WO2016072315A1 - 蓄電デバイス用正極活物質及びその製造方法 - Google Patents

蓄電デバイス用正極活物質及びその製造方法 Download PDF

Info

Publication number
WO2016072315A1
WO2016072315A1 PCT/JP2015/080204 JP2015080204W WO2016072315A1 WO 2016072315 A1 WO2016072315 A1 WO 2016072315A1 JP 2015080204 W JP2015080204 W JP 2015080204W WO 2016072315 A1 WO2016072315 A1 WO 2016072315A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
active material
storage device
electricity storage
Prior art date
Application number
PCT/JP2015/080204
Other languages
English (en)
French (fr)
Inventor
剛 本間
高行 小松
森人 田邊
英郎 山内
佐藤 史雄
Original Assignee
国立大学法人長岡技術科学大学
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長岡技術科学大学, 日本電気硝子株式会社 filed Critical 国立大学法人長岡技術科学大学
Priority to JP2016557718A priority Critical patent/JP6758191B2/ja
Publication of WO2016072315A1 publication Critical patent/WO2016072315A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to the positive electrode active material for electrical storage devices, and its manufacturing method.
  • Lithium ion secondary batteries have established a position as a high-capacity and light-weight power source that is indispensable for portable electronic terminals and electric vehicles.
  • As the positive electrode active material an olivine-type crystal represented by the general formula LiFePO 4 Active materials containing are attracting attention.
  • lithium is concerned about problems such as a global rise in raw materials, research on sodium ion secondary batteries using sodium as an alternative has recently been conducted.
  • Non-Patent Document 1 discloses a positive electrode active material made of Na 2 (Fe 1-y Mn y ) P 2 O 7 (0 ⁇ y ⁇ 1).
  • Non-Patent Document 1 It has been reported that the positive electrode active material made of Na 2 (Fe 1-y Mn y ) P 2 O 7 described in Non-Patent Document 1 has a rapid capacity decrease as the Mn ratio increases. Therefore, the active material has a problem that it does not have charge / discharge characteristics that can withstand actual specifications.
  • An object of the present invention is to provide a positive electrode active material for an electricity storage device having excellent charge / discharge characteristics and a method for producing the same.
  • the positive electrode active material for an electricity storage device of the present invention has a general formula Na x (Mn 1-a M a ) y P 2 O z (M is at least one selected from the group consisting of Cr, Fe, Co and Ni). 2 ⁇ x ⁇ 2.3, 0.95 ⁇ y ⁇ 1.6, 0 ⁇ a ⁇ 0.9, 7 ⁇ z ⁇ 8), and contains an oxide material containing an amorphous phase. It is characterized by.
  • the positive electrode active material for an electricity storage device of the present invention not only improves sodium ion conductivity by containing an amorphous phase, but also generates distortion of crystals containing Mn due to repeated charge and discharge, It becomes possible to suppress elution to the outside. Therefore, the positive electrode active material for an electricity storage device of the present invention is excellent in charge / discharge characteristics and cycle characteristics.
  • the amorphous phase content is preferably 1% by mass or more.
  • the positive electrode active material for an electricity storage device of the present invention preferably further contains conductive carbon.
  • the positive electrode active material contains conductive carbon, it is possible to secure an electron conductive path between oxide materials, and to improve charge / discharge characteristics.
  • the positive electrode active material for an electricity storage device of the present invention preferably contains, by mass%, the oxide material 80 to 99.5% and the conductive carbon 0.5 to 20%.
  • the positive electrode active material for an electricity storage device of the present invention preferably contains a triclinic crystal represented by the general formula Na 2 MnP 2 O 7 .
  • the triclinic crystal represented by Na 2 MnP 2 O 7 has a high oxidation-reduction potential generated with charge / discharge, and exhibits high charge / discharge capacity and discharge voltage when used as a positive electrode active material for an electricity storage device. .
  • the method for producing a positive electrode active material for an electricity storage device has a general formula Na x (Mn 1-a M a ) y P 2 O z (M is at least one selected from the group consisting of Cr, Fe, Co, and Ni)
  • M is at least one selected from the group consisting of Cr, Fe, Co, and Ni
  • a positive electrode active material for an electricity storage device is used as a positive electrode after being mixed and sintered with conductive carbon or an organic substance that is a conductive carbon source. Thereby, a conductive path made of conductive carbon is formed between the positive electrode active materials, and good charge / discharge characteristics are obtained.
  • the positive electrode active material represented by the general formula Na x (Mn 1-a M a ) y P 2 O z is mixed with conductive carbon and sintered, the conductive carbon is contained in the positive electrode active material. Oxidized by elements and easily released to the outside as carbon dioxide. Therefore, it is difficult to form a conductive path made of conductive carbon between the positive electrode active materials, and sufficient charge / discharge characteristics may not be obtained.
  • the positive electrode active material represented by the general formula Na x (Mn 1-a M a ) y P 2 O z and conductive carbon are mixed while being pulverized to thereby produce energy. Therefore, it can be compounded at a relatively low temperature without accompanying sintering with conductive carbon. Therefore, oxidation of the conductive carbon by the Mn element is difficult to occur at the time of compounding, and the conductive carbon can be dispersed in the positive electrode active material in a good state. Further, through the pulverization and mixing steps, the oxide materials easily react with each other to form an amorphous phase. In addition, since conductive carbon serves as a grinding aid, it suppresses aggregation of the oxide material during grinding and mixing, and promotes the formation of an amorphous phase.
  • the oxide material contains an amorphous phase and the conductive carbon is dispersed in a good state inside, so that the positive electrode active material having excellent charge / discharge characteristics is obtained. It becomes possible to obtain a substance.
  • the homogeneity of the positive electrode active material can be improved.
  • a crystallized product obtained by subjecting a molten solid product to a heat treatment as an oxide material.
  • a high voltage is achieved by including Mn, which is a high voltage element, and a high energy density storage that has an amorphous phase and has improved capacity and good cycle characteristics.
  • a positive electrode active material for devices can be obtained.
  • FIG. 2 is a chart showing a powder X-ray diffraction pattern of a melt-solidified product obtained in Example 1.
  • FIG. 2 is a chart showing a powder X-ray diffraction pattern of the oxide material obtained in Example 1.
  • FIG. 2 is a chart showing a powder X-ray diffraction pattern of the positive electrode active material obtained in Example 1.
  • FIG. 2 is a graph showing a charge / discharge curve of a test battery manufactured in Example 1.
  • the positive electrode active material for an electricity storage device of the present invention has a general formula Na x (Mn 1-a M a ) y P 2 O z (M is at least one selected from the group consisting of Cr, Fe, Co and Ni). 2 ⁇ x ⁇ 2.3, 0.95 ⁇ y ⁇ 1.6, 0 ⁇ a ⁇ 0.9, 7 ⁇ z ⁇ 8), and contains an oxide material containing an amorphous phase. It is characterized by.
  • Na in the above general formula serves as a supply source of sodium ions that move between the positive electrode active material and the negative electrode active material when the battery is charged and discharged.
  • Mn is a component that applies a high voltage to the positive electrode active material. Specifically, when sodium ions are desorbed from the positive electrode active material or occluded in the positive electrode active material as the battery is charged / discharged, a redox reaction occurs due to a change in the valence of Mn ions. Due to this redox reaction, the positive electrode active material exhibits a high redox potential.
  • M (at least one selected from the group consisting of Cr, Fe, Co, and Ni) changes its valence during charge / discharge of the battery, so that sodium ions are desorbed from the positive electrode active material.
  • the positive electrode active material When the positive electrode active material is occluded, it has a role of increasing the redox potential of the positive electrode active material.
  • Ni is preferable because it exhibits a particularly high redox potential.
  • Fe is preferable because it has high structural stabilization in charge and discharge.
  • P 2 Oz has a three-dimensional network structure and has an effect of stabilizing the structure of the positive electrode active material.
  • x is 1.2 ⁇ x ⁇ 2.3, preferably 1.3 ⁇ x ⁇ 2.25, and more preferably 1.5 ⁇ x ⁇ 2.2. If x is too small, sodium ions involved in occlusion and release decrease, and the charge / discharge capacity tends to decrease. On the other hand, if x is too large, different crystals such as Na 3 PO 4 that do not participate in charging / discharging tend to precipitate, and the charge / discharge capacity tends to decrease.
  • y is 0.95 ⁇ y ⁇ 1.6, preferably 0.95 ⁇ y ⁇ 1.4, and more preferably 0.95 ⁇ y ⁇ 1.25. If y is too small, the number of transition metal elements that cause a redox reaction is reduced, so that sodium ions involved in occlusion and release are reduced, so that the charge / discharge capacity tends to decrease. On the other hand, if y is too large, different crystals such as NaMnPO 4 that do not participate in charging / discharging tend to precipitate, and the charge / discharge capacity tends to decrease.
  • A is 0 ⁇ a ⁇ 0.9, preferably 0 ⁇ a ⁇ 0.5, and more preferably 0 ⁇ a ⁇ 0.3.
  • the smaller a is, the higher the oxidation-reduction potential generated with charge / discharge, and the higher the charge / discharge capacity and the discharge voltage when used as the positive electrode active material for an electricity storage device. It is particularly preferable that a 0.
  • Z is 7 ⁇ z ⁇ 8, preferably 7 ⁇ z ⁇ 7.8, and more preferably 7 ⁇ z ⁇ 7.5.
  • z is too small, the valences of Mn and M are smaller than divalent, and the metal is likely to precipitate with charge / discharge. The deposited metal is eluted into the electrolyte and deposited as a metal dendrite on the negative electrode side, which causes an internal short circuit.
  • z is too large, the valences of Mn and M are greater than 2, and the redox reaction associated with charging / discharging of the battery is difficult to occur. As a result, the amount of sodium ions that are occluded and released decreases, and the capacity tends to decrease.
  • the oxide material represented by the general formula Na x (Mn 1-a M a ) y P 2 O z include Na 2 MnP 2 O 7 , Na 2 (Mn 1-a Fe a ) P 2 O 7 (0 ⁇ a ⁇ 0.8, further 0.2 ⁇ a ⁇ 0.8), Na 2 (Mn 1-a Ni a ) P 2 O 7 (0 ⁇ a ⁇ 0.8, further 0. 2 ⁇ a ⁇ 0.8).
  • the triclinic crystal represented by Na 2 MnP 2 O 7 has a high oxidation-reduction potential that occurs with charge / discharge, and has a high charge / discharge capacity (theoretical) when used as a positive electrode active material for an electricity storage device. Value 97.5 mAh) and discharge voltage (theoretical value 3.7 V).
  • the content of the Na x (Mn 1-a M a ) y P 2 O z crystal in the positive electrode active material is preferably 99% by mass or less, more preferably 90% by mass or less, and 85% by mass or less. More preferably, it is particularly preferably 80% by mass or less, and most preferably 70% by mass or less.
  • Na 2 MnP 2 O 7 content in the crystal is too large, amorphous phase is decreased, it is difficult to obtain the effect described below.
  • the content of the amorphous phase in the oxide material is preferably 1% by mass or more, more preferably 10% by mass or more, further preferably 20% by mass or more, and particularly preferably 30% by mass or more.
  • sodium ion conductivity will fall easily.
  • distortion of crystals containing Mn occurs or the Mn component is easily eluted to the outside.
  • charge / discharge characteristics particularly, high-speed charge / discharge characteristics
  • cycle characteristics tend to deteriorate.
  • the content of Na x (Mn 1-a M a ) y P 2 O z crystal and amorphous phase in the oxide material is 10 to 60 ° in terms of 2 ⁇ values obtained by powder X-ray diffraction measurement using CuK ⁇ rays. In this diffraction line profile, the peak is separated into a crystalline diffraction line and an amorphous halo.
  • the integrated intensity obtained by peak-separating a broad diffraction line (amorphous halo) at 10 to 45 ° from the total scattering curve obtained by subtracting the background from the diffraction line profile is Ia
  • 10 Ic is the sum of integral intensities obtained by peak separation of crystalline diffraction lines derived from Na x (Mn 1-a M a ) y P 2 O z crystals detected at ⁇ 60 °, and crystals derived from other crystals
  • the sum of the integrated intensities obtained from the characteristic diffraction lines is Io
  • the content Xc of the Na x (Mn 1-a M a ) y P 2 O z crystal and the content Xg of the amorphous phase are obtained from the following equations. It is done.
  • the discharge capacity can be improved as the crystallite size of the Na x (Mn 1-a M a ) y P 2 O z crystal is smaller.
  • the crystallite size of the Na x (Mn 1-a M a ) y P 2 O z crystal is preferably 100 nm or less, more preferably 60 nm or less, and further preferably 50 nm or less. preferable.
  • the lower limit is not particularly limited, but is actually 1 nm or more, and further 2 nm or more.
  • the crystallite size is determined according to Scherrer's equation from the analysis result of powder X-ray diffraction using CuK ⁇ rays.
  • the crystallite size ⁇ of the Na x (Mn 1 ⁇ a M a ) y P 2 O z crystal is obtained from the following equation from the full width at half maximum ⁇ (FWHM) obtained by peak separation of the diffraction line to be obtained and the black angle ⁇ . .
  • the positive electrode active material for an electricity storage device of the present invention preferably contains conductive carbon. Thereby, it is possible to secure an electron conduction path between oxide materials, and charge / discharge characteristics can be improved.
  • conductive carbon highly conductive carbon black such as acetylene black or ketjen black, carbon powder such as graphite, carbon fiber, or the like can be used. Of these, acetylene black having a high electron conductivity is preferable.
  • the positive electrode active material for an electricity storage device of the present invention preferably contains, by mass%, an oxide material of 80 to 99.5% and conductive carbon of 0.5 to 20%, and an oxide material of 85 to 98%, carbon. It is preferable to contain 2 to 15% of the material. By regulating the contents of the oxide material and the conductive carbon within the above range, a positive electrode active material having a high charge / discharge capacity and good cycle characteristics can be easily obtained.
  • the shape of the positive electrode active material for an electricity storage device is not particularly limited, it is preferably a powder.
  • the average particle diameter of the positive electrode active material for an electricity storage device is preferably 0.1 to 20 ⁇ m, 0.3 to 15 ⁇ m, 0.5 to 10 ⁇ m, particularly preferably 0.6 to 5 ⁇ m.
  • the maximum particle size is preferably 150 ⁇ m or less, 100 ⁇ m or less, 75 ⁇ m or less, and particularly preferably 55 ⁇ m or less.
  • the average particle size or the maximum particle size is too large, it becomes difficult to occlude and release sodium ions during charge / discharge, and the charge / discharge capacity tends to decrease.
  • the average particle size is too small, the powder is in a poorly dispersed state when formed into a paste, and it tends to be difficult to produce a uniform electrode.
  • the average particle size and the maximum particle size are D50 (50% volume cumulative diameter) and D99 (99% volume cumulative diameter), respectively, as the median diameter of primary particles, and were measured by a laser diffraction particle size distribution analyzer. Value.
  • the positive electrode active material for an electricity storage device of the present invention is, for example, at least one selected from the group consisting of the general formula Na x (Mn 1-a M a ) y P 2 O z (M is Cr, Fe, Co, and Ni). Transition metal element, 1.2 ⁇ x ⁇ 2.3, 0.95 ⁇ y ⁇ 1.6, 0 ⁇ a ⁇ 0.9, 7 ⁇ z ⁇ 8) It can be produced by adding carbon and mixing while grinding.
  • the oxide material represented by the general formula Na x (Mn 1-a M a ) y P 2 O z use is made of a melt-solidified product, a solid-phase reactant, or the like of the raw material powder (oxide, etc.) of each constituent component. Can do.
  • a melt-solidified material as the oxide material because a positive electrode active material excellent in homogeneity can be easily obtained.
  • the melt-solidified product can be produced as follows. First, the composition of general formula Na x (Mn 1-a M a ) y P 2 O z (M is at least one transition metal element selected from the group consisting of Cr, Fe, Mn, Co, and Ni). A raw material powder is prepared to obtain a raw material batch. Next, the obtained raw material batch is melted. What is necessary is just to adjust a melting temperature suitably so that a raw material batch may be fuse
  • a melt-solidified product is obtained by molding the obtained melt.
  • the molding method is not particularly limited.
  • the melt may be poured between a pair of cooling rolls and molded into a film while rapidly cooling, or the melt may be poured into a mold and molded into an ingot. It doesn't matter.
  • the melt-solidified product may be an amorphous body, a crystalline body, or a mixture of a crystalline phase and an amorphous phase.
  • the heat treatment is performed, for example, in an electric furnace capable of controlling the temperature.
  • the heat treatment temperature is preferably equal to or higher than the glass transition temperature of the amorphous body, and more preferably equal to or higher than the crystallization temperature. Specifically, it is preferably 350 ° C. or higher, and more preferably 400 ° C. or higher.
  • the heat treatment time is appropriately adjusted so that the crystallization of the amorphous body proceeds sufficiently. Specifically, it is preferably 20 to 300 minutes, and more preferably 30 to 240 minutes.
  • the heat treatment of the amorphous body may be performed in any of an air atmosphere, an inert atmosphere, and a reducing atmosphere.
  • it is preferably performed in a reducing atmosphere, whereby Mn and M in the molten solidified product are set to 2 Can be priced.
  • the reducing atmosphere include a hydrogen atmosphere.
  • a mixed gas containing a reducing gas such as hydrogen in an inert gas such as nitrogen or argon may be used, and the content of the reducing gas at that time is preferably 2% by volume or more.
  • a general pulverizer such as a mortar, rake machine, ball mill, attritor, vibration ball mill, satellite ball mill, planetary ball mill, jet mill, or bead mill is used.
  • the method to use is mentioned.
  • the planetary ball mill is capable of efficiently generating very high impact energy while rotating the pot while the pot rotates, and can uniformly disperse the conductive carbon in the oxide material.
  • an amorphous phase is easily formed in the oxide material.
  • the positive electrode active material of the present invention can be used for a sodium ion secondary battery using an electrolytic solution such as an aqueous solvent, a non-aqueous solvent, or an ionic liquid. It can also be used for an all-solid sodium ion secondary battery using a solid electrolyte.
  • Example 1 (A) Melting step Sodium hydrogen phosphate (NaH 2 PO 4 ) and manganese oxide (Mn 3 O 4 ) are used as raw materials, and in mol%, Na 2 O 33.3%, MnO 2 33.3%, P 2 O 5
  • the raw material powder was prepared so as to have a composition of 33.3% and melted in the air atmosphere at 1050 ° C. for 15 minutes. Then, the molten solidified material was obtained by pouring on an iron plate and quenching rapidly. This melted and solidified product was pulverized with a planetary ball mill P7 made by Fritch, and a powdery melted and solidified product was obtained.
  • the powder X-ray diffraction pattern was confirmed about the obtained melt-solidified material, the crystalline diffraction line was not confirmed but it was confirmed that it was an amorphous body (FIG. 1).
  • the obtained melt-solidified product was baked at 463 ° C. for 3 hours in an Ar gas atmosphere containing 5% by volume of H 2 to obtain an oxide material.
  • the powder X-ray diffraction pattern was confirmed for this oxide material, it was confirmed that Na 2 MnP 2 O 7 crystals (triclinic space group P1) were precipitated (FIG. 2).
  • the obtained slurry was coated on a 20 ⁇ m thick aluminum foil as a positive electrode current collector, dried at 70 ° C. in a dryer, and then between a pair of rotating rollers
  • the electrode sheet was obtained by pressing at 1 t / cm 2 .
  • the electrode sheet was punched to a diameter of 11 mm with an electrode punching machine and dried at 160 ° C. for 6 hours to obtain a circular working electrode.
  • a test battery was manufactured by laminating a separator made of a dried polypropylene porous membrane having a diameter of 16 mm (Celguard # 2400 manufactured by Hoechst Celanese) and metallic sodium as a counter electrode.
  • the test battery was assembled in an argon atmosphere with a dew point temperature of ⁇ 70 ° C. or lower and an oxygen concentration of less than 0.2 ppm.
  • (D) Charging / discharging test The charging / discharging test was performed as follows. The amount of electricity (charging capacity) charged in the unit mass of the positive electrode active material by performing CC (constant current) charging (sodium ion release from the positive electrode active material) at 30 ° C. from open circuit voltage (OCV) to 4.5V Asked. Next, CC discharge (sodium ion occlusion in the positive electrode active material) was performed from 4.5 V to 2 V, and the amount of electricity (initial discharge capacity) discharged in the unit mass of the positive electrode active material was determined. Thereafter, CC charge / discharge was repeatedly performed at 2 V to 4.5 V to determine the charge / discharge capacity.
  • CC constant current
  • OCV open circuit voltage
  • Example 1 Sodium hydrogen carbonate (NaHCO 3 ), manganese oxalate (MnC 2 O 4 ), and diammonium phosphate ((NH 4 ) 2 HPO 4 ) are used as raw materials, and in mole percent, Na 2 O 33.3%, MnO 2 33
  • a raw material batch was prepared by blending raw material powders so as to have a composition of .3% and P 2 O 5 33.3%. Ethanol was added so that the solid content concentration of the raw material batch was 30% by mass, and wet pulverization mixing was performed using the planetary ball mill used in Example 1 at 500 rpm for 1 hour.
  • a green compact was produced by pressing at 30 MPa, and firing was performed at 600 ° C. for 12 hours in an Ar gas atmosphere containing 5% by volume of H 2 .
  • the obtained sample was dry pulverized using the above planetary ball mill at 500 rpm for 1 hour to obtain a positive electrode active material.
  • the obtained cathode active material was confirmed to powder X-ray diffraction profile, amorphous phase only diffraction lines from Na 2 MnP 2 O 7 crystals not observed it was confirmed. From the diffraction line profile, the amorphous phase content, the Na 2 MnP 2 O 7 crystal content, and the crystallite size of the Na 2 MnP 2 O 7 crystal were determined by the method described above. The results are shown in Table 1.
  • the initial discharge capacity was as high as 93 mAh / g, and the discharge capacity retention rate was as high as 82%.
  • the positive electrode active material of Comparative Example 1 did not contain an amorphous phase, the initial discharge capacity was as low as 16 mAh / g.
  • the amorphous content and the Na 2 MnP 2 O 7 crystal content are both mass%.
  • the positive electrode active material for an electricity storage device of the present invention is suitable as a positive electrode active material for a sodium ion secondary battery used for an electric vehicle, an electric tool, a backup emergency power source and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 一般式Na(Mn1-a(MはCr、Fe、Co及びNiからなる群より選ばれた少なくとも一種、1.2≦x≦2.3、0.95≦y≦1.6、0≦a≦0.9、7≦z≦8)で表され、非晶質相を含有する酸化物材料を含有することを特徴とする蓄電デバイス用正極活物質。

Description

蓄電デバイス用正極活物質及びその製造方法
 本発明は、蓄電デバイス用正極活物質及びその製造方法に関する。
 リチウムイオン二次電池は、携帯電子端末や電気自動車等に不可欠な、高容量で軽量な電源としての地位を確立しており、その正極活物質として、一般式LiFePOで表されるオリビン型結晶を含む活物質が注目されている。しかし、リチウムは世界的な原材料の高騰などの問題が懸念されているため、その代替としてナトリウムを使用した、ナトリウムイオン二次電池の研究が近年行われている。
 リチウムイオンとナトリウムイオンのレドックス基準電位はナトリウムがリチウムより0.3V高いため、正極活物質のアルカリイオンをリチウムからナトリウムにするとナトリウム系正極活物質では作動電位が低下する。このため、ナトリウムイオン二次電池はリチウムイオン二次電池と同等の高エネルギー密度化を達成するために高電圧化もしくは高容量化が求められている。例えば、非特許文献1にはNa(Fe1-yMn)P(0≦y≦1)からなる正極活物質が開示されている。
Prabeer Barpanda et al., Solid State Ionics, 2014(DOI:10.1016/j.ssi.2014.03.011)
 非特許文献1に記載のNa(Fe1-yMn)Pからなる正極活物質は、Mnの割合が大きくなるに従い急激な容量低下が起こることが報告されている。したがって、上記活物質は、実仕様に耐えうる充放電特性を有していないという課題があった。
 本発明の目的は、充放電特性に優れた蓄電デバイス用正極活物質及びその製造方法を提供することにある。
 本発明の蓄電デバイス用正極活物質は、一般式Na(Mn1-a(MはCr、Fe、Co及びNiからなる群より選ばれた少なくとも一種、1.2≦x≦2.3、0.95≦y≦1.6、0≦a≦0.9、7≦z≦8)で表され、非晶質相を含有する酸化物材料を含有することを特徴とする。
 本発明の蓄電デバイス用正極活物質は、非晶質相を含有することにより、ナトリウムイオン伝導性が向上するだけでなく、繰り返し充放電に伴うMnを含む結晶の歪みの発生や、Mn成分の外部への溶出を抑制することが可能となる。従って、本発明の蓄電デバイス用正極活物質は、充放電特性やサイクル特性に優れている。
 本発明の蓄電デバイス用正極活物質において、非晶質相の含有量が1質量%以上であることが好ましい。
 本発明の蓄電デバイス用正極活物質は、さらに、導電性炭素を含有することが好ましい。
 正極活物質が導電性炭素を含有することにより、酸化物材料間の電子導電パスを確保することが可能となり、充放電特性を向上させることができる。
 本発明の蓄電デバイス用正極活物質は、質量%で、前記酸化物材料 80~99.5%、及び前記導電性炭素 0.5~20%を含有することが好ましい。
 本発明の蓄電デバイス用正極活物質は、一般式NaMnPで表される三斜晶系結晶を含むことが好ましい。
 NaMnPで表される三斜晶系結晶は、充放電に伴って発生する酸化還元電位が高く、蓄電デバイス用正極活物質として用いた場合、高い充放電容量及び放電電圧を示す。
 本発明の蓄電デバイス用正極活物質の製造方法は、一般式Na(Mn1-a(MはCr、Fe、Co及びNiからなる群より選ばれた少なくとも一種の遷移金属元素、1.2≦x≦2.3、0.95≦y≦1.6、0≦a≦0.9、7≦z≦8)で表される酸化物材料に対し、導電性炭素を添加し、粉砕しながら混合することを特徴とする。
 一般に、蓄電デバイス用正極活物質は、導電性炭素または導電性炭素源となる有機物と混合、焼結して正極として使用される。これにより、正極活物質間に導電性炭素からなる導電パスが形成され、良好な充放電特性が得られる。しかしながら、一般式Na(Mn1-aで表される正極活物質は、導電性炭素と混合して焼結すると、導電性炭素が正極活物質に含まれるMn元素により酸化されて二酸化炭素として外部に放出されやすい。そのため、正極活物質間に導電性炭素からなる導電パスが形成されにくく、十分な充放電特性が得られないことがある。
 一方、本発明の製造方法によれば、一般式Na(Mn1-aで表される正極活物質と導電性炭素とを、粉砕しながら混合することによりエネルギーを付与することができるため、導電性炭素との焼結を伴うことなく比較的低温で複合化することができる。そのため、複合化時においてMn元素による導電性炭素の酸化が生じにくく、導電性炭素を良好な状態で正極活物質中に分散させることができる。また、粉砕、混合工程を経ることにより、酸化物材料同士が互いに反応して非晶質相が形成されやすくなる。加えて、導電性炭素は粉砕助剤となるため、粉砕、混合時における酸化物材料の凝集を抑制し、非晶質相の形成を促進する。
 以上の通り、本発明の製造方法によれば、酸化物材料が非晶質相を含有するとともに、内部に導電性炭素が良好な状態で分散されてなるため、充放電特性に優れた正極活物質を得ることが可能となる。
 本発明の蓄電デバイス用正極活物質の製造方法において、酸化物材料として、溶融固化物を用いることが好ましい。
 上記構成によれば、正極活物質の均質性を高めることが可能となる。
 本発明の蓄電デバイス用正極活物質の製造方法において、酸化物材料として、溶融固化物に熱処理を施して得られた結晶化物を用いることが好ましい。
 本発明によれば、高電圧系元素であるMnを含むことで高電圧化が達成され、非晶質相を含むことで容量が向上し、良好なサイクル特性が得られる高エネルギー密度である蓄電デバイス用正極活物質を得ることができる。
実施例1において得られた溶融固化物の粉末X線回折パターンを示すチャートである。 実施例1において得られた酸化物材料の粉末X線回折パターンを示すチャートである。 実施例1において得られた正極活物質の粉末X線回折パターンを示すチャートである。 実施例1において作製された試験電池の充放電曲線を示すグラフである。
 本発明の蓄電デバイス用正極活物質は、一般式Na(Mn1-a(MはCr、Fe、Co及びNiからなる群より選ばれた少なくとも一種、1.2≦x≦2.3、0.95≦y≦1.6、0≦a≦0.9、7≦z≦8)で表され、非晶質相を含有する酸化物材料を含有することを特徴とする。
 上記一般式中のNaは、電池の充放電の際に正極活物質と負極活物質との間を移動するナトリウムイオンの供給源となる。
 Mnは、正極活物質に対し高電圧を付与する成分である。具体的には、電池の充放電に伴いナトリウムイオンが正極活物質から脱離したり、正極活物質に吸蔵する際に、Mnイオンの価数が変化することによりレドックス反応が生じる。このレドックス反応に起因して、正極活物質が高い酸化還元電位を示す。
 M(Cr、Fe、Co及びNiからなる群より選ばれた少なくとも1種)もMnと同様に、電池の充放電の際に価数変化することにより、ナトリウムイオンが正極活物質から脱離したり、正極活物質に吸蔵したりする際に、正極活物質の酸化還元電位を高める役割を有する。Niは特に高い酸化還元電位を示すことから好ましい。一方、Feは充放電において高い構造安定化を有するため好ましい。
 POzは3次元網目構造を有して正極活物質の構造を安定化させる効果を有する。
 一般式Na(Mn1-aにおける各係数の範囲を上記の通り規定した理由について以下に説明する。
 xは1.2≦x≦2.3であり、1.3≦x≦2.25であることが好ましく、1.5≦x≦2.2であることがより好ましい。xが小さすぎると、吸蔵、放出に関与するナトリウムイオンが少なくなるため、充放電容量が低下する傾向にある。一方、xが大きすぎると、NaPO等の充放電に関与しない異種結晶が析出しやすくなるため充放電容量が低下する傾向にある。
 yは0.95≦y≦1.6であり、0.95≦y≦1.4であることが好ましく、0.95≦y≦1.25であることがより好ましい。yが小さすぎると、レドックス反応を起こす遷移金属元素が少なくなることにより、吸蔵、放出に関与するナトリウムイオンが少なくなるため充放電容量が低下する傾向にある。一方、yが大きすぎると、NaMnPO等の充放電に関与しない異種結晶が析出しやすくなるため充放電容量が低下する傾向にある。
 aは0≦a≦0.9であり、0≦a≦0.5であることが好ましく、0≦a≦0.3であることがより好ましい。aが小さいほど、充放電に伴って発生する酸化還元電位が高く、蓄電デバイス用正極活物質として用いた場合、高い充放電容量及び放電電圧を示しやすくなる。特にa=0であることが好ましい。
 zは7≦z≦8であり、7≦z≦7.8であることが好ましく、7≦z≦7.5であることがより好ましい。zが小さすぎると、Mn及びMの価数が2価より小さくなって、充放電に伴い金属が析出しやすくなる。析出した金属は電解質中に溶出し、負極側で金属デンドライトとして析出するため、内部短絡の原因となる。一方、zが大きすぎると、Mn及びMの価数が2価より大きくなって、電池の充放電に伴うレドックス反応が起こりにくくなる。その結果、吸蔵、放出されるナトリウムイオンが少なくなるため、容量が低下する傾向にある。
 一般式Na(Mn1-aで表される酸化物材料の具体例としては、NaMnP、Na(Mn1-aFe)P(0<a≦0.8、さらには0.2≦a≦0.8)、Na(Mn1-aNi)P(0<a≦0.8、さらには0.2≦a≦0.8)で表されるものが挙げられる。なかでも、NaMnPで表される三斜晶系結晶は、充放電に伴って発生する酸化還元電位が高く、蓄電デバイス用正極活物質として用いた場合、高い充放電容量(理論値97.5mAh)及び放電電圧(理論値3.7V)を示す。
 正極活物質におけるNa(Mn1-a結晶の含有量は99質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが特に好ましく、70質量%以下であることが最も好ましい。NaMnP結晶の含有量が多すぎると、非晶質相が少なくなり、後述の効果が得られにくくなる。
 酸化物材料における非晶質相の含有量は1質量%以上が好ましく、10%質量以上がより好ましく、20質量%以上がさらに好ましく、30質量%以上が特に好ましい。非晶質相の含有量が少なすぎると、ナトリウムイオン伝導性が低下しやすくなる。また、繰り返し充放電に伴い、Mnを含む結晶の歪みが発生したり、Mn成分が外部へ溶出しやすくなる。結果として、充放電特性(特に高速充放電特性)やサイクル特性が低下し易くなる。
 酸化物材料におけるNa(Mn1-a結晶及び非晶質相の含有量は、CuKα線を用いた粉末X線回折測定によって得られる2θ値で10~60°の回折線プロファイルにおいて、結晶性回折線と非晶質ハローにピーク分離することで求められる。具体的には、回折線プロファイルからバックグラウンドを差し引いて得られた全散乱曲線から、10~45°におけるブロードな回折線(非晶質ハロー)をピーク分離して求めた積分強度をIa、10~60°において検出されるNa(Mn1-a結晶由来の結晶性回折線をピーク分離して求めた積分強度の総和をIc、その他の結晶に由来する結晶性回折線から求めた積分強度の総和をIoとした場合、Na(Mn1-a結晶の含有量Xc及び非晶質相の含有量Xgは次式から求められる。
  Xc=[Ic/(Ic+Ia+Io)]×100(質量%)
  Xg=100-[100×(Ic+Io)/(Ic+Ia+Io)](質量%)
 Na(Mn1-a結晶の結晶子サイズが小さいほど、放電容量を向上させることができる。具体的には、Na(Mn1-a結晶の結晶子サイズは100nm以下であることが好ましく、60nm以下であることがより好ましく、50nm以下であることがさらに好ましい。下限については特に限定されないが、現実的には1nm以上、さらには2nm以上である。結晶子サイズは、CuKα線を用いた粉末X線回折の解析結果からシェラーの式に従って求められる。具体的には、回折線プロファイルからバックグラウンドを差し引いて得られた全散乱曲線から、Na(Mn1-a結晶に由来する2θ=22.3°付近に確認される回折線をピーク分離して求めた半値全幅β(FWHM)とブラック角θから、次式からNa(Mn1-a結晶の結晶子サイズεが求められる。
  ε=Kλ/βicosθ
  (シェラー定数K=0.85、X線波長λ=1.541)
 本発明の蓄電デバイス用正極活物質は、導電性炭素を含むことが好ましい。それにより、酸化物材料間の電子導電パスを確保することが可能となり、充放電特性を向上させることができる。導電性炭素としては、アセチレンブラックやケッチェンブラック等の高導電性カーボンブラック、グラファイト等のカーボン粉末、炭素繊維などを用いることができる。なかでも、電子伝導性が高いアセチレンブラックが好ましい。
 本発明の蓄電デバイス用正極活物質は、質量%で、酸化物材料 80~99.5%、導電性炭素 0.5~20%を含有することが好ましく、酸化物材料 85~98%、炭素材料 2~15%を含有することが好ましい。酸化物材料と導電性炭素の含有量を上記の範囲に規制することにより、高い充放電容量と良好なサイクル特性とを有する正極活物質が得られやすくなる。
 蓄電デバイス用正極活物質の形状は特に限定されないが、粉末状であることが好ましい。その場合、蓄電デバイス用正極活物質の平均粒子径は0.1~20μm、0.3~15μm、0.5~10μm、特に0.6~5μmであることが好ましい。また、最大粒子径は150μm以下、100μm以下、75μm以下、特に55μm以下であることが好ましい。平均粒子径または最大粒子径が大きすぎると、充放電時においてナトリウムイオンの吸蔵および放出が行いにくくなるため、充放電容量が低下する傾向にある。一方、平均粒子径が小さすぎると、ペースト化した際に粉末の分散状態に劣り、均一な電極を製造することが困難になる傾向がある。
 ここで、平均粒子径と最大粒子径は、それぞれ一次粒子のメジアン径でD50(50%体積累積径)とD99(99%体積累積径)を示し、レーザー回折式粒度分布測定装置により測定された値をいう。
 次に、本発明の蓄電デバイス用正極活物質の製造方法について説明する。本発明の蓄電デバイス用正極活物質は、例えば、一般式Na(Mn1-a(MはCr、Fe、Co及びNiからなる群より選ばれた少なくとも一種の遷移金属元素、1.2≦x≦2.3、0.95≦y≦1.6、0≦a≦0.9、7≦z≦8)で表される酸化物材料に対し、導電性炭素を添加し、粉砕しながら混合することにより製造することができる。
 一般式Na(Mn1-aで表される酸化物材料は、各構成成分の原料粉末(酸化物等)の溶融固化物や固相反応物等を用いることができる。特に、酸化物材料として溶融固化物を用いた場合、均質性に優れた正極活物質が得られやすくなるため好ましい。
 溶融固化物は以下のようにして製造することができる。まず、一般式Na(Mn1-a(MはCr、Fe、Mn、Co及びNiからなる群より選ばれた少なくとも一種の遷移金属元素)の組成となるように原料粉末を調製して原料バッチ得る。次に、得られた原料バッチを溶融する。溶融温度は原料バッチが均質に溶融されるよう適宜調整すればよい。具体的には、溶融温度は800℃以上が好ましく、900℃以上であることがより好ましい。上限は特に限定されないが、溶融温度が高すぎるとエネルギーロス、ナトリウム成分の蒸発につながるため、1500℃以下であることが好ましく、1400℃以下であることがより好ましい。
 得られた溶融物を成形することにより、溶融固化物を得る。成形方法としては特に限定されず、例えば、溶融物を一対の冷却ロール間に流し込み、急冷しながらフィルム状に成形してもよいし、あるいは、溶融物を鋳型に流し出し、インゴット状に成形しても構わない。溶融固化物は、非晶質体であっても、結晶体であってもよく、結晶相と非晶質相の混合物であってもよい。
 なお、非晶質体からなる溶融固化物を所定温度で所定時間熱処理することにより結晶化させてもよい(結晶化ガラス)。熱処理は、例えば温度の制御が可能な電気炉中で行われる。熱処理温度は、非晶質体のガラス転移温度以上であることが好ましく、結晶化温度以上であることがより好ましい。具体的には、350℃以上であることが好ましく、400℃以上であることがより好ましい。熱処理時間は、非晶質体の結晶化が十分に進行するよう適宜調整される。具体的には、20~300分間であることが好ましく、30~240分間であることがより好ましい。
 なお、非晶質体の熱処理は大気雰囲気、不活性雰囲気、還元雰囲気のいずれで行ってもよいもよいが、特に還元雰囲気中が行うことが好ましく、それにより溶融固化物におけるMn及びMを2価にすることができる。還元雰囲気は、例えば水素雰囲気等が挙げられる。あるいは、窒素やアルゴンなどの不活性ガス中に水素等の還元性ガスを含む混合ガスを用いてもよく、その際の還元性ガスの含有量は2体積%以上であることが好ましい。
 酸化物材料と導電性炭素とを粉砕しながら混合する方法としては、乳鉢、らいかい機、ボールミル、アトライター、振動ボールミル、衛星ボールミル、遊星ボールミル、ジェットミル、ビーズミルなどの一般的な粉砕機を用いる方法が挙げられる。なかでも、遊星型ボールミルを使用するのが好ましい。遊星型ボールミルは、ポットが自転回転しながら、台盤が公転回転し、非常に高い衝撃エネルギーを効率良く発生させることができ、酸化物材料中に導電性炭素を均質に分散させることが可能となるだけなく、酸化物材料中に非晶質相が形成されやすくなる。
 本発明の正極活物質は、水系溶媒、非水系溶媒、イオン液体等の電解液を用いたナトリウムイオン二次電池に使用可能である。また、固体電解質を用いた全固体ナトリウムイオン二次電池にも使用可能である。
 以下、実施例に基づいて、本発明を詳細に説明する。なお、本発明は以下の実施例に何ら限定されるものではない。
 (実施例1)
 (a)溶融工程
 リン酸水素ナトリウム(NaHPO)、酸化マンガン(Mn)を原料とし、モル%で、NaO 33.3%、MnO 33.3%、P 33.3%の組成となるように原料粉末を調合し、1050℃にて15分間、大気雰囲気中にて溶融を行った。その後、鉄板上に流し込み急冷することで、溶融固化物を得た。この溶融固化物を遊星ボールミルFritch社製P7で粉砕し、粉末状の溶融固化物を得た。得られた溶融固化物について粉末X線回折パターンを確認したところ、結晶性の回折線は確認されず非晶質体であることが確認された(図1)。
 得られた溶融固化物を、Hを5体積%含有するArガス雰囲気中で463℃、3時間焼成を行うことにより酸化物材料を得た。この酸化物材料について粉末X線回折パターンを確認したところ、NaMnP結晶(三斜晶系空間群P1)が析出していることが確認された(図2)。
 (b)粉砕・混合工程
 上記で得られた酸化物材料と、導電性炭素としてアセチレンブラック(電気化学工業社製、デンカブラック)を、質量%で、酸化物材料90%、アセチレンブラック10%の割合で秤量し、遊星ボールミルFritch社製P7に投入した。大気雰囲気中で、800rpm、30分間粉砕及び混合して蓄電デバイス用正極活物質を得た。得られた正極活物質について、粉末X線回折パターンを確認したところ、非晶質相を含むことが確認された(図3)。
 さらに、解析・定量ソフトとしてMaterials Data Inc.製JADE Ver.6.0を用いて、前記回折線プロファイルのデータ解析を行った。まず、10~60°の範囲における回折線プロファイルからバックグラウンの回折プロファイルを差し引いて回折プロファイルを得た後、既述の方法で非晶質相の含有量、NaMnP結晶含有量、NaMnP結晶の結晶子サイズを求めた。結果を表1に示す。
 (c)ナトリウムイオン二次電池の作製
 上記にて得られた正極活物質に対し、バインダーとしてポリフッ化ビニリデンを用いて、正極活物質:バインダー=95:5(質量比)となるように秤量し、これらをN-メチルピロリドンに分散した後、自転・公転ミキサーで十分に撹拌してスラリー化した。
 次に、隙間50μmのドクターブレードを用いて、正極集電体である厚さ20μmのアルミ箔上に、得られたスラリーをコートし、乾燥機にて70℃で乾燥後、一対の回転ローラー間に通し、1t/cmでプレスすることにより電極シートを得た。電極シートを電極打ち抜き機で直径11mmに打ち抜き、160℃で6時間乾燥させ、円形の作用極を得た。
 次に、得られた作用極を、コインセルの下蓋の上に、アルミ箔面を下に向けて載置し、その上に200℃で8時間乾燥させたガラスフィルター、60℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜(ヘキストセラニーズ社製 セルガード#2400)からなるセパレータ、及び、対極である金属ナトリウムを積層し、試験電池を作製した。電解液としては、1M NaPF溶液/EC:DEC=1:1(EC=エチレンカーボネート DEC=ジエチルカーボネート)を用いた。なお試験電池の組み立ては露点温度-70℃以下、酸素濃度0.2ppm未満のアルゴン雰囲気環境下で行った。
 (d)充放電試験
 充放電試験は次のように行った。30℃で開回路電圧(OCV)から4.5VまでCC(定電流)充電(正極活物質からのナトリウムイオン放出)を行い、正極活物質の単位質量中に充電された電気量(充電容量)を求めた。次に、4.5Vから2VまでCC放電(正極活物質へのナトリウムイオン吸蔵)させ、正極活物質の単位質量中に放電された電気量(初回放電容量)を求めた。以降は、2V~4.5Vで繰り返しCC充放電させて充放電容量を求めた。なお、充電と放電のCレートは0.1C(=0.07mA)で行った。また、放電容量維持率として、繰り返し充放電させた際の初回放電容量対する50サイクル目の放電容量の割合を求めた。結果を表1に示す。なお、図4に実施例1の充放電曲線を示す。
 (比較例1)
 炭酸水素ナトリウム(NaHCO)、シュウ酸マンガン(MnC)、リン酸ニアンモニウム((NHHPO)を原料とし、モル%で、NaO 33.3%、MnO 33.3%、P 33.3%の組成となるように原料粉末を調合して原料バッチを作製した。原料バッチの固形分濃度が30質量%になるようにエタノールを添加して、実施例1で使用した遊星ボールミルを用いて、500rpm、1時間、湿式粉砕混合を行った。
 エバポレータを用いてエタノールを除去した後、30MPaでプレスすることで圧粉体を作製し、600℃、12時間、Hを5体積%含有するArガス雰囲気中で焼成を行った。得られた試料を、上記の遊星ボールミルを用いて500rpm、1時間乾式粉砕することで、正極活物質を得た。得られた正極活物質について粉末X線回折プロファイルを確認したところ、非晶質相は確認されずNaMnP結晶由来の回折線のみが確認された。回折線プロファイルから、既述の方法により非晶質相の含有量、NaMnP結晶含有量、NaMnP結晶の結晶子サイズを求めた。結果を表1に示す。
 得られた正極活物質に、バインダーとしてポリフッ化ビニリデンを、導電助剤として高導電性カーボン(Timcal社製SuperC65)を、正極活物質:バインダー:導電助剤=75:5:20(質量比)となるように秤量し、これらをN-メチルピロリドンに分散した後、自転・公転ミキサーで十分に撹拌してスラリー化した。得られたスラリーを用いて、実施例1と同様にして試験電池を作製し、充放電試験を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1の正極活物質は非晶質相を含有するため、初回放電容量が93mAh/gと高く、放電容量維持率も82%と高かった。一方、比較例1の正極活物質は非晶質相を含まないため、初回放電容量が16mAh/gと低かった。なお、表1において、非晶質含有量、およびNaMnP結晶含有量は、いずれも質量%である。
 本発明の蓄電デバイス用正極活物質は、電気自動車、電気工具、バックアップ用非常電源等に用いられるナトリウムイオン二次電池用正極活物質として好適である。

Claims (8)

  1.  一般式Na(Mn1-a(MはCr、Fe、Co及びNiからなる群より選ばれた少なくとも一種、1.2≦x≦2.3、0.95≦y≦1.6、0≦a≦0.9、7≦z≦8)で表され、非晶質相を含有する酸化物材料を含有することを特徴とする蓄電デバイス用正極活物質。
  2.  前記酸化物材料における前記非晶質相の含有量が1質量%以上であることを特徴とする請求項1に記載の蓄電デバイス用正極活物質。
  3.  さらに、導電性炭素を含有することを特徴とする請求項1または2に記載の蓄電デバイス用正極活物質。
  4.  質量%で、前記酸化物材料 80~99.5%、及び前記導電性炭素 0.5~20%を含有することを特徴とする請求項3に記載の蓄電デバイス用正極活物質。
  5.  一般式NaMnPで表される三斜晶系結晶を含むことを特徴とする請求項1~4のいずれか一項に記載の蓄電デバイス用正極活物質。
  6.  一般式Na(Mn1-a(MはCr、Fe、Co及びNiからなる群より選ばれた少なくとも一種の遷移金属元素、1.2≦x≦2.3、0.95≦y≦1.6、0≦a≦0.9、7≦z≦8)で表される酸化物材料に対し、導電性炭素を添加し、粉砕しながら混合することを特徴とする蓄電デバイス用正極活物質の製造方法。
  7.  前記酸化物材料として、溶融固化物を用いることを特徴とする請求項6に記載の蓄電デバイス用正極活物質の製造方法。
  8.  前記酸化物材料として、前記溶融固化物に熱処理を施して得られた結晶化物を用いることを特徴とする請求項7に記載の蓄電デバイス用正極活物質の製造方法。
PCT/JP2015/080204 2014-11-05 2015-10-27 蓄電デバイス用正極活物質及びその製造方法 WO2016072315A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016557718A JP6758191B2 (ja) 2014-11-05 2015-10-27 蓄電デバイス用正極活物質、及び、電極シートの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014224909 2014-11-05
JP2014-224909 2014-11-05

Publications (1)

Publication Number Publication Date
WO2016072315A1 true WO2016072315A1 (ja) 2016-05-12

Family

ID=55909041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080204 WO2016072315A1 (ja) 2014-11-05 2015-10-27 蓄電デバイス用正極活物質及びその製造方法

Country Status (3)

Country Link
JP (1) JP6758191B2 (ja)
TW (1) TW201622216A (ja)
WO (1) WO2016072315A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110546796A (zh) * 2017-04-27 2019-12-06 日本电气硝子株式会社 钠离子二次电池用正极活性物质
US11167990B2 (en) * 2019-03-25 2021-11-09 Samsung Electronics Co., Ltd. NASICON-type sodium cathode material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133369A1 (ja) * 2012-03-09 2013-09-12 国立大学法人長岡技術科学大学 ナトリウム二次電池用正極活物質およびナトリウム二次電池用正極活物質の製造方法
JP2013191296A (ja) * 2012-03-12 2013-09-26 Nippon Electric Glass Co Ltd 蓄電デバイス
JP2014107160A (ja) * 2012-11-28 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> ナトリウム二次電池
JP2014107115A (ja) * 2012-11-27 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> ナトリウム二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3502170B2 (ja) * 1994-12-01 2004-03-02 松下電器産業株式会社 全固体リチウム電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133369A1 (ja) * 2012-03-09 2013-09-12 国立大学法人長岡技術科学大学 ナトリウム二次電池用正極活物質およびナトリウム二次電池用正極活物質の製造方法
JP2013191296A (ja) * 2012-03-12 2013-09-26 Nippon Electric Glass Co Ltd 蓄電デバイス
JP2014107115A (ja) * 2012-11-27 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> ナトリウム二次電池
JP2014107160A (ja) * 2012-11-28 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> ナトリウム二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110546796A (zh) * 2017-04-27 2019-12-06 日本电气硝子株式会社 钠离子二次电池用正极活性物质
EP3618154A4 (en) * 2017-04-27 2021-01-20 Nippon Electric Glass Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR SODIUM ION SECONDARY BATTERY
US11387455B2 (en) 2017-04-27 2022-07-12 Nippon Electric Glass Co., Ltd. Positive electrode active material for sodium ion secondary battery
JP7348600B2 (ja) 2017-04-27 2023-09-21 日本電気硝子株式会社 ナトリウムイオン二次電池正極活物質、ナトリウムイオン二次電池用正極材料、ナトリウムイオン二次電池用正極、及び、ナトリウムイオン二次電池
US11167990B2 (en) * 2019-03-25 2021-11-09 Samsung Electronics Co., Ltd. NASICON-type sodium cathode material

Also Published As

Publication number Publication date
TW201622216A (zh) 2016-06-16
JPWO2016072315A1 (ja) 2017-09-28
JP6758191B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
JP7075760B2 (ja) ナトリウムイオン二次電池用正極活物質
TWI692141B (zh) 蓄電裝置用正極材料及其製造方法
JP6384661B2 (ja) ナトリウムイオン二次電池用正極活物質及びその製造方法
WO2022025212A1 (ja) 全固体リチウムイオン二次電池用正極活物質とその製造方法
WO2016147853A1 (ja) ナトリウムイオン二次電池用正極活物質粉末
WO2019003903A1 (ja) ナトリウムイオン二次電池用正極活物質
JP6124062B2 (ja) 蓄電デバイス用正極材料、およびその製造方法
TWI699926B (zh) 鹼離子二次電池用正極活性物質
CN110521037B (zh) 钠离子二次电池用正极活性物质
JP6754534B2 (ja) 蓄電デバイス用正極活物質及びその製造方法
JP6758191B2 (ja) 蓄電デバイス用正極活物質、及び、電極シートの製造方法
WO2016136555A1 (ja) アルカリイオン二次電池用正極活物質
JP2014146431A (ja) 蓄電デバイス用正極材料
JP6183590B2 (ja) 蓄電デバイス用負極活物質およびその製造方法
WO2012081522A1 (ja) リチウムイオン二次電池正極材料用前駆体ガラスおよびリチウムイオン二次電池正極材料用結晶化ガラス
WO2023120414A1 (ja) ナトリウムイオン二次電池用正極活物質
WO2013062037A1 (ja) 酸化物材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557718

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857725

Country of ref document: EP

Kind code of ref document: A1