TW201226354A - Precursor glass for anode material of lithium ionic secondary cell and crystalline glass for anode material of lithium ionic secondary cell - Google Patents

Precursor glass for anode material of lithium ionic secondary cell and crystalline glass for anode material of lithium ionic secondary cell Download PDF

Info

Publication number
TW201226354A
TW201226354A TW100146243A TW100146243A TW201226354A TW 201226354 A TW201226354 A TW 201226354A TW 100146243 A TW100146243 A TW 100146243A TW 100146243 A TW100146243 A TW 100146243A TW 201226354 A TW201226354 A TW 201226354A
Authority
TW
Taiwan
Prior art keywords
glass
positive electrode
secondary battery
electrode material
precursor
Prior art date
Application number
TW100146243A
Other languages
Chinese (zh)
Inventor
Takahiro Matano
Tomohiro Nagakane
Tetsuo Sakai
Original Assignee
Nippon Electric Glass Co
Nat Inst Of Advanced Ind Scien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co, Nat Inst Of Advanced Ind Scien filed Critical Nippon Electric Glass Co
Publication of TW201226354A publication Critical patent/TW201226354A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0072Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition having a ferro-electric crystal phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A precursor glass for an anode material of a lithium ionic secondary cell is characterized in containing 20 mole% to 50 mole% of Li2O, 20 mole% to 40 mole% of P2O5, 0 mole% to 40 mole% of Fe2O3, 0 mole% to 60 mole% of MnO2, and 0.1 mole% to 2.4 mole% of Nb2O5, and (Fe2O3+MnO2/2) /P2O5 ≥ 0.85 based on mole ratio.

Description

201226354 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種可攜式電子機器或電動汽車等中 所使用之鐘離子二次電池正極材料用前驅體玻璃以及鐘離 子二次電池正極材料用結晶化玻璃。 【先前技術】 鋰離子二次電池確立了作為可攜式電子終端或電動汽 車所不可欠缺的高容量、輕量的電源的地位。鋰離子二次 電池之正極材料中,迄今為止使用的是鈷酸鋰(Lic〇〇2) 或錳酸鋰(LiMn〇2)等無機金屬氧化物。然而,隨著近年 來電子機器之高性能化所造成之電力消耗的增大,要求進 -步之娜子二次電池之高容量化。而且,自環境保全問 題或能源問題之觀點考慮,要求自〇> 4 Mn等環境負擔 大的材料轉換為更加環境協調型的材料。另外,於近年來, ^資源枯關題受到關注,自此種觀點考慮,亦期望轉換 為取代鈷酸鋰或錳酸鋰之廉價的正極材料。 近年來 、珉本以及資源等方面而言有利考虞, 21 Ϊ m晶石型結晶、職⑽ ^ ϋ 以及撤禮石型結晶(LiF叫)受 關庄’並進订了種種研究以及開發( 開平9-m725號公報)。苴中,_ 1彳如—日本專利 溫卢穩定性俱S 撖欖石型結晶較鈷酸鋰 恤度穩疋f生更加優異,可期待於高溫下 由於是以猶為骨架之結構 動作。而卫 所造成之域魏㈣纽^由於充放電反201226354 VI. [Technical Field] The present invention relates to a precursor glass for a positive electrode material for a clock ion secondary battery used in a portable electronic device or an electric automobile, and a positive electrode for a plasma ion secondary battery. The material is made of crystallized glass. [Prior Art] A lithium ion secondary battery has established a position as a high-capacity, lightweight power source that is indispensable for portable electronic terminals or electric vehicles. Among the positive electrode materials for lithium ion secondary batteries, inorganic metal oxides such as lithium cobaltate (Lic® 2) or lithium manganate (LiMn〇 2) have heretofore been used. However, with the increase in power consumption caused by the high performance of electronic equipment in recent years, it is required to increase the capacity of the secondary battery of the step-by-step. Furthermore, from the viewpoint of environmental protection issues or energy issues, it is required to convert materials with a large environmental burden such as 〇4 Mn into more environmentally compatible materials. In addition, in recent years, the resource has been paid attention to, and from this point of view, it is also expected to be converted into an inexpensive cathode material that replaces lithium cobaltate or lithium manganate. In recent years, transcripts and resources are considered to be good, 21 Ϊ m spar crystal, occupation (10) ^ ϋ and demolition stone crystal (LiF called) by Guan Zhuang' and have made various research and development (Kaiping) Bulletin 9-m725).苴中, _ 1彳如—Japanese Patent Wenlu Stability S 撖 石 型 型 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 结晶 钴 钴 钴 钴 钴 钴 钴 钴 钴 钴 钴 钴 钴 钴 钴 钴And Wei Wei (four) New Zealand caused by Wei Wei

4 201226354 Λ. 另外’已知錳系尖晶石型、NASICON型以及橄欖石 型之各結晶中之鐵部位可被各種過渡金屬離子置換。例如 將鐵完全置換為錳或釩之Li3Mn2(p〇4)3、LiMnP〇4、Livp〇4 專’將鐵部分性地置換為鐘或飢之 Li3(MnxFeyVl(x+y))2(P〇4)3、LiMnxFe(1.x)P04 (0<X<1、〇 <y<i、〇<x+y<1)等亦具有作為正極材料之功能。 其中,已知若於正極材料中混合碳粉末等導電活性物 質’則使電子導電性提高。㉟而,若於«酸鐵鐘正極材料 中混,導電活性物質而進行職,則由於自伽鐵鐘所產 生之氣體的影響,存在無法於磷酸鐵鋰粒子表面使導電活 性物質效率良好地活化,電子導電度降低之問題。 因此,作為於煅燒時氣體之產生少的正極材料,提出 了包含結晶化玻璃之磷酸鐵鋰材料(例如參照日本專利 2009-87933號公報)。該前驅體玻璃與碳粉末_ 物質混合而煅燒時基本上不產生氣體。因此,可於正極材 料粒子表面效率良好地使導電活性物質活化,且容易達成 優異之電子導電性。而且’藉由對該前驅體玻璃進行锻燒, 可製作具有均質之組成的析丨有晶粒尺寸小之磷酸鐵鐘处 晶或磷酸鐵_溶體結晶的結晶化朗粉末,可: 導電性優異之雜子二次電池正極材料。如上所^, 用日本專利麵·8?933號公報巾所記載之磷酸鐵 料’則變得可麟料導·以及f子導雜這 2 均優異之正極材料。 奇& 日本專利2_·87933號公報中所記載之正極材料由 201226354 於玻璃組成而造成充放電時之電池容量有大的變化。然 而,於曰本專利20〇9·87933號公報中,關於電池容量之最' 佳組成的研究料充分,現狀是尚錢㈣有高的電池容 量之正極材料。 【發明内容】 本發明是鑒於此種狀況而成的,其目的在於提供可庐 得高的電池容#的_子二次電池正極材_前驅體玻^ 以及鋰離子二次電池正極材料用結晶化玻璃。 本,明是關於-種_子二次電池正極材料用前驅體 玻璃Ί徵在於··作為朗組成,以莫耳百分比計含 Ll2〇 20%〜观、p2〇5 2G%〜概、q%〜慨、μ 〇%〜60%、Nb2〇5 〇·1%〜2 4%,且以莫耳 Μη02/2) /Ρ2〇52〇.85。 丨、2u3 + 若使,具有上述組成之前驅體玻璃,則可製作具 的電池容量之轉子二次電池正極材料。 :「二 =璃」是指藉由進行熱處理而結晶化,析出目 第二,較佳的是本發明之鐘離 前驅體玻軌料百分tb収含有q%〜電24%== V2〇5l™?^2+Al2〇3+Ga^ °2 上述成刀疋使玻璃形成能力提高之成分。 ΐΐΐ1變:容易獲得玻璃化穩定、難以析出;不 異種^量高的 佳的是於本發明之鐘離子二次電池正極材料 2012263544 201226354 Λ. In addition, the iron sites in the crystals of the known manganese-based spinel type, NASICON type, and olivine type can be replaced by various transition metal ions. For example, Li3Mn2(p〇4)3, LiMnP〇4, Livp〇4, which completely replaces iron with manganese or vanadium, partially replaces iron with bell or hunger Li3 (MnxFeyVl(x+y))2 (P 〇4)3, LiMnxFe(1.x)P04 (0<X<1, 〇<y<i, 〇<x+y<1) and the like also have a function as a positive electrode material. Among them, it is known that when a conductive active material such as carbon powder is mixed in a positive electrode material, electron conductivity is improved. 35. If the conductive active material is mixed in the acid-electrode positive electrode material, the conductive active material may not be efficiently activated on the surface of the lithium iron phosphate particle due to the influence of the gas generated from the iron-iron clock. , the problem of reduced electronic conductivity. Therefore, as a positive electrode material having a small amount of gas generated during firing, a lithium iron phosphate material containing crystallized glass has been proposed (for example, refer to Japanese Patent Laid-Open Publication No. 2009-87933). The precursor glass is substantially free of gas when it is mixed with the carbon powder _ substance to be calcined. Therefore, the conductive active material can be efficiently activated on the surface of the positive electrode material particles, and excellent electron conductivity can be easily achieved. Moreover, by calcining the precursor glass, it is possible to produce a crystallized powder having a homogeneous composition and having a small crystal grain size of iron phosphate clock crystal or iron phosphate-solution crystal, which can be: Conductive Excellent miscellaneous secondary battery cathode material. As described above, the iron phosphate "described in the Japanese Patent No. 8-933 (Japanese Patent Publication No. 8933) has become a positive electrode material which is excellent in both of the materials and the f-conducting. The positive electrode material described in Japanese Patent Publication No. 2-87933 is composed of 201226354 and has a large change in battery capacity at the time of charge and discharge. However, in the publication of Japanese Patent Laid-Open Publication No. Hei. No. 20,879,937, the research on the most preferable composition of the battery capacity is sufficient, and the current situation is that the positive electrode material having a high battery capacity is still available. SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to provide a battery for a battery having a high battery capacity, a positive electrode material for a secondary battery, a precursor glass, and a crystal for a positive electrode material for a lithium ion secondary battery. Glass. Ben, Ming is about the _ sub-secondary battery positive electrode material for the precursor glass Ί 在于 在于 · · 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 朗 百分比 百分比 百分比 百分比 百分比 百分比 百分比 百分比 含 百分比 含 含 含 含~ gene, μ 〇%~60%, Nb2〇5 〇·1%~2 4%, and 莫02η02/2) /Ρ2〇52〇.85.丨, 2u3 + If the precursor glass having the above composition is used, a positive electrode material for a rotor secondary battery having a battery capacity can be produced. "二=璃" means crystallization by heat treatment, and precipitation is second. Preferably, the clock of the present invention is separated from the precursor glass rail by t% and contains 24% = 24% == V2 〇 5l TM?^2+Al2〇3+Ga^ °2 The composition of the above-mentioned knives to improve the glass forming ability. Ϊ́ΐΐ1 change: It is easy to obtain stable vitrification and is difficult to precipitate; it is preferable to use a positive electrode material of the clock ion secondary battery of the present invention 201226354

Li2〇/ ( P2〇5 + Fe2〇3 + 用别驅體玻璃中,以莫耳比計Li2〇/ ( P2〇5 + Fe2〇3 + in the body glass, in molar ratio

Mn02/2) 20.5。 藉由該構成’㈣容易獲得麵化穩定、難 ^望之異種結晶、電池容量高的轉子二次電池正極材 第四,較佳的是於本發明之鋰離子二 用前驅體玻射,以料輯,Ll2〇/P2〇5_5正^料Mn02/2) 20.5. According to the configuration of (4), it is easy to obtain a rotor secondary battery positive electrode material having stable surface formation, difficult to be treated, and high battery capacity. Fourth, it is preferable to use the lithium ion dual-purpose precursor glass of the present invention. Material series, Ll2〇/P2〇5_5 正料

Li20/ (Fe203 + Mn02/2) g〇.85。 ’ 及,或、 藉由該構成,變得容易獲得玻璃化穩定 :期望之異種結晶、電池容量高驗離子二次電池正極材 第五,本發明之其他形態是關於一種鐘離子 正極材料用前驅體玻璃’其特徵在於:作為朗組成,以 莫耳百分輯対Li2Q 〜5〇%、ρ2()5 2〇%〜4〇%、Li20/ (Fe203 + Mn02/2) g〇.85. With or with this configuration, it is easy to obtain vitrification stability: desired heterogeneous crystal, high battery capacity, and secondary battery positive electrode material. The other aspect of the present invention relates to a precursor for a clock ion positive electrode material. The body glass is characterized in that, as a lang composition, the percentage of the moles is 対Li2Q 〜5〇%, ρ2()5 2〇%~4〇%,

Fe203 〇%〜40%、Μη02 〇%〜60%、Nb2〇5 〇%〜2 4%,且 以莫耳比計,Li20/P2〇5g 1.01。 第六,本發明是關於一種鋰離子二次電池正極材料用 結晶化玻璃,其特徵在於:作為玻璃組成,以莫耳百分比 計含有 Li20 20%〜50%、P2〇5 20%〜40%、Fe203 〇%〜 40%、Mn020%〜60%、Nb205 〇.l%〜2.4%,a(Fe203 +Fe203 〇%~40%, Μη02 〇%~60%, Nb2〇5 〇%~2 4%, and Li20/P2〇5g 1.01 in terms of molar ratio. Sixth, the present invention relates to a crystallized glass for a positive electrode material for a lithium ion secondary battery, which is characterized in that, as a glass composition, Li20 is contained in a percentage of 20% to 50%, P2〇5 20% to 40%, Fe203 〇%~ 40%, Mn020%~60%, Nb205 〇.l%~2.4%, a(Fe203 +

Mn02/2) /P2〇5^0.85 〇 第七,較佳的是本發明之鋰離子二次電池正極材料用 結晶化玻璃以莫耳百分比計更含有〇%〜2.4%之Si〇2 + V205 + B2〇3 + Ge02 + Al2〇3 + Ga2〇3 + Sb2〇3 + Bi203。 201226354 第八,較佳的是於本發明之鐘離子二次電池正 用結晶化玻射,以莫耳比計,Li2Q/( jMn02/2) /P2〇5^0.85 〇7, preferably, the crystallized glass for the positive electrode material of the lithium ion secondary battery of the present invention further contains 〇% to 2.4% of Si〇2 + V205 in terms of mole percentage + B2〇3 + Ge02 + Al2〇3 + Ga2〇3 + Sb2〇3 + Bi203. 201226354 Eighth, it is preferred that the clock ion secondary battery of the present invention is using crystallized glass, in molar ratio, Li2Q/(j

Mn02/2) 20.5。 3 十 第九’較佳的是於本發明之鐘離子二次電池正極 用結晶化玻璃巾,以莫耳比計,Li2〇/P2Q5^ 85、及1 u20/ (Fe2〇3 + Mn02/2) ^0.85 ° " 第十,本發明之其他形態是關於一種鐘離子二 正極材料用結晶化玻璃,其舰在於:作為玻璃組成,以 莫耳百分比計含有Li2〇 2G%〜5G%、!>2()5 ·〜4〇%、 Fe2〇3 〇%〜40%、Μη02 〇%〜6〇%、Nb2〇5 〇%〜2 4%,〇Mn02/2) 20.5. 3 ninth' is preferably a crystallized glass towel for a positive electrode of a clock ion secondary battery of the present invention, in terms of a molar ratio, Li2〇/P2Q5^85, and 1 u20/(Fe2〇3 + Mn02/2 ^0.85 ° " Tenth, another aspect of the present invention relates to a crystallized glass for a clock ion two positive electrode material, the ship of which is: as a glass composition, containing Li2〇2G%~5G% in percentage of moles! >2()5 ·~4〇%, Fe2〇3 〇%~40%, Μη02 〇%~6〇%, Nb2〇5 〇%~2 4%,〇

Li2〇/P2〇5gl.〇l。 〇’ 且 第十-’較佳的是本發明之鐘離子二次電池正極材料 用結晶化玻璃含有LiMnxFeyl^^PO4結晶(〇$xgl、 〇$%卜 0<x + y9、Μ 是選自 Nb、Ti、V、Cr、^:。、Li2〇/P2〇5gl.〇l. 〇' and the tenth-'preferably, the crystallized glass for the positive electrode material of the clock ion secondary battery of the present invention contains LiMnxFeyl^PO4 crystals (〇$xgl, 〇$% οοο lt; x + y9, Μ is selected from Nb, Ti, V, Cr, ^:,

Ni之至少1種)作為主結晶。 第十一’較佳的疋本發明之經離子二次電池正極材料 用結晶化玻璃中LiMnxFeyMWx+y)P〇4結晶之含量為5〇对% 以上。 〇 第十三,本發明是關於一種鋰離子二次電池正極材料 之製造方法’其特徵在於包含··以玻璃組成成為如下之方 式而调整原料粉末之步驟’以莫耳百分比計含有Li2〇 20% 〜50%、P205 20%〜40%、Fe203 〇%〜40%、Μη02 〇〇/0〜 60%、Nb205 〇. 1 %〜2.4%,且以莫耳比計,(Fe2〇3 + Mn〇2/2 ) /P2〇5^〇.85 ;使原料粉末熔融而獲得熔融玻璃之步驟;以At least one of Ni is used as a main crystal. The eleventh preferred embodiment of the ion secondary battery positive electrode material of the present invention has a crystal content of LiMnxFeyMWx+y)P〇4 in the crystallized glass of 5 〇% or more. According to a thirteenth aspect, the present invention relates to a method for producing a positive electrode material for a lithium ion secondary battery, which is characterized in that the step of adjusting the raw material powder by the glass composition is as follows: 'Li2〇20 is included as a percentage of moles %~50%, P205 20%~40%, Fe203 〇%~40%, Μη02 〇〇/0~ 60%, Nb205 〇. 1%~2.4%, and in terms of molar ratio, (Fe2〇3 + Mn 〇2/2 ) /P2〇5^〇.85; a step of melting the raw material powder to obtain molten glass;

S 8 201226354 及使溶融玻璃驟冷而獲得前驅體破璃之步驟。 第十四,較佳的是本發明之鐘二次電池正極材料之製 造方法更包含對如驅體玻璃進行熱處理而獲得結晶化破璃 之步驟。 .【實施方式】 本發明之鋰離子二次電池正極材料用前驅體玻璃之特 徵在於:作為玻璃組成,以莫耳百分比計含有Li2〇 20%〜 50%、P2〇5 20%〜40%、Fe203 〇%〜4〇%、Μη02 0%〜60%、 Nb205 0.1%〜2.4% ’ 且以莫耳比計,(Fe2〇3 + ]v[n〇2/2) /P205 2 〇· 8 5。將玻璃組成限定成如上所述之理由說明如下。S 8 201226354 and a step of quenching the molten glass to obtain a precursor glass break. According to a fourteenth aspect, preferably, the method for producing a positive electrode material for a secondary battery of the present invention further comprises the step of heat-treating a glass such as a drive glass to obtain a crystallized glass. [Embodiment] The precursor glass for a positive electrode material for a lithium ion secondary battery of the present invention is characterized in that, as a glass composition, Li2〇20% to 50%, P2〇5 20% to 40%, in terms of a percentage of moles, Fe203 〇%~4〇%, Μη02 0%~60%, Nb205 0.1%~2.4% ' and in terms of molar ratio, (Fe2〇3 + ]v[n〇2/2) /P205 2 〇· 8 5 . The reason why the glass composition is limited to the above is explained below.

