WO2012081522A1 - リチウムイオン二次電池正極材料用前駆体ガラスおよびリチウムイオン二次電池正極材料用結晶化ガラス - Google Patents

リチウムイオン二次電池正極材料用前駆体ガラスおよびリチウムイオン二次電池正極材料用結晶化ガラス Download PDF

Info

Publication number
WO2012081522A1
WO2012081522A1 PCT/JP2011/078595 JP2011078595W WO2012081522A1 WO 2012081522 A1 WO2012081522 A1 WO 2012081522A1 JP 2011078595 W JP2011078595 W JP 2011078595W WO 2012081522 A1 WO2012081522 A1 WO 2012081522A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
glass
lithium ion
ion secondary
Prior art date
Application number
PCT/JP2011/078595
Other languages
English (en)
French (fr)
Inventor
俣野 高宏
知浩 永金
境 哲男
Original Assignee
日本電気硝子株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社, 独立行政法人産業技術総合研究所 filed Critical 日本電気硝子株式会社
Publication of WO2012081522A1 publication Critical patent/WO2012081522A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0072Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition having a ferro-electric crystal phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a precursor glass for a positive electrode material for a lithium ion secondary battery and a crystallized glass for a positive electrode material for a lithium ion secondary battery used for portable electronic devices, electric vehicles and the like.
  • Lithium ion secondary batteries have established themselves as high-capacity and lightweight power supplies that are indispensable for portable electronic terminals and electric vehicles.
  • Inorganic metal oxides such as lithium cobaltate (LiCoO 2 ) and lithium manganate (LiMnO 2 ) have been used as positive electrode materials for lithium ion secondary batteries.
  • LiCoO 2 lithium cobaltate
  • LiMnO 2 lithium manganate
  • higher capacity of lithium ion secondary batteries is required.
  • there is a demand for switching from materials with a large environmental load such as Co and Mn to more environmentally conscious materials there is a demand for switching from materials with a large environmental load such as Co and Mn to more environmentally conscious materials.
  • the problem of depletion of cobalt resources has attracted attention, and from such a viewpoint, conversion to an inexpensive positive electrode material replacing lithium cobalt oxide and lithium manganate is desired.
  • olivine-type crystals are superior in temperature stability to lithium cobaltate and are expected to operate safely at high temperatures. Further, because of the structure having phosphoric acid as a skeleton, it has a feature of excellent resistance to structural deterioration due to charge / discharge reaction.
  • the iron site in each of the manganese-based spinel type, NASICON type and olivine type crystals can be replaced with various transition metal ions.
  • LiMn x Fe (1-x) PO 4 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) and the like also have a function as a positive electrode material.
  • a lithium iron phosphate material made of crystallized glass has been proposed as a positive electrode material that generates less gas during firing (see, for example, Patent Document 2).
  • the precursor glass generates almost no gas when mixed with a conductive active material such as carbon powder and fired. For this reason, the conductive active material can be efficiently activated on the surface of the positive electrode material particles, and excellent electronic conductivity can be easily achieved.
  • a crystallized glass powder in which a lithium iron phosphate crystal or a lithium iron phosphate solid solution crystal having a uniform composition and a small crystallite size is deposited can be produced.
  • a lithium ion secondary battery positive electrode material excellent in conductivity can be obtained.
  • a positive electrode material excellent in both ion conductivity and electron conductivity can be obtained.
  • the present invention has been made in view of such circumstances, and provides a precursor glass for a positive electrode material for a lithium ion secondary battery and a crystallized glass for a positive electrode material for a lithium ion secondary battery capable of obtaining a high battery capacity.
  • the purpose is to do.
  • the present invention as a glass composition, in mol%, Li 2 O 20 ⁇ 50 %, P 2 O 5 20 ⁇ 40%, Fe 2 O 3 0 ⁇ 40%, MnO 2 0 ⁇ 60%, Nb 2 O 5 0 contains .1 to 2.4% and a molar ratio, (Fe 2 O 3 + MnO 2/2) / P 2 lithium ion secondary battery positive electrode material, characterized in that O is 5 ⁇ 0.85 It relates to a precursor glass for use.
  • a lithium ion secondary battery positive electrode material having a high battery capacity can be produced.
  • the “precursor glass” refers to glass that crystallizes by heat treatment and in which the target crystal is precipitated.
  • the lithium ion secondary battery positive electrode material for a precursor glass of the present invention further, in mol%, SiO 2 + V 2 O 5 + B 2 O 3 + GeO 2 + Al 2 O 3 + Ga 2 O 3 + Sb 2 O 3 It is preferable to contain 0 to 2.4% of + Bi 2 O 3 .
  • the above components are components that improve glass forming ability. By adding these components, vitrification is stabilized, undesired heterogeneous crystals are hardly precipitated, and a lithium ion secondary battery positive electrode material having a high battery capacity is easily obtained.
  • the molar ratio is Li 2 O / (P 2 O 5 + Fe 2 O 3 + MnO 2 /2) ⁇ 0.5. preferable.
  • vitrification is stable, undesired heterogeneous crystals are less likely to precipitate, and a lithium ion secondary battery positive electrode material having a high battery capacity can be easily obtained.
  • the molar ratio is Li 2 O / P 2 O 5 ⁇ 0.85 and / or Li 2 O / (Fe 2 O 3 + MnO 2 /2) ⁇ 0.85 is preferable.
  • vitrification is stable, undesired heterogeneous crystals are less likely to precipitate, and a lithium ion secondary battery positive electrode material having a high battery capacity can be easily obtained.
  • the present invention has a glass composition in terms of mol%, Li 2 O 20-50%, P 2 O 5 20-40%, Fe 2 O 3 0-40%, MnO 2 0 Lithium ion secondary battery positive electrode material comprising ⁇ 60%, Nb 2 O 5 0-2.4%, and a molar ratio of Li 2 O / P 2 O 5 ⁇ 1.01 It relates to a precursor glass for use.
  • the present invention has a glass composition of mol%, Li 2 O 20-50%, P 2 O 5 20-40%, Fe 2 O 3 0-40%, MnO 2 0-60%, Nb It contains 2 O 5 0.1 ⁇ 2.4%, and (Fe 2 O 3 + MnO 2 /2) / P 2 O 5 for a lithium ion secondary battery positive electrode material characterized by ⁇ 0.85 It relates to crystallized glass.
  • the crystallized glass for a lithium ion secondary battery positive electrode material of the present invention is further in mol%, SiO 2 + V 2 O 5 + B 2 O 3 + GeO 2 + Al 2 O 3 + Ga 2 O 3 + Sb 2 O 3. It is preferable to contain 0 to 2.4% of + Bi 2 O 3 .
  • the molar ratio is Li 2 O / (P 2 O 5 + Fe 2 O 3 + MnO 2 /2) ⁇ 0.5. preferable.
  • the molar ratio of Li 2 O / P 2 O 5 ⁇ 0.85 and / or Li 2 O / (Fe 2 O 3 + MnO 2 /2) ⁇ 0.85 is preferable.
  • the present invention provides, as a glass composition, a molar composition of Li 2 O 20 to 50%, P 2 O 5 20 to 40%, Fe 2 O 3 0 to 40%, MnO 2 0
  • the present invention relates to a crystallized glass for a positive electrode material for a lithium ion secondary battery, characterized in that it contains ⁇ 60%, Nb 2 O 5 0-2.4%, and Li 2 O / P 2 O 5 ⁇ 1.01 .
  • the crystallized glass for a positive electrode material of a lithium ion secondary battery of the present invention is a LiMn x Fe y M 1- (x + y) PO 4 crystal (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1, and M preferably contains at least one selected from Nb, Ti, V, Cr, Co, and Ni).
  • a lithium ion secondary battery positive electrode material for the crystallized glass of the present invention it is preferable that the content of LiMn x Fe y M 1- (x + y) PO 4 crystal is 50 mass% or more.
  • the present invention relates to a glass composition having a mol% of Li 2 O 20-50%, P 2 O 5 20-40%, Fe 2 O 3 0-40%, MnO 2 0-60%, containing nb 2 O 5 0.1 ⁇ 2.4% , and a molar ratio, to adjust the raw material powder so that the (Fe 2 O 3 + MnO 2 /2) / P 2 O 5 ⁇ 0.85
  • the present invention relates to a method for producing a positive electrode material for a lithium ion secondary battery, comprising a step, a step of melting a raw material powder to obtain a molten glass, and a step of rapidly cooling the molten glass to obtain a precursor glass.
  • the manufacturing method of the lithium secondary battery positive electrode material of this invention further includes the process of heat-processing precursor glass and obtaining crystallized glass.
  • the precursor glass for a lithium ion secondary battery positive electrode material of the present invention has a glass composition of mol%, Li 2 O 20 to 50%, P 2 O 5 20 to 40%, Fe 2 O 3 0 to 40%, MnO 2 0 ⁇ 60%, contains Nb 2 O 5 0.1 ⁇ 2.4% , and a molar ratio, is (Fe 2 O 3 + MnO 2 /2) / P 2 O 5 ⁇ 0.85 It is characterized by that.
  • the reason for limiting the glass composition as described above will be described below.
  • Li 2 O is the main component of LiMn x Fe y M 1- (x + y) PO 4 crystal.
  • the Li 2 O content is preferably 20 to 50%, 25 to 45%, 30 to 40%, 33 to 37%, and particularly preferably 33.5 to 37%.
  • the content of Li 2 O is too small, when the precursor glass is crystallized, the amount of LiMn x Fe y M 1- (x + y) PO 4 crystals deposited decreases, and it is difficult to obtain a high battery capacity.
  • unwanted foreign crystals Li 3 PO 4 , Li 3 (Mn x Fe 1-x ) 2 (PO 4 ) 3, etc.
  • the precipitation amount of LiMn x Fe y M 1- (x + y) PO 4 crystal is reduced, a high battery capacity is hardly obtained.
  • P 2 O 5 is also a main component of LiMn x Fe y M 1- (x + y) PO 4 crystal.
  • the content of P 2 O 5 is preferably 20 to 40%, 5 to 35%, 28 to 35%, 29 to 33%, particularly 29.5 to 32.5%.
  • the content of P 2 O 5 is out of the range, heterogeneous crystal undesired when was crystallized precursor glass tends to precipitate.
  • the precipitation amount of LiMn x Fe y M 1- (x + y) PO 4 crystal is reduced, a high battery capacity is hardly obtained.
  • Fe 2 O 3 is a constituent component of LiMn x Fe y M 1- (x + y) PO 4 crystal.
  • the content of Fe 2 O 3 is preferably 0 to 40%, 10 to 40%, 20 to 35%, particularly 30 to 35%.
  • the content of Fe 2 O 3 is too large, heterogeneous crystals are likely to precipitate unwanted when the precursor glass was crystallized.
  • the precipitation amount of LiMn x Fe y M 1- (x + y) PO 4 crystal is reduced, a high battery capacity is hardly obtained.
  • it may be used FeO and Fe 3 O 4 or the like as a raw material, the amount that case the terms of Fe 2 O 3 may satisfy the above range.
  • MnO 2 is a constituent component of LiMn x Fe y M 1- (x + y) PO 4 crystal as well as Fe 2 O 3 .
  • the MnO 2 content is preferably 0 to 60%, 20 to 55%, 30 to 55%, 40 to 55%, particularly preferably 45 to 50%.
  • the content of MnO 2 is too large, heterogeneous crystals are likely to precipitate unwanted when the precursor glass was crystallized. As a result, the precipitation amount of LiMn x Fe y M 1- (x + y) PO 4 crystal is reduced, a high battery capacity is hardly obtained.
  • the starting may be used MnO such as, the amount converted into MnO 2 If may satisfy the above range.
  • Nb 2 O 5 is a component that improves the glass forming ability of the precursor glass. By positively adding Nb 2 O 5 , unwanted precipitation of different crystals is suppressed, and a positive electrode material having a high battery capacity can be easily obtained.
  • the content of Nb 2 O 5 is preferably 0.1 to 2.4%, 0.25 to 2.3%, particularly preferably 0.25 to 2%. However, even if the content of Nb 2 O 5 is too large, undesired heterogeneous crystals are likely to precipitate when the precursor glass is crystallized, and it is difficult to obtain a high battery capacity.
  • Nb 2 O 5 , SiO 2 , V 2 O 5 , B 2 O 3 , GeO 2 , Al 2 O 3 , Ga 2 O 3 , Sb 2 O 3 , Bi are used as components for improving the glass forming ability.
  • 2 O 3 can be added in a total amount of 0 to 2.4%, particularly 0.1 to 2.3%. When there is too much content of these components, when the precursor glass is crystallized, unwanted heterogeneous crystals are likely to precipitate, and it is difficult to obtain a high battery capacity.
  • Li 2 O / (P 2 O 5 + Fe 2 O 3 + MnO 2/2) in molar ratio 0.5 or more, particularly 0.52 or more It is preferable that When Li 2 O / (P 2 O 5 + Fe 2 O 3 + MnO 2/2) is too small, heterogeneous crystal unwanted when the precursor glass was crystallized is likely to precipitate, a high battery capacity is hardly obtained.
  • the upper limit is not particularly limited, but is preferably 1 or less, particularly preferably 0.8 or less, in order to precipitate a sufficient amount of LiMn x Fe y M 1- (x + y) PO 4 crystals.
