WO2016068555A1 - 탄화규소 잉곳의 열처리 방법 - Google Patents

탄화규소 잉곳의 열처리 방법 Download PDF

Info

Publication number
WO2016068555A1
WO2016068555A1 PCT/KR2015/011307 KR2015011307W WO2016068555A1 WO 2016068555 A1 WO2016068555 A1 WO 2016068555A1 KR 2015011307 W KR2015011307 W KR 2015011307W WO 2016068555 A1 WO2016068555 A1 WO 2016068555A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
heat treatment
carbide ingot
temperature
crucible
Prior art date
Application number
PCT/KR2015/011307
Other languages
English (en)
French (fr)
Inventor
전승안
정창원
이재석
송문호
Original Assignee
오씨아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150043599A external-priority patent/KR101692142B1/ko
Application filed by 오씨아이 주식회사 filed Critical 오씨아이 주식회사
Publication of WO2016068555A1 publication Critical patent/WO2016068555A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to a heat treatment method of silicon carbide ingot, in particular to improve the crystal quality of the grown silicon carbide ingot, in order to prevent cracking during the post-processing, in the method of heat-treating the silicon carbide ingot before processing into wafer It is about.
  • Such next-generation semiconductor device materials include SiC, GaN, AlN, and ZnO.
  • SiC silicon carbide
  • Silicon carbide has secured a variety of single crystal growth technologies to date, and sublimation is most commonly used at present.
  • Sublimation is a method of growing crystals by sublimating silicon carbide powder or porous silicon carbide sintered body at high temperature to condense silicon carbide on seed crystals located in a relatively low temperature region. There is an advantage.
  • the sublimation method has a problem that it is difficult to ensure reproducibility because there are many factors affecting the growth rate and quality control of the crystal.
  • the crystal growth pattern is affected by many factors such as purity of the material used, the geometry of the crucible, the quality of seed crystals and seed crystals, temperature gradients above and below the crucible, and atmospheric pressure in the reaction tube. It is difficult to secure reproducibility due to change, and thus there is a problem that the quality of the silicon carbide ingot produced is uneven.
  • Japanese Laid-Open Patent Publication No. 2002-274995 discloses that by reducing the crucible temperature while lowering the atmospheric pressure during crystal growth of silicon carbide, the stress inside the ingot is relieved and the crystal quality is improved. Is disclosed.
  • An object of the present invention is to solve the above problems, in particular to improve the crystal quality of the grown silicon carbide ingot or to prevent the cracks that may occur during processing, heat treatment the silicon carbide ingot before processing into wafers To provide a way.
  • the present invention comprises the steps of wrapping the silicon carbide ingot with a heat insulating material; Charging a silicon carbide ingot wrapped with the insulation to a crucible; And controlling the temperature inside the crucible to heat-treat the silicon carbide ingot wrapped with the heat insulator, wherein the heat-treatment is heat-treated in the order of temperature increase, temperature retention, and cooling, but the average temperature increase rate is higher than the average cooling rate.
  • the heat treatment step when the temperature of the center portion of the silicon carbide ingot t1 and the temperature of the surface portion is t2,
  • the crystal quality is improved by heat-treating the silicon carbide ingot itself after the crystal growth is completed, and there is an effect of preventing cracks that may occur during processing of the silicon carbide ingot after the crystal growth is completed into a wafer.
  • the silicon carbide crystal growth process does not require a separate process for improving the crystal quality, so the reproducibility is excellent and the heat treatment is evenly distributed throughout the silicon carbide crystal.
  • Existing thermal stress can be effectively resolved, so that the phenomenon of cracking during the grinding process for the ingot after the heat treatment process or the like can be greatly reduced.
  • the heat treatment method of the silicon carbide ingot according to the present invention comprises the steps of: wrapping the silicon carbide ingot with a heat insulating material; Charging a silicon carbide ingot wrapped with the insulation to a crucible; And controlling the temperature inside the crucible to heat-treat the silicon carbide ingot wrapped with the insulation.
  • the heat treatment step is heat treatment in the order of temperature rising, temperature maintenance, cooling, the average temperature increase rate is greater than the average cooling rate.
  • the silicon carbide ingot means silicon carbide ingot in a state capable of processing into a wafer, in which crystal growth is completed and cooled to room temperature.
  • Such silicon carbide ingots may be manufactured by any method as well as the sublimation method described in the background art, as well as any method capable of growing silicon carbide crystals to have a diameter and volume in a state capable of being processed into a wafer.
  • the heat insulator is used for the purpose of uniform heat treatment throughout the center and the surface portion of the silicon carbide ingot when the heat treatment for the silicon carbide ingot, to solve the thermal stress during heat treatment to improve the crystal quality and prevent cracking Play a role.
  • the heat treatment after wrapping the silicon carbide ingot with a heat insulator so that the difference (absolute value) of the center temperature and the surface temperature of the silicon carbide ingot in the heat treatment step to be described later to be 10 °C or less, it may occur during heat treatment
  • the crack is prevented because the internal thermal stress is eliminated.
  • the difference (absolute value) between the central temperature and the surface temperature of the silicon carbide ingot may be 1 ° C. or less.
  • the heat treatment step includes all processes of temperature rising, maintenance, and cooling.
  • the center of the silicon carbide ingot means an area within a radius of 10 mm from the center of the ingot toward the periphery
  • the periphery means an area within a radius of 10 mm from the outermost surface of the ingot to the center.