Li2〇疋LiMnxFeyMi_(x+y)P〇4結晶之主成分。較佳的是 Li20 之含量為 20%〜50%、25%〜45%、30%〜40%、33% 〜37%、特別是33.5%〜37%。若Li20之含量過少,則使 前驅體玻璃結晶化時LiMi^FeyMi-^+^PC^結晶之析出量變 少,難以獲得高的電池容量。另一方面,若Li20之含量過 多,則變得容易析出所不期望之異種結晶(Li3P04、 [“(ΜηΜ-χΜΡΟΛ 等)。其結果,LiMnxFeyMHx+y)P〇4 結 晶之析出量變少,難以獲得高的電池容量。 P2〇5亦為LiMnxFeyMHx+y)P〇4結晶之主成分。較佳的 是 P205 之含量為 20%〜40%、5%〜35%、28%〜35°/。、29% 〜33%、特佳是29.5%〜32.5%。於P2〇5之含量為該範圍 外之情形時,於使前驅體玻璃結晶化時變得容易析出不期 望之異種結晶。其結果,LiMi^FeyM^x+joPO4結晶之析出 量變少,難以獲得高的電池容量。 201226354The main component of Li2〇疋LiMnxFeyMi_(x+y)P〇4 crystal. Preferably, the content of Li20 is 20% to 50%, 25% to 45%, 30% to 40%, 33% to 37%, particularly 33.5% to 37%. When the content of Li20 is too small, the amount of precipitation of LiMi^FeyMi-^+^PC^ crystals becomes small when the precursor glass is crystallized, and it is difficult to obtain a high battery capacity. On the other hand, when the content of Li20 is too large, it is easy to precipitate undesired heterogeneous crystals (Li3P04, ["(ΜηΜ-χΜΡΟΛ, etc.). As a result, the precipitation amount of LiMnxFeyMHx+y)P〇4 crystals is small, and it is difficult. A high battery capacity is obtained. P2〇5 is also a main component of LiMnxFeyMHx+y)P〇4 crystal. It is preferred that the content of P205 is 20% to 40%, 5% to 35%, and 28% to 35°/. 29% to 33%, particularly preferably 29.5% to 32.5%. When the content of P2〇5 is outside the range, undesired heterogeneous crystals are easily precipitated when the precursor glass is crystallized. The amount of precipitation of LiMi^FeyM^x+joPO4 crystals is small, and it is difficult to obtain a high battery capacity.

Fe203是LiMnxFeyMux+y/C^結晶之構成成分。較佳的 是Fe203之含量為0%〜40%、10%〜40%、20%〜35%、特 別是30%〜35%。若Fe2〇3之含量過多,則變得容易於使 前驅體玻璃結晶時析出不期望之異種結晶。其結果, LiMnxFeyMwx+yPO4結晶之析出量變少,難以獲得高的電 池容量。另外’亦可使用FeO或Fe3〇4等作為原料,於此 情形時’換算為Fe2〇3之量滿足所述範圍即可。Fe203 is a constituent of LiMnxFeyMux+y/C^ crystal. Preferably, the content of Fe203 is 0% to 40%, 10% to 40%, 20% to 35%, particularly 30% to 35%. When the content of Fe2〇3 is too large, it becomes easy to precipitate undesired heterogeneous crystals when the precursor glass is crystallized. As a result, the amount of precipitation of LiMnxFeyMwx+yPO4 crystals is small, and it is difficult to obtain a high battery capacity. Further, FeO or Fe3〇4 may be used as a raw material, and in this case, the amount converted to Fe2〇3 may satisfy the above range.

Mn〇2亦和Fe2〇3同樣地是LiMnxFeyMi-HPCU結晶之 構成成分。較佳的是Μη02之含量為〇%〜6〇%、20%〜 55〇/〇、30%〜55%、40%〜55¾、特別是 45%〜5〇%。若 Mn〇2之含量過多,則變得容易於使前驅體玻璃結晶時析Similarly to Fe2〇3, Mn〇2 is a constituent of the crystal of LiMnxFeyMi-HPCU. Preferably, the content of Μη02 is 〇%~6〇%, 20%~55〇/〇, 30%~55%, 40%~553⁄4, especially 45%~5〇%. If the content of Mn〇2 is too large, it becomes easy to crystallize the precursor glass.

述範圍即可。The scope is sufficient.

3 + Μη〇2/2)/Ρ2〇5 為 〇.85 匕。若(Fe203 + Mn02/2) 較佳的是以莫耳比計,(Fe2〇3 + 以上、〇·9以上、特別是〇·95以上。 201226354 之Γ容易於使前驅體玻璃結晶時析出不期望 特別:獲得高的電池容量。另外’對上限並無 較佳的是2 ί ;出充分量之LiMnxFeyMl-(X+y)P〇4結晶, 1佳的疋2以下、特別是1.5以下。 以外,可六璃形成能力提高之成分,除了 Nb2〇5 SiO、Υ〇*、十量為〇%〜2·4%、特別是〇.1%〜2 3%之 =些,一― 時析出不期望之里^士 1則變传容易於使前驅體玻璃結晶 y望之異種結晶,難以獲得高的電池容量。 體玻璃中的明之鋰離子二次電池正極材料用前驅 T〇fl ,Γ ^ } ^ (P^ + ^〇3 + Mn〇2/2) Γ〇/2ΐ:特別是:·52以上如 期望之日1料易於㈣賴綱結晶時析出不 並獲得高的電池容量。另外,對上限 ^:i^i^iLlMn^W04# 权住的疋1以下、特別是0.8以下。 趙破子。t❶電池正極材料用前驅 1以上、特別是 易於使前IS體玻璃結晶時析出不期二5; a則:: 另外,對上限並無特:二= 別3 nxFeyMl_(x+y)P〇4結晶,較佳的是2以下、特 別疋1.5以下。 ^ 較佳的是於本發明之_子二次電池正極材料用前驅 201226354 體玻璃中,以莫耳比計,祕/㈤处僅啦/2)為〇.85 以上、特別疋0.9以上。若秘/…处+他⑽)過小, 則變付容易於使前驅體玻璃結晶時析出不期望之異種結 ,,難以獲得高的電池容量。另外,耻限並麟別限定, 為了析出充分量之LiMnxFeyMi例ρ〇4結晶,較 以下、特別是1.5以下。 發明之H離子二次電池正極材料用前驅體玻璃之其 他形態的舰在於:作為玻敝成,以莫耳百分比計含有3 + Μη〇2/2)/Ρ2〇5 is 〇.85 匕. (Fe203 + Mn02/2) is preferably a molar ratio (Fe2〇3 + or more, 〇·9 or more, especially 〇·95 or more. 201226354 is more likely to precipitate the precursor glass when it is crystallized. It is desirable to obtain a high battery capacity. In addition, it is not preferable that the upper limit is 2 ί; a sufficient amount of LiMnxFeyMl-(X+y)P〇4 crystal is formed, and 1 is preferably 疋2 or less, particularly 1.5 or less. In addition to the composition of the six glass forming ability, except Nb2〇5 SiO, Υ〇*, ten is 〇%~2·4%, especially 〇.1%~2 3%= some, one-time precipitation Unexpectedly, it is easy to make the precursor crystal crystallization of the precursor crystal, and it is difficult to obtain high battery capacity. The precursor of the positive electrode material for lithium ion secondary battery in the body glass is T〇fl , Γ ^ } ^ (P^ + ^〇3 + Mn〇2/2) Γ〇/2ΐ: In particular: ·52 or more, as expected, 1 material is easy (4) Lai's crystallization does not lead to high battery capacity. For the upper limit ^:i^i^iLlMn^W04#, the weight of 疋1 is below, especially below 0.8. Zhao Chuanzi. The positive electrode material of t❶ battery uses more than 1 precursor, especially for the former IS body. When the glass crystallizes, it may not be two or five; a:: In addition, there is no special upper limit: two = 3 xxFeyMl_(x+y)P〇4 crystals, preferably 2 or less, especially 1.5 or less. It is preferable that in the precursor glass of the secondary battery positive electrode material of the present invention, 201226354, in the molar ratio, the secret / (five) is only /2 or more, especially 疋 0.9 or more. If the secret / ... + (10) is too small, the change is easy to precipitate an undesired heterogeneous knot when the precursor glass crystallizes, and it is difficult to obtain a high battery capacity. Further, the shame is not limited, and in order to precipitate a sufficient amount of LiMnxFeyMi, the ρ〇4 crystal is, in particular, 1.5 or less. The other form of the precursor glass for the positive electrode material of the H ion secondary battery of the invention is: as a glass mash, containing in percentage of mole

Ll2〇 20%〜5G%、P2〇5 2G%〜4G%、Fe2〇3 〇%〜4G%、Μη02 〇%〜6〇%、Nb2〇5 〇%〜24%,且以莫耳比計, Ll2〇/P2Ogl.(H。於該形態中,關於各成分之含量之較佳 之範圍以及限定理由等,可適用已述者。 本發明之轉子二次電池正極材湘結晶化玻璃可藉 對所述雜子二:欠電池正極材料用前驅體賴進行锻燒 使其結晶化而製作。 本發明之鐘離子二次電池正極材料用結晶化玻璃之特 徵f於:作為玻璃組成,以莫耳百分比計含有Li2020〇/。〜 50/〇 P2〇5 20%〜4〇〇/0、Fe2〇3 〇〇/〇〜4〇%、Mn〇2 〇%〜6〇%、Ll2〇20%~5G%, P2〇5 2G%~4G%, Fe2〇3 〇%~4G%, Μη02 〇%~6〇%, Nb2〇5 〇%~24%, and in terms of molar ratio, Ll2〇/P2Ogl. (H. In this form, the preferred range of the content of each component and the reason for limitation can be applied. The rotor secondary battery of the present invention can be used as a crystallized glass. In the second embodiment, the negative electrode material is prepared by calcining the precursor with a precursor. The characteristics of the crystallized glass for the positive electrode material of the clock ion secondary battery of the present invention are as follows: It contains Li2020〇/.~50/〇P2〇5 20%~4〇〇/0, Fe2〇3 〇〇/〇~4〇%, Mn〇2 〇%~6〇%,

Nb205 〇.1/0〜2.4〇/〇,且(Fe2〇3 + Mn〇2/2) /p2〇5^〇 85。 車又佳的是本發明之鋰離子二次電池正極材料用結晶化 玻璃以莫耳百分比収含有Si02 + V2〇5 +秘+ Ge〇2 +Nb205 〇.1/0~2.4〇/〇, and (Fe2〇3 + Mn〇2/2) /p2〇5^〇 85. It is also preferred that the crystallized glass for the positive electrode material of the lithium ion secondary battery of the present invention contains SiO 2 + V 2 〇 5 + secret + Ge 〇 2 + in a molar percentage.

Al2〇3 + Ga2〇3 + Sb2〇3 + Bi2〇3 0%〜2.4%。 車乂佳的是於本發明之鋰離子二次電池正極材料用結晶 化玻璃中’以莫耳比計’[砂(P2〇5 + Fe2G3 + Mn02/2) S, 12 201226354 為0.5莫耳以上。 化玻Ξϊ的τ疋:本發明之鋰離子二次電池正極材料用結晶 化玻璃中,Ll2〇/P2〇5為0.85以上。 化玻St的疋ΐ本發明之鋰離子二次電池正極材料用結晶 ^璃中,料耳比計,Ll2〇/(Fe2〇3 + Mn〇2/2)為 0.85 =於,發明之鐘離子二次電池正極材料用結晶化玻璃 Ϊ 成範圍以及其限定理由,可適用與前述之鋰離 料用前驅體玻璃之較佳⑽ 他护is之鐘離子二次電池正極材料用結晶化玻璃之其 r 2:r5〇%' ^^ Fe2〇f〇n;0: zt =〇%'Nb2〇5〇%〜2.4%,且 Li2〇/P2〇5Sioi。於該 $ I'中’關於各成分之含量之I交伯 3» ^ 等,可適用已述者。 MW®以及限定理由 是雜子"次電池正極材料㈣晶化玻璃含有 ν< Γ =Hx+y)P〇4 結晶(〇把1、〇¥1、0 < X + 作為主結晶。 ‘奶之至少!種) 較^的是UMnxFeyMl例P〇4結晶之含量為5〇讓以 二F λΓ%以上、特別是9〇 _以上。若 不充nf^1灿)Ρ〇4、结晶之含量過少,則離子導電性變得. 不充刀’難以獲得高的電池容量。另外,對上限並無特別 13 201226354 限定,現實上而言為99.9 wt%以下,特別是99 wt%以下。Al2〇3 + Ga2〇3 + Sb2〇3 + Bi2〇3 0%~2.4%.车乂佳 is in the crystallized glass for the positive electrode material of the lithium ion secondary battery of the present invention in the 'mole ratio' [sand (P2〇5 + Fe2G3 + Mn02/2) S, 12 201226354 is 0.5 m or more . In the crystallized glass for a positive electrode material for a lithium ion secondary battery of the present invention, Ll2〇/P2〇5 is 0.85 or more. In the crystal material of the positive electrode material for lithium ion secondary battery of the present invention, Lr2〇/(Fe2〇3 + Mn〇2/2) is 0.85 =, the clock ion of the invention The range of the crystallized glass crucible for the secondary battery positive electrode material and the reason for the limitation thereof can be suitably applied to the above-mentioned lithium ion-exclusive precursor glass (10), which is the crystallized glass for the positive electrode material for the ion secondary battery. r 2:r5〇%' ^^ Fe2〇f〇n; 0: zt =〇%'Nb2〇5〇%~2.4%, and Li2〇/P2〇5Sioi. In the $I', the content of each component, I, 3, ^, etc., can be applied to the above. MW® and the reason for limitation are heterozygous "secondary battery positive electrode material (4) crystallized glass containing ν < Γ = Hx + y) P 〇 4 crystal (〇 1, 〇 ¥ 1, 0 < X + as the main crystal. At least the type of milk is more than UMnxFeyMl. The content of P〇4 crystal is 5〇, and it is more than 2 F λΓ%, especially 9〇_. If the content of the crystal is too small, the ionic conductivity becomes too small. It is difficult to obtain a high battery capacity. In addition, the upper limit is not particularly limited to 201226354, and is actually 99.9 wt% or less, particularly 99 wt% or less.

LiMnxFeyMi-a+ePO4結晶之晶粒尺寸越小,則可使將 結晶化玻璃製成粉末狀而使用時之粒徑變得更小,從而可 使導電性提高L言,較麵是LiMnxFeyMi_(^)p〇4 結晶之晶粒尺寸為1〇〇 nm以下、特別是8〇 nm以下。關 於下限,並無特別限定,現實上而言為1 nm以上、特別 j U)二以上。另外,LlMnxFeyMi (x+y)p〇4結晶之晶粒尺 寸可根據結晶化玻璃粉末之粉末χ射線繞射之解析結果, 依照Scherrer公式而求出。 σ 較^是雜子二次電池正極材結晶化玻璃為粉 士狀。糟此而使作為正極材料整體之表面積變大 容易進行離子或電子之交換。較佳的是鐘離子二次電池正 極材料用結晶化玻璃粉末之平_徑為5Q师以下^ 二,是20 μιη以下。關於下限,並無 貫的是0.05 μιη以上。 兄 =/,已知有SI相反應法或水熱合成法,於該些方法中 子在如下問題:容易混入金屬鐵等磁性粒子作 $覆之充放電而形成樹枝狀結晶,成為短路之原因。另 至^ ’藉由玻璃熔融法,變得可使金屬卿熔解而嵌入 之正極=rMX+y)PQ4街,嶋嶋均質且緻密 體玻:=2明之_子二次電池正極材料用前驅 體玻璃1藉由包含如下步驟之製造方法而製作:以破璃組 201226354 成成為如下之方式而調整原料粉末之步驟,以莫耳百分比 計含有 U2〇 20%〜50%、P2〇5 20%〜40%、Fe2〇3 〇〇/。〜 40%、Μιι02 〇%〜60%、Nb2〇5 0.1%^〜2.4% ’ 且以莫耳比 &十’(Fe2〇3 + Mn〇2/2) /Ρ2〇5 2〇·85 ;使原料粉末溶融而獲 得熔融玻璃之步驟;以及使熔融玻璃驟冷之步驟。 而且,亦可進一步對鋰離子二次電池正極材料用前驅 體玻璃進行熱處理而使其結晶化,藉此而獲得鋰離子二次 電池正極材料用結晶化玻璃。 另外,撖欖石型LiMr^FeyM^^PO4結晶中之Fe與 Μη之原子價為+2價,因此如果於大氣開放中長時間熔 融’則自氧化還原平衡之關係考慮,分別容易被氧化為Η 價以及+4價。因此,為了控制原子價狀態,較佳的是於掣 作前驅體玻璃時之原料中添加草酸鐵等+2價之試劑,或^ 於前驅體玻璃熔融中添加葡萄糖等含有碳之還原劑·;而 且,於充滿還原性氣體之氣密性優異之反應容器 融之方法亦較佳。 可藉由於可控制溫度以及環境之電爐中對前驅體玻 製作結晶化玻璃。熱處理溫度因前驅體玻璃 =成或目標之晶粒尺相異,因此並無特別Μ,較佳 =疋至少玻璃轉移溫度以上、特別是結晶化溫度以上。呈 體而吕,較佳的是熱處理溫度為5〇〇t以上、 以上。若熱處理溫度過低,則存在 枚疋The smaller the crystal grain size of the LiMnxFeyMi-a+ePO4 crystal, the smaller the particle size when the crystallized glass is powdered, and the conductivity can be improved, and the surface is LiMnxFeyMi_(^ The crystal grain size of the p〇4 crystal is 1 〇〇 nm or less, particularly 8 Å or less. The lower limit is not particularly limited, and is actually 1 nm or more, particularly j U) two or more. Further, the crystal size of the LlMnxFeyMi (x+y)p〇4 crystal can be determined according to the Scherrer's formula based on the analysis result of the powdered ray diffraction of the crystallized glass powder. σ is a powdered glass of a positive electrode secondary battery. On the other hand, the surface area as a whole of the positive electrode material becomes large, and exchange of ions or electrons is facilitated. It is preferable that the flattened diameter of the crystallized glass powder for the positive electrode material of the clock ion secondary battery is 5 or less, which is 20 μm or less. Regarding the lower limit, the inconsistency is 0.05 μm or more. Brother = /, there are known SI phase reaction methods or hydrothermal synthesis methods. In these methods, neutrons have the following problems: it is easy to mix magnetic particles such as metal iron to form a dendritic crystal by charging and discharging, which is a cause of short circuit. . In addition, by the glass melting method, the positive electrode = rMX + y) PQ4 street which can be melted and melted by metal smelting, 嶋嶋 homogeneous and dense body glass: = 2 _ _ _ sub-secondary battery positive electrode material precursor The glass 1 is produced by a manufacturing method including the following steps: a step of adjusting the raw material powder by the method of breaking the glass group 201226354, and containing U2 〇 20% 〜 50%, P2 〇 5 20% by the percentage of the mole % 40%, Fe2〇3 〇〇/. ~ 40%, Μιι02 〇%~60%, Nb2〇5 0.1%^~2.4% ' and Mohr ratio & ten' (Fe2〇3 + Mn〇2/2) /Ρ2〇5 2〇·85; a step of melting the raw material powder to obtain molten glass; and a step of quenching the molten glass. Further, the precursor glass for a positive electrode material for a lithium ion secondary battery can be further subjected to heat treatment to be crystallized, whereby a crystallized glass for a positive electrode material for a lithium ion secondary battery can be obtained. In addition, the valence of Fe and Μη in the crystal of LiMr^FeyM^^PO4 is +2, so if it is melted for a long time in the open atmosphere, then the relationship between the self-oxidation-reduction equilibrium is easily oxidized to Η price and +4 price. Therefore, in order to control the valence state, it is preferred to add a reagent of +2 valence such as iron oxalate to the raw material when the precursor glass is used, or to add a reducing agent containing carbon such as glucose to the melting of the precursor glass; Further, a method of melting a reaction vessel which is excellent in airtightness of a reducing gas is also preferable. The crystallized glass can be made from the precursor glass by means of an electric furnace capable of controlling temperature and environment. Since the heat treatment temperature differs depending on the precursor glass = the target or the target grain size, it is not particularly flawed, and preferably = at least the glass transition temperature or higher, particularly the crystallization temperature. In the form of a film, it is preferred that the heat treatment temperature is 5 〇〇t or more. If the heat treatment temperature is too low, there is a enthalpy

Si電性差之傾向。另一方面,對上限並無特別限定, 右熱處理溫度過高,則存在結晶_之虞,因此是 15 201226354 1000〇C以下、特別是950。〇以下。 移、-产附近進:二又般燒,亦即將前驅體玻璃於轉 移,皿度附近進仃一定時間之熱處理 , 進-步進行熱處理的2段階锻燒,由此變㈡ 均勻之結晶粒經之結晶化玻璃。 獲付具有 可適宜地調整熱處理時間以使前驅體玻璃之妹曰化充 分進打。具體而言,熱處理時間較佳為 'σΒΘ 特別是20分鐘〜40分鐘。佳為10分鐘〜60分鐘、 熱處理之環境較佳是氫、氨、一江 藉此變得容易獲得橄禮石型LiMnxF 1還,^ ° x yM“(x+y)P〇4 結晶。 ▲右於刖驅體玻璃之熱處理時添加有機黏合劑,則由於 遠有機黏合劑之縣仙,於結晶化之前,玻射之鐵的 價數變化為+2,因此可以高的含有率獲得 LiMnxFeyMi-(x+y)P〇4 結晶。 另外’為了使導電性提高,較佳的是相對於結晶化玻 璃而混合電子導·高且穩定之導電活性㈣。導電活性 物質可列舉石墨、乙炔黑、非晶形碳等碳系導電活性物質 或金屬粉末等金屬系導電活性物質等。非晶形碳較佳的是 於FTIR分析中,f質上檢測不到成為正極材料《導電性 降低之原因的C-O鍵峰值或C-H鍵峰值的非晶形碳。 例如,較佳的是於結晶化玻璃粉末之界面承載有導電 活性物質之狀態下進行燒結。作為於結晶化玻璃粉末之界 面承載導電活性物質之方法,可列舉將葡萄糖;脂肪族羧 酸、芳香族羧酸等羧酸;有機黏合劑等有機化合物等導電 201226354 性環前驅粉末中力-混合,於氮氣等惰 前驅體玻·_化,中進行熱處理’使 殘留導;活性物質之非晶形 达匕處’脂肪族叛酸可列與 乙樹脂、聚乙二醇、聚碳酸伸 2基丙触丁§|、聚甲基丙烯酸乙6旨、聚甲基丙稀酸甲 導雷方法’可於結晶化玻雜末界面均勻地承載 ' 貝。而且,有機黏合劑有助於正極材料之成型 =與導電性這2種特性。亦即,變得可容㈣成形為片狀, Μ可於锻燒後不進行再度粉碎而為電池之正極材料。 較佳的是本發明之鐘離子二次電池用正極材料之導電 度為1.0Χ10·8 S · cm]以上、i 〇χ1〇·6 s ·咖]以上、特別 是 l,〇xl〇-4 S · cm·1 以上。 [實例] 以下,基於貫例對本發明加以詳細說明,但本發明並 不限定於該些實例。 表1〜表3表示本發明之實例(試樣N〇1〜試樣 No.19)以及比較例(試樣n〇 2〇〜試樣n〇 22)。 17 201226354 [表i] 1 2 3 4 5 6 7 8 9 10 Li2〇 33.2 34.2 35.2 36.2 37.2 38.2 32.2 34.8 34.4 30.4 P2〇5 33.2 32.7 32.2 31.7 31.2 30.7 33.7 34.8 34.4 30.4 Fe2〇3 Mn〇2 33.2 32.7 32.2 31.7 31.2 30.7 33.7 29.9 30.7 38.7 Nb203 Si02 Al2〇3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 (Fe+Mn/2) /P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 0.89 1.27 Li/ ( P+Fe+Mn/2 ) 0.50 0.52 0.55 0.57 0.60 0.62 0.48 0.54 0.53 0.44 Li/P 1.00 1.05 1.09 1.14 1.19 1.24 0.96 1.00 1.00 1.00 Li/ (Fe+Mn/2) 1.00 1.05 1.09 1.14 1.19 1.24 0.96 1.17 1.12 0.79 玻璃化 ο ο ο ο ο ο ο ο ο ο 結晶量(%) 94.0 96.3 96.9 94.7 94.0 91.6 88.0 96.0 93.0 86.0 放電容量(mwh/g) 130 137 141 138 135 130 120 137 128 100 18 s 201226351 [表2] 11 12 13 14 15 16 17 18 19 Li20 34.5 34.5 34.5 24.8 26.8 32.4 30.4 29.1 28.8 P2〇5 31.6 31.6 31.6 24.8 23.8 30.9 28.9 28.1 27.3 Fe203 31.6 31.6 31.6 24.7 17.1 13,7 10.6 Mn02 49.8 48.8 11.7 23.6 28.6 33.3 Nb2〇3 2.4 0.9 0.9 0.5 0.5 0.5 0.5 0.5 0.5 Si02 1.5 Al2〇3 1.5 (Fe+Mn/2) /P 1.00 1.00 1.00 1.00 1.03 0.99 1.00 1.00 1.00 Li/ ( P+Fe+Mn/2 ) 0.55 0.55 0.55 0.50 0.56 0.53 0.53 0.52 0.53 Li/P 1.09 1.09 1.09 1.00 1.13 1.05 1.05 1.04 1.05 Li/ ( Fe+Mn/2 ) 1.09 1.09 1.09 1.00 1.10 1.06 1.05 1.04 1.06 玻璃化 0 0 0 0 0 0 0 0 0 結晶量(%) 93.0 93.5 92.8 92.0 96.0 92.0 91.0 90.0 88.0 放電容量(mwh/g ) 128 131 126 120 135 125 119 115 110 19 201226354 [表3] 20 21 22 Li20 30.3 26.9 29.0 p2〇5 38.3 38.6 29.0 Fe203 30.8 31.9 37.0 Μη02 Nb203 0.5 2.6 5.0 Si02 ai2〇3 (Fe+Mn/2) /P 0.80 0.83 1.28 Li/ ( P+Fe+Mn/2 ) 0.44 0.38 0.44 Li/P 0.79 0.70 1.00 Li/ ( Fe+Mn/2 ) 0.98 0.84 0.78 玻璃化 0 X 0 結晶量(%) 70.0 80.0 放電容量(mwh/g) 40 - 88 首先,以成為表1〜表3中所示之各組成的方式調合 玻璃原料,使用鉑坩堝而於ll〇〇°C〜1400°C下進行1小時 之炫融。使熔融玻璃流入至一對成形親中,一面驟冷一面 成形為膜狀,藉此而製作前驅體玻璃。 其後,將前驅體玻璃以球磨機加以粉碎,獲得平均粒 徑為2 μιη之前驅體玻璃粉末。相對於前驅體玻璃粉末100 201226354. 重®份而&,混合酚樹脂5重量份(以石墨換算古相當 於組量份)、作為溶劑之15重量份之乙醇鼻 樂料化’利用公知之刮刀成形法而成形為厚度為5〇〇哗 之片狀之後,於80。(:下使其乾燥約丨小時。其次,將所得 之片狀成形體切斷為預定之大小,於氮氣環境中、8〇〇£)(:下 進行30分鐘之熱處理而使其結晶化,藉此獲得正極材料 (結晶化玻璃粉末之燒結體)。藉由粉末χ射線繞射法而 測定正極材料中之LiMnxFeyMl如y)P〇4結晶之含量。 其次,對於所得之正極材料,藉由以下方式而評價 0.1C倍率之放電容量。 以正極材料:黏合劑:導電性物質 ^之方式稱量正極材料、作柄合劑之7、y化求匕二 2 >、作為導電性物質之科琴黑,將該些材料分散於N_ ii=r(NMP)中之後,藉由自轉、公轉混合機充 =订攪拌而使其漿料化。其次,使關隙為15G _之 將料=為正轉1體之厚2()μιη之純上塗佈所得之 轉觀之$ 中、28(rc下進行乾燥後,使其通過一對旋 衝壓機^u lt/em進行壓⑼獲得電極片材。藉由電極 =機3片材衝㈣直經llmm,於14。。〇下乾燥6 J呀’獲得圓形之工作電極。 之下:差作電極之18面朝下而載置於钮扣型電池 得之其上積層於机下進行8小時之減壓乾燥而所 公司ΪΓ6 _之包含聚丙歸多孔質膜(H— celanese ^之Celgard#2400)之分隔件、以及作為相對電極 21 201226354The tendency of Si to be poor in electrical conductivity. On the other hand, the upper limit is not particularly limited, and if the right heat treatment temperature is too high, there is a crystallization of 结晶, so it is 15 201226354 1000 〇 C or less, particularly 950. 〇The following. Move, - near the production: two and other burns, that is, the precursor glass is transferred, the heat treatment is carried out for a certain period of time near the dish, and the second-stage calcination is carried out by heat treatment, thereby changing (2) uniform crystal grain Crystallized glass. It is paid to have a suitable heat treatment time to make the precursor glass of the precursor glass fully charged. Specifically, the heat treatment time is preferably 'σΒΘ, particularly 20 minutes to 40 minutes. Preferably, the environment is from 10 minutes to 60 minutes, and the heat treatment environment is preferably hydrogen, ammonia, and a river, thereby making it easy to obtain the olivine-type LiMnxF 1 and ^ ° x yM "(x + y) P 〇 4 crystal. ▲ When the organic binder is added to the heat treatment of the enamel glass, the valence of the molten iron is changed to +2 before the crystallization before the crystallization of the far-organic binder, so LiMnxFeyMi- can be obtained at a high content rate. (x+y) P〇4 crystals. Further, in order to improve conductivity, it is preferable to mix electrons with high conductivity and stable electrical conductivity with respect to the crystallized glass (IV). The conductive active material may, for example, be graphite or acetylene black. A carbon-based conductive active material such as amorphous carbon or a metal-based conductive active material such as metal powder. The amorphous carbon is preferably not detected in the FTIR analysis as a CO bond which causes a decrease in conductivity of the positive electrode material. Amorphous carbon having a peak or a peak of a CH bond. For example, it is preferred to carry out sintering in a state in which an interface of a crystallized glass powder is carried with a conductive active material. As a method of carrying a conductive active material at an interface of the crystallized glass powder, Column Conductive 201226354 ring precursor powder, such as glucose, carboxylic acid such as aliphatic carboxylic acid or aromatic carboxylic acid, or organic compound such as organic binder, is mixed and mixed, and is heat-treated in an inert precursor such as nitrogen. Residual conduction; the amorphous form of the active substance is 'an aliphatic tetamine can be listed with ethyl resin, polyethylene glycol, polycarbonate extension 2 base C-butyl §|, polymethacrylic acid B6, polymethyl propyl The dilute acid-guided thunder method can uniformly carry 'Bei' at the interface of the crystallized vitreous end. Moreover, the organic binder contributes to the two characteristics of the formation of the positive electrode material and the conductivity. That is, it becomes acceptable (4) It is formed into a sheet shape, and the crucible can be used as a positive electrode material for a battery without being pulverized again after calcination. It is preferable that the positive electrode material for a clock ion secondary battery of the present invention has a conductivity of 1.0 Χ 10·8 S · cm or more. i, 〇1〇·6 s · coffee] or more, particularly l, 〇xl 〇 -4 S · cm·1 or more. [Examples] Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited thereto. These examples. Table 1 to Table 3 show examples of the present invention (sample N〇1~ Sample No. 19) and Comparative Example (sample n〇2〇 to sample n〇22) 17 201226354 [Table i] 1 2 3 4 5 6 7 8 9 10 Li2〇33.2 34.2 35.2 36.2 37.2 38.2 32.2 34.8 34.4 30.4 P2〇5 33.2 32.7 32.2 31.7 31.2 30.7 33.7 34.8 34.4 30.4 Fe2〇3 Mn〇2 33.2 32.7 32.2 31.7 31.2 30.7 33.7 29.9 30.7 38.7 Nb203 Si02 Al2〇3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 (Fe+Mn /2) /P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 0.89 1.27 Li/ ( P+Fe+Mn/2 ) 0.50 0.52 0.55 0.57 0.60 0.62 0.48 0.54 0.53 0.44 Li/P 1.00 1.05 1.09 1.14 1.19 1.24 0.96 1.00 1.00 1.00 Li / (Fe+Mn/2) 1.00 1.05 1.09 1.14 1.19 1.24 0.96 1.17 1.12 0.79 Vitrification ο ο ο ο ο ο ο ο ο ο crystallization amount (%) 94.0 96.3 96.9 94.7 94.0 91.6 88.0 96.0 93.0 86.0 Discharge capacity (mwh/ g) 130 137 141 138 135 130 120 137 128 100 18 s 201226351 [Table 2] 11 12 13 14 15 16 17 18 19 Li20 34.5 34.5 34.5 24.8 26.8 32.4 30.4 29.1 28.8 P2〇5 31.6 31.6 31.6 24.8 23.8 30.9 28.9 28.1 27.3 Fe203 31.6 31.6 31.6 24.7 17.1 13,7 10.6 Mn02 49.8 48.8 11.7 23. 6 28.6 33.3 Nb2〇3 2.4 0.9 0.9 0.5 0.5 0.5 0.5 0.5 0.5 Si02 1.5 Al2〇3 1.5 (Fe+Mn/2) /P 1.00 1.00 1.00 1.00 1.03 0.99 1.00 1.00 1.00 Li/ ( P+Fe+Mn/2 ) 0.55 0.55 0.55 0.50 0.56 0.53 0.53 0.52 0.53 Li/P 1.09 1.09 1.09 1.00 1.13 1.05 1.05 1.04 1.05 Li/ ( Fe+Mn/2 ) 1.09 1.09 1.09 1.00 1.10 1.06 1.05 1.04 1.06 Vitrification 0 0 0 0 0 0 0 0 0 Crystallization amount (%) 93.0 93.5 92.8 92.0 96.0 92.0 91.0 90.0 88.0 Discharge capacity (mwh/g) 128 131 126 120 135 125 119 115 110 19 201226354 [Table 3] 20 21 22 Li20 30.3 26.9 29.0 p2〇5 38.3 38.6 29.0 Fe203 30.8 31.9 37.0 Μη02 Nb203 0.5 2.6 5.0 Si02 ai2〇3 (Fe+Mn/2) /P 0.80 0.83 1.28 Li/ ( P+Fe+Mn/2 ) 0.44 0.38 0.44 Li/P 0.79 0.70 1.00 Li/ ( Fe+Mn /2 ) 0.98 0.84 0.78 Vitrification 0 X 0 Crystallization amount (%) 70.0 80.0 Discharge capacity (mwh/g) 40 - 88 First, the glass raw materials are blended so as to have the respective compositions shown in Tables 1 to 3. Platinum is carried out for 1 hour at ll 〇〇 ° C to 1400 ° C. The molten glass is poured into a pair of forming members, and is formed into a film shape by quenching, whereby a precursor glass is produced. Thereafter, the precursor glass was pulverized in a ball mill to obtain a precursor glass powder having an average particle diameter of 2 μm. With respect to the precursor glass powder 100 201226354. 5 parts by weight of the mixed phenol resin (an equivalent amount in terms of graphite) and 15 parts by weight of ethanol as a solvent After forming into a sheet having a thickness of 5 Å by a doctor blade forming method, it was 80. (The following drying was carried out for about several hours. Next, the obtained sheet-like formed body was cut into a predetermined size, and subjected to heat treatment for 30 minutes in a nitrogen atmosphere to be crystallized. Thereby, a positive electrode material (sintered body of crystallized glass powder) was obtained. The content of LiMnxFeyM1 such as y)P〇4 crystal in the positive electrode material was measured by powder ray diffraction. Next, with respect to the obtained positive electrode material, the discharge capacity at a 0.1 C rate was evaluated by the following manner. The positive electrode material: the binder: the conductive material ^ is used to weigh the positive electrode material, the handle mixture is 7, the y chemical solution 2 2 >, as the conductive substance of the Ketjen black, the materials are dispersed in N_ ii = After r (NMP), the mixture was slurried by auto-rotation and revolutionary mixer charging. Secondly, the closing gap is 15G _. The material = the thickness of the positive body 1 body 2 () μιη purely coated by the coating of the middle, 28 (dry under rc, through a pair of spin The press machine ^u lt/em is pressed (9) to obtain the electrode sheet. By electrode = machine 3 sheet punching (four) straight through llmm, at 14. 〇 under the drying 6 J 呀 'get a round working electrode. The 18th surface of the differential electrode is placed on the button-type battery and placed under the machine for 8 hours under reduced pressure drying. The company ΪΓ6 _ contains polypropylene to the porous membrane (H-celanese ^Celgard) #2400) The separator, and as the opposite electrode 21 201226354

