g)をさらに包含する、請求項1から6のいずれかに記載の型の製造方法。
  8.  前記工程(g)の後に、前記工程(b)および前記工程(c)をさらに行う、請求項7に記載の型の製造方法。
  9.  請求項1から8のいずれかに記載の型の製造方法によって製造された型を用意する工程と、
     被加工物を用意する工程と、
     前記型と前記被加工物の表面との間に光硬化樹脂を付与した状態で、前記光硬化樹脂に光を照射することによって前記光硬化樹脂を硬化させる工程と、
     前記型を硬化させられた光硬化樹脂で形成された反射防止膜から剥離する工程と
    を包含する、反射防止膜の製造方法。
  10.  前記光硬化樹脂は、前記被加工物の表面に付与され、前記被加工物の表面に付与された前記光硬化樹脂の厚さは、前記予め決められた高さと同じまたは前記予め決められた高さよりも大きい、請求項9に記載の反射防止膜の製造方法。
  11.  前記被加工物の表面に付与された前記光硬化樹脂の厚さは、3μm以上200μm以下である、請求項10に記載の反射防止膜の製造方法。
  12.  前記被加工物の表面に付与された前記光硬化樹脂の厚さは、10μm以上30μm以下である、請求項10または11に記載の反射防止膜の製造方法。
PCT/JP2015/080777 2014-11-06 2015-10-30 型の製造方法および反射防止膜の製造方法 WO2016072362A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016557744A JP6415590B2 (ja) 2014-11-06 2015-10-30 型の製造方法および反射防止膜の製造方法
CN201580059895.9A CN107148335B (zh) 2014-11-06 2015-10-30 模具的制造方法及防反射膜的制造方法
US15/524,385 US10695955B2 (en) 2014-11-06 2015-10-30 Mold manufacturing method and anti-reflective film manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014226162 2014-11-06
JP2014-226162 2014-11-06

Publications (1)

Publication Number Publication Date
WO2016072362A1 true WO2016072362A1 (ja) 2016-05-12

Family

ID=55909087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080777 WO2016072362A1 (ja) 2014-11-06 2015-10-30 型の製造方法および反射防止膜の製造方法

Country Status (4)

Country Link
US (1) US10695955B2 (ja)
JP (1) JP6415590B2 (ja)
CN (1) CN107148335B (ja)
WO (1) WO2016072362A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180067266A (ko) * 2016-12-12 2018-06-20 현대자동차주식회사 차량용 웨더스트립 및 그 제조방법
JP7470736B2 (ja) 2022-05-17 2024-04-18 ジオマテック株式会社 食品付着防止表面を備える物品、食品付着防止表面の形成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125486A1 (ja) * 2010-03-31 2011-10-13 シャープ株式会社 型および型の製造方法ならびに反射防止膜の製造方法
WO2013118825A1 (ja) * 2012-02-08 2013-08-15 シャープ株式会社 金型のリペア方法およびこれを用いた機能性フィルムの製造方法
JP2014113710A (ja) * 2012-12-06 2014-06-26 Dainippon Printing Co Ltd 賦型用金型の修正方法、賦型用金型、反射防止物品、画像表示装置及びショーケース

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19708776C1 (de) 1997-03-04 1998-06-18 Fraunhofer Ges Forschung Entspiegelungsschicht sowie Verfahren zur Herstellung derselben
DE10020877C1 (de) 2000-04-28 2001-10-25 Alcove Surfaces Gmbh Prägewerkzeug, Verfahren zum Herstellen desselben, Verfahren zur Strukturierung einer Oberfläche eines Werkstücks und Verwendung einer anodisch oxidierten Oberflächenschicht
US7066234B2 (en) 2001-04-25 2006-06-27 Alcove Surfaces Gmbh Stamping tool, casting mold and methods for structuring a surface of a work piece
TW552188B (en) * 2001-11-16 2003-09-11 Towa Corp Apparatus and method for evaluating degree of adhesion of adherents to mold surface, apparatus and method for surface treatment of mold surface and method and apparatus for cleaning mold used for molding resin
EP1507172A1 (en) * 2003-08-12 2005-02-16 ASML Netherlands B.V. Lithographic apparatus and apparatus adjustment method
KR100898470B1 (ko) 2004-12-03 2009-05-21 샤프 가부시키가이샤 반사 방지재, 광학 소자, 및 표시 장치 및 스탬퍼의 제조 방법 및 스탬퍼를 이용한 반사 방지재의 제조 방법
US20070116934A1 (en) * 2005-11-22 2007-05-24 Miller Scott M Antireflective surfaces, methods of manufacture thereof and articles comprising the same
RU2481949C1 (ru) * 2009-04-30 2013-05-20 Шарп Кабусики Кайся Пресс-форма и способ ее изготовления
US9193096B2 (en) * 2010-02-24 2015-11-24 Sharp Kabushiki Kaisha Die, die production method, and production of antireflection film
WO2011126044A1 (ja) * 2010-04-09 2011-10-13 三菱レイヨン株式会社 微細凹凸構造を表面に有する物品の製造方法および製造装置
TWI436879B (zh) * 2010-12-28 2014-05-11 Mitsubishi Rayon Co 光透過性膜的製造方法、活性能量線硬化性組成物及光透過性膜
US9914243B2 (en) 2012-06-06 2018-03-13 Sharp Kabushiki Kaisha Mold base material, production method for mold base material, mold production method, and mold
JP5937929B2 (ja) * 2012-09-04 2016-06-22 株式会社フジクラ インプリントモールドの製造方法
JP5614436B2 (ja) 2012-09-28 2014-10-29 大日本印刷株式会社 反射防止物品製造用賦型版の修正方法及び反射防止物品製造用賦型版の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125486A1 (ja) * 2010-03-31 2011-10-13 シャープ株式会社 型および型の製造方法ならびに反射防止膜の製造方法
WO2013118825A1 (ja) * 2012-02-08 2013-08-15 シャープ株式会社 金型のリペア方法およびこれを用いた機能性フィルムの製造方法
JP2014113710A (ja) * 2012-12-06 2014-06-26 Dainippon Printing Co Ltd 賦型用金型の修正方法、賦型用金型、反射防止物品、画像表示装置及びショーケース

Also Published As

Publication number Publication date
CN107148335B (zh) 2019-04-30
US20180281238A1 (en) 2018-10-04
US10695955B2 (en) 2020-06-30
CN107148335A (zh) 2017-09-08
JPWO2016072362A1 (ja) 2017-10-05
JP6415590B2 (ja) 2018-10-31

Similar Documents

Publication Publication Date Title
JP5027346B2 (ja) 型および型の製造方法ならびに反射防止膜の製造方法
JP4796216B2 (ja) 型および型の製造方法ならびに反射防止膜
US8545708B2 (en) Mold and manufacturing method therefor
JP5053465B2 (ja) 型および型の製造方法ならびに反射防止膜の製造方法
JP4916597B2 (ja) 型および型の製造方法ならびに反射防止膜
JP5615971B2 (ja) 型の製造方法
JP6322294B2 (ja) 型の製造方法および反射防止膜の製造方法
US9405043B2 (en) Mold and process for production of mold
JP6309081B2 (ja) 型の製造方法および反射防止膜の製造方法
JP6415590B2 (ja) 型の製造方法および反射防止膜の製造方法
WO2014021039A1 (ja) 型の製造方法
JP6322721B2 (ja) 型の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557744

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15524385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856223

Country of ref document: EP

Kind code of ref document: A1