  • it may be a carbon felt (soft felt or rigid felt) having a thermal conductivity of 1 to 4 W / mK at 2000 to 2500 ° C., and the diameter, height, The diameter, height, and shape of the heat insulating material are set in accordance with the shape and the like.
  • the insulation may have a density of 0.05 to 0.10 g / cm 3 , and the thickness of the insulation may be between 0.5 and 1 mm.
  • the insulation may be used in two or more layers, and the thickness of the insulation does not exceed 50 mm in total.
  • the diameter of the silicon carbide ingot may be 50 to 200 mm, in particular 80 to 110 mm, thickness 10 to 50 mm.
  • the crucible is a material containing graphite, it should be a material that can withstand a high temperature of 2500 °C or more in an inert gas atmosphere.
  • the shape of the crucible is not particularly limited, but may be cylindrical or hexahedral for effective heat treatment of the silicon carbide ingot.
  • a separate bulky crucible may be provided, and a crucible containing the silicon carbide ingot may be put therein and heat treated with a so-called double crucible.
  • the heat treatment process temperature in the present invention is very high temperature, it proceeds in an inert gas atmosphere using a vacuum furnace.
  • the inert gas that can be used may be argon, nitrogen, and the like, and the pressure may be between 0.9 and 1.1 atm.
  • the heat treatment step is a heat treatment in the order of temperature rising, temperature maintenance, cooling, the average temperature increase rate is greater than the average cooling rate.
  • the method of raising the temperature inside the crucible in the present invention is not particularly limited, but may be to increase the temperature inside the crucible by providing a heating element outside the crucible.
  • the heating element can be freely designed by those skilled in the art so that sufficient heat can be transferred to the inside of the crucible as a graphite material.
  • the temperature after temperature rising in the said crucible is 2000-2500 degreeC, and a temperature increase rate is 0.5-10 / min.
  • the temperature and the temperature increase rate after the temperature increase may vary depending on the diameter and height of the silicon carbide ingot.
  • the temperature is raised after the temperature is 2000 to 2300 ° C., and the temperature is 1 to 10 / min, and the temperature is increased for a silicon carbide ingot having a diameter of 100 to 110 mm (4 inches).
  • temperature increase rate is 1 ⁇ 6 / min, diameter 150 ⁇ 160mm (6 inch) silicon carbide ingot, after the temperature rises 2300 ⁇ 2400 °C, temperature rise rate is 0.5 ⁇ 4 / min, Can be.
  • the temperature is lower than the minimum temperature after the temperature increase may be necessary heat treatment for a long time due to the crystal heat treatment effect, if the heat treatment time is insufficient heat treatment is not enough may cause cracks during ingot processing.
  • crystal damage of the silicon carbide ingot may occur during the heat treatment.
  • the surface may be severely carbonized, making it impossible to fabricate a usable single crystal wafer.
  • the holding time after the temperature increase inside the crucible is preferably 10 to 72 hours.
  • the temperature holding time is less than 10 hours, there is a problem that the heat treatment is not enough to cause cracks during ingot processing, and if the temperature holding time exceeds 72 hours, damage to the crystal surface becomes severe and unnecessary costs increase.
  • the cooling rate in the said crucible is 0.5-2 / min.
  • cooling rate is less than 0.5 / min does not have a significant effect on the heat treatment effect, but the process time is long, unnecessarily increases the cost, if it exceeds 2 / min, cracks in the silicon carbide ingot due to thermal shock during cooling May occur.
  • a silicon carbide ingot of 80 mm in diameter and 30 mm in height where crystal growth is completed is completely wrapped with a 30 mm thick soft graphite felt and placed inside the crucible, and the crucible is charged into a vacuum furnace.
  • the air inside the vacuum furnace is evacuated using a vacuum pump and filled with argon gas.
  • the temperature was raised by 2 ° C. per minute for about 19 hours and heated until the temperature inside the crucible was 2300 ° C.
  • the temperature was lowered from 2300 ° C. to room temperature for 1 hour per minute to complete the heat treatment of the silicon carbide ingot.
  • a silicon carbide ingot having a diameter of 105 mm and a height of 30 mm in which crystal growth is completed is completely wrapped in a soft graphite felt having a thickness of 30 mm and placed in the crucible, and the crucible is charged into a vacuum furnace.
  • the air inside the vacuum furnace is evacuated using a vacuum pump and filled with argon gas.
  • the temperature was raised by 2 ° C. per minute for about 19 hours and heated until the temperature inside the crucible was 2300 ° C.
  • the temperature was lowered from 2300 ° C. to room temperature for 1 hour per minute to complete the heat treatment of the silicon carbide ingot.
  • a silicon carbide ingot of 80 mm in diameter and 30 mm in height where crystal growth was completed was charged into a graphite crucible.
  • the air inside the vacuum furnace is evacuated using a vacuum pump and filled with argon gas.
  • the temperature was raised by 2 ° C. per minute for about 19 hours and heated until the temperature inside the crucible was 2300 ° C.
  • the temperature was lowered from 2300 ° C. to room temperature for 1 hour per minute to complete the heat treatment of the silicon carbide ingot.
  • a silicon carbide ingot having a diameter of 80 mm and a height of 30 mm was produced by the sublimation method, and no additional heat treatment was performed.
  • the temperature of the center portion and the surface portion of the silicon carbide ingot was calculated using computer simulation.
  • the silicon carbide ingot manufactured by the said Example and the comparative example it processed into the cylindrical shape using the outer diameter processing equipment.
  • the heat treatment is a very even temperature distribution inside the crystal throughout the silicon carbide crystals to effectively solve the thermal stress existing inside, greatly reducing the phenomenon of cracking during the grinding process for the heat treatment or subsequent ingots I could make it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명은 탄화규소 잉곳의 열처리 방법에 관한 것으로, 특히 성장이 완료된 탄화규소 잉곳의 열응력에 의한 크랙 방지를 위하여, 웨이퍼로 가공하기 전에 탄화규소 잉곳을 열처리하여 주는 방법에 관한 것이다.

Description

탄화규소 잉곳의 열처리 방법
본 발명은 탄화규소 잉곳의 열처리 방법에 관한 것으로, 특히 성장이 완료된 탄화규소 잉곳의 결정품질 향상, 후가공 과정에서 발생하는 크랙을 방지하기 위하여, 웨이퍼로 가공하기 전에 탄화규소 잉곳을 열처리하여 주는 방법에 관한 것이다.
실리콘 반도체가 갖는 열적 특성의 한계를 해결하기 위해 광역 에너지 금지대역을 갖는 새로운 반도체 재료에 대한 연구가 활발히 진행되고 있다.
이러한 차세대 반도체 소자 재료로서 SiC, GaN, AlN, ZnO 등이 있는데, 이중에서도 잉곳 성장 기술이 확보되고, 내열특성, 열전도특성, 내전압특성이 모두 우수한 탄화규소(SiC) 반도체가 주목 받고 있다.
탄화규소는 현재까지 다양한 단결정 성장기술이 확보되어 있는데, 특히 현재는 승화법(sublimation)이 가장 일반적으로 사용되고 있다.
승화법은 탄화규소 분말이나 다공성 탄화규소 소결체를 고온에서 승화시켜 상대적으로 저온 영역에 위치한 종자정(seed crystal) 위에 탄화규소를 응축하게 함으로써 결정을 성장시키는 방법으로 직경이 큰 결정을 제조할 수 있는 장점이 있다.
그러나, 승화법은 결정의 성장 속도 및 결정의 질 제어에 많은 영향 인자들이 존재하여 재현성 확보가 어렵다는 문제가 있다. 즉 사용재료의 순도, 도가니의 기하학적 구조, 종자정의 질 및 종자정 부착상태, 도가니 상/하부의 온도구배, 반응관 내 분위기 압력 등, 현재까지도 잘 알려지지 않은 수많은 인자들에 의해 결정성장의 양상이 변화하여 재현성 확보가 어려우며, 따라서 이로 인하여 제조된 탄화규소 잉곳의 품질이 고르지 않다는 문제가 존재한다.
그럼에도 불구하고 승화법은 탄화규소의 결정성장을 가장 효율적으로 진행할 수 있기 때문에, 고품질 탄화규소 잉곳을 얻기 위해 다양한 연구가 이루어지고 있다.
본 발명과 관련하여, 일본공개특허 제2002-274995호(2002.09.25 공개)에는 탄화규소의 결정성장시 분위기 압력을 저하시키면서 도가니 온도를 강하함으로써 잉곳 내부의 응력을 완화하고 결정품질을 향상시키는 내용이 개시되어 있다.
본 발명의 목적은 상기와 같은 문제를 해결하고, 특히 성장이 완료된 탄화규소 잉곳의 결정 품질을 향상시키거나 가공 중에 발생할 수 있는 크랙을 방지하기 위해, 웨이퍼로 가공하기 전에 탄화규소 잉곳을 열처리하여 주는 방법을 제공하는 것이다.
상기와 같은 목적을 위하여, 본 발명은 탄화규소 잉곳을 단열재로 감싸는 단계; 상기 단열재로 감싼 탄화규소 잉곳을 도가니에 장입하는 단계; 및 상기 도가니 내부 온도를 조절하여 상기 단열재로 감싼 탄화규소 잉곳을 열처리하는 단계;를 포함하며, 상기 열처리 단계는 승온, 온도 유지, 냉각의 순서로 열처리하되, 평균적인 승온 속도가 평균적인 냉각 속도보다 크며, 상기 열처리 단계에서 탄화규소 잉곳의 중심부의 온도를 t1, 표면부의 온도를 t2라고 할 때, |t1-t2|≤ 10℃인 탄화규소 잉곳의 열처리 방법을 제공한다.
본 발명의 방법에 의하면, 결정성장이 완료된 탄화규소 잉곳 자체에 대하여 열처리하여 줌으로써 결정품질이 향상되고, 결정성장이 완료된 탄화규소 잉곳을 웨이퍼로 가공하는 도중에 발생할 수 있는 크랙을 방지하는 효과가 있다.
보다 구체적으로는, 제어가 어렵고 재현성이 떨어지는 탄화규소 결정성장 과정에서 결정품질을 향상시키기 위한 별도의 공정을 가하는 것이 아니기 때문에 반복재현성이 우수하고, 열처리가 탄화규소 결정 전반에 걸쳐 고르게 이루어지므로 내부에 존재하는 열응력이 효과적으로 해소되어, 열처리 과정 또는 그 이후의 잉곳에 대한 그라인딩 공정시 크랙이 발생되는 현상을 크게 감소시킬 수 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하는 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것인바, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
이하, 본 발명에 따른 탄화규소 잉곳의 열처리 방법에 관하여 상세히 설명하기로 한다.
본 발명에 따른 탄화규소 잉곳의 열처리 방법은, 탄화규소 잉곳을 단열재로 감싸는 단계; 상기 단열재로 감싼 탄화규소 잉곳을 도가니에 장입하는 단계; 및 상기 도가니 내부 온도를 조절하여 상기 단열재로 감싼 탄화규소 잉곳을 열처리하는 단계;를 포함한다.
여기서, 상기 열처리 단계는 승온, 온도 유지, 냉각의 순서로 열처리하되, 평균적인 승온 속도가 평균적인 냉각 속도보다 크다.
또한, 상기 열처리 단계에서 탄화규소 잉곳의 중심부의 온도를 t1, 표면부의 온도를 t2라고 할 때, |t1-t2|≤ 10℃인 것을 특징으로 한다.
먼저, 탄화규소 잉곳을 단열재로 감싸는 단계에 대하여 설명한다.
본 발명에서 상기 탄화규소 잉곳은 결정성장이 완료되어 상온으로 식혀진, 웨이퍼로 가공 가능한 상태의 탄화규소 주괴를 의미한다.
이러한 탄화규소 잉곳은 배경기술에서 설명한 승화법 뿐만 아니라, 웨이퍼로 가공 가능한 상태의 직경과 부피를 갖도록 탄화규소 결정을 성장시킬 수 있는 방법이라면 어느 방법에 의하여도 제조되어도 무관하다.
상기 단열재는 탄화규소 잉곳에 대하여 열처리하여 줄 때, 탄화규소 잉곳의 중심부와 표면부 전반에 걸쳐 고른 열처리를 위한 목적으로 사용되는 것으로서, 열처리시 열응력을 해소하여 결정 품질을 향상시키고 크랙을 방지하는 역할을 한다.
즉, 단열재로 탄화규소 잉곳을 감싸준(wrapping) 후 열처리 함으로써, 이후 설명할 열처리 단계에서 탄화규소 잉곳의 중심부 온도와 표면부 온도의 차이(절대값)가 10℃ 이하가 되도록 하여, 열처리시 발생할 수 있는 내부의 열응력을 해소하기 때문에 크랙이 방지되는 효과가 있다.
더욱 바람직하게는 탄화규소 잉곳의 중심부 온도와 표면부 온도의 차이(절대값)가 1℃ 이하일 수 있다.
이 때, 열처리 단계는 승온, 유지, 냉각의 모든 과정을 포함한다.
여기에서, 탄화규소 잉곳의 중심부는 잉곳의 중심에서 주변부 방향으로 반경 10mm이내의 영역을 의미하며, 주변부는 잉곳의 최외면에서 중심부 방향으로 반경 10mm이내의 영역을 의미한다.
상기 단열재는 본 발명의 열처리 온도 범위, 즉 2000~2500℃에서 열전도도가 1~10W/mK인 재료를 사용하는 것이 바람직하다.
구체적으로, 2000~2500℃에서 열전도도가 1~4W/mK인 탄소 펠트(소프트 펠트 또는 리지드 펠트)일 수 있으며, 열처리시 탄화규소 잉곳을 감싸주어야 하므로, 열처리 대상인 탄화규소 잉곳의 직경, 높이, 형상 등에 따라 단열재의 직경과 높이, 형상를 맞추어 설정한다.
상기 단열재의 밀도는 0.05~0.10g/㎝3, 상기 단열재의 두께는 0.5~1mm 사이일 수 있다.
이 때, 탄화규소 잉곳의 고른 열분포를 위하여 단열재는 2겹 이상으로 겹쳐서 사용할 수 있으며, 단열재의 두께는 총 50mm를 넘지 않는다.
상기 탄화규소 잉곳의 직경은 50~200mm, 특히 80~110mm, 두께 10~50mm일 수 있다.
다음으로, 단열재로 감싼 탄화규소 잉곳을 도가니에 장입하는 단계에 대하여 설명한다.
본 발명에서 상기 도가니는 흑연을 포함하는 재질로서, 불활성 기체 분위기에서 2500℃ 이상의 고온에서 견딜 수 있는 물질이어야 한다.
도가니의 형상은 특별히 제한되는 것은 아니나, 탄화규소 잉곳의 효과적인 열처리를 위해 원기둥 형상 또는 육면체 형상일 수 있다.
또한, 잉곳의 온도 분포를 보다 균일하게 하기 위하여 부피가 더 큰 별도의 도가니를 마련하고, 그 내부에 상기 탄화규소 잉곳을 장입한 도가니를 넣어, 이른바 이중 도가니로 열처리를 할 수도 있다.
다음으로, 도가니 내부 온도를 조절하여 상기 단열재로 감싼 탄화규소 잉곳을 열처리하는 단계에 대하여 설명한다.
본 발명에서 열처리 공정온도는 매우 고온이기 때문에, 진공로를 이용하여 불활성 기체 분위기에서 진행한다.
여기서, 사용할 수 있는 불활성 기체는 아르곤, 질소 등일 수 있으며, 압력은 0.9~1.1 기압 사이일 수 있다.
상기 열처리 단계는 승온, 온도 유지, 냉각의 순서로 열처리하되, 평균적인 승온 속도가 평균적인 냉각 속도보다 크다.
먼저, 본 발명에서 상기 도가니 내부 온도를 승온시키는 방법은, 특별히 제한되지 않지만, 도가니 외부에 발열체를 마련하여 도가니 내부 온도를 승온시키는 것일 수 있다.
이 때, 발열체는 흑연재질로서 도가니 내부로 충분한 열이 잘 전달될 수 있도록 당업자에 의해 자유롭게 설계 가능하다.
상기 도가니 내부의 승온 후 온도는 2000~2500℃, 승온 속도는 0.5~10/min인 것이 바람직하다.
구체적으로 승온 후 온도와 승온 속도는 탄화규소 잉곳의 직경, 높이에 따라 다를 수 있다.
즉, 직경 75~85mm(3인치)인 탄화규소 잉곳의 경우, 승온 후 온도는 2000~2300℃, 승온 속도는 1~10/min, 직경 100~110mm(4인치)인 탄화규소 잉곳의 경우 승온 후 온도는 2200~2300℃, 승온 속도는 1~6/min, 직경 150~160mm(6인치)인 탄화규소 잉곳의 경우, 승온 후 온도는 2300~2400℃, 승온 속도는 0.5~4/min, 일 수 있다.
상기 승온 후 온도가 최소 온도 미만인 경우에는 결정열처리 효과가 떨어져 장시간 열처리 필요할 수 있으며, 열처리 시간이 부족할 경우 열처리가 충분히 되지 않아 잉곳 가공 중 크랙이 발생할 수 있다.
최대 온도를 초과하는 경우에는 열처리 도중 탄화규소 잉곳의 결정 손상이 발생할 수 있다.
특히 표면이 심하게 탄화되어 사용 가능한 단결정 웨이퍼를 제작하지 못할 수도 있다.
또한, 승온 속도가 최소값 미만인 경우에는 열처리 효과에는 큰 영향을 주지 않으나 공정 시간이 길어져 불필요하게 비용이 증가할 수 있다.
승온 속도가 최대값을 초과하는 경우에는 승온 도중 열충격에 의하여 탄화규소 잉곳에 크랙이 발생할 수 있다.
상기 도가니 내부의 승온 후 유지 시간은 10~72시간인 것이 바람직하다.
온도 유지 시간이 10시간 미만인 경우에는 열처리가 충분히 되지 않아 잉곳 가공 중 크랙이 발생하는 문제가 있고, 72시간을 초과하는 경우에는 결정표면의 손상이 심해지고, 불필요하게 비용이 증가하는 문제가 있다.
상기 도가니 내부의 냉각 속도는 0.5~2/min인 것이 바람직하다.
냉각 속도가 0.5/min 미만인 경우에는 열처리 효과에는 큰 영향을 주지 않으나 공정 시간이 길어져 불필요하게 비용이 증가하는 문제가 있고, 2/min을 초과하는 경우에는 냉각 도중 열충격에 의하여 탄화규소 잉곳에 크랙이 발생할 수 있다.
실시예
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예 1
결정성장이 완료된 직경 80mm, 높이 30mm의 탄화규소 잉곳을 두께 30mm의 소프트 흑연 펠트로 완전히 감싸 도가니 내부에 넣은 후, 이 도가니를 진공로에 장입한다.