  • Li 2 O / P 2 O 5 has a molar ratio of 0.85 or more, 0.9 or more, 1 or more, particularly 1.01 or more. It is preferable. When Li 2 O / P 2 O 5 is too small, heterogeneous crystal unwanted when the precursor glass was crystallized is likely to precipitate, a high battery capacity is hardly obtained. Although there is no particular limitation on the upper limit, in order to deposit a sufficient amount of LiMn x Fe y M 1- (x + y) PO 4 crystal, 2 or less, more preferably 1.5 or less.
  • Li 2 O / (Fe 2 O 3 + MnO 2/2) in molar ratio it is 0.85 or more, particularly 0.9 or more preferable.
  • Li 2 O / (Fe 2 O 3 + MnO 2/2) is too small, heterogeneous crystal unwanted when the precursor glass was crystallized is likely to precipitate, a high battery capacity is hardly obtained.
  • the upper limit in order to deposit a sufficient amount of LiMn x Fe y M 1- (x + y) PO 4 crystal, 2 or less, more preferably 1.5 or less.
  • the precursor glass for a lithium ion secondary battery positive electrode material of the present invention has a glass composition of mol%, Li 2 O 20-50%, P 2 O 5 20-40%, Fe 2 O 3 0 to 40%, MnO 2 0 to 60%, Nb 2 O 5 0 to 2.4%, and a molar ratio of Li 2 O / P 2 O 5 ⁇ 1.01 To do.
  • the above-mentioned thing is applicable about the preferable range of the content of each component, a limitation reason, etc.
  • the crystallized glass for a lithium ion secondary battery positive electrode material of the present invention can be produced by firing and crystallizing the precursor glass for a lithium ion secondary battery positive electrode material.
  • the crystallized glass for a lithium ion secondary battery positive electrode material of the present invention has a glass composition of mol%, Li 2 O 20-50%, P 2 O 5 20-40%, Fe 2 O 3 0-40%, MnO 2 0 ⁇ 60%, contains Nb 2 O 5 0.1 ⁇ 2.4% , and characterized in that (Fe 2 O 3 + MnO 2 /2) is / P 2 O 5 ⁇ 0.85 .
  • the crystallized glass for a lithium ion secondary battery positive electrode material of the present invention is further in mol%, SiO 2 + V 2 O 5 + B 2 O 3 + GeO 2 + Al 2 O 3 + Ga 2 O 3 + Sb 2 O 3 + Bi 2 O 3. Is preferably contained in an amount of 0 to 2.4%.
  • Li 2 O / (P 2 O 5 + Fe 2 O 3 + MnO 2/2) in molar ratio preferably 0.5 mol or more .
  • Li 2 O / P 2 O 5 is preferably 0.85 or more.
  • Li 2 O / (Fe 2 O 3 + MnO 2/2) in molar ratio is preferably 0.85 or more.
  • the preferable composition range regarding the crystallized glass for a lithium ion secondary battery positive electrode material of the present invention and the reason for the limitation are the same as the preferable composition range of the precursor glass for a lithium ion secondary battery positive electrode material described above and the reason for the limitation. Is done.
  • the crystallized glass for a lithium ion secondary battery positive electrode material of the present invention has a glass composition of mol%, Li 2 O 20-50%, P 2 O 5 20-40%, Fe 2 O 3 It contains 0 to 40%, MnO 2 0 to 60%, Nb 2 O 5 0 to 2.4%, and Li 2 O / P 2 O 5 ⁇ 1.01.
  • the above-mentioned thing is applicable about the preferable range of the content of each component, a limitation reason, etc.
  • the crystallized glass for lithium ion secondary battery positive electrode material is composed of LiMn x Fe y M 1- (x + y) PO 4 crystal (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1, It is preferable to contain at least one selected from Nb, Ti, V, Cr, Co, and Ni.
  • LiMn x Fe y M 1- (x + y) PO 4 content of the crystals 50 mass% or more, and a 70 mass% or more, particularly 90 mass% or more.
  • the content of LiMn x Fe y M 1- (x + y) PO 4 crystal is too small, so the ion conductivity is insufficient, high battery capacity is hardly obtained.
  • it does not specifically limit about an upper limit, Actually, it is 99.9 mass% or less, especially 99 mass% or less.
  • the crystallite size of the LiMn x Fe y M 1- (x + y) PO 4 crystal is small, the crystallized glass becomes possible to reduce the particle size when used in the powder form, to improve the electrical conductivity Can do.
  • the crystallite size of the LiMn x Fe y M 1- (x + y) PO 4 crystal is preferably 100 nm or less, particularly preferably 80 nm or less.
  • the lower limit is not particularly limited, but is practically 1 nm or more, particularly 10 nm or more.
  • the crystallite size of the LiMn x Fe y M 1- (x + y) PO 4 crystals from the analysis result of the powder X-ray diffraction of the crystallized glass powder, obtained according to the equation Scherrer.
  • the crystallized glass for a lithium ion secondary battery positive electrode material is preferably in the form of powder. This increases the surface area of the positive electrode material as a whole, making it easier to exchange ions and electrons.
  • the average particle size of the crystallized glass powder for a lithium ion secondary battery positive electrode material is preferably 50 ⁇ m or less, 30 ⁇ m or less, and particularly preferably 20 ⁇ m or less. Although it does not specifically limit about a minimum, It is 0.05 micrometer or more actually.
  • the precursor glass for a lithium ion secondary battery positive electrode material of the present invention has a glass composition of mol%, Li 2 O 20-50%, P 2 O 5 20-40%, Fe 2 O 3. 0 ⁇ 40%, MnO 2 0 ⁇ 60%, contains Nb 2 O 5 0.1 ⁇ 2.4% , and a molar ratio, (Fe 2 O 3 + MnO 2/2) / P 2 O 5 ⁇ It can be produced by a production method including a step of adjusting the raw material powder to 0.85, a step of melting the raw material powder to obtain molten glass, and a step of rapidly cooling the molten glass.
  • crystallized glass for lithium ion secondary battery positive electrode material can be obtained.
  • a +2 valent reagent such as iron oxalate is added to the raw material for producing the precursor glass, or a reduction containing carbon such as glucose during the melting of the precursor glass. It is preferable to add an agent. It is also preferable to melt in a reaction vessel excellent in airtightness filled with a reducing gas.
  • Crystallized glass can be produced by heat-treating the precursor glass in an electric furnace capable of controlling temperature and atmosphere.
  • the heat treatment temperature is not particularly limited because it varies depending on the composition of the precursor glass and the target crystallite size, but it is preferably at least the glass transition temperature or more, particularly the crystallization temperature or more.
  • the heat treatment temperature is preferably 500 ° C. or higher, particularly 550 ° C. or higher. If the heat treatment temperature is too low, crystal precipitation is insufficient and the ionic conductivity tends to be poor.