之金屬鐘,製作§式驗電池。祐田^ μ T 伸乙# DEC (碳酸乙二6溶液/EC (碳酸 於路點溫度為1C以下之環境下進行試驗電池之组裝。 使用試驗電池,藉由2VM2VUC(值定電流) 充電進行充電(自正極材料中放練離子),進—步使其自 4.2 V放電至2 V而進行放電(於正極材料巾吸藏裡離 子),測定放電谷置。將結果示於表1〜表3中。 由表1〜表3可知.作為實例之試樣N〇 1〜試樣n〇 19 之正極材料用玻璃顯示出1〇〇 mwh/g以上之良好的放電容 量。另一方面,作為比較例之試樣No.20以及試樣No 22 之正極材料用玻璃並不滿足預定之玻璃組成,放電容量低 至88mwh/g以下。另外,關於試樣No.21,並未玻璃化, 因此並未進行放電容量之測定。 【圖式簡單說明】 益〇 【主要元件符號說明】 择〇The metal clock is used to make a §-type battery. You Tian ^ μ T 伸乙# DEC (Ethylene carbonate 2 6 solution / EC (carbonation is carried out in the environment where the junction temperature is below 1C. The test battery is used, and the battery is charged by 2VM2VUC (value constant current). Charging (reducing ions from the positive electrode material), discharging it from 4.2 V to 2 V and discharging (dissolving ions in the positive electrode material), and measuring the discharge valley. The results are shown in Table 1 to Table 3. It can be seen from Table 1 to Table 3. The positive electrode material of the sample N〇1 to sample n〇19 as an example shows a good discharge capacity of 1 〇〇 mwh/g or more. The glass for the positive electrode material of the sample No. 20 and the sample No. 22 of the comparative example did not satisfy the predetermined glass composition, and the discharge capacity was as low as 88 mwh/g or less. Further, the sample No. 21 was not vitrified, so The discharge capacity is not measured. [Simple description of the diagram] Yiyi [main component symbol description]

S 22S 22

Claims (1)

20122635^ 七、申請專利範圍: 1. 種裡離子—次電池正極材料用前驅體玻璃,其特 徵在於:作為玻触成,以莫料分比計含有贴篇〜 50/〇、P205 20/〇〜40%、Fe2〇3 〇%〜4〇%、Mn〇2 〇%〜6〇0/〇、 Nb205 0.1%〜2.4% ’ 且以莫耳比計,(Fe2〇3 + Mn〇2/2) /Ρ2〇5$〇·85。 2. 如申請專利範圍第1項所述之瓣子二次電池正極 材料用前驅體玻璃’其中,以莫耳百分比計更含有0%〜 2.料之 Si02 + V205 + b2〇3 + Ge〇2 + Al2〇3 + Ga2〇3 + %2〇3 + ΒΪ2〇3 0 3. 如申請專利範圍帛1項或第2項所述之链離子二次 電池正極材前驅體玻璃,其中,以莫耳比計,Li2〇/ (P2〇5 + Fe203 + Mn02/2 ) $ 〇 5。 4·如申切專利範圍第1項至第3項中任一項所述之鐘 離子二次電池正極材料用前驅體玻璃,其中,以莫耳比計, Li2O/P2〇5^0.85 ' Li2〇/ ( Fe203 + Mn02/2 ) ^0.85 〇 灿5.種鋰離子二次電池正極材料用前驅體玻璃,其特 徵在於.作為玻璃組成’以莫耳百分比計含有Li2〇2〇%〜 50/〇、P2〇5 20%〜40%、Fe2〇3 〇%〜4〇%、Mn〇2 〇%〜6〇%、 Nb2O50%〜2.4%,且以莫耳比計,〇1。 6. —種鋰離子二次電池正極材料用結晶化玻璃,其特 徵在於·作為玻璃組成,以莫耳百分比計含有Li2〇2〇%〜 50%、P2〇5 20%〜40%、Fe2〇3 〇%〜4〇%、Mn〇2 〇%〜6〇%、 Nb2O50.1%〜2.4%,且(Fe2〇3 + Mn〇2/2) /ρ2〇5^〇 85。 23 201226354 7. 如申請專利範圍第6項所述之鋰離子二次電池正極 材料用結晶化玻璃,其中,以莫耳百分比計更含有〇%〜 2.4%之 Si02 + V2〇5 + b203 + Ge02 + Α12〇3 + Ga203 + Sb203 + Bi2〇3 o 8. 如申請專利範圍第6項或第7項所述之链離子二次 電池正極材料用結晶化玻璃,其中,以莫耳比計,Li20/ (P205 + Fe203 + Mn02/2) g〇.5。 9. 如申請專利範圍第5項至第8項中任一項所述之鋰 離子二次電池正極材料用結晶化玻璃,其中,以莫耳比計, Li20/P2〇5g〇 85、及/或 Li2〇/ (Fe2〇3 + Mn〇2/2) 85。 —種鐘離子二次電池正極材料用結晶化玻璃,其 特徵在於:作為玻璃組成,以莫耳百分比計含有Li20 20% 〜5〇°/〇、P2〇5 20%〜40%、Fe203 〇%〜40%、Μη02 0%〜 60%、Nb2〇5 〇%〜2.4%,且 Li20/P2〇5^l.〇l。 11. 如申請專利範圍第6項至第10項中任一項所述之 鐘離子二次電池正極材料用結晶化玻璃,其中,含有 说113^^]\41.(};+#〇4結晶(〇$5^1、〇^丫$1、〇〈又 + 丫^1、 Μ疋選自Nb、Ti、V、Cr、Co、Ni之至少1種)作為主 結晶。 12. 如申請專利範圍第^項所述之鋰離子二次電池正 f材料用結晶化玻璃,其中,上述LiMnxFeyMWx+y&gt;P04結 晶之含量為50 wt%以上。 13. —種鋰離子二次電池正極材料之製造方法,其特 徵在於包含:20122635^ VII. Scope of application for patents: 1. Precursor glass for the anode material of the ion-sub-battery, which is characterized by: as a glass contact, it contains a piece of material ~ 50/〇, P205 20/〇 ~40%, Fe2〇3 〇%~4〇%, Mn〇2 〇%~6〇0/〇, Nb205 0.1%~2.4% ' and in terms of molar ratio, (Fe2〇3 + Mn〇2/2 ) /Ρ2〇5$〇·85. 2. The precursor glass for a positive electrode material for a petal secondary battery according to claim 1, wherein the SiO2 + V205 + b2〇3 + Ge〇 is further contained in a percentage of moles. 2 + Al2〇3 + Ga2〇3 + %2〇3 + ΒΪ2〇3 0 3. For the positive electrode precursor glass of the chain ion secondary battery as described in claim 1 or 2, wherein Ear ratio meter, Li2〇/(P2〇5 + Fe203 + Mn02/2 ) $ 〇5. 4. The precursor glass for a positive electrode material for a clock ion secondary battery according to any one of the first to third aspects of the invention, wherein the molar ratio is Li2O/P2〇5^0.85 ' Li2 〇 / (Fe203 + Mn02/2 ) ^0.85 55. A precursor glass for a lithium ion secondary battery positive electrode material, characterized in that the glass composition 'containing Li2〇2〇% to 50/% by mole percentage 〇, P2〇5 20%~40%, Fe2〇3 〇%~4〇%, Mn〇2 〇%~6〇%, Nb2O50%~2.4%, and 莫1 in terms of molar ratio. 6. A crystallized glass for a positive electrode material for a lithium ion secondary battery, characterized in that it comprises, as a glass composition, Li2〇2〇%~50%, P2〇5 20%~40%, Fe2〇 as a percentage of moles. 3 〇%~4〇%, Mn〇2 〇%~6〇%, Nb2O50.1%~2.4%, and (Fe2〇3 + Mn〇2/2) /ρ2〇5^〇85. The crystallized glass for a positive electrode material for a lithium ion secondary battery according to claim 6, wherein the SiO 2 + V2 〇 5 + b203 + Ge02 further contains 〇% to 2.4% in terms of mole percentage. Α12〇3 + Ga203 + Sb203 + Bi2〇3 o 8. The crystallized glass for a positive electrode material for a chain ion secondary battery according to claim 6 or 7, wherein the molar ratio is Li20 / (P205 + Fe203 + Mn02/2) g〇.5. 9. The crystallized glass for a positive electrode material for a lithium ion secondary battery according to any one of claims 5 to 8, wherein the molar ratio is Li20/P2〇5g〇85, and/or Or Li2〇/(Fe2〇3 + Mn〇2/2) 85. - Crystallized glass for a positive electrode material for a clock ion secondary battery, characterized in that, as a glass composition, Li20 is contained in a percentage by mole of 20% to 5 〇 ° / 〇, P 2 〇 5 20% to 40%, and Fe 203 % ~40%, Μη02 0%~60%, Nb2〇5 〇%~2.4%, and Li20/P2〇5^l.〇l. 11. The crystallized glass for a positive electrode material for a clock ion secondary battery according to any one of claims 6 to 10, which contains 113^^]\41.(};+#〇4 Crystallization (〇$5^1, 〇^丫$1, 〇<又+ 丫^1, Μ疋 is selected from at least one of Nb, Ti, V, Cr, Co, and Ni) as the main crystal. The crystallized glass for a lithium ion secondary battery of the above-mentioned item, wherein the content of the LiMnxFeyMWx+y&gt;P04 crystal is 50 wt% or more. 13. A method for producing a lithium ion secondary battery positive electrode material , which is characterized by: 24 201226354^ 以玻璃組成成為以莫耳百分比計含有Li20 20%〜 50%、P205 20%〜40%、Fe203 0%〜40%、Μη02 0% 〜60%、 Nb2O50.1%〜2.4%,且以莫耳比計,(Fe2O3 + MnO2/2) /P2〇5^0.85之方式而調整原料粉末之步驟,; 使上述原料粉末熔融而獲得熔融玻璃之步驟;以及 使上述熔融玻璃驟冷而獲得前驅體玻璃之步驟。 14.如申請專利範圍第13項所述之鋰離子二次電池正 極材料之製造方法,其更包含對上述前驅體玻璃進行熱處 理而獲得結晶化玻璃之步驟。 25 201226354 四、 指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 無。 五、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: 無0 201226354 4uyyzpiii __ 爲第100146243號中文說明書無劃線修正本 日期:1〇1年2月23 | 發明專利說明書—— (本說明書格式、順序,請勿任意更動,※記號部分請勿填寫) ※申請案號: ※申請日··分類: 一、 發明名稱:(中文/英文) 鋰離子二次電池正極材料用前驅體玻璃以及鋰離子二 次電池正極材料用結晶化玻璃 PRECURSOR GLASS FOR ANODE MATERIAL OF 〇 ^ LITHIUM IONIC SECONDARY CELL AND CRYSTALLINE GLASS FOR ANODE MATERIAL OF LITHIUM IONIC SECONDARY CELL 二、 中文發明摘要: 一種鋰離子二次電池正極材料用前驅體玻璃,其特徵 在於:作為玻璃組成,以莫耳百分比計含有Li20 20%〜 50%、P2〇5 20%〜40%、Fe203 0%〜40%、Μη02 0%〜60%、 〇 阶2〇50.1%〜2.40/0,且以莫耳比計,他〇3 + ]^11〇2/2) /P2〇5^〇.85 ° 三、 英文發明摘要: A precursor glass for an anode material of a lithium ionic secondary cell is characterized in containing 20 mole% to 50 mole% of Li20,20 mole% to 40 mole% of P2O5,〇 mole% to 40 mole% of Fe203, 0 mole% to 60 mole% of 201226354 4〇992pifl 修正日期:101年2月23 胃胃100146243號中文說明書無劃線修正本 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種可攜式電子機器或電動汽車等中 所使用之轉子二次電池正極材料用前罐玻璃以及鐘離 子二次電池正極材料用結晶化玻璃。 【先前技術】 瓣子二次電池確立了作為可攜式電子終端或電動汽 車所不可欠缺的高容量、輕量的電源的地位。瓣子二次 電池之正極材料中,迄今為止使用的是制幢(Lic〇〇2) 或猛酸鐘(LiMn〇2)等無機金屬氧化物。然而,隨著近年 來電子機ϋ之高性能化所造成之電力消耗的增大,要求進 離子二次電池之高容量化。而且,自環境保全問 通或此源問題之觀點考慮,要求自C。或Μη等環境負擔 大的材料轉換為更加環境協調型的材料。另外,於近年來: 钻資源__糾雜,自此軸料慮,錢望轉換 為取代鈷酸鋰或錳酸鋰之廉價的正極材料。 人右ί年來,自於成本以及資源等方面而言有利考慮,於 3之鐘化合物中,猛系尖晶石型結晶 、NASICON 型 、,-。曰曰(Ll3Fe2(P〇4)3)以及橄欖石型結曰曰曰(uFep〇4) 關注,並進行了種種研究以及開發(例如參照日本專利特 =II34725號公報)。其巾’撖梗石型結晶較雜鐘的 、服度%疋性更加優異,可期待於高溫下之安全動作。而且, 魏為骨架之結構’因此財對錄充放電反應 所以成之結構劣化的对受性優異的特徵。 201226354 4U992pitl 修正日期··丨01年2月23日 爲第100146243號中文說明書無畫[J線修正本 另外’已知錳系尖晶石型、NASICON型以及撖欖石 型之各結晶中之鐵部位可被各種過渡金屬離子置換。例如 將鐵完全置換為錳或釩之Li3Mn2(;P04)3、:LiMnI&gt;C)4、LiVP〇4 等’將鐵部分性地置換為錳或釩之 Li3(MnxFeyV1.(x+y))2(P〇4)3 &gt; LiMnxFe(i.x)P04 ( 0 &lt; χ &lt; 1 λ 〇 &lt;y&lt;l、0&lt;x + y&lt;l)等亦具有作為正極材料之功能。24 201226354^ The composition of glass is such that Li20 contains 20% to 50%, P205 20% to 40%, Fe203 0% to 40%, Μη02 0% to 60%, Nb2O50.1% to 2.4%, and a step of adjusting a raw material powder by a molar ratio (Fe2O3 + MnO2/2) / P2 〇 5 ^ 0.85; a step of melting the raw material powder to obtain molten glass; and quenching the molten glass to obtain The step of the precursor glass. 14. The method of producing a lithium ion secondary battery positive electrode material according to claim 13, further comprising the step of thermally treating the precursor glass to obtain crystallized glass. 25 201226354 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the component symbols of this representative figure: None. 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: None 0 201226354 4uyyzpiii __ is the Chinese manual of No. 100146243 without a slash correction. Date: 1 February 2 23 | Invention patent specification - ( Please do not change the format and order of this manual. Please do not fill in the ※ part. ※Application number: ※Application date·Classification: 1. Name of the invention: (Chinese/English) Precursor for positive electrode material for lithium ion secondary battery Glass and Lithium Ion Secondary Battery Cathode Glass PRECURSOR GLASS FOR ANODE MATERIAL OF 〇^ LITHIUM IONIC SECONDARY CELL AND CRYSTALLINE GLASS FOR ANODE MATERIAL OF LITHIUM IONIC SECONDARY CELL II. Abstract: A lithium ion secondary battery cathode material The precursor glass is characterized in that, as a glass composition, Li20 is contained in a percentage by mole of 20% to 50%, P2〇5 is 20% to 40%, Fe203 is 0% to 40%, and Μη02 is 0% to 60%. The order is 2〇50.1%~2.40/0, and in terms of the molar ratio, he 〇3 + ]^11〇2/2) /P2〇5^〇.85 ° A precursor glass for an anode material of a lithium ionic secondary cell is characterized in containing 20 mole% to 50 mole% of Li20, 20 mole% to 40 mole% of P2O5, 〇mole% to 40 mole% of Fe203, 0 Mole% to 60 mole% of 201226354 4〇992pifl Revision date: February 23, 2003 Stomach and stomach 100146243 Chinese manual without sizing corrections 6. Description of the invention: [Technical field of invention] The present invention relates to a portable The front can glass for a positive electrode material for a rotor secondary battery used in an electronic device or an electric vehicle, and the crystallized glass for a positive electrode material of a clock ion secondary battery. [Prior Art] The petal secondary battery has established a position as a high-capacity, lightweight power source which is indispensable for a portable electronic terminal or an electric vehicle. Among the positive electrode materials for the secondary battery of the valve, an inorganic metal oxide such as a building (Lic〇〇2) or a eucalyptus clock (LiMn〇2) has hitherto been used. However, with the increase in power consumption caused by the high performance of electronic devices in recent years, it is required to increase the capacity of the ion secondary battery. Moreover, from the perspective of environmental preservation or this source issue, it is required to be from C. Materials that are environmentally burdened, such as Μη, are converted into more environmentally compatible materials. In addition, in recent years: Drilling resources __ correction, from this axis considerations, Qianwang converted to cheap cathode material instead of lithium cobalt oxide or lithium manganate. In the right years, it is beneficial to consider the cost and resources. In the compound of the 3rd bell, the spinel crystal, the NASICON type, and the -.曰曰 (Ll3Fe2(P〇4)3) and olivine-type sputum (uFep〇4) have been paid attention to, and various studies and developments have been made (for example, refer to Japanese Patent Laid-Open No. II34725). The towel's stalk stone type crystal is more excellent in the degree of service than the bell, and can be expected to operate safely at high temperatures. Further, since Wei is a structure of the skeleton, the charge and discharge reaction is recorded, so that the structural deterioration is excellent. 201226354 4U992pitl Revision date··February 23, 2011 is No. 100146243 Chinese manual No picture [J line correction this other 'known manganese manganese spinel type, NASICON type and sapphire type crystal The site can be replaced by various transition metal ions. For example, Li3, which is completely replaced by manganese or vanadium, is replaced by Li3Mn2 (;P04)3, LiMnI&gt;C)4, LiVP〇4, etc., which is partially replaced by manganese or vanadium Li3 (MnxFeyV1.(x+y)) 2(P〇4)3 &gt; LiMnxFe(ix)P04 ( 0 &lt; χ &lt; 1 λ 〇 &lt; y &lt; l, 0 &lt; x + y &lt; l) and the like also have a function as a positive electrode material. 〇 其中,已知若於正極材料中混合碳粉末等導電活性物 質,則使電子導電性提高。然而,若於磷酸鐵鋰正極材料 中混合導電活性物質而進行煅燒,則由於自磷酸鐵鋰所產 生之氣體的影響,存在無法於磷酸鐵鐘粒子表面使導電活 性物質效率良好地活化,電子導電度降低之問題。 因此 作马於煅燒時氣體之產生少的正極材料,提出 了包含結晶化玻璃之磷酸鐵鋰材料(例如參照日本專利 2〇〇9-87933號公報)。該前賴㈣與碳粉料導電活性 物質混合而煅燒時基本上不產生氣體。因此,可於正極材 料粒子表面效率良好地使導電活性物質活化,且容易達成 優異之電子導電性。而且,藉由對該前驅體_進行锻燒, 具有均質之組成的析出有晶粒尺寸小之魏鐵鐘結 =或填酸賴固溶體結晶的結晶化玻璃粉末,可獲得 ¥電性優異之_子二次電池正極材料。如上所述,若使 2009_87933號公報中所記載__ 均優異之正極材料。 ^里犄庄 日本專利2_-87933號公報中所記載之正極材料由 5 201226354 40992pifl 修正日期:1〇1年2月23 爲第100146243號中文說明書無劃線修正本 造成纽電時之電池容量有大的變化。然 二 利2()()9_87933號公報中’關於電池容量之最 充分’現狀是尚未提出具有高的電池容 里之正極材料。 【發明内容】 本發明是鑒於此種狀況而成 得高的電池容量的鐘離子二次 、目的在於徒仏了獲 以及1子:次電池正極材料用結晶::用_體玻璃 玻璃本電了材料用前驅體 咖鳩〜5〇%、ρ2〇5 2 g成f 百分比計含有 〇%-60〇/〇 . Nb2〇5 〇.1〇/_2 4〇^〇/〇 ' Fe^ 〇%^40〇/〇. Mn〇2 Μη02/2) /Ρ2〇5^〇·85。 ° 以莫耳比計,(Fe203 + 的具有上述組成之前驅體麵,則可製作呈有古 驅體玻璃」是指藉由;;^極材料。另外,崎 之玻璃。 進仃熱處理而結晶化,析出目標結晶 前驅體玻璃本^明之鋰離子二次電池正極材料用 上述成分是使破_心二^Sb2〇3 + Bl2〇3。 些成分,變得容易獲得破^ b 成分。藉由添加該 異種結晶、電池容量古沾# b穩疋、難以析出所不期望之 第:r,θ W的鋰離子二次電池正極材料。 於本翻之鋰離子二次電池正極材料 201226354 40992pifl 爲第100146243號中文說明書無劃線修正本 修正曰期:1〇1年2月23日 Li20/ ( P2〇s + Fe2〇3 + 用前驅體玻璃中,以莫耳比計, Mn02/2) -0.5。 藉由該構成,變 不期望之異種結晶、 料。 電池容量高 第四’較佳的是於本發明之趣離子二次電池正極材料 用前驅體玻璃中,以莫耳比計,Li2〇/P2〇5^85、及/或 Li20/ (Fe2〇3 + Mn02/2) ^0.85 ° 藉由該構成,變得容易獲得玻璃化穩定、難以析出所 不期望之異種結晶、電池容量高的鋰離子二次電池正極材 料。 弟五,本發明之其他形態是關於一種銀離子二次電池 正極材料用前驅體玻璃,其特徵在於:作為玻璃組成,以 莫耳百分比計含有Li20 20%〜50%、P2O5 20%〜40%、 Fe203 0%〜40%、Μη02 〇%〜60%、Nb205 0%〜2.4%,且 以莫耳比計,Li20/P2〇5^l.〇i。 第六’本發明是關於一種裡離子二次電池正極材料用 結晶化玻璃’其特徵在於:作為玻璃組成,以莫耳百分比 計含有 Li20 20%〜50%、P2〇5 20%〜40%、Fe203 〇〇/〇〜 40%、Μη02 0%〜60%、Nb205 0.1%〜2.4%,且(Fe203 + Μη02/2) /Ρ2Ο5^0·85。 第七,較佳的是本發明之裡離子二次電池正極材料用 結晶化玻璃以莫耳百分比計更含有0%〜2.4%之Si02 + V2O5 + B2O3 + Ge〇2 + Al2〇3 + Ga2〇3 + Sb2〇3 + Bi2〇3。 7 201226354 40992pifl 修正日期:101年2月23日 爲第100146243號中文說明書無畫肢泉修正本 第八,較佳的是於本發明之鋰離子二次 用結晶化玻射,以莫耳比計,4 ^ ^ Mn02/2) ^0.5。 5 2U3 + 第九’較佳的是於本發明之鐘離子二次電池正極 用結晶化玻射,以莫耳比計,Ll2〇/P2(^a85、及 Li2〇/ ( Fe2〇3 + Mn02/2 ) ^0.85° 第十,本發明之其他形態是關於—種_子二次 正極材料用結晶化玻璃,其特徵在於:作為坡璃組成,以 莫耳百分比計含有Li2〇 20%〜5〇%、p2〇5 2〇%〜4〇%、 Fe2〇3 〇%〜40%、Μη02 〇%〜6〇%、Nb2〇5 〇%〜2 4%,〇 Li20/P2〇5gl_〇l。 ‘ 〇’ 且 第十-,較佳的是本發明之鐘離子二次電池正極 用結晶化玻璃含有LiMr^FeyMi-^PO4結晶 〇各ySl、0&lt;x + y^l、Μ 是選自 Nb、Ti、v、Cr、^〇、 Ni之至少1種)作為主結晶。 〇、 第十二,較佳的是本發明之鐘離子二次電池正極材料 用結晶化玻璃中LiMnxFeylV^x+ePO4結晶之含量為5〇糾% 以上。 第十三,本發明是關於-種鐘離子二次電池正極 之製造方法,其特徵在於包含:以玻璃組成成為如下之方 式而調整原料粉末之步驟,以莫耳百分比計含有Li2〇2〇〇/ 〜50%、P2〇5 20%〜40%、Fe203 〇〇/〇〜40%、Mn〇2 〇%〜0 60%、Nb205 0· 1 %〜2.4% ’ 且以莫耳比計,(Fe2〇3 + M2n〇: /Ρ2〇520·85 ;使原料粉末熔融而獲得熔融玻螭之步驟$以 201226354 4uyy2piti mm 100146243 修正日期:101年2月23日 及使熔融_驟冷而獲得前賴玻璃之步驟。 之步驟 生古錄的是轉明種二次電池正極材料之製 3對前驅體麵進行熱處理而獲得結晶化玻璃 【實施方式】 之鋰離子二次電池正極材料用前驅體玻璃之特 破f於.作為玻璃組成,以莫耳百分比計含有Li2〇 20%〜 5〇%、P2〇5 20% 〜40%、Fe2〇3 〇%〜4〇%、Mn〇2 〇%〜6〇%、 N 2〇5&gt;0.1/〇〜2.4%,且以莫耳比計,(r处+ Mn〇2/2) /Ρ2〇5 $ 〇·85。將玻璃組成限定成如上所述之理由說明如下。 Ll2〇疋LiMnxFeyMHx+y/O4結晶之主成分。較佳的是 •2 之 &amp; 直為 20%〜50%、25%〜45%、30%〜40%、33% :37%、特別是33.5%〜37%。若Li20之含量過少,則使 月/驅體玻螭結晶化時LiMnxFeyMi-^+^PC^結晶之析出量變 難以獲得高的電池容量。另一方面,若Li20之含量過 多’則變得容易析出所不期望之異種結晶(Li3p〇4、 〇 Lsl3(MnxFei-x)2(P〇4)3 等)。其結果,LiMnxFeyMHxiPC^ 結 曰曰之析出量變少,難以獲得高的電池容量。 Ρζ〇5亦為LiMnxFeyMHX+y)P〇4結晶之主成分。較佳的 是 P2〇5 之含量為 2〇%〜40%、5%〜35%、28%〜35%、29% 〜33%、特佳是29.5%〜32.5%。於P2〇5之含量為該範圍 外之情形時,於使前驅體玻璃結晶化時變得容易析出不期 望之異種結晶。其結果,結晶之析出 量變少,難以獲得高的電池容量。 9 201226354 40992pifl 爲第100146243號中文說明書無劃線修正本 修正日期:1〇1年2月23日 Fe2〇3疋LiMnxFeyMi_(x+y)P〇4結晶之構成成分。較佳的 是Fe2〇3之含量為〇%〜40%、10%〜4〇%、20%〜35%、特 別是30%〜35%。若Fe2〇3之含量過多,則變得容易於使 前驅體玻璃結晶時析出不期望之異種結晶。其結果, LiMnxFeyMi^x+yfO4結晶之析出量變少,難以獲得高的電 池容量。另外,亦可使用FeO或pe3〇4等作為原料,於此 情形時’換算為Fe2〇3之量滿足所述範圍即可。 Mn〇2亦和Fe2〇3同樣地是LiMnxFeyMHx+y)P04結晶之 構成成分。較佳的是Νίη〇2之含量為〇%〜6〇%、20%〜 55%、30%〜55%、40%〜55%、特別是 45%〜50%。若 Μη〇2之含量過多,則變得容易於使前驅體玻璃結晶時析 出不期望之異種結晶。其結果,LiMnxFeyMHx+y)P〇4結晶 之析出量變少,難以獲得高的電池容量。另外,亦可使用 Mn〇等作為原料,於此情形時,換算為Mn〇2之量滿足 述範圍即可。 陶)5是使前驅體玻璃之玻璃形成能力提高之成分。 ,由積極地添加Nb2Q5,可_残望之賤結晶 變得容易獲得具有高的電池容量之正極 ^ .Nb2〇5^^*4 〇,〇/〇.2&gt;4% ^ 〇 25〇/_2 3% ^ /〇〜2%。但疋,若Nb2〇5之含量過多办^ 白 月之異種結晶,難以獐2 同的電池容量。 、乂熳传 較=是以莫耳比計,(㈣3+Mn(V2)/p 上、〇·9 以上、特狀 G.95mcpe2〇3+Mn〇2/2 10 201226354 wyyzpiil 爲第 100146243 號中文說明書無劃線修 修正日期:101年2月23日 /P2〇5過小,則變得容易於使前驅體玻璃結晶日寸析出不期望 之異種結晶’難以獲得高的電地容量。另外’對上限並無 特別限定,為了析出充分量之LiMnxFeyMl-(x+y)p〇4結晶, 較佳的是2以下、特別是I.5以下。 而且,作為使玻璃形成能力提高之成分,除了 Nb205 以外,可添加合計量為〇%〜2.4%、特別是0.1%〜2.3%之 Si02、v2〇5、b203、Ge02、Al2〇3、Ga203、Sb203、Bi2〇3 〇In the above, it is known that when a conductive active material such as carbon powder is mixed in the positive electrode material, the electron conductivity is improved. However, when the lithium iron phosphate cathode material is mixed and the conductive active material is mixed and calcined, the conductive active material cannot be efficiently activated on the surface of the iron phosphate clock particles due to the influence of the gas generated from the lithium iron phosphate cathode, and the electron conductive material is electrically conductive. The problem of reduced degrees. Therefore, a lithium iron phosphate material containing crystallized glass has been proposed as a positive electrode material in which a small amount of gas is generated during calcination (see, for example, Japanese Patent No. 2-9-93733). The precursor (4) is substantially free of gas when it is mixed with the carbon powder conductive active material to be calcined. Therefore, the conductive active material can be efficiently activated on the surface of the positive electrode material particles, and excellent electron conductivity can be easily achieved. Further, by calcining the precursor _, a crystallized glass powder having a uniform crystal grain size and having a small crystal grain size, or a crystallized glass powder filled with a solid solution crystal, can be obtained. Sub-secondary battery cathode material. As described above, the positive electrode material which is excellent in __ as described in JP-A-2009-87933 is used. ^ The positive electrode material described in Japanese Patent No. 2_87933 is issued by the Japanese Patent No. 2_-87933. The date of revision is: 201212354 40992pifl Revision Date: February 23, 2011 No. 100146243 Chinese Manual No line correction The battery capacity of the new battery is big change. The current state of 'the most adequate battery capacity' in the publication of the Japanese Patent Publication No. 2(8793) is not yet proposed as a positive electrode material having a high battery capacity. SUMMARY OF THE INVENTION The present invention is based on the fact that the battery ion of the battery capacity is high in view of such a situation, and the purpose is to obtain a crystal for the positive electrode material of the sub-battery: the _ body glass glass is used. The material used for precursor curry ~5〇%, ρ2〇5 2 g to f percentage includes 〇%-60〇/〇. Nb2〇5 〇.1〇/_2 4〇^〇/〇' Fe^ 〇%^ 40〇/〇. Mn〇2 Μη02/2) /Ρ2〇5^〇·85. ° In terms of the molar ratio, (Fe203 + has the above-mentioned composition of the front surface, it can be made into an ancient drive glass) means: by ^; pole material. In addition, the glass of the Qi. The precipitation of the target crystal precursor glass is the lithium ion secondary battery positive electrode material. The above components are used to break the _ heart 2 ^ Sb2 〇 3 + Bl2 〇 3. Some components are easily obtained by breaking the b component. Adding the heterogeneous crystal, the battery capacity Gub # b stable, difficult to precipitate the undesired: r, θ W lithium ion secondary battery cathode material. The lithium ion secondary battery cathode material 201226354 40992pifl No. 100146243 Chinese manual without slash correction This revision period: January 20, 2011 Li20/ (P2〇s + Fe2〇3 + in precursor glass, in molar ratio, Mn02/2) -0.5 With this configuration, undesired heterogeneous crystals and materials are obtained. The battery capacity is high. Fourth, it is preferable that in the precursor glass for a positive electrode material for an ion secondary battery of the present invention, in terms of a molar ratio, Li2〇 /P2〇5^85, and/or Li20/ (Fe2〇3 + Mn02/2) ^0.85 ° With this configuration, it is easy to obtain a lithium ion secondary battery positive electrode material which is stable in vitrification, is difficult to precipitate, and has a high battery capacity. The fifth aspect of the present invention relates to a silver ion. A precursor glass for a secondary battery positive electrode material, characterized in that, as a glass composition, Li20 20% to 50%, P2O5 20% to 40%, Fe203 0% to 40%, Μη02 〇% to 60% by mole percentage %, Nb205 0%~2.4%, and in terms of molar ratio, Li20/P2〇5^l.