이후 진공 펌프를 이용하여 진공로 내부의 공기를 빼낸 다음 아르곤 가스를 채운다.
이후, 진공로 내의 도가니 주위에 마련된 흑연 발열체를 발열시킴으로써 1분당 2℃씩 약 19시간 동안 승온시켜 도가니 내부 온도가 2300℃가 될 때까지 가열하였다.
약 48시간 동안 2300℃를 유지한 후, 다시 1분당 1씩 약 38시간 동안 2300℃에서 상온까지 온도를 내려 탄화규소 잉곳에 대한 열처리를 완료하였다.
실시예 2
결정성장이 완료된 직경 105mm, 높이 30mm의 탄화규소 잉곳을 두께 30mm의 소프트 흑연 펠트로 완전히 감싸 도가니 내부에 넣은 후, 이 도가니를 진공로에 장입한다.
이후 진공 펌프를 이용하여 진공로 내부의 공기를 빼낸 다음 아르곤 가스를 채운다.
이후, 진공로 내의 도가니 주위에 마련된 흑연 발열체를 발열시킴으로써 1분당 2℃씩 약 19시간 동안 승온시켜 도가니 내부 온도가 2300℃가 될 때까지 가열하였다.
약 48시간 동안 2300℃를 유지한 후, 다시 1분당 1씩 약 38시간 동안 2300℃에서 상온까지 온도를 내려 탄화규소 잉곳에 대한 열처리를 완료하였다.
비교예 1
결정성장이 완료된 직경 80mm, 높이 30mm의 탄화규소 잉곳을 흑연 도가니 내부에 장입하였다.
이후 진공 펌프를 이용하여 진공로 내부의 공기를 빼낸 다음 아르곤 가스를 채운다.
이후, 진공로 내의 도가니 주위에 마련된 흑연 발열체를 발열시킴으로써 1분당 2℃씩 약 19시간 동안 승온시켜 도가니 내부 온도가 2300℃가 될 때까지 가열하였다.
약 48시간 동안 2300℃를 유지한 후, 다시 1분당 1씩 약 38시간 동안 2300℃에서 상온까지 온도를 내려 탄화규소 잉곳에 대한 열처리를 완료하였다.
비교예 2
승화법에 의하여 직경 80mm, 높이 30mm의 탄화규소 잉곳을 제조하고, 별도의 열처리를 하지 않았다.
평가
1. 열처리시 잉곳의 온도
상기 실시예 및 비교예의 열처리 단계에서 탄화규소 잉곳이 균일하게 열처리되는 것인지 확인하기 위하여, 각 실시예 및 비교예의 탄화규소 잉곳의 중심부의 온도(t1) 및 표면부의 온도(t2)를 측정하고, 그 결과를 하기 표 1에 나타내었다.
이 때, 탄화규소 잉곳의 중심부 및 표면부의 온도는 컴퓨터 시뮬레이션을 이용하여 계산하였다.
표 1
중심부 온도(t1) 표면부 온도(t2)
실시예1 2299.1℃ 2299.7℃
실시예2 2299.2℃ 2299.6℃
비교예1 2285.3℃ 2299.4℃
비교예2 - -
2. 잉곳의 깨짐현상 발생여부 실험
상기 실시예 및 비교예에 의해 제조된 탄화규소 잉곳을 웨이퍼 가공하기 위하여 외경 가공 장비를 이용하여 원통 형상으로 가공하였다.
각 조건 별로 10회 동일한 실험을 반복하고 이 때, 탄화규소 잉곳의 깨짐 현상이 발생하는지 관찰하여 그 횟수를 하기 표 2에 기록하였다.
표 2
깨짐 현상 발생 횟수(회)
실시예 1 2/10
실시예 2 3/10
비교예 1 8/10
비교예 2 10/10
상기 결과에서 확인할 수 있듯, 본 발명의 방법에 의하면, 결정성장이 완료된 탄화규소 잉곳 자체에 대하여 열처리하여 줌으로써 잉곳 가공 중 크랙 발생을 크게 줄이는 효과가 있었다.
즉, 열처리가 탄화규소 결정 전반에 걸쳐 결정 내부 온도 분포가 매우 고르게 이루어지므로 내부에 존재하는 열응력이 효과적으로 해소되어, 열처리 과정 또는 그 이후의 잉곳에 대한 그라인딩 공정시 크랙이 발생되는 현상을 크게 감소시킬 수 있었다.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.