  • the upper limit is not particularly limited, but if the heat treatment temperature is too high, the crystals may be melted, and therefore it is preferably 1000 ° C. or less, particularly preferably 950 ° C. or less.
  • the precursor glass is heat-treated for a certain period of time near the transition temperature and then subjected to two-stage firing in which heat treatment is further performed near the crystallization temperature, it becomes easy to obtain crystallized glass having a uniform crystal grain size.
  • the heat treatment time is appropriately adjusted so that the crystallization of the precursor glass proceeds sufficiently.
  • the heat treatment time is preferably 10 to 60 minutes, particularly 20 to 40 minutes.
  • the atmosphere of the heat treatment is preferably a reducing atmosphere such as hydrogen, ammonia, carbon monoxide.
  • a reducing atmosphere such as hydrogen, ammonia, carbon monoxide.
  • a stable conductive active material having high electron conductivity In order to improve the conductivity, it is preferable to mix a stable conductive active material having high electron conductivity with the crystallized glass.
  • the conductive active material include carbon-based conductive active materials such as graphite, acetylene black, and amorphous carbon, and metal-based conductive active materials such as metal powder.
  • the amorphous carbon those in which the CO bond peak and CH bond peak causing the decrease in the conductivity of the positive electrode material are not substantially detected in the FTIR analysis are preferable.
  • a conductive active material such as glucose
  • a carboxylic acid such as an aliphatic carboxylic acid or an aromatic carboxylic acid
  • an organic compound such as an organic binder
  • Added to and mixed, and heat-treated in an inert atmosphere such as nitrogen or a reducing atmosphere such as hydrogen, ammonia or carbon monoxide to crystallize the precursor glass powder, and conduct electricity to the interface of the obtained crystallized glass powder.
  • an inert atmosphere such as nitrogen or a reducing atmosphere
  • hydrogen, ammonia or carbon monoxide to crystallize the precursor glass powder, and conduct electricity to the interface of the obtained crystallized glass powder.
  • There is a method of leaving a carbon component such as amorphous carbon which is an active material.
  • examples of the aliphatic carboxylic acid include acetic acid, propionic acid, butyric acid, and oxalic acid.
  • examples of the aromatic carboxylic acid include benzoic acid, phthalic acid, maleic acid and the like.
  • examples of the organic binder include phenol resin, acrylic resin, polyethylene glycol, polyethylene carbonate, polymethylstyrene, and ethyl cellulose.
  • examples of the acrylic resin include polybutyl methacrylate, polyethyl methacrylate, and polymethyl methacrylate.
  • the conductive active material can be uniformly supported on the crystallized glass powder interface.
  • the organic binder can contribute to two characteristics of the positive electrode material, that is, moldability and conductivity. That is, it can be easily formed into a sheet shape and can be used as a positive electrode material for a battery without being pulverized again after firing.
  • the electric conductivity of the positive electrode material for a lithium ion secondary battery of the present invention is 1.0 ⁇ 10 ⁇ 8 S ⁇ cm ⁇ 1 or more, 1.0 ⁇ 10 ⁇ 6 S ⁇ cm ⁇ 1 or more, particularly 1.0 ⁇ 10 ⁇ . It is preferably 10 ⁇ 4 S ⁇ cm ⁇ 1 or more.
  • Tables 1 to 3 show examples of the present invention (sample Nos. 1 to 19) and comparative examples (sample Nos. 20 to 22).
  • glass raw materials were prepared so as to have the compositions shown in Tables 1 to 3, and melted at 1100 to 1400 ° C. for 1 hour using a platinum crucible.
  • Precursor glass was produced by pouring molten glass into a pair of forming rolls and forming into a film while quenching.
  • the precursor glass was pulverized by a ball mill to obtain a precursor glass powder having an average particle diameter of 2 ⁇ m.
  • Slurry by mixing 5 parts by weight of phenol resin (corresponding to 12.4 parts by weight of graphite) and 15 parts by weight of ethanol as a solvent with respect to 100 parts by weight of the precursor glass powder, by a known doctor blade method, After forming into a 500 ⁇ m thick sheet, it was dried at 80 ° C. for about 1 hour.
  • the obtained sheet-like molded body is cut into a predetermined size and crystallized by performing heat treatment at 800 ° C. for 30 minutes in a nitrogen atmosphere to obtain a positive electrode material (sintered body of crystallized glass powder). It was.
  • the content of LiMn x Fe y M 1- (x + y) PO 4 crystal in the cathode material was measured by powder X-ray diffraction method.
  • the obtained positive electrode material was evaluated for discharge capacity at a 0.1 C rate as follows.
  • NMP methylpyrrolidone
  • the mixture was sufficiently stirred with a rotation / revolution mixer to form a slurry.
  • the obtained slurry was coated on a 20 ⁇ m thick aluminum foil as a positive electrode current collector, dried at 80 ° C. in a dryer, and then between a pair of rotating rollers
  • the electrode sheet was obtained by pressing at 1 t / cm 2 .
  • the electrode sheet was punched to a diameter of 11 mm with an electrode punching machine and dried at 140 ° C. for 6 hours to obtain a circular working electrode.
  • the working electrode was placed on the lower lid of the coin cell with the aluminum foil surface facing downward, and the polypropylene porous membrane with a diameter of 16 mm and dried under reduced pressure at 60 ° C. for 8 hours (Celguard # 2400 manufactured by Hoechst Celanese) ) And a lithium metal as a counter electrode were laminated to prepare a test battery.
  • the test battery was assembled in an environment with a dew point temperature of ⁇ 60 ° C. or lower.
  • sample No. Glasses for positive electrode materials 1 to 19 exhibited a good discharge capacity of 100 mwh / g or more.
  • sample No. which is a comparative example The positive electrode material glasses 20 and 22 did not satisfy the predetermined glass composition, and the discharge capacity was as low as 88 mwh / g or less. Sample No. Since No 21 was vitrified, the discharge capacity was not measured.