〇i. The sixth invention relates to a crystallized glass for a positive electrode material for a ionic secondary battery, characterized in that : as a glass composition, containing Li20 20%~50%, P2〇5 20%~40%, Fe203 〇〇/〇~40%, Μη02 0%~60%, Nb205 0.1%~2.4%, based on the percentage of moles. And (Fe203 + Μη02/2) /Ρ2Ο5^0·85. Seventh, it is preferable that the crystallized glass for the positive electrode material of the ion secondary battery of the present invention contains 0% to 2.4% of SiO 2 in terms of the percentage of moles. + V2O5 + B2O3 + Ge〇2 + Al2〇3 + Ga2〇3 + Sb2〇3 + Bi2〇3. 7 201226354 40992pifl Date: February 23, 101 is the Chinese manual of No. 100146243. The eighth paragraph is not modified. The preferred embodiment is the lithium ion secondary crystallization glass of the present invention, in terms of molar ratio, 4 ^ ^ Mn02/2) ^0.5. 5 2U3 + ninth' is preferably a crystallized glass for the positive electrode of the ion secondary battery of the present invention, in terms of molar ratio, Ll2〇/P2 (^a85, and Li2〇/(Fe2〇3 + Mn02) /2) ^0.85° Tenth, another aspect of the present invention relates to a crystallized glass for a secondary positive electrode material, characterized in that, as a glass composition, Li2〇20%~5 is contained in a percentage of moles. 〇%, p2〇5 2〇%~4〇%, Fe2〇3 〇%~40%, Μη02 〇%~6〇%, Nb2〇5 〇%~2 4%, 〇Li20/P2〇5gl_〇l '〇' and tenth-, preferably, the crystallized glass for the positive electrode of the clock ion secondary battery of the present invention contains LiMr^FeyMi-^PO4 crystal 〇 each ySl, 0 &lt; x + y^l, Μ is selected from At least one of Nb, Ti, v, Cr, 〇, and Ni is used as a main crystal. Further, the twelfth, preferably, the positive electrode material of the ion secondary battery of the present invention has a crystal content of LiMnxFeylV^x+ePO4 in the crystallized glass of 5 〇% or more. Thirteenth, the present invention relates to a method for producing a positive electrode for a plasma ion secondary battery, comprising the steps of: adjusting a raw material powder by a glass composition in such a manner as to contain Li2〇2〇〇 in terms of a percentage of moles / 〜50%, P2〇5 20%~40%, Fe203 〇〇/〇~40%, Mn〇2 〇%~0 60%, Nb205 0·1%~2.4% ' and in terms of molar ratio, ( Fe2〇3 + M2n〇: /Ρ2〇520·85 ; The step of melting the raw material powder to obtain the molten glass $$201226354 4uyy2piti mm 100146243 Revision date: February 23, 101 and the melting _ quenching Step of the glass. The steps of the process are the preparation of the positive electrode material of the secondary battery of the modified secondary battery. The heat treatment is performed on the precursor surface to obtain the crystallized glass. [Preparation] The precursor glass for the positive electrode material of the lithium ion secondary battery is used. As a glass composition, it contains Li2〇20%~5〇%, P2〇5 20%~40%, Fe2〇3 〇%~4〇%, Mn〇2 〇%~6 in terms of the percentage of moles. 〇%, N 2〇5&gt;0.1/〇~2.4%, and in terms of molar ratio, (r at + Mn〇2/2) /Ρ2〇5 $ 〇·85. The reason why the composition is limited to the above is explained as follows. The main component of the crystal of Ll2〇疋LiMnxFeyMHx+y/O4 is preferably 20%~50%, 25%~45%, 30%~ 40%, 33%: 37%, especially 33.5%~37%. If the content of Li20 is too small, the precipitation of LiMnxFeyMi-^+^PC^ crystals becomes difficult to obtain a high battery when crystallizing the moon/body glass. On the other hand, if the content of Li20 is too large, it is easy to precipitate undesired heterogeneous crystals (Li3p〇4, 〇Lsl3(MnxFei-x)2(P〇4)3, etc.), and as a result, LiMnxFeyMHxiPC^ The precipitation amount of the crucible is small, and it is difficult to obtain a high battery capacity. Ρζ〇5 is also a main component of LiMnxFeyMHX+y)P〇4 crystal. Preferably, the content of P2〇5 is from 2% to 40%, from 5% to 35%, from 28% to 35%, from 29% to 33%, and particularly preferably from 29.5% to 32.5%. When the content of P2〇5 is outside this range, it is easy to precipitate undesired crystals when the precursor glass is crystallized. As a result, the amount of precipitation of crystals is small, and it is difficult to obtain a high battery capacity. 9 201226354 40992pifl is the Chinese version of the 100146243 without a slash correction. Revision date: February 23, 2011. Fe2〇3疋LiMnxFeyMi_(x+y)P〇4 crystal constituents. Preferably, the content of Fe2〇3 is 〇% to 40%, 10% to 4%, 20% to 35%, particularly 30% to 35%. When the content of Fe2〇3 is too large, it becomes easy to precipitate undesired heterogeneous crystals when the precursor glass is crystallized. As a result, the amount of precipitation of LiMnxFeyMi^x+yfO4 crystals is small, and it is difficult to obtain a high battery capacity. Further, FeO or pe3〇4 may be used as a raw material, and in this case, the amount converted to Fe2〇3 may satisfy the above range. Similarly to Fe2〇3, Mn〇2 is a constituent of LiMnxFeyMHx+y)P04 crystal. Preferably, the content of Νίη〇2 is 〇%~6〇%, 20%~55%, 30%~55%, 40%~55%, especially 45%~50%. If the content of Μη〇2 is too large, it becomes easy to precipitate undesired heterogeneous crystals when the precursor glass is crystallized. As a result, the amount of precipitation of LiMnxFeyMHx+y)P〇4 crystals is small, and it is difficult to obtain a high battery capacity. Further, Mn 〇 or the like may be used as a raw material, and in this case, the amount converted to Mn 〇 2 may satisfy the range. Potassium) 5 is a component which improves the glass forming ability of the precursor glass. By actively adding Nb2Q5, it is easy to obtain a positive electrode with high battery capacity. Nb2〇5^^*4 〇, 〇/〇.2&gt;4% ^ 〇25〇/_2 3% ^ /〇~2%. However, if the content of Nb2〇5 is too much, it will be difficult to lick the same battery capacity.乂熳 较 = = = 莫 计 = = = ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( The specification has no underline repair date: February 23, 2011 / P2〇5 is too small, it becomes easy to precipitate undesired heterogeneous crystals in the crystal of the precursor glass. It is difficult to obtain high electric ground capacity. The upper limit is not particularly limited, and in order to precipitate a sufficient amount of LiMnxFeyMl-(x+y)p〇4 crystal, it is preferably 2 or less, particularly preferably 1.5 or less. Further, as a component for improving glass forming ability, in addition to Nb205 In addition, SiO2, v2〇5, b203, Ge02, Al2〇3, Ga203, Sb203, Bi2〇3 〇 may be added in a total amount of 〇% to 2.4%, particularly 0.1% to 2.3%. 若該些成分之含量過多,則變得容易於使前驅體玻璃結晶 時析出不期望之異種結晶,難以獲得高的電池容量。When the content of these components is too large, it becomes easy to precipitate undesired heterogeneous crystals when the precursor glass is crystallized, and it is difficult to obtain a high battery capacity. 較佳的是於本發明之鋰離子二次電池正極材料用前驅 體玻璃中,以莫耳比計’ Li20/ (P2〇5 + Fe2〇3 + Mn〇2/2) 為0.5以上、特別是0.52以上。若Li2〇/ (P2〇5 + Fe2〇3 + Mn〇2/2)過小,則變得容易於使前驅體玻璃結晶時析出不 期望之異種結晶,難以獲得高的電池容量。另外,對上限 亚無特別限定,為了析出充分量之LiMnxFeyMi例p〇4結 晶,較佳的是1以下、特別是0.8以下。 較佳的是於本發明之鐘離子二次電池正極材料用前驅 體玻璃中,以莫耳比計,秘/执為G別以上、Q 9以上、 1二二特別是1G1以上。若Li2〇/P2〇5過小,則變得容 二=驅體玻璃結晶時析出不期望之異種結 二 =電蹄量。另外,對為並鱗職定,為了析出 別疋1.5以下。 較佳的是於本發明之_子二次電池正極材料用前驅 11 201226354 40992pifl 修正曰期:1〇1年2月23日 爲第100146243號中文說明書無劃線修正本 體玻璃中’以莫耳比計,LhO/ (Fe2〇3 + Mn02/2)為0.85 以上、特別是0.9以上。若Li20/ ( Fe2〇3 + Mn〇2/2 )過小, 則變得容易於使前驅體玻璃結晶時析出不期望之異種結 晶,難以獲得高的電池容量。另外,對上限並無特別限定, 為了析出充分量之LiMiixFeyMHxiPO4結晶,較佳的是2 以下、特別是1.5以下。 本發明之鋰離子二次電池正極材料用前驅體玻璃之其 他形態的特徵在於:作為玻璃組成,以莫耳百分比計含有 Li2〇 20%〜50%、P2〇5 2G%〜爾、 〇%〜60%、Nb2〇5 〇%〜24%,且以莫耳比計, Ll2⑽2〇5m於鄉態中,關於各成分之含量之較佳 之範圍以及限定理由等,可適用已述者。 本發明之雜子二次電池正赌料縣晶化玻璃可藉 使其次電池正極材料用前驅體玻璃進行煅燒 徵在ΐ發^^離子二域池正極材制結晶化玻璃之特 :ρ 0 #成’以莫耳百分比計含有〜 -2〇5 〇〇/^60%' 較佳的是本發明 破璃以莫耳百八八:人電池正極材料用結晶化 Al2〇3 + Ga〇 :i t£^# Sl〇^V205 + B2〇3 + Ge〇2 + ^ 2 3 + Sb2〇3 + Bi2〇3 〇〇/0〜2.4〇/〇。 化破=1=明之鐘離子二次電池正極材料用結晶 瑪中Μ莫耳比計,叫〇/(1&gt;2〇5 +喻杨⑽) 12 201226354 40992pifl 修正日期:1〇1年2月23日 爲第100146243號中麵明書無劃線修正本 為0.5以上。 的是於本發明之_子二次電池正極材料用結晶 化玻璃中,Li2〇/P2〇5為〇 85以上。 • 触的是於本發明之_子二次電池正極材料用結晶 化玻璃中,以莫耳比計,Li2Q/ (Fe2C^M ㈣ 以上。 關於本發明之轉子二次電池正極材料用結晶化玻璃 〇 之較,之組成範圍以及其限定理由,可適用與前述之雜 子二次電池正極材料用前驅體玻璃之較佳之組成範圍以及 其限定理由相同者。 /1發明之鋰離子二次電池正極材料用結晶化玻璃之其 他形悲之特徵在於:作為破璃組成,以莫耳百分比計含有 L〇i2〇 20/。〜50%、p2〇5 20%〜40%、Fe2〇3 〇%〜40%、Μη02 〜60%、Nb2〇5 〇%〜2 4%,且⑽/⑼心〇卜於該 形態中,關於各成分之含量之較佳之範圍以及限定理由 等,可適用已述者。 〇 較佳的是鋰離子二次電池正極材料用結晶化玻璃含有 iMnxFeyMi-(x+y)P〇4 結晶(〇Sx$l、OSygi、〇&lt;χ + d、Μ是選自Nb、Ti、V、Cr、Co、Ni之至少1種) 作為主結晶。 較it的疋LiMiixFeyMijx+ePO4結晶之含量為5〇 wt%以 上、7〇 wt%以上、特別是90 wt°/〇以上。若 LiMnxFeyMiA+eO4結晶之含量過少,則離子導電性變得 不充分,難以獲得高的電池容量。另外,對上限並無特別 13 201226354 40992pifl 爲第麵46243號中文說明書無劃線修正本修正日期溯年2月23 限定,現實上而言為99·9 wt%以下,特別是99 wt°/。以下。 LiMi^FeyM^+wPO4結晶之晶粒尺寸越小,則可使將 結晶化玻璃製成粉末狀而使用時之粒徑變得更小,從而可 使導電性提高。具體而言,較佳的是LiMnxFeyMi_p〇4 結晶之晶粒尺寸為100 nm以下、特別是8〇 nm以下。關 於下限並無特別限定,現實上而言為1 nm以上、特別 是10 run以上。另外,UMn^^Mw+^O4結晶之晶粒尺 寸可根據結晶化玻璃粉末之粉末χ射線繞射之解析結果, 依照Scherrer公式而求出。 難的是轉子二次電池正極材料用結晶化玻璃為粉 末狀。藉此而使作為正極材料整體之表面積變大,變得更 容易進行離子或電子之交換。較㈣是雜子二次電池正 極材料用結晶化玻璃粉末之平均粒徑為5〇帅以下、% _ :=是2〇 Ρ以下。關於下限’並無特別限定,現 貫的疋0.05 μηι以上。 ^ LiMnxFeyM,(x+y)P〇4Maa^s 已知有固相反應法或水熱合成法,於該些方法中 :反C:容易混入金屬鐵等磁性粒子作為雜質,由 j覆之纽電而形成難狀結晶,成輕路之原因 万面,藉由破璃熔融法,變得可使金屬鐵 具體而言,本發明之鋰離子二次電 _可藉由包含如下步驟之製造方法而二材= 14 201226354 4uyy2piti 爲第100146243號中文說明書無劃線修正本 修正日期:1〇1年2月23日 成成為如下之方式而調整原料粉末之步驟,以莫耳百分比 計含有 Li2〇 2〇〇/0〜50%、p2〇5 20%〜40%、Fe2〇3 0%〜 4〇%、Mn〇2 〇%〜60%、Nb2〇5 0.1%〜2.4%,且以莫耳比 Ϊ l(_Fe2〇3 + Mn〇2/2) /P2〇52〇·85 ;使原料粉末熔融而獲 得溶融玻璃之步驟;以及使熔融玻璃驟冷之步驟。 ❹ 而且’亦可進一步對鋰離子二次電池正極材料用前驅 體玻璃進行熱處理而使其結晶化,藉此而獲得鋰離子二次 電池正極材料用結晶化玻璃。 另外,撖欖石型LiMnxFeyMHx+yfC^結晶中之Fe與 ,之原J價為+2價,因此如果於大氣開放中長時間: ^則自氧化還原平衡之義考慮,分別容純氧化為 仏=及+4價。因此,為了控制原子價狀態,較佳的是於 作則驅體玻璃時之原料中添加草酸鐵等+2價之試劑,或者 於前驅體破魏融中添加葡萄糖等含有碳之還原劑:而 且,於充滿還原性氣體之氣密性優異之反應容 ^ 〇 融之方法亦較佳。 於可㈣溫度以及環境之電射對前 理而製作結晶化玻璃。熱處理溫度 』 =或目標之晶粒尺寸而異,因此並無特別限定體= ^疋ί少玻璃轉移溫度以上、特別是結晶化溫度以上。且 而5,較佳的是熱處理溫度為5〇〇。〇以上、特別是% 若熱處理溫度過高,在結晶二並==是 15 201226354 40992pifl 修正日期:1〇1年2月23 爲第麵46243號中文說明書無麵修正本 1000°C以下、特別是95(rc以下。 另外,藉由進行2階段煅燒,亦即將前驅體玻璃於玻 璃轉移溫度附近進行—定時間之減理後,於結晶化溫度 附近進步進行熱處理的2段階锻燒,由此變得容易獲得 具有均勻之結晶粒徑之結晶化玻璃。 可適宜地調整熱處理時間以使前驅體玻璃之結晶化充 分進行。具體而言,熱處理時間較佳為10分鐘〜60分鐘、 特別是20分鐘〜4〇分鐘。 “熱處理之環境較佳是氫、氨、一氧化碳等還原環境。 藉此得,獲得撖攬石型LiMnxFeyMl.(x+y)P〇4結晶。 ▲若於前驅體玻璃之熱處理時添加有機黏合劑,則由於 劑^還原作用,於結晶化之前’玻璃中之鐵的 貝數‘菱化為+2 ’因此可以高的含有率獲得 LlMnXFeyMHX+y)P〇4 結晶。 另$為了使導電性提高,較佳的是相 璃而混合電子導電性古日猩—々道中、 口日日儿坡 物質可列&amp; m % 導電活性物f。導電活性 或金屬於末乙炔黑、非晶形碳等碳轉電活性物質 =ΐ”導電活性物f等。非晶形碳較佳的是 .刀,貫質上檢測不到成為正極材料之導電性 因金”值或。Η鍵峰值的非晶形碳。 活性。之^^於結晶化玻璃粉末之界面承載有導電 面====。=結晶化玻璃粉末之界 方香麵竣喝竣酸;有機黏合劑等有機化合物等導電 16 201226354 W^Zpitl 爲第W0146243號中文說明書無劃線修正本 修正曰期m年2月23日 .....卞z&quot;t 活性物質添加於前驅體破璃粉末人 性環境或氫、氨、一氧化碳 於氦氣等情 前驅體破璃粉末結晶化,且於仃熱處理,使 殘留=導電活性物質之非晶末界面 黏合劑可列舉盼樹脂、丙稀酸n °有機 基纖維素等。丙烯酸樹脂可列舉 g基丙烯酸丁酯、聚甲基丙烯酸乙酉旨、聚甲基丙稀酸甲 藉由所述方法’可於結晶化_粉末界面均勻地承載 導電活性物f。而且,有機黏合劑有助於正極材料之成型 V书性這2種特性。亦即,變得可容易地成形為片狀, 亦可於煅燒後不進行再度粉碎而利用為電池之正極材料。 較佳的是本發明之鋰離子二次電池用正極材料之導電 f 為 ^10-8 S · cm·1 以上、1.0XKT6 s · cnr1 以上、特別 ◎疋 i.oxio-4 s.cm-i 以上。 [實例] 以下’基於實例對本發明加以詳細說明,但本發明並 不限定於該些實例。 表1〜表3表示本發明之實例(試樣No.i〜試樣 No·19)以及比較例(試樣Νο·2〇〜試樣No.22)。 17 201226354 40992pifl 爲第100146243號中文說明書無劃線修正本 修正日期覺年2月23日 [表1] 1 2 3 4 5 6 7 8 9 10 Li20 33.2 34.2 35.2 36.2 37.2 38.2 32.2 34.8 34.4 30.4 P2〇5 33.2 32.7 32.2 31.7 31.2 30.7 33.7 34.8 34.4 30.4 Fe203 Mn〇2 33.2 32.7 32.2 31.7 31.2 30.7 33.7 29.9 30.7 38.7 Nb203 Si02 A1203 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 (Fe+Mn/2) /P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 0.89 1.27 Li/ ( P+Fe+Mn/2 ) 0.50 0.52 0.55 0.57 0.60 0.62 0.48 0.54 0.53 0.44 Li/P 1.00 1.05 1.09 1.14 1.19 1.24 0.96 1.00 1.00 1.00 Li/ (Fe+Mn/2) 1.00 1.05 1.09 1.14 1.19 1.24 0.96 1.17 1.12 0.79 玻璃化 〇 ο ο ο ο ο 〇 ο ο 〇 結晶量(% ) 94.0 96.3 96.9 94,7 94.0 91.6 88.0 96.0 93.0 86.0 放電容量(mwh/g) 130 137 141 138 135 130 120 137 128 100 18 201226354 4,2pitl 爲第100146243號中文說明書無劃線修正本修正日期:丨〇1年2月23日 [表2]It is preferable that the precursor glass for a positive electrode material for a lithium ion secondary battery of the present invention has a molar ratio of 'Li20/(P2〇5 + Fe2〇3 + Mn〇2/2) of 0.5 or more, particularly 0.52 or more. When Li2〇/(P2〇5 + Fe2〇3 + Mn〇2/2) is too small, it becomes easy to precipitate undesired heterogeneous crystals when the precursor glass is crystallized, and it is difficult to obtain a high battery capacity. Further, the upper limit is not particularly limited, and it is preferably 1 or less, particularly 0.8 or less, in order to precipitate a sufficient amount of LiMnxFeyMi p@4 crystal. Preferably, in the precursor glass for a positive electrode material for a clock ion secondary battery of the present invention, in terms of a molar ratio, the secret/execution is G or more, Q 9 or more, 1 22, and particularly 1 G1 or more. If Li2〇/P2〇5 is too small, it will become the second. = Undesirable heterogeneous knots will be formed when the body glass crystallizes. In addition, it is fixed for the purpose of the scale, in order to precipitate the other than 1.5. Preferably, it is used in the precursor of the positive electrode material for the secondary battery of the present invention. 11 201226354 40992pifl Correction period: January 1, 23, 2011, No. 100146243 Chinese manual without scribe line correction in the body glass The LhO/(Fe2〇3 + Mn02/2) is 0.85 or more, particularly 0.9 or more. When Li20/(Fe2〇3 + Mn〇2/2) is too small, it becomes easy to precipitate undesired heterogeneous crystals when the precursor glass is crystallized, and it is difficult to obtain a high battery capacity. Further, the upper limit is not particularly limited, and in order to precipitate a sufficient amount of LiMiixFeyMHxiPO4 crystal, it is preferably 2 or less, particularly 1.5 or less. The other aspect of the precursor glass for a positive electrode material for a lithium ion secondary battery of the present invention is characterized in that, as a glass composition, Li 2 〜 20% to 50%, P 2 〇 5 2 G % Å, 〇 % 〜 % by mole percentage 60%, Nb2〇5 〇%~24%, and Ll2(10)2〇5m in the range of the molar ratio, the preferred range of the content of each component, the reason for limitation, and the like can be applied. The hybrid secondary battery of the present invention is exemplified by the use of precursor glass for the secondary battery positive electrode material to be calcined by the precursor glass. In the case of % of moles, it contains ~ -2 〇 5 〇〇 / ^ 60% '. Preferably, the glass of the present invention is ridiculous: crystallization of human battery cathode material Al2 〇 3 + Ga 〇: it £^# Sl〇^V205 + B2〇3 + Ge〇2 + ^ 2 3 + Sb2〇3 + Bi2〇3 〇〇/0~2.4〇/〇.破 =1 ================================================================================================================== The date of the 100,146,243 medium-sized book without a slash correction is 0.5 or more. In the crystallized glass for a positive electrode material for a secondary battery of the present invention, Li2〇/P2〇5 is 〇85 or more. In the crystallized glass for a positive electrode material for a secondary battery of the present invention, Li2Q/(Fe2C^M (4) or more in terms of a molar ratio. About the crystallized glass for a positive electrode material for a rotor secondary battery of the present invention The composition range of the bismuth and the reason for the limitation can be applied to the preferred composition range of the precursor glass for the secondary battery positive electrode material and the reason for the limitation. The lithium ion secondary battery positive electrode of the invention. The other sorrow of the crystallized glass for materials is characterized by: as a glass composition, L〇i2〇20/.~50%, p2〇5 20%~40%, Fe2〇3 〇%~ as a percentage of moles. 40%, Μη02 ~60%, Nb2 〇5 〇%~2 4%, and (10)/(9) 〇 In this form, the above-described range of the preferred range of the content of each component, the reason for limitation, and the like can be applied. Preferably, the crystallized glass for the positive electrode material of the lithium ion secondary battery contains iMnxFeyMi-(x+y)P〇4 crystals (〇Sx$l, OSygi, 〇&lt;χ + d, Μ is selected from Nb, Ti , at least one of V, Cr, Co, and Ni) is the main crystal. It is more than 疋LiMiixFeyMijx+e The content of the PO4 crystal is 5 〇 wt% or more, 7 〇 wt% or more, and particularly 90 wt 〇 / 〇. If the content of the LiMnxFeyMiA + eO4 crystal is too small, the ionic conductivity becomes insufficient, and it is difficult to obtain a high battery capacity. In addition, there is no special limit for the upper limit. 201226354 40992pifl is the Chinese version of the No. 46243, which has no underline correction. The date of this revision is February 23, which is actually 99.9% wt% or less, especially 99 wt°/ The smaller the crystal grain size of the LiMi^FeyM^+wPO4 crystal, the smaller the particle size when the crystallized glass is made into a powder, and the conductivity can be improved. The crystallite size of the LiMnxFeyMi_p〇4 crystal is preferably 100 nm or less, particularly 8 Å or less. The lower limit is not particularly limited, and is actually 1 nm or more, particularly 10 run or more. In addition, UMn^ The grain size of the ^Mw+^O4 crystal can be determined according to the Scherrer formula of the powdered ray diffraction of the crystallized glass powder. It is difficult to use the crystallized glass for the positive electrode material of the rotor secondary battery as a powder. This makes it The surface area of the positive electrode material becomes larger, and it becomes easier to exchange ions or electrons. (4) The average particle diameter of the crystallized glass powder for the positive electrode material of the hybrid secondary battery is 5 〇 or less, and % _ := is 2 〇ΡThe following. The lower limit 'is not particularly limited, and the current 疋0.05 μηι or more. ^ LiMnxFeyM, (x+y)P〇4Maa^s Known solid phase reaction method or hydrothermal synthesis method, Medium: anti-C: It is easy to mix magnetic particles such as metal iron as impurities, and it is difficult to form a hard crystal by the electric charge of j, and the reason for the light road is to make the metal iron concrete by the glass melting method. In other words, the lithium ion secondary power of the present invention can be manufactured by the method including the following steps: two materials = 14 201226354 4uyy2piti is the Chinese manual of the number 100146243 without a slash correction. The revision date is: February 23, 2011. The step of adjusting the raw material powder in the following manner includes Li2〇2〇〇/0~50%, p2〇5 20%~40%, Fe2〇3 0%~4〇%, Mn〇2 as a percentage of moles. 〇%~60%, Nb2〇5 0.1%~2.4%, and with molar ratio (1 (_Fe2〇3 + Mn〇2/2) /P2〇52〇·85; a step of melting the raw material powder to obtain a molten glass; and a step of quenching the molten glass. Further, the precursor glass for a lithium ion secondary battery positive electrode material may be further subjected to heat treatment to be crystallized, whereby a crystallized glass for a positive electrode material for a lithium ion secondary battery can be obtained. In addition, the original J price of Fe and the crystallization of LiMnxFeyMHx+yfC^ crystals is +2, so if it is in the open atmosphere for a long time: ^, considering the meaning of the redox balance, the pure oxidation is 仏= and +4 price. Therefore, in order to control the valence state of the valence, it is preferred to add a reagent of +2 valence such as iron oxalate to the raw material of the glass, or to add a reducing agent containing carbon such as glucose to the precursor of the fused silica: A method of reacting with a gas-filling property which is excellent in airtightness of a reducing gas is also preferable. The crystallized glass is produced by the electric radiation of the temperature and the environment. The heat treatment temperature 』 = or the target crystal grain size varies, so there is no particular limitation = ^ 疋 ί less than the glass transition temperature, especially the crystallization temperature or higher. And 5, it is preferred that the heat treatment temperature is 5 Torr. 〇 Above, especially % If the heat treatment temperature is too high, in the case of crystallization == is 15 201226354 40992pifl Revision date: 1 2 1 February 23 No. 46243 Chinese manual No face correction This 1000 ° C or less, especially 95 (rc or less. In addition, by performing two-stage calcination, that is, the precursor glass is subjected to reduction in the vicinity of the glass transition temperature for a certain period of time, the second-stage calcination of the heat treatment is progressed near the crystallization temperature, thereby changing It is easy to obtain a crystallized glass having a uniform crystal grain size. The heat treatment time can be appropriately adjusted to sufficiently carry out crystallization of the precursor glass. Specifically, the heat treatment time is preferably from 10 minutes to 60 minutes, particularly 20 minutes. ~4〇 minutes. “The environment for heat treatment is preferably a reducing environment such as hydrogen, ammonia, carbon monoxide, etc. By this, a crystal of LiMnxFeyMl.(x+y)P〇4 is obtained. ▲If heat treatment is applied to the precursor glass When an organic binder is added, the amount of iron in the glass is diamonded to +2 ' before crystallization, so that LlMnXFeyMHX+y can be obtained at a high content rate. P〇4 crystallization. In order to improve the conductivity, it is preferable to mix the electron-conducting ancient gorilla--the middle of the mouth, the mouth and the day, and the m% conductive active material f. The active or metal is a carbon-transferred active material such as acetylene black or amorphous carbon = ΐ"conductive active material f or the like. The amorphous carbon is preferably a knife, and the amorphous carbon which becomes the conductivity of the positive electrode material due to the gold value or the peak value of the ruthenium bond is not detected on the product. The activity is carried out at the interface of the crystallized glass powder. Conductive surface ====.=The boundary of the crystallized glass powder is scented with sulphuric acid; organic compounds such as organic binders, etc. Conductive 16 201226354 W^Zpitl is the Chinese manual of W0146243 without a slash correction. February 23rd.....卞z&quot;t The active substance is added to the precursor of the broken glass powder human environment or hydrogen, ammonia, carbon monoxide in the helium gas, the precursor powder, the crystallization of the powder, and heat treatment in the crucible Residual = amorphous terminal interfacial adhesive of a conductive active material may be, for example, a resin, an acrylic acid, an organic cellulose, or the like. Examples of the acrylic resin include butyl acrylate, polymethyl methacrylate, and polymethyl propylene. By the method, the acid can uniformly carry the conductive active material f at the crystallization-powder interface. Moreover, the organic binder contributes to the two characteristics of the forming of the positive electrode material, that is, it becomes easy. Formed into pieces It is also possible to use it as a positive electrode material for a battery without re-pulverization after calcination. It is preferable that the positive electrode material for a lithium ion secondary battery of the present invention has a conductivity f of ^10-8 S · cm·1 or more and 1.0 X KT6. s · cnr1 or more, especially ◎ 疋i.oxio-4 s.cm-i or more. [Examples] Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to the examples. Table 1 to Table 3 show Examples of the present invention (sample No. i to sample No. 19) and comparative examples (sample Νο·2〇 to sample No. 22) 17 201226354 40992pifl No. 100146243 Chinese manual without sizing correction of this correction Date of the year February 23 [Table 1] 1 2 3 4 5 6 7 8 9 10 Li20 33.2 34.2 35.2 36.2 37.2 38.2 32.2 34.8 34.4 30.4 P2〇5 33.2 32.7 32.2 31.7 31.2 30.7 33.7 34.8 34.4 30.4 Fe203 Mn〇2 33.2 32.7 32.2 31.7 31.2 30.7 33.7 29.9 30.7 38.7 Nb203 Si02 A1203 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 (Fe+Mn/2) /P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 0.89 1.27 Li/ ( P+Fe+Mn/ 2) 0.50 0.52 0.55 0.57 0.60 0.62 0.48 0.54 0.53 0.44 Li/P 1.00 1. 05 1.09 1.14 1.19 1.24 0.96 1.00 1.00 1.00 Li/ (Fe+Mn/2) 1.00 1.05 1.09 1.14 1.19 1.24 0.96 1.17 1.12 0.79 Vitrified 〇ο ο ο ο ο 〇ο ο 〇 Crystallization (%) 94.0 96.3 96.9 94, 7 94.0 91.6 88.0 96.0 93.0 86.0 Discharge capacity (mwh/g) 130 137 141 138 135 130 120 137 128 100 18 201226354 4,2pitl No. 100146243 Chinese manual without slash correction This revision date: 丨〇1年23月23 Day [Table 2] 11 12 13 14 15 16 17 18 19 Li20 34.5 34.5 34.5 24.8 26.8 32.4 30.4 29.1 28.8 p2〇5 31.6 31.6 31.6 24.8 23.8 30.9 28.9 28.1 27.3 Fe203 31.6 31.6 31.6 24.7 17.1 13.7 10.6 Mn02 49.8 48.8 11.7 23.6 28.6 33.3 Nb203 2.4 0.9 0.9 0.5 0.5 0.5 0.5 0.5 0.5 Si02 1.5 Al2〇3 1.5 (Fe+Mn/2) /P 1.00 1.00 1.00 1.00 1.03 0.99 1.00 1.00 1.00 Li/ ( P+Fe+Mn/2 ) 0.55 0.55 0.55 0.50 0.56 0.53 0.53 0.52 0.53 Li/P 1.09 1.09 1.09 1.00 1.13 1.05 1.05 1.04 1.05 Li/ ( Fe+Mn/2 ) 1.09 1.09 1.09 1.00 1.10 1.06 1.05 1.04 1.06 玻璃化 0 〇 〇 〇 〇 〇 〇 〇 0 結晶量(%) 93.0 93.5 92,8 92.0 96.0 92.0 91.0 90.0 88.0 放電容量(mwh/g) 128 131 126 120 135 125 119 115 110 19 201226354 40992pifl 爲第100146243號中文說明書無畫 修正日期:101年2月23日 [表3] —--- -—---— Li20 20 j----- 21 ------- 22 30.3 26.9 29.0 p2〇5 38.3 38.6 29.0 Fe203 30.8 31.9 37.0 Μη02 —----- Nb203 0.5 2.6 5.0 Si02 Al2〇3 ----—- (Fe+Mn/2 ) /P 0.80 0.83 1.28 Li/ (P+Fe+Mn/2) Li/P 0.44 0.38 0,44 Li/ ( Fe+Mn/2 ) 0.79 0.70 1.00 ^--—- 0.98 0.84 0.78 圾場化 0 X 〇 、·吉晶量(% ) 70.0 - 80.0 ^ 1 容量 1 xnwh/g ) -------- 40 - 88 *志首先’以成為表1〜表3中所示之各組成的方式調. 璃原料,使用鉑坩堝而於下進行 之炫融。使溶融玻璃流入至一對成形棍中,一面驟冷一 成形為膜狀,藉此而製作前驅體破螭。 其後,將前驅體玻璃以球磨機加以粉碎,獲得平均 徑為2μηι之前驅體玻璃粉末。相對於前驅體玻^粉幻 20 201226354 ^uyy/pirl 修正日期:101年2月23日 爲第100146243號中文說明書無劃線修 重量份而言曰,混合盼樹脂5重量份(以石墨換算而言相當 = 2.4重董份)、作為溶劑之15重量份之乙醇,藉此進行 ,料化利用么知之刮刀成形法而成形為厚度為獅哗 之片狀之後,於8(rc下使其乾燥約1小時。其次,將所得 =狀成形,切斷為狀之大小,純氣環境中、80(rcT =3〇分4m之熱處_使其結晶化,#此獲得正極材料 、:晶化玻璃粉末之燒結體)。藉由粉末χ射線繞射法而 〇 測疋正極材料中之LlMnXFeyMl切)ρ〇4結晶之含量。 。二之正極材料’藉由以下方式而評價 以正極材料:黏合劑:導電性物質=85 : iq : 5 (重量 為Ιΐΐΐί量正極材料、作為黏合劑之聚偏氣乙稀、作 性物質之科琴黑,將該些材料分散於Ν_甲基岭定 ^使之ί ^由自轉、公轉混合機充分進行授摔 為ΐ極集二之ί:使用間隙為150 -之刮刀,於作 ° =^行;===乾 極片材衝二:電==機將電 圓形之工作電極。 々14(^下綠6小時,獲得 之下i次’ 1吏工作電極之_面朝下而載置於紐扣型電池 得積層於60°c下進行8小時之減壓乾燥而所 公Ϊ ϋ 之包含聚丙烯多孔質膜(Η滅t Cela職 习製造之Cel_#2_)之分崎、狀作為 201226354 40992pifl 修正日期:1〇1年2月23日 爲第100146243號中文說明書無劃線 之金屬鋰,製作試驗電池。你田】/ 电也。使用1 M LiPF6溶液/EC (碳酸 伸乙醋):(碳酸二乙g旨卜1 : i作為電解液。 於露點溫度為下之環境獨行試驗電池之組裝。 使用試驗電池’藉由2 V至4.2 V之CC (怪定電流) 充電進行充電(自正極材料中放出鋰離子),進一步使其自 4·2 V放電至2 V而進行放電(於正極材料中吸藏鍾離 子)’測定放電容量。將結果示於表1〜表3中。 由表1〜表3可知:作為實例之試樣Ncu〜試樣Ν〇 19 之正極材料用玻璃顯示出100 mwll/g以上之良好的放電容 量。另一方面,作為比較例之試樣Νο·20以及試樣No.22 之正極材料用玻璃並不滿足預定之玻璃組成,放電容量低 至88 mwh/g以下。另外,關於試樣No.21,並未玻璃化, 因此並未進行放電容量之測定。 【圖式簡單說明】 益。 【主要元件符號說明】 益〇 22 201226354 4uyyzpiii __ 爲第100146243號中文說明書無劃線修正本 日期:1〇1年2月23 | 發明專利說明書—— (本說明書格式、順序,請勿任意更動,※記號部分請勿填寫) ※申請案號: ※申請日··分類: 一、 發明名稱:(中文/英文) 鋰離子二次電池正極材料用前驅體玻璃以及鋰離子二 次電池正極材料用結晶化玻璃 PRECURSOR GLASS FOR ANODE MATERIAL OF 〇 ^ LITHIUM IONIC SECONDARY CELL AND CRYSTALLINE GLASS FOR ANODE MATERIAL OF LITHIUM IONIC SECONDARY CELL 二、 中文發明摘要: 一種鋰離子二次電池正極材料用前驅體玻璃,其特徵 在於:作為玻璃組成,以莫耳百分比計含有Li20 20%〜 50%、P2〇5 20%〜40%、Fe203 0%〜40%、Μη02 0%〜60%、 〇 阶2〇50.1%〜2.40/0,且以莫耳比計,他〇3 + ]^11〇2/2) /P2〇5^〇.85 ° 三、 英文發明摘要: A precursor glass for an anode material of a lithium ionic secondary cell is characterized in containing 20 mole% to 50 mole% of Li20,20 mole% to 40 mole% of P2O5,〇 mole% to 40 mole% of Fe203, 0 mole% to 60 mole% of 201226354 ^^^?46243號中文說明書無劃線修正本 修正日期:1〇丨年2月23曰 Μη02, and 0.1 mole% to 2.4 mole% of Nb2〇5, and ( Fe2〇3 + Mn02/2 ) /P2O5 ^ 0.85 based on mole ratio. 201226354 40992pitl 修正日期:1〇1年2月23日 爲第10014ffi43號中文說明書無劃線修正本 七、申請專利範圍: 1. 一種經離子二次電池正極材料用前驅體玻璃,其特 徵在於:作為玻璃組成,以莫耳百分比計含有Li2〇2〇%〜 50%、P2〇5 20°/。〜40%、pe2〇3 〇%〜4〇%、Mn〇2 〇%〜6〇%、 Nb205 0.1〇/〇〜2.4〇/〇,且以莫耳比計,(Fe2〇3 + Mn〇2/2) /P2O5 — 〇·85 〇 〇11 12 13 14 15 16 17 18 19 Li20 34.5 34.5 34.5 24.8 26.8 32.4 30.4 29.1 28.8 p2〇5 31.6 31.6 31.6 24.8 23.8 30.9 28.9 28.1 27.3 Fe203 31.6 31.6 31.6 24.7 17.1 13.7 10.6 Mn02 49.8 48.8 11.7 23.6 28.6 33.3 Nb203 2.4 0.9 0.9 0.5 0.5 0.5 0.5 0.5 0.5 Si02 1.5 Al2〇3 1.5 (Fe+Mn/2) /P 1.00 1.00 1.00 1.00 1.03 0.99 1.00 1.00 1.00 Li/ ( P+Fe+Mn/2 ) 0.55 0.55 0.55 0.50 0.56 0.53 0.53 0.52 0.53 Li/P 1.09 1.09 1.09 1.00 1.13 1.05 1.05 1.04 1.05 Li/ ( Fe+Mn/2 ) 1.09 1.09 1.09 1.00 1.10 1.06 1.05 1.04 1.06 Vitrification 0 〇〇〇〇〇〇〇0 Crystallization (%) 93.0 93.5 92, 8 92.0 96.0 92.0 91.0 90.0 88.0 Discharge capacity (mwh/g) 128 131 126 120 135 125 119 115 110 19 201226354 40992pifl No. 100146243 Chinese manual No picture correction date: February 23, 2003 [Table 3] —-- - ------ Li20 20 j----- 21 ------- 22 30.3 26.9 29.0 p2〇5 38.3 38.6 29.0 Fe203 30.8 31.9 37.0 Μη02 —----- Nb203 0.5 2.6 5.0 Si02 Al2 〇3 ------ (Fe+Mn/2 /P 0.80 0.83 1.28 Li/ (P+Fe+Mn/2) Li/P 0.44 0.38 0,44 Li/ ( Fe+Mn/2 ) 0.79 0.70 1.00 ^----- 0.98 0.84 0.78 Recycling 0 X 〇,·吉晶量(%) 70.0 - 80.0 ^ 1 Capacity 1 xnwh/g ) -------- 40 - 88 *When first, the way to become the components shown in Table 1 to Table 3 Adjust the glass material, use platinum ruthenium and let it shine underneath. The molten glass was poured into a pair of forming bars, and was formed into a film shape by rapid cooling, whereby the precursor was broken. Thereafter, the precursor glass was pulverized by a ball mill to obtain a precursor glass powder having an average diameter of 2 μm. Relative to the precursor glass powder powder 20 201226354 ^uyy/pirl Revision date: February 23, 2011 is the number 100146243 Chinese manual without the underline repair weight, 混合 mixed resin 5 parts by weight (in terms of graphite </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; After about 1 hour, the resulting shape is cut into a shape, and in a pure gas atmosphere, 80 (rcT = 3 〇 minutes 4 m heat _ is crystallized, # obtaining a positive electrode material, crystallization Sintered body of glass powder. The content of LlMnXFeyMl in the ruthenium cathode material is determined by powder χ ray diffraction. . The cathode material of the second is evaluated by the following method: positive electrode material: binder: conductive material = 85 : iq : 5 (weight is a positive electrode material, polyethylene as a binder, a substance of a substance) Qin black, the material is dispersed in the Ν_methyl 岭定^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^行;=== dry-pole sheet punching 2: electric == machine will be electric round working electrode. 々14 (^ under green for 6 hours, get below i'1 吏 working electrode _ face down The laminate containing the button-type battery is dried under reduced pressure at 60 ° C for 8 hours, and the public 包含 ϋ contains the porous film of polypropylene (Cel_#2_ manufactured by Η t t Cela As 201226354 40992pifl Revision date: February 23, 1st, February 1st, No. 100146243 Chinese manual, unlined metal lithium, making test battery. Your field] / electricity also. Use 1 M LiPF6 solution / EC (carbonated ethylene vinegar) ): (diethyl carbonate g: 1 : i as an electrolyte. The environment is tested under the dew point temperature Assembly of the pool. Use the test battery 'charged by 2 CC to 4.2 V CC (quirk current) charging (discharges lithium ions from the positive electrode material), and further discharges it from 4·2 V to 2 V to discharge ( The discharge capacity was measured by absorbing the ion in the positive electrode material. The results are shown in Tables 1 to 3. From Tables 1 to 3, the glass for the positive electrode material of the sample Ncu~sample Ν〇19 as an example is known. A good discharge capacity of 100 mwll/g or more was exhibited. On the other hand, the glass for the positive electrode material of the sample Νο. 20 and the sample No. 22 of the comparative example did not satisfy the predetermined glass composition, and the discharge capacity was as low as 88. Mwh/g or less. Further, since sample No. 21 was not vitrified, the discharge capacity was not measured. [Simplified description of the drawing] Benefits [Explanation of main component symbols] 益〇22 201226354 4uyyzpiii __ No. 100146243 Chinese manual without slash correction Date: 1〇1年23月23 | Invention patent specification - (The format and order of this manual, please do not change any more, please do not fill in the ※ part) ※Application number ※Application date·Classification: I. Name of the invention: (Chinese/English) Precursor glass for lithium ion secondary battery positive electrode material and crystallized glass for lithium ion secondary battery positive electrode material PRECRESOR GLASS FOR ANODE MATERIAL OF 〇^ LITHIUM IONIC SECONDARY CELL AND CRYSTALLINE GLASS FOR ANODE MATERIAL OF LITHIUM IONIC SECONDARY CELL II. Abstract: A precursor glass for a positive electrode material for a lithium ion secondary battery, characterized in that, as a glass composition, Li20 is contained in a percentage by mole of 20%. 50%, P2〇5 20%~40%, Fe203 0%~40%, Μη02 0%~60%, 〇2〇50.1%~2.40/0, and in terms of molar ratio, he 〇3 + ]^ 11〇2/2) /P2〇5^〇.85 ° III, English abstract: A precursor glass for an anode material of a lithium ionic secondary cell is characterized in containing 20 mole% to 50 mole% of Li20,20 mole % to 40 mole% of P2O5, 〇mole% to 40 mole% of Fe203, 0 mole% to 60 mole% of 201226354 ^^^?46243 Chinese manual without scribe correction This revision date: February 23, 1曰Μη02, and 0.1 mole% to 2.4 mole% of Nb2〇5, and (Fe2〇3 + Mn02/2 ) /P2O5 ^ 0.85 based on mole ratio. 201226354 40992pitl Revision date: February 23, 2011 is the 10014ffi43 No. Chinese manual, no marking correction. 7. Patent application scope: 1. Precursor glass for positive electrode material for ion secondary battery, characterized in that: as a glass composition, Li2〇2〇%~ 50 is included as a percentage of moles. %, P2〇5 20°/. ~40%, pe2〇3 〇%~4〇%, Mn〇2 〇%~6〇%, Nb205 0.1〇/〇~2.4〇/〇, and in terms of molar ratio, (Fe2〇3 + Mn〇2 /2) /P2O5 — 〇·85 〇〇 2.如申請專利範圍第1項所述之鋰離子二次電池正極 材料用前驅體玻璃’其中’以莫耳百分比計更含有〇%〜 2 4%之 Si〇2 + V2〇5 + Β2〇3 + Ge02 + Al2〇3 + Ga203 + Sb203 + Bi2〇3 0 3.如申清專利範圍第1項所述之鋰離子二次電池正極 材料用前驅體玻璃,其中,以莫耳 + Mn02/2) g〇.5。 • 士申明專利範圍第丨項所述之鐘離子二次電池正極 =用前職玻璃,其巾,以莫耳輯,%⑽辦〇 %、 及域 Ll2〇/ (Fe2〇3 + Mn〇2/2)⑼ 85。 轉子二次電池正極㈣时雜玻璃,其特 I 為破雜成,以莫耳百分比計含有Li2〇 20%〜 Nh Ο n〇/5 2〇/〇^4〇% ' Fe2〇3 〇%-40% ^ Μη02 0%-60°/〇 ' 叫〇5⑽〜2·4%,且叫耳輯,⑽/吸㈣。 f支在於離子—欠電池正極材料用結晶化玻璃,其特 3〇%^p;〇:2^ 2〇5α1%〜2.4%,且(efn〇/°〜40°純啦0%〜60%、 丘 CFe203 + Mn02/2) /Ρ205^〇·85。 23 201226354 40992pifl 修正日期:1〇1年2月23日 爲第100146243號中文說明書無劃線修正本 7·如申請專利範圍第6項所述之鋰 材料用結晶化玻璃,其中,以莫耳百八^ _人電池正極 渴之 _v2〇5+B二Gf0=f二f 含。有。。/。〜 + Bi2〇3。 ^Al2〇3 + Ga2〇3 + Sb2〇3 8·如申請專利範圍第6項所述之鋰離子二 材料用結晶化玻璃,其中,以莫耳比計,L 丄〇 + Μη02/2) ^0.5。 2〇3 9.如巾請專概圍第6項所述之轉子二次電池正極 材料用結晶化玻璃,其中,以莫耳比計,Li2Q/P2心〇 Μ、 及/或 Li2〇/ (Fe203 + Mn02/2) g〇.85。 姓λΛ〇 一種經離子二次電池正極材料用結晶化玻璃,其 寺f於:作為玻璃組成’以莫耳百分比計含有Li2〇 20% 〜50%、P2〇5 2G%〜4G%、Fe2〇3 G%〜4G%、Mn〇2 〇%〜 6〇〇/〇、Nb2〇5〇%〜2.4%,且秘/⑽⑷⑴。 11. 如申請專利範圍第6項至第1〇項中任一項所述之 離子二次電池正極材料用結晶化玻璃,其中,含有 iMnxFeyMi-(x+y)P〇4 結晶+ =疋造自Nb、Τι、V、Cr、c〇、Ni之至少1種)作為主 、,晶 0 12. 如中請專利範圍第u項所述之娜子二次電池正 =料用結晶化玻璃,其中,上述以癒和从例p〇4結 日日之含量為50 wt%以上。 〇13· 一種链離子二次電池正極材料之製造方法,其特 徵在於包含: 24 201226354 40992pifl 爲第100146243號中文說明書無劃線修正本修正曰期:1〇i年2月23日 以玻璃組成成為以莫耳百分比計含有Li20 20%〜 50%、P2〇5 20%〜40%、Fe203 0%〜40%、Μη02 0%〜60%、 Nb205 〇.1〇/0〜2.4%,且以莫耳比計,(Fe203 + Mn02/2) /Ρ2〇5^0.85之方式而調整原料粉末之步驟,; 使上述原料粉末熔融而獲得熔融玻璃之步驟;以及 使上述熔融玻璃驟冷而獲得前驅體玻璃之步驟。 14.如申請專利範圍第13項所述之鋰離子二次電池正 〇 極材料之製造方法’其更包含對上述前驅體玻璃進行熱卢 理而獲得結晶化玻璃之步驟。 ’、、、处2. The precursor glass for a positive electrode material for a lithium ion secondary battery according to claim 1, wherein 'in terms of a percentage of moles, more than 2% to 2 4% of Si〇2 + V2〇5 + Β2〇 3 + Ge02 + Al2〇3 + Ga203 + Sb203 + Bi2〇3 0 3. The precursor glass for a positive electrode material for a lithium ion secondary battery according to claim 1, wherein Moh + Mn02/2 ) g〇.5. • The positive electrode of the ionization secondary battery described in the scope of the patent scope of the patent application is as follows: pre-service glass, towel, Molex, %(10)%, and domain Ll2〇/ (Fe2〇3 + Mn〇2 /2) (9) 85. Rotor secondary battery positive (4) miscellaneous glass, its special I is broken, containing Li2〇20%~ Nh Ο n〇/5 2〇/〇^4〇% 'Fe2〇3 〇%-% by mole percentage 40% ^ Μη02 0%-60°/〇' 〇 5(10)~2·4%, and called ear series, (10) / suction (four). The f-branch is in the ionic-under-battery cathode material for crystallized glass, which is 3〇%^p; 〇: 2^ 2〇5α1%~2.4%, and (efn〇/°~40° pure 0%~60%) , mound CFe203 + Mn02/2) / Ρ 205 ^ 〇 · 85. 23 201226354 40992pifl Revision date: January 23, 2011 is No. 100146243 Chinese manual without scribe correction. 7. The crystallized glass for lithium material as described in claim 6 of the patent application, wherein Eight ^ _ human battery positive thirsty _v2 〇 5 + B two Gf0 = f two f containing. Have. . /. ~ + Bi2〇3. ^Al2〇3 + Ga2〇3 + Sb2〇3 8· Crystallized glass for lithium ion two materials as described in claim 6, wherein, in terms of molar ratio, L 丄〇+ Μη02/2) ^ 0.5. 2〇3 9. For the towel, please use the crystallized glass for the positive electrode material of the rotor secondary battery described in item 6, wherein the molar ratio is Li2Q/P2 palpitations, and/or Li2〇/ ( Fe203 + Mn02/2) g〇.85. The surname λΛ〇 is a crystallized glass for the positive electrode material of the ion secondary battery, and the temple f is: as a glass composition, containing Li2〇20%~50%, P2〇5 2G%~4G%, Fe2 in terms of percentage of moles 〇3 G%~4G%, Mn〇2 〇%~6〇〇/〇, Nb2〇5〇%~2.4%, and secret/(10)(4)(1). The crystallized glass for a positive electrode material for an ion secondary battery according to any one of claims 6 to 1, wherein iMnxFeyMi-(x+y)P〇4 crystal +=made From at least one of Nb, Τι, V, Cr, c〇, and Ni), as the main, crystal 0. As described in the scope of the patent range, the sub-secondary battery is positively used for crystallized glass. Among them, the content of the above-mentioned Yuhe and the example p〇4 day is 50 wt% or more. 〇13· A method for producing a positive electrode material for a chain ion secondary battery, comprising: 24 201226354 40992pifl No. 100146243 Chinese manual without a slash correction This correction period: 1〇i year February 23 is made of glass Containing Li20 20%~50%, P2〇5 20%~40%, Fe203 0%~40%, Μη02 0%~60%, Nb205 〇.1〇/0~2.4%, and Mo a step of adjusting the raw material powder by means of (Fe203 + Mn02/2) / Ρ 2 〇 5 ^ 0.85, a step of melting the raw material powder to obtain molten glass, and quenching the molten glass to obtain a precursor The steps of the glass. 14. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 13, which further comprises the step of subjecting the precursor glass to thermal crystallization to obtain crystallized glass. ',,, 25 201226354 40992pifl 爲第100146243號中文說明書無劃線修正本 修正日期:1〇1年2月23日 四、 指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 無。 五、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: 無025 201226354 40992pifl For the Chinese manual No. 100146243, there is no slash correction. Revision date: February 23, 1st, 2011. IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the component symbols of this representative figure: None. 5. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: No 0
TW100146243A 2010-12-15 2011-12-14 Precursor glass for anode material of lithium ionic secondary cell and crystalline glass for anode material of lithium ionic secondary cell TW201226354A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279239A JP2012126600A (en) 2010-12-15 2010-12-15 Precursor glass for lithium ion secondary battery positive electrode material, and crystallized glass for lithium ion secondary battery positive electrode material

Publications (1)

Publication Number Publication Date
TW201226354A true TW201226354A (en) 2012-07-01

Family

ID=46244625

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100146243A TW201226354A (en) 2010-12-15 2011-12-14 Precursor glass for anode material of lithium ionic secondary cell and crystalline glass for anode material of lithium ionic secondary cell

Country Status (3)

Country Link
JP (1) JP2012126600A (en)
TW (1) TW201226354A (en)
WO (1) WO2012081522A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013403A (en) * 2021-02-07 2021-06-22 海南大学 Sulfide glass positive electrode material, and preparation method and application thereof
CN113013402A (en) * 2021-02-07 2021-06-22 海南大学 Glass positive electrode material, preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5331419B2 (en) * 2007-09-11 2013-10-30 国立大学法人長岡技術科学大学 Positive electrode material for lithium ion secondary battery and method for producing the same

Also Published As

Publication number Publication date
JP2012126600A (en) 2012-07-05
WO2012081522A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5331419B2 (en) Positive electrode material for lithium ion secondary battery and method for producing the same
WO2009139415A1 (en) Crystallized glass and method for producing the same
JP5288816B2 (en) Solid battery
JP3433173B2 (en) Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery
JP5754442B2 (en) Battery sintered body, method for producing battery sintered body, and all-solid lithium battery
JP7394757B2 (en) Amorphous solid electrolyte and all-solid-state secondary battery using it
JP6673338B2 (en) Inorganic lithium ion conductor
EP2765641A1 (en) Battery and method for manufacturing same
JP6681570B2 (en) Battery and positive electrode material for battery
JP7345748B2 (en) Manufacturing method for secondary batteries
Liu et al. Synergistic modification of magnesium fluoride/sodium for improving the electrochemical performances of high-nickel ternary (NCM811) cathode materials
JP6832073B2 (en) Manufacturing method of positive electrode active material for all-solid-state batteries
Yang et al. Realizing the performance of LiCoPO4 cathodes by Fe substitution with off-stoichiometry
JP5197008B2 (en) Cathode composite material and manufacturing method thereof, cathode and lithium ion battery
JP2014229579A (en) Lithium ion conductive inorganic solid composite
CN107623112A (en) Mix carbon coating lithium iron manganese phosphate anode material of lithium boron phosphate modification and preparation method thereof
JP2010056027A (en) Aqueous lithium secondary battery, and electrode for aqueous lithium secondary battery
TWI699926B (en) Positive electrode active material for alkaline ion secondary battery
JP2011165461A (en) Lithium ion secondary battery positive electrode material
US20120267566A1 (en) Lithium ion secondary battery positive electrode material
TW201226354A (en) Precursor glass for anode material of lithium ionic secondary cell and crystalline glass for anode material of lithium ionic secondary cell
JP2014143183A (en) Positive electrode active material for magnesium ion secondary battery, method for producing the same, positive electrode for magnesium ion secondary battery, and magnesium ion secondary battery
US20120001119A1 (en) High Energy Density Cathode Materials for Lithium Ion Batteries
TW201622216A (en) Positive electrode active material for storage device and method for producing positive electrode active material for storage device
WO2011059032A1 (en) Method for producing positive electrode material for lithium ion secondary battery