WO2016072095A1 - 渦電流式発熱装置 - Google Patents

渦電流式発熱装置 Download PDF

Info

Publication number
WO2016072095A1
WO2016072095A1 PCT/JP2015/005560 JP2015005560W WO2016072095A1 WO 2016072095 A1 WO2016072095 A1 WO 2016072095A1 JP 2015005560 W JP2015005560 W JP 2015005560W WO 2016072095 A1 WO2016072095 A1 WO 2016072095A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating device
eddy current
heat generating
current heating
magnet
Prior art date
Application number
PCT/JP2015/005560
Other languages
English (en)
French (fr)
Inventor
山口 博行
瀬戸 厚司
今西 憲治
裕 野上
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/522,305 priority Critical patent/US10667334B2/en
Priority to JP2016557459A priority patent/JP6432605B2/ja
Priority to CN201580059880.2A priority patent/CN107148725B/zh
Priority to CN202010048331.8A priority patent/CN111162654B/zh
Priority to EP15856320.5A priority patent/EP3217521B1/en
Publication of WO2016072095A1 publication Critical patent/WO2016072095A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/109Induction heating apparatus, other than furnaces, for specific applications using a susceptor using magnets rotating with respect to a susceptor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/18Combinations of wind motors with apparatus storing energy storing heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/22Wind motors characterised by the driven apparatus the apparatus producing heat
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • H02K49/046Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type with an axial airgap
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a heat generating device for converting and recovering kinetic energy of a rotating shaft into heat energy, and in particular, using a permanent magnet (hereinafter, also simply referred to as “magnet”) and generating vortices generated by the action of a magnetic field from the magnet.
  • the present invention relates to an eddy current heating device using electric current.
  • the impeller rotates by receiving wind force.
  • the rotating shaft of the impeller is connected to the input shaft of the generator, and the input shaft of the generator rotates as the impeller rotates.
  • electricity is generated by the generator. That is, in a general wind power generation facility, wind energy is converted into kinetic energy of the rotating shaft of the impeller, and kinetic energy of the rotating shaft is converted into electric energy.
  • Patent Document 1 proposes a wind power generation facility that improves energy use efficiency.
  • the power generation facility of Patent Literature 1 includes a heat generating device (retarder device 30 of Patent Literature 1) in order to generate thermal energy in the process of conversion from wind energy to electrical energy.
  • wind energy is converted into kinetic energy of the rotating shaft of the impeller, and the kinetic energy of this rotating shaft is converted into the hydraulic energy of the hydraulic pump.
  • the hydraulic motor is rotated by the hydraulic energy.
  • the main shaft of the hydraulic motor is connected to the rotating shaft of the heat generating device, and the rotating shaft of the heat generating device is connected to the input shaft of the generator.
  • the rotation shaft of the heat generating device rotates and the input shaft of the generator rotates, and electricity is generated by the generator.
  • the heating device uses the eddy current generated by the action of the magnetic field from the permanent magnet to decelerate the rotation speed of the rotating shaft of the heating device. As a result, the rotational speed of the main shaft of the hydraulic motor is reduced, and the rotational speed of the impeller is adjusted via the hydraulic pump.
  • the heat generating device due to the generation of eddy current, a braking force that reduces the rotation speed of the rotating shaft is generated and at the same time heat is generated. That is, a part of wind energy is converted into heat energy.
  • the heat heat energy
  • the prime mover is driven by the recovered thermal energy
  • the generator is driven by the drive of the prime mover, and as a result, electricity is generated by the generator.
  • the wind power generation facility of Patent Document 1 includes a hydraulic pump and a hydraulic motor between an impeller that is a rotating shaft and a heat generating device. This complicates the equipment structure. In addition, energy conversion loss is significant because multi-stage energy conversion is required. Along with this, the heat energy obtained by the heat generating device is also reduced.
  • a plurality of magnets face the inner peripheral surface of the cylindrical rotor and are arranged in the circumferential direction.
  • the arrangement of the magnetic poles (N pole, S pole) of these magnets is uniform in the circumferential direction and between magnets adjacent in the circumferential direction. For this reason, the magnetic field from a magnet does not spread and the magnetic flux density which reaches
  • An object of the present invention is to provide an eddy current heating device capable of effectively converting and recovering kinetic energy of a rotating shaft into thermal energy.
  • An eddy current heating device is: A rotating shaft rotatably supported by the non-rotating part; A heat generating member fixed to the rotating shaft; A plurality of permanent magnets opposed to each other with a gap between the heat generating members, and the magnetic poles alternately arranged with each other adjacent to each other, A magnet holding member that holds the permanent magnet and is fixed to the non-rotating portion; A heat recovery mechanism for recovering heat generated in the heat generating member.
  • the arrangement of the magnetic poles of the magnets facing the heating member is alternately different between the magnets adjacent to each other. For this reason, the magnetic field from a magnet spreads and the magnetic flux density which reaches
  • FIG. 1 is a longitudinal sectional view of the heat generating device of the first embodiment.
  • FIG. 2 is a cross-sectional view of the heat generating device of the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating an example of a preferable aspect of the heat generating member in the heat generating device of the first embodiment.
  • FIG. 4 is a cross-sectional view of the heat generating device of the second embodiment.
  • FIG. 5 is a longitudinal sectional view of the heat generating device of the third embodiment.
  • FIG. 6 is a longitudinal sectional view of the heat generating device of the fourth embodiment.
  • An eddy current heating device includes a rotating shaft, a heating member, a plurality of permanent magnets, a magnet holding member, and a heat recovery mechanism.
  • the rotating shaft is rotatably supported by the non-rotating portion.
  • the heat generating member is fixed to the rotating shaft.
  • the plurality of permanent magnets are opposed to the heat generating member with a gap, and the arrangement of the magnetic poles is alternately different between those adjacent to each other.
  • the magnet holding member holds the permanent magnet and is fixed to the non-rotating portion.
  • the heat recovery mechanism recovers heat generated in the heat generating member.
  • At least a part of the heat generating member is formed of a material that generates electromagnetic induction (specifically, a conductive material). It is preferable that at least the magnet side portion of the heat generating member is formed of a material that generates electromagnetic induction. Examples of specific materials for the heat generating member will be described later.
  • the magnetic pole density of the magnet facing the heating member is alternately different between adjacent magnets, so that the magnetic field from the magnet spreads and the magnetic flux density reaches the heating member. Will increase.
  • the eddy current generated in the heat generating member by the action of the magnetic field from the magnet is increased, and sufficient heat generation is obtained. Therefore, the kinetic energy of the rotating shaft can be effectively converted into heat energy and recovered.
  • the heat recovery mechanism is a sealed container that is fixed to the non-rotating portion and surrounds the heat generating member, and has a nonmagnetic partition wall in the gap between the heat generating member and the permanent magnet.
  • a sealed container, piping connected to an inlet and an outlet connected to the internal space of the sealed container, a heat storage device connected to each of the pipes, a heat medium circulating through the sealed container, the piping, and the heat storage device can be configured to include.
  • a heat storage apparatus You may use the well-known heat storage apparatus which can accumulate
  • a heat medium You may use a well-known heat medium.
  • An example of the heat medium is a nitrate-based molten salt (eg, a mixed salt of 60% sodium nitrate and 40% potassium nitrate).
  • heat medium oil, water (steam), air, supercritical CO 2, or the like may be applied as the heat medium.
  • the partition is preferably formed of a non-magnetic material so that the magnetic flux from the magnet is not blocked by the partition before reaching the heat generating member.
  • the material of the partition include aluminum alloy, austenitic stainless steel, copper alloy, heat resistant resin, and ceramics.
  • the surface of the partition wall on the heat generating member side may be a mirror surface with high smoothness. By doing so, it can suppress that heat transfers from a heat generating member to a magnet.
  • a heat insulating material is filled between the permanent magnet and the partition wall, or a vacuum state is formed between the permanent magnet and the partition wall.
  • the heat generating device may be a device that converts the kinetic energy of the rotating shaft rotated by fluid kinetic energy into heat energy and recovers it.
  • fluid kinetic energy include natural energy such as wind power and hydraulic power. Although the kinetic energy caused by natural energy is not constant, the above-described heat generating device can convert non-constant kinetic energy into thermal energy without greatly reducing efficiency.
  • a cooling mechanism for cooling the permanent magnet is provided.
  • the heat generating member is cylindrical, and the permanent magnets are arranged in a circumferential direction so as to face the outer peripheral surface of the heat generating member, and the arrangement of the magnetic poles is in the radial direction, and the circumferential direction It is possible to adopt a configuration in which the magnetic poles are alternately arranged differently from each other.
  • the magnet holding member includes a cylindrical member that holds the permanent magnet on an inner peripheral surface, and the cylindrical member is a ferromagnetic body.
  • the ferromagnetic material used for the magnet holding member include a ferromagnetic metal material (eg, carbon steel, cast iron, etc.).
  • the heat generating member is cylindrical, and the permanent magnets are arranged in a circumferential direction so as to face an outer peripheral surface of the heat generating member, and the arrangement of the magnetic poles is in the circumferential direction. It can be set as the structure from which the arrangement
  • the magnet holding member includes a cylindrical member that holds the permanent magnet on an inner peripheral surface, and the cylindrical member is a nonmagnetic material, and a pole piece is provided between the permanent magnets adjacent in the circumferential direction.
  • the nonmagnetic material used for the magnet holding member include nonmagnetic metal materials (eg, aluminum alloy, austenitic stainless steel, copper alloy, etc.).
  • the heat generating member is cylindrical, and the permanent magnets are arranged in the axial direction so as to face the outer peripheral surface of the heat generating member, and the arrangement of the magnetic poles is in the axial direction and adjacent to the axial direction.
  • the arrangement of the magnetic poles can be different from each other.
  • the magnet holding member includes a cylindrical member that holds the permanent magnet on an inner peripheral surface, and the cylindrical member is a nonmagnetic material, and the permanent magnet extends between the adjacent permanent magnets in the axial direction and across the axial direction. Pole pieces are preferably provided at both ends of the magnet array.
  • the heat generating member has a disk shape
  • the permanent magnets are arranged in a circumferential direction so as to face the main surface of the heat generating member, and the arrangement of the magnetic poles is in the axial direction. It can be set as the structure from which the arrangement
  • the magnet holding member may include a disk member that holds the permanent magnet on a surface facing the main surface of the heat generating member, and the disk member may be made of a ferromagnetic material.
  • the heat generating member has a disk shape
  • the permanent magnets are arranged in a circumferential direction so as to face the main surface of the heat generating member, and the arrangement of the magnetic poles is in the circumferential direction. It can be set as the structure from which the arrangement
  • the magnet holding member includes a disk member that holds the permanent magnet on a surface facing the main surface of the heat generating member, and the disk member is a nonmagnetic material and is adjacent in the circumferential direction. It is preferable that a pole piece is provided between the permanent magnets.
  • the heat generating member has a disk shape
  • the permanent magnets are arranged in a radial direction so as to face the main surface of the heat generating member, and the arrangement of the magnetic poles is in the radial direction. It can be set as the structure from which the arrangement
  • the magnet holding member includes a disk member that holds the permanent magnet on a surface facing the main surface of the heat generating member, and the disk member is a nonmagnetic material and is adjacent in the radial direction. Pole pieces are preferably provided between the permanent magnets and at both ends of the arrangement of the permanent magnets in the radial direction.
  • a device in which the heat generating member is cylindrical has an advantage that the relative speed between the heat generating member and the permanent magnet can be made constant at a high speed and heat generation efficiency is excellent compared to a device in which the heat generating member is a disk.
  • the former apparatus has an advantage that the apparatus can be easily downsized as compared with the latter apparatus.
  • the heat generating member may be made of one or more kinds of conductive magnetic materials.
  • the heat generating member may be made of at least a conductive ferromagnetic material and a conductive nonmagnetic material, and the conductive nonmagnetic material may be close to the permanent magnet.
  • the conductive ferromagnetic material include a conductive ferromagnetic metal material described later.
  • the conductive nonmagnetic material include a conductive nonmagnetic metal material described later.
  • the above-described heat generating device can be mounted on a power generation facility that uses fluid kinetic energy (for example, natural energy such as wind power or hydraulic power) such as a wind power generation facility or a hydropower generation facility.
  • fluid kinetic energy for example, natural energy such as wind power or hydraulic power
  • heat energy can be generated by replacing a power generation device portion of a known wind power generation facility or hydroelectric power generation facility with the heat generation device. Therefore, the configuration of a known power generation facility can be applied to portions other than the heat generating device.
  • said heat generating apparatus can be mounted in a vehicle. In any case, the heat generating device converts the kinetic energy of the rotating shaft into heat energy and recovers it. The recovered thermal energy may be used to generate electrical energy.
  • FIG. 1 is a longitudinal sectional view of the heat generating device of the first embodiment.
  • FIG. 2 is a cross-sectional view of the heat generating device of the first embodiment. 1 and 2 illustrate a heat generating device 1 mounted on a wind power generation facility.
  • the heat generating apparatus 1 according to the first embodiment includes a rotating shaft 3, a heat generating member 4, a plurality of permanent magnets 5, and a magnet holding member 6.
  • the rotating shaft 3 is rotatably supported via a bearing 7 with respect to the fixed main body 2 that is a non-rotating portion.
  • the heat generating member 4 is fixed to the rotating shaft 3.
  • the heat generating member 4 includes a cylindrical member 4A having the rotating shaft 3 as an axis, and a disk-shaped connecting member 4B connecting the cylindrical member 4A and the rotating shaft 3.
  • the connecting member 4B is provided with a plurality of through holes 4C for weight reduction and heat recovery.
  • the magnet holding member 6 is disposed outside the heat generating member 4 and is fixed to the main body 2.
  • the magnet holding member 6 includes a cylindrical member 6a having the rotation shaft 3 as an axis.
  • the cylindrical member 6 a holds the magnet 5.
  • the magnet 5 is fixed to the inner peripheral surface of the cylindrical member 6a and faces the outer peripheral surface of the heat generating member 4 (cylindrical member 4A) with a gap.
  • the magnets 5 are arranged in the circumferential direction.
  • the arrangement of the magnetic poles (N pole, S pole) of these magnets 5 is different in the radial direction and alternately in the magnets 5 adjacent in the circumferential direction.
  • the material of the cylindrical member 6a that directly holds the magnet 5 is a ferromagnetic material.
  • the material of the heating member 4, particularly the material of the outer layer of the cylindrical member 4A facing the magnet 5, is a conductive material.
  • conductive materials include ferromagnetic metal materials (eg, carbon steel, cast iron, etc.), weak magnetic metal materials (eg: ferritic stainless steel, etc.), or non-magnetic metal materials (eg, aluminum alloys, austenitic stainless steel, Copper alloy etc.).
  • a cylindrical partition wall 15 is disposed in the gap between the heat generating member 4 and the magnet 5.
  • the partition wall 15 is fixed to the main body 2 and forms a sealed container that surrounds the heat generating member 4.
  • the material of the partition 15 is a nonmagnetic material. This is to prevent the magnetic field from the magnet 5 to the heat generating member 4 from being adversely affected.
  • the magnetic flux (magnetic field) from the magnet 5 is as follows.
  • the magnetic flux emitted from the S pole of one of the magnets 5 adjacent to each other reaches the heat generating member 4 (cylindrical member 4 ⁇ / b> A) facing this magnet 5.
  • the magnetic flux that has reached the heat generating member 4 reaches the N pole of the other magnet 5.
  • the magnetic flux emitted from the S pole of the other magnet 5 reaches the N pole of one magnet 5 through the cylindrical member 6a. That is, a magnetic circuit including the magnets 5 is formed between the magnets 5 adjacent to each other in the circumferential direction, the cylindrical member 6 a that holds the magnets 5, and the heat generating member 4.
  • Such a magnetic circuit is formed by alternately reversing the direction of the magnetic flux over the entire circumferential direction. If it does so, the magnetic field from the magnet 5 will spread and the magnetic flux density which reaches
  • the heat generating device 1 includes a heat recovery mechanism for recovering and utilizing the heat generated in the heat generating member 4.
  • a heat recovery mechanism for recovering and utilizing the heat generated in the heat generating member 4.
  • an internal space of the sealed container that is, a space in which the heat generating member 4 is present in the main body 2 constituting the sealed container integrally with the partition wall 15 (hereinafter also referred to as “heat generating member existing space”).
  • an outlet 12 are provided.
  • An inlet pipe and an outlet pipe (not shown) are connected to each of the inlet 11 and the outlet 12 of the heat generating member existence space.
  • the inlet side piping and the outlet side piping are connected to a heat storage device (not shown).
  • the heat generating member existence space inner space of the sealed container
  • the inlet side pipe, the outlet side pipe, and the heat storage device form a series of paths, and the heat medium circulates and circulates through these paths (solid arrow in FIG. 1). reference).
  • the heat generated in the heat generating member 4 is transmitted to the heat medium that circulates in the heat generating member existing space.
  • the heat medium in the heat generating member existing space is discharged from the outlet 12 of the heat generating member existing space, and is guided to the heat storage device through the outlet side pipe.
  • the heat storage device receives and recovers heat from the heat medium by heat exchange and stores the heat.
  • the heat medium that has passed through the heat storage device returns from the inlet 11 to the heat generating member existence space through the inlet-side piping. In this way, the heat generated in the heat generating member 4 is recovered.
  • the heat generating device 1 of the first embodiment as described above, sufficient heat generation is obtained by the heat generating member 4, so that the kinetic energy of the rotating shaft 3 can be effectively converted into heat energy and recovered. Furthermore, in the heat generating device 1, the heat generating member 4 is held in the internal space of the sealed container. Therefore, loss of heat energy generated in the heat generating member 4 can be suppressed.
  • the heat generating device 1 of the first embodiment may be mounted on a wind power generation facility.
  • the power generation device portion of the wind power generation facility may be replaced with the heat generation device 1 of the first embodiment.
  • an impeller 20 that is a windmill may be provided on an extension line of the rotating shaft 3 of the heat generating device 1.
  • the rotating shaft 21 of the impeller 20 is rotatably supported via a bearing 25 with respect to the fixed main body 2.
  • the rotating shaft 21 of the impeller 20 is connected to the rotating shaft 3 of the heat generating device 1 through the clutch device 23 and the speed increasing device 24.
  • the rotating shaft 21 of the impeller 20 rotates, the rotating shaft 3 of the heat generating device 1 rotates.
  • the rotational speed of the rotating shaft 3 of the heat generating device 1 is increased by the speed increasing device 24 from the rotational speed of the rotating shaft 21 of the impeller 20.
  • a planetary gear mechanism can be applied to the speed increasing device 24.
  • the impeller 20 receives wind force and rotates (see the white arrow in FIG. 1).
  • the rotating shaft 3 of the heat generating device 1 rotates, whereby heat is generated in the heat generating member 4 and the generated heat is recovered by the heat storage device. That is, a part of the kinetic energy of the rotating shaft 3 of the heat generating device 1 based on the rotation of the impeller 20 is converted into heat energy and recovered.
  • the heat recovered by the heat storage device is used for power generation by a heat element, a Stirling engine or the like, for example.
  • the clutch device 23 has the following functions.
  • the clutch device 23 connects the rotating shaft 21 of the impeller 20 and the rotating shaft 3 of the heat generating device 1. Thereby, the rotational force of the impeller 20 is transmitted to the heat generating device 1.
  • the clutch device 23 rotates the impeller 20.
  • the connection between the shaft 21 and the rotating shaft 3 of the heat generating device 1 is disconnected. Thereby, the rotational force of the impeller 20 is not transmitted to the heat generating device 1.
  • a frictional or electromagnetic brake device 22 for stopping the rotation of the impeller 20 is installed between the impeller 20 and the clutch device 23 so that the impeller 20 is not freely rotated by wind power. It is preferable to do this.
  • the heat generating member 4 generates heat due to the eddy current generated in the heat generating member 4 (cylindrical member 4A). For this reason, the temperature of the magnet 5 rises due to heat from the heat generating member 4 (for example, radiant heat), and there is a possibility that the magnetic force held by the magnet 5 decreases. Therefore, it is desirable to devise measures to suppress the temperature rise of the magnet 5.
