WO2016059915A1 - ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法 - Google Patents

ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法 Download PDF

Info

Publication number
WO2016059915A1
WO2016059915A1 PCT/JP2015/075433 JP2015075433W WO2016059915A1 WO 2016059915 A1 WO2016059915 A1 WO 2016059915A1 JP 2015075433 W JP2015075433 W JP 2015075433W WO 2016059915 A1 WO2016059915 A1 WO 2016059915A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
workpiece
laser
laser light
processing apparatus
Prior art date
Application number
PCT/JP2015/075433
Other languages
English (en)
French (fr)
Inventor
かおり 臼田
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Priority to DE112015004727.1T priority Critical patent/DE112015004727T5/de
Priority to US15/517,705 priority patent/US10471537B2/en
Publication of WO2016059915A1 publication Critical patent/WO2016059915A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • B23K26/0617Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis and with spots spaced along the common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present invention relates to a direct diode laser processing apparatus and a sheet metal processing method using the same.
  • a laser processing apparatus for processing a sheet metal an apparatus using a carbon dioxide gas (CO 2 ) laser oscillator, a YAG laser oscillator, or a fiber laser oscillator as a laser light source is known.
  • CO 2 carbon dioxide gas
  • the fiber laser oscillator has advantages such as better light quality and extremely high oscillation efficiency than the YAG laser oscillator. For this reason, a fiber laser processing apparatus using a fiber laser oscillator is used for industrial purposes, particularly for sheet metal processing (cutting or welding).
  • DDL processing apparatus using a direct diode laser (DDL: Direct Diode Laser) oscillator as a laser light source
  • the DDL processing apparatus superimposes multiple-wavelength laser light using a plurality of laser diodes (LD) and transmits the laser light to the processing head using a transmission fiber. Then, the laser light emitted from the end face of the transmission fiber is condensed and irradiated on the workpiece by a collimator lens and a condenser lens.
  • LD laser diodes
  • Patent Document 1 in order to cut a thick plate, laser light of a single wavelength is condensed by a multifocal lens, It is known to form a plurality of focal points in the thickness direction of the workpiece.
  • Patent Document 1 does not perform processing using multi-wavelength laser light unlike a DDL processing apparatus, and at least one of a plurality of focal points in the thickness direction of the workpiece is the thickness of the workpiece.
  • the light intensity distribution in the thickness direction of the workpiece is not specifically studied.
  • Patent Document 1 the absorption rate at each beam waist is substantially uniform. For this reason, there is a problem that even if the effective Rayleigh length can be extended, it is not possible to cope with the change in absorption rate depending on the wavelength when processing using a multi-wavelength laser beam by the DDL processing apparatus. .
  • the present invention has been made in view of the above problems, and according to the present invention, when processing using multi-wavelength laser light, the light intensity in the thickness direction of the workpiece is cut by a thick plate.
  • a direct diode laser processing apparatus capable of providing a distribution suitable for the above and a sheet metal processing method using the same can be provided.
  • a laser oscillator that oscillates multi-wavelength laser light
  • a transmission fiber that transmits multi-wavelength laser light oscillated by the laser oscillator, and a multi-wavelength laser light transmitted by the transmission fiber
  • a laser processing machine for processing the workpiece by concentrating the light, and based on the wavelength dependence of the chromatic aberration of the multi-wavelength laser light and the emissivity of the workpiece, the light intensity in the thickness direction of the workpiece
  • a direct diode laser processing apparatus configured to have a plurality of peaks in a distribution and a sheet metal processing method using the same are provided.
  • FIG. 2A is a front view showing an example of a laser oscillator according to the embodiment of the present invention.
  • FIG. 2B is a side view showing an example of a laser oscillator according to the embodiment of the present invention.
  • It is the schematic which shows an example of the DDL module which concerns on embodiment of this invention.
  • It is the schematic which shows an example of the processing optical system which concerns on embodiment of this invention. It is a graph showing each wavelength beam radius with respect to the optical axis near a condensing point, and the synthetic beam radius of 4 wavelengths. It is a graph showing the peak intensity with respect to the optical axis near a condensing point. It is a graph showing the synthetic beam radius of 4 wavelengths which multiplied the absorption factor of iron and copper. It is a graph showing the peak intensity with respect to the optical axis which multiplied the absorption factor of iron and copper.
  • a DDL processing apparatus includes a laser oscillator 11 that oscillates multi-wavelength laser light LB, and a transmission fiber (process) that transmits the laser light LB oscillated by the laser oscillator 11.
  • Fiber) 12 and a laser beam machine 13 for condensing the laser beam LB transmitted by the transmission fiber 12 to a high energy density and irradiating the workpiece (workpiece) W.
  • the laser processing machine 13 includes a collimator unit 14 that converts the laser light LB emitted from the transmission fiber 12 into substantially parallel light by the collimator lens 15, and the laser light LB converted to substantially parallel light in the X-axis and Y-axis directions.
  • a bending mirror 16 that reflects downward in the Z-axis direction perpendicular to the laser beam, and a processing head 17 that condenses the laser beam LB reflected by the bending mirror 16 with a condenser lens 18.
  • a general lens such as a quartz plano-convex lens can be used.
  • a lens driving unit that drives the collimator lens 15 in a direction parallel to the optical axis (X-axis direction) is installed in the collimator unit 14.
  • the DDL processing apparatus further includes a control unit that controls the lens driving unit.
  • the laser processing machine 13 further includes a processing table 21 on which the workpiece W is placed, a portal X-axis carriage 22 that moves in the X-axis direction on the processing table 21, and an X-axis direction on the X-axis carriage 22. And a Y-axis carriage 23 that moves in the Y-axis direction perpendicular to the axis.
  • the X-axis carriage 22 has a pair of legs and is configured in a ⁇ shape (bridge shape) so as to straddle the non-processed material W.
