WO2016061865A1 - 一种基于电缆传热模型的准动态增容方法 - Google Patents

一种基于电缆传热模型的准动态增容方法 Download PDF

Info

Publication number
WO2016061865A1
WO2016061865A1 PCT/CN2014/091965 CN2014091965W WO2016061865A1 WO 2016061865 A1 WO2016061865 A1 WO 2016061865A1 CN 2014091965 W CN2014091965 W CN 2014091965W WO 2016061865 A1 WO2016061865 A1 WO 2016061865A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
thermal resistance
temperature
bottleneck
pipe
Prior art date
Application number
PCT/CN2014/091965
Other languages
English (en)
French (fr)
Inventor
李红雷
贺林
杨凌辉
胡正勇
祝达康
Original Assignee
国网上海市电力公司
华东电力试验研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网上海市电力公司, 华东电力试验研究院有限公司 filed Critical 国网上海市电力公司
Publication of WO2016061865A1 publication Critical patent/WO2016061865A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the invention relates to the field of electric power, and in particular to a quasi-dynamic compatibilization method based on a cable heat transfer model.
  • the IEC60287, IEC853, and JB/T 10181.3-2000 standards commonly used in cable current-carrying calculations are for steady-state calculations and are not suitable for calculating dynamic loads.
  • the cable current carrying capacity is determined during the design phase. Due to the complexity and uncertainty of the cable heat transfer environment, designers often make the most unfavorable heat dissipation assumptions to obtain a sufficiently safe current value. This value will be used by the dispatch department during the cable life cycle. This causes the cable current carrying capacity to be generally conservative and has a large error, and the power transmission capacity of the cable cannot be fully utilized.
  • the so-called dynamic capacity of the cable that is: a given current, real-time prediction of the time when the cable conductor reaches the specified temperature; or given the overload time, the maximum current of the cable conductor not exceeding the specified temperature is predicted in real time.
  • this method lacks recognized standards and the effect remains to be tested. From the perspective of different laying methods, the dynamic capacity of the cable is relatively less difficult for the tunnel laying method, and the pipe laying method is difficult to achieve accurate dynamic calculation due to the mutual influence of adjacent cables.
  • Some cables in China have installed dynamic capacity-increasing systems, but only use fiber-optic temperature measurement data to prevent external damage and fire; do not dare to operate the cable beyond the design capacity based on dynamic calculation results.
  • the object of the present invention is to provide a quasi-dynamic compatibilization method based on the heat transfer model of the pipe-line cable with advanced method, good real-time performance and remarkable effect in order to overcome the defects of the prior art.
  • a quasi-dynamic compatibilization method based on a cable heat transfer model for cable expansion inside a drain pipe Includes the following steps:
  • T 4 T 4-1 +T 4-2 +T 4-3
  • I is the current carrying capacity
  • R is the conductor AC resistance at the working temperature
  • W d is the dielectric loss
  • ⁇ 1 is the sheath and shielding loss factor
  • ⁇ 2 is the metal armor loss factor
  • T 1 is the conductor and metal protection
  • T 2 is the thermal resistance of the inner liner between the metal sheath and the armor layer
  • T 3 is the thermal resistance of the outer sheath of the cable
  • T 4 is the thermal resistance between the surface of the cable and the surrounding environment
  • ⁇ c For ambient temperature, ⁇ 1 is the cable conductor temperature, T 4-1 is the space thermal resistance between the cable surface and the inner surface of the tube, T 4-2 is the thermal resistance of the tube itself, and T 4-3 is the external thermal resistance of the tube.
  • U, V, and Y are constants, ⁇ m is the temperature of the space medium of the cable and the tube, and D oc is the outer diameter of the cable.
  • D o is the outer diameter of the pipe
  • D d is the inner diameter of the pipe
  • N is the number of loaded cables in the pipe
  • ⁇ e is the thermal resistance coefficient of the soil around the pipe
  • ⁇ c is The thermal resistance coefficient of concrete
  • L g is the buried depth of the pipe
  • l g is the buried depth of the center of the pipe concrete preform
  • r b is the equivalent radius of the pipe concrete preform
  • D pg is the outer diameter of the pipe;
  • the step 22) specifically includes the following steps:
  • ⁇ 1 is the temperature of the conductor surface
  • ⁇ 2 is the temperature in the middle of the insulation
  • ⁇ 3 is the temperature of the surface of the metal sheath
  • ⁇ 4 is the temperature of the surface of the cable
  • ⁇ 5 is the temperature of the inner wall of the tube
  • ⁇ 6 is the guide The temperature of the hole
  • Q 1 is the conductor loss
  • Q 2 is the dielectric loss
  • Q 3 is the metal sheath loss.
  • the soil thermal resistance coefficient corresponding to ⁇ 6 is the soil thermal resistance coefficient ⁇ e .
  • the step 23) specifically includes the following steps:
  • the method is also applicable to the way in which the tunnel is laid.
  • the present invention has the following advantages:
  • the method is advanced, adopts the internationally-used steady-state current-carrying calculation standard, can handle the situation of multiple cables interacting with each other, and is suitable for various laying methods such as piping and tunnels, realizing the dynamic period of 1 day of capacity increase, avoiding dynamics. Complicated factors such as heat capacity in capacity expansion.