Claims (10)

  1. 탄화규소 잉곳을 단열재로 감싸는 단계;
    상기 단열재로 감싼 탄화규소 잉곳을 도가니에 장입하는 단계; 및
    상기 도가니 내부 온도를 조절하여 상기 단열재로 감싼 탄화규소 잉곳을 열처리하는 단계;를 포함하며,
    상기 열처리 단계는 승온, 온도 유지, 냉각의 순서로 열처리하되, 평균적인 승온 속도가 평균적인 냉각 속도보다 크며,
    상기 열처리 단계에서 탄화규소 잉곳의 중심부의 온도를 t1, 표면부의 온도를 t2라고 할 때, |t1-t2|≤ 10℃인 탄화규소 잉곳의 열처리 방법.
  2. 제1항에 있어서,
    상기 단열재는 2000~2500℃에서 열전도도가 1~10W/mK인 것을 특징으로 하는 탄화규소 잉곳의 열처리 방법.
  3. 제1항에 있어서,
    상기 단열재의 밀도는 0.05~0.10g/㎝3인 것을 특징으로 하는 탄화규소 잉곳의 열처리 방법.
  4. 제1항에 있어서,
    상기 탄화규소 잉곳의 직경은 50~200mm인 것을 특징으로 하는 탄화규소 잉곳의 열처리 방법.
  5. 제1항에 있어서,
    상기 탄화규소 잉곳의 직경은 75~110mm인 것을 특징으로 하는 탄화규소 잉곳의 열처리 방법.
  6. 제1항에 있어서,
    상기 열처리 단계에서 사용하는 열처리 장치는 24시간 내 가스노출량이 10Pa 미만인 것을 특징으로 하는 탄화규소 잉곳의 열처리 방법.
  7. 제1항에 있어서,
    상기 도가니 외부에 발열체를 마련하여 도가니 내부 온도를 승온시키는 것을 특징으로 하는 탄화규소 잉곳의 열처리 방법.
  8. 제 1항에 있어서,
    상기 도가니 내부의 승온 후 온도는 2000~2500℃, 승온 속도는 0.5~10℃/min인 것을 특징으로 하는 탄화규소 잉곳의 열처리 방법.
  9. 제 1항에 있어서,
    상기 도가니 내부의 승온 후 유지 시간은 10~72시간인 것을 특징으로 하는 탄화규소 잉곳의 열처리 방법.
  10. 제 1항에 있어서,
    상기 도가니 내부의 냉각 속도는 0.5~2℃/min인 것을 특징으로 하는 탄화규소 잉곳의 열처리 방법.
PCT/KR2015/011307 2014-10-27 2015-10-26 탄화규소 잉곳의 열처리 방법 WO2016068555A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0146138 2014-10-27
KR20140146138 2014-10-27
KR1020150043599A KR101692142B1 (ko) 2014-10-27 2015-03-27 탄화규소 잉곳의 열처리 방법
KR10-2015-0043599 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016068555A1 true WO2016068555A1 (ko) 2016-05-06

Family

ID=55857811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011307 WO2016068555A1 (ko) 2014-10-27 2015-10-26 탄화규소 잉곳의 열처리 방법

Country Status (1)

Country Link
WO (1) WO2016068555A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110595A (ja) * 1995-10-16 1997-04-28 Hitachi Cable Ltd GaAs単結晶インゴットの熱処理方法
JP2005225710A (ja) * 2004-02-12 2005-08-25 Denso Corp SiC単結晶の製造方法およびSiC単結晶の製造装置
JP2010034288A (ja) * 2008-07-29 2010-02-12 Sumco Corp シリコンウェーハの熱処理方法
KR20140055433A (ko) * 2012-10-31 2014-05-09 주식회사 사파이어테크놀로지 사파이어 단결정 열처리 방법 및 장치
KR101409424B1 (ko) * 2012-12-26 2014-06-19 재단법인 포항산업과학연구원 탄화규소 종자정의 결함 저감방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110595A (ja) * 1995-10-16 1997-04-28 Hitachi Cable Ltd GaAs単結晶インゴットの熱処理方法
JP2005225710A (ja) * 2004-02-12 2005-08-25 Denso Corp SiC単結晶の製造方法およびSiC単結晶の製造装置
JP2010034288A (ja) * 2008-07-29 2010-02-12 Sumco Corp シリコンウェーハの熱処理方法
KR20140055433A (ko) * 2012-10-31 2014-05-09 주식회사 사파이어테크놀로지 사파이어 단결정 열처리 방법 및 장치
KR101409424B1 (ko) * 2012-12-26 2014-06-19 재단법인 포항산업과학연구원 탄화규소 종자정의 결함 저감방법

Similar Documents

Publication Publication Date Title
WO2017209376A2 (ko) 탄화규소 단결정 잉곳의 성장장치 및 그 성장방법
WO2014069784A1 (ko) 사파이어 단결정의 열처리 방법 및 장치
WO2011136479A2 (ko) 태양전지용 고 생산성 다결정 실리콘 잉곳 제조 장치
WO2015037831A1 (ko) 냉각속도 제어장치 및 이를 포함하는 잉곳성장장치
CN111074348B (zh) 一种降低晶体内部应力的退火处理方法及装置
EP3666933A1 (en) Large-size high-purity silicon carbide single crystal, substrate, preparation method therefor and preparation device thereof
WO2016163602A1 (ko) 실리콘 단결정 잉곳의 성장 장치 및 방법
WO2016111431A1 (ko) 실리콘 단결정 잉곳 제조 방법 및 그 제조방법에 의해 제조된 실리콘 단결정 잉곳
WO2023167387A1 (ko) 탄화규소 분말의 합성방법
WO2019182306A1 (ko) 하이브리드 코팅법을 이용한 그라파이트 모재의 코팅방법
WO2016068583A1 (ko) 잉곳 제조 장치
WO2015083955A1 (ko) 단결정 성장 장치
EP2516048A2 (en) Heat treatment container for vacuum heat treatment apparatus
WO2016076664A1 (ko) 잉곳 제조 장치
CN110863247A (zh) 一种碳化硅晶体二次退火方法
WO2016068555A1 (ko) 탄화규소 잉곳의 열처리 방법
WO2013062317A1 (en) Apparatus and method for fabricating epi wafer and epi wafer
KR101692142B1 (ko) 탄화규소 잉곳의 열처리 방법
JP5478041B2 (ja) アニール装置、熱処理方法
WO2011083898A1 (en) Insulation device of single crystal growth device and single crystal growth device including the same
WO2015046746A1 (ko) 도가니 및 이를 포함하는 잉곳성장장치
WO2012165898A2 (en) Apparatus and method for manufacturing ingot
TW515117B (en) Method of manufacturing semiconductor wafer
WO2012144872A2 (en) Apparatus and method for fabricating ingot
JP4449307B2 (ja) ウエーハの熱処理方法及び熱処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855985

Country of ref document: EP

Kind code of ref document: A1