Abstract

ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0.1~2.4%を含有し、かつ、モル比で、(Fe+MnO/2)/P≧0.85であることを特徴とするリチウムイオン二次電池正極材料用前駆体ガラス。

Description

リチウムイオン二次電池正極材料用前駆体ガラスおよびリチウムイオン二次電池正極材料用結晶化ガラス
 本発明は、携帯型電子機器や電気自動車等に用いられるリチウムイオン二次電池正極材料用前駆体ガラスおよびリチウムイオン二次電池正極材料用結晶化ガラスに関する。
 リチウムイオン二次電池は、携帯電子端末や電気自動車に不可欠な、高容量で軽量な電源としての地位を確立している。リチウムイオン二次電池の正極材料には、これまでコバルト酸リチウム(LiCoO)やマンガン酸リチウム(LiMnO)等の無機金属酸化物が用いられてきている。しかし、近年の電子機器の高性能化による消費電力の増大に伴い、さらなるリチウムイオン二次電池の高容量化が要求されている。また、環境保全問題やエネルギー問題の観点から、CoやMnなどの環境負荷の大きい材料から、より環境調和型の材料への転換が求められている。さらに近年、コバルト資源の枯渇問題が注目されており、そのような観点からも、コバルト酸リチウムやマンガン酸リチウムに代わる安価な正極材料への転換が望まれている。
 近年、コストおよび資源などの面で有利なことから、鉄を含有するリチウム化合物のなかで、マンガン系スピネル型結晶、NASICON型結晶(LiFe(PO))およびオリビン型結晶(LiFePO)が注目されており、種々、研究および開発が進められている(例えば、特許文献1参照)。なかでもオリビン型結晶はコバルト酸リチウムに比べて温度安定性に優れ、高温での安全な動作が期待される。また、リン酸を骨格とする構造ゆえに、充放電反応による構造劣化への耐性に優れるという特徴を有する。
 なお、マンガン系スピネル型、NASICON型およびオリビン型の各結晶における鉄サイトは、種々の遷移金属イオンで置換可能であることが知られている。例えば、鉄をマンガンまたはバナジウムで完全に置換したLiMn(PO)、LiMnPO、LiVPO等、鉄をマンガンまたはバナジウムで部分置換したLi(MnFe1-(x+y)(PO)、LiMnFe(1-x)PO(0<x<1、0<y<1、0<x+y<1)なども正極材料としての機能を有する。
 ところで、正極材料に炭素粉末などの導電活物質を混合させれば、電子伝導性を向上させることが知られている。ところが、リン酸鉄リチウム正極材料に導電活物質を混合させて焼成すると、リン酸鉄リチウムから生じるガスの影響により、リン酸鉄リチウム粒子表面に導電活物質を効率よく賦活できず、電子伝導度が低下するという問題があった。
 そこで、焼成時にガスの発生が少ない正極材料として結晶化ガラスからなるリン酸鉄リチウム材料が提案されている(例えば、特許文献2参照)。当該前駆体ガラスは、炭素粉末等の導電活物質と混合して焼成する際にガスがほとんど発生しない。そのため、正極材料粒子表面に効率よく導電活物質を賦活させることができ、優れた電子伝導性を達成しやすい。また、当該前駆体ガラスを焼成することにより、均質な組成を有する結晶子サイズの小さいリン酸鉄リチウム結晶またはリン酸鉄リチウム固溶体結晶を析出させた結晶化ガラス粉末を作製することができ、イオン伝導性に優れたリチウムイオン二次電池正極材料を得ることができる。このように、特許文献2に記載のリン酸鉄リチウム材料を用いれば、イオン伝導性および電子伝導性の両特性に優れた正極材料を得ることが可能となる。
特開平9-134725号公報 特願2009-87933号公報
 特許文献2に記載の正極材料は、ガラス組成によって充放電時の電池容量が大きく変化する。しかしながら、特許文献2では、電池容量に関する最適組成についての検討が不十分であり、高い電池容量を有する正極材料は未だ提案されていないのが現状である。
 本発明はこのような状況に鑑みてなされたものであり、高い電池容量を得ることが可能なリチウムイオン二次電池正極材料用前駆体ガラスおよびリチウムイオン二次電池正極材料用結晶化ガラスを提供することを目的とする。
 本発明は、ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0.1~2.4%を含有し、かつ、モル比で、(Fe+MnO/2)/P≧0.85であることを特徴とするリチウムイオン二次電池正極材料用前駆体ガラスに関する。
 上記組成を有する前駆体ガラスを用いれば、高い電池容量を有するリチウムイオン二次電池正極材料を作製することができる。なお、「前駆体ガラス」とは、熱処理することにより結晶化し、目的とする結晶が析出するガラスをいう。
 第二に、本発明のリチウムイオン二次電池正極材料用前駆体ガラスは、さらに、モル%で、SiO+V+B+GeO+Al+Ga+Sb+Biを0~2.4%含有することが好ましい。
 上記成分はガラス形成能を向上させる成分である。これらの成分を添加することにより、ガラス化が安定し、望まない異種結晶が析出しにくく、電池容量の高いリチウムイオン二次電池正極材料が得られやすくなる。
 第三に、本発明のリチウムイオン二次電池正極材料用前駆体ガラスにおいて、モル比で、LiO/(P+Fe+MnO/2)≧0.5であることが好ましい。
 当該構成によれば、ガラス化が安定し、望まない異種結晶が析出しにくく、電池容量の高いリチウムイオン二次電池正極材料が得られやすくなる。
 第四に、本発明のリチウムイオン二次電池正極材料用前駆体ガラスにおいて、モル比で、LiO/P≧0.85、および/または、LiO/(Fe+MnO/2)≧0.85であることが好ましい。
 当該構成によれば、ガラス化が安定し、望まない異種結晶が析出しにくく、電池容量の高いリチウムイオン二次電池正極材料が得られやすくなる。
 第五に、本発明は、別の形態として、ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0~2.4%を含有し、かつ、モル比で、LiO/P≧1.01であることを特徴とするリチウムイオン二次電池正極材料用前駆体ガラスに関する。
 第六に、本発明は、ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0.1~2.4%を含有し、かつ(Fe+MnO/2)/P≧0.85であることを特徴とするリチウムイオン二次電池正極材料用結晶化ガラスに関する。
 第七に、本発明のリチウムイオン二次電池正極材料用結晶化ガラスは、さらに、モル%で、SiO+V+B+GeO+Al+Ga+Sb+Biを0~2.4%含有することが好ましい。
 第八に、本発明のリチウムイオン二次電池正極材料用結晶化ガラスにおいて、モル比で、LiO/(P+Fe+MnO/2)≧0.5であることが好ましい。
 第九に、本発明のリチウムイオン二次電池正極材料用結晶化ガラスにおいて、モル比で、LiO/P≧0.85、および/または、LiO/(Fe+MnO/2)≧0.85であることが好ましい。
 第十に、本発明は、別の形態として、ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0~2.4%を含有し、かつLiO/P≧1.01であることを特徴とするリチウムイオン二次電池正極材料用結晶化ガラスに関する。
 第十一に、本発明のリチウムイオン二次電池正極材料用結晶化ガラスは、主結晶としてLiMnFe1-(x+y)PO結晶(0≦x≦1、0≦y≦1、0<x+y≦1、MはNb、Ti、V、Cr、Co、Niから選ばれる少なくとも1種)を含有することが好ましい。
 第十二に、本発明のリチウムイオン二次電池正極材料用結晶化ガラスは、LiMnFe1-(x+y)PO結晶の含有量が50質量%以上であることが好ましい。
 第十三に、本発明は、ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0.1~2.4%を含有し、かつ、モル比で、(Fe+MnO/2)/P≧0.85となるように原料粉末を調整する工程、原料粉末を溶融し、溶融ガラスを得る工程、および、溶融ガラスを急冷し、前駆体ガラスを得る工程を含むことを特徴とするリチウムイオン二次電池正極材料の製造方法に関する。
 第十四に、本発明のリチウム二次電池正極材料の製造方法は、さらに、前駆体ガラスを熱処理して結晶化ガラスを得る工程を含むことが好ましい。
 本発明のリチウムイオン二次電池正極材料用前駆体ガラスは、ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0.1~2.4%を含有し、かつ、モル比で、(Fe+MnO/2)/P≧0.85であることを特徴とする。ガラス組成を上記のように限定した理由を以下に説明する。