  • the real-time performance is good.
  • the recent external thermal resistance T4 can be calculated, and the thermal resistance change can be tracked in real time to solve the problem that the external thermal resistance T4 is difficult to determine.
  • Figure 1 is a flow chart of the method of the present invention.
  • FIG. 2 is a schematic structural view of a bottle neck cable section.
  • a quasi-dynamic compatibilization method based on a cable heat transfer model is used to increase the capacity of the cable inside the pipe, including the following steps:
  • Step 2) specifically includes the following steps:
  • ⁇ 1 is the temperature of the conductor surface
  • ⁇ 2 is the temperature in the middle of the insulation
  • ⁇ 3 is the temperature of the surface of the metal sheath
  • ⁇ 4 is the temperature of the surface of the cable
  • ⁇ 5 is the temperature of the inner wall of the tube
  • ⁇ 6 is the guide The temperature of the hole
  • Q 1 is the conductor loss
  • Q 2 is the dielectric loss
  • Q 3 is the metal sheath loss.
  • the soil thermal resistance coefficient corresponding to ⁇ 6 is the soil thermal resistance coefficient ⁇ e .
  • the coefficient of soil thermal resistance corresponding to ⁇ 4 is the concrete thermal resistance coefficient ⁇ c .
  • T 4 T 4-1 +T 4-2 +T 4-3
  • I is the current carrying capacity
  • R is the conductor AC resistance at the working temperature
  • W d is the dielectric loss
  • ⁇ 1 is the sheath and shielding loss factor
  • ⁇ 2 is the metal armor loss factor
  • T 1 is the conductor and metal protection
  • T 2 is the thermal resistance of the inner liner between the metal sheath and the armor layer
  • T 3 is the thermal resistance of the outer sheath of the cable
  • T 4 is the thermal resistance between the surface of the cable and the surrounding environment
  • ⁇ c For ambient temperature, ⁇ 1 is the cable conductor temperature, T 4-1 is the space thermal resistance between the cable surface and the inner surface of the tube, T 4-2 is the thermal resistance of the tube itself, and T 4-3 is the external thermal resistance of the tube.
  • U, V, and Y are constants, ⁇ m is the temperature of the space medium of the cable and the tube, and D oc is the outer diameter of the cable.
  • D o is the outer diameter of the pipe
  • D d is the inner diameter of the pipe
  • N is the number of loaded cables in the pipe
  • ⁇ e is the thermal resistance coefficient of the soil around the pipe
  • ⁇ c is The thermal resistance coefficient of concrete
  • L g is the buried depth of the pipe
  • l g is the buried depth of the center of the pipe concrete preform
  • r b is the equivalent radius of the pipe concrete preform
  • D pg is the outer diameter of the pipe;
  • the method is also applicable to the way in which the tunnel is laid.
  • the 0001 cable is laid for the pipe, with a total length of 6.7km, connecting the A station and the B station. Since the old cable that has been put into operation is difficult to install the temperature measuring fiber, the fiber is installed only on the bottle neck cable section. 0001 cable in different positions, the number of adjacent cables in the pipe, voltage level, load situation are different, The structure of the pipe is also different. Therefore, each section of the cable is checked and analyzed one by one. According to the results of the inspection, the analysis and calculation of the worst cable segments of several working conditions are carried out. Finally, the cable from the A station to the first intermediate joint is selected. The channel is coated with a temperature measuring fiber.
  • the figure shows the structure of the bottle neck cable segment.
  • the figure shows the structure of the bottle neck cable segment.
  • it also includes 10 35kV cables and several empty guide holes.
  • Temperature measuring fibers are installed on the surface of three 220kV cables and one guiding hole. Install current transformers on all cables. This allows real-time collection of the temperature inside the tube and the current of each cable.
  • the ground temperature is taken as the measured value of the day, for example, 15 °C on April 5.
  • the 10k 35kV cable in the vicinity of the exhaust pipe collects the average current of the highest load day in 2013, multiplied by 60% for the spring current upper limit, and considers that 10 times of 35kV cable runs for a long time at this current value.
  • the soil thermal resistance coefficient and the concrete thermal resistance coefficient are given initial values of 1.0 (K ⁇ m/W), and the guide hole temperature and the cable surface temperature are calculated.
  • the soil thermal resistance coefficient and the concrete thermal resistance coefficient are given an initial value of 1.0.
  • the thermal resistance coefficient of the concrete is adjusted from 0.6 to 1.2, and the measured value and calculated value of the cable surface and the guide hole temperature difference are analyzed.
  • the concrete thermal resistance coefficient is 0.7, the difference between the two is the smallest, so the concrete is considered The thermal resistance coefficient is 0.7.
  • the quasi-dynamic capacity calculation can be performed. According to the ground temperature of the day (the ground temperature is slowly changing), the current limit of the 0001 cable on the second day is calculated and provided to the dispatcher.

Abstract

一种基于电缆传热模型的准动态增容方法,用于排管内部的电缆增容,包括以下步骤:根据电缆全线的工况,在瓶颈电缆段建立数据采集系统,进行当日数据测量(1);根据数据采集系统当日测得的瓶颈电缆段的数据,建立并以日为单位更新次日瓶颈电缆段的电缆传热模型(2);根据次日瓶颈电缆段的电缆传热模型,估算瓶颈电缆段中待增容电缆次日的载流量,实现电缆增容(3)。与现有技术相比,该方法具有方法先进、实时性好、效果显著等优点。

Description

一种基于电缆传热模型的准动态增容方法 技术领域
本发明涉及电力领域,尤其是涉及一种基于电缆传热模型的准动态增容方法。
背景技术
目前大型城市电网的中心城区用电负荷大、电缆通道资源紧张,部分重载线路已成为明显的输电瓶颈,通过电缆增容来挖掘现有电缆的输电潜力,对缓解城市供电压力有重要意义。
目前电缆载流量计算普遍采用的IEC60287、IEC853、JB/T 10181.3-2000标准,是针对稳态计算的,不适合计算动态负荷。而且电缆载流量是在设计阶段确定的,由于电缆传热环境的复杂性和不确定性,设计人员通常作最不利散热假设,以得到一个足够安全的电流值。在电缆寿命周期内调度部门都将使用该值。这就造成了电缆载流量普遍存在取值过于保守、误差较大的问题,不能充分发挥电缆的输电能力。
所谓电缆动态增容,即:给定电流,实时预测电缆导体到达指定温度的时间;或者给定过载时间,实时预测电缆导体不超过指定温度的最大电流。但该方法缺少公认的标准,效果尚待检验。从不同敷设方式看,电缆动态增容对于隧道敷设方式难度相对低一些,而排管敷设方式,由于涉及相邻电缆的相互影响,难以实现准确的动态计算。国内有一些电缆安装了动态增容系统,但仅将光纤测温数据用于防外破、消防;不敢真正地根据动态计算结果将电缆超设计容量运行。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种方法先进、实时性好、效果显著的基于排管电缆传热模型的准动态增容方法。
本发明的目的可以通过以下技术方案来实现:
一种基于电缆传热模型的准动态增容方法,用于排管内部的电缆增容, 包括以下步骤:
1)根据电缆全线的工况,在瓶颈电缆段建立数据采集系统,进行当日数据测量;
2)根据数据采集系统当日测得的瓶颈电缆段的数据,建立并以日为单位更新次日瓶颈电缆段的电缆传热模型;
3)根据次日瓶颈电缆段的电缆传热模型,估算瓶颈电缆段中待增容电缆次日的载流量,实现电缆增容。
所述的步骤2)具体包括以下步骤:
21)根据当日测得的电缆与排管之空间介质的温度θm与经过赋初值计算获得的浸水温度
Figure PCTCN2014091965-appb-000001
和未浸水温度
Figure PCTCN2014091965-appb-000002
比较,判断排管内是否浸水,获得电缆表面与排管内表面之间空间热阻T4-1的值;
22)获得当日的瓶颈电缆段的土壤热阻系数ρe
23)获得当日的瓶颈电缆段的混凝土热阻系数ρc
24)将当日的电缆表面与排管内表面之间空间热阻T4-1、土壤热阻系数ρe和混凝土热阻系数ρc代入,得到次日瓶颈电缆段的电缆传热模型为:
I2[RT1+R(1+λ1)T2+R(1+λ12)(T3+T4)]+Wd0.5T1=θ1C
T4=T4-1+T4-2+T4-3
Figure PCTCN2014091965-appb-000003
Figure PCTCN2014091965-appb-000004
Figure PCTCN2014091965-appb-000005
Figure PCTCN2014091965-appb-000006
Figure PCTCN2014091965-appb-000007
Figure PCTCN2014091965-appb-000008
其中,I为载流量,R为工作温度下的导体交流电阻,Wd为绝缘介质损 耗,λ1为护套和屏蔽损耗因数,λ2为金属铠装损耗因数,T1为导体与金属护套间绝缘层热阻,T2为金属护套与铠装层之间内衬层热阻,T3为电缆外护层热阻,T4为电缆表面与周围环境之间热阻,θc为环境温度,θ1为电缆导体温度,T4-1为电缆表面与排管内表面之间空间热阻,T4-2为排管本身热阻,T4-3为排管外部热阻,U、V、Y为常数,θm为电缆与排管之空间介质的温度,Doc为电缆外径,
Figure PCTCN2014091965-appb-000009
为排管混凝土材料的热阻系数,Do为排管外径,Dd为排管内径,N为排管内有负荷电缆根数,ρe为排管周围土壤的热阻系数,ρc为混凝土的热阻系数,Lg为排管埋深,lg为排管混凝土预制件中心的埋设深度,rb为排管混凝土预制件等效半径,Dpg为排管外径;
25)重复步骤21)-24),更新次日瓶颈电缆段的传热模型。
所述的步骤22)具体包括以下步骤:
221)确定土壤热阻系数ρe的范围为0.6-1.2;
222)在土壤热阻系数取值范围内,求解瓶颈电缆段电缆的热网络节点方程,获得瓶颈电缆段的导引孔温度θ6,热网络节点方程为:
Figure PCTCN2014091965-appb-000010
其中,θ1为导体表面的温度,θ2为绝缘中部的温度,θ3为金属护套表面的温度,θ4为电缆表面的温度,θ5为排管内壁的温度,θ6为导引孔的温度,Q1为导体损耗,Q2为绝缘介损,Q3为金属护套损耗。
223)根据测得瓶颈电缆段的导引孔温度
Figure PCTCN2014091965-appb-000011
Figure PCTCN2014091965-appb-000012
和θ6的差值绝对值最小时,此时θ6对应的土壤热阻系数即为土壤热阻系数ρe
所述的步骤23)具体包括以下步骤:
231)确定混凝土热阻系数ρc的范围为0.6-1.2;
232)根据步骤222)获得瓶颈电缆段的电缆表面温度θ4
233)根据测得瓶颈电缆段的电缆表面温度
Figure PCTCN2014091965-appb-000013
Figure PCTCN2014091965-appb-000014
和θ4的差值绝对值最 小时,此时θ4对应的土壤热阻系数即为混凝土热阻系数ρc
该方法还适用于隧道的敷设方式。
与现有技术相比,本发明具有以下优点:
一、方法先进,采用国际通用的稳态载流量计算标准,能够处理多条电缆相互影响的情况,适合排管、隧道等各种敷设方式,实现动态周期为1天的增容,避免了动态增容中处理热容等复杂因素。
二、实时性好,利用采集到的光纤测温数据和电流数据,推算出近期的外部热阻T4,可以准实时地跟踪热阻变化,解决外部热阻T4难以确定的难题。
三、效果显著,根据历史数据进行电缆负荷预测,既考虑了安全性,又有效释放了电缆的输电潜力。
附图说明
图1为本发明的方法流程图。
图2为瓶颈电缆段的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例:
如图1所示,一种基于电缆传热模型的准动态增容方法,用于排管内部的电缆增容,包括以下步骤:
1)根据电缆全线的工况,在瓶颈电缆段建立数据采集系统,进行数据测量;
2)根据数据采集系统当日测得的瓶颈电缆段的数据,建立并以日为单位更新次日瓶颈电缆段的电缆传热模型;
3)根据次日瓶颈电缆段的电缆传热模型,估算瓶颈电缆段中待增容电缆次日的载流量,实现电缆增容。
步骤2)具体包括以下步骤:
21)根据当日测得的电缆与排管之空间介质的温度θm与经过赋初值计算 获得的浸水温度
Figure PCTCN2014091965-appb-000015
和未浸水温度
Figure PCTCN2014091965-appb-000016
比较,判断排管内是否浸水,若θm
Figure PCTCN2014091965-appb-000017
的差值绝对值较小,则判断为未浸水,通过查表可得瓶颈电缆段的电缆表面温度T4-1的标准值,若θm
Figure PCTCN2014091965-appb-000018
的差值绝对值较小,则判断为浸水,瓶颈电缆段的电缆表面温度T4-1的大小变为标准值的0.007倍;
22)获得当日的瓶颈电缆段的土壤热阻系数ρe,具体包括以下步骤:
221)确定土壤热阻系数ρe的范围为0.6-1.2;
222)在土壤热阻系数取值范围内,求解瓶颈电缆段电缆的热网络节点方程,获得瓶颈电缆段的导引孔温度θ6,热网络节点方程为:
Figure PCTCN2014091965-appb-000019
其中,θ1为导体表面的温度,θ2为绝缘中部的温度,θ3为金属护套表面的温度,θ4为电缆表面的温度,θ5为排管内壁的温度,θ6为导引孔的温度,Q1为导体损耗,Q2为绝缘介损,Q3为金属护套损耗。
223)根据测得瓶颈电缆段的导引孔温度
Figure PCTCN2014091965-appb-000020
Figure PCTCN2014091965-appb-000021
和θ6的差值绝对值最小时,此时θ6对应的土壤热阻系数即为土壤热阻系数ρe
23)获得当日的瓶颈电缆段的混凝土热阻系数ρc,具体包括以下步骤:
231)确定混凝土热阻系数ρc的范围为0.6-1.2;
232)根据步骤222)获得瓶颈电缆段的电缆表面温度θ4
233)根据测得瓶颈电缆段的电缆表面温度
Figure PCTCN2014091965-appb-000022
Figure PCTCN2014091965-appb-000023
和θ4的差值绝对值最小时,此时θ4对应的土壤热阻系数即为混凝土热阻系数ρc
24)将当日的电缆表面与排管内表面之间空间热阻T4-1、土壤热阻系数ρe和混凝土热阻系数ρc代入,得到次日瓶颈电缆段的电缆传热模型为:
I2[RT1+R(1+λ1)T2+R(1+λ12)(T3+T4)]+Wd0.5T1=θ1C
T4=T4-1+T4-2+T4-3
Figure PCTCN2014091965-appb-000024
Figure PCTCN2014091965-appb-000025
Figure PCTCN2014091965-appb-000026
Figure PCTCN2014091965-appb-000027
Figure PCTCN2014091965-appb-000028
Figure PCTCN2014091965-appb-000029
其中,I为载流量,R为工作温度下的导体交流电阻,Wd为绝缘介质损耗,λ1为护套和屏蔽损耗因数,λ2为金属铠装损耗因数,T1为导体与金属护套间绝缘层热阻,T2为金属护套与铠装层之间内衬层热阻,T3为电缆外护层热阻,T4为电缆表面与周围环境之间热阻,θc为环境温度,θ1为电缆导体温度,T4-1为电缆表面与排管内表面之间空间热阻,T4-2为排管本身热阻,T4-3为排管外部热阻,U、V、Y为常数,θm为电缆与排管之空间介质的温度,Doc为电缆外径,
Figure PCTCN2014091965-appb-000030
为排管混凝土材料的热阻系数,Do为排管外径,Dd为排管内径,N为排管内有负荷电缆根数,ρe为排管周围土壤的热阻系数,ρc为混凝土的热阻系数,Lg为排管埋深,lg为排管混凝土预制件中心的埋设深度,rb为排管混凝土预制件等效半径,Dpg为排管外径;
25)重复步骤21)-24),更新次日瓶颈电缆段的传热模型。
该方法还适用于隧道的敷设方式。
以某220kV电缆0001线的2014年春季增容工程为例,进行说明。
1)对电缆及排管建立传热模型
2)瓶颈电缆段的选择
0001电缆为排管敷设,全长6.7km,连接A站和B站。由于是已投运的旧电缆,安装测温光纤难度大,所以仅在瓶颈电缆段上安装光纤。0001电缆全程不同位置上,排管里邻近电缆的数量、电压等级、负荷情况各不相同, 排管结构也有所不同,因此对各段电缆进行了逐个排查分析,根据排查结果,对几个工况最恶劣电缆段开展分析计算,最后选择从A站到第一个中间接头,450m的电缆通道敷设测温光纤。
3)瓶颈电缆段的数据采集
如图2所示,图为瓶颈电缆段的结构,除220kV电缆0001线外,还包括10回35kV电缆,还有几个空的导引孔。在3根220kV电缆表面和1个导引孔里安装测温光纤。在所有电缆上安装电流互感器。这样可以实时采集排管内温度和各电缆的电流。
4)边界条件
地温取当天实测值,例如4月5日为15℃。
如表1所示,排管内附近10回35kV电缆,收集2013年最高负荷日的平均电流,乘60%为春季电流上限,认为10回35kV电缆长时间运行在这个电流值。
表1:2013年各电缆春季平均电流
Figure PCTCN2014091965-appb-000031
5)计算模型的关键参数
如表2所示,土壤热阻系数和混凝土热阻系数赋初值1.0(K·m/W),计算导引孔温度、电缆表面温度。
表2:电缆表面和导引孔的实测值和计算值比较表
Figure PCTCN2014091965-appb-000032
分析电缆表面和导引孔的实测值和计算值,认为排管内没有浸水。
土壤热阻系数和混凝土热阻系数赋初值1.0。
如表3所示,调节混凝土热阻系数从0.6到1.2,分析电缆表面和导引孔温度差值的实测值和计算值,当混凝土热阻系数为0.7时二者差值最小,所以认为混凝土热阻系数为0.7。
表3:混凝土热阻系数电缆表面和导引孔温度差与实测温度差比较表
Figure PCTCN2014091965-appb-000033
用类似方法再次进行计算,得到土壤热阻系数的最佳值为0.75。
6)模型应用
确定模型各参数后,即可开展准动态增容计算。每天根据当天的地温(地温是缓慢变化的),计算第二天的0001电缆的电流限值,提供给调度。

Claims (4)

  1. 一种基于电缆传热模型的准动态增容方法,用于排管内部的电缆增容,其特征在于,包括以下步骤:
    1)根据电缆全线的工况,在瓶颈电缆段建立数据采集系统,进行当日数据测量;
    2)根据数据采集系统当日测得的瓶颈电缆段的数据,建立并以日为单位更新次日瓶颈电缆段的电缆传热模型;
    3)根据次日瓶颈电缆段的电缆传热模型,估算瓶颈电缆段中待增容电缆次日的载流量,实现电缆增容。
  2. 根据权利要求1所述的一种基于电缆传热模型的准动态增容方法,其特征在于,所述的步骤2)具体包括以下步骤:
    21)根据当日测得的电缆与排管之空间介质的温度θm与经过赋初值计算获得的浸水温度
    Figure PCTCN2014091965-appb-100001
    和未浸水温度
    Figure PCTCN2014091965-appb-100002
    比较,判断排管内是否浸水,获得电缆表面与排管内表面之间空间热阻T4-1的值;
    22)获得当日的瓶颈电缆段的土壤热阻系数ρe
    23)获得当日的瓶颈电缆段的混凝土热阻系数ρc
    24)将当日的电缆表面与排管内表面之间空间热阻T4-1、土壤热阻系数ρe和混凝土热阻系数ρc代入,得到次日瓶颈电缆段的电缆传热模型为:
    I2[RT1+R(1+λ1)T2+R(1+λ12)(T3+T4)]+Wd0.5T1=θ1C
    T4=T4-1+T4-2+T4-3
    Figure PCTCN2014091965-appb-100003
    Figure PCTCN2014091965-appb-100004
    Figure PCTCN2014091965-appb-100005
    Figure PCTCN2014091965-appb-100006
    Figure PCTCN2014091965-appb-100007
    Figure PCTCN2014091965-appb-100008
    其中,I为载流量,R为工作温度下的导体交流电阻,Wd为绝缘介质损耗,λ1为护套和屏蔽损耗因数,λ2为金属铠装损耗因数,T1为导体与金属护套间绝缘层热阻,T2为金属护套与铠装层之间内衬层热阻,T3为电缆外护层热阻,T4为电缆表面与周围环境之间热阻,θc为环境温度,θ1为电缆导体温度,T4-1为电缆表面与排管内表面之间空间热阻,T4-2为排管本身热阻,T4-3为排管外部热阻,U、V、Y为常数,θm为电缆与排管之空间介质的温度,Doc为电缆外径,
    Figure PCTCN2014091965-appb-100009
    为排管混凝土材料的热阻系数,Do为排管外径,Dd为排管内径,N为排管内有负荷电缆根数,ρe为排管周围土壤的热阻系数,ρc为混凝土的热阻系数,Lg为排管埋深,lg为排管混凝土预制件中心的埋设深度,rb为排管混凝土预制件等效半径,Dpg为排管外径;
    25)重复步骤21)-24),更新次日瓶颈电缆段的传热模型。
  3. 根据权利要求2所述的一种基于电缆传热模型的准动态增容方法,其特征在于,所述的步骤22)具体包括以下步骤:
    221)确定土壤热阻系数ρe的范围为0.6-1.2;
    222)在土壤热阻系数取值范围内,求解瓶颈电缆段电缆的热网络节点方程,获得瓶颈电缆段的导引孔温度θ6,热网络节点方程为:
    Figure PCTCN2014091965-appb-100010
    其中,θ1为导体表面的温度,θ2为绝缘中部的温度,θ3为金属护套表面的温度,θ4为电缆表面的温度,θ5为排管内壁的温度,θ6为导引孔的温度,Q1为导体损耗,Q2为绝缘介损,Q3为金属护套损耗;
    223)根据测得瓶颈电缆段的导引孔温度
    Figure PCTCN2014091965-appb-100011
    Figure PCTCN2014091965-appb-100012
    和θ6的差值绝对值最小时, 此时θ6对应的土壤热阻系数即为土壤热阻系数ρe
  4. 根据权利要求3所述的一种基于电缆传热模型的准动态增容方法,其特征在于,所述的步骤23)具体包括以下步骤:
    231)确定混凝土热阻系数ρc的范围为0.6-1.2;
    232)根据步骤222)获得瓶颈电缆段的电缆表面温度θ4
    233)根据测得瓶颈电缆段的电缆表面温度
    Figure PCTCN2014091965-appb-100013
    Figure PCTCN2014091965-appb-100014
    和θ4的差值绝对值最小时,此时θ4对应的土壤热阻系数即为混凝土热阻系数ρc
PCT/CN2014/091965 2014-10-21 2014-11-22 一种基于电缆传热模型的准动态增容方法 WO2016061865A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410562427.0A CN104330659B (zh) 2014-10-21 2014-10-21 一种基于电缆传热模型的准动态增容方法
CN201410562427.0 2014-10-21

Publications (1)

Publication Number Publication Date
WO2016061865A1 true WO2016061865A1 (zh) 2016-04-28

Family

ID=52405422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091965 WO2016061865A1 (zh) 2014-10-21 2014-11-22 一种基于电缆传热模型的准动态增容方法

Country Status (2)

Country Link
CN (1) CN104330659B (zh)
WO (1) WO2016061865A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109446632A (zh) * 2018-10-23 2019-03-08 国网上海市电力公司 一种考虑土壤导热和比热容的单根电缆暂态温升获取方法
CN109446633A (zh) * 2018-10-23 2019-03-08 国网上海市电力公司 一种考虑导热系数和散热系数的电缆群稳态温升获取方法
CN110083905A (zh) * 2019-04-18 2019-08-02 上海海能信息科技有限公司 一种隔离开关动态增容的热点温度分析方法
CN111896839A (zh) * 2020-07-14 2020-11-06 国核电力规划设计研究院有限公司 海底电缆温度场载流量的测试平台及方法
CN112350379A (zh) * 2020-10-16 2021-02-09 山东大学 计及电缆热特性的可接纳海上风电装机容量评估方法
CN113011015A (zh) * 2021-03-04 2021-06-22 国网浙江省电力有限公司嘉兴供电公司 一种用于输变电线路动态增容的安全管控方法
CN113094958A (zh) * 2021-04-16 2021-07-09 河北科技大学 直埋电缆群缆芯温升的确定方法、装置及终端
CN113109384A (zh) * 2021-03-04 2021-07-13 国网浙江省电力有限公司嘉兴供电公司 一种输变电混合线路动态增容量评估方法及系统
CN115561564A (zh) * 2022-12-05 2023-01-03 广东电网有限责任公司中山供电局 一种电缆接头动态载流量的arima序列预测方法
CN115629637A (zh) * 2022-11-04 2023-01-20 广州旭杰电子有限公司 一种用于5g机房的冷热场温度智能控制系统
CN115859701A (zh) * 2023-03-03 2023-03-28 天津有容蒂康通讯技术有限公司 一种基于电缆检测数据的增设分析方法及系统
WO2024011783A1 (zh) * 2022-07-11 2024-01-18 江苏亨通高压海缆有限公司 一种海底电缆铠装损耗因数测试系统及其测试计算方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897304B (zh) * 2015-06-18 2018-07-20 中国电力科学研究院 一种用于输电线路动态增容的线路温度辨识方法
CN106199232A (zh) * 2015-11-09 2016-12-07 全玉生 高压架空输电线路动态增容的正序阻抗法
CN113109640B (zh) * 2021-03-04 2022-05-17 国网浙江省电力有限公司嘉兴供电公司 一种基于预模拟的电力线路智能动态增容系统及方法
CN113111485B (zh) * 2021-03-04 2022-06-24 国网浙江省电力有限公司嘉兴供电公司 一种基于多数据源的输变电线路动态增容方法
CN112946399B (zh) * 2021-03-04 2022-04-29 国网浙江省电力有限公司嘉兴供电公司 一种基于大数据技术的线路动态增容方法
CN113962024B (zh) * 2021-10-25 2022-10-25 成都飞机工业(集团)有限责任公司 一种飞机线束的外径仿真及主干线束外径估算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051443A (ja) * 2000-08-01 2002-02-15 Sumitomo Electric Ind Ltd 管路内布設ケ−ブル線路及び同ケ−ブル線路の形成方法
WO2004088338A1 (en) * 2003-04-04 2004-10-14 Lg Cable Ltd. Apparatus and method for evaluating underground electric power cables
JP2007003516A (ja) * 2005-05-26 2007-01-11 Tokyo Electric Power Co Inc:The 電力ケーブル温度監視方法
CN101609123A (zh) * 2009-07-30 2009-12-23 西安工程大学 输电线路动态增容在线监测系统
CN101672880A (zh) * 2009-09-21 2010-03-17 广东电网公司广州供电局 电缆载流量的确定方法及确定装置
CN101900773A (zh) * 2010-06-25 2010-12-01 河北科技大学 基于环境因子监测和有限元的地下电力电缆载流量在线预测系统及其方法
CN102323496A (zh) * 2011-05-31 2012-01-18 广东电网公司广州供电局 电缆导体载流量的监测系统及监测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799681A (zh) * 2010-02-10 2010-08-11 刘文祥 智能电网
CN103544391A (zh) * 2013-10-21 2014-01-29 华南理工大学 一种排管敷设电缆群最热电缆的判定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051443A (ja) * 2000-08-01 2002-02-15 Sumitomo Electric Ind Ltd 管路内布設ケ−ブル線路及び同ケ−ブル線路の形成方法
WO2004088338A1 (en) * 2003-04-04 2004-10-14 Lg Cable Ltd. Apparatus and method for evaluating underground electric power cables
JP2007003516A (ja) * 2005-05-26 2007-01-11 Tokyo Electric Power Co Inc:The 電力ケーブル温度監視方法
CN101609123A (zh) * 2009-07-30 2009-12-23 西安工程大学 输电线路动态增容在线监测系统
CN101672880A (zh) * 2009-09-21 2010-03-17 广东电网公司广州供电局 电缆载流量的确定方法及确定装置
CN101900773A (zh) * 2010-06-25 2010-12-01 河北科技大学 基于环境因子监测和有限元的地下电力电缆载流量在线预测系统及其方法
CN102323496A (zh) * 2011-05-31 2012-01-18 广东电网公司广州供电局 电缆导体载流量的监测系统及监测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE, SHAOPENG ET AL.: "Development of the Software Package for Calculation of Current Carrying Capacity of Power Cables Based on Visual C++", ELECTRIC WIRE & CABLE, 31 December 2008 (2008-12-31), pages 16 - 20, ISSN: 1672-6901 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109446632A (zh) * 2018-10-23 2019-03-08 国网上海市电力公司 一种考虑土壤导热和比热容的单根电缆暂态温升获取方法
CN109446633A (zh) * 2018-10-23 2019-03-08 国网上海市电力公司 一种考虑导热系数和散热系数的电缆群稳态温升获取方法
CN109446633B (zh) * 2018-10-23 2023-07-11 国网上海市电力公司 一种考虑导热系数和散热系数的电缆群稳态温升获取方法
CN110083905A (zh) * 2019-04-18 2019-08-02 上海海能信息科技有限公司 一种隔离开关动态增容的热点温度分析方法
CN111896839A (zh) * 2020-07-14 2020-11-06 国核电力规划设计研究院有限公司 海底电缆温度场载流量的测试平台及方法
CN112350379B (zh) * 2020-10-16 2023-02-17 山东大学 计及电缆热特性的可接纳海上风电装机容量评估方法
CN112350379A (zh) * 2020-10-16 2021-02-09 山东大学 计及电缆热特性的可接纳海上风电装机容量评估方法
CN113109384A (zh) * 2021-03-04 2021-07-13 国网浙江省电力有限公司嘉兴供电公司 一种输变电混合线路动态增容量评估方法及系统
CN113109384B (zh) * 2021-03-04 2022-10-11 国网浙江省电力有限公司嘉兴供电公司 一种输变电混合线路动态增容量评估方法
CN113011015A (zh) * 2021-03-04 2021-06-22 国网浙江省电力有限公司嘉兴供电公司 一种用于输变电线路动态增容的安全管控方法
CN113094958A (zh) * 2021-04-16 2021-07-09 河北科技大学 直埋电缆群缆芯温升的确定方法、装置及终端
CN113094958B (zh) * 2021-04-16 2022-05-31 河北科技大学 直埋电缆群缆芯温升的确定方法、装置及终端
WO2024011783A1 (zh) * 2022-07-11 2024-01-18 江苏亨通高压海缆有限公司 一种海底电缆铠装损耗因数测试系统及其测试计算方法
CN115629637A (zh) * 2022-11-04 2023-01-20 广州旭杰电子有限公司 一种用于5g机房的冷热场温度智能控制系统
CN115561564A (zh) * 2022-12-05 2023-01-03 广东电网有限责任公司中山供电局 一种电缆接头动态载流量的arima序列预测方法
CN115561564B (zh) * 2022-12-05 2023-03-10 广东电网有限责任公司中山供电局 一种电缆接头动态载流量的arima序列预测方法
CN115859701A (zh) * 2023-03-03 2023-03-28 天津有容蒂康通讯技术有限公司 一种基于电缆检测数据的增设分析方法及系统

Also Published As

Publication number Publication date
CN104330659A (zh) 2015-02-04
CN104330659B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2016061865A1 (zh) 一种基于电缆传热模型的准动态增容方法
CN111707888A (zh) 一种电缆导体温度、载流量及耐受时间动态预测方法
CN109377008A (zh) 电热耦合的综合能源系统风险评估方法
CN109681788B (zh) 一种光缆及管道渗漏监测系统
CN104459380A (zh) 电缆负荷载流量的测量方法和系统
CN107893231B (zh) 限制直流接地极腐蚀埋地金属管道的防护方法及埋地系统
CN103913251A (zh) 内置光纤的电缆测温系统
CN111539147A (zh) 基于有限元仿真的海底脐带缆温度场分析
Che et al. Improvement of cable current carrying capacity using COMSOL software
CN204178794U (zh) 一种500kV测温电缆
CN106934096B (zh) 一种基于架空导线表面温度求解钢芯温度的方法
Millar et al. A robust framework for cable rating and temperature monitoring
Liu et al. Sag calculation difference caused by temperature difference between the steel core and outer surface of overhead transmission lines
Wu et al. Discussion on the Safe Distance Between HVDC Electrode and Pipeline
CN205069203U (zh) 一种500kV交联聚乙烯绝缘光纤测温电力电缆
Li Estimation of soil thermal parameters from surface temperature of underground cables and prediction of cable rating
CN104180923A (zh) 超高压电缆在线测温光缆的敷设方法
CN105321620A (zh) 一种500kV交联聚乙烯绝缘光纤测温电力电缆
CN205844029U (zh) 一种脱硫cems取样管线防冻系统
Wang et al. System and method for dynamic capacity expansion of 220kV cable
Kazmi et al. Thermal Analysis and Debottlenecking of HVAC Export Cables for Offshore Windfarms
CN216144932U (zh) 一种220千伏电缆动态增容系统
CN104181193B (zh) 三芯海底电缆中复合光纤以内填充层热阻的计算方法
Li et al. Prediction Model of Submarine Cable Burial Depth Trend Based on CNN-LSTM
Qiannan et al. Three core cable hot field distribution and coaxial heat road model feasibility study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904397

Country of ref document: EP

Kind code of ref document: A1