  • the heat from the heat generating member 4 is blocked by the partition wall 15 of the sealed container.
  • the temperature rise of the magnet 5 can be prevented.
  • FIG. 3 is a cross-sectional view showing an example of a suitable aspect of the heat generating member in the heat generating device of the first embodiment.
  • the vicinity of the outer peripheral surface of the heat generating member 4 (cylindrical member 4A) facing the magnet 5 is shown enlarged.
  • a first layer 4b, a second layer 4c, and an antioxidant coating layer 4d are sequentially laminated on the outer peripheral surface of the base material 4a.
  • the material of the base material 4a is a conductive metal material (eg, copper alloy, aluminum alloy, etc.) having a high thermal conductivity.
  • the material of the first layer 4b is a ferromagnetic metal material (eg, carbon steel, cast iron, etc.).
  • the material of the second layer 4c is a non-magnetic metal material or a weak magnetic metal material, and in particular, a material having higher conductivity than the first layer 4b (eg, aluminum alloy, copper alloy, etc.) is desirable.
  • the antioxidant coating layer 4d is a Ni (nickel) plating layer, for example.
  • Buffer layers 4e are laminated between the base material 4a and the first layer 4b, between the first layer 4b and the second layer 4c, and between the second layer 4c and the antioxidant coating layer 4d, respectively.
  • the linear expansion coefficient of the buffer layer 4e is larger than the linear expansion coefficient of one adjacent material and smaller than the linear expansion coefficient of the other material. This is to prevent peeling of each layer.
  • the buffer layer 4e is, for example, a NiP (nickel-phosphorus) plating layer.
  • the eddy current generated in the heat generating member 4 by the action of the magnetic field from the magnet 5 becomes larger, and it becomes possible to obtain a high braking force and more sufficient heat generation.
  • the second layer 4c may be omitted, and the buffer layer 4e may be omitted.
  • FIG. 4 is a cross-sectional view of the heat generating device of the second embodiment.
  • the heat generating device 1 of the second embodiment shown in FIG. 4 is based on the configuration of the heat generating device 1 of the first embodiment. The same applies to third and fourth embodiments described later.
  • the heat generating device 1 of the second embodiment is mainly different from the first embodiment in the arrangement mode of the magnets 5.
  • the magnets 5 are arranged in the circumferential direction on the inner peripheral surface of the cylindrical member 6a.
  • the arrangement of the magnetic poles (N pole and S pole) of these magnets 5 is in the circumferential direction, and is alternately different between the magnets 5 adjacent in the circumferential direction.
  • the material of the cylindrical member 6a that directly holds the magnet 5 is a nonmagnetic material.
  • a pole piece 9 made of a ferromagnetic material is provided between magnets 5 adjacent in the circumferential direction.
  • the magnetic flux (magnetic field) from the magnet 5 is as follows.
  • the magnets 5 adjacent to each other in the circumferential direction face each other with the same pole across the pole piece 9.
  • the cylindrical member 6a that holds the magnet 5 is a non-magnetic material.
  • the magnetic fluxes emitted from the S poles of both magnets 5 repel each other and reach the heat generating member 4 (cylindrical member 4 ⁇ / b> A) through the pole piece 9.
  • the magnetic flux that has reached the heat generating member 4 reaches the north pole of each magnet 5 through the adjacent pole piece 9. That is, a magnetic circuit including the magnet 5 is formed between the magnet 5, the pole piece 9, and the heat generating member 4.
  • Such a magnetic circuit is formed by alternately reversing the direction of the magnetic flux over the entire circumferential direction. If it does so, the magnetic field from the magnet 5 will spread and the magnetic flux density which reaches
  • the heat generating device 1 of the second embodiment also has the same effect as the first embodiment.
  • FIG. 5 is a longitudinal sectional view of the heat generating device of the third embodiment.
  • the heat generating device 1 of the third embodiment is mainly different from the first embodiment in the arrangement mode of the magnets 5.
  • the magnets 5 are arranged in the axial direction on the inner peripheral surface of the cylindrical member 6a.
  • the magnet 5 is a cylindrical magnet.
  • the arrangement of the magnetic poles (N pole and S pole) of these magnets 5 is in the axial direction, and is alternately different between adjacent magnets 5 in the axial direction.
  • the material of the cylindrical member 6a that directly holds the magnet 5 is a non-magnetic material as in the second embodiment.
  • a pole piece 9 made of a ferromagnetic material is provided between the magnets 5 adjacent in the axial direction. Furthermore, the pole pieces 9 are also provided at the ends of the magnets 5 arranged at both ends of the axial arrangement.
  • the magnetic flux (magnetic field) from the magnet 5 is as follows.
  • the magnets 5 adjacent to each other in the axial direction face each other with the same pole across the pole piece 9.
  • the cylindrical member 6a that holds the magnet 5 is a non-magnetic material.
  • the magnetic fluxes emitted from the S poles of both magnets 5 repel each other and reach the heat generating member 4 (cylindrical member 4 ⁇ / b> A) through the pole piece 9.
  • the magnetic flux that has reached the heat generating member 4 reaches the north pole of each magnet 5 through the adjacent pole piece 9. That is, a magnetic circuit including the magnet 5 is formed between the magnet 5, the pole piece 9, and the heat generating member 4.
  • Such a magnetic circuit is formed by alternately reversing the direction of the magnetic flux over the entire area in the axial direction. If it does so, the magnetic field from the magnet 5 will spread and the magnetic flux density which reaches
  • the heat generating device 1 of the third embodiment also has the same effect as the first embodiment.
  • FIG. 6 is a longitudinal sectional view of the heat generating device of the fourth embodiment.
  • the heat generating device 1 of the fourth embodiment pays attention to the suppression of the temperature rise of the magnet 5 and is provided with a cooling mechanism for cooling the magnet 5 in the heat generating device 1 of the first embodiment.
  • the heating device 1 of the sixth embodiment includes the following configuration as a magnet cooling mechanism.
  • the main body 2 is provided with a suction port 31 and a discharge port 32 connected to a space where the magnet 5 and the magnet holding member 6 are present (hereinafter also referred to as “magnet presence space”).
  • the discharge port 32 shows the aspect which penetrates the magnet holding member 6 (cylindrical member 6a).
  • the suction side pipe 33 and the discharge side pipe 34 are connected to the suction port 31 and the discharge port 32 in the magnet existing space.
  • the suction side pipe 33 and the discharge side pipe 34 are connected to a heat exchanger 35.
  • the magnet existing space, the suction side pipe 33, the discharge side pipe 34, and the heat exchanger 35 form a series of paths, and the refrigerant body circulates and circulates through these paths (see the dotted arrows in FIG. 6).
  • a pump 36 for sending out the refrigerant body is installed in this path.
  • the refrigerant is introduced from the suction port 31 into the space where the magnet is present by driving the pump 36 (see the dotted arrow in FIG. 6).
  • the refrigerant introduced into the magnet existence space flows in the vicinity of the magnet 5.
  • the magnet 5 is cooled.
  • the refrigerant body that has cooled the magnet 5 is discharged from the discharge port 32 to the discharge side pipe 34 (see the dotted arrow in FIG. 6).
  • the refrigerant discharged to the discharge side pipe 34 is cooled by the heat exchanger 35 and sent to the suction side pipe 33. In this way, the magnet 5 can be forcibly cooled by the refrigerant body and the temperature rise of the magnet 5 can be suppressed.
  • Such a magnet cooling mechanism can be applied to other heat generating devices of the present invention.
  • the magnet cooling mechanism can be applied to the heat generating device 1 of the second and third embodiments.
  • the suction side pipe 33, the discharge side pipe 34, the heat exchanger 35, and the pump 36 can be omitted.
  • external air may be introduced into the magnet presence space from the suction port 31 and discharged from the discharge port 32 by a blower or the like.
  • the magnet 5 is cooled by the air flowing through the magnet presence space.
  • the heat generating member 4 is formed in a cylindrical shape, but instead of this, it may be formed in a disk shape having the rotation shaft 3 as an axis.
  • the magnet holding member 6 is also formed in a disk shape having the rotation shaft 3 as an axis.
  • This disk member faces the main surface (one surface of both surfaces in the axial direction) of the disk-shaped heat generating member, and holds the magnet 5 on the surface facing this main surface.
  • the magnet faces the main surface of the heat generating member with a gap.
  • the arrangement forms of the magnets 5 are, for example, the following three types.
  • the first arrangement mode is the same as that of the first embodiment.
  • the magnets are arranged in the circumferential direction.
  • the arrangement of the magnetic poles (N pole, S pole) of these magnets is alternately different in the axial direction and adjacent magnets in the circumferential direction.
  • the material of the disk member that directly holds the magnet is a ferromagnetic material.
  • the second arrangement mode is the same as that of the second embodiment.
  • the magnets are arranged in the circumferential direction.
  • the arrangement of the magnetic poles (N pole and S pole) of these magnets is in the circumferential direction, and alternately differs between magnets adjacent in the circumferential direction.
  • the material of the disc member that directly holds the magnet is a non-magnetic material.
  • a pole piece made of a ferromagnetic material is provided between magnets adjacent in the circumferential direction.
  • the third arrangement mode is the same as that of the third embodiment.
  • the magnets have a ring shape and are arranged concentrically in the radial direction. Arrangement of magnetic poles (N pole, S pole) of these magnets is in the radial direction, and is alternately different between adjacent magnets in the radial direction.
  • the material of the disc member that directly holds the magnet is a non-magnetic material.
  • a pole piece made of a ferromagnetic material is provided between magnets adjacent in the radial direction. Furthermore, pole pieces are also provided at the ends of the magnets arranged at both ends of the radial arrangement.
  • the above heat generating device can be mounted not only on a wind power generation facility but also on a power generation facility using fluid kinetic energy such as a hydroelectric power generation facility.
  • the heat generating device can be mounted on a vehicle (for example, a truck or a bus).
  • the heat generating device described above may be provided separately from the eddy current type speed reducer as an auxiliary brake, or may be used as an auxiliary brake.
  • a switch mechanism for switching between braking and non-braking may be installed.
  • the heat generating device described above decelerates the rotational speed of a rotating shaft such as a propeller shaft or a drive shaft. Thereby, the running speed of the vehicle is adjusted. At that time, a braking force for reducing the rotational speed of the rotating shaft is generated, and at the same time, heat is generated.
  • the heat recovered by the heat generating device mounted on the vehicle is used, for example, as a heat source of a heater for heating the inside of the vehicle body or as a heat source of a refrigerator for cooling the inside of the container.
  • the eddy current heating device of the present invention is useful for power generation equipment using fluid kinetic energy such as wind power generation equipment and hydroelectric power generation equipment, and vehicles such as trucks and buses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • General Induction Heating (AREA)

Abstract

 開示される発熱装置(1)は、回転軸(3)と、発熱部材(4)と、複数の永久磁石(5)と、磁石保持部材(6)と、熱回収機構と、を備える。回転軸(3)は、非回転部である本体(2)に回転可能に支持される。発熱部材(4)は回転軸(3)に固定される。磁石(5)は、発熱部材(4)に隙間を空けて対向し、互いに隣接するもの同士で磁極の配置が交互に異なる。磁石保持部材(6)は、磁石(5)を保持し、本体(2)に固定される。熱回収機構は、発熱部材(4)に生じた熱を回収する。

Description

渦電流式発熱装置
 本発明は、回転軸の運動エネルギを熱エネルギに変換して回収するための発熱装置に関し、特に、永久磁石(以下、単に「磁石」ともいう)を用い、磁石からの磁界の作用によって生じる渦電流を利用した渦電流式発熱装置に関する。
 近年、化石燃料の燃焼に伴う二酸化炭素の発生が問題視されている。このため、太陽熱エネルギ、風力エネルギ、水力エネルギ等のような自然エネルギの活用が推進されている。自然エネルギの中でも、風力エネルギ、水力エネルギ等は流体の運動エネルギである。従来、流体運動エネルギを活用して発電が行われている。
 例えば、一般的な風力発電設備では、羽根車が風力を受けて回転する。羽根車の回転軸は発電機の入力軸に連結されており、羽根車の回転に伴って発電機の入力軸が回転する。これにより、発電機で電気が発生する。すなわち、一般的な風力発電設備では、風力エネルギが羽根車の回転軸の運動エネルギに変換され、この回転軸の運動エネルギが電気エネルギに変換される。
 特開2011-89492号公報(特許文献1)には、エネルギの利用効率の向上を図った風力発電設備が提案されている。特許文献1の発電設備は、風力エネルギから電気エネルギへの変換過程で熱エネルギを発生させるために、発熱装置(特許文献1のリターダ装置30)を備える。
 特許文献1の発電設備では、風力エネルギが羽根車の回転軸の運動エネルギに変換され、この回転軸の運動エネルギが油圧ポンプの油圧エネルギに変換される。油圧エネルギによって油圧モータが回転する。油圧モータの主軸は発熱装置の回転軸に連結され、この発熱装置の回転軸は発電機の入力軸に連結されている。油圧モータの回転に伴って発熱装置の回転軸が回転するとともに、発電機の入力軸が回転し、発電機で電気が発生する。
 発熱装置は、永久磁石からの磁界の作用によって生じる渦電流を利用し、発熱装置の回転軸の回転速度を減速させる。これにより、油圧モータの主軸の回転速度が減速し、これに伴い油圧ポンプを介して羽根車の回転速度が調整される。
 また、発熱装置においては、渦電流の発生により、回転軸の回転速度を減速させる制動力が発生すると同時に、熱が発生する。すなわち、風力エネルギの一部が熱エネルギに変換される。特許文献1では、その熱(熱エネルギ)が蓄熱装置に回収され、回収された熱エネルギによって原動機が駆動し、この原動機の駆動によって発電機が駆動し、その結果として発電機で電気が発生する、としている。
特開2011-89492号公報
 特許文献1の風力発電設備は、回転軸である羽根車と発熱装置との間に油圧ポンプ及び油圧モータを備える。このため、設備の構造が複雑になる。また、多段階のエネルギ変換が必要であるから、エネルギの変換ロスが著しい。これに伴って、発熱装置で得られる熱エネルギも小さくなる。
 また、特許文献1の発熱装置の場合、複数の磁石が円筒状のロータの内周面に対向し、円周方向にわたり配列されている。これらの磁石の磁極(N極、S極)の配置は、円周方向であって、円周方向に隣接する磁石同士で一律である。このため、磁石からの磁界が広がらず、ロータに到達する磁束密度が少ない。そうすると、実質的に、磁石からの磁界の作用によってロータに生じる渦電流が小さくなり、十分な発熱が得られない。
 本発明は、上記の実情に鑑みてなされたものである。本発明の目的は、回転軸の運動エネルギを熱エネルギに有効に変換して回収することができる渦電流式発熱装置を提供することである。
 本発明の一実施形態による渦電流式発熱装置は、
 非回転部に回転可能に支持された回転軸と、
 前記回転軸に固定された発熱部材と、
 前記発熱部材に隙間を空けて対向し、互いに隣接するもの同士で磁極の配置が交互に異なる複数の永久磁石と、
 前記永久磁石を保持し、前記非回転部に固定された磁石保持部材と、
 前記発熱部材に生じた熱を回収する熱回収機構と、を備える。
 本発明の渦電流式発熱装置によれば、発熱部材に対向する磁石の磁極の配置が、互いに隣接する磁石同士で交互に異なる。このため、磁石からの磁界が広がり、発熱部材に到達する磁束密度が多くなる。これにより、磁石からの磁界の作用によって発熱部材に生じる渦電流が大きくなり、十分な発熱が得られる。したがって、回転軸の運動エネルギを熱エネルギに有効に変換して回収することができる。
図1は、第1実施形態の発熱装置の縦断面図である。 図2は、第1実施形態の発熱装置の横断面図である。 図3は、第1実施形態の発熱装置における発熱部材の好適な態様の一例を示す横断面図である。 図4は、第2実施形態の発熱装置の横断面図である。 図5は、第3実施形態の発熱装置の縦断面図である。 図6は、第4実施形態の発熱装置の縦断面図である。
 以下、本発明の実施形態について説明する。なお、以下の説明では本発明の実施形態について例を挙げて説明するが、本発明は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本発明の効果が得られる限り、他の数値や材料を適用してもよい。
 本発明の一実施形態による渦電流式発熱装置は、回転軸と、発熱部材と、複数の永久磁石と、磁石保持部材と、熱回収機構と、を備える。回転軸は、非回転部に回転可能に支持される。発熱部材は、前記回転軸に固定される。複数の永久磁石は、前記発熱部材に隙間を空けて対向し、互いに隣接するもの同士で磁極の配置が交互に異なる。磁石保持部材は、前記永久磁石を保持し、前記非回転部に固定される。熱回収機構は、前記発熱部材に生じた熱を回収する。
 発熱部材の少なくとも一部は電磁誘導が生じる材料(具体的には導電性材料)で形成される。発熱部材のうち少なくとも磁石側の部分は、電磁誘導が生じる材料で形成されることが好ましい。発熱部材の具体的な材料の例については後述する。
 本実施形態の渦電流式発熱装置によれば、発熱部材に対向する磁石の磁極の配置が、互いに隣接する磁石同士で交互に異なるため、磁石からの磁界が広がり、発熱部材に到達する磁束密度が多くなる。これにより、磁石からの磁界の作用によって発熱部材に生じる渦電流が大きくなり、十分な発熱が得られる。したがって、回転軸の運動エネルギを熱エネルギに有効に変換して回収することができる。
 上記の発熱装置において、前記熱回収機構は、前記非回転部に固定されて前記発熱部材を包囲する密閉容器であって、前記発熱部材と前記永久磁石との前記隙間に非磁性の隔壁を有する密閉容器と、前記密閉容器の内部空間に繋がる入口及び出口にそれぞれ接続された配管と、前記各配管に接続された蓄熱装置と、前記密閉容器、前記配管、及び前記蓄熱装置を循環する熱媒体と、を含む構成とすることができる。
 蓄熱装置に特に限定はなく、熱媒体で運ばれた熱エネルギを蓄積可能な公知の蓄熱装置を用いてもよい。熱媒体に特に限定はなく、公知の熱媒体を用いてもよい。熱媒体の例には、硝酸塩系の溶融塩(例:硝酸ナトリウム60%と硝酸カリウム40%との混合塩)である。熱媒体にはその他に、熱媒油、水(蒸気)、空気、超臨界CO等を適用してもよい。
 隔壁は、磁石からの磁束が発熱部材に届く前に隔壁で遮られることがないように、非磁性材料で形成されることが好ましい。隔壁の材料の例には、アルミニウム合金、オーステナイト系ステンレス鋼、銅合金、耐熱性樹脂、及びセラミックスが含まれる。隔壁の発熱部材側の面は平滑度が高い鏡面としてもよい。そうすることによって、発熱部材から磁石に熱が移動することを抑制できる。
 この構成の場合、前記永久磁石と前記隔壁との間に断熱材が充填されるか、又は前記永久磁石と前記隔壁との間が真空状態にされることが好ましい。
 上記発熱装置は、流体運動エネルギによって回転させられた前記回転軸の運動エネルギを熱エネルギに変換して回収する装置であってもよい。流体運動エネルギの例には、風力や水力などの自然エネルギが含まれる。自然エネルギによってもたらされる運動エネルギは一定しないが、上記発熱装置では、一定しない運動エネルギでも大きく効率を落とすことなく熱エネルギに変換することが可能である。
 上記の発熱装置において、前記永久磁石を冷却する冷却機構が設けられることが好ましい。
 上記の発熱装置において、前記発熱部材が円筒状であり、前記永久磁石は、前記発熱部材の外周面に対向して円周方向にわたり配列され、磁極の配置が径方向であって、円周方向に隣接するもの同士で磁極の配置が交互に異なる構成とすることができる。この場合、前記磁石保持部材は、内周面に前記永久磁石を保持する円筒部材を含み、前記円筒部材は強磁性体であることが好ましい。磁石保持部材に用いられる強磁性体の材料の例には、強磁性金属材料(例:炭素鋼、鋳鉄等)が含まれる。
 上記の発熱装置において、前記発熱部材が円筒状であり、前記永久磁石は、前記発熱部材の外周面に対向して円周方向にわたり配列され、磁極の配置が円周方向であって、円周方向に隣接するもの同士で磁極の配置が交互に異なる構成とすることができる。この場合、前記磁石保持部材は、内周面に前記永久磁石を保持する円筒部材を含み、前記円筒部材は非磁性体であり、円周方向で隣接する前記永久磁石の間にポールピースが設けられることが好ましい。磁石保持部材に用いられる非磁性体の材料の例には、非磁性金属材料(例:アルミニウム合金、オーステナイト系ステンレス鋼、銅合金等)が含まれる。
 上記の発熱装置において、前記発熱部材が円筒状であり、前記永久磁石は、前記発熱部材の外周面に対向して軸方向にわたり配列され、磁極の配置が軸方向であって、軸方向に隣接するもの同士で磁極の配置が交互に異なる構成とすることができる。この場合、前記磁石保持部材は、内周面に前記永久磁石を保持する円筒部材を含み、前記円筒部材は非磁性体であり、軸方向で隣接する前記永久磁石の間及び軸方向にわたる前記永久磁石の配列の両端にポールピースが設けられることが好ましい。
 上記の発熱装置において、前記発熱部材が円板状であり、前記永久磁石は、前記発熱部材の主面に対向して円周方向にわたり配列され、磁極の配置が軸方向であって、円周方向に隣接するもの同士で磁極の配置が交互に異なる構成とすることができる。この場合、前記磁石保持部材は、前記発熱部材の前記主面と対向する面に前記永久磁石を保持する円板部材を含み、前記円板部材は強磁性体である構成とすることができる。
 上記の発熱装置において、前記発熱部材が円板状であり、前記永久磁石は、前記発熱部材の主面に対向して円周方向にわたり配列され、磁極の配置が円周方向であって、円周方向に隣接するもの同士で磁極の配置が交互に異なる構成とすることができる。この場合、前記磁石保持部材は、前記発熱部材の前記主面と対向する面に前記永久磁石を保持する円板部材を含み、前記円板部材は非磁性体であり、円周方向で隣接する前記永久磁石の間にポールピースが設けられることが好ましい。
 上記の発熱装置において、前記発熱部材が円板状であり、前記永久磁石は、前記発熱部材の主面に対向して径方向にわたり配列され、磁極の配置が径方向であって、径方向に隣接するもの同士で磁極の配置が交互に異なる構成とすることができる。この場合、前記磁石保持部材は、前記発熱部材の前記主面と対向する面に前記永久磁石を保持する円板部材を含み、前記円板部材は非磁性体であり、径方向で隣接する前記永久磁石の間及び径方向にわたる前記永久磁石の配列の両端にポールピースが設けられることが好ましい。
 なお、発熱部材を円筒状とした装置は、発熱部材を円板状とした装置に比べて、発熱部材と永久磁石との相対速度を高速で一定としやすく、発熱効率に優れるという利点がある。また、前者の装置は、後者の装置に比べて装置を小型化しやすいという利点がある。
 上記発熱装置において、前記発熱部材は1種類以上の導電性磁性材料からなるものであってもよい。
 上記発熱装置において、前記発熱部材は少なくとも導電性強磁性材料と導電性非磁性材料からなり、導電性非磁性材料が前記永久磁石に近接していてもよい。導電性強磁性材料の例には、後述する導電性の強磁性金属材料が含まれる。導電性非磁性材料の例には、後述する導電性の非磁性金属材料が含まれる。
 上記の発熱装置は、風力発電設備、水力発電設備等のように流体運動エネルギ(たとえば風力や水力などの自然エネルギ)を利用した発電設備に搭載することができる。たとえば、公知の風力発電設備や水力発電設備の発電装置部分を上記の発熱装置に置き換えることによって、熱エネルギを生成できる。そのため、発熱装置以外の部分には、公知の発電設備の構成を適用できる。また、上記の発熱装置は、車両に搭載することができる。いずれの場合でも、発熱装置は回転軸の運動エネルギを熱エネルギに変換して回収する。回収した熱エネルギは、電気エネルギの生成に利用されてもよい。
 以下に、本発明の渦電流式発熱装置の実施形態について詳述する。
 [第1実施形態]
 図1は、第1実施形態の発熱装置の縦断面図である。図2は、第1実施形態の発熱装置の横断面図である。図1及び図2には、風力発電設備に搭載した発熱装置1を例示する。第1実施形態の発熱装置1は、回転軸3と、発熱部材4と、複数の永久磁石5と、磁石保持部材6と、を備える。回転軸3は、非回転部である固定の本体2に対し、軸受7を介して回転可能に支持される。
 発熱部材4は、回転軸3に固定される。発熱部材4は、回転軸3を軸心とする円筒部材4Aと、この円筒部材4Aと回転軸3を繋ぐ円板状の連結部材4Bと、を含む。連結部材4Bには、軽量化及び熱回収のために、複数の貫通穴4Cが設けられる。磁石保持部材6は、発熱部材4の外側に配置され、本体2に固定される。磁石保持部材6は、回転軸3を軸心とする円筒部材6aを含む。円筒部材6aは磁石5を保持する。
 磁石5は、円筒部材6aの内周面に固定され、発熱部材4(円筒部材4A)の外周面に対し隙間を空けて対向する。ここで、図2に示すように、磁石5は、円周方向にわたり配列されている。これらの磁石5の磁極(N極、S極)の配置は、径方向であって、円周方向に隣接する磁石5同士で交互に異なる。第1実施形態の場合、磁石5を直接保持する円筒部材6aの材質は、強磁性材料である。
 発熱部材4の材質、特に磁石5と対向する円筒部材4Aの外周面の表層部の材質は、導電性材料である。導電性材料としては、強磁性金属材料(例:炭素鋼、鋳鉄等)、弱磁性金属材料(例:フェライト系ステンレス鋼等)、又は非磁性金属材料(例:アルミニウム合金、オーステナイト系ステンレス鋼、銅合金等)が挙げられる。
 また、発熱部材4と磁石5との隙間には、円筒状の隔壁15が配置されている。この隔壁15は本体2に固定され、発熱部材4を包囲する密閉容器を形成する。隔壁15の材質は非磁性材料である。磁石5から発熱部材4への磁界に悪影響を及ぼさないようにするためである。
 回転軸3が回転すると、発熱部材4が回転軸3と一体で回転する(図1中の白抜き矢印参照)。これにより、磁石5と発熱部材4との間に相対的な回転速度差が生じる。このとき、図2に示すように、発熱部材4(円筒部材4A)の外周面と対向する磁石5に関し、磁極(N極、S極)の配置は、径方向であって、円周方向に隣接する磁石5同士で交互に異なっている。また、磁石5を保持する円筒部材6aが強磁性体である。
 このため、磁石5からの磁束(磁界)は、次のような状況になる。互いに隣接する磁石5のうちの一方の磁石5のS極から出た磁束は、この磁石5に対向する発熱部材4(円筒部材4A)に達する。発熱部材4に達した磁束は、他方の磁石5のN極に達する。他方の磁石5のS極から出た磁束は、円筒部材6aを通じて一方の磁石5のN極に達する。つまり、円周方向に隣接する磁石5同士、磁石5を保持する円筒部材6a、及び発熱部材4との間に、磁石5による磁気回路が形成される。このような磁気回路が、円周方向の全域にわたり、交互にその磁束の向きを逆向きにして形成される。そうすると、磁石5からの磁界が広がり、発熱部材4に到達する磁束密度が多くなる。
 磁石5と発熱部材4との間に相対的な回転速度差が生じた状態において、磁石5から発熱部材4に磁界が作用すると、発熱部材4(円筒部材4A)の外周面に渦電流が発生する。この渦電流と、磁石5からの磁束密度との相互作用により、フレミングの左手の法則に従い、回転軸3と一体で回転する発熱部材4には回転方向と逆向きの制動力が発生する。
 更に、渦電流の発生により、制動力が発生すると同時に、発熱部材4に熱が発生する。上記のとおり、発熱部材4に到達する磁束密度が多いので、磁石5からの磁界の作用によって発熱部材4に生じる渦電流が大きくなり、十分な発熱が得られる。
 発熱装置1は、発熱部材4に生じた熱を回収して活用するために、熱回収機構を備える。第1実施形態では、熱回収機構として、隔壁15と一体で密閉容器を構成する本体2に、密閉容器の内部空間、すなわち発熱部材4が存在する空間(以下、「発熱部材存在空間」ともいう)に繋がる入口11及び出口12が設けられている。この発熱部材存在空間の入口11及び出口12のそれぞれには、図示しない入側配管及び出側配管が接続されている。入側配管及び出側配管は、図示しない蓄熱装置に接続されている。発熱部材存在空間(密閉容器の内部空間)、入側配管、出側配管、及び蓄熱装置は一連の経路を形成し、この経路中を熱媒体が流通して循環する(図1中の実線矢印参照)。
 発熱部材4に生じた熱は、発熱部材存在空間を流通する熱媒体に伝達される。発熱部材存在空間内の熱媒体は、発熱部材存在空間の出口12から排出され、出側配管を通じて蓄熱装置に導かれる。蓄熱装置は、熱交換によって熱媒体から熱を受け取って回収し、その熱を蓄える。蓄熱装置を経た熱媒体は、入側配管を通じ、入口11から発熱部材存在空間に戻る。このようにして、発熱部材4に生じた熱が回収される。
 第1実施形態の発熱装置1においては、上記のとおり、発熱部材4で十分な発熱が得られるため、回転軸3の運動エネルギを熱エネルギに有効に変換して回収することができる。さらに、発熱装置1では、発熱部材4が密閉容器の内部空間に保持されている。そのため、発熱部材4で発生した熱エネルギの損失を抑制できる。
 第1実施形態の発熱装置1は、風力発電設備に搭載されてもよい。たとえば、風力発電設備の発電装置部分を、第1実施形態の発熱装置1で置き換えてもよい。すなわち、図1に示すように、発熱装置1の回転軸3の延長線上に、風車である羽根車20が設けられてもよい。羽根車20の回転軸21は、固定の本体2に対し、軸受25を介して回転可能に支持される。羽根車20の回転軸21は、クラッチ装置23及び増速装置24を介して、発熱装置1の回転軸3に連結されている。羽根車20の回転軸21の回転に伴って発熱装置1の回転軸3が回転する。このとき、発熱装置1の回転軸3の回転速度は、増速装置24によって、羽根車20の回転軸21の回転速度よりも増加する。増速装置24には、例えば遊星歯車機構を適用できる。
 このような風力発電設備では、羽根車20が風力を受けて回転する(図1の白抜き矢印参照)。羽根車20の回転に伴って発熱装置1の回転軸3が回転し、これにより、発熱部材4で熱が発生し、発生した熱は蓄熱装置に回収される。すなわち、羽根車20の回転に基づく発熱装置1の回転軸3の運動エネルギの一部が熱エネルギに変換されて回収される。その際、羽根車20と発熱装置1との間には、特許文献1の風力発電設備のような油圧ポンプ及び油圧モータが無いため、エネルギの変換ロスが少ない。蓄熱装置に回収された熱は、例えば、熱素子、スターリングエンジン等による発電に利用される。
 更に、発熱装置1の回転軸3が回転することにより、発熱部材4が発熱すると同時に、回転軸3には、回転を減速させる制動力が発生する。これにより、増速装置24及びクラッチ装置23を介し羽根車20の回転速度が調整される。ここで、クラッチ装置23は以下の機能を有する。発熱装置1で発熱が必要な場合には、クラッチ装置23は、羽根車20の回転軸21と発熱装置1の回転軸3とを接続する。これにより、羽根車20の回転力が発熱装置1に伝達される。蓄熱装置に蓄積された熱量が許容量に達し、発熱装置1で発熱の必要が無くなった場合、メンテナンスのために発熱装置1を停機する場合等には、クラッチ装置23は、羽根車20の回転軸21と発熱装置1の回転軸3との接続を切る。これにより、羽根車20の回転力が発熱装置1に伝達されない。このときに羽根車20が風力で自由に回転することのないように、羽根車20とクラッチ装置23との間に、羽根車20の回転を止める摩擦式、電磁式等のブレーキ装置22を設置するのが好ましい。
 上記のとおり、発熱部材4(円筒部材4A)に発生した渦電流により、発熱部材4が発熱する。このため、磁石5は発熱部材4からの熱(たとえば輻射熱)によって温度が上昇し、保有する磁力が低下するおそれがある。そこで、磁石5の温度上昇を抑制する工夫を施すことが望ましい。
 この点、第1実施形態の発熱装置1では、発熱部材4からの熱が密閉容器の隔壁15によって遮断される。これにより、磁石5の温度上昇を防止することができる。また、この場合、磁石5と隔壁15との間に、断熱材が充填されたり、磁石5と隔壁15との間が真空状態にされたりすることが好ましい。発熱部材4からの熱をより確実に遮断することができるからである。
 図3は、第1実施形態の発熱装置における発熱部材の好適な態様の一例を示す横断面図である。図3では、磁石5と対向する発熱部材4(円筒部材4A)の外周面近傍を拡大して示す。図3に示すように、発熱部材4は、基材4aの外周面に、第1層4b、第2層4c及び酸化防止皮膜層4dが順に積層されている。基材4aの材質は、熱伝導率の高い導電性金属材料(例:銅合金、アルミニウム合金等)である。第1層4bの材質は、強磁性金属材料(例:炭素鋼、鋳鉄等)である。第2層4cの材質は、非磁性金属材料又は弱磁性金属材料であり、特に第1層4bに比べて導電率の高い材料(例:アルミニウム合金、銅合金等)が望ましい。酸化防止皮膜層4dは、例えばNi(ニッケル)めっき層である。
 基材4aと第1層4bとの間、第1層4bと第2層4cとの間、第2層4cと酸化防止皮膜層4dとの間には、それぞれ緩衝層4eが積層されている。緩衝層4eの線膨張係数は、隣接する一方の材料の線膨張係数よりも大きく、他方の材料の線膨張係数よりも小さい。各層の剥離を防止するためである。緩衝層4eは、例えばNiP(ニッケル-リン)めっき層である。
 このような積層構造によれば、磁石5からの磁界の作用によって発熱部材4に生じる渦電流がより大きくなり、高い制動力とより十分な発熱を得ることが可能になる。ただし、第2層4cは省いて構わないし、緩衝層4eも省いて構わない。
 [第2実施形態]
 図4は、第2実施形態の発熱装置の横断面図である。図4に示す第2実施形態の発熱装置1は、前記第1実施形態の発熱装置1の構成を基本とする。後述する第3及び第4実施形態でも同様とする。第2実施形態の発熱装置1は、前記第1実施形態とは、主に磁石5の配列態様が相違する。
 図4に示すように、磁石5は、円筒部材6aの内周面に、円周方向にわたり配列されている。これらの磁石5の磁極(N極、S極)の配置は、円周方向であって、円周方向に隣接する磁石5同士で交互に異なる。第2実施形態の場合、磁石5を直接保持する円筒部材6aの材質は、非磁性材料である。円周方向で隣接する磁石5の間に強磁性体からなるポールピース9が設けられる。
 第2実施形態では、磁石5からの磁束(磁界)は、次のような状況になる。円周方向に隣接する磁石5同士は、ポールピース9を挟んで同極が向き合っている。また、磁石5を保持する円筒部材6aが非磁性体である。このため、両磁石5のS極から出た磁束は、互いに反発し、ポールピース9を通じて発熱部材4(円筒部材4A)に達する。発熱部材4に達した磁束は、隣のポールピース9を通じて各々の磁石5のN極に達する。つまり、磁石5、ポールピース9、及び発熱部材4との間に、磁石5による磁気回路が形成される。このような磁気回路が、円周方向の全域にわたり、交互にその磁束の向きを逆向きにして形成される。そうすると、磁石5からの磁界が広がり、発熱部材4に到達する磁束密度が多くなる。
 したがって、第2実施形態の発熱装置1でも、前記第1実施形態と同様の効果を奏する。
 [第3実施形態]
 図5は、第3実施形態の発熱装置の縦断面図である。第3実施形態の発熱装置1は、前記第1実施形態とは、主に磁石5の配列態様が相違する。
 図5に示すように、磁石5は、円筒部材6aの内周面に、軸方向にわたり配列されている。磁石5は、円筒状の磁石である。これらの磁石5の磁極(N極、S極)の配置は、軸方向であって、軸方向に隣接する磁石5同士で交互に異なる。第3実施形態の場合、磁石5を直接保持する円筒部材6aの材質は、前記第2実施形態と同様に非磁性材料である。軸方向で隣接する磁石5の間に、強磁性体からなるポールピース9が設けられる。更に、ポールピース9は、軸方向にわたる配列の両端に配置された磁石5の端にも設けられる。
 第3実施形態では、磁石5からの磁束(磁界)は、次のような状況になる。軸方向に隣接する磁石5同士は、ポールピース9を挟んで同極が向き合っている。また、磁石5を保持する円筒部材6aが非磁性体である。このため、両磁石5のS極から出た磁束は、互いに反発し、ポールピース9を通じて発熱部材4(円筒部材4A)に達する。発熱部材4に達した磁束は、隣のポールピース9を通じて各々の磁石5のN極に達する。つまり、磁石5、ポールピース9、及び発熱部材4との間に、磁石5による磁気回路が形成される。このような磁気回路が、軸方向の全域にわたり、交互にその磁束の向きを逆向きにして形成される。そうすると、磁石5からの磁界が広がり、発熱部材4に到達する磁束密度が多くなる。
 したがって、第3実施形態の発熱装置1でも、前記第1実施形態と同様の効果を奏する。
 [第4実施形態]
 図6は、第4実施形態の発熱装置の縦断面図である。第4実施形態の発熱装置1は、磁石5の温度上昇を抑制する点に着目し、前記第1実施形態の発熱装置1に磁石5を冷却する冷却機構を設けたものである。
 図6に示すように、第6実施形態の発熱装置1は、磁石冷却機構として、以下の構成を備える。本体2には、磁石5及び磁石保持部材6が存在する空間(以下、「磁石存在空間」ともいう)に繋がる吸入口31及び排出口32が設けられている。なお、図6では、排出口32が磁石保持部材6(円筒部材6a)を貫通する態様を示す。
 磁石存在空間の吸入口31及び排出口32のそれぞれには、吸入側配管33及び排出側配管34が接続されている。吸入側配管33及び排出側配管34は、熱交換器35に接続されている。磁石存在空間、吸入側配管33、排出側配管34、及び熱交換器35は一連の経路を形成し、この経路中を冷媒体が流通して循環する(図6中の点線矢印参照)。この経路中には、冷媒体を送り出すポンプ36が設置されている。
 このような構成によれば、ポンプ36の駆動により、冷媒体が吸入口31から磁石存在空間に導入される(図6中の点線矢印参照)。磁石存在空間に導入された冷媒体は、磁石5の近傍領域を流通する。その際、磁石5が冷却される。磁石5を冷却した冷媒体は、排出口32から排出側配管34に排出される(図6中の点線矢印参照)。排出側配管34に排出された冷媒体は、熱交換器35で冷却され、吸入側配管33に送り出される。このようにして、磁石5を冷媒体によって強制的に冷却し、磁石5の温度上昇を抑制することができる。
 このような磁石冷却機構は、本発明の他の発熱装置に適用することが可能である。たとえば、磁石冷却機構は、前記第2及び第3実施形態の発熱装置1に適用することが可能である。また、後述の、発熱部材が円板状である実施形態に磁石冷却機構を適用することも可能である。
 第4実施形態の変形例として、吸入側配管33、排出側配管34、熱交換器35、及びポンプ36は省くこともできる。この場合、送風機等によって、外部の空気を吸入口31から磁石存在空間に導入し、排出口32から排出させればよい。磁石5は、磁石存在空間内を流通する空気によって冷却される。
 その他本発明は上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。例えば、上記の実施形態では、発熱部材4が円筒状とされているが、これに代えて、回転軸3を軸心とする円板状とされても構わない。この場合、磁石保持部材6も回転軸3を軸心とする円板状とされる。この円板部材は、円板状の発熱部材の主面(軸方向の両面のうちの一方の面)と対向し、この主面と対向する面に磁石5を保持する。これにより、磁石は、発熱部材の主面に対し隙間を空けて対向する。この場合、磁石5の配列形態は、例えば、以下の3種類となる。
 第1の配列態様は、前記第1実施形態に準じたものである。第1の配列態様では、磁石は、円周方向にわたり配列される。これらの磁石の磁極(N極、S極)の配置は、軸方向であって、円周方向に隣接する磁石同士で交互に異なる。この場合、磁石を直接保持する円板部材の材質は、強磁性材料である。
 第2の配列態様は、前記第2実施形態に準じたものである。第2の配列態様では、磁石は、円周方向にわたり配列される。これらの磁石の磁極(N極、S極)の配置は、円周方向であって、円周方向に隣接する磁石同士で交互に異なる。この場合、磁石を直接保持する円板部材の材質は、非磁性材料である。円周方向で隣接する磁石の間に強磁性体からなるポールピースが設けられる。
 第3の配列態様は、前記第3実施形態に準じたものである。第3の配列態様では、磁石は、リング状の形状を有し、径方向にわたり同心円状に配列される。これらの磁石の磁極(N極、S極)の配置は、径方向であって、径方向に隣接する磁石同士で交互に異なる。この場合、磁石を直接保持する円板部材の材質は、非磁性材料である。径方向で隣接する磁石の間に強磁性体からなるポールピースが設けられる。更に、ポールピースは、径方向にわたる配列の両端に配置された磁石の端にも設けられる。
 上記の発熱装置は、風力発電設備のみならず、水力発電設備等のように流体運動エネルギを利用した発電設備に搭載することができる。
 更に、上記の発熱装置は、車両(たとえばトラックやバス等)に搭載することができる。この場合、上記の発熱装置は、補助ブレーキとしての渦電流式減速装置とは別個に設けられてもよいし、補助ブレーキとして兼用されてもよい。補助ブレーキとして兼用される場合、制動と非制動を切り替えるスイッチ機構を設置すればよい。上記の発熱装置は、補助ブレーキ(減速装置)として用いられる場合、プロペラシャフト、ドライブシャフト等のような回転軸の回転速度を減速させる。これにより、車両の走行速度が調整される。その際、回転軸の回転速度を減速させる制動力が発生すると同時に、熱が発生する。車両に搭載した発熱装置によって回収された熱は、例えば、車体内を暖めるための暖房機の熱源に利用されたり、コンテナ内を冷却するための冷凍機の熱源に利用されたりする。
 本発明の渦電流式発熱装置は、風力発電設備、水力発電設備等のように流体運動エネルギを利用した発電設備、及びトラック、バス等の車両に有用である。
  1:渦電流式発熱装置、  2:本体、  3:回転軸、
  4:発熱部材、  4A:円筒部材、  4B:連結部材、  4C:貫通穴、  4a:基材、  4b:第1層、  4c:第2層、
  4d:酸化防止皮膜層、  4e:緩衝層、
  5:永久磁石、  6:磁石保持部材、  6a:円筒部材、
  7:軸受、  8:カバー、  9:ポールピース、
  11:入口、  12:出口、  15:隔壁、
  20:羽根車、  21:回転軸、  22:ブレーキ装置、
  23:クラッチ装置、  24:増速装置、  25:軸受、
  31:吸入口、  32:排出口、
  33:吸入側配管、  34:排出側配管、
  35:熱交換器、  36:ポンプ
 

Claims (18)

  1.  非回転部に回転可能に支持された回転軸と、
     前記回転軸に固定された発熱部材と、
     前記発熱部材に隙間を空けて対向し、互いに隣接するもの同士で磁極の配置が交互に異なる複数の永久磁石と、
     前記永久磁石を保持し、前記非回転部に固定された磁石保持部材と、
     前記発熱部材に生じた熱を回収する熱回収機構と、を備えた、渦電流式発熱装置。
  2.  請求項1に記載の渦電流式発熱装置であって、
     前記熱回収機構は、
     前記非回転部に固定されて前記発熱部材を包囲する密閉容器であって、前記発熱部材と前記永久磁石との前記隙間に非磁性の隔壁を有する密閉容器と、
     前記密閉容器の内部空間に繋がる入口及び出口にそれぞれ接続された配管と、
     前記各配管に接続された蓄熱装置と、
     前記密閉容器、前記配管、及び前記蓄熱装置を循環する熱媒体と、を含む、渦電流式発熱装置。
  3.  請求項2に記載の渦電流式発熱装置であって、
     前記永久磁石と前記隔壁との間に断熱材が充填されるか、又は前記永久磁石と前記隔壁との間が真空状態にされた、渦電流式発熱装置。
  4.  請求項1~3のいずれか1項に記載の渦電流式発熱装置であって、
     前記永久磁石を冷却する冷却機構が設けられた、渦電流式発熱装置。
  5.  請求項1~4のいずれか1項に記載の渦電流式発熱装置であって、
     前記発熱部材が円筒状であり、
     前記永久磁石は、前記発熱部材の外周面に対向して円周方向にわたり配列され、磁極の配置が径方向であって、円周方向に隣接するもの同士で磁極の配置が交互に異なる、渦電流式発熱装置。
  6.  請求項5に記載の渦電流式発熱装置であって、
     前記磁石保持部材は、内周面に前記永久磁石を保持する円筒部材を含み、
     前記円筒部材は強磁性体である、渦電流式発熱装置。
  7.  請求項1~4のいずれか1項に記載の渦電流式発熱装置であって、
     前記発熱部材が円筒状であり、
     前記永久磁石は、前記発熱部材の外周面に対向して円周方向にわたり配列され、磁極の配置が円周方向であって、円周方向に隣接するもの同士で磁極の配置が交互に異なる、渦電流式発熱装置。
  8.  請求項7に記載の渦電流式発熱装置であって、
     前記磁石保持部材は、内周面に前記永久磁石を保持する円筒部材を含み、
     前記円筒部材は非磁性体であり、円周方向で隣接する前記永久磁石の間にポールピースが設けられる、渦電流式発熱装置。
  9.  請求項1~4のいずれか1項に記載の渦電流式発熱装置であって、
     前記発熱部材が円筒状であり、
     前記永久磁石は、前記発熱部材の外周面に対向して軸方向にわたり配列され、磁極の配置が軸方向であって、軸方向に隣接するもの同士で磁極の配置が交互に異なる、渦電流式発熱装置。
  10.  請求項9に記載の渦電流式発熱装置であって、
     前記磁石保持部材は、内周面に前記永久磁石を保持する円筒部材を含み、
     前記円筒部材は非磁性体であり、軸方向で隣接する前記永久磁石の間及び軸方向にわたる前記永久磁石の配列の両端にポールピースが設けられる、渦電流式発熱装置。
  11.  請求項1~4のいずれか1項に記載の渦電流式発熱装置であって、
     前記発熱部材が円板状であり、
     前記永久磁石は、前記発熱部材の主面に対向して円周方向にわたり配列され、磁極の配置が軸方向であって、円周方向に隣接するもの同士で磁極の配置が交互に異なる、渦電流式発熱装置。
  12.  請求項11に記載の渦電流式発熱装置であって、
     前記磁石保持部材は、前記発熱部材の前記主面と対向する面に前記永久磁石を保持する円板部材を含み、
     前記円板部材は強磁性体である、渦電流式発熱装置。
  13.  請求項1~4のいずれか1項に記載の渦電流式発熱装置であって、
     前記発熱部材が円板状であり、
     前記永久磁石は、前記発熱部材の主面に対向して円周方向にわたり配列され、磁極の配置が円周方向であって、円周方向に隣接するもの同士で磁極の配置が交互に異なる、渦電流式発熱装置。
  14.  請求項13に記載の渦電流式発熱装置であって、
     前記磁石保持部材は、前記発熱部材の前記主面と対向する面に前記永久磁石を保持する円板部材を含み、
     前記円板部材は非磁性体であり、円周方向で隣接する前記永久磁石の間にポールピースが設けられる、渦電流式発熱装置。
  15.  請求項1~4のいずれか1項に記載の渦電流式発熱装置であって、
     前記発熱部材が円板状であり、
     前記永久磁石は、前記発熱部材の主面に対向して径方向にわたり配列され、磁極の配置が径方向であって、径方向に隣接するもの同士で磁極の配置が交互に異なる、渦電流式発熱装置。
  16.  請求項15に記載の渦電流式発熱装置であって、
     前記磁石保持部材は、前記発熱部材の前記主面と対向する面に前記永久磁石を保持する円板部材を含み、
     前記円板部材は非磁性体であり、径方向で隣接する前記永久磁石の間及び径方向にわたる前記永久磁石の配列の両端にポールピースが設けられる、渦電流式発熱装置。
  17.  請求項1~16のいずれか1項に記載の渦電流式発熱装置であって、
     前記発熱部材は1種類以上の導電性磁性材料からなる、渦電流式発熱装置。
  18.  請求項1~16のいずれか1項に記載の渦電流式発熱装置であって、
     前記発熱部材は少なくとも導電性強磁性材料と導電性非磁性材料からなり、導電性非磁性材料が前記永久磁石に近接している、渦電流式発熱装置。
PCT/JP2015/005560 2014-11-06 2015-11-05 渦電流式発熱装置 WO2016072095A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/522,305 US10667334B2 (en) 2014-11-06 2015-11-05 Eddy current heat generating apparatus
JP2016557459A JP6432605B2 (ja) 2014-11-06 2015-11-05 渦電流式発熱装置
CN201580059880.2A CN107148725B (zh) 2014-11-06 2015-11-05 涡流式发热装置
CN202010048331.8A CN111162654B (zh) 2014-11-06 2015-11-05 涡流式发热装置
EP15856320.5A EP3217521B1 (en) 2014-11-06 2015-11-05 Eddy current type heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014226203 2014-11-06
JP2014-226203 2014-11-06

Publications (1)

Publication Number Publication Date
WO2016072095A1 true WO2016072095A1 (ja) 2016-05-12

Family

ID=55908835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005560 WO2016072095A1 (ja) 2014-11-06 2015-11-05 渦電流式発熱装置

Country Status (5)

Country Link
US (1) US10667334B2 (ja)
EP (1) EP3217521B1 (ja)
JP (2) JP6432605B2 (ja)
CN (2) CN107148725B (ja)
WO (1) WO2016072095A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955404A (zh) * 2017-03-27 2017-07-18 烟台市莱阳中心医院 一种便携式麻醉机
CN108288907A (zh) * 2017-01-10 2018-07-17 李启飞 水平轴极大负荷可调风热器
CN108288908A (zh) * 2017-01-10 2018-07-17 李启飞 永磁灶

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107251387B (zh) * 2015-02-24 2020-06-16 日本制铁株式会社 涡流式发热装置
CN108313322B (zh) * 2017-12-22 2021-04-09 清华大学天津高端装备研究院 一体化构造液电复合制动航母阻拦机及阻拦系统
KR102002467B1 (ko) * 2018-11-14 2019-07-23 김태진 유체 압력 변환 과정에 영구자석 구조를 장착한 냉난방 하이브리드 재생 에너지 시스템
US11641150B2 (en) * 2021-02-25 2023-05-02 O Chan KWON Smart generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155266A (ja) * 1996-11-22 1998-06-09 Sumitomo Metal Ind Ltd 渦電流式減速装置用ローター
JP2000058239A (ja) * 1998-06-01 2000-02-25 Usui Internatl Ind Co Ltd マグネット式ヒ―タ―
JP2000231982A (ja) * 1998-12-07 2000-08-22 Usui Internatl Ind Co Ltd 流体の加熱圧送装置
JP2000358354A (ja) * 1999-06-10 2000-12-26 Isuzu Motors Ltd 渦電流式減速装置
JP2010213412A (ja) * 2009-03-09 2010-09-24 Honda Motor Co Ltd 回転電機
JP2011234433A (ja) * 2010-04-23 2011-11-17 Ihi Corp モータの冷却構造
JP2014039361A (ja) * 2012-08-13 2014-02-27 Nippon Steel & Sumitomo Metal 渦電流式減速装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131875A (en) 1981-02-09 1982-08-14 Hitachi Ltd Energy converting device
JPH04112485A (ja) 1990-08-31 1992-04-14 Berumateitsuku:Kk 磁気利用の導体加熱方法並びにその装置
AU2065195A (en) * 1995-03-17 1996-10-08 Enviro Ec Ag Heating device for heating a solid or liquid medium
US5914065A (en) * 1996-03-18 1999-06-22 Alavi; Kamal Apparatus and method for heating a fluid by induction heating
ITMI20010835A1 (it) 2001-04-19 2002-10-19 Paolo Arnaldo Rosastro Dispositivo per la trasformazione di energia magnetica in energia termica particolarmente per operare il riscaldamento di materiale allo sta
US7339144B2 (en) * 2001-07-24 2008-03-04 Magtec Llc Magnetic heat generation
US7420144B2 (en) 2002-07-23 2008-09-02 Magtec Llc Controlled torque magnetic heat generation
JP2006287014A (ja) 2005-04-01 2006-10-19 Canon Inc 位置決め装置およびリニアモータ
FR2943766B1 (fr) * 2009-03-31 2012-03-30 R E M Groupe de production rapide d'eau chaude ou de vapeur.
JP2012104223A (ja) * 2009-04-04 2012-05-31 Crew Kenkyusho Co Ltd 永久磁石式渦電流加熱装置
JP5592097B2 (ja) 2009-10-23 2014-09-17 株式会社日本エコソリューションズ 風力発電装置
US8993942B2 (en) * 2010-10-11 2015-03-31 The Timken Company Apparatus for induction hardening
JP2012160369A (ja) * 2011-02-01 2012-08-23 Kiyoshi Aizu 磁石回転型発熱装置
PL2820917T3 (pl) * 2012-03-01 2016-12-30 Urządzenie do indukcyjnego nagrzewania kęsa
US10233094B2 (en) * 2013-12-06 2019-03-19 Arthur Francisco Hurtado System and method for distillation using a condensing probe and recycled heat

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155266A (ja) * 1996-11-22 1998-06-09 Sumitomo Metal Ind Ltd 渦電流式減速装置用ローター
JP2000058239A (ja) * 1998-06-01 2000-02-25 Usui Internatl Ind Co Ltd マグネット式ヒ―タ―
JP2000231982A (ja) * 1998-12-07 2000-08-22 Usui Internatl Ind Co Ltd 流体の加熱圧送装置
JP2000358354A (ja) * 1999-06-10 2000-12-26 Isuzu Motors Ltd 渦電流式減速装置
JP2010213412A (ja) * 2009-03-09 2010-09-24 Honda Motor Co Ltd 回転電機
JP2011234433A (ja) * 2010-04-23 2011-11-17 Ihi Corp モータの冷却構造
JP2014039361A (ja) * 2012-08-13 2014-02-27 Nippon Steel & Sumitomo Metal 渦電流式減速装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3217521A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288907A (zh) * 2017-01-10 2018-07-17 李启飞 水平轴极大负荷可调风热器
CN108288908A (zh) * 2017-01-10 2018-07-17 李启飞 永磁灶
CN106955404A (zh) * 2017-03-27 2017-07-18 烟台市莱阳中心医院 一种便携式麻醉机

Also Published As

Publication number Publication date
US10667334B2 (en) 2020-05-26
CN107148725A (zh) 2017-09-08
EP3217521A4 (en) 2018-07-04
JP2018190735A (ja) 2018-11-29
EP3217521B1 (en) 2021-08-11
JPWO2016072095A1 (ja) 2017-08-31
CN111162654A (zh) 2020-05-15
US20170339753A1 (en) 2017-11-23
CN111162654B (zh) 2022-11-15
JP6432605B2 (ja) 2018-12-05
CN107148725B (zh) 2020-01-07
JP6766847B2 (ja) 2020-10-14
EP3217521A1 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6432605B2 (ja) 渦電流式発熱装置
JP6572905B2 (ja) 渦電流式発熱装置
JP6652122B2 (ja) 渦電流式発熱装置
JP5673899B2 (ja) 渦電流式減速装置
JP5757368B2 (ja) 流体式減速装置
JP6380148B2 (ja) 渦電流式発熱装置
JP6485291B2 (ja) 渦電流式発熱装置
JP6651880B2 (ja) 渦電流式発熱装置
JP6468126B2 (ja) 渦電流式発熱装置
JP6380147B2 (ja) 渦電流式発熱装置
JP6375980B2 (ja) 渦電流式発熱装置
JP6631039B2 (ja) 渦電流式発熱装置
JP6372385B2 (ja) 渦電流式発熱装置
JP6544063B2 (ja) 渦電流式発熱装置
JP6672839B2 (ja) 渦電流式発熱装置
JP2017122547A (ja) 渦電流式発熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557459

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015856320

Country of ref document: EP