 LiOはLiMnFe1-(x+y)PO結晶の主成分である。LiOの含有量は20~50%、25~45%、30~40%、33~37%、特に33.5~37%であることが好ましい。LiOの含有量が少なすぎると、前駆体ガラスを結晶化させた際にLiMnFe1-(x+y)PO結晶の析出量が少なくなり、高い電池容量が得られにくい。一方、LiOの含有量が多すぎると、望まない異種結晶(LiPO、Li(MnFe1-x(PO等)が析出しやすくなる。結果として、LiMnFe1-(x+y)PO結晶の析出量が少なくなり、高い電池容量が得られにくい。
 PもLiMnFe1-(x+y)PO結晶の主成分である。Pの含有量は20~40%、5~35%、28~35%、29~33%、特に29.5~32.5%であることが好ましい。Pの含有量が当該範囲外の場合は、前駆体ガラスを結晶化させた際に望まない異種結晶が析出しやすくなる。結果として、LiMnFe1-(x+y)PO結晶の析出量が少なくなり、高い電池容量が得られにくい。
 FeはLiMnFe1-(x+y)PO結晶の構成成分である。Feの含有量は0~40%、10~40%、20~35%、特に30~35%であることが好ましい。Feの含有量が多すぎると、前駆体ガラスを結晶させた際に望まない異種結晶が析出しやすくなる。結果として、LiMnFe1-(x+y)PO結晶の析出量が少なくなり、高い電池容量が得られにくい。なお、原料としてFeOやFe等を用いてもよく、その場合はFeに換算した量が前記範囲を満たせばよい。
 MnOもFe同様にLiMnFe1-(x+y)PO結晶の構成成分である。MnOの含有量は0~60%、20~55%、30~55%、40~55%、特に45~50%であることが好ましい。MnOの含有量が多すぎると、前駆体ガラスを結晶させた際に望まない異種結晶が析出しやすくなる。結果として、LiMnFe1-(x+y)PO結晶の析出量が少なくなり、高い電池容量が得られにくい。なお、原料としてMnO等を用いてもよく、その場合はMnOに換算した量が前記範囲を満たせばよい。
 Nbは前駆体ガラスのガラス形成能を向上させる成分である。Nbを積極的に添加することにより、望まない異種結晶の析出が抑制され、高い電池容量を有する正極材料が得られやすくなる。Nbの含有量は0.1~2.4%、0.25~2.3%、特に0.25~2%であることが好ましい。ただし、Nbの含有量が多すぎても、前駆体ガラスを結晶させた際に望まない異種結晶が析出しやすくなり、高い電池容量が得られにくい。
 (Fe+MnO/2)/Pは、モル比で、0.85以上、0.9以上、特に0.95以上であることが好ましい。(Fe+MnO/2)/Pが小さすぎると、前駆体ガラスを結晶させた際に望まない異種結晶が析出しやすくなり、高い電池容量が得られにくい。なお、上限については特に限定されないが、十分な量のLiMnFe1-(x+y)PO結晶を析出させるため、2以下、特に1.5以下であることが好ましい。
 また、ガラス形成能を向上させる成分として、Nb以外に、SiO、V、B、GeO、Al、Ga、Sb、Biを合量で0~2.4%、特に0.1~2.3%添加することができる。これらの成分の含有量が多すぎると、前駆体ガラスを結晶させた際に望まない異種結晶が析出しやすくなり、高い電池容量が得られにくい。
 本発明のリチウムイオン二次電池正極材料用前駆体ガラスにおいて、LiO/(P+Fe+MnO/2)は、モル比で、0.5以上、特に0.52以上であることが好ましい。LiO/(P+Fe+MnO/2)が小さすぎると、前駆体ガラスを結晶させた際に望まない異種結晶が析出しやすくなり、高い電池容量が得られにくい。なお、上限については特に限定されないが、十分な量のLiMnFe1-(x+y)PO結晶を析出させるため、1以下、特に0.8以下であることが好ましい。
 本発明のリチウムイオン二次電池正極材料用前駆体ガラスにおいて、LiO/Pは、モル比で、0.85以上、0.9以上、1以上、特に1.01以上であることが好ましい。LiO/Pが小さすぎると、前駆体ガラスを結晶させた際に望まない異種結晶が析出しやすくなり、高い電池容量が得られにくい。なお、上限については特に限定されないが、十分な量のLiMnFe1-(x+y)PO結晶を析出させるため、2以下、特に1.5以下であることが好ましい。
 本発明のリチウムイオン二次電池正極材料用前駆体ガラスにおいて、LiO/(Fe+MnO/2)は、モル比で、0.85以上、特に0.9以上であることが好ましい。LiO/(Fe+MnO/2)が小さすぎると、前駆体ガラスを結晶させた際に望まない異種結晶が析出しやすくなり、高い電池容量が得られにくい。なお、上限については特に限定されないが、十分な量のLiMnFe1-(x+y)PO結晶を析出させるため、2以下、特に1.5以下であることが好ましい。
 本発明のリチウムイオン二次電池正極材料用前駆体ガラスは、別の形態として、ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0~2.4%を含有し、かつ、モル比で、LiO/P≧1.01であることを特徴とする。当該形態において、各成分の含有量の好ましい範囲および限定理由等については、既述のものを適用することができる。
 本発明のリチウムイオン二次電池正極材料用結晶化ガラスは、前記リチウムイオン二次電池正極材料用前駆体ガラスを焼成して結晶化させることにより作製することができる。
 本発明のリチウムイオン二次電池正極材料用結晶化ガラスは、ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0.1~2.4%を含有し、かつ(Fe+MnO/2)/P≧0.85であることを特徴とする。
 本発明のリチウムイオン二次電池正極材料用結晶化ガラスは、さらに、モル%で、SiO+V+B+GeO+Al+Ga+Sb+Biが0~2.4%含有することが好ましい。
 本発明のリチウムイオン二次電池正極材料用結晶化ガラスにおいて、LiO/(P+Fe+MnO/2)は、モル比で、0.5モル以上であることが好ましい。
 本発明のリチウムイオン二次電池正極材料用結晶化ガラスにおいて、LiO/Pは0.85以上であることが好ましい。
 本発明のリチウムイオン二次電池正極材料用結晶化ガラスにおいて、LiO/(Fe+MnO/2)は、モル比で、0.85以上であることが好ましい。
 本発明のリチウムイオン二次電池正極材料用結晶化ガラスに関する好ましい組成範囲およびその限定理由は、前述したリチウムイオン二次電池正極材料用前駆体ガラスの好ましい組成範囲およびその限定理由と同じものが適用される。
 本発明のリチウムイオン二次電池正極材料用結晶化ガラスは、別の形態として、ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0~2.4%を含有し、かつLiO/P≧1.01であることを特徴とする。当該形態において、各成分の含有量の好ましい範囲および限定理由等については、既述のものを適用することができる。
 リチウムイオン二次電池正極材料用結晶化ガラスは、主結晶としてLiMnFe1-(x+y)PO結晶(0≦x≦1、0≦y≦1、0<x+y≦1、MはNb、Ti、V、Cr、Co、Niから選ばれる少なくとも1種)を含有することが好ましい。
 LiMnFe1-(x+y)PO結晶の含有量は50質量%以上、70質量%以上、特に90質量%以上であることが好ましい。LiMnFe1-(x+y)PO結晶の含有量が少なすぎると、イオン導電性が不十分となって、高い電池容量が得られにくい。なお、上限については特に限定されないが、現実的には99.9質量%以下、特に99質量%以下である。
 LiMnFe1-(x+y)PO結晶の結晶子サイズが小さいほど、結晶化ガラスを粉末状にして使用する際の粒径を小さくすることが可能となり、電気伝導性を向上させることができる。具体的には、LiMnFe1-(x+y)PO結晶の結晶子サイズは100nm以下、特に80nm以下であることが好ましい。下限については特に限定されないが、現実的には1nm以上、特に10nm以上である。なお、LiMnFe1-(x+y)PO結晶の結晶子サイズは、結晶化ガラス粉末の粉末X線回折の解析結果から、シェラーの式に従って求められる。
 リチウムイオン二次電池正極材料用結晶化ガラスは粉末状であることが好ましい。それにより正極材料全体としての表面積が大きくなり、イオンや電子の交換がより行いやすくなる。リチウムイオン二次電池正極材料用結晶化ガラス粉末の平均粒径は50μm以下、30μm以下、特に20μm以下であることが好ましい。下限については特に限定されないが、現実的には0.05μm以上である。
