CN104897304B - 一种用于输电线路动态增容的线路温度辨识方法 - Google Patents

一种用于输电线路动态增容的线路温度辨识方法 Download PDF

Info

Publication number
CN104897304B
CN104897304B CN201510342596.8A CN201510342596A CN104897304B CN 104897304 B CN104897304 B CN 104897304B CN 201510342596 A CN201510342596 A CN 201510342596A CN 104897304 B CN104897304 B CN 104897304B
Authority
CN
China
Prior art keywords
temperature
conducting wire
transmission line
data
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510342596.8A
Other languages
English (en)
Other versions
CN104897304A (zh
Inventor
冯树海
王勇
姚建国
朱斌
苏大威
杨胜春
杨争林
姜宁
於益军
李峰
石飞
刘俊
王礼文
汤必强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Jiangsu Electric Power Co Ltd
Nanjing Power Supply Co of Jiangsu Electric Power Co
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Jiangsu Electric Power Co Ltd
Nanjing Power Supply Co of Jiangsu Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, State Grid Jiangsu Electric Power Co Ltd, Nanjing Power Supply Co of Jiangsu Electric Power Co filed Critical State Grid Corp of China SGCC
Priority to CN201510342596.8A priority Critical patent/CN104897304B/zh
Publication of CN104897304A publication Critical patent/CN104897304A/zh
Application granted granted Critical
Publication of CN104897304B publication Critical patent/CN104897304B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Electric Cable Installation (AREA)

Abstract

本发明涉及一种用于输电线路动态增容的线路温度辨识方法,所述方法包括:获取输电线路的在线监测数据,并将其转化为遵循IEC61970标准的CIM/E格式监测数据,保存至内存;所述CIM/E格式监测数据包括控制参数和监控信息;预处理CIM/E格式监测数据;构建导线温度辨识模型,对预处理后的CIM/E格式监测数据进行辨识;从而提升输电线路监测信息的可信度,在保证系统稳定运行和设备安全前提下,提高了输电线路的输送容量。