  • the collimator lens 15 in the collimator unit 14, the bend mirror 16, and the condensing lens 18 in the processing head 17 are fixed to the Y-axis carriage 23 in a state where the optical axis has been adjusted in advance. Move in the axial direction. It is also possible to provide a Z-axis carriage that can move in the vertical direction with respect to the Y-axis carriage 23 and to provide the condenser lens 18 on the Z-axis carriage.
  • the DDL processing apparatus irradiates the workpiece W with the laser beam LB having the smallest condensing diameter (minimum condensing diameter) condensed by the condensing lens 18 and coaxially assist gas.
  • the X-axis carriage 22 and the Y-axis carriage 23 are moved while the melt is removed by spraying. Thereby, the DDL processing apparatus can cut the workpiece W.
  • the workpiece W include various materials such as stainless steel, mild steel, and aluminum.
  • the thickness of the workpiece W is, for example, about 0.1 mm to 100 mm. In the embodiment of the present invention, the thickness of the workpiece W is preferably 15 mm or more, may be 2 mm or more, and may be 30 mm. The thickness is preferably 100 mm or less.
  • the laser oscillator 11 will be described with reference to FIGS. 2A and 2B, the laser oscillator 11 includes a housing 60, the DDL module 10 housed in the housing 60 and connected to the transmission fiber 12, and the housing 60.
  • a power supply unit 61 that is housed in the DDL module 10 and supplies power to the DDL module 10
  • a control module 62 that is housed in the housing 60 and controls the output of the DDL module 10, and the like are provided.
  • An air conditioner 63 that adjusts the temperature and humidity in the housing 60 is installed outside the housing 60.
  • the DDL module 10 includes a DDL unit 10 a and a condensing lens 54 arranged at the subsequent stage of the DDL unit 10 a.
  • the DDL unit 10a includes a plurality of laser diodes (hereinafter referred to as “LD”) that output laser beams of multiple wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 ,..., ⁇ n (hereinafter referred to as ⁇ i ⁇ ). ) 3 1 , 3 2 , 3 3 ,... 3 n (n is an integer greater than or equal to 4), and LD 3 1 , 3 2 , 3 3 ,... 3 n are connected to fibers 4 1 , 4 2 , 4 3 , ... 4 n and a spectral beam combining unit 50 that performs spectral beam combining on the laser light of multiple wavelengths ⁇ i ⁇ .
  • LD laser diodes
  • the plurality of LD3 1 , 3 2 , 3 3 ,... 3 n (hereinafter referred to as a plurality of LD3), various semiconductor lasers can be employed.
  • the combination of the type and number of the plurality of LDs 3 is not particularly limited, and can be appropriately selected according to the purpose of sheet metal processing.
  • the wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 ,..., ⁇ n of the plurality of LDs 3 can be selected, for example, to be less than 1000 nm, selected from the range of 800 nm to 990 nm, or selected from the range of 910 nm to 950 nm. it can.
  • the laser light of multiple wavelengths ⁇ i ⁇ is controlled by group (block) management for each wavelength or wavelength band, and the output can be variably adjusted for each wavelength or wavelength band.
  • the output of the entire wavelength band can be adjusted so that the absorptance is constant.
  • the LDs 3 1 , 3 2 , 3 3 ,... 3 n are simultaneously operated, and an appropriate assist gas such as oxygen or nitrogen is blown near the focal position.
  • an appropriate assist gas such as oxygen or nitrogen
  • the laser beams of the respective wavelengths from the LD 3 1 , 3 2 , 3 3 ,... 3 n cooperate with each other and also with the assist gas such as oxygen to melt the workpiece at a high speed. Further, the molten work material is blown off by the assist gas, and the work is cut at a high speed.
  • the spectral beam combining unit 50 includes a fixing unit 51 that bundles and fixes the emission ends of the fibers 4 1 , 4 2 , 4 3 ,... 4 n to form a fiber array 4, and fibers 4 1 , 4 2 , 4 3. ,... 4 n Collimator lens 52 that collimates laser light from n, diffraction grating 53 that diffracts multi-wavelength ⁇ i ⁇ laser light and matches the optical axis, and a plurality of LDs 3
  • a partial reflection coupler 55 constituting a resonator is provided with a reflection surface provided at the end.
  • the arrangement position of the partial reflection coupler 55 is merely an example, and is not particularly limited thereto.
  • the DDL module 10 further includes DDL units 10b and 10c having a wavelength band different from that of the DDL unit 10a, and dichroic filters 56 and 57 disposed between the DDL unit 10a and the condenser lens 54.
  • the DDL units 10b and 10c have the same configuration as the DDL unit 10a except that the wavelength bands are different.
  • the wavelength band of the DDL unit 10a can be 900 nm or more and less than 1000 nm
  • the wavelength band of the DDL unit 10b can be 800 nm or more and less than 900 nm
  • the wavelength band of the DDL unit 10c can be 400 nm or more and less than 500 nm.
  • the output can be variably adjusted in units of DDL units 10a, 10b, and 10c (that is, in units of wavelength bands).
  • the dichroic filters 56 and 57 further spectrally combine the laser light combined with the spectral beam by the DDL unit 10a and the laser light combined with the spectral beam by the DDL units 10b and 10c, respectively.
  • the condensing lens 54 condenses the laser light from the dichroic filter 57 and makes it incident on the transmission fiber 12.
  • the DDL units 10b and 10c and the dichroic filters 56 and 57 may not be provided.
  • 3 shows three DDL units 10a, 10b, and 10c. However, two DDL units and one dichroic filter may not be provided, and four or more DDL units and three or more corresponding dichroic filters may be provided. You may have. Further, the wavelength bands and wavelength ranges of the DDL units 10a, 10b, and 10c are not particularly limited.
  • the beam waist (beam ⁇ west ⁇ diameter) for each wavelength of multi-wavelength laser light is, for example, about 100 ⁇ m to 400 ⁇ m, and these multiple diameters are used. Make multi-focus.
  • the beam waist is formed by an optical element having an incident diameter of the condenser lens 18 of about 2 mm to 20 mm and a focal length of 50 mm to 300 mm.
  • the axis perpendicular to the cut surface of the workpiece W is assumed to be an incident angle of 0 °, and when the incident angle is 0 to 40 °, the wavelength on the short wavelength side
  • the output of the band can be made higher than the wavelength band on the long wavelength side.
  • the cutting speed of the workpiece W can be selected, for example, in the range of 60 m / min to 250 m / min.
  • the emissivity of the workpiece W also varies depending on the wavelength.
  • the emissivity is a ratio in which the energy of light emitted from an object by thermal radiation is compared with a complete radiator (black body), and varies depending on the wavelength.
  • the emissivity and the absorptivity are equal according to Kirchhoff's law.
  • the shorter the wavelength the higher the emissivity, in other words, the shorter wavelength laser light has a higher energy absorption rate into the workpiece W.
  • the emissivity depends on the wavelength, varies depending on the material of the workpiece W, and also varies depending on the surface roughness and the state of the oxide film.
  • the wavelength dependence of the chromatic aberration and the emissivity of the workpiece W is effectively used so that the light intensity distribution forms a plurality of peaks in the thickness direction of the workpiece W.
  • the output of multi-wavelength laser light is controlled.
  • the shortest wavelength side peak among the plurality of peaks is located in the vicinity of the surface of the workpiece W.
  • two or more of the plurality of peaks are located within or near the range of the thickness of the workpiece W (the front surface or the back surface of the workpiece W).
  • the peak on the short wavelength side is preferably near the surface of the workpiece W
  • the peak on the long wavelength side is preferably near the back surface of the workpiece W.
  • the peak intensity on the short wavelength side is preferably larger than the peak intensity on the long wavelength side (the back surface side of the workpiece W).
  • the light intensity distribution including the positions and intensities of a plurality of peaks can be controlled by adjusting the output of multi-wavelength laser light in the laser oscillator 11.
  • laser beams having at least two wavelengths are output one by one from different blocks.
  • two peaks can be formed by outputting a combination of at least one laser beam having a wavelength band of 400 to 500 nm and a laser beam having a wavelength band of 800 to 1000 nm.
  • one peak can be formed and the peak intensity can be increased.
  • it is possible to increase the intensity of one peak by combining and outputting laser beams having three different wavelengths from the wavelength band of 800 to 1000 nm.
  • the thickness of the workpiece W such as a sheet metal is assumed to be 15 to 20 mm.
  • the laser oscillator 11 oscillates laser light having four wavelengths of 400 nm, 808 nm, 915 nm, and 980 nm to perform beam spectrum combination.
  • the laser beam after the beam spectrum combination is propagated through the transmission fiber 12.
  • the beam parameter product (BPP) of the LD was 8 mm ⁇ mrad for each wavelength.
  • the distance d0 between the exit end of the transmission fiber 12 and the collimator lens 15 was 97.8 mm
  • the distance d1 between the collimator lens 15 and the condenser lens 18 was 244.6 mm
  • the distances d2 between the condenser lens 18 and the beam waist (processing point) were set to 146.8 mm, 160.5 mm, 161.9 mm, and 162.6 mm at 400 nm, 808 nm, 915 nm, and 980 nm, respectively. Since the condensing point varies depending on chromatic aberration, the condensing point on the shortest wavelength (400 nm) side is matched with the surface of the workpiece W.
  • FIG. 5 shows the beam radius of each wavelength and the combined beam radius of 4 wavelengths with respect to the optical axis near the focal point.
  • the combined beam radius when there is no chromatic aberration in chromatic aberration correction or the like overlaps the beam radius of a single wavelength of 400 nm.
  • the beam radius is generally the distance from the optical axis of 1 / e 2 of the peak of the Gaussian intensity distribution, but the combined beam radius combines the intensity distribution with the output of each wavelength beam being the same, and 1 / e of the peak. 2 from the optical axis.
  • the 400 nm beam is condensed on the surface of the workpiece W.
  • FIG. 6 shows the relationship of peak intensity to the optical axis.
  • the peak intensity I the peak intensity at the condensing point of the combined beam when there is no aberration as a comparative example was set to 1.
  • a sufficient peak intensity can be obtained even near the surface of the workpiece W when a thick plate of 15 to 20 mm is cut, and the light intensity can be increased even when approaching the back side of the workpiece W. Can be maintained, and the occurrence of dross can be prevented.
  • the reflectance tends to be low (in other words, the absorptance is high).
  • iron has a reflectance of about 60% at a wavelength of about 1000 nm of laser light at room temperature, whereas the reflectance is reduced to about 40% at a wavelength of about 400 nm.
  • gold and copper have a remarkable tendency for the reflectance to decrease.
  • copper has a reflectivity of about 90% at a laser beam wavelength of about 1000 nm at room temperature, the reflectivity suddenly decreases from around the wavelength of 600 nm, and the reflectivity drops to about 30% at a wavelength of about 400 nm. To do.
  • the Fe absorptance was 53% at a wavelength of 400 nm, 45% at a wavelength of 808 nm, 42.5% at a wavelength of 915 nm, and 40% at a wavelength of 980 nm.
  • the Cu absorptance was 70% at a wavelength of 400 nm and 10% at a wavelength of 808 to 980 nm.
  • a light intensity distribution suitable for cutting a copper plate of about 15 mm to 20 mm as the workpiece W is formed. be able to.
  • the peak intensity on the surface side (short wavelength side) of the workpiece W is increased on the back side (long wavelength side). ) Peak intensity.
  • the longest wavelength from the uppermost end of the laser beam Rayleigh region of the focal length on the shortest wavelength side of the multi-wavelength laser beam that is, the region covered by the Rayleigh length above and below the beam waist in the laser beam. It is desirable that the distance to the lowest end of the Rayleigh region of the laser beam with the focal length on the side is substantially equal to the thickness of the workpiece.
  • the embodiment of the present invention when processing is performed using multi-wavelength laser light, based on the wavelength dependence of the chromatic aberration of the multi-wavelength laser light and the emissivity of the workpiece.
  • the output of the multi-wavelength laser light so as to have a plurality of peaks in the thickness direction of the work material, it is possible to obtain a light intensity distribution suitable for the work material W, particularly for cutting a thick plate It can be suitable for.
  • the present invention is not particularly limited thereto.
  • the number of peaks in the light intensity distribution may be three or more, and is determined as appropriate according to the type of workpiece W, the output of laser light, and the like.
  • the sheet metal processing by the DDL processing apparatus can be applied to various sheet metal processing such as laser forming processing, annealing, annealing, and ablation in addition to cutting processing.
  • a direct diode laser processing apparatus capable of making the light intensity in the thickness direction of a workpiece suitable for cutting a thick plate and A sheet metal processing method using the same can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

 多波長のレーザ光を発振するレーザ発振器と、レーザ発振器により発振された多波長のレーザ光を伝送する伝送ファイバと、伝送ファイバにより伝送された多波長のレーザ光を集光して被加工材を加工するレーザ加工機とを備え、多波長のレーザ光の色収差及び前記被加工材の放射率の波長依存性に基づいて、被加工材の厚さ方向における光強度分布が複数のピークを有する。

Description

ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
 本発明は、ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
に関する。
 従来、板金加工用のレーザ加工装置として、炭酸ガス(CO)レーザ発振器やYAGレーザ発振器、ファイバレーザ発振器をレーザ光源として用いたものが知られている。ファイバレーザ発振器は、YAGレーザ発振器よりも光品質に優れ、発振効率が極めて高い等の利点を有する。このため、ファイバレーザ発振器を用いたファイバレーザ加工装置は、産業用、特に板金加工用(切断又は溶接等)に利用されている。
 更に近年では、ダイレクトダイオードレーザ(DDL:Direct Diode Laser)発振器をレーザ光源として用いるDDL加工装置が開発されている。DDL加工装置は、複数のレーザダイオード(LD:Laser Diode)を用いて多波長(multiple-wavelength)のレーザ光を重畳し、伝送ファイバを用いて加工ヘッドまで伝送する。そして、伝送ファイバの端面から射出されたレーザ光は、コリメータレンズ及び集光レンズ等により被加工材上に集光されて照射される。
 ところで、ファイバレーザ加工装置に関して、国際公開公報WO2010/034603号(特許文献1)に例示されるように、厚板を切断するために、単波長のレーザ光を多焦点レンズにより集光し、被加工材の厚さ方向において複数の焦点を形成することが知られている。
 しかしながら、特許文献1は、DDL加工装置のように多波長のレーザ光を用いて加工を行うものではないうえ、被加工材の厚さ方向の複数の焦点の少なくとも一つを被加工材の厚さ範囲内に位置させるに留まり、被加工材の厚さ方向においてどのような光強度分布とするかは具体的に検討されていない。
 また、特許文献1では、各ビームウエストでの吸収率は略一様である。このため、実効的なレイリー長を伸ばすことはできても、DDL加工装置により多波長のレーザ光を用いて加工する際の、波長に依存した吸収率の変化には対応できないという課題があった。
 本発明は上記課題に鑑みて成されたものであり、本発明によれば、多波長のレーザ光を用いて加工を行う際に、被加工材の厚さ方向における光強度を厚板の切断に適した分布とすることができるダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法を提供することができる。
 本発明の一態様によれば、多波長のレーザ光を発振するレーザ発振器と、レーザ発振器により発振された多波長のレーザ光を伝送する伝送ファイバと、伝送ファイバにより伝送された多波長のレーザ光を集光して被加工材を加工するレーザ加工機とを備え、多波長のレーザ光の色収差及び被加工材の放射率の波長依存性に基づいて、被加工材の厚さ方向における光強度分布が複数のピークを有するように構成されるダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法が提供される。
本発明の実施形態に係るDDL加工装置の一例を示す斜視図である。 図2(a)は、本発明の実施形態に係るレーザ発振器の一例を示す正面図である。図2(b)は、本発明の実施形態に係るレーザ発振器の一例を示す側面図である。 本発明の実施形態に係るDDLモジュールの一例を示す概略図である。 本発明の実施形態に係る加工光学系の一例を示す概略図である。 集光点付近の光軸に対する各波長ビーム半径及び4波長の合成ビーム半径を表すグラフである。 集光点付近の光軸に対するピーク強度を表すグラフである。 鉄と銅の吸収率を乗じた4波長の合成ビーム半径を表すグラフである。 鉄と銅の吸収率を乗じた光軸に対するピーク強度を表すグラフである。
 図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 図1を参照して、本発明の実施形態に係るダイレクトダイオードレーザ(以下、「DDL」という)加工装置の全体構成を説明する。本発明の実施形態に係るDDL加工装置は、図1に示すように、多波長のレーザ光LBを発振するレーザ発振器11と、レーザ発振器11により発振されたレーザ光LBを伝送する伝送ファイバ(プロセスファイバ)12と、伝送ファイバ12により伝送されたレーザ光LBを高エネルギー密度に集光させて被加工材(ワーク)Wに照射するレーザ加工機13とを備える。
 レーザ加工機13は、伝送ファイバ12から射出されたレーザ光LBをコリメータレンズ15で略平行光に変換するコリメータユニット14と、略平行光に変換されたレーザ光LBを、X軸及びY軸方向に垂直なZ軸方向下方に向けて反射するベンドミラー16と、ベンドミラー16により反射されたレーザ光LBを集光レンズ18で集光する加工ヘッド17とを備える。コリメータレンズ15及び集光レンズ18としては、例えば石英製の平凸レンズ等の一般的なレンズが使用可能である。
 なお、図1では図示を省略するが、コリメータユニット14内には、コリメータレンズ15を光軸に平行な方向(X軸方向)に駆動するレンズ駆動部が設置されている。また、DDL加工装置は、レンズ駆動部を制御する制御部を更に備える。
 レーザ加工機13は更に、被加工材Wが載置される加工テーブル21と、加工テーブル21上においてX軸方向に移動する門型のX軸キャリッジ22と、X軸キャリッジ22上においてX軸方向に垂直なY軸方向に移動するY軸キャリッジ23とを備える。ここで、X軸キャリッジ22は一対の脚部を有し非加工材Wをまたぐようにπ形状(ブリッジ形)に構成される。コリメータユニット14内のコリメータレンズ15、ベンドミラー16、及び加工ヘッド17内の集光レンズ18は、予め光軸の調整が成された状態でY軸キャリッジ23に固定され、Y軸キャリッジ23と共にY軸方向に移動する。なおY軸キャリッジ23に対して上下方向へ移動可能なZ軸キャリッジを設け、当該Z軸キャリッジに集光レンズ18を設けることも出来る。
 本発明の実施形態に係るDDL加工装置は、集光レンズ18により集光されて最も小さい集光直径(最小集光直径)のレーザ光LBを被加工材Wに照射し、また同軸にアシストガスを噴射して溶融物を除去しながら、X軸キャリッジ22及びY軸キャリッジ23を移動させる。これにより、DDL加工装置は被加工材Wを切断加工することができる。被加工材Wとしては、ステンレス鋼、軟鋼、アルミニウム等の種々の材料が挙げられる。被加工材Wの厚さは、例えば0.1mm~100mm程度である。本発明の実施形態においては、被加工材Wの厚さは、15mm以上であるのが好ましく、2mm以上でも良く、また30mmでも良い。また当該厚さは、100mm以下であるのが好ましい。
 図2及び図3を参照して、レーザ発振器11について説明する。レーザ発振器11は、図2(a)及び図2(b)に示すように、筐体60と、筐体60内に収容され、伝送ファイバ12に接続されているDDLモジュール10と、筐体60内に収容され、DDLモジュール10に電力を供給する電源部61と、筐体60内に収容され、DDLモジュール10の出力等を制御する制御モジュール62等が設けられる。また、筐体60の外側には、筐体60内の温度及び湿度を調整する空調機器63が設置される。
 DDLモジュール10は、図3に示すように、DDLユニット10aと、DDLユニット10aの後段に配置された集光レンズ54を備える。DDLユニット10aは、多波長λ,λ,λ,・・・,λ(以下{λ}と表記する。)のレーザ光を出力する複数のレーザダイオード(以下、「LD」という)3,3,3,・・・3(nは4以上の整数)と、LD3,3,3,・・・3にファイバ4,4,4,・・・4を介して接続され、多波長{λ}のレーザ光に対してスペクトルビーム結合(spectral beam combining)を行うスペクトルビーム結合部50とを備える。
 複数のLD3,3,3,・・・3(以下複数のLD3という。)としては、各種の半導体レーザが採用可能である。複数のLD3の種類と数の組み合わせは特に限定されず、板金加工の目的に合わせて適宜選択可能である。複数のLD3の波長λ,λ,λ,・・・,λは、例えば1000nm未満で選択したり、800nm~990nmの範囲で選択したり、910nm~950nmの範囲で選択することができる。
 多波長{λ}のレーザ光は、例えば、波長毎又は波長帯域毎に群(ブロック)管理されて制御され、波長毎又は波長帯域毎に個別に出力を可変調節することができる。また、全波長帯域の出力を吸収率が一定となるよう調整することができる。
 切断加工に際しては、各LD3,3,3,・・・3を同時に動作させると共に、酸素、窒素等の適宜のアシストガスを焦点位置近傍へ吹き付ける。これにより、LD3,3,3,・・・3からの各波長のレーザ光が、相互に協働すると共に、酸素等のアシストガスとも協働してワークを高速で溶融する。また当該溶融ワーク材料がアシストガスにより吹き飛ばされてワークが高速で切断される。
 スペクトルビーム結合部50は、ファイバ4,4,4,・・・4の射出端側を束ねて固定しファイバアレイ4とする固定部51と、ファイバ4,4,4,・・・4からのレーザ光を平行光にするコリメータレンズ52と、多波長{λ}のレーザ光を回折し光軸を一致させる回折格子(diffraction grating)53と、複数のLD3後端部に設けた反射面と共に共振器を構成する部分反射カプラ55を備える。なお、部分反射カプラ55の配置位置は一例であり、これに特に限定されるものではない。
 DDLモジュール10は更に、図3に示すように、DDLユニット10aとは波長帯域が異なるDDLユニット10b,10cと、DDLユニット10aと集光レンズ54との間に配置されたダイクロイックフィルタ56,57とを有する。DDLユニット10b,10cは、波長帯域が異なる以外はDDLユニット10aと同様の構成を有する。例えば、DDLユニット10aの波長帯域が900nm以上、1000nm未満であり、DDLユニット10bの波長帯域が800nm以上、900nm未満であり、DDLユニット10cの波長帯域が400nm以上、500nm未満とすることができる。また、DDLユニット10a,10b,10cの単位(即ち、波長帯域単位)で出力を可変調節することができる。
 ダイクロイックフィルタ56,57は、DDLユニット10aでスペクトルビーム結合したレーザ光と、DDLユニット10b,10cでそれぞれスペクトルビーム結合したレーザ光とを更にスペクトルビーム結合する。集光レンズ54は、ダイクロイックフィルタ57からのレーザ光を集光して伝送ファイバ12へ入射させる。なお、波長範囲が比較的狭い場合には、DDLユニット10b,10c及びダイクロイックフィルタ56,57を備えなくてもよい。また、図3では3つのDDLユニット10a,10b,10cを示したが、2つのDDLユニット及び1つのダイクロイックフィルタを備えなくてもよく、4つ以上のDDLユニット及び3つ以上の対応するダイクロイックフィルタを有してもよい。また、DDLユニット10a,10b,10cのそれぞれの波長帯域及び波長範囲は特に限定されない。
 このようなDDL加工装置による切断加工等の加工においては、多波長のレーザ光の波長毎のビームウエスト(beam west diameter)は、例えば100μm~400μm程度であって、これら複数の径で以って多焦点をなす。ビームウエストは、集光レンズ18の入射径が2mm~20mm程度であって、焦点距離が50mm~300mmである光学要素により形成される。レーザ発振器11の波長毎又は波長帯域毎の制御の出力可変調節において、被加工材Wの切断面に垂直な軸を入射角0°として、入射角が0~40°においては短波長側の波長帯域の出力を、長波長側の波長帯域より高めることができる。被加工材Wの切断速度は、例えば60m/min~250m/minの範囲で選択できる。
 本発明の実施形態に係るDDL加工装置においては、多波長のレーザ光を集光して加工を行うため、波長に依存して色収差が発生し、被加工材Wの厚さ方向に複数の焦点が形成される。一方、被加工材Wの放射率も波長に依存して変化する。ここで、放射率は、物体が熱放射で放出する光のエネルギーを完全放射体(黒体)と比較した比率であり波長により異なる。また、キルヒホッフの法則により放射率と吸収率は等しい。一般的には、波長が短くなるほど放射率が高く、換言すれば、短波長のレーザ光の方が被加工材Wへのエネルギー吸収率が高い。なお、放射率は波長に依存する他、被加工材Wの物質によっても異なり、更にはその表面粗さや酸化皮膜の状態によっても変化する。
 そこで、本発明の実施形態では、この色収差及び被加工材Wの放射率の波長依存性を有効に利用して、被加工材Wの厚さ方向において光強度分布が複数のピークを形成するように多波長のレーザ光の出力を制御する。その際、複数のピークのうちの最も短波長側のピークが、被加工材Wの表面近傍に位置するのが好ましい。これにより、被加工材Wの表面近傍の光強度を高めることができ、切断加工等の加工の高速化を図ることができる。
 複数のピークのうちの2つ以上のピークは、被加工材Wの厚さ(被加工材Wの表面乃至裏面)の範囲内又はその近傍に位置するのが好ましい。例えば、2つのピークを有しており、短波長側のピークが被加工材Wの表面近傍にあり、長波長側のピークが被加工材Wの裏面近傍にあることが好ましい。これにより、被加工材Wの表面近傍を抜けてからも、裏面近傍まで光強度を維持することができ、ドロスの発生を防止することができる。
 複数のピークのうちの短波長側(被加工材Wの表面側)のピークの強度は、長波長側(被加工材Wの裏面側)のピークの強度よりも大きいことが好ましい。これにより、被加工材Wの表面側において最も光強度を高めることができるので、切断加工等に適した光強度を維持することができる。
 複数のピークの位置及び強度を含む光強度分布は、レーザ発振器11において多波長のレーザ光の出力を調整することにより制御することができる。例えば、レーザ発振器11がDDLユニット10a,10b,10c毎のように波長帯域毎に群(ブロック)管理している場合には、異なるブロックから1つずつ、少なくとも2つの波長のレーザ光を出力する。例えば、400~500nmの波長帯域の波長のレーザ光と、800~1000nmの波長帯域の波長のレーザ光とを、少なくとも1つずつ組み合わせて出力することにより、2つのピークを形成することができる。
 また、同一ブロック内で比較的近い2つ以上の波長のレーザ光を出力することにより、1つのピークを形成し、且つそのピーク強度を高めることができる。例えば、800~1000nmの波長帯域から3つの異なる波長のレーザ光を組み合わせて出力することにより、1つのピークの強度を高めて形成することができる。
 <実施例>
 次に、本発明の実施形態に係るDDL加工装置を用いた切断加工の実施例を説明する。この実施例では、板金の如き被加工材Wの板厚として15~20mmを想定している。レーザ発振器11において、400nm、808nm、915nm、980nmの4つの波長のレーザ光を発振し、ビームスペクトル結合を行う。ビームスペクトル結合後のレーザ光を伝送ファイバ12にて伝搬する。伝送ファイバ12から射出されたレーザ光を、コリメータレンズ15として一般的な合成石英製の平凸レンズ(f=100mm、設計波長546.1nm)を用いてコリメートし、集光レンズ18として合成石英製の平凸レンズ(f=150mm、設計波長546.1nm)を用いて集光する。なお、LDのビームパラメータ積(BPP)は各波長とも8mm・mradとした。
 図4に示すように、伝送ファイバ12の射出端とコリメータレンズ15との距離d0を97.8mm、コリメータレンズ15と集光レンズ18との距離d1を244.6mmとした。集光レンズ18とビームウエスト(加工点)との距離d2は、400nm、808nm、915nm、980nmでそれぞれ、146.8mm、160.5mm、161.9mm、162.6mmとした。色収差により集光点が異なるため、最も短波長(400nm)側の集光点を、被加工材Wの表面に一致させる。
 図5に、集光点付近の光軸に対する各波長のビーム半径及び4波長の合成ビーム半径を示す。光軸Z=0mm(f=150mm、集光レンズ18主点からの距離146.8mm)が被加工材Wの表面であり、光軸の正の方向が被加工材Wの厚さ方向である。なお、比較例としての、色収差補正などで色収差がないときの合成ビーム半径は、単波長の400nmのビーム半径と重なる。ビーム半径は、一般的にガウシアン強度分布のピークの1/eの光軸からの距離であるが、合成ビーム半径は各波長ビームの出力を同じとして強度分布を合成し、ピークの1/eの光軸からの距離とする。
 図5から理解されるように、この実施例では、400nmのビームは、被加工材Wの表面で集光する。一方、808nm、815nm、890nmのビームはZ=14mm~16mmに集光する。従って、被加工材Wの板厚が15mm程度の場合は、808nm、815nm、890nmのビームは何れも被加工材Wの裏面近傍で集光し、板厚が15mm以上の場合は、被加工材Wの裏面に近い内部で集光する。
 図6に、光軸に対するピーク強度の関係を表わす。ピーク強度Iは比較例としての収差がないときの合成ビームの集光点でのピーク強度を1とした。図6に示すように、収差がないときの合成ビームでは、Z=0mmに高いピークがあるが、厚さ方向へ急激に強度が小さくなっていることが分かる。従って、比較例のように、収差がないときの合成ビームで厚板切断を行うと、被加工材W表面では十分なピーク強度を得られるが、過剰な光強度となりやすく、被加工材Wが厚くなるほど被加工材Wの裏面に近づいたときのピーク強度が低くなり、ドロスが発生しやすくなる。
 一方、図6に示すように、本発明の実施例である収差がある合成ビームでは、Z=0mmとZ=15mmに2つのピークを有する。Z=0mmのピークは、波長400nmのレーザ光が寄与して形成されており、Z=15mmのピークは、3つの波長808nm、915nm、980nmのレーザ光が寄与して形成されている。このような合成ビームを用いれば、15~20mmの厚板を切断するときに、被加工材W表面近傍でも十分なピーク強度を得られ、被加工材Wの裏面側に近づいても光強度を維持することができ、ドロスの発生を防止することができる。
 なお、図5及び図6においては、全ての光が光軸Zまで届くとしているが、実際は、Z>0のポイントでは切断被加工材Wのカーフ幅を超える光、つまりビームの裾側は被加工材Wの表面で蹴られ、ピーク強度の高い中心部分だけがZ>0のポイントまで届く。カーフで蹴られる光は、切断周辺の被加工材Wの温度を上げることによって、切断を促している。
 レーザ光の波長と反射率の関係について説明する。多くの金属材料において、レーザ光の波長が短くなると反射率が低くなる(換言すれば、吸収率が高くなる)傾向がみられる。例えば、鉄は、常温においてレーザ光の波長1000nm程度では反射率は60%程度であるのに対して、波長400nm程度では反射率は40%程度まで低下する。特に金や銅は、反射率が低下する傾向が顕著である。例えば銅は、常温においてレーザ光の波長1000nm程度では反射率は90%程度であるのに対して、波長600nm付近から急激に反射率が低くなり、波長400nm程度では反射率は30%程度まで低下する。
 上記図5及び図6において、鉄と銅の吸収率(=100%-反射率%)を乗じたものを図7及び図8にそれぞれ示す。Fe吸収率は、波長400nmで53%、波長808nmで45%、波長915nmで42.5%、波長980nmで40%とした。Cu吸収率は、波長400nmで70%、波長808~980nmで10%とした。特に銅の場合、波長400nmにて他の波長に対して7倍の吸収率であるため、被加工材の裏面側(Z=15mm)のピークよりも、被加工材の表面側(Z=0)のピークが高く、好ましい光強度分布となる。
 したがって、図5及び図6に示す合成ビームとなるように多波長のレーザ光の出力を制御することにより、被加工材Wとして15mm~20mm程度の銅板の切断に適した光強度分布を形成することができる。一方、被加工材Wが鉄の場合には、被加工材の裏面側(Z=15mm)のピークよりも、被加工材の表面側(Z=0)のピークが低くなっているが、長波長(808~980nm)側の出力に対して短波長(400nm)側の出力を相対的に高めることにより、被加工材Wの表面側(短波長側)のピーク強度を裏面側(長波長側)のピーク強度よりも大きくすることができる。
 なお上記において、多波長のレーザ光の最も短波長側の焦点距離のレーザ光のレイリー領域、すなわち当該レーザ光において、ビームウエストの上下のレイリー長でカバーされる領域の最上端から、最も長波長側の焦点距離のレーザ光のレイリー領域の最下端までの距離が、ワークの板厚とほぼ等しいのが望ましい。
 以上説明したように、本発明の実施形態によれば、多波長のレーザ光を用いて加工を行う際に、多波長のレーザ光の色収差及び被加工材の放射率の波長依存性に基づいて、被加工材の厚さ方向に複数のピークを有するように多波長のレーザ光の出力を制御することにより、被加工材Wに適した光強度分布とすることができ、特に厚板の切断に適したものとすることができる。
 また、複数のLD3を同時に動作させると共に、酸素、窒素等の適宜のアシストガスを焦点位置近傍へ吹き付けることにより、高速切断が可能となる。
 (その他の実施形態)
 本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 本発明の実施形態では、光強度分布が2つのピークを有する場合を主に説明したが、特にこれに限定されない。光強度分布のピーク数は3つ以上であってもよく、被加工材Wの種類やレーザ光の出力等に応じて適宜決定される。
 本発明の実施形態に係るDDL加工装置による板金加工としては、切断加工の他にも、レーザフォーミング加工、焼鈍、アニーリング及びアブレーション等の種々の板金加工に適用可能である。
 このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 本発明によれば、多波長のレーザ光を用いて加工を行う際に、被加工材の厚さ方向における光強度を厚板の切断に適した分布とすることができるダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法を提供することができる。
 (米国指定)
 本国際特許出願は米国指定に関し、2014年10月14日に出願された日本国特許出願第2014-209908号について米国特許法第119条(a)に基づく優先権の利益を援用し、当該開示内容を引用する。
 

Claims (13)

  1.  多波長のレーザ光を発振するレーザ発振器と、
     前記レーザ発振器により発振された多波長のレーザ光を伝送する伝送ファイバと、
     前記伝送ファイバにより伝送された多波長のレーザ光を集光して被加工材を加工するレーザ加工機とを備え、
     前記多波長のレーザ光の色収差及び前記被加工材の放射率の波長依存性に基づいて、前記被加工材の厚さ方向における光強度分布が複数のピークを有することを特徴とするダイレクトダイオードレーザ加工装置。
  2.  前記被加工材の厚さの範囲内に2つのピークを有することを特徴とする請求項1に記載のダイレクトダイオードレーザ加工装置。
  3.  前記被加工材の表面側のピークが前記被加工材の表面近傍に位置し、前記被加工材の裏面側のピークが前記被加工材の裏面近傍に位置することを特徴とする請求項1又は2に記載のダイレクトダイオードレーザ加工装置。
  4.  前記被加工材の表面側のピークが前記被加工材の裏面側のピークよりも大きいことを特徴とする請求項1~3のいずれか1項に記載のダイレクトダイオードレーザ加工装置。
  5.  前記多波長のレーザ光は、400nm~1000nmの範囲の波長を有することを特徴とする請求項1~4のいずれか1項に記載のダイレクトダイオードレーザ加工装置。
  6.  前記多波長のレーザ光は、400~500nmの範囲の少なくとも1つの波長のレーザ光と、800~1000nmの範囲の少なくとも1つの波長のレーザ光とを組み合わせることを特徴とする請求項1~5のいずれか1項に記載のダイレクトダイオードレーザ加工装置。
  7.  前記被加工材の板厚が15mm~20mmであることを特徴とする請求項1~6のいずれか1項に記載のダイレクトダイオードレーザ加工装置。
  8.  前記レーザ発振器が、前記多波長のレーザ光を波長毎又は波長帯域毎に出力を制御することを特徴とする請求項1~7のいずれか1項に記載のダイレクトダイオードレーザ加工装置。
  9.  前記被加工材の長波長側の反射率が、短波長側の反射率よりも高いほど、前記多波長のレーザ光の低波長側の出力を高めることを特徴とする請求項1~4のいずれか1項に記載のダイレクトダイオードレーザ加工装置。
  10.  前記多波長のレーザ光の最も短波長側の焦点距離のレーザ光のレイリー領域の最上端から、最も長波長側の焦点距離のレーザ光のレイリー領域の最下端までの距離は、前記被加工材の板厚と略等しいことを特徴とする請求項1~8のいずれか1項に記載のダイレクトダイオードレーザ加工装置。
  11.  請求項1~10のいずれか1項に記載のダイレクトダイオードレーザ加工装置を用いて、板厚15mm~20mmの板金の加工方法であって、
     前記板金の厚さ方向に異なる焦点位置を有する多波長のレーザ光を、前記板金の所定加工位置に同時に照射するステップと、
     アシストガスを当該加工位置へ吹き付けるステップ
     と、を含むことを特徴とする板金の加工方法。
  12.  多波長のレーザ光を発振するレーザ発振器と、前記レーザ発振器により発振された多波長のレーザ光を伝送する伝送ファイバと、前記伝送ファイバにより伝送された多波長のレーザ光を集光して被加工材を加工するレーザ加工機とを備えたダイレクトダイオードレーザ加工装置を用いた板金の加工方法であって、
     前記多波長のレーザ光のうち、短波長のレーザ光を前記板金の表面に集光し、長波長のレーザ光を、前記板金内部に集光することを特徴とする板金の加工方法。
  13.  前記長波長のレーザ光は、前記板金の裏面近傍に集光されることを特徴とする請求項12に記載の板金の加工方法。
     
PCT/JP2015/075433 2014-10-14 2015-09-08 ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法 WO2016059915A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112015004727.1T DE112015004727T5 (de) 2014-10-14 2015-09-08 Einrichtung zur maschinellen Bearbeitung mit direktem Diodenlaser und maschinelles Bearbeitungsverfahren für Bleche unter Anwendung derselben
US15/517,705 US10471537B2 (en) 2014-10-14 2015-09-08 Direct diode laser processing apparatus and sheet metal processing method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014209908A JP5965454B2 (ja) 2014-10-14 2014-10-14 ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
JP2014-209908 2014-10-14

Publications (1)

Publication Number Publication Date
WO2016059915A1 true WO2016059915A1 (ja) 2016-04-21

Family

ID=55746463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075433 WO2016059915A1 (ja) 2014-10-14 2015-09-08 ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法

Country Status (4)

Country Link
US (1) US10471537B2 (ja)
JP (1) JP5965454B2 (ja)
DE (1) DE112015004727T5 (ja)
WO (1) WO2016059915A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602159B (zh) * 2016-01-28 2020-09-29 浜松光子学株式会社 激光加工装置及激光输出装置
KR102396804B1 (ko) * 2016-11-23 2022-05-11 아뻬랑 이동하는 금속 제품의 레이저 스트리핑 방법 및 그 실행을 위한 플랜트
JP7065323B2 (ja) * 2017-02-09 2022-05-12 パナソニックIpマネジメント株式会社 全固体電池およびその製造方法
US10864600B2 (en) 2017-03-21 2020-12-15 Mitsubishi Electric Corporation Laser machining device
JP6674422B2 (ja) * 2017-09-14 2020-04-01 フタバ産業株式会社 レーザ溶接装置、及び、部材の製造方法
DE102020205948A1 (de) 2020-05-12 2021-11-18 Trumpf Laser- Und Systemtechnik Gmbh Laserschneidverfahren und Laserschneidanlage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061667A (ja) * 1998-08-19 2000-02-29 Junichi Ikeno ガラスのレーザ加工方法及びガラス成形品
JP2006525874A (ja) * 2003-05-30 2006-11-16 エグシル テクノロジー リミテッド 2焦点への光ビームの集束
JP2009541091A (ja) * 2006-06-19 2009-11-26 イーストマン コダック カンパニー フレキソ印刷用印刷版の直接彫刻
JP2010158686A (ja) * 2009-01-06 2010-07-22 Disco Abrasive Syst Ltd レーザ加工用光学装置、レーザ加工装置およびレーザ加工方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869999A (en) * 1986-08-08 1989-09-26 Hitachi, Ltd. Method of forming pattern and projection aligner for carrying out the same
US5579044A (en) * 1993-08-20 1996-11-26 Intergraph Corporation Digital proofing system
DE19544502C1 (de) * 1995-11-29 1997-05-15 Baasel Scheel Lasergraphics Gm Lasergravuranlage
US6535531B1 (en) * 2001-11-29 2003-03-18 Cymer, Inc. Gas discharge laser with pulse multiplier
US7088758B2 (en) * 2001-07-27 2006-08-08 Cymer, Inc. Relax gas discharge laser lithography light source
JP4182034B2 (ja) * 2004-08-05 2008-11-19 ファナック株式会社 切断加工用レーザ装置
FR2897007B1 (fr) * 2006-02-03 2008-04-11 Air Liquide Procede de coupage avec un laser a fibre avec controle des parametres du faisceau
JP2007250947A (ja) * 2006-03-17 2007-09-27 Canon Inc 露光装置および像面検出方法
JP2007329432A (ja) * 2006-06-09 2007-12-20 Canon Inc 露光装置
US8621996B2 (en) * 2007-08-27 2014-01-07 Eastman Kodak Company Engraving of printing plates
US20100072182A1 (en) 2008-09-25 2010-03-25 Air Liquide Industrial Us Lp Fiber Laser Cutting Process with Multiple Foci
ITTO20110352A1 (it) * 2011-04-21 2012-10-22 Adige Spa Metodo per il controllo di un processo di taglio laser e sistema di taglio laser implementante tale metodo
JP6018744B2 (ja) * 2011-11-02 2016-11-02 日酸Tanaka株式会社 レーザ切断方法及びレーザ切断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061667A (ja) * 1998-08-19 2000-02-29 Junichi Ikeno ガラスのレーザ加工方法及びガラス成形品
JP2006525874A (ja) * 2003-05-30 2006-11-16 エグシル テクノロジー リミテッド 2焦点への光ビームの集束
JP2009541091A (ja) * 2006-06-19 2009-11-26 イーストマン コダック カンパニー フレキソ印刷用印刷版の直接彫刻
JP2010158686A (ja) * 2009-01-06 2010-07-22 Disco Abrasive Syst Ltd レーザ加工用光学装置、レーザ加工装置およびレーザ加工方法

Also Published As

Publication number Publication date
JP2016078048A (ja) 2016-05-16
US10471537B2 (en) 2019-11-12
JP5965454B2 (ja) 2016-08-03
DE112015004727T5 (de) 2017-07-06
US20170304941A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2016059915A1 (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
JP5919356B2 (ja) レーザ光による板金の加工方法及びこれを実行するレーザ加工装置
WO2017168857A1 (ja) レーザ加工機
US10300558B2 (en) Laser processing machine and laser cutting method
JP2016112609A (ja) レーザ切断装置およびレーザ切断方法
JP2016078047A (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた板金加工方法
WO2016059936A1 (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
JP2017185543A (ja) レーザ加工機
JP6043773B2 (ja) ダイレクトダイオードレーザ光による板金の加工方法及びこれを実行するダイレクトダイオードレーザ加工装置
JP2016078051A (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
JP2016081994A (ja) ダイレクトダイオードレーザ発振器
JP6035304B2 (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
JP2023015423A (ja) レーザ加工装置
JP2016221579A (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
WO2016059993A1 (ja) ダイレクトダイオードレーザ発振器、ダイレクトダイオードレーザ加工装置及び反射光検出方法
JP6035303B2 (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた金属板の加工方法
JP6937865B2 (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
JP7398649B2 (ja) レーザ加工装置およびレーザ加工方法
JP2016078043A (ja) レーザ加工機
JP2016153143A (ja) ダイレクトダイオードレーザ光による板金の加工方法及びこれを実行するダイレクトダイオードレーザ加工装置
JP4716281B2 (ja) アルミニウム溶接用二波長レーザ加工光学装置およびアルミニウム溶接用レーザ加工方法
JP4716281B6 (ja) アルミニウム溶接用二波長レーザ加工光学装置およびアルミニウム溶接用レーザ加工方法
JP6197084B2 (ja) レーザ加工機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850926

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15517705

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015004727

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850926

Country of ref document: EP

Kind code of ref document: A1