 従来、オリビン型のLiMnFe1-(x+y)PO結晶の製造方法としては、固相反応法や水熱合成法が知られているが、これらの方法では不純物として金属鉄等の磁性粒子が混入しやすく、繰り返しの充放電によりデンドライドが生成し、短絡の原因となるという問題があった。一方、ガラス溶融法によれば、金属鉄等も溶解させてLiMnFe1-(x+y)PO結晶中に取り込むことが可能となるため、均質で緻密な正極材料が得られやすい。
 具体的には、本発明のリチウムイオン二次電池正極材料用前駆体ガラスは、ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0.1~2.4%を含有し、かつ、モル比で、(Fe+MnO/2)/P≧0.85となるように原料粉末を調整する工程、原料粉末を溶融し、溶融ガラスを得る工程、および、溶融ガラスを急冷する工程を含む製造方法により作製することができる。
 また、さらに、リチウムイオン二次電池正極材料用前駆体ガラスを熱処理して結晶化させることにより、リチウムイオン二次電池正極材料用結晶化ガラスを得ることができる。
 なお、オリビン型LiMnFe1-(x+y)PO結晶中のFeとMnの原子価は+2価であるため、大気開放中で長時間溶融すると酸化還元平衡の関係から、それぞれ+3価および+4価に酸化されやすい。そこで、原子価状態を制御するために、前駆体ガラスを作製する際の原料にシュウ酸鉄などの+2価の試薬を添加することや、前駆体ガラス溶融中にグルコースなどの炭素を含有する還元剤を添加することが好ましい。また、還元性ガスを充満させた気密性に優れた反応容器中で溶融することも好ましい。
 前駆体ガラスを、温度および雰囲気制御が可能な電気炉中で熱処理することで結晶化ガラスを作製することができる。熱処理温度は、前駆体ガラスの組成や目的とする結晶子サイズによって異なるため特に限定されるものではないが、少なくともガラス転移温度以上、特に結晶化温度以上であることが好ましい。具体的には、熱処理温度は500℃以上、特に550℃以上であることが好ましい。熱処理温度が低すぎると、結晶の析出が不十分となり、イオン導電性に劣る傾向がある。一方、上限は特に限定されないが、熱処理温度が高すぎると、結晶が融解するおそれがあるため、1000℃以下、特に950℃以下であることが好ましい。
 なお、前駆体ガラスを転移温度近傍で一定時間熱処理した後、結晶化温度近傍でさらに熱処理を行う2段階焼成を行うことにより、均一な結晶粒経を有する結晶化ガラスが得られやすくなる。
 熱処理時間は、前駆体ガラスの結晶化が十分に進行するよう適宜調整される。具体的には、熱処理時間は10~60分間、特に20~40分間であることが好ましい。
 熱処理の雰囲気は、水素、アンモニア、一酸化炭素などの還元雰囲気であることが好ましい。これにより、オリビン型LiMnFe1-(x+y)PO結晶が得られやすくなる。
 前駆体ガラスの熱処理時に有機バインダーを添加すれば、当該有機バインダーの還元作用により、結晶化する前にガラス中の鉄の価数が+2に変化することから、LiMnFe1-(x+y)PO結晶を高い含有率で得ることができる。
 なお、導電性を向上させるために、結晶化ガラスに対して、電子伝導性が高く安定な導電活物質を混合することが好ましい。導電活物質としては、グラファイト、アセチレンブラック、アモルファスカーボンなどの炭素系導電活物質や金属粉末などの金属系導電活物質などが挙げられる。アモルファスカーボンとしては、FTIR分析において、正極材料の導電性低下の原因となるC-O結合ピークやC-H結合ピークが実質的に検出されないものが好ましい。
 例えば、結晶化ガラス粉末の界面に導電活物質が担持された状態で焼結させることが好ましい。結晶化ガラス粉末の界面に導電活物質を担持させる方法としては、グルコース;脂肪族カルボン酸、芳香族カルボン酸等のカルボン酸;有機バインダーなどの有機化合物等の導電活物質を、前駆体ガラス粉末に添加して混合し、チッ素などの不活性雰囲気または水素、アンモニア、一酸化炭素などの還元雰囲気にて熱処理し、前駆体ガラス粉末を結晶化させるとともに、得られる結晶化ガラス粉末界面に導電活物質であるアモルファスカーボンなどの炭素成分を残留させる方法が挙げられる。
 ここで、脂肪族カルボン酸としては、酢酸、プロピオン酸、酪酸、シュウ酸などが挙げられる。芳香族カルボン酸としては、安息香酸、フタル酸、マレイン酸などが挙げられる。有機バインダーとしては、フェノール樹脂、アクリル樹脂、ポリエチレングリコール、ポリエチレンカーボネート、ポリメチルスチレン、エチルセルロースなどが挙げられる。アクリル樹脂としては、ポリブチルメタアクリレート、ポリエチルメタアクリレート、ポリメチルメタアクリレートなどが挙げられる。
 前記方法によれば、結晶化ガラス粉末界面に導電活物質を均一に担持させることができる。また、有機バインダーは、正極材料の成型性と導電性の2つの特性に寄与することができる。つまり、シート形状に容易に成形することが可能となり、焼成後に再度粉砕することなく電池の正極材料として利用することも可能となる。
 本発明のリチウムイオン二次電池用正極材料の電気伝導度は、1.0×10-8S・cm-1以上、1.0×10-6S・cm-1以上、特に1.0×10-4S・cm-1以上であることが好ましい。
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1~3は、本発明の実施例(試料No.1~19)および比較例(試料No.20~22)を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 まず、表1~3に示す各組成になるようにガラス原料を調合し、白金ルツボを用いて1100~1400℃で1時間溶融した。溶融ガラスを一対の成形ロールに流し込み、急冷しながらフィルム状に成形することにより前駆体ガラスを作製した。
 その後、前駆体ガラスをボールミルで粉砕し、平均粒径2μmの前駆体ガラス粉末を得た。前駆体ガラス粉末100質量部に対して、フェノール樹脂5質量部(グラファイト換算12.4質量部に相当)、溶剤として15質量部のエタノールを混合することによってスラリー化し、公知のドクターブレード法によって、厚さ500μmのシート状に成形した後、80℃で約1時間乾燥させた。次いで、得られたシート状成形体を所定の大きさに切断し、窒素雰囲気中800℃にて30分間熱処理を行い結晶化させることにより、正極材料(結晶化ガラス粉末の焼結体)を得た。正極材料におけるLiMnFe1-(x+y)PO結晶の含有量を粉末X線回折法により測定した。
 次に、得られた正極材料について、0.1Cレートにおける放電容量を以下のようにして評価した。
 正極材料に対し、バインダーとしてフッ化ポリビニリデン、導電性物質としてケッチェンブラックを、正極材料:バインダー:導電性物質=85:10:5(質量比)となるように秤量し、これらをN-メチルピロリドン(NMP)に分散した後、自転・公転ミキサーで十分に撹拌してスラリー化した。次に、隙間150μmのドクターブレードを用いて、正極集電体である厚さ20μmのアルミ箔上に、得られたスラリーをコートし、乾燥機にて80℃で乾燥後、一対の回転ローラー間に通し、1t/cmでプレスすることにより電極シートを得た。電極シートを電極打ち抜き機で直径11mmに打ち抜き、140℃で6時間乾燥させ、円形の作用極を得た。
 次に、コインセルの下蓋に作用極をアルミ箔面を下に向けて載置し、その上に60℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜(ヘキストセラニーズ社製 セルガード#2400)からなるセパレータ、および対極である金属リチウムを積層し、試験電池を作製した。電解液としては、1M LiPF溶液/EC(エチレンカーボネート):DEC(ジエチルカーボネート)=1:1を用いた。なお、試験電池の組み立ては露点温度-60℃以下の環境で行った。
 試験電池を用いて、充電(正極材料からのリチウムイオンの放出)を2Vから4.2VまでのCC(定電流)充電により行い、さらに放電(正極材料へのリチウムイオンの吸蔵)を4.2Vから2Vまで放電させることにより行い、放電容量を測定した。結果を表1~3に示す。
 表1~3から明らかなように、実施例である試料No.1~19の正極材料用ガラスは、100mwh/g以上と良好な放電容量を示していた。一方、比較例である試料No.20および22の正極材料用ガラスは所定のガラス組成を満たしておらず、放電容量は88mwh/g以下と低かった。なお、試料No.21についてはガラス化しなかったため、放電容量の測定は行わなかった。

Claims (14)

  1.  ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0.1~2.4%を含有し、かつ、モル比で、(Fe+MnO/2)/P≧0.85であることを特徴とするリチウムイオン二次電池正極材料用前駆体ガラス。
  2.  さらに、モル%で、SiO+V+B+GeO+Al+Ga+Sb+Biを0~2.4%含有することを特徴とする請求項1に記載のリチウムイオン二次電池正極材料用前駆体ガラス。
  3.  モル比で、LiO/(P+Fe+MnO/2)≧0.5であることを特徴とする請求項1または2に記載のリチウムイオン二次電池正極材料用前駆体ガラス。
  4.  モル比で、LiO/P≧0.85、および/または、LiO/(Fe+MnO/2)≧0.85であることを特徴とする請求項1~3のいずれかに記載のリチウムイオン二次電池正極材料用前駆体ガラス。
  5.  ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0~2.4%を含有し、かつ、モル比で、LiO/P≧1.01であることを特徴とするリチウムイオン二次電池正極材料用前駆体ガラス。
  6.  ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0.1~2.4%を含有し、かつ(Fe+MnO/2)/P≧0.85であることを特徴とするリチウムイオン二次電池正極材料用結晶化ガラス。
  7.  さらに、モル%で、SiO+V+B+GeO+Al+Ga+Sb+Biを0~2.4%含有することを特徴とする請求項6に記載のリチウムイオン二次電池正極材料用結晶化ガラス。
  8.  モル比で、LiO/(P+Fe+MnO/2)≧0.5であることを特徴とする請求項6または7に記載のリチウムイオン二次電池正極材料用結晶化ガラス。
  9.  モル比で、LiO/P≧0.85、および/または、LiO/(Fe+MnO/2)≧0.85であることを特徴とする請求項5~8のいずれかに記載のリチウムイオン二次電池正極材料用結晶化ガラス。
  10.  ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0~2.4%を含有し、かつLiO/P≧1.01であることを特徴とするリチウムイオン二次電池正極材料用結晶化ガラス。
  11.  主結晶としてLiMnFe1-(x+y)PO結晶(0≦x≦1、0≦y≦1、0<x+y≦1、MはNb、Ti、V、Cr、Co、Niから選ばれる少なくとも1種)を含有することを特徴とする請求項6~10のいずれかに記載のリチウムイオン二次電池正極材料用結晶化ガラス。
  12.  LiMnFe1-(x+y)PO結晶の含有量が50質量%以上であることを特徴とする請求項11に記載のリチウムイオン二次電池正極材料用結晶化ガラス。
  13.  ガラス組成として、モル%で、LiO 20~50%、P 20~40%、Fe 0~40%、MnO 0~60%、Nb 0.1~2.4%を含有し、かつ、モル比で、(Fe+MnO/2)/P≧0.85となるように原料粉末を調整する工程、
     原料粉末を溶融し、溶融ガラスを得る工程、および、
     溶融ガラスを急冷し、前駆体ガラスを得る工程
    を含むことを特徴とするリチウムイオン二次電池正極材料の製造方法。
  14.  さらに、前駆体ガラスを熱処理して結晶化ガラスを得る工程を含むことを特徴とする請求項13に記載のリチウムイオン二次電池正極材料の製造方法。
PCT/JP2011/078595 2010-12-15 2011-12-09 リチウムイオン二次電池正極材料用前駆体ガラスおよびリチウムイオン二次電池正極材料用結晶化ガラス WO2012081522A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-279239 2010-12-15
JP2010279239A JP2012126600A (ja) 2010-12-15 2010-12-15 リチウムイオン二次電池正極材料用前駆体ガラスおよびリチウムイオン二次電池正極材料用結晶化ガラス

Publications (1)

Publication Number Publication Date
WO2012081522A1 true WO2012081522A1 (ja) 2012-06-21

Family

ID=46244625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078595 WO2012081522A1 (ja) 2010-12-15 2011-12-09 リチウムイオン二次電池正極材料用前駆体ガラスおよびリチウムイオン二次電池正極材料用結晶化ガラス

Country Status (3)

Country Link
JP (1) JP2012126600A (ja)
TW (1) TW201226354A (ja)
WO (1) WO2012081522A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013403A (zh) * 2021-02-07 2021-06-22 海南大学 一种硫化物玻璃正极材料、其制备方法及应用
CN113013402A (zh) * 2021-02-07 2021-06-22 海南大学 一种玻璃正极材料、其制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087933A (ja) * 2007-09-11 2009-04-23 Nagaoka Univ Of Technology リチウムイオン二次電池用正極材料およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087933A (ja) * 2007-09-11 2009-04-23 Nagaoka Univ Of Technology リチウムイオン二次電池用正極材料およびその製造方法

Also Published As

Publication number Publication date
JP2012126600A (ja) 2012-07-05
TW201226354A (en) 2012-07-01

Similar Documents

Publication Publication Date Title
JP5331419B2 (ja) リチウムイオン二次電池用正極材料およびその製造方法
Shiratsuchi et al. Cathodic performance of LiMn1− xMxPO4 (M= Ti, Mg and Zr) annealed in an inert atmosphere
JP3769291B2 (ja) 非水電解質電池
US20200381772A1 (en) Solid electrolyte, preparation method thereof, and all-solid-state battery employing the same
CN115832288A (zh) 钠离子二次电池用正极活性物质
CN104428254A (zh) 掺杂的镍酸盐化合物
WO2011129224A1 (ja) リチウムイオン二次電池正極材料およびその製造方法
JP2006155941A (ja) 電極活物質の製造方法
JP2006261061A (ja) 電極材料及びそれを用いた電極並びにリチウム電池と電極材料の製造方法
JP2011165461A (ja) リチウムイオン二次電池正極材料
JP2014096289A (ja) 蓄電デバイス
CN102612774A (zh) 锂二次电池及其制造方法
US20220013774A1 (en) Cathode active material for lithium secondary battery
JP2022161973A (ja) 遷移金属複合水酸化物の粒子、リチウムイオン二次電池用正極活物質、およびリチウムイオン二次電池
TWI699926B (zh) 鹼離子二次電池用正極活性物質
US20120267566A1 (en) Lithium ion secondary battery positive electrode material
JP2014123559A (ja) リチウムイオン二次電池用正極活物質およびその製造方法
JP2014232569A (ja) リチウムイオン二次電池用正極活物質およびその製造方法
WO2012081522A1 (ja) リチウムイオン二次電池正極材料用前駆体ガラスおよびリチウムイオン二次電池正極材料用結晶化ガラス
JP2011108440A (ja) リチウムイオン二次電池正極材料の製造方法
JP6758191B2 (ja) 蓄電デバイス用正極活物質、及び、電極シートの製造方法
JP2011086584A (ja) リチウムイオン二次電池用正極材料
WO2013035831A1 (ja) リチウムイオン二次電池正極材料の製造方法
JP2008077886A (ja) 非水電解質電池
JP2014146431A (ja) 蓄電デバイス用正極材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848310

Country of ref document: EP

Kind code of ref document: A1