Description

一种用于输电线路动态增容的线路温度辨识方法
技术领域
本发明涉及一种辨识方法,具体涉及一种用于输电线路动态增容的线路温度辨识方法。
背景技术
电力负荷的迅猛增长,使得一些输电线路接近或达到热稳定限值,限制了输电线路的输送容量,影响了供电能力,采用新建或改造线路是增强供电能力的主要办法,但新建线路面临投资巨大、建设周期长、输电走廊资源紧张、短路电流超标等问题和困难。输电线路增容技术可以在不进行线路改造的情况下,合理提升输电断面热稳定限值,而热稳定限值是目前制约经济发达地区线路输送能力的主要约束因素,因而输电线路动态增容技术近期得到了学者、电网公司的重点关注,并逐渐有其投入实际运行的实例。
传统的调度能源管理系统通过SCADA(数据采集与监控系统)对现场运行设备进行监视和控制。在采集数据的种类上,主要包括电网潮流(如支路功率、母线电压等)以及电网运行频率等电气量信息。随着智能电网的快速发展,输变电设备在线监测技术的发展为调度中心提供了设备的各种非电气量信息,如设备状态数据和(微)气象数据等,设备状态数据包括导线温度等。(微)气象数据如输电线路在线温度、线路所在区域环境温度、风速、日照以及线路载流量等。这些输电线路在线监测信息接入为输电线路动态增容的实际应用提供了数据基础和技术支撑。
导线温度信息是输电线路增容过程安全性的重要评估指标,其准确可信是动态增容执行的前提和安全保障。目前,由于产品缺乏统一标准、外部环境多变、通讯干扰等原因,目前的输电线路在线监测数据的实时型、准确性和稳定性方面都相对存在不足,以目前的监测信息作为动态增容的基础存在较大的安全隐患。
发明内容
为了弥补现有技术的不足,本发明提供一种用于输电线路动态增容的线路温度辨识方法,实现了对导线温度的预测和辨识,在保证系统稳定运行和设备安全前提下,提高输电线路的输送容量和输电线路监测信息的可信度。
本发明的目的是采用下述技术方案实现的:
一种用于输电线路动态增容的线路温度辨识方法,所述方法包括:
(1)获取输电线路的在线监测数据,并将其转化为遵循IEC61970标准的CIM/E格式监测数据,保存至内存;所述CIM/E格式监测数据包括控制参数和监控信息;
(2)预处理CIM/E格式监测数据;
(3)构建导线温度辨识模型,对预处理后的CIM/E格式监测数据进行辨识。
优选的,所述步骤(1)的控制参数,包括连续采样次数和采样间隔;所述监控信息,包括系统信息、线路信息、杆塔信息和采集信息。
优选的,所述步骤(2)预处理的具体步骤包括:
首先,根据测点、预设阈值和终止辨识提示判断某一时间窗口的CIM/E格式监测数据是否可用;
其次,根据历史数据设定可信值范围,删除所述CIM/E格式监测数据中超出该范围的不良数据。
进一步地,所述判断某一时间窗口的CIM/E格式监测数据是否可用包括,以该时间窗口中连续测点的n个CIM/E格式监测数据作为输电线路温度辨识的采样数据,n≥2;并以最大采样数据作为各测点的温度预测值;同一输电线路上各温度预测值满足输电线路热平衡方程,且同一时刻的温度预测值偏差小于所述预设阀值TDiffmax
进一步地,所述输电线路热平衡方程包括,当导线电流或者外界环境发生变化时,导线温度随之改变;其关系构成输电线路热平衡方程:
式(1)中,M为单位长度导线的质量;Cp为导线热容系数,J/(kg·℃);为温度对时间的导数;Qc为导线的对流散热功率,W/m;Qr为导线的辐射散热功率,W/m;Qs为导线的日照吸热功率,W/m;I为导线电流,A;R(Tc)为温度Tc时导线的交流电阻,Ω/m;
当导线温度在某一时刻达到稳定时为0,其表达式为:
0=Qs+I2R(Tc)-(Qc+Qr) (2);
通过计算导线的对流散热功率Qc、辐射散热功率Qr和日照吸热功率Qs,获得架空导线载流量I2R(Tc);
Qc+Qr=Qs+I2R(Tc) (3)。
进一步地,根据导线表面的辐射系数ε、环境温度Ta和导线温度Tc,计算所述导线的辐射散热功率Qr,其表达式为:
Qr=πεDσ[(Tc+273)4-(Ta+273)4] (4)
式(4)中,D为导线直径,m;若所述导线为光亮新线,ε的取值范围为0.23~0.43;若为旧线或者涂黑色防腐剂的导线:则ε的取值范围为0.90~0.95;σ为斯蒂芬-包尔兹曼常数5.67×10-8W/(m2·K4)。
进一步地,采用简化摩尔根公式计算导线的空气对流散热功率Qc,其表达式如下:
Qc=λEuπ(Tc-Ta) (5)
式(5)中,λ为与导体接触的空气膜导热系数,取值范围为0.02585W·m-1·K-1;Eu为欧拉数,其表达式如下:
式(6)中,Re为雷诺数,其值可表示为:
Re=1.644×109VD[Ta+0.5(Tc-Ta)]-1.78 (7)
式(7)中,V为风速,m/s;D为导线直径。
进一步地,根据导线表面的吸热系数α、导线的直径D和日照辐射强度S,计算所述导线的日照吸热功率Qs
Qs=αDS (8)
进一步地,当所述架空导线载流量I2R(Tc)发生集肤效应时,其交流电阻R(Tc)随导线温度变化,其表达式为:
R(Tc)=(1+k)Rd=(1+k)R20[1+α20(Tc-20)] (9)
式(9)中,Rd为温度为Tc时导线的直流电阻,Ω/m;α20为20℃的导线材料温度系数,对于铝的取值为0.004031/℃;k为集肤效应系数,若导线截面小于等于400mm2取0.0025,若大于400mm2则取0.01。
进一步地,设采样间隔为Δt,输电线路的采集装置个数为m,m≥1;则连续采样时长为(n-1)×Δt,温度实测数据量为m×n个,温度实测数据为;
与Tm相对应,各时刻点的温度预测数据量为m×n个,温度预测数据为;
当采样间隔Δt较小时,式(1)可简化为:
优选的,根据温度预测值与实测值的差值加权平方和作为加权最小二乘的目标函数,构建导线温度辨识模型,其表达式为:
式(11)中,为第j个温度采集装置第i时刻的温度量测,为相应的温度预测值,Wij为相应测点的权重;该权重根据量测装置精度和量测历史可信状况进行设置;
约束条件为:
式(12)中,1≤i≤m,1≤j≤n-1;为第j+1个温度采集装置第i时刻的温度预测值;分别为第i个采集装置上导线的日照吸热功率、对流散热功率和辐射散热功率;I2R(Tc)为架空导线载流量;M为单位长度导线的质量;Cp为导线热容系数。
进一步地,一次辨识结束后,输出辨识结果;如果所述终止辨识提示为“是”,则终止辨识程序;若为“否”,则等待采样间隔Δt后进行下一次辨识。
与最接近的现有技术比,本发明提供的技术方案的有益效果是:
该方法采用遵循标准的文件接口,增加了软件的通用性;采用数据预处理和数据修正功能,提升了辨识的辨识效率和可信度;
采用动态温度变化模型,并利用连续多采样周期量测数据作为数据源,并且以加权最小二乘的目标函数,通过权重的合理调整实现不同量测装置精度、不同可信度的量测数据对目标函数的合理影响,提高辨识结果的准确性和实用性。
利用导线热平衡特性建立采集信息的估计和辨识算法,实现对导线温度采集信息合理辨识和估计,为线路增容的过程控制提供技术基础,保障线路动态增容过程的安全性。
附图说明
图1为本发明提供的输电线路导线温度在线辨识方法流程图;
图2为本发明提供的输电线路动态增容系统硬件配置示意图;
图3为本发明提供的单位时间内导线温度实测值与预测值的示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细说明。
如图1所示,一种用于输电线路动态增容的线路温度辨识方法,所述方法包括:
(1)获取输电线路的在线监测数据,并将其转化为遵循IEC61970标准的CIM/E格式监测数据,保存至内存;所述CIM/E格式监测数据包括控制参数和监控信息;所述步骤(1)的控制参数,包括连续采样次数和采样间隔;所述监控信息,包括系统信息、线路信息、杆塔信息和采集信息。
(2)预处理CIM/E格式监测数据;
所述步骤(2)预处理的具体步骤包括:
首先,根据测点、预设阈值和终止辨识提示判断某一时间窗口的CIM/E格式监测数据是否可用;
其次,根据历史数据设定可信值范围,删除所述CIM/E格式监测数据中超出该范围的不良数据。所述可信值范围,包括历史最大值、历史最小值、前一个月极大值、前一个月极小值、最大升变化率、最大降变化率等;根据以上特征值检测所述CIM/E格式监测数据是否在合理范围;
当最大变化率、最大变化幅值,遥测变化幅值和变化率超过历史最高值或其某一倍数,则判断为不良数据。此外还包括额定值检查,当数据超过额定值的k倍;k一般可取1.1~1.3,则判断为不良数据。
并对数据中的空点、毛刺、突变、阶跃等进行分析优化与修正,以提升后续辨识的可信度。其中,空点一般采用前后一帧数据插值的办法完成填充。
毛刺指明显超过正常值范围,包括超出可信值范围或是超过额定值的k倍等情况,类似于空点的插值处理;
突变用于通过平滑的方式执行插值修改将突变的前后几帧数据。
所述判断某一时间窗口的CIM/E格式监测数据是否可用包括,以该时间窗口中连续测点的n个CIM/E格式监测数据作为输电线路温度辨识的采样数据,n≥2;并以最大采样数据作为各测点的温度预测值;同一输电线路上各温度预测值满足输电线路热平衡方程,且同一时刻的温度预测值偏差小于所述预设阀值TDiffmax
所述输电线路热平衡方程包括,当导线电流或者外界环境发生变化时,导线温度随之改变;其关系构成输电线路热平衡方程:
式(1)中,M为单位长度导线的质量,kg;Cp为导线热容系数,J/(kg·℃);为温度对时间的导数;Qc为导线的对流散热功率,W/m;Qr为导线的辐射散热功率,W/m;Qs为导线的日照吸热功率,W/m;I为导线电流,A;R(Tc)为温度Tc时导线的交流电阻,Ω/m;
当导线温度在某一时刻达到稳定时为0,其表达式为:
0=Qs+I2R(Tc)-(Qc+Qr) (2);
通过计算导线的对流散热功率Qc、辐射散热功率Qr和日照吸热功率Qs,获得架空导线载流量I2R(Tc);
Qc+Qr=Qs+I2R(Tc) (3)。
根据导线表面的辐射系数ε、环境温度Ta和导线温度Tc,计算所述导线的辐射散热功率Qr,其表达式为:
Qr=πεDσ[(Tc+273)4-(Ta+273)4] (4)
式(4)中,D为导线直径,m;若所述导线为光亮新线,ε的取值范围为0.23~0.43;若为旧线或者涂黑色防腐剂的导线:则ε的取值范围为0.90~0.95;σ为斯蒂芬-包尔兹曼常数5.67×10-8W/(m2·K4)。
采用简化摩尔根公式计算导线的空气对流散热功率Qc,其表达式如下:
Qc=λEuπ(Tc-Ta) (5)
式(5)中,λ为与导体接触的空气膜导热系数,取值范围为0.02585W·m-1·K-1;Eu为欧拉数,其表达式如下:
式(6)中,Re为雷诺数,其值可表示为:
Re=1.644×109VD[Ta+0.5(Tc-Ta)]-1.78 (7)
式(7)中,V为风速,m/s;D为导线直径。
根据导线表面的吸热系数α、导线的直径D和日照辐射强度S,计算所述导线的日照吸热功率Qs
Qs=αDS (8)
当所述架空导线载流量I2R(Tc)发生集肤效应时,其交流电阻R(Tc)随导线温度变化,其表达式为:
R(Tc)=(1+k)Rd=(1+k)R20[1+α20(Tc-20)] (9)
式(9)中,Rd为温度为Tc时导线的直流电阻,Ω/m;α20为20℃的导线材料温度系数,对于铝的取值为0.004031/℃;k为集肤效应系数,若导线截面小于等于400mm2取0.0025,若大于400mm2则取0.01。
如图3所示,设采样间隔为Δt,输电线路的采集装置个数为m,m≥1;则连续采样时长为(n-1)×Δt,温度实测数据量为m×n个,温度实测数据为;
与Tm相对应,各时刻点的温度预测数据量为m×n个,温度预测数据为;
当采样间隔Δt较小时,式(1)可简化为:
如图2所示,(3)构建导线温度辨识模型,对预处理后的CIM/E格式监测数据进行辨识。
根据温度预测值与实测值的差值加权平方和作为加权最小二乘的目标函数,构建导线温度辨识模型,其表达式为:
式(11)中,为第j个温度采集装置第i时刻的温度量测,为相应的温度预测值,Wij为相应测点的权重;该权重根据量测装置精度和量测历史可信状况进行设置;
约束条件为:
式(12)中,1≤i≤m,1≤j≤n-1;为第j+1个温度采集装置第i时刻的温度预测值;分别为第i个采集装置上导线的日照吸热功率、对流散热功率和辐射散热功率;I2R(Tc)为架空导线载流量;M为单位长度导线的质量;Cp为导线热容系数。
一次辨识结束后,输出辨识结果;如果所述终止辨识提示为“是”,则终止辨识程序;若为“否”,则等待采样间隔Δt后进行下一次辨识。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。

Claims (11)

1.一种用于输电线路动态增容的线路温度辨识方法,其特征在于,所述方法包括:
(1)获取输电线路的在线监测数据,并将其转化为遵循IEC61970标准的CIM/E格式监测数据,保存至内存;所述CIM/E格式监测数据包括控制参数和监控信息;
(2)预处理CIM/E格式监测数据;
(3)构建导线温度辨识模型,对预处理后的CIM/E格式监测数据进行辨识;
根据温度预测值与实测值的差值加权平方和作为加权最小二乘的目标函数,构建所述导线温度辨识模型,其表达式为:
式(11)中,为第j个温度采集装置第i时刻的温度量测,为相应的温度预测值,Wij为相应测点的权重;该权重根据量测装置精度和量测历史可信状况进行设置;
约束条件为:
式(12)中,1≤i≤m,1≤j≤n-1;为第j+1个温度采集装置第i时刻的温度预测值;分别为第i个采集装置上导线的日照吸热功率、对流散热功率和辐射散热功率;I2R(Tc)为架空导线载流量;M为单位长度导线的质量;Cp为导线热容系数。
2.根据权利要求1所述的方法,其特征在于,所述步骤(1)的控制参数,包括连续采样次数和采样间隔;所述监控信息,包括系统信息、线路信息、杆塔信息和采集信息。
3.根据权利要求1所述的方法,其特征在于,所述步骤(2)预处理的具体步骤包括:
首先,根据测点、预设阈值和终止辨识提示判断某一时间窗口的CIM/E格式监测数据是否可用;
其次,根据历史数据设定可信值范围,删除所述CIM/E格式监测数据中超出该范围的不良数据。
4.根据权利要求3所述的方法,其特征在于,所述判断某一时间窗口的CIM/E格式监测数据是否可用包括,以该时间窗口中连续测点的n个CIM/E格式监测数据作为输电线路温度辨识的采样数据,n≥2;并以最大采样数据作为各测点的温度预测值;同一输电线路上各温度预测值满足输电线路热平衡方程,且同一时刻的温度预测值偏差小于所述预设阀值TDiffmax
5.根据权利要求4所述的方法,其特征在于,所述输电线路热平衡方程包括,当导线电流或者外界环境发生变化时,导线温度随之改变;其关系构成输电线路热平衡方程:
式(1)中,M为单位长度导线的质量;Cp为导线热容系数,J/(kg·℃);为温度对时间的导数;Qc为导线的对流散热功率,W/m;Qr为导线的辐射散热功率,W/m;Qs为导线的日照吸热功率,W/m;I为导线电流,A;R(Tc)为温度Tc时导线的交流电阻,Ω/m;
当导线温度在某一时刻达到稳定时为0,其表达式为:
0=Qs+I2R(Tc)-(Qc+Qr) (2);
通过计算导线的对流散热功率Qc、辐射散热功率Qr和日照吸热功率Qs,获得架空导线载流量I2R(Tc);
Qc+Qr=Qs+I2R(Tc) (3)。
6.根据权利要求4所述的方法,其特征在于,根据导线表面的辐射系数ε、环境温度Ta和导线温度Tc,计算所述导线的辐射散热功率Qr,其表达式为:
Qr=πεDσ[(Tc+273)4-(Ta+273)4] (4)
式(4)中,D为导线直径,m;若所述导线为光亮新线,ε的取值范围为0.23~0.43;若为旧线或者涂黑色防腐剂的导线:则ε的取值范围为0.90~0.95;σ为斯蒂芬-包尔兹曼常数5.67×10-8W/(m2·K4)。
7.根据权利要求4所述的方法,其特征在于,采用简化摩尔根公式计算导线的空气对流散热功率Qc,其表达式如下:
Qc=λEuπ(Tc-Ta) (5)
式(5)中,Ta和Tc分别为导线表面的环境温度和导线温度,λ为与导体接触的空气膜导热系数,取值范围为0.02585W·m-1·K-1;Eu为欧拉数,其表达式如下:
式(6)中,Re为雷诺数,其值可表示为:
Re=1.644×109VD[Ta+0.5(Tc-Ta)]-1.78 (7)
式(7)中,V为风速,m/s;D为导线直径。
8.根据权利要求4所述的方法,其特征在于,根据导线表面的吸热系数α、导线的直径D和日照辐射强度S,计算所述导线的日照吸热功率Qs
Qs=αDS (8) 。
9.根据权利要求5所述的方法,其特征在于,当所述架空导线载流量I2R(Tc)发生集肤效应时,其交流电阻R(Tc)随导线温度变化,其表达式为:
R(Tc)=(1+k)Rd=(1+k)R20[1+α20(Tc-20)] (9)
式(9)中,Rd为温度为Tc时导线的直流电阻,Ω/m;α20为20℃的导线材料温度系数,R20表示20℃的导线材料的直流电阻,对于铝的取值为0.004031/℃;k为集肤效应系数,若导线截面小于等于400mm2取0.0025,若大于400mm2则取0.01。
10.根据权利要求5所述的方法,其特征在于,设采样间隔为Δt,输电线路的采集装置个数为m,m≥1;则连续采样时长为(n-1)×Δt,温度实测数据量为m×n个,温度实测数据为;
与Tm相对应,各时刻点的温度预测数据量为m×n个,温度预测数据为;
当采样间隔Δt较小时,式(1)可简化为:
式(10)中,ΔT表示Δt对应的温度,Tm和Te分别表示温度采集装置的温度量测和相应温度的预测值。
11.根据权利要求4所述的方法,其特征在于,一次辨识结束后,输出辨识结果;如果所述终止辨识提示为“是”,则终止辨识程序;若为“否”,则等待采样间隔Δt后进行下一次辨识。
CN201510342596.8A 2015-06-18 2015-06-18 一种用于输电线路动态增容的线路温度辨识方法 Active CN104897304B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510342596.8A CN104897304B (zh) 2015-06-18 2015-06-18 一种用于输电线路动态增容的线路温度辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510342596.8A CN104897304B (zh) 2015-06-18 2015-06-18 一种用于输电线路动态增容的线路温度辨识方法

Publications (2)

Publication Number Publication Date
CN104897304A CN104897304A (zh) 2015-09-09
CN104897304B true CN104897304B (zh) 2018-07-20

Family

ID=54030111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510342596.8A Active CN104897304B (zh) 2015-06-18 2015-06-18 一种用于输电线路动态增容的线路温度辨识方法

Country Status (1)

Country Link
CN (1) CN104897304B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105958474B (zh) * 2016-04-28 2022-01-18 中国电力科学研究院 一种电网调控系统用输电线路动态增容方法和系统
CN106570777A (zh) * 2016-10-14 2017-04-19 贵州电网有限责任公司贵阳供电局 一种基于热平衡分析的输电线路短期可靠性评估方法
CN106682832A (zh) * 2016-12-27 2017-05-17 贵州电网有限责任公司贵阳供电局 一种考虑安全性校核和经济性分析的输电线路增容方法
CN106684864B (zh) * 2016-12-29 2019-10-25 武汉大学 一种基于botdr测温技术的架空线路动态增容方法
CN107329022B (zh) * 2017-08-08 2020-08-07 山东大学 一种输电线路热载荷能力分析方法
CN111814344A (zh) * 2020-07-17 2020-10-23 广东电网有限责任公司电力科学研究院 一种架空输电线路载流量计算方法、系统及设备
CN112508445B (zh) * 2020-12-18 2023-04-07 山东信通电子股份有限公司 一种基于气温及导线温度量测的架空导线动态增容方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0862258A1 (en) * 1997-02-26 1998-09-02 PIRELLI CAVI E SISTEMI S.p.A. Method and system for transporting electric power in a link
CN2879209Y (zh) * 2006-03-06 2007-03-14 华东电力试验研究院 输电线路动态监测增容系统的在线监测装置
CN101034806A (zh) * 2006-03-06 2007-09-12 华东电力试验研究院 输电线路动态监测增容系统及其增容方法
CN102818643A (zh) * 2012-07-11 2012-12-12 广东电网公司电力科学研究院 一种高压输电线路导线动态增容用环境温度测量方法
CN103176086A (zh) * 2013-03-11 2013-06-26 河南省电力公司电力科学研究院 一种输电线路动态增容摩尔根载流量的监测方法
CN203519040U (zh) * 2013-08-20 2014-04-02 上海海能信息科技有限公司 一种输电线路负荷动态增容及在线监测系统
CN104242452A (zh) * 2014-09-22 2014-12-24 广州供电局有限公司 输电线路动态增容监测系统及其增容监测方法
CN104330659A (zh) * 2014-10-21 2015-02-04 国网上海市电力公司 一种基于电缆传热模型的准动态增容方法
CN104578058A (zh) * 2015-01-21 2015-04-29 上海海能信息科技有限公司 一种输电线路五要素负荷动态增容及在线监测系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0862258A1 (en) * 1997-02-26 1998-09-02 PIRELLI CAVI E SISTEMI S.p.A. Method and system for transporting electric power in a link
CN2879209Y (zh) * 2006-03-06 2007-03-14 华东电力试验研究院 输电线路动态监测增容系统的在线监测装置
CN101034806A (zh) * 2006-03-06 2007-09-12 华东电力试验研究院 输电线路动态监测增容系统及其增容方法
CN102818643A (zh) * 2012-07-11 2012-12-12 广东电网公司电力科学研究院 一种高压输电线路导线动态增容用环境温度测量方法
CN103176086A (zh) * 2013-03-11 2013-06-26 河南省电力公司电力科学研究院 一种输电线路动态增容摩尔根载流量的监测方法
CN203519040U (zh) * 2013-08-20 2014-04-02 上海海能信息科技有限公司 一种输电线路负荷动态增容及在线监测系统
CN104242452A (zh) * 2014-09-22 2014-12-24 广州供电局有限公司 输电线路动态增容监测系统及其增容监测方法
CN104330659A (zh) * 2014-10-21 2015-02-04 国网上海市电力公司 一种基于电缆传热模型的准动态增容方法
CN104578058A (zh) * 2015-01-21 2015-04-29 上海海能信息科技有限公司 一种输电线路五要素负荷动态增容及在线监测系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
基于在线监测系统的输电线路动态增容研究;杨国庆;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20130315(第03期);全文 *
基于温度检测的输电线载流能力评估方法研究;尹国涛;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20120115(第01期);全文 *
架空导线动态增容的热路法暂态模型;刘刚;《电力系统自动化》;20120825;第36卷(第16期);第58-62页 *
架空导线动态增容的热路法稳态模型;刘刚 等;《高电压技术》;20130531;第39卷(第5期);第1107-1113页 *

Also Published As

Publication number Publication date
CN104897304A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
CN104897304B (zh) 一种用于输电线路动态增容的线路温度辨识方法
CN102508036B (zh) 盘式绝缘子污秽状态在线远程监测方法及装置
CN105337575B (zh) 光伏电站状态预测及故障诊断方法和系统
CN102313853B (zh) 高压输电线路动态输送容量测算系统及方法
CN103176086A (zh) 一种输电线路动态增容摩尔根载流量的监测方法
CN113964885A (zh) 一种基于态势感知的电网无功主动预测及控制技术
CN103235226B (zh) Oppc动态增容在线监测装置及监测方法
CN111864910A (zh) 一种具备负载优先级控制的输电线路多源数据融合装置及其控制方法
CN103926449A (zh) 电力电缆接地电流的自适应监测方法
CN103926484B (zh) 基于线路弧垂实时测量的输电线路动态增容方法
CN108549999A (zh) 基于风速区间的海上风电电能质量数据分析方法及系统
CN104578058A (zh) 一种输电线路五要素负荷动态增容及在线监测系统
CN109787295A (zh) 一种计及风电场状态的风电功率超短期预测计算方法
CN106600145A (zh) 一种配电网的可靠性分析方法及装置
Michiorri et al. Forecasting real-time ratings for electricity distribution networks using weather forecast data
CN105676015A (zh) 一种输电线路载流量计算方法
CN202548079U (zh) 一种盘式绝缘子污秽状态在线远程监测装置
CN112152206A (zh) 一种输电线路动态增容方法及系统
CN106408210B (zh) 基于输电线路动态增容的等效风速测量方法及其测量装置
CN113295961B (zh) 一种架空输电线路线夹发热预警和动态增容边缘计算方法
CN113887061A (zh) 一种计及多因素修正的输电线路动态增容系统
CN108512214A (zh) 一种基于负荷系数的电力线路的线损计算方法
CN107742886B (zh) 一种热电联合系统负荷峰值同时系数的预测方法
Wang et al. Dynamic Capacity Increasing Method For Transmission Lines
Zhu et al. Research on edge intelligence technology of power transmission line equipment internet of things

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant