WO2022025212A1 - 全固体リチウムイオン二次電池用正極活物質とその製造方法 - Google Patents

全固体リチウムイオン二次電池用正極活物質とその製造方法 Download PDF

Info

Publication number
WO2022025212A1
WO2022025212A1 PCT/JP2021/028186 JP2021028186W WO2022025212A1 WO 2022025212 A1 WO2022025212 A1 WO 2022025212A1 JP 2021028186 W JP2021028186 W JP 2021028186W WO 2022025212 A1 WO2022025212 A1 WO 2022025212A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel composite
composite oxide
lithium
particles
positive electrode
Prior art date
Application number
PCT/JP2021/028186
Other languages
English (en)
French (fr)
Inventor
仁美 中村
遼介 岡本
一英 林
三香子 東間
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2022539579A priority Critical patent/JPWO2022025212A1/ja
Priority to CN202180059735.XA priority patent/CN116157936A/zh
Priority to US18/018,166 priority patent/US20230268500A1/en
Priority to EP21851567.4A priority patent/EP4191703A1/en
Publication of WO2022025212A1 publication Critical patent/WO2022025212A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for an all-solid-state lithium ion secondary battery and a method for producing the same.
  • the positive electrode active material is a lithium transition metal composite oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4
  • the negative electrode active material is a lithium metal, a lithium alloy, or a metal oxide. Carbon or the like is used.
  • a non-aqueous electrolyte solution for example, an electrolytic solution obtained by dissolving Li salts such as LiClO 4 and LiPF 6 in an organic solvent such as ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate as supporting salts is used.
  • Li salts such as LiClO 4 and LiPF 6
  • organic solvent such as ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate
  • non-aqueous electrolytes in particular are factors that limit battery performance such as high-speed charging, thermal stability, and life due to chemical properties such as heat resistance and potential windows. .. Therefore, we are currently researching and developing an all-solid-state lithium-ion secondary battery (hereinafter, also referred to as "all-solid-state battery") that has improved the above-mentioned battery performance by using a solid electrolyte instead of a non-aqueous electrolyte solution as the electrolyte. Is being actively carried out.
  • Patent Document 1 describes that among solid electrolytes, sulfide solid electrolytes have high conductivity of lithium ions during charging and discharging, and are preferable for use in all-solid-state batteries.
  • Non-Patent Document 1 for example, when the sulfide solid electrolyte and the positive electrode active material which are oxides come into contact with each other, a reaction occurs at the interface between the solid electrolyte and the positive electrode active material during charging and discharging, and the interface occurs. A high resistance phase is generated and hinders the operation of the all-solid-state battery. This is because the space charge layer is formed at the contact interface due to the change in the conduction ion concentration due to the difference in the electrochemical potential, and the ion conductivity is different from that of the bulk and the resistance is high.
  • Patent Document 2 in order to prevent contact between the solid electrolyte and the positive electrode active material (oxide) and suppress the formation of a high resistance phase, a coating layer made of LiNbO 3 is provided on the surface of the positive electrode active material.
  • Technology has been proposed.
  • Japanese Unexamined Patent Publication No. 2014-056661 Japanese Unexamined Patent Publication No. 2010-170715 Japanese Unexamined Patent Publication No. 2011-116580
  • LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries
  • LiNiO 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , and LiNi 0.6 Co 0.2 Mn 0.2 which have a large charge / discharge capacity, are used. It is preferable to use a positive electrode active material having a high Ni ratio such as O2 . Therefore, the inventors examined the applicability of a positive electrode active material having a high Ni ratio to an all-solid-state lithium-ion secondary battery.
  • the present inventors can design a battery in which cells are connected in series when a solid electrolyte is used, so that the energy density of the entire battery is higher than that when a non-aqueous electrolyte solution is used. It has been found that the energy density obtained from the positive electrode active material having a high Ni ratio does not reach the expected energy density or battery capacity, even though the energy density is improved.
  • an object of the present invention is to provide a positive electrode active material having a higher battery capacity when a positive electrode active material having a high Ni ratio is used as the positive electrode active material of an all-solid-state battery.
  • the positive electrode active material for an all-solid-state lithium ion secondary battery comprising particles of the lithium nickel composite oxide and a coating layer covering the surface of the particles, is the lithium nickel composite oxide.
  • ⁇ Y x: y (0.98 ⁇ a ⁇ 1.15, 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.03, 0 ⁇ x + y ⁇ 0.5, element M is Co, Al, Mn , Zr, Si, Zn and Ti), and the crystallite diameter calculated by the Scheller method from the diffraction peak assigned to the (003) plane measured by XRD is 140 nm or less.
  • the amount of eluted lithium ions obtained by neutralization titration is 0.30% by mass or more and 1.00% by mass or less with respect to the total amount of lithium nickel composite oxide particles, and the coating layer is Li.
  • An all-solid-state lithium-ion secondary battery which is a composite oxide containing at least one element selected from the group consisting of Al, Si, Ti, V, Ga, Ge, Zr, Nb, Mo, Ta and W. Positive positive element for use is provided.
  • the particles of the lithium nickel composite oxide include secondary particles formed by aggregating a plurality of primary particles, and have a porous structure having a plurality of void portions in which the primary particles do not exist in the secondary particles.
  • the specific surface area measured by the nitrogen adsorption BET method is preferably 0.3 m 2 / g or more and 2.0 m 2 / g or less.
  • the particles of the lithium nickel composite oxide preferably have a particle size (D50) of 7 ⁇ m or less, which corresponds to an integrated volume fraction of 50% in the integrated volume distribution curve of the particle size distribution.
  • the average thickness of the coating layer is preferably 1 nm or more and 15 nm or less.
  • a coating liquid containing at least one element selected from the group consisting of Al, Si, Ti, V, Ga, Ge, Zr, Nb, Mo, Ta and W is adhered to the surface of the particles of the lithium nickel composite oxide.
  • a method for producing a positive electrode active material for an all-solid-state lithium ion secondary battery comprising a coating step of forming a coating layer.
  • the nickel composite compound contains a nickel composite oxide, and it is preferable to include an oxidation roasting step of oxidizing and roasting the nickel composite hydroxide prepared by the crystallization reaction to obtain the nickel composite oxide. Further, after the coating step, it is preferable to include a heat treatment step of heat-treating the lithium nickel composite oxide particles having the coating layer formed on the surface at 300 ° C. or higher.
  • the positive electrode active material of the present invention When the positive electrode active material of the present invention is used as the positive electrode active material of an all-solid-state battery, the battery capacity is improved. In addition, the production method of the present invention can produce this positive electrode active material with high productivity.
  • FIG. 1 is a schematic diagram showing an example of a positive electrode active material according to the present embodiment.
  • FIG. 2 is a diagram showing an example of a method for producing a positive electrode active material according to the present embodiment.
  • FIG. 3 is a diagram showing an example of a method for producing a nickel composite compound according to the present embodiment. It is explanatory drawing of the cross-sectional structure of the evaluation battery used for the battery evaluation.
  • Positive Electrode Active Material for All-Solid Lithium Ion Secondary Battery First, a configuration example of the positive electrode active material for all-solid-state lithium-ion secondary battery (hereinafter, also referred to as “positive electrode active material”) according to the present embodiment will be described.
  • FIG. 1 is a diagram schematically showing an example of a positive electrode active material according to the present embodiment.
  • the positive electrode active material 10 has particles 1 of a lithium nickel composite oxide and a coating layer 2 covering the surface of the particles 1.
  • each component will be described.
  • the particles 1 of the lithium-nickel composite oxide have a crystal structure belonging to the space group R-3m, and contain at least lithium (Li), nickel (Ni), elements M, and Nb. It is a composite oxide containing.
  • a indicating the Li content ratio is 0.98 ⁇ a ⁇ 1.15
  • a is less than 0.98 Li is deficient in the positive electrode active material, which tends to cause a decrease in capacity as a battery material.
  • a exceeds 1.15 the crystal structure of the particles 1 of the lithium nickel composite oxide grows excessively, the primary particles become coarse, and the particles 1 are likely to be cracked, so that the durability is likely to be impaired.
  • (1-xy) indicating the Ni content ratio is 0.5 or more and less than 1.0.
  • the range including the lower limit of the Ni content ratio is preferably 0.6 or more, 0.7 or more, or 0.8 or more.
  • (1-xy) is less than 0.5, the battery capacity is low.
  • the element M is preferably at least one selected from the group consisting of Co, Al, Mn, Zr, Si, Zn and Ti. Further, the element M preferably contains at least one element selected from cobalt (Co), aluminum (Al), and manganese (Mn). The element M can be appropriately selected depending on the use and required performance of the secondary battery configured by using the positive electrode active material 10.
  • x indicating the content ratio of the element M is 0 ⁇ x ⁇ 0.5, preferably 0 ⁇ x ⁇ 0.3, and may be 0 ⁇ x ⁇ 0.2.
  • the element M may contain Co and Al.
  • the range of Co may be, for example, 0 ⁇ x ⁇ 0.3 or 0 ⁇ x ⁇ 0.2.
  • the range of Al may be, for example, 0 ⁇ x ⁇ 0.1 or 0 ⁇ x ⁇ 0.07.
  • y indicating the content ratio of Nb is 0 ⁇ y ⁇ 0.03, preferably 0 ⁇ y ⁇ 0.02.
  • the all-solid-state battery can have a high battery capacity. If y exceeds 0.03, it may generate less active LiNb 3 O 8 and cause a decrease in battery capacity. Further, for example, when y is 0.001 ⁇ y ⁇ 0.01, it is possible to have a higher battery capacity.
  • the niobium contained in the particles 1 of the lithium nickel composite oxide may be solid-solved inside the primary particles or may be present at the interface of the primary particles. It is preferable that at least a part of niobium segregates at the interface of the primary particles. The details of this reason are unknown, but for example, it is said that niobium segregates at the interface of the primary particles, thereby reducing the barrier of movement of Li ions in the secondary particles and improving the battery capacity. is assumed. Further, it is considered that the amount of eluted lithium, which will be described later, can be easily adjusted to a specific range by segregating at least a part of niobium to the interface of the primary particles.
  • the lithium nickel composite oxide particle 1 has a crystal structure belonging to the space group R-3m.
  • the particles 1 of the lithium nickel composite oxide have a crystal structure belonging to the space group R-3m, an increase in internal resistance can be suppressed in the secondary battery.
  • the crystal structure of the particles 1 of the lithium nickel composite oxide can be confirmed by powder X-ray diffraction (XRD) measurement. That is, from the diffraction pattern obtained when the powder X-ray diffraction (XRD) measurement of the particles 1 of the lithium nickel composite oxide is performed, it belongs to the layered rock salt type crystal structure (space group R-3m) of the "R-3m” structure. It is preferable that the peak attributed to the crystal structure) is detected. In particular, it is more preferable that only the peaks attributed to the layered rock salt type crystal structure of the "R-3m" structure are detected from the diffraction pattern.
  • XRD powder X-ray diffraction
  • the particles 1 of the lithium nickel composite oxide may be a lithium nickel composite oxide single phase having a crystal structure of "R-3m” structure, but may not be a single phase.
  • other compounds eg, impurities, etc.
  • the intensity of heterogeneous peaks other than the layered rock salt type structure of "R-3m” structure becomes the layered rock salt type structure of "R-3m” structure. It is preferable not to exceed the attributed peak intensity.
  • the lithium nickel composite oxide particles 1 preferably have a crystallite diameter of 140 nm or less, and more preferably 40 nm or more and 140 nm or less. Further, the range including the upper limit of the crystallite diameter may be 130 nm or less. Further, the range including the lower limit of the crystallite diameter may be 50 nm or more.
  • the crystallite diameter can be calculated by the Scheller method using the peak attributed to (003) of the above XRD diffraction pattern. When the crystallite diameter of the particles 1 of the lithium nickel composite oxide exceeds 140 nm, the diffusion distance in the solid in the crystal may become long and the battery capacity may decrease. Further, when the crystallite diameter of the particles 1 of the lithium nickel composite oxide is less than 40 nm, the crystal structure becomes unstable and the battery capacity tends to decrease.
  • the amount of eluted lithium ions obtained by neutralization titration is 0.30% by mass or more and 1.00% by mass or less, and 0.30% by mass or more, based on the total amount of the particles 1. It is preferably 0.70% by mass or less.
  • the amount of eluted lithium ions can be determined by a neutralization titration method using hydrochloric acid, which is the amount of lithium ions eluted in water when the particles 1 of the lithium nickel composite oxide are dispersed in water.
  • a neutralization titration method a Warder method or a Winkler method can be used as the neutralization titration method.
  • the battery capacity may decrease.
  • the surface of the lithium nickel composite oxide particles 1 contains a specific amount of eluted lithium ions, so that the lithium nickel composite oxide particles 1 and the solid state are contained in the all-solid-state battery.
  • One of the reasons is considered to be that it suppresses direct contact with the electrolyte and suppresses the formation of a high resistance phase.
  • the amount of eluted lithium ions increases as compared with the lithium nickel composite oxide containing no niobium. Therefore, for example, by adjusting the niobium content to the above range and the elution lithium amount to 0.3% by mass or more by using the production method described later, a positive electrode active material having a high discharge capacity can be obtained. Obtainable. However, when the amount of eluted lithium ions in the particles 1 of the lithium nickel composite oxide exceeds 1.00% by mass, the discharge capacity decreases.
  • the lithium nickel composite oxide particles 1 preferably have a crystallite diameter of 140 nm or less and an eluted lithium ion amount of 0.30% by mass or more.
  • the battery capacity may decrease if the amount of eluted lithium ions is less than 0.30% by mass.
  • the details of the reason for this are unknown, but it is presumed as follows, for example.
  • the lithium nickel composite oxide particle 1 includes secondary particles formed by aggregating a plurality of primary particles.
  • the crystallite diameter of the particles 1 of the lithium nickel composite oxide has a positive correlation with the size of the primary particles constituting the secondary particles, and it is considered that the smaller the crystallite diameter, the more particle interfaces between the primary particles. .. Further, the eluted lithium ion is mainly present at the particle interface between the primary particles and the primary particles. Therefore, when the crystallite diameter is small and there are many interfaces of the primary particles, if the number of eluted lithium ions present at the interface (surface) of the primary particles decreases too much, voids are formed at the interface of the primary particles.
  • the positive electrode active material When a large number of voids are present at the interface of the primary particles, the positive electrode active material is easily cracked in the process of manufacturing the electrode of the all-solid-state battery, and the contact interface between the lithium nickel composite oxide particles and the solid electrolyte increases. It is considered that the generated phase interferes with the transfer of charges between the electrolyte and the positive electrode active material due to the side reaction that occurs at this increased contact interface, so that the resistance of the battery increases and the battery capacity decreases.
  • the crystallite diameter of the lithium nickel composite oxide particle 1 exceeds 140 nm, even if the amount of eluted lithium ions is 0.30% by mass or more, the battery capacity is lowered, which is not preferable. This is because the coarsening of the primary particles reduces the grain boundaries between the primary particles, so that the eluted lithium ions are scattered in a mass on the surface of the secondary particles, and the existence of the eluted lithium ions itself. Is considered to be the resistance phase.
  • the crystallite diameter and the amount of eluted lithium can be adjusted within the above ranges by using, for example, a method for producing a positive electrode active material described later.
  • the lithium nickel composite oxide particle 1 includes secondary particles formed by aggregating a plurality of primary particles. Further, the lithium nickel composite oxide particle 1 may contain a single primary particle or may be a mixture of a single primary particle and a secondary particle.
  • the average particle size of the secondary particles is preferably 3.0 ⁇ m or more and 7.0 ⁇ m or less. Further, it is preferable that the secondary particles are formed by aggregating a large number of primary particles having a particle size of 0.1 ⁇ m or more and 2.0 ⁇ m or less. When a single primary particle is contained, the primary particle preferably has a particle size of 1.0 ⁇ m or more and 7.0 ⁇ m or less.
  • the average particle size of each particle can be obtained by, for example, calculating the average of the diameters corresponding to the area circles of 20 or more particles.
  • the particles 1 of the lithium nickel composite oxide have a particle size (D50, hereinafter also referred to as “average particle size D50”) corresponding to an integrated volume fraction of 50% in the integrated volume distribution curve of the particle size distribution of 7 ⁇ m or less. It is preferably 2 ⁇ m or more and 7 ⁇ m or less, and more preferably 3 ⁇ m or more and 7 ⁇ m or less.
  • the average particle size (D50) can be measured with a laser light diffraction / scattering type particle size distribution meter.
  • the secondary battery using the positive electrode active material 10 as the positive electrode can sufficiently increase the battery capacity per battery capacity, and Excellent battery characteristics such as thermal stability and high output can be obtained.
  • the average particle size D50 is 2 ⁇ m or less, it is not preferable because it tends to aggregate when the coating layer 2 is applied.
  • [(D90-d10) / volume average particle size Mv] which is an index showing the spread of the particle size distribution of the particles 1 of the lithium nickel composite oxide, is not particularly limited, but is 0. It may be 7 or less, 0.6 or less, or 0.55 or less.
  • the lower limit of [(d90-d10) / volume average particle size Mv] is not particularly limited, but is, for example, 0.3 or more.
  • [(d90-d10) / volume average particle size Mv] may be 0.7 or more from the viewpoint of filling property, and is relatively uniform by using the method for producing a positive electrode active material described later.
  • the coating layer 2 can be coated.
  • d10 means a particle size in which the number of particles at each particle size is accumulated from the smaller particle size side, and the cumulative volume is 10% of the total volume of all particles, and d90 means the number of particles is similarly accumulated. However, it means a particle size in which the cumulative volume is 90% of the total volume of all particles. Further, d10, d90 and the volume average particle size Mv can be obtained from the volume integrated value measured by the laser light diffraction / scattering type particle size analyzer as in the case of the average particle size D50.
  • the specific surface area of the particles 1 of the lithium nickel composite oxide is not particularly limited, and may be, for example, 0.3 m 2 / g or more and 2.0 m 2 / g or less, and 0.3 m 2 / g or more and 1.0 m. It may be 2 / g or less. When the specific surface area is in the above range, the output characteristics are good.
  • the specific surface area can be measured by the nitrogen adsorption BET method.
  • the positive electrode active material 10 includes a coating layer 2 on the surface of the particles 1 of the lithium nickel composite oxide. By having the coating layer 2 on the surface of the particles 1, the interaction between the positive electrode active material 10 and the solid electrolyte can be suppressed in the secondary battery provided with the positive electrode containing the positive electrode active material 10.
  • the coating layer 2 is a composite containing lithium (Li) and one or more elements selected from the group consisting of Al, Si, Ti, V, Ga, Ge, Zr, Nb, Mo, Ta, and W. It is an oxide.
  • the constituent elements of the coating layer 2 other than lithium (Li) and oxygen (O) may be one kind or two or more kinds.
  • the coating layer 2 may be, for example, a composite oxide composed of Li and Ti, or may be a composite oxide composed of Li and Nb.
  • the coating amount of the coating layer 2 is not particularly limited, but the coating amount can be adjusted according to the specific surface area (m 2 / g) of the particles 1 of the lithium nickel composite oxide to be coated.
  • the coating layer 2 has, for example, the constituent elements (excluding Li and O) of the coating layer 2 at a ratio of preferably 30 ⁇ mol or more and 600 ⁇ mol or less, more preferably 50 ⁇ mol or more and 400 ⁇ mol or less, per 1 m 2 of the surface area of the lithium nickel composite oxide particles 1. ) Is more preferable.
  • the entire surface of the lithium nickel composite oxide particles 1 is coated.
  • the layer 2 can be uniformly arranged.
  • the coating layer 2 the reaction between the particles 1 of the lithium nickel composite oxide and the solid electrolyte can be suppressed, but at the same time, the internal resistance of the secondary battery may increase.
  • the content of the constituent elements (excluding Li and O) of the coating layer 2 per 1 m 2 of the surface area of the lithium nickel composite oxide particles 1 is 600 ⁇ mol or less, the coating layer 2 becomes the lithium nickel composite oxide particles 1. It is possible to suppress the obstacle of the lithium intercalation / deintercalation reaction and reduce the internal resistance.
  • the method for evaluating and calculating the content of the constituent elements (excluding Li and O) of the coating layer 2 in the coating layer 2 is not particularly limited, but can be obtained, for example, as follows.
  • the content of the constituent elements (excluding Li and O) of the coating layer 2 in 1 g of the positive electrode active material is measured by a method such as chemical analysis.
  • a method of chemical analysis measurement is performed by ICP (Inductively Coupled Plasma) emission spectroscopy or the like.
  • the specific surface area of the particles 1 of the lithium nickel composite oxide before coating the coating layer 2 is measured by a nitrogen adsorption BET method or the like.
  • lithium is divided by the specific surface area (m 2 / g) of the particles 1 of the lithium nickel composite oxide by dividing the content of the constituent elements (excluding Li and O) of the coating layer 2 in 1 g of the positive electrode active material.
  • the content of the constituent elements (excluding Li and O) of the coating layer 2 per 1 m 2 of the surface area of the nickel composite oxide particles 1 can be determined.
  • the lithium nickel composite oxide particles 1 contain the constituent elements (excluding Li and O) of the coating layer 2, the difference in the contents of the constituent elements (excluding Li and O) of the coating layer 2 before and after the coating. Can be used as the content of the constituent elements (excluding Li and O) of the coating layer 2 used for the coating.
  • the average thickness of the coating layer is, for example, preferably 2 nm or more and 20 nm or less, more preferably 2 nm or more and 15 nm or less, and further preferably 5 nm or more and 15 nm or less.
  • the average thickness of the coating layer 2 can be observed with a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like, or an energy dispersion type X-ray spectroscope (EDS) or electron energy loss spectroscopy attached thereto. It can be calculated by analyzing with a spectroscope such as the method (EELS) and measuring a layer uniformly formed on the surface of the particles 1 of the lithium nickel composite oxide.
  • a spectroscope such as the method (EELS)
  • the coating layer 2 preferably exists adjacent to the surface of the particles 1 of the lithium nickel composite oxide. Whether or not the coating layer 2 is present adjacent to the surface of the particles 1 depends on whether or not the compound containing the constituent elements of the coating layer 2 is released from the surface of the particles 1 of the lithium nickel composite oxide. I can judge. When the coating layer 2 is released from the surface of the particles 1 of the lithium nickel composite oxide, it does not electrochemically contribute to the battery capacity, which is a factor of lowering the battery capacity per weight.
  • the coating layer 2 and the surface of the lithium nickel composite oxide particles 1 do not have to have a clear boundary line.
  • the coating layer 2 is the constituent elements of the coating layer 2 (excluding Li and O). ) Is detected, and may include a region in which both the constituent elements (excluding Li and O) of the coating layer 2 and the constituent elements of the lithium nickel composite oxide particle 1 are detected.
  • the region on the surface side of the particles constituting the positive electrode active material 10 is lithium. It refers to a region (site) in which the concentration of constituent elements (excluding Li and O) of the coating layer 2 is higher than that of the central portion of the particles 1 of the nickel composite oxide.
  • the constituent elements (excluding Li and O) of the coating layer 2 may be partially dissolved from the surface of the particles of the lithium nickel composite oxide to the inside.
  • a heat treatment step (S40) is performed after the coating step (S30), and depending on the conditions at that time, the coating layer constituent elements of the coating layer can be diffused into the lithium nickel composite oxide.
  • the coating layer 2 when the coating layer 2 contains Ti and / or Nb, the coating layer 2 is simply a solid electrolyte due to the solid dissolution of Ti and / or Nb from the surface of the particles 1 of the lithium nickel composite oxide to the inside.
  • the effect of preventing direct contact between the lithium nickel composite oxide particles 1 and the lithium nickel composite oxide particles 1 not only reduces the chance of reaction, but also reduces the reactivity between the surface layer of the lithium nickel composite oxide particles 1 and the solid electrolyte. Produces.
  • the method for producing a positive electrode active material according to the present embodiment includes a mixing step (S10) of mixing a nickel compound compound, a niobium compound, and a lithium compound to obtain a mixture, and firing the mixture.
  • a firing step (S20) for obtaining particles of the lithium nickel composite oxide and a coating step (S30) for adhering a coating liquid to the surface of the particles of the lithium nickel composite oxide to form a coating layer are provided.
  • a heat treatment step (S40) may be provided in which the particles of the lithium nickel composite oxide having the coating layer formed on the surface are heat-treated at 300 ° C. or higher.
  • the nickel composite compound may be a nickel composite oxide obtained by oxidatively roasting a nickel composite hydroxide prepared by a crystallization reaction.
  • the nickel composite compound can be produced by a method including a crystallization step (S1) and an oxidative roasting step (S2).
  • S1 crystallization step
  • S2 oxidative roasting step
  • each step will be described in detail.
  • the following description is an example of a manufacturing method, and does not limit the manufacturing method.
  • Crystallization step (S1) In the crystallization step (S1), a nickel composite hydroxide which is a precursor of the lithium nickel composite oxide is prepared by a crystallization reaction.
  • the substance amount ratio of each element is equal to the substance amount ratio of each element contained in the particles of the target lithium nickel composite oxide.
  • a raw material aqueous solution is prepared, and the prepared raw material aqueous solution, an alkali metal aqueous solution and an ammonium ion feeder are both supplied to a reaction vessel and subjected to a neutralization crystallization reaction to obtain a nickel composite hydroxide.
  • the raw material of each element may be, for example, simultaneously dissolved in water to produce a raw material aqueous solution as a mixed aqueous solution. Further, an individual aqueous solution may be prepared for each raw material of each element to prepare an individual aqueous solution of the raw material. If it is inconvenient to prepare the raw material aqueous solution as a mixed aqueous solution, it is preferable to prepare an individual raw material aqueous solution for each raw material. For example, when the liquidity of the aqueous solution of each raw material is divided into acidic and basic, it is preferable to prepare an individual raw material aqueous solution for each raw material.
  • the metal compound used as a raw material for each element may be water-soluble, and sulfates, chlorides, nitrates, etc. can be used, but inexpensive sulfates are preferable from the viewpoint of cost. If a suitable water-soluble metal compound is not found in the element M or the like, it may be added in the oxidative roasting step (S2) or the mixing step (S10) described later without adding it to the mixed aqueous solution of the raw materials. good.
  • the alkali metal aqueous solution is not particularly limited, but one or more selected from the group consisting of sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide, and potassium carbonate can be preferably used.
  • the ammonium ion feeder is not particularly limited, but one or more selected from aqueous ammonia, aqueous solution of ammonium carbonate, aqueous solution of ammonium chloride, and aqueous solution of ammonium sulfate can be preferably used.
  • the shape of the reaction vessel is not particularly limited, but a cylindrical container having a baffle plate inside, and a stirrer and a temperature controller are preferable.
  • the stirrer is preferably equipped with a motor, a shaft and a stirrer blade.
  • the temperature controller is preferably of a type in which a heat medium is circulated outside the cylindrical container to heat or cool the cylindrical container.
  • the pH and the ammonia concentration are maintained at constant values.
  • the pH of the aqueous solution in the reaction vessel is preferably adjusted to be 11.0 or more and 12.2 or less based on the liquid temperature of 25 ° C.
  • impurities due to anions constituting the metal compound contained in the raw material aqueous solution used may be mixed in the nickel composite hydroxide.
  • the pH value of the initial aqueous solution (inside the reaction vessel) is 11.0 or higher, it is possible to suppress the contamination of impurities caused by anions.
  • the pH of the initial aqueous solution to 12.2 or less, it is possible to suppress the formation of fine particles of the obtained nickel composite hydroxide and obtain a composite hydroxide having a particle size suitable for the charge / discharge reaction. ..
  • the ammonia concentration of the aqueous solution in the reaction vessel is preferably adjusted to 5 g / L or more and 20 g / L or less.
  • the ammonia concentration is 5 g / L or more, Ni in the raw material aqueous solution (mixed aqueous solution) becomes an ammonium complex, and the precipitation rate decreases from the liquid phase to the solid phase as a hydroxide, so that the obtained nickel composite hydroxide is obtained. Increases the sphericality of the particles.
  • the ammonia concentration is 20 g / L or less, the solubility of nickel forming an ammonium complex is suppressed from being excessively increased, and the substance amount ratio of the obtained nickel composite hydroxide is more reliably targeted. Can be a ratio. In addition, it is industrially preferable because it can suppress excessive consumption of ammonia.
  • the atmosphere in the reaction vessel is preferably a non-oxidizing atmosphere, for example, an atmosphere having an oxygen concentration of 1% by volume or less.
  • a non-oxidizing atmosphere it is possible to suppress the oxidation of the raw material compound and the like. For example, it is possible to prevent oxidized cobalt and manganese from precipitating as fine particles.
  • the temperature in the reaction vessel in the crystallization step (S1) is preferably maintained at 40 ° C. or higher and 60 ° C. or lower, more preferably 45 ° C. or higher, still more preferably 55 ° C. or lower.
  • the temperature of the reaction tank rises due to the heat of reaction and the Joule heat of stirring, by setting the temperature inside the reaction tank to 40 ° C or higher, no extra energy is consumed for cooling. Further, by setting the temperature in the reaction vessel to 60 ° C. or lower, the evaporation of ammonia from the initial aqueous solution and the reaction aqueous solution can be suppressed, and it becomes easy to maintain the target ammonia concentration.
  • Lithium-nickel composite oxide particles preferably have a narrow particle size distribution and a uniform particle size. In order to produce such particles, it is necessary to obtain particles having a uniform particle size in the nickel composite hydroxide as a precursor thereof. Specific examples of the method for obtaining such particles include Patent Document 3.
  • an oxidative roasting step (S2) may be performed.
  • the nickel composite hydroxide obtained in the precursor crystallization step (S1) is oxidatively roasted to obtain a nickel composite oxide.
  • a nickel composite oxide can be obtained by heat-treating in an oxygen-containing atmosphere and then cooling to room temperature.
  • the roasting conditions in the oxidative roasting step (S2) are not particularly limited, and for example, roasting can be performed in an oxygen-containing atmosphere, an air atmosphere, at a temperature of 500 ° C. or higher and 700 ° C. or lower, for 1 hour or longer and 12 hours or shorter. preferable.
  • the roasting temperature is 500 ° C. or higher
  • the nickel composite hydroxide can be completely converted to the nickel composite oxide.
  • the roasting temperature to 700 ° C. or lower, it is possible to prevent the specific surface area of the nickel composite oxide from becoming excessively small, which is preferable.
  • the roasting time is preferably 12 hours or less.
  • the oxygen concentration in the oxygen-containing atmosphere at the time of roasting is preferably equal to or higher than the oxygen concentration in air, that is, the oxygen concentration is preferably 20% by volume or higher. Since the oxygen atmosphere can be used, the upper limit of the oxygen concentration in the oxygen-containing atmosphere can be 100% by volume.
  • the compound containing the element M cannot be co-precipitated in the crystallization step (S1), for example, the substance intended for the compound containing the element M with respect to the nickel composite hydroxide used in the oxidation roasting step S2. It may be added and baked so as to have the same amount ratio.
  • the compound containing the element M to be added is not particularly limited, and for example, an oxide, a hydroxide, a carbonate, or a mixture thereof can be used.
  • the oxidative roasting step (S2) if slight sintering is observed in the obtained nickel composite oxide after the completion of the oxidative roasting step (S2), a crushing treatment may be added.
  • the oxidation roasting step (S2) at least a part of the nickel composite hydroxide may be converted to the nickel composite oxide, and not all the nickel composite hydroxide may be converted to the oxide.
  • the mixing step (S10) is a step of mixing a nickel compound compound, a niobium compound, and a lithium compound to obtain a lithium mixture.
  • niobium is solid-phase added by mixing the niobium compound in the mixing step (S10).
  • the solid phase addition of niobium does not require a chemical solution as compared with the method of coprecipitating or coating niobium in a conventionally known crystallization step, so it is an addition method having a low environmental load and excellent productivity. be.
  • the nickel composite compound is preferably at least one of a nickel composite hydroxide and a nickel composite oxide, and more preferably a nickel composite oxide. Further, the nickel composite compound is preferably obtained by a method including the above-mentioned crystallization step (S1) and / or oxidative roasting step (S2).
  • niobium compound for example, niobium acid, niobium oxide, niobium nitrate, niobium pentachloride and the like can be used.
  • niobium hydroxide or niobium oxide is preferable from the viewpoint of easy availability and avoiding contamination of calcined lithium-nickel composite oxide with impurities.
  • the reactivity may change depending on the particle size of the added niobium compound.
  • the particle size (D90) corresponding to the integrated volume fraction of 90% is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and further. It is preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the D90 of the niobium compound When the D90 of the niobium compound is larger than 20 ⁇ m, the reactivity at the time of firing may be lowered, the diffusion of niobium into the particles of the lithium nickel composite oxide may be insufficient, and the thermal stability may not be ensured. In addition, if the niobium D90 is too large, the formation of the coating layer 2 may be non-uniform.
  • the particle size of the niobium compound can be appropriately adjusted within the range of the above particle size so that a positive electrode active material having desired characteristics can be obtained.
  • the niobium compound D90 can be adjusted to the above range by crushing the raw material niobium compound using a crusher such as a ball mill, a planetary ball mill, a jet mill, a bead mill, or a pin mill. Further, if necessary, the class may be classified by a dry classifier or a sieving machine. The niobium compound D90 can be measured by a laser scattering diffraction method.
  • the niobium compound is mixed in an amount having the desired niobium content with respect to the total number of atoms of Ni and element M contained in the nickel composite compound. Since the content of niobium does not change before and after the firing step, a niobium compound corresponding to the amount of niobium added to the positive electrode active material is added.
  • the lithium compound is not particularly limited, and for example, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof can be used.
  • lithium hydroxide is preferably used from the viewpoint of having a low melting point and high reactivity.
  • the lithium compound may be mixed, for example, in an amount such that the lithium content is 95 atomic% or more and 115 atomic% or less with respect to the total sum (Me) of Ni, the element M and Nb, and 98 atomic% or more. It may be mixed at 115 atomic% or less, or at 98 atomic% or more and 110 atomic% or less.
  • the firing step (S20) is a step of firing the obtained lithium mixture to obtain particles 1 of the lithium nickel composite oxide.
  • the firing conditions are not particularly limited, but for example, it is preferable to fire at a temperature of 700 ° C. or higher and 800 ° C. or lower and 1 hour or longer and 24 hours or lower in an oxygen-containing atmosphere. Further, after firing, the particles may be cooled to room temperature to obtain particles 1 of the lithium nickel composite oxide.
  • the firing temperature is 700 ° C. or higher, the crystal structure of the particles 1 of the lithium nickel composite oxide can be sufficiently grown. Further, when the firing temperature is 800 ° C. or lower, it is possible to suppress the mixing of Ni atoms into the Li sites of the obtained lithium nickel composite oxide particles 1.
  • the firing time is 1 hour or more because the temperature inside the firing container can be made uniform and the reaction can be made uniform. Further, even if the firing is performed for a longer time than 24 hours, no significant change is observed in the obtained lithium nickel composite oxide. Therefore, from the viewpoint of energy efficiency, the firing time is preferably 24 hours or less, preferably 12 hours. It may be less than or equal to, 10 hours or less, or 6 hours or less.
  • the oxygen-containing atmosphere is preferably an atmosphere containing 80% by volume or more of oxygen. This is because it is preferable to set the oxygen concentration in the atmosphere to 80% by volume or more because it is possible to particularly suppress the mixing of Ni atoms with the Li sites in the obtained lithium nickel composite oxide. Since the oxygen atmosphere can be used, the upper limit of the oxygen concentration in the oxygen-containing atmosphere can be 100% by volume.
  • the coating step (S30) is a step of adhering the coating liquid to the surface of the particles 1 of the obtained lithium nickel composite oxide to form the coating layer 2.
  • the lithium nickel composite oxide particles 1 and the coating liquid are mixed and dried to form the coating layer 2 on the surface of the lithium nickel composite oxide particles 1.
  • the heat treatment step (S40) may be optionally performed in an oxygen-containing atmosphere.
  • an example of the coating step (S30) will be described.
  • a predetermined amount of the coating liquid is prepared (coating agent preparation step).
  • the coating agent depends on the content of the constituent elements (excluding Li and O) of the coating layer 2 per the specific surface area (m 2 / g) of the particles 1 of the lithium nickel composite oxide obtained in the firing step (S20). Can be prepared.
  • the coating liquid contains at least one element selected from the group consisting of Al, Si, Ti, V, Ga, Ge, Zr, Nb, Mo, Ta and W.
  • the coating liquid can be prepared by dissolving a raw material compound containing the constituent elements (excluding Li and O) of the target coating layer 2 in a solvent.
  • Examples of the raw material compound include one or more selected from the group consisting of chelates using a complex having an alkoxide, a carbonyl group, a peroxy group, and the like.
  • the coating liquid may be liquid at the time of adhering to the surface of the particles 1 of the lithium nickel composite oxide.
  • a compound containing a constituent element of the coating layer 2 is dissolved in a solvent. It may be prepared and made liquid at room temperature, or it may be a compound containing a constituent element of the coating layer 2 having a low melting point and dissolved by a low temperature heat treatment.
  • the coating liquid may or may not contain Li.
  • the Li present in the particles 1 of the lithium nickel composite oxide in the coating step (S30) and / or the heat treatment step (S40) and the compound containing the above-mentioned constituent elements in the coating liquid Can react to form the coating layer 2.
  • the coating liquid is attached to the surface of the lithium nickel composite oxide particles 1.
  • the coating liquid may be attached, for example, by mixing the lithium nickel composite oxide particles 1 and the coating liquid (mixture preparation step).
  • a general mixer can be used for mixing.
  • drying may be performed after mixing (drying step).
  • the coating layer 2 having a more uniform and specific thickness, it is preferable to proceed with the mixture preparation step and the drying step in parallel, and it is preferable to use a rolling flow coating device.
  • the coating liquid causes shrinkage due to drying, a gap is formed in the coating layer 2 to be formed only by going through the mixture preparation step and the drying step once, respectively, and the particles 1 of the lithium nickel composite oxide and the solid electrolyte are formed. It may not be able to fully function to protect the contact. However, when the rolling flow coating device is used, the coating liquid is sprayed on the particles 1 of the lithium nickel composite oxide flowing by the air flow heated in the device, so that the mixture preparation step and the drying step are performed in parallel. This is preferable because a uniform coating layer without gaps can be obtained.
  • the drying step it is preferable to perform drying at a temperature that can sufficiently remove the solvent and the like of the coating agent.
  • the supply air temperature may be set to 80 ° C. or higher and lower than 300 ° C.
  • additional drying may be performed separately with a stationary dryer.
  • the atmosphere of the drying step is not particularly limited, but is inert such as air, nitrogen and argon gas supplied from a compressor equipped with a dryer in order to prevent the particles 1 of the lithium nickel composite oxide from reacting with the moisture in the atmosphere.
  • the atmosphere is preferable.
  • a heat treatment step (S40) may be provided in which the lithium nickel composite oxide particles 1 having the coating layer 2 formed on the surface are heat-treated at 300 ° C. or higher.
  • the bond between the coating layer 2 and the particles 1 of the lithium nickel composite oxide can be further strengthened.
  • the heat treatment conditions in the heat treatment step (S40) are not particularly limited, but it is preferable to perform the heat treatment in an oxygen-containing atmosphere at a temperature of 300 ° C. or higher and 600 ° C. or lower for 1 hour or longer and 5 hours or shorter.
  • the oxygen-containing atmosphere may be, for example, an air atmosphere.
  • the oxygen concentration in the oxygen-containing atmosphere in the heat treatment step (S40) is preferably equal to or higher than the oxygen concentration in the air atmosphere, that is, the oxygen concentration is preferably 20% by volume or more.
  • the oxygen-containing atmosphere may be an oxygen atmosphere, and the upper limit of the oxygen concentration in the oxygen-containing atmosphere is 100% by volume.
  • the heat treatment temperature is 300 ° C. or higher, impurities contained in the coating liquid can be further suppressed from remaining inside the positive electrode active material 10. Further, when the heat treatment temperature is 600 ° C. or lower, it is possible to suppress excessive diffusion of the components of the coating layer 2 and maintain the shape of the coating layer 2.
  • the heat treatment time is 1 hour or more, it is possible to further suppress the impurities contained in the coating liquid from remaining inside the positive electrode active material 10. Further, even when the heat treatment time is longer than 5 hours, no significant change is observed in the obtained positive electrode active material 10. Therefore, from the viewpoint of energy efficiency, the heat treatment time is preferably 5 hours or less.
  • the particles are cooled to room temperature to obtain a positive electrode active material having lithium nickel composite oxide particles 1 as a final product and a coating layer 2 on the surface thereof.
  • the positive electrode active material 10 may be produced by carrying out the coating step (S30). This is because the coating layer can be uniformly and firmly formed on the surface of the particles of the lithium nickel composite oxide even when the heat treatment step (S40) is not performed. Even if the heat treatment step is not performed, it is preferable to perform drying in order to reduce or remove the solvent and water content of the coating agent, if necessary.
  • All-solid-state lithium-ion secondary battery (hereinafter, also referred to as “all-solid-state battery”) according to the present embodiment includes a positive electrode, a negative electrode, and a solid electrolyte, and is described above.
  • the positive electrode contains a positive electrode active material.
  • the all-solid-state battery according to the present embodiment will be described for each component.
  • the embodiments described below are merely examples, and the all-solid-state battery can be implemented in various modifications and improvements based on the knowledge of those skilled in the art, including the following embodiments. Further, the all-solid-state battery is not particularly limited in its use.
  • the positive electrode can be formed by molding a positive electrode mixture.
  • the positive electrode is appropriately processed according to the battery used. For example, in order to increase the electrode density, a pressure compression process or the like by a press or the like can be performed.
  • the above-mentioned positive electrode mixture can be formed by mixing the above-mentioned positive electrode active material in powder form with a solid electrolyte.
  • the solid electrolyte is added to give the electrode proper ionic conductivity.
  • the material of the solid electrolyte is not particularly limited, but is, for example, a sulfide-based solid electrolyte such as Li 3 PS 4 , Li 7 P 3 S 11 , Li 10 GeP 2 S 12 , Li 7 La 3 Zr 2 O 12 , Li 0 .
  • Oxide-based solid electrolytes such as .34 La 0.51 TiO 2.94 and polymer-based electrolytes such as PEO can be used.
  • a binder or a conductive auxiliary agent can be added to the positive electrode mixture.
  • the binder plays a role of binding the positive electrode active material.
  • the binder used in the positive electrode mixture is not particularly limited, and for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylenepropylenediene rubber, styrene-butadiene, cellulose resin, and polyacrylic acid.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluororubber fluororubber
  • ethylenepropylenediene rubber styrene-butadiene
  • cellulose resin cellulose resin
  • polyacrylic acid polyacrylic acid
  • the conductive material is added to give appropriate conductivity to the electrode.
  • the material of the conductive material is not particularly limited, and for example, graphite such as natural graphite, artificial graphite and expanded graphite, and carbon black materials such as acetylene black and Ketjen black (registered trademark) can be used.
  • the mixing ratio of each substance in the positive electrode mixture is not particularly limited.
  • the content of the positive electrode active material of the positive electrode mixture can be 50 parts by mass or more and 90 parts by mass or less, and the content of the solid electrolyte can be 10 parts by mass or more and 50 parts by mass or less.
  • the method for producing the positive electrode is not limited to the above-mentioned example, and other methods may be used.
  • the negative electrode can be formed by molding a negative electrode mixture.
  • the negative electrode is formed by substantially the same method as the above-mentioned positive electrode, although the components constituting the negative electrode mixture and the composition thereof are different, and various treatments are performed as necessary in the same manner as the positive electrode.
  • the negative electrode mixture can be prepared by mixing the negative electrode active material and the solid electrolyte.
  • the negative electrode active material for example, an occlusion material capable of storing and desorbing lithium ions can be adopted.
  • the occluded substance is not particularly limited, but one or more selected from, for example, a calcined body of an organic compound such as natural graphite, artificial graphite, and a phenol resin, and a powdered body of a carbon substance such as coke can be used.
  • a sulfide electrolyte such as Li 3 PS 4 can be used as the solid electrolyte as in the case of the positive electrode.
  • the negative electrode may be a sheet-like member made of a substance containing a metal alloying with lithium such as metallic lithium and indium.
  • the solid electrolyte is a solid having Li + ion conductivity.
  • the solid electrolyte one selected from sulfides, oxides, polymers and the like can be used alone, or two or more thereof can be mixed and used.
  • the sulfide-based solid electrolyte is not particularly limited, and any sulfide-based solid electrolyte that contains sulfur (S) and has lithium ion conductivity and electron insulating properties can be used.
  • Examples of the sulfide-based solid electrolyte include Li 2 SP 2 S 5 , Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 .
  • the oxide-based solid electrolyte is not particularly limited, and can be used as long as it contains oxygen (O) and has lithium ion conductivity and electron insulation.
  • oxide-based solid electrolyte examples include lithium phosphate (Li 3 PO 4 ), Li 3 PO 4 NX, LiBO 2 NX, LiNbO 3 , LiTaO 3 , Li 2 SiO 3 , Li 4 SiO 4 ⁇ Li 3 PO 4 .
  • an electrolyte other than the above may be used, and for example, Li 3N, LiI, Li 3N - LiI - LiOH or the like may be used.
  • the polymer-based solid electrolyte is not particularly limited as long as it is a polymer compound exhibiting ionic conductivity, and for example, polyethylene oxide, polypropylene oxide, copolymers thereof, and the like can be used. Further, the organic solid electrolyte may contain a supporting salt (lithium salt). When a solid electrolyte is used, the solid electrolyte may be mixed in the positive electrode material in order to ensure contact between the electrolyte and the positive electrode active material.
  • the all-solid-state battery composed of the positive electrode, the negative electrode, and the solid electrolyte can have various shapes such as a coin shape and a laminated shape. Regardless of the shape, the positive electrode and the negative electrode can be laminated via the solid electrolyte. Then, the positive electrode current collector and the positive electrode terminal leading to the outside and the negative electrode current collector and the negative electrode terminal leading to the outside are connected by using a current collecting lead or the like, and sealed in a battery case. It can be an all-solid-state battery.
  • the all-solid-state battery according to the embodiment of the present invention using the above-mentioned positive electrode active material exhibits high capacity.
  • the positive electrode active material of the present embodiment is used as the positive electrode to form the test battery shown in FIG. 4, the current density is 0.2 mA / cm 2 , and the cutoff voltage is 4.3 V (vs. Li). ), And after a one-hour rest, the initial discharge capacity, which is the discharge capacity when the cutoff voltage is discharged to 2.5 V (vs. Li), is preferably 130 mAh / g or more.
  • Example 1 1. Production of Lithium-Nickel Composite Oxide Lithium-nickel composite oxide was produced by the following steps.
  • (A) Crystallization step The temperature in the tank was maintained at 50 ° C. while stirring with 10 L of pure water in a reaction tank having an internal volume of 60 L. At this time, the inside of the reaction vessel had a nitrogen atmosphere in which the oxygen concentration was 1% by volume or less. An appropriate amount of 25% by mass sodium hydroxide aqueous solution and 25% by mass ammonia water were added to the reaction vessel to bring the pH value based on the liquid temperature to 25 ° C to 12.8 and the ammonia concentration of the solution in the reaction vessel to 15 g / L. The initial aqueous solution was prepared so as to be.
  • the pH of the reaction aqueous solution in the reaction tank was improved until it reached 13.0 based on the liquid temperature of 25 ° C. This operation is intended to precipitate nickel ions that are complexed with ammonia and dissolved in the liquid phase on the hydroxide to obtain the desired chemical composition.
  • reaction aqueous solution was solid-liquid separated by a Buchner funnel, a filter can, and a vacuum pump vacuum filter. Further, the operation of dispersing the obtained solid phase in 20 L of pure water at 40 ° C. and solid-liquid separation was repeated twice to remove water-soluble impurities such as sodium sulfate from the nickel composite hydroxide.
  • the cake-like solid phase after solid-liquid separation after washing is dried in a stationary dryer at 120 ° C. for 24 hours in an air atmosphere, and then subjected to a flue with an opening of 100 ⁇ m to obtain a powdery nickel composite hydroxide. rice field.
  • (C) Mixing step Mitsuwa Chemicals so that the amount of substance of Nb in the nickel composite oxide is 0.1% of the total amount of substances of Ni, Co, and Al contained in the nickel composite oxide.
  • Niobic acid (Nb 2 O 3 ⁇ xH 2 O) powder manufactured by Co., Ltd. was added and weighed so that the amount of substance of Li was 103% of the total amount of substance of Ni, Co, Al and Nb.
  • Lithium monohydrate was added and mixed using a Turbler Shaker Mixer (manufactured by Dalton Co., Ltd., T2F) to obtain a lithium mixture.
  • (E) Particle size distribution The particle size distribution of the lithium nickel composite oxide was measured using a laser diffraction / scattering type particle size distribution measuring device (Microtrac HRA, manufactured by Nikkiso Co., Ltd.). From the results, it was confirmed that the volume-based average particle size D50 was 5.4 ⁇ m, and the variation index ((D90-D10) / MV) calculated from D10, D90, and MV was 0.44.
  • lithium nickel composite oxide 500 g was flowed into the chamber with air heated to 120 ° C. and a flow rate of 0.3 m 3 / h, and a coating liquid was applied to the lithium nickel composite oxide at 1.7 ml / min. Sprayed.
  • the lithium nickel composite oxide was recovered from the chamber and heat-treated at 400 ° C. for 10 hours using an atmosphere firing furnace (BM-50100M manufactured by Siliconit Co., Ltd.). Then, the mixture was cooled to room temperature to obtain particles (positive electrode active material) of a lithium nickel composite oxide having a coating layer (including Li and Ti).
  • test battery A battery having the structure shown in FIG. 4 (hereinafter referred to as “test battery”) was used for evaluating the capacity of the obtained positive electrode active material.
  • the test battery SBA includes a case having a negative electrode can NC and a positive electrode can PC, and a green compact cell C housed in the case.
  • the case has a negative electrode can NC that is hollow and has one end open, and a positive electrode can PC that is arranged at the opening of the negative electrode can NC. Further, a space for accommodating the green compact cell C is formed between the positive electrode can PC and the negative electrode can NC.
  • the positive electrode can PC is fixed to the negative electrode can NC, for example, with a thumbscrew SW. Further, the negative electrode can NC has a negative electrode terminal, and the positive electrode can PC has a positive electrode terminal.
  • the case also has an insulating sleeve ISV. The insulating sleeve ISV is fixed between the negative electrode can NC and the positive electrode can PC so as to maintain a non-contact state.
  • a pressure screw PSW is provided at one closed end of the negative electrode can NC. After fixing the positive electrode can PC to the negative electrode can NC, the pressure screw PSW is tightened toward the accommodation space of the powder cell C. By squeezing, the green compact cell C is held in a pressurized state through the hemispherical washer W. Further, a screw-in type plug P is provided at one end of the negative electrode can NC where the pressure screw PSW exists. An Oling OL is provided between the negative electrode can NC and the positive electrode can PC, and between the negative electrode can NC and the plug P, and the gap between the negative electrode can NC and the positive electrode can PC is sealed, and the inside of the case is sealed. Airtightness is maintained.
  • the green compact cell C is a pellet in which the positive electrode layer PL, the solid electrolyte layer SEL, and the negative electrode layer NL are laminated in this order.
  • the positive electrode layer PL comes into contact with the inner surface of the positive electrode can PC through the lower current collector LCC.
  • the negative electrode layer NL contacts the inner surface of the negative electrode can NC through the upper current collector UCC, the hemispherical washer W and the pressure screw PSW.
  • the lower current collector LCC, the powder compact cell C, and the upper current collector UCC are protected by the sleeve SV from electrical contact between the positive electrode layer PL and the negative electrode layer NL.
  • test battery SBA (Manufacturing of evaluation battery) The test battery SBA was prepared as follows.
  • the lower current collector LCC, the pellet with the positive electrode layer PL arranged downward, the indium (In) foil (negative electrode layer NL), and the upper current collector UCC are laminated in this order, pressurized with 9 kN, and the electrode (compactor).
  • Body cell C) was constructed.
  • the electrode (compact cell C) was sealed in the case, and the pressure screw was tightened with a torque of 6 to 7 Nm.
  • the test battery SBA was prepared in a glove box having an Ar atmosphere with a dew point controlled at ⁇ 80 ° C.
  • the initial discharge capacity is the current density with respect to the positive electrode after the open circuit voltage OCV (Open Circuit Voltage) is stabilized by leaving it for about 24 hours after manufacturing a test battery using an indium foil for the negative electrode.
  • OCV Open Circuit Voltage
  • the battery is charged to a cutoff voltage of 3.7 V (vs. Li-In) at 0.2 mA / cm 2 and discharged to a cutoff voltage of 1.9 V (vs. Li-In) after a one-hour rest. It was evaluated by measuring the discharge capacity (initial discharge capacity). The measurement result was 134 mAh / g.
  • Example 2 A coated lithium-nickel composite oxide was synthesized under the same conditions as in Example 1 except that the amount of Nb added in the lithium-nickel composite oxide synthesis step of Example 1 was 0.8%. The manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Example 3 A coated lithium-nickel composite oxide was synthesized under the same conditions as in Example 1 except that the amount of Nb added in the lithium-nickel composite oxide synthesis step of Example 1 was 1.2%. The manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Example 4 A coated lithium-nickel composite oxide was synthesized under the same conditions as in Example 1 except that the amount of Nb added in the lithium-nickel composite oxide synthesis step of Example 1 was set to 3%. The manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Example 5 The coated lithium nickel composite oxide was synthesized under the same conditions as in Example 2 except that the firing time in the lithium nickel composite oxide synthesis step of Example 2 was set to 12 hours.
  • the manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Example 6 The coated lithium nickel composite oxide was synthesized under the same conditions as in Example 3 except that the firing time in the lithium nickel composite oxide synthesis step of Example 3 was set to 12 hours.
  • the manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Example 7 The lithium nickel composite oxide obtained in Example 2 was coated with lithium niobate in the coating step and heat-treated under the following conditions, but the coated lithium nickel composite oxide was coated under the same conditions as in Example 2. Was synthesized. The manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • the lithium nickel composite oxide was recovered from the chamber and heat-treated at 350 ° C. for 1 hour under an atmospheric firing furnace (BM-50100M manufactured by Siliconit Co., Ltd.). Then, the mixture was cooled to room temperature to obtain particles (positive electrode active material) of a lithium nickel composite oxide having a coating layer (including Li and Nb).
  • Example 8 A coated lithium-nickel composite oxide was synthesized under the same conditions as in Example 6 except that the proportion a of Li in the lithium-nickel composite oxide synthesis step of Example 6 was set to 1.00.
  • the manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Example 9 A coated lithium-nickel composite oxide was synthesized under the same conditions as in Example 6 except that the proportion a of Li in the lithium-nickel composite oxide synthesis step of Example 6 was 1.09. The manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Example 10 Covered under the same conditions as in Example 6 except that the proportion of Ni (1-xy) in the lithium-nickel composite oxide synthesis step of Example 6 was 0.85 and the proportion of Co (x 1 ) was 0.116. A lithium nickel composite oxide was synthesized. The manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Example 11 Covered under the same conditions as in Example 6 except that the proportion of Ni (1-xy) in the lithium-nickel composite oxide synthesis step of Example 6 was 0.744 and the proportion of Co (x 1 ) was 0.222. A lithium nickel composite oxide was synthesized. The manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Example 1 A coated lithium-nickel composite oxide was synthesized under the same conditions as in Example 1 except that Nb was not added in the lithium-nickel composite oxide synthesis step of Example 1. The manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Comparative Example 2 A coated lithium-nickel composite oxide was synthesized under the same conditions as in Comparative Example 1 except that the firing temperature in the lithium-nickel composite oxide synthesis step of Comparative Example 1 was set to 735 ° C. The manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Example 3 A coated lithium-nickel composite oxide was synthesized under the same conditions as in Example 1 except that the amount of Nb added in the lithium-nickel composite oxide synthesis step of Example 1 was 5 atomic%. The manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Example 4 The coated lithium nickel composite oxide was synthesized under the same conditions as in Example 2 except that the particles of the lithium nickel composite oxide of Example 2 were not coated. The manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • Example 5 A coated lithium-nickel composite oxide was synthesized under the same conditions as in Example 6 except that the proportion a of Li in the lithium-nickel composite oxide synthesis step of Example 6 was 1.18.
  • the manufacturing conditions are shown in Table 1 and the results are shown in Table 2.
  • the discharge capacity in the all-solid-state battery was significantly improved as compared with the positive electrode active material of Comparative Example 1 containing no Nb.
  • the discharge capacity was significantly improved.
  • the characteristics of the positive electrode active material such as crystallite diameter and specific surface area
  • the battery characteristics are also about the same, and it has been shown that a positive electrode active material having high battery characteristics can be obtained even if the firing time is 5 hours. Further, it was shown that even in Example 7 in which the coating layer contains Nb, the coating layer has a high discharge capacity as in Examples 1 to 6 in which Ti is contained.
  • Example 8 in which the Li ratio (a) is 1.00 and Example 9 in which the Li ratio (a) is 1.09, the discharge is as high as that in Example 6 (a: 1.04). It was shown to have capacity. Further, Example 10 (Ni ratio: 0.850) and Example 11 (Ni ratio: Ni) have different Ni ratios (1-xy) from those of Example 6 (Ni ratio: 0.806). From 0.744), it is clear that the higher the proportion of Ni, the higher the discharge capacity.
  • a positive electrode active material that can be suitably used for a positive electrode of an all-solid-state lithium ion secondary battery that requires a high battery capacity, and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

全固体電池の正極活物質として用いた場合、より高い電池容量を有する正極活物質を提供することを目的とする。 リチウムニッケル複合酸化物の粒子と、粒子の表面を被覆する被覆層と、を有する全固体リチウムイオン二次電池用正極活物質であって、リチウムニッケル複合酸化物の粒子は、空間群R-3mに属する結晶構造を有し、少なくともLi、Ni、元素MおよびNbを含み、各元素の物質量比がLi:Ni:M:Nb=a:(1-x-y):x:y(0.98≦a≦1.15、0<x≦0.5、0<y≦0.03、0<x+y≦0.5、元素MはCo、Al、Mn、Zr、Si、Zn及びTiからなる群より選択される少なくとも一種)で表され、結晶子径が140nm以下であり、溶出リチウムイオン量が0.30質量%以上1.00質量%以下であり、被覆層は、Liと、Al、Si、Ti、V、Ga、Ge、Zr、Nb、Mo、Ta及びWからなる群から選択される少なくとも1種の元素と、を含む複合酸化物である、全固体リチウムイオン二次電池用正極活物質。

Description

全固体リチウムイオン二次電池用正極活物質とその製造方法
 本発明は、全固体リチウムイオン二次電池用正極活物質とその製造方法に関する。
 近年、環境意識の高まりに伴いガソリン車からハイブリッド車や電気自動車へのシフトが進んでおり、特に電気自動車の普及に必要不可欠な、高いエネルギーを有する小型で軽量な二次電池の開発が強く望まれている。このような二次電池として、リチウムイオン二次電池がある。
 現在、一般的なリチウムイオン二次電池は、正極活物質にLiCoO、LiNiO、LiMn等のリチウム遷移金属複合酸化物が、負極活物質にリチウム金属、リチウム合金、金属酸化物、カーボン等が用いられている。
また、電解質として非水系電解液を用いる場合、例えば、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどの有機溶媒にLiClO、LiPFなどのLi塩を支持塩として溶解させた電解液が用いられている。
 リチウムイオン二次電池の構成要素の中で、特に非水系電解液が、耐熱性、電位窓などの化学的特性から、高速充電や熱安定性、寿命といった電池性能を制限する要因となっている。そこで、電解質として、非水系電解液に替わり固体電解質を用いることで、上記の電池性能を向上させた全固体リチウムイオン二次電池(以下、「全固体電池」ともいう)について、現在、研究開発が盛んに行われている。
 例えば、特許文献1では、固体電解質の中でも、硫化物固体電解質は充放電時のリチウムイオンの伝導性が高く、全固体電池に用いるのに好ましいことが記載されている。しかし、例えば非特許文献1に開示されるように、硫化物固体電解質と酸化物である正極活物質とが接触すると、充放電中に固体電解質と正極活物質との界面において反応が起こり、界面に高抵抗相が生成され全固体電池の作動を阻害してしまう。これは、接触界面において、電気化学ポテンシャルの違いにより伝導イオン濃度が変化したことにより空間電荷層が形成されるためであり、バルクと異なるイオン伝導度となり抵抗が高くなる。
 そこで、例えば、特許文献2では、固体電解質と正極活物質(酸化物)との接触を防ぎ、高抵抗相の生成を抑制するために、正極活物質の表面にLiNbOからなる被覆層を設ける技術が提案されている。
特開2014-056661号公報 特開2010-170715号公報 特開2011-116580号公報
Narumi Ohta et al., "LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries", Electrochemistry Communications 9 (2007) 1486-1490
 ところで、リチウムイオン二次電池の高エネルギー密度化には、充放電容量が大きいLiNiO、LiNi0.80Co0.15Al0.05、LiNi0.6Co0.2Mn0.2等の高いNi比率を有する正極活物質を用いることが好ましい。そこで、発明者らは、全固体リチウムイオン二次電池への、高いNi比率を有する正極活物質の適用可能性を検討した。その結果、本発明者らは、固体電解質を用いた場合、セルを直列に接続した電池の設計が可能になるため、非水系電解液を用いた場合と比較して、電池全体でのエネルギー密度が向上するにも関わらず、高いNi比率を有する正極活物質から得られるエネルギー密度が、期待されるエネルギー密度又は電池容量に達しないことを見出した。
 本発明は、上記問題に鑑みて、全固体電池の正極活物質として、高いNi比率を有する正極活物質を用いた場合、より高い電池容量を有する正極活物質を提供することを目的とする。
 本発明の第1の態様では、リチウムニッケル複合酸化物の粒子と、粒子の表面を被覆する被覆層と、を有する全固体リチウムイオン二次電池用正極活物質であって、リチウムニッケル複合酸化物の粒子は、空間群R-3mに属する結晶構造を有し、少なくともLi、Ni、元素MおよびNbを含み、各元素の物質量比がLi:Ni:M:Nb=a:(1-x-y):x:y(0.98≦a≦1.15、0<x≦0.5、0<y≦0.03、0<x+y≦0.5、元素MはCo、Al、Mn、Zr、Si、Zn及びTiからなる群より選択される少なくとも一種)で表され、XRDで測定される(003)面に帰属される回折ピークからシェラー法により算出される結晶子径が140nm以下であり、中和滴定により求められる溶出リチウムイオン量が、リチウムニッケル複合酸化物の粒子の全量に対して、0.30質量%以上1.00質量%以下であり、被覆層は、Liと、Al、Si、Ti、V、Ga、Ge、Zr、Nb、Mo、Ta及びWからなる群から選択される少なくとも1種の元素と、を含む複合酸化物である、全固体リチウムイオン二次電池用正極活物質が提供される。
 また、リチウムニッケル複合酸化物の粒子は、複数の一次粒子が凝集して構成された二次粒子を含み、二次粒子中に一次粒子の存在しない空隙部分を複数有する多孔質構造を有し、窒素吸着BET法により測定した比表面積が0.3m/g以上2.0m/g以下であることが好ましい。また、リチウムニッケル複合酸化物の粒子に含まれるニオブの少なくとも一部は、一次粒子界面に偏析することが好ましい。また、リチウムニッケル複合酸化物の粒子は、粒度分布の積算体積分布曲線において積算体積率50%に相当する粒径(D50)が7μm以下であることが好ましい。また、被覆層の平均厚さは、1nm以上15nm以下であることが好ましい。
 本発明の第2の態様では、ニッケル複合化合物と、ニオブ化合物と、リチウム化合物とを混合して混合物を得る混合工程と、混合物を焼成してリチウムニッケル複合酸化物の粒子を得る焼成工程と、リチウムニッケル複合酸化物の粒子の表面に、Al、Si、Ti、V、Ga、Ge、Zr、Nb、Mo、Ta及びWからなる群から選択される少なくとも1種の元素を含む被覆液を付着させ、被覆層を形成する被覆工程と、を備える、上記の全固体リチウムイオン二次電池用正極活物質の製造方法が提供される。
 また、ニッケル複合化合物は、ニッケル複合酸化物を含み、晶析反応により調整されたニッケル複合水酸化物を酸化焙焼してニッケル複合酸化物を得る酸化焙焼工程を備えることが好ましい。また、被覆工程の後に、被覆層が表面に形成されたリチウムニッケル複合酸化物の粒子を、300℃以上で熱処理する熱処理工程を備えることが好ましい。
 本発明の正極活物質は、全固体電池の正極活物質として用いた場合、電池容量が向上する。また、本発明の製造方法は、この正極活物質を生産性高く製造することができる。
図1は、本実施形態に係る正極活物質の一例を示した模式図である。 図2は、本実施形態に係る正極活物質の製造方法の一例を示した図である。 図3は、本実施形態に係るニッケル複合化合物の製造方法の一例を示した図である。 電池評価に用いた評価用電池の断面構成の説明図である。
 以下、本発明の一実施形態について図面を参照して説明する。なお、図面においては、各構成をわかりやすくするために、一部を強調して、あるいは一部を簡略化して表しており、実際の構造または形状、縮尺等が異なっている場合がある。また、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
1.全固体リチウムイオン二次電池用正極活物質
 まず、本実施形態に係る全固体リチウムイオン二次電池用正極活物質(以下、「正極活物質」ともいう。)の一構成例について説明する。
 図1は、本実施形態に係る正極活物質の一例を模式的に示す図である。図1に示すように、正極活物質10は、リチウムニッケル複合酸化物の粒子1と、この粒子1の表面を被覆する被覆層2と、を有する。以下、各構成要素について説明する。
(1)リチウムニッケル複合酸化物の粒子
 リチウムニッケル複合酸化物の粒子1は、空間群R-3mに属する結晶構造を有し、少なくともリチウム(Li)、ニッケル(Ni)、元素M、及びNbを含む複合酸化物である。
(組成)
 リチウムニッケル複合酸化物の粒子1に含まれる各元素の物質量比(モル比)をLi:Ni:M:Nb=a:(1-x-y):x:yで表した場合、0.98≦a≦1.15、0<x≦0.5、0<y≦0.03、0<x+y≦0.5を満たす。また、上記物質量比において、0.98≦a≦1.15、0<x≦0.3、0<y≦0.02、0<x+y≦0.4を満たすことが好ましい。
 上記物質量比においてLiの含有比率を示すaは、0.98≦a≦1.15であり、0.98≦a≦1.10であってもよく、0.98≦a≦1.06であってもよく、0.98≦a≦1.03であってもよい。aが0.98未満である場合、正極活物質中からLiが欠乏し電池材料としての容量低下を招きやすい。aが1.15を超える場合、リチウムニッケル複合酸化物の粒子1の結晶構造が過剰に成長し、一次粒子が粗大となり粒子1の割れが発生しやすくなるため耐久性を損ないやすい。
 上記物質量比においてNiの含有比率を示す(1-x-y)は、0.5以上1.0未満である。また、Niの含有比率の下限を含む範囲は、好ましくは0.6以上であり、0.7以上であってもよく、0.8以上であってもよい。(1-x-y)の含有比率が高いほど、充電に必要な電圧が低くなり、結果的に電池容量が高くなる。(1-x-y)が0.5未満である場合、電池容量が低くなる。
 上記物質量比において、元素Mは、Co、Al、Mn、Zr、Si、Zn及びTiからなる群より選択される少なくとも一種であることが好ましい。また、元素Mは、コバルト(Co)、アルミニウム(Al)、マンガン(Mn)より選択される少なくとも1種の元素を含むことが好ましい。元素Mは、正極活物質10を用いて構成される二次電池の用途や要求される性能に応じて適宜選択することができる。
 上記物質量比において元素Mの含有比率を示すxは、0<x≦0.5であり、好ましくは0<x≦0.3であり、0<x≦0.2であってもよい。例えば、元素MがCoを含み、Coを上記範囲内で含む場合、高い電池容量を有し、かつ、サイクル特性に優れる。また、元素Mは、Co及びAlを含んでもよい。Coの範囲は、例えば、0<x≦0.3であってもよく、0<x≦0.2であってもよい。Alの範囲は、例えば0<x≦0.1であってもよく、0<x≦0.07であってもよい。
 上記物質量比においてNbの含有比率を示すyは、0<y≦0.03であり、好ましくは0<y≦0.02である。yが上記範囲である場合、全固体電池において、高い電池容量を有することができる。yが0.03を超える場合、活性の低いLiNbを生成し電池容量の低下を引き起こすことがある。また、例えば、yが0.001≦y≦0.01である場合、より高い電池容量を有することができる。
 また、リチウムニッケル複合酸化物の粒子1に含まれるニオブは、一次粒子の内部に固溶してもよく、一次粒子の界面に存在してもよい。ニオブの少なくとも一部は、一次粒子の界面に偏析することが好ましい。この理由の詳細は不明であるが、例えば、ニオブが前記一次粒子界面に偏析することにより、二次粒子内でのLiイオンの移動の障壁を低減させて、電池容量を向上させる効果があると想定される。また、ニオブの少なくとも一部が一次粒子の界面に偏析することにより、後述する溶出リチウム量を特定の範囲に調整することが容易となると考えられる。
(結晶構造)
 リチウムニッケル複合酸化物の粒子1は、空間群R-3mに属する結晶構造を有する。リチウムニッケル複合酸化物の粒子1が空間群R-3mに属する結晶構造を有する場合、二次電池において、内部抵抗の上昇を抑制することができる。
 リチウムニッケル複合酸化物の粒子1の結晶構造は、粉末X線回折(XRD)測定により確認することができる。すなわち、リチウムニッケル複合酸化物の粒子1の粉末X線回折(XRD)測定を行った場合に得られる回折パターンから、「R-3m」構造の層状岩塩型結晶構造(空間群R-3mに属する結晶構造)に帰属されるピークが検出されることが好ましい。特に、上記回折パターンから、「R-3m」構造の層状岩塩型結晶構造に帰属されるピークのみが検出されることがより好ましい。
 なお、リチウムニッケル複合酸化物の粒子1は、「R-3m」構造の結晶構造を有するリチウムニッケル複合酸化物単相であってもよいが、単相でなくてもよい。単層でなく、他の化合物(例、不純物等)が混入する場合、「R-3m」構造の層状岩塩型構造以外の異相ピークの強度は、「R-3m」構造の層状岩塩型構造に帰属されるピーク強度を上回らないことが好ましい。
(結晶子径)
 リチウムニッケル複合酸化物の粒子1は、結晶子径が140nm以下であることが好ましく、40nm以上140nm以下であることがより好ましい。また、結晶子径の上限を含む範囲は、130nm以下であってもよい。また、結晶子径の下限を含む範囲は、50nm以上であってもよい。なお、結晶子径は、上記のXRD回折パターンの(003)に帰属するピークを用い、シェラー法により算出することができる。リチウムニッケル複合酸化物の粒子1の結晶子径が140nmを超える場合、結晶内の固体内拡散距離が長くなり電池容量が低下することがある。また、リチウムニッケル複合酸化物の粒子1の結晶子径が40nm未満である場合、結晶構造が不安定になり、電池容量が低下しやすい。
(溶出リチウムイオン量)
 リチウムニッケル複合酸化物の粒子1は、粒子1の全量に対して、中和滴定により求められる溶出リチウムイオン量が0.30質量%以上1.00質量%以下であり、0.30質量%以上0.70質量%以下であることが好ましい。なお、溶出リチウムイオン量は、リチウムニッケル複合酸化物の粒子1を水に分散させた際に、水に溶出するリチウムイオン量を、塩酸を用いた中和滴定法により求めることができる。中和滴定法としては、Warder法や、Winkler法を用いることができる。
 リチウムニッケル複合酸化物の粒子1の溶出リチウムイオン量が0.30質量%未満の場合、電池容量が低下することがある。この理由の詳細は不明であるが、例えば、リチウムニッケル複合酸化物の粒子1の表面に特定量の溶出リチウムイオンが含まれることにより、全固体電池中でリチウムニッケル複合酸化物の粒子1と固体電解質との直接的な接触を抑制し、高抵抗相の生成を抑制することが理由の一つと考えられる。
 なお、リチウムニッケル複合酸化物の粒子1がニオブを含む場合、ニオブを含まないリチウムニッケル複合酸化物と比較して、溶出リチウムイオン量が増加する。よって、例えば、後述する製造方法を用いて、ニオブ含有量を上記範囲とし、かつ、溶出リチウム量を0.3質量%以上となるように調整することにより、高い放電容量を有する正極活物質を得ることができる。ただし、リチウムニッケル複合酸化物の粒子1の溶出リチウムイオン量が1.00質量%を超えた場合、放電容量が低下する。
(結晶子径と溶出リチウムイオン量)
 さらに、リチウムニッケル複合酸化物の粒子1は、結晶子径が140nm以下であり、かつ、溶出リチウムイオン量が0.30質量%以上であることが好ましい。
 すなわち、リチウムニッケル複合酸化物の粒子1は、結晶子径が140nm以下であっても、溶出リチウムイオン量が0.30質量%未満である場合、電池容量が低下することがある。この理由詳細は不明であるが、例えば、以下のように推測される。
 リチウムニッケル複合酸化物の粒子1は、複数の一次粒子が凝集して構成された二次粒子を含む。リチウムニッケル複合酸化物の粒子1の結晶子径は、二次粒子を構成する一次粒子の大きさと正の相関にあり、結晶子径の小さい程、一次粒子同士の粒子界面が多く存在すると考えられる。また、溶出リチウムイオンは主に、一次粒子と一次粒子との粒子界面に存在している。よって、結晶子径が小さく、一次粒子の界面が多く存在する場合、一次粒子の界面(表面)に存在する溶出リチウムイオンが減少しすぎると、一次粒子の界面に空隙ができる。一次粒子の界面に空隙が多く存在する場合、全固体電池の電極作製過程で正極活物質が割れやすくなり、リチウムニッケル複合酸化物の粒子と固体電解質との接触界面が増加する。そして、この増加した接触界面で起こる副反応により、生成する相が電解質及び正極活物質の電荷の授受を妨害するため、電池の抵抗が高くなり電池容量が減少すると考えられる。
 一方、リチウムニッケル複合酸化物の粒子1の結晶子径が140nmを超える場合、溶出リチウムイオン量が0.30質量%以上であっても、電池容量は低下するので好ましくない。これは、一次粒子が粗大化することにより、一次粒子間の粒界が減少するため、溶出リチウムイオンが、二次粒子の表面に塊状に点在するようになり、この溶出リチウムイオンの存在自体が抵抗相となるためと考えられる。なお、結晶子径と溶出リチウム量は、例えば、後述する正極活物質の製造方法を用いることにより、上記範囲内に調整することができる。
(粒子構造)
 リチウムニッケル複合酸化物の粒子1は、複数の一次粒子が凝集して構成された二次粒子を含む。また、リチウムニッケル複合酸化物の粒子1は、単独の一次粒子を含んでもよく、単独の一次粒子と二次粒子との混合物であってもよい。
 走査電子顕微鏡(SEM)や透過電子顕微鏡(TEM)などで観察した場合に、二次粒子の平均粒径が3.0μm以上7.0μm以下であることが好ましい。また、この二次粒子は、粒径が0.1μm以上2.0μm以下の一次粒子が多数凝集して形成されることが好ましい。また、単独の一次粒子を含む場合は、一次粒子は1.0μm以上7.0μm以下の粒径を有することが好ましい。なお、それぞれの粒子の平均粒径は、例えば、20個以上の粒子の面積円相当径の平均を算出して得ることができる。
(平均粒径D50)
 リチウムニッケル複合酸化物の粒子1は、粒度分布の積算体積分布曲線において積算体積率50%に相当する粒径(D50、以下、「平均粒径D50」ともいう。)が7μm以下であることが好ましく、2μm以上7μm以下であることがより好ましく、3μm以上7μm以下であることがさらに好ましい。なお、平均粒径(D50)は、レーザー光回折散乱式の粒度分布計で計測することができる。
 リチウムニッケル複合酸化物の粒子1の平均粒径D50が7μm以下である場合、正極活物質10を正極に用いた二次電池では電池容量当たりの電池容量を十分に大きくすることができ、かつ、熱安定性、高出力等の優れた電池特性を得ることができる。一方、平均粒径D50が2μm以下の場合は、被覆層2を付与する際に凝集しやすくなるため、好ましくない。
(粒度分布の広がり)
 リチウムニッケル複合酸化物の粒子1の粒度分布の広がりを示す指標である[(d90-d10)/体積平均粒径Mv]は、特に限定されないが、粒子径を均一化するという観点から、0.7以下であってもよく、0.6以下であってもよく、0.55以下であってもよい。粒子径が比較的に均一である場合、被覆層2を、リチウムニッケル複合酸化物の粒子1の表面に均一に被覆することが容易となり、二次電池において良好な出力特性を有することができる。なお、[(d90-d10)/体積平均粒径Mv]の下限は特に限定されないが、例えば、0.3以上である。また、[(d90-d10)/体積平均粒径Mv]は、充填性の観点から、0.7以上であってもよく、後述する正極活物質の製造方法を用いることにより、比較的均一に被覆層2を被覆することができる。
 なお、d10は、各粒径における粒子数を粒径の小さい側から累積し、その累積体積が全粒子の合計体積の10%となる粒径を意味し、d90は、同様に粒子数を累積し、その累積体積が全粒子の合計体積の90%となる粒径を意味する。また、d10、d90および体積平均粒径Mvは、平均粒径D50と同様に、レーザー光回折散乱式粒度分析計で測定した体積積算値から求めることができる。
(比表面積)
 リチウムニッケル複合酸化物の粒子1の比表面積は、特に限定されず、例えば、0.3m/g以上2.0m/g以下であってもよく、0.3m/g以上1.0m/g以下であってもよい。比表面積が上記範囲である場合、出力特性が良好である。なお、比表面積は、窒素吸着BET法により測定することができる。
(2)被覆層
 正極活物質10は、リチウムニッケル複合酸化物の粒子1の表面に被覆層2を備える。粒子1の表面に被覆層2を有することにより、正極活物質10を含む正極を備えた二次電池において、正極活物質10と固体電解質との相互反応を抑制できる。
 被覆層2は、リチウム(Li)と、Al、Si、Ti、V、Ga、Ge、Zr、Nb、Mo、Ta、及び、Wからなる群から選ばれる1種以上の元素と、を含む複合酸化物である。なお、リチウム(Li)と酸素(O)を除く被覆層2の構成元素は、1種類であってもよく、2種類以上であってもよい。被覆層2は、例えば、LiとTiとから構成される複合酸化物であってもよく、LiとNbとから構成される複合酸化物であってもよい。
(被覆層の構成元素の含有量)
 被覆層2の被覆量は特に限定されないが、被覆されるリチウムニッケル複合酸化物の粒子1の比表面積(m/g)に応じて、被覆量を調整することができる。被覆層2は、例えば、リチウムニッケル複合酸化物の粒子1の表面積1m当り、好ましくは30μmol以上600μmol以下、より好ましくは50μmol以上400μmol以下の割合で被覆層2の構成元素(Li及びOを除く)を含有することがより好ましい。
 リチウムニッケル複合酸化物の粒子1の表面積1m当りの被覆層2の構成元素(Li及びOを除く)の含有量が30μmol以上である場合、リチウムニッケル複合酸化物の粒子1の表面全体に被覆層2を均一に配置することができる。
 また、被覆層2を設けることでリチウムニッケル複合酸化物の粒子1と固体電解質との反応を抑制することができるが、同時に二次電池の内部抵抗が増加する恐れもある。リチウムニッケル複合酸化物の粒子1の表面積1m当りの被覆層2の構成元素(Li及びOを除く)の含有量が600μmol以下である場合、被覆層2がリチウムニッケル複合酸化物の粒子1へのリチウムのインターカレーション/デインターカレーションの反応の障害になることを抑制し、内部抵抗を低減することができる。
 被覆層2において、被覆層2の構成元素(Li及びOを除く)の含有量の評価及び算出方法は特に限定されるものではないが、例えば以下のように求めることができる。
 まず、正極活物質1g中の被覆層2の構成元素(Li及びOを除く)の含有量を化学分析等の方法で測定する。化学分析の方法としては、ICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分光法などにより測定を行う。
 一方、被覆層2を被覆する前のリチウムニッケル複合酸化物の粒子1の比表面積を窒素吸着BET法等により測定する。
 次いで、正極活物質1g中の被覆層2の構成元素(Li及びOを除く)の含有量を、リチウムニッケル複合酸化物の粒子1の比表面積(m/g)で除することにより、リチウムニッケル複合酸化物の粒子1の表面積1m当りの被覆層2の構成元素(Li及びOを除く)の含有量を求めることができる。
 なお、リチウムニッケル複合酸化物の粒子1が被覆層2の構成元素(Li及びOを除く)を含有する場合、被覆前後の被覆層2の構成元素(Li及びOを除く)の含有量の差を、被覆に用いられた被覆層2の構成元素(Li及びOを除く)の含有量として、用いることができる。
(被覆層の平均厚さ)
 被覆層の平均厚さは、例えば、2nm以上20nm以下であることが好ましく、2nm以上15nm以下であることがより好ましく、5nm以上15nm以下であることがさらに好ましい。
 なお、被覆層2の平均厚さは、走査電子顕微鏡(SEM)や透過電子顕微鏡(TEM)などで観察、又は、これらに付帯のしたエネルギー分散型X線分光器(EDS)や電子エネルギー損失分光法(EELS)などの分光器で分析して、リチウムニッケル複合酸化物の粒子1の表面に均一に形成された層を測定して算出することができる。なお、測定部位により被覆層2の厚みにばらつきがある場合、被覆層2の厚みは、複数部位を測定した際の平均値をいう。
(被覆層の配置)
 また、被覆層2は、リチウムニッケル複合酸化物の粒子1の表面に隣接して存在することが好ましい。被覆層2が粒子1の表面に隣接して存在するか否かは、被覆層2の構成元素を含む化合物が、リチウムニッケル複合酸化物の粒子1の表面から遊離して存在するか否かで判断できる。被覆層2がリチウムニッケル複合酸化物の粒子1の表面から遊離する場合は、電気化学的に電池容量には寄与しないので、重量当たりの電池容量を下げる要因となる。
 なお、被覆層2とリチウムニッケル複合酸化物の粒子1の表面とは明確な境界線を有していなくてもよい。例えば、被覆前のリチウムニッケル複合酸化物の粒子1が被覆層2の構成元素(Li及びOを除く)を含有しない場合、被覆層2とは、被覆層2の構成元素(Li及びOを除く)が検出される領域をいい、被覆層2の構成元素(Li及びOを除く)と、リチウムニッケル複合酸化物の粒子1を構成する元素とが両方検出される領域を含んでもよい。また、被覆前のリチウムニッケル複合酸化物の粒子1が被覆層2の構成元素(Li及びOを除く)を含有する場合、正極活物質10を構成する粒子の表面側の領域であって、リチウムニッケル複合酸化物の粒子1の中心部分よりも、被覆層2の構成元素(Li及びOを除く)の濃度が高い領域(部位)のことを指す。
 また、被覆層2の構成元素(Li及びOを除く)は、部分的にリチウムニッケル複合酸化物の粒子の表面から内部に固溶していてもよい。例えば、被覆工程(S30)後に熱処理工程(S40)を行い、その際の条件により、被覆層の被覆層構成元素をリチウムニッケル複合酸化物中に拡散させることができる。
 例えば、被覆層2にTi及び/又はNbが含まれる場合、Ti及び/又はNbがリチウムニッケル複合酸化物の粒子1の表面から内部に固溶することで、被覆層2は、単に、固体電解質とリチウムニッケル複合酸化物の粒子1とが直接接触することを防ぎ、反応の機会を減少させるだけでなく、リチウムニッケル複合酸化物の粒子1の表層と、固体電解質との反応性を低下させる効果を生じる。なお、正極活物質10において、サイクル特性の向上効果を充分に発揮できるように、固溶の程度については調整することが好ましい。
2.全固体リチウムイオン二次電池用正極活物質の製造方法
 次に、本実施形態に係る全固体リチウムイオン二次電池用正極活物質(以下、「正極活物質」ともいう。)の製造方法について説明する。本実施形態の製造方法を用いることにより、上記の正極活物質10を生産性高く製造することができる。
 図2、図3は、本実施形態に係る正極活物質の製造方法の一例を示した図である。本実施形態に係る正極活物質の製造方法は、図2に示すように、ニッケル複合化合物と、ニオブ化合物と、リチウム化合物とを混合して混合物を得る混合工程(S10)と、混合物を焼成してリチウムニッケル複合酸化物の粒子を得る焼成工程(S20)と、リチウムニッケル複合酸化物の粒子の表面に被覆液を付着させて、被覆層を形成する被覆工程(S30)と、を備える。さらに、被覆工程(S30)の後に、表面に被覆層を形成したリチウムニッケル複合酸化物の粒子を、300℃以上で熱処理する熱処理工程(S40)を備えてもよい。
 また、ニッケル複合化合物は、ニッケル複合化合物は、晶析反応により調整されたニッケル複合水酸化物を酸化焙焼して得られるニッケル複合酸化物であってもよい。例えば、ニッケル複合化合物は、図3に示すように、晶析工程(S1)と、酸化焙焼工程(S2とを備える方法により製造することができる。以下、工程ごとに詳細に説明する。なお、以下の説明は、製造方法の一例であって、製造方法を限定するものではない。
(晶析工程:S1)
 晶析工程(S1)では、リチウムニッケル複合酸化物の前駆体であるニッケル複合水酸化物を晶析反応により調製する。
 例えば、水溶性の各元素の化合物(金属化合物)を用いて、各元素の物質量比が、目的とするリチウムニッケル複合酸化物の粒子に含まれる各元素の物質量比に等しくなるように、原料水溶液を作製し、作製した原料水溶液と、アルカリ金属水溶液およびアンモニウムイオン供給体とを共に反応槽に供給し、中和晶析反応させて、ニッケル複合水酸化物を得る。
 各元素の原料は、例えば、同時に水に溶解させ混合水溶液として、原料水溶液を製造してもよい。また、各元素の原料毎に個別の水溶液を調整して、個別の原料水溶液として作製してもよい。なお、原料水溶液を混合水溶液として作製すると不都合がある場合は、原料毎に個別の原料水溶液を調整することが好ましい。例えば、各原料の水溶液の液性が、酸性および塩基性に分かれる場合、原料毎に個別の原料水溶液を調整することが好ましい。
 各元素の原料として用いる金属化合物は水溶性であれば良く、硫酸塩、塩化物、硝酸塩などを用いることができるが、コストの観点から安価な硫酸塩が好ましい。なお、元素Mなどで水溶性の好適な金属化合物が見出されない場合は、原料の混合水溶液には加えずに後述する酸化焙焼工程(S2)や、混合工程(S10)で添加しても良い。
 アルカリ金属水溶液は、特に限定されるものではないが、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、及び、炭酸カリウムからなる群から選択された1種類以上を好ましく用いることができる。
 アンモニウムイオン供給体は、特に限定されるものではないが、アンモニア水、炭酸アンモニウム水溶液、塩化アンモニウム水溶液、硫酸アンモニウム水溶液から選択された1種類以上を好ましく用いることができる。
 反応槽の形状は、特に限定されるものではないが、内部に邪魔板を備えた円筒型の容器に、撹拌機および温度調節器を備えたものが好ましい。撹拌機はモーター、シャフトおよび攪拌羽根を備えたものが好ましい。温度調節器は円筒型容器の外側に熱媒を循環させて、円筒型の容器を加熱また冷却する形式のものが好ましい。
 反応槽における原料水溶液、アルカリ金属水溶液およびアンモニウムイオン供給体との中和晶析反応では、pHおよびアンモニア濃度が一定値に維持されることが好ましい。
 反応槽内の水溶液のpHは、液温25℃基準で11.0以上12.2以下となるように調整することが好ましい。例えば、ニッケル複合水酸化物を調製する際、用いた原料水溶液に含まれる金属化合物を構成するアニオンに起因する不純物がニッケル複合水酸化物に混入することがある。しかしながら、初期水溶液(反応槽内)のpHの値を11.0以上とすることで、アニオンに起因する不純物の混入を抑制することができる。また、初期水溶液のpHを12.2以下とすることで、得られるニッケル複合水酸化物が微粒子化することを抑制し、充放電反応に適した粒径の複合水酸化物を得ることができる。
 反応槽内の水溶液のアンモニア濃度は、5g/L以上、20g/L以下に調整されることが好ましい。アンモニア濃度を5g/L以上とする場合、原料水溶液(混合水溶液)中のNiがアンモニウム錯体となり、水酸化物として液相から固相に析出速度が低下するため、得られるニッケル複合水酸化物の粒子の球形度が上がる。一方、アンモニア濃度を20g/L以下とする場合、アンモニウム錯体を形成するニッケルの溶解度が過度に上昇することを抑制し、得られるニッケル複合水酸化物の物質量比をより確実に目標の物質量比とすることができる。またアンモニアの過剰な消費を抑制することができ工業的に好ましい。
 反応槽内の雰囲気は非酸化性雰囲気、例えば酸素濃度が1容量%以下の雰囲気にすることが好ましい。反応槽内の雰囲気を非酸化性雰囲気とした場合、原料化合物等が酸化されることを抑制できる。例えば、酸化されたコバルトやマンガンが微粒子として析出すること等を防止することができる。
 晶析工程(S1)での反応槽内の温度は40℃以上、60℃以下に維持されることが好ましく、より好ましくは45℃以上、さらに好ましくは55℃以下に維持される。
 反応槽は反応熱や撹拌のジュール熱により温度が上昇するため、反応槽内の温度を40℃以上とすることで、冷却に余分にエネルギーを消費することがない。また、反応槽内の温度を60℃以下とすることで、初期水溶液や、反応水溶液からのアンモニアの蒸散を抑制することができ、目標のアンモニア濃度を維持することが容易になる。
 リチウムニッケル複合酸化物の粒子(粉体)は粒度分布の広がりが狭く、粒子径が均一性な粒子であることが好ましい。このような粒子を作製するためにはその前駆体となるニッケル複合水酸化物において粒子径が均一性な粒子を得る必要がある。そのような粒子を得る方法としては、具体的には特許文献3などが例示できる。
(酸化焙焼工程:S2)
 前駆体晶析工程(S1)の後に、酸化焙焼工程(S2)を行ってもよい。酸化焙焼工程(S2)では、前駆体晶析工程(S1)で得られたニッケル複合水酸化物を酸化焙焼して、ニッケル複合酸化物を得る。酸化焙焼工程(S2)では、酸素含有雰囲気中で熱処理し、その後、室温まで冷却することで、ニッケル複合酸化物を得ることができる。
 酸化焙焼工程(S2)における焙焼条件は特に限定されないが、例えば、酸素含有雰囲気中、空気雰囲気中、500℃以上700℃以下の温度で、1時間以上12時間以下で焙焼することが好ましい。焙焼温度を500℃以上とした場合、ニッケル複合水酸化物を完全にニッケル複合酸化物へ転化できる。また、焙焼温度を700℃以下とすることで、ニッケル複合酸化物の比表面積が過度に小さくなることを抑制でき好ましいからである。
 焙焼時間を1時間以上とすることで、焼成容器内の温度を均一にすることができ、反応を均一に進行させることができ、好ましい。また、12時間よりも長い時間、焙焼を行っても、得られるニッケル複合酸化物に大きな変化は見られないため、エネルギー効率の観点から、焙焼時間は12時間以下とすることが好ましい。
 焙焼の際の酸素含有雰囲気中の酸素濃度は、空気の酸素濃度以上、すなわち酸素濃度が20体積%以上であることが好ましい。酸素雰囲気とすることもできるため、酸素含有雰囲気の酸素濃度の上限値は100体積%とすることができる。
 なお、例えば晶析工程(S1)で元素Mを含む化合物を共沈できなかった場合、例えば酸化焙焼工程S2に供するニッケル複合水酸化物に対して、元素Mを含む化合物を目的とする物質量比と同じになるように加えて焼成してもよい。加える元素Mを含む化合物としては特に限定されず、例えば、酸化物、水酸化物、炭酸塩、もしくはその混合物等を用いることができる。
 また、酸化焙焼工程(S2)の終了後、得られるニッケル複合酸化物に軽度の焼結が見られる場合には、解砕処理を加えてもよい。なお、酸化焙焼工程(S2)では、ニッケル複合水酸化物の少なくとも一部がニッケル複合酸化物に転化されればよく、すべてのニッケル複合水酸化物を酸化物へ転化しなくてもよい。
(混合工程:S10)
 混合工程(S10)は、ニッケル複合化合物と、ニオブ化合物と、リチウム化合物とを混合して、リチウム混合物を得る工程である。
 本実施形態に係る製造方法では、混合工程(S10)において、ニオブ化合物を混合することにより、ニオブを固相添加する。ニオブの固相添加は、従来公知の晶析工程でニオブを共沈、又は、コートする方法と比較して、薬液などを必要としないため、環境負荷の低い、生産性に優れた添加方法である。
 ニッケル複合化合物は、ニッケル複合水酸化物及びニッケル複合酸化物の少なくとも一方であることが好ましく、ニッケル複合酸化物であることがより好ましい。また、ニッケル複合化合物は、上記の晶析工程(S1)及び/又は酸化焙焼工程(S2)を備える方法により得られることが好ましい。
 ニオブ化合物は、例えば、ニオブ酸、酸化ニオブ、硝酸ニオブ、五塩化ニオブなどを用いることができる。これらの中でも、入手のしやすさや焼成したリチウムニッケル複合酸化物への不純物の混入を避けるという観点から、水酸化ニオブまたは酸化ニオブが好ましい。
 ニオブを固相添加する場合、添加するニオブ化合物の粒径により、反応性が変化することがある。ニオブ化合物の粒度分布の積算体積分布曲線において積算体積率90%に相当する粒径(D90)は、好ましくは0.1μm以上20μm以下であり、より好ましくは0.1μm以上10μm以下であり、さらに好ましくは0.1μm以上5μm以下である。ニオブ化合物のD90が0.1μmより小さい場合、粉末の取り扱いが非常に困難になるという問題点がある。ニオブ化合物のD90が20μmより大きい場合、焼成時の反応性が低下してリチウムニッケル複合酸化物の粒子中へのニオブの拡散が不足し、熱安定性を確保できないことがある。加えて、ニオブのD90が大きすぎる場合、被覆層2の形成が不均一になるおそれがある。なお、ニオブ化合物の粒径は、上記の粒径の範囲内で、所望の特性を有する正極活物質が得られるように、適宜、調整することができる。
 ニオブ化合物のD90は、ボールミル、遊星ボールミル、ジェットミル、ビーズミル、ピンミルなどの粉砕機を用いて原料ニオブ化合物を粉砕して、上記範囲に調整することができる。また、必要に応じて、乾式分級機や篩別機により分級してもよい。なお、ニオブ化合物のD90は、レーザー散乱回折法により測定することが出来る。
 ニオブ化合物は、ニッケル複合化合物に含まれるNi及び元素Mの原子数の総和に対して、目的のニオブ含有量を有する量で混合する。ニオブの含有量は焼成工程前後で変化しないため、正極活物質のニオブ添加量に相当するニオブ化合物を添加する。
 リチウム化合物としては、特に限定されず、例えば、水酸化リチウム、硝酸リチウム、または炭酸リチウム、又は、これらの混合物を用いることができる。リチウム化合物としては、融点が低く反応性が高いという観点から、水酸化リチウムを用いることが好ましい。
 リチウム化合物は、例えば、Ni、元素M及びNbの総和(Me)に対して、例えば、リチウムの含有量が95原子%以上115原子%以下となる量で混合してもよく、98原子%以上115原子%以下で混合してもよく、98原子%以上110原子%以下で混合してもよい。
(焼成工程:S20)
 焼成工程(S20)は、得られたリチウム混合物を焼成して、リチウムニッケル複合酸化物の粒子1を得る工程である。焼成条件は特に限定されないが、例えば、酸素含有雰囲気中で700℃以上800℃以下の温度、1時間以上24時間以下で焼成することが好ましい。また、焼成後、室温まで冷却して、リチウムニッケル複合酸化物の粒子1を得てもよい。
 焼成温度を700℃以上とする場合、リチウムニッケル複合酸化物の粒子1の結晶構造を十分に成長させることができる。また、焼成温度を800℃以下とする場合、得られるリチウムニッケル複合酸化物の粒子1中のLiサイトへのNi原子の混入を抑制することができる。
 焼成時間は、1時間以上とすることで焼成容器内の温度を均一にすることができ、反応を均一に進行させることができるため好ましい。また、24時間よりも長い時間焼成を行っても、得られるリチウムニッケル複合酸化物に大きな変化は見られないため、エネルギー効率の観点から、焼成時間は24時間以下とすることが好ましく、12時間以下であってもよく、10時間以下であってもよく、6時間以下であってもよい。
 また、酸素含有雰囲気としては、酸素を80体積%以上含む雰囲気であることが好ましい。これは、雰囲気中の酸素濃度を80体積%以上とすることで、得られるリチウムニッケル複合酸化物中のLiサイトへNi原子が混合することを特に抑制することができ好ましいからである。酸素雰囲気とすることもできるため、酸素含有雰囲気の酸素濃度の上限値は100体積%とすることができる。
 なお、焼成工程(S20)の後、得られるリチウムニッケル複合酸化物の粒子1に軽度の焼結が見られる場合には、解砕処理を加えてもよい。
(被覆工程:S30)
 被覆工程(S30)は、得られたリチウムニッケル複合酸化物の粒子1の表面に、被覆液を付着させて、被覆層2を形成する工程である。
 被覆層2の形成は、例えば、リチウムニッケル複合酸化物の粒子1と、被覆液とを混合し、乾燥して、リチウムニッケル複合酸化物の粒子1の表面に被覆層2を形成する。また、後述するように、被覆後、任意に酸素含有雰囲気中で熱処理工程(S40)を行ってもよい。以下、被覆工程(S30)の一例について、説明する。
 まず、被覆液を所定量で調製する(被覆剤調製ステップ)。被覆剤は、焼成工程(S20)で得られたリチウムニッケル複合酸化物の粒子1の比表面積(m/g)当りの被覆層2の構成元素(Li及びOを除く)の含有量に応じて、調製することができる。
 被覆液は、Al、Si、Ti、V、Ga、Ge、Zr、Nb、Mo、Ta及びWからなる群から選択される少なくとも1種の元素を少なくとも含む。例えば、被覆液は、目的とする被覆層2の構成元素(Li及びOを除く)を含む原料化合物を溶剤に溶解して調製することができる。
 原料化合物としては、例えば、アルコキシド類、カルボニル基、ペルオキシ基などを備えた錯体を用いたキレート類からなる群から選択される1種類以上が挙げられる。
 被覆液は、均一に被覆するという観点から、リチウムニッケル複合酸化物の粒子1の表面に付着させる時点で液状であればよく、例えば、被覆層2の構成元素を含む化合物を溶媒に溶解して調製し、常温で液状としてもよいし、低融点の被覆層2の構成元素を含む化合物であって、低温の熱処理で溶解するものであってもよい。
 なお、被覆液はLiを含んでもよいし、含まなくてもよい。被覆液がLiを含まない場合、被覆工程(S30)及び/又は熱処理工程(S40)において、リチウムニッケル複合酸化物の粒子1中に存在するLiと、被覆液中の上記構成元素を含む化合物とが反応して、被覆層2を形成することができる。
 次に、リチウムニッケル複合酸化物の粒子1の表面に被覆液を付着させる。被覆液の付着は、例えば、リチウムニッケル複合酸化物の粒子1と被覆液とを混合することにより行ってもよい(混合物調製ステップ)。混合には一般的な混合器を用いることができる。また、混合後に乾燥を行ってもよい(乾燥ステップ)。
 また、より均一で特定の厚みを有する被覆層2を形成するという観点から、混合物調製ステップと、乾燥ステップとを並行して進めることが好ましく、転動流動コーティング装置を用いることが好ましい。
 被覆液は、乾燥により収縮を起こすため、混合物調製ステップと乾燥ステップをそれぞれ1回経るだけでは、形成される被覆層2に隙間ができてしまい、リチウムニッケル複合酸化物の粒子1と固体電解質との接触を保護する機能を十分に果たせないことがある。しかし、転動流動コーティング装置を用いる場合、装置中で加温された気流により流動しているリチウムニッケル複合酸化物の粒子1に被覆液が噴霧されるため、混合物調製ステップと乾燥ステップが並行して繰り返され、隙間のない均一な被覆層が得られるため好ましい。
 乾燥ステップでは、被覆剤の溶媒等を十分に除去できる程度の温度で乾燥を行うことが好ましい。例えば転動流動コーティング装置を用いる場合、給気温度を80℃以上300℃未満に設定してもよい。また被覆処理後、別途定置型の乾燥機で追加乾燥を行ってもよい。
 乾燥ステップの雰囲気は、特に限定されないが、リチウムニッケル複合酸化物の粒子1が雰囲気中の水分と反応することを防ぐため、ドライヤーを備えたコンプレッサーから供給される空気、窒素およびアルゴンガスといった不活性雰囲気などが好ましい。
(熱処理工程:S40)
 さらに、必要に応じて被覆工程(S30)の後に、被覆層2が表面に形成されたリチウムニッケル複合酸化物の粒子1を、300℃以上で熱処理する熱処理工程(S40)を備えてもよい。熱処理工程(S40)により、被覆層2とリチウムニッケル複合酸化物の粒子1との結合をより強固にすることができる。
 熱処理工程(S40)の熱処理条件は、特に限定されないが、酸素含有雰囲気中、300℃以上600℃以下の温度で、1時間以上5時間以下熱処理を行うことが好ましい。酸素含有雰囲気は、例えば、空気雰囲気であってもよい。
 熱処理工程(S40)の酸素含有雰囲気中の酸素濃度は、空気雰囲気の酸素濃度以上、すなわち酸素濃度が20体積%以上であることが好ましい。熱処理の際の酸素含有雰囲気を空気雰囲気の酸素濃度以上とすることで、得られる正極活物質10の内部に酸素欠陥が生じることをより抑制することができる。酸素含有雰囲気は、酸素雰囲気であってもよく、酸素含有雰囲気の酸素濃度の上限値は100体積%である。
 熱処理温度が300℃以上である場合、被覆液に含まれる不純物が正極活物質10の内部に残留することをより抑制できる。また、熱処理温度が600℃以下である場合、被覆層2の成分が過度に拡散されることを抑制し、被覆層2の形態を保つことができる。
 熱処理時間は、1時間以上である場合、被覆液に含まれる不純物が正極活物質10の内部に残留することをより抑制できる。また、熱処理時間が5時間よりも長い場合でも、得られる正極活物質10に大きな変化は見られない。よって、エネルギー効率の観点から、熱処理時間は5時間以下が好ましい。
 熱処理工程(S40)後は、室温まで冷却し、最終生成物である、リチウムニッケル複合酸化物の粒子1と、その表面に被覆層2とを有する正極活物質を得ることができる。
 なお、熱処理工程(S40)については実施しなくても良い。すなわち、被覆工程(S30)までを実施し、正極活物質10を製造してもよい。熱処理工程(S40)を行わない場合でも、リチウムニッケル複合酸化物の粒子の表面に、均一に、かつ強固に被覆層を形成することができるからである。熱処理ステップを実施しない場合でも必要に応じて、被覆剤の溶媒や、水分等を低減、除去するために乾燥を行うことが好ましい。
 被覆工程(S30)及び/又は熱処理工程(S40)後に得られる正極活物質10に軽度の焼結が見られる場合には、さらに、解砕処理を行ってもよい。
(3)全固体リチウムイオン二次電池
 本実施形態に係る全固体リチウムイオン二次電池(以下、「全固体電池」ともいう。)は、正極と、負極と、固体電解質とを備え、上記の正極活物質を正極に含む。以下、本実施形態に係る全固体電池について、構成要素ごとにそれぞれ説明する。
 なお、以下で説明する実施形態は例示に過ぎず、全固体電池は、下記実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、全固体電池は、その用途を特に限定するものではない。
(正極)
 正極は、正極合剤を成型し、形成することができる。なお、正極は、使用する電池にあわせて適宜処理される。たとえば、電極密度を高めるためにプレスなどによる加圧圧縮処理等を行うこともできる。
 上述の正極合剤は、粉末状になっている前述の正極活物質と、固体電解質とを混合して形成できる。
 固体電解質は、電極に適当なイオン伝導性を与えるために添加されるものである。
 その固体電解質の材料は特に限定されないが、例えばLiPS、Li11、Li10GeP12などの硫化物系固体電解質や、LiLaZr12、Li0.34La0.51TiO2.94などの酸化物系固体電解質やPEOなどのポリマー系電解質を用いることができる。
 なお、正極合剤には結着剤や導電助剤を添加することもできる。
 結着剤は、正極活物質をつなぎ止める役割を果たすものである。係る正極合剤に使用される結着剤は特に限定されないが、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸等から選択された1種類以上を用いることができる。
 導電材は、電極に適当な導電性を与えるために添加されるものである。導電材の材料は特に限定されないが、例えば天然黒鉛、人造黒鉛および膨張黒鉛などの黒鉛や、アセチレンブラック、ケッチェンブラック(登録商標)等のカーボンブラック系材料を用いることができる。
 また、正極合剤における各物質の混合比は特に限定されるものではない。例えば、正極合剤の正極活物質の含有量を50質量部以上、90質量部以下、固体電解質の含有量を10質量部以上、50質量部以下とすることができる。
 ただし、正極の作製方法は、上述した例示のものに限られることなく、他の方法によってもよい。
(負極)
 負極は、負極合剤を成型し、形成することができる。
 負極は、負極合剤を構成する成分やその配合等は異なるものの、実質的に上述の正極と同様の方法によって形成され、正極と同様に必要に応じて各種処理が行われる。
 負極合剤は、負極活物質と固体電解質とを混合することで調製できる。負極活物質としては例えば、リチウムイオンを吸蔵および脱離できる吸蔵物質を採用することができる。
 吸蔵物質は特に限定されないが、例えば天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、およびコークスなどの炭素物質の粉状体等から選択された1種類以上を用いることができる。係る吸蔵物質を負極活物質に採用した場合には、正極同様に、固体電解質として、LiPS等の硫化物電解質を用いることができる。
 また負極は、例えば金属リチウムやインジウムなどのリチウムと合金化する金属を含有する物質により構成されたシート状の部材とすることもできる。
(固体電解質)
 固体電解質は、Liイオン伝導性を持つ固体である。固体電解質としては、硫化物、酸化物、ポリマーなどから選ばれる1種を単独で、あるいは2種類以上を混合して用いることができる。
 硫化物系固体電解質としては、特に限定されず、硫黄(S)を含有し、かつ、リチウムイオン伝導性と電子絶縁性とを有するものであれば用いることができる。硫化物系固体電解質としては、例えば、LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-B、LiPO-LiS-SiS、LiPO-LiS-SiS、LiPO-LiS-SiS、LiI-LiS-P、LiI-LiPO-P等が挙げられる。
 酸化物系固体電解質としては、特に限定されず、酸素(O)を含有し、かつ、リチウムイオン伝導性と電子絶縁性とを有するものであれば用いることができる。
 酸化物系固体電解質としては、例えば、リン酸リチウム(LiPO)、LiPONX、LiBONX、LiNbO、LiTaO、LiSiO、LiSiO-LiPO、LiSiO-LiVO、LiO-B-P、LiO-SiO、LiO-B-ZnO、Li1+XAlTi2-X(PO(0≦X≦1)、Li1+XAlGe2-X(PO(0≦X≦1)、LiTi(PO、LiXLa2/3-XTiO(0≦X≦2/3)、LiLaTa12、LiLaZr12、LiBaLaTa12、Li3.6Si0.60.4等が挙げられる。
 なお、無機固体電解質としては、上記以外のものを用いてよく、例えば、LiN、LiI、LiN-LiI-LiOH等を用いてもよい。
 ポリマー系固体電解質としては、イオン伝導性を示す高分子化合物であれば、特に限定されず、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、これらの共重合体などを用いることができる。また、有機固体電解質は、支持塩(リチウム塩)を含んでいてもよい。なお、固体電解質を用いる場合は、電解質と正極活物質の接触を確保するため、正極材中にも固体電解質を混合させてもよい。
(全固体電池の形状、構成)
 次に、本実施形態に係る全固体電池の部材の配置、構成の例について説明する。
 上記の正極、負極および固体電解質で構成される全固体電池は、コイン形や積層形など、種々の形状にすることができる。いずれの形状をとる場合であっても、正極および負極を、固体電解質を介して積層させることができる。そして、正極集電体と外部に通ずる正極端子との間、および、負極集電体と外部に通じる負極端子との間を、集電用リードなどを用いて接続し、電池ケースに密閉して全固体電池とすることができる。
(全固体電池の特性)
 上述の正極活物質を用いた本発明の一実施形態に係る全固体電池は、高容量を発現する。
 具体的には、本実施形態の正極活物質を正極に用いて、図4に示す試験用電池を構成し、電流密度を0.2mA/cmとして、カットオフ電圧4.3V(vs.Li)まで充電し、1時間の休止後、カットオフ電圧2.5V(vs.Li)まで放電した場合の放電容量である、初期放電容量が130mAh/g以上であることが好ましい。
 以下、本発明について、実施例および比較例を用いて具体的に説明する。
[実施例1]
1.リチウムニッケル複合酸化物の製造
 以下の工程により、リチウムニッケル複合酸化物の製造を行った。
(a)晶析工程
 内容積60Lの反応槽内に、10Lの純水を入れて撹拌しながら、槽内温度を50℃に維持した。このときの反応槽内は、酸素濃度が1容量%以下である窒素雰囲気とした。
 この反応槽内に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量加えて、液温25℃基準のpH値が12.8に、反応槽内溶液のアンモニア濃度が15g/Lとなるように初期水溶液を調製した。
 同時に、硫酸ニッケルと、硫酸コバルトを、ニッケルとコバルトの物質量比が、Ni:Co=0.84:0.16となるように純水に溶解して、2.0mol/Lのニッケルコバルト混合水溶液を25L調製した。また0.37mol/Lの硫酸アルミニウム水溶液を5L調製した。
 ニッケルコバルト混合水溶液を、反応槽の初期水溶液に対して66mLを109mL/minで滴下し、反応水溶液とした。この際、25質量%アンモニア水および25質量%水酸化ナトリウム水溶液も一定速度で初期水溶液に滴下し、反応水溶液の液温25℃基準のpH値が12.8に維持されるように制御した。
 続いて、反応槽中に硫酸を滴下し、反応水溶液のpHを11.5に調整した。この操作はpHを下げることで、続く前駆体晶析工程において、Ni、Co、およびAlの複合水酸化物が液相から固相に析出する速度を低下させることで、得られる粒度分布の均一性や粒子の球状性を向上することを意図したものである。
 pH制御後、反応槽の反応水溶液に対して、26.2Lのニッケルコバルト混合水溶液を109.2mL/minで滴下し、さらに同時に5.9Lの硫酸アルミニウム水溶液を24.8mL/minで滴下した。この際、25質量%アンモニア水および25質量%水酸化ナトリウム水溶液も一定速度で初期水溶液に滴下し、反応水溶液のpH値が、液温25℃基準で11.5に、アンモニア濃度が15g/Lに維持されるように制御した。
 ニッケルコバルト混合水溶液および硫酸アルミニウム水溶液を全量滴下した後、反応槽の反応水溶液のpHを液温25℃基準で13.0になるまでpHを向上させた。この操作はアンモニア錯体化され液相に溶存するニッケルイオンを水酸化物上に析出させ、目標どおりの化学組成を得ることを意図している。
 その後、反応水溶液をブフナーロート、ろ過缶、および真空ポンプ真空濾過機で固液分離した。さらに得られた固相を40℃の20Lの純水に分散させ固液分離する操作を2回繰り返し、ニッケル複合水酸化物から硫酸ナトリウム等の水溶性の不純物を除去した。
洗浄を終えた固液分離後のケーキ状の固相を、120℃の定置型乾燥機で24時間、空気雰囲気下で乾燥後、目開き100μmのフルイにかけて粉末状のニッケル複合水酸化物を得た。
(b)酸化焙焼工程
 雰囲気焼成炉(株式会社シリコニット製、BM-50100M)を用いて、作製した複合水酸化物を酸素濃度が20体積%である空気雰囲気下、600℃、2時間焼成した後、室温まで冷却し、ニッケル複合酸化物を得た。
(c)混合工程
 ニッケル複合酸化物に、このニッケル複合酸化物に含まれるNi、Co、Alの物質量の総和に対して、Nbの物質量が0.1%となるように三津和化学薬品株式会社製のニオブ酸(Nb・xHO)粉末を添加し、Ni、Co、Al、Nbの総物質量に対してLiの物質量が103%となるように秤量した水酸化リチウム一水和物を加えて、ターブラーシェーカーミキサー(株式会社ダルトン製、T2F)を用いて混合し、リチウム混合物を得た。
(d)焼成工程
 雰囲気焼成炉(株式会社シリコニット製、BM-50100M)を用いて、得られたリチウム混合物を、酸素濃度が90体積%以上の酸素含有雰囲気中にて750℃で、5時間焼成した後、室温まで冷却した。これにより、リチウムニッケル複合酸化物の粒子を得た。
2.リチウムニッケル複合酸化物の粒子の評価
 得られたリチウムニッケル複合酸化物に対して、以下の評価を行った。
(a)組成
 ICP発光分光分析器(VARIAN社製、725ES)を用いた分析により、リチウムニッケル複合酸化物は、Li、Ni、Co、Al、Nbの物質量比が、Li:Ni:Co:Al:Nb=1.04:0.815:0.150:0.034:0.001であることを確認した。
(b)結晶構造
 リチウムニッケル複合酸化物の粒子の結晶構造を、XRD(PANALYTICAL社製、X‘Pert、PROMRD)を用いて測定したところ、回折パターンにR-3m構造に帰属されるピークが検出される層状岩塩型の結晶構造であることが確認された。
 また、回折パターン中(003)面帰属ピークの半価幅を計測し、シェラー法を用いて結晶子の大きさを算出すると、123.4nmであることが確認された。
(c)溶出リチウムイオン量測定
 リチウムニッケル複合酸化物中の溶出リチウムイオン量を滴定法により求めた。リチウムニッケル複合酸化物2.0gを、125mlの純粋に分散させ、さらに塩化バリウム10%溶液2mLを加えた。撹拌をしながら1mol/L塩酸で中和滴定を行い、得られた滴定曲線のpH4付近の変曲点までに要した1mol/L塩酸の量を、溶出リチウムイオンに起因するLi量として換算した。その結果、リチウムニッケル複合酸化物中の溶出リチウムイオン量は0.31wt%であった。
(d)比表面積
 リチウムニッケル複合酸化物のBET比表面積を、全自動BET比表面積測定装置(株式会社マウンテック製、マックソーブ)を用いて測定し、0.49m/gであることを確認した。
(e)粒度分布
 リチウムニッケル複合酸化物の粒度分布を、レーザー回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)を用いて測定した。その結果から体積基準の平均粒径D50は5.4μm、D10、D90、MVから算出されるばらつき指数((D90-D10)/MV)は、0.44であることを確認した。
3.リチウムニッケル複合酸化物への被覆
 得られたリチウムニッケル複合酸化物に対して、以下の被覆工程を実施した。
 イソプロピルアルコール(IPA)30ml、チタンテトラブトキシド(Ti-BuOH)1.8gを添加して攪拌した溶液に、IPA20ml、アセチルアセトン0.9gを添加した溶液を、60℃で加熱攪拌しながら滴下した。これは高濃度のアセチルアセトンを、Ti溶液を直接添加しないためである。その後、IPA10mlに純水0.54gを添加したものを、冷却した前述の溶液へ添加した。最後に、得られた溶液にIPA65mlを加えて、被覆液を調整した。
 上記被覆液を用いて、転動流動コーティング装置(MP-01、パウレック)により、500gのリチウムニッケル複合酸化物に対して、被覆処理を行った。
 500gのリチウムニッケル複合酸化物を、120℃に加熱された流速0.3m/hの空気でチャンバー内に流動させ、このリチウムニッケル複合酸化物に対して、被覆液を1.7ml/分で噴霧した。
 被覆液を全量噴霧後、チャンバー内からリチウムニッケル複合酸化物を回収し、雰囲気焼成炉(株式会社シリコニット製、BM-50100M)を用いて、酸素流通下、400℃で10時間熱処理した。その後、室温まで冷却し、被覆層(Li及びTiを含む)を有するリチウムニッケル複合酸化物の粒子(正極活物質)を得た。
4.被覆層を有するリチウムニッケル複合酸化物の粒子の評価
(a)組成
 ICP発光分光分析器(VARIAN社製、725ES)を用いた分析により、被覆リチウムニッケル複合酸化物は、0.88wt%のTiを含み、母材の単位面積当たりのTi量は370μmol/mと確認された。
(b)被覆層の厚み
 クライオイオンスライサ(JEOL, IB-09060CIS)で薄片化した被覆リチウムニッケル複合酸化物をTEM(JEOL製、JEM-ARM200F)で観察した結果、被覆層の厚みは11nmであることを確認した。
5.全固体二次電池の作製
 得られた正極活物質の容量の評価には、図4に示す構造の電池(以下、「試験用電池」という)を使用した。
(試験用電池の構成)
 図4に示すように、試験用電池SBAは、負極缶NC及び正極缶PCを有するケースと、ケース内に収容される圧粉体セルCとを備える。
 ケースは、中空かつ一端が開口された負極缶NCとこの負極缶NCの開口部に配置される正極缶PCとを有する。また、圧粉体セルCを収容する空間が正極缶PCと負極缶NCとの間に形成される。正極缶PCは、負極缶NCに対して、例えば、蝶ネジSWで固定される。また、負極缶NCは負極、正極缶PCは正極のそれぞれの端子を備えている。また、ケースは、絶縁スリーブISVを有する。絶縁スリーブISVによって、負極缶NCと正極缶PCとの間が非接触の状態を維持するように固定されている。
 負極缶NCの閉止された一端には、加圧ネジPSWが設けられており、正極缶PCを負極缶NCに固定した後、加圧ネジPSWを圧粉体セルCの収容空間に向けて締めこむことで、半球座金Wを通して圧粉体セルCを加圧状態に保持する。また、負極缶NCの加圧ネジPSWが存在する一端にはねじ込み式のプラグPが設けられている。負極缶NCと正極缶PCの間、および、負極缶NCとプラグPの間には、オーリングOLが設けられており、負極缶NCと正極缶PCの間の隙間が密封し、ケース内の気密が維持される。
 圧粉体セルCは、正極層PL、固体電解質層SELおよび負極層NLを、この順で並ぶように積層されるペレットである。正極層PLは、下部集電体LCCを通して正極缶PCの内面に接触する。負極層NLは、上部集電体UCC、半球座金Wおよび加圧ネジPSWを通して負極缶NCの内面に接触する。下部集電体LCC、圧粉体セルCおよび上部集電体UCCは、スリーブSVによって、正極層PL及び負極層NLが電気的に接触しないように保護されている。
(評価用電池の作製)
 試験用電池SBAは、以下のように作製した
 初めに、合成した固体電解質80mgをペレット形成器で25MPaで加圧し、10mmφの固体電解質ペレットを得た。次に、正極活物質70mgと、固体電解質30mgを乳鉢で混合した。固体電解質ペレットと正極活物質+固体電解質の混合物15mgをペレット形成器にセットし、360MPaで加圧し、固体電解質ペレット上に正極層を形成した。下から順に、下部集電体LCC、正極層PLを下向きに配置したペレット、インジウム(In)箔(負極層NL)、上部集電体UCCの順に積層し、9kNで加圧し、電極(圧粉体セルC)を構成した。電極(圧粉体セルC)をケース内に封入し、加圧ねじを6~7N・mのトルクで締め付けた。試験用電池SBAは、露点が-80℃に管理されたAr雰囲気のグローブボックス内で作製した。
6.全固体二次電池の評価
 作製した試験用電池の性能を示す充放電容量、以下のように評価した。
(a)初期放電容量
 初期放電容量は、負極にインジウム箔を用いた試験用電池を製作してから24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.2 mA/cmとしてカットオフ電圧3.7V(vs.Li-In)まで充電し、1時間の休止後、カットオフ電圧1.9V(vs.Li-In)まで放電したときの放電容量(初期放電容量)を測定することにより評価した。測定結果は134mAh/gであった。
[実施例2]
 実施例1のリチウムニッケル複合酸化物合成工程におけるNb添加量を0.8%にした以外は実施例1と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[実施例3]
 実施例1のリチウムニッケル複合酸化物合成工程におけるNb添加量を1.2%にした以外は実施例1と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[実施例4]
 実施例1のリチウムニッケル複合酸化物合成工程におけるNb添加量を3%にした以外は実施例1と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[実施例5]
 実施例2のリチウムニッケル複合酸化物合成工程における焼成時間を12hにした以外は実施例2と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[実施例6]
 実施例3のリチウムニッケル複合酸化物合成工程における焼成時間を12hにした以外は実施例3と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[実施例7]
 実施例2で得られたリチウムニッケル複合酸化物に対して、被覆工程でニオブ酸リチウムを被覆し、以下の条件で熱処理を行なった以外は、実施例2と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
 被覆液を全量噴霧後、チャンバー内からリチウムニッケル複合酸化物を回収し、雰囲気焼成炉(株式会社シリコニット製、BM-50100M)を用いて、大気圧下、350℃で1時間熱処理した。その後、室温まで冷却し、被覆層(LiおよびNbを含む)を有するリチウムニッケル複合酸化物の粒子(正極活物質)を得た。
[実施例8]
 実施例6のリチウムニッケル複合酸化物合成工程におけるLiの割合aを1.00とした以外は実施例6と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[実施例9]
 実施例6のリチウムニッケル複合酸化物合成工程におけるLiの割合aを1.09とした以外は実施例6と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[実施例10]
 実施例6のリチウムニッケル複合酸化物合成工程におけるNiの割合(1-x-y)を0.85、Coの割合(x)を0.116とした以外は実施例6と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[実施例11]
 実施例6のリチウムニッケル複合酸化物合成工程におけるNiの割合(1-x-y)を0.744、Coの割合(x)を0.222とした以外は実施例6と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[比較例1]
 実施例1のリチウムニッケル複合酸化物合成工程におけるNbを無添加とした以外は実施例1と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[比較例2]
 比較例1のリチウムニッケル複合酸化物合成工程における焼成温度を735℃にした以外は比較例1と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[比較例3]
 実施例1のリチウムニッケル複合酸化物合成工程におけるNb添加量を5原子%にした以外は実施例1と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[比較例4]
 実施例2のリチウムニッケル複合酸化物の粒子への被覆を行わなかった以外は実施例2と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
[比較例5]
 実施例6のリチウムニッケル複合酸化物合成工程におけるLiの割合aを1.18とした以外は実施例6と同じ条件で被覆リチウムニッケル複合酸化物を合成した。製造条件を表1に、結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[評価結果]
 実施例の正極活物質では、Nbを含まない比較例1の正極活物質と比較して、全固体電池における放電容量が顕著に向上した。特に、実施例2(Nb:0.8原子%)では、顕著に放電容量が向上した。また、焼成時間が5時間である実施例1、2の正極活物質と焼成時間が12時間である実施例4、5の正極活物質では、結晶子径、比表面積などの正極活物質の特性や、電池特性(初期放電容量)も同程度であり、焼成時間が5時間でも高い電池特性を有する正極活物質を得ることができることが示されている。また、被覆層がNbを含む実施例7でも、被覆層がTiを含む実施例1~6と同様に、高い放電容量を有することが示された。
 また、Liの割合(a)が1.00である実施例8、Liの割合(a)が1.09である実施例9でも、実施例6(a:1.04)と同等の高い放電容量を有することが示された。また、実施例6(Niの割合:0.806)とは、Niの割合(1-x-y)が異なる実施例10(Niの割合:0.850)および実施例11(Niの割合:0.744)から、Niの割合が高いほど、放電容量が上昇することが明らかである。
 一方、比較例1と同様にNbを含まない比較例2の正極活物質では、焼成温度(735℃)を変更しても、放電容量の向上は見られず、逆に低下した。
 また、Nbの添加量が3原子%を超える比較例3の正極活物質では、Nbを添加しない比較例1、2と比較しても、全固体電池における放電容量が低下した。
 また、被覆層を有さない以外は、実施例1と同様の条件で製造した比較例4の正極活物質では、全固体電池における放電容量が非常に低かった。これは、リチウムニッケル複合酸化物の粒子の表面に被覆層がないため、正極活物質と固体電解質との界面で抵抗が上昇したためと考えられる。また、Liの割合(a)が高すぎる比較例5(a:1.18)では、溶出リチウム量が多く、放電容量が低下した。
 本発明によれば、高い電池容量が要求される全固体リチウムイオン二次電池の正極に好適に使用できる正極活物質と、その製造方法を提供することができる。
 なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、上述の実施形態などで引用した全ての文献の開示を援用して本文の記載の一部とする。また、法令で許容される限りにおいて、日本特許出願である特願2020-129024の内容を援用して本文の記載の一部とする。
1…リチウムニッケル複合酸化物の粒子
2…被覆層
10…正極活物質
SBA…試験用電池
PC…正極缶
NC…負極缶
ISV…絶縁スリーブ
C…圧粉体セル
PL…正極層
NL…負極層
SEL…固体電解質層
LCC…下部集電体
UCC…上部集電体
P…プラグ
PSW…加圧ネジ
W…半球座金
OL…オーリング
SV…スリーブ
SW…ネジ
N…ナット

Claims (8)

  1.  リチウムニッケル複合酸化物の粒子と、前記粒子の表面を被覆する被覆層と、を有する全固体リチウムイオン二次電池用正極活物質であって、
     前記リチウムニッケル複合酸化物の粒子は、
     空間群R-3mに属する結晶構造を有し、
     少なくともLi、Ni、元素MおよびNbを含み、
     前記各元素の物質量比がLi:Ni:M:Nb=a:(1-x-y):x:y
    (0.98≦a≦1.15、
     0<x≦0.5、
     0<y≦0.03、
     0<x+y≦0.5、
     前記元素Mは、Co、Al、Mn、Zr、Si、Zn及びTiからなる群より選択される少なくとも一種)で表され、
     XRDで測定される(003)面に帰属される回折ピークからシェラー法により算出される結晶子径が140nm以下であり、
     中和滴定により求められる溶出リチウムイオン量が、前記リチウムニッケル複合酸化物の粒子の全量に対して、0.30質量%以上1.00質量%以下であり、
     前記被覆層は、
     Liと、Al、Si、Ti、V、Ga、Ge、Zr、Nb、Mo、Ta及びWからなる群から選択される少なくとも1種の元素と、を含む複合酸化物である、
     全固体リチウムイオン二次電池用正極活物質。
  2.  前記リチウムニッケル複合酸化物の粒子は、
     複数の一次粒子が凝集して構成された二次粒子を含み、
     前記二次粒子中に前記一次粒子の存在しない空隙部分を複数有する多孔質構造を有し、
     窒素吸着BET法により測定した比表面積が0.3m/g以上2.0m/g以下である、
    請求項1に記載の全固体リチウムイオン二次電池用正極活物質。
  3.  前記リチウムニッケル複合酸化物の粒子に含まれるニオブの少なくとも一部は、前記一次粒子の界面に偏析する、請求項2に記載の全固体リチウムイオン二次電池用正極活物質。
  4.  前記リチウムニッケル複合酸化物の粒子は、粒度分布の積算体積分布曲線において積算体積率50%に相当する粒径(D50)が7μm以下である、請求項1~3のいずれか一項に記載の全固体リチウムイオン二次電池用正極活物質。
  5.  前記被覆層の平均厚さは、2nm以上15nm以下である、請求項1~4のいずれか一項に記載の全固体リチウムイオン二次電池用正極活物質。
  6.  ニッケル複合化合物と、ニオブ化合物と、リチウム化合物とを混合して混合物を得る混合工程と、
     前記混合物を焼成して前記リチウムニッケル複合酸化物の粒子を得る焼成工程と、
     前記リチウムニッケル複合酸化物の粒子の表面に、Al、Si、Ti、V、Ga、Ge、Zr、Nb、Mo、Ta及びWからなる群から選択される少なくとも1種の元素を含む被覆液を付着させ、前記被覆層を形成する被覆工程と、を備える、
     請求項1~5のいずれか一項に記載の全固体リチウムイオン二次電池用正極活物質の製造方法。
  7.  前記ニッケル複合化合物は、ニッケル複合酸化物を含み、
     晶析反応により調整されたニッケル複合水酸化物を酸化焙焼して前記ニッケル複合酸化物を得る酸化焙焼工程を備える、請求項6に記載の全固体リチウムイオン二次電池用正極活物質の製造方法。
  8.  前記被覆工程の後に、前記被覆層が表面に形成された前記リチウムニッケル複合酸化物の粒子を、300℃以上で熱処理する熱処理工程を備える、請求項6又は請求項7に記載の全固体リチウムイオン二次電池用正極活物質の製造方法。
PCT/JP2021/028186 2020-07-30 2021-07-29 全固体リチウムイオン二次電池用正極活物質とその製造方法 WO2022025212A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022539579A JPWO2022025212A1 (ja) 2020-07-30 2021-07-29
CN202180059735.XA CN116157936A (zh) 2020-07-30 2021-07-29 全固体锂离子二次电池用正极活性物质及其制造方法
US18/018,166 US20230268500A1 (en) 2020-07-30 2021-07-29 Positive electrode active material for all-solid-state lithium ion secondary battery and method for manufacturing the same
EP21851567.4A EP4191703A1 (en) 2020-07-30 2021-07-29 Positive electrode active material for all-solid-state lithium ion secondary batteries, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020129024 2020-07-30
JP2020-129024 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022025212A1 true WO2022025212A1 (ja) 2022-02-03

Family

ID=80036365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028186 WO2022025212A1 (ja) 2020-07-30 2021-07-29 全固体リチウムイオン二次電池用正極活物質とその製造方法

Country Status (5)

Country Link
US (1) US20230268500A1 (ja)
EP (1) EP4191703A1 (ja)
JP (1) JPWO2022025212A1 (ja)
CN (1) CN116157936A (ja)
WO (1) WO2022025212A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181452A1 (ja) * 2022-03-24 2023-09-28 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池、リチウムイオン電池用正極活物質の製造方法及び全固体リチウムイオン電池用正極活物質の製造方法
WO2023228958A1 (ja) * 2022-05-23 2023-11-30 住友金属鉱山株式会社 全固体リチウムイオン二次電池用正極活物質とその製造方法
WO2023228957A1 (ja) * 2022-05-23 2023-11-30 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質とその製造方法
WO2023228956A1 (ja) * 2022-05-23 2023-11-30 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質とその製造方法
WO2023228959A1 (ja) * 2022-05-23 2023-11-30 住友金属鉱山株式会社 全固体リチウムイオン二次電池用正極活物質とその製造方法
WO2023238581A1 (ja) * 2022-06-10 2023-12-14 パナソニックホールディングス株式会社 被覆活物質、電極材料および電池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170715A (ja) 2009-01-20 2010-08-05 Toyota Motor Corp 正極活物質材料
JP2011116580A (ja) 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP2014056661A (ja) 2012-09-11 2014-03-27 Toyota Motor Corp 硫化物固体電解質
JP2015122298A (ja) * 2013-11-22 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
JP2016076470A (ja) * 2014-10-06 2016-05-12 日立金属株式会社 リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2019139854A (ja) * 2018-02-06 2019-08-22 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極活物質の評価方法、および非水系電解質二次電池
JP2020087822A (ja) * 2018-11-29 2020-06-04 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物とその製造方法、および、該リチウムニッケル含有複合酸化物を母材として用いたリチウムイオン二次電池用正極活物質とその製造方法
JP2020100541A (ja) * 2018-12-20 2020-07-02 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2020129024A (ja) 2019-02-07 2020-08-27 コニカミノルタ株式会社 画像形成システム及び画像形成方法
JP2020167136A (ja) * 2019-03-28 2020-10-08 住友金属鉱山株式会社 全固体リチウムイオン二次電池用正極活物質および全固体リチウムイオン二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170715A (ja) 2009-01-20 2010-08-05 Toyota Motor Corp 正極活物質材料
JP2011116580A (ja) 2009-12-02 2011-06-16 Sumitomo Metal Mining Co Ltd ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP2014056661A (ja) 2012-09-11 2014-03-27 Toyota Motor Corp 硫化物固体電解質
JP2015122298A (ja) * 2013-11-22 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
JP2016076470A (ja) * 2014-10-06 2016-05-12 日立金属株式会社 リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2019139854A (ja) * 2018-02-06 2019-08-22 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極活物質の評価方法、および非水系電解質二次電池
JP2020087822A (ja) * 2018-11-29 2020-06-04 住友金属鉱山株式会社 リチウムニッケル含有複合酸化物とその製造方法、および、該リチウムニッケル含有複合酸化物を母材として用いたリチウムイオン二次電池用正極活物質とその製造方法
JP2020100541A (ja) * 2018-12-20 2020-07-02 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2020129024A (ja) 2019-02-07 2020-08-27 コニカミノルタ株式会社 画像形成システム及び画像形成方法
JP2020167136A (ja) * 2019-03-28 2020-10-08 住友金属鉱山株式会社 全固体リチウムイオン二次電池用正極活物質および全固体リチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NARUMI OHTA ET AL.: "LiNbOs-coated LiCoO as cathode material for all solid-state lithium secondary batteries", ELECTROCHEMISTRY COMMUNICATIONS, vol. 9, 2007, pages 1486 - 1490, XP022118571, DOI: 10.1016/j.elecom.2007.02.008

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181452A1 (ja) * 2022-03-24 2023-09-28 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池、リチウムイオン電池用正極活物質の製造方法及び全固体リチウムイオン電池用正極活物質の製造方法
WO2023182458A1 (ja) * 2022-03-24 2023-09-28 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池、リチウムイオン電池用正極活物質の製造方法及び全固体リチウムイオン電池用正極活物質の製造方法
WO2023228958A1 (ja) * 2022-05-23 2023-11-30 住友金属鉱山株式会社 全固体リチウムイオン二次電池用正極活物質とその製造方法
WO2023228957A1 (ja) * 2022-05-23 2023-11-30 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質とその製造方法
WO2023228956A1 (ja) * 2022-05-23 2023-11-30 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質とその製造方法
WO2023228959A1 (ja) * 2022-05-23 2023-11-30 住友金属鉱山株式会社 全固体リチウムイオン二次電池用正極活物質とその製造方法
WO2023238581A1 (ja) * 2022-06-10 2023-12-14 パナソニックホールディングス株式会社 被覆活物質、電極材料および電池

Also Published As

Publication number Publication date
CN116157936A (zh) 2023-05-23
JPWO2022025212A1 (ja) 2022-02-03
EP4191703A1 (en) 2023-06-07
US20230268500A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
WO2022025212A1 (ja) 全固体リチウムイオン二次電池用正極活物質とその製造方法
WO2018123951A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2018043669A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
US11594726B2 (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2020177860A (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムニッケルマンガンコバルト含有複合酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
WO2021251416A1 (ja) リチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池
US20210305567A1 (en) Positive electrode active material for lithium ion secondary battery, method of manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2021132512A1 (ja) 全固体型リチウムイオン二次電池用正極活物質とその製造方法、および全固体型リチウムイオン二次電池
JP7119783B2 (ja) 遷移金属複合水酸化物の製造方法、遷移金属複合水酸化物、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質
JP7274125B2 (ja) 全固体リチウムイオン二次電池用正極活物質および全固体リチウムイオン二次電池
JP7177395B2 (ja) 全固体リチウムイオン二次電池用正極活物質および全固体リチウムイオン二次電池
EP3951947A1 (en) Positive-electrode active material for lithium-ion secondary cell, method for manufacturing positive-electrode active material, and lithium-ion secondary cell
US20220344656A1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP7272140B2 (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP2021005548A (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
WO2023228959A1 (ja) 全固体リチウムイオン二次電池用正極活物質とその製造方法
WO2023228958A1 (ja) 全固体リチウムイオン二次電池用正極活物質とその製造方法
JP2021005475A (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP2020087858A (ja) リチウムイオン二次電池用正極活物質の製造方法
WO2023228957A1 (ja) リチウムイオン二次電池用正極活物質とその製造方法
JP2023172836A (ja) 全固体リチウムイオン二次電池用正極活物質とその製造方法
WO2020261962A1 (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP2023172835A (ja) 全固体リチウムイオン二次電池用正極活物質とその製造方法
US20240021808A1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
WO2023228956A1 (ja) リチウムイオン二次電池用正極活物質とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539579

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021851567

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021851567

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE