WO2016056299A1 - 位置指示器 - Google Patents

位置指示器 Download PDF

Info

Publication number
WO2016056299A1
WO2016056299A1 PCT/JP2015/072719 JP2015072719W WO2016056299A1 WO 2016056299 A1 WO2016056299 A1 WO 2016056299A1 JP 2015072719 W JP2015072719 W JP 2015072719W WO 2016056299 A1 WO2016056299 A1 WO 2016056299A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
position indicator
resonance
resonance circuit
Prior art date
Application number
PCT/JP2015/072719
Other languages
English (en)
French (fr)
Inventor
雅充 伊藤
英隆 滝口
滋 山下
Original Assignee
株式会社ワコム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワコム filed Critical 株式会社ワコム
Priority to EP15849652.1A priority Critical patent/EP3206111B1/en
Priority to CN201580051102.9A priority patent/CN107077225B/zh
Priority to KR1020177009098A priority patent/KR102344098B1/ko
Priority to JP2015551638A priority patent/JP5856363B1/ja
Publication of WO2016056299A1 publication Critical patent/WO2016056299A1/ja
Priority to US15/455,777 priority patent/US10452161B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03548Sliders, in which the moving part moves in a plane
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • G06F3/0383Signal control means within the pointing device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04162Control or interface arrangements specially adapted for digitisers for exchanging data with external devices, e.g. smart pens, via the digitiser sensing hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means

Definitions

  • the present invention relates to a position indicator that includes a resonance circuit including at least an inductance element and a capacitance element, and is used with a position detection device.
  • an AC signal (radio wave) is transmitted and received between the position detection device (tablet) and the position indicator, and the coordinate value of the indicated position on the sensor of the position detection device by the position indicator is obtained.
  • a device that can be detected by a position detecting device has been conventionally used (see, for example, Japanese Patent Laid-Open No. 63-70326).
  • a radio wave of a predetermined frequency is transmitted from a loop coil of a sensor and received by a resonance circuit provided in the position indicator. Then, the loop coil of the sensor is switched to the receiving state, and the loop coil receives the radio wave transmitted from the resonance circuit of the position indicator that has received the radio wave, thereby generating an induced voltage.
  • the above processing is repeatedly executed by sequentially switching a plurality of loop coils of the sensor, and the coordinate value of the indicated position by the position indicator is obtained based on the level of the induced voltage generated in each loop coil.
  • a resonance circuit comprising a parallel connection of a coil as an example of an inductance element and a capacitor as an example of a capacitance element is provided.
  • a variable capacitor whose capacitance continuously changes according to the writing pressure applied to the core of the position indicator is used.
  • the resonance point (resonance frequency and phase) of the resonance circuit of the position indicator is Not only does it change according to the change in the capacitance of the variable capacitor according to the change in pressure, but it also changes due to the influence of the metal present nearby. Therefore, in the case of the pen pressure detection method in the position detection device of Patent Document 2, even if no pen pressure is applied to the core of the position indicator, the pen pressure is detected as being applied, and the pen pressure is detected. There is a risk that it cannot be detected correctly.
  • the position indicator and the position detection device as described above have been mounted as input devices for small electronic devices such as pad-type mobile terminals.
  • the coil and ferrite core of the resonance circuit of the position indicator As a result, the distance between the position detection device and the shield plate changes, and the electromagnetic coupling state changes, so that the resonance point (resonance frequency and phase) of the resonance circuit of the position indicator is shifted.
  • a magnet provided in a speaker provided in an electronic device such as a pad type portable terminal provided with an input device including a position indicator and a position detection device, and a magnet for detecting opening and closing of a cover of the electronic device such as a pad type portable terminal.
  • the shield plate of the electronic device is magnetically saturated due to the influence of the direct current magnetic field generated by the magnetic field, and a phase drift occurs in the induced voltage from the resonance circuit of the position indicator. There is also a problem that the pressure may not be detected correctly.
  • the mutual inductance between the sensor of the position detection device and the resonance circuit of the position indicator is the presence of surrounding metal, environmental factors such as heat, the inclination of the position indicator (pen) with respect to the sensor of the position detection device. Change depending on the surrounding environment such as the position indicator and the casing material of the position detection device, the system configuration, etc., and for this reason, the resonance point between the position indicator and the sensor of the position detection device (the resonance circuit of the position indicator) (Resonance frequency and phase) may be shifted.
  • the applicant has decided that the change in the resonance point (resonance frequency and phase of the resonance circuit of the position indicator) between the position indicator and the sensor of the position detection device according to the surrounding environment described above.
  • a novel writing pressure detection method capable of removing the influence in writing pressure detection by a position detection device has been created.
  • the position indicator includes a first resonance circuit that does not include a variable capacitor whose capacitance changes according to writing pressure as a resonance element, and an electrostatic capacitance according to writing pressure. And a second resonance circuit including a variable capacitor that changes as a resonance element. Then, the position indicator switches between the first resonance circuit and the second resonance circuit as a resonance circuit for electromagnetic coupling with the position detection device.
  • a signal of the first resonance frequency when the resonance circuit for electromagnetic coupling of the position indicator is the first resonance circuit is obtained from the position indicator, and the resonance for electromagnetic coupling of the position indicator is obtained.
  • the circuit is the second resonance circuit
  • a signal of the second resonance frequency is obtained from the position indicator, and the writing pressure is detected from the difference between the signal of the first resonance frequency and the signal of the second resonance frequency.
  • each of the first resonance frequency signal and the second resonance frequency signal similarly includes a change in the resonance point due to the influence of the peripheral metal or the like.
  • the change in the resonance point due to the influence of the surrounding metal or the like is cancelled. Therefore, in the position detection device, the influence of the surrounding environment such as the surrounding metal is removed, and a writing pressure detection output that correctly corresponds to the magnitude of the writing pressure can be obtained.
  • the new position indicator includes the first resonance circuit and the second resonance circuit
  • the position detection device including the novel writing pressure detection method includes the first resonance circuit. It is necessary to switch the first resonance circuit and the second resonance circuit as a resonance circuit for electromagnetic coupling.
  • a new position indicator is configured so that the position detection device adopting the conventional writing pressure detection method can detect the writing pressure with the conventional writing pressure detection method. It is desirable. In other words, it is desirable that the new position indicator is compatible with both a position detection apparatus that has been widely used in the past and a new position detection apparatus that is equipped with a new writing pressure detection method.
  • the present invention considers compatibility so that it can also be used in a conventional position detection device, and uses a position indication used with a new position detection device that solves the above-described problems.
  • the purpose is to provide a vessel.
  • a position indicator comprising a resonance circuit for electromagnetically coupling with a conductor of a sensor of a position detection device, and reflecting information related to a user's operation on a resonance frequency or phase of the resonance circuit.
  • a first resonance circuit including an inductance element and a capacitance element
  • a second resonance circuit configured to include the inductance element, the capacitance element, and a change element that changes an electrical element value that changes a resonance frequency or phase in relation to a user's action
  • a switch circuit that switches between the first resonant circuit and the second resonant circuit
  • a switching circuit for generating a switching signal for driving the switching circuit and supplying the switching signal to the switching circuit; With When no signal is received from the outside and when a signal other than a predetermined signal is received from the outside, the switching signal is not generated by the switching circuit, and the second resonance circuit is connected to the conductor of the sensor of the position detection device.
  • the switching signal is generated by the switching circuit and supplied to the switch circuit, and the first resonance circuit is connected to the sensor conductor of the position detection device.
  • a position indicator which is switched to be configured as the resonance circuit for electromagnetic coupling.
  • the resonance circuit for electromagnetically coupling with the sensor conductor of the position detection device is the second resonance circuit, and an induced voltage corresponding to the signal from the position detection device is generated in the second resonance circuit.
  • the second resonance circuit generates a signal having a resonance frequency or phase that changes in accordance with a change in an electrical element value of the changing element, such as an inductance value or a capacitance. Therefore, for example, a position detection device having a conventional configuration in which a signal is received from the position indicator of the present invention generates an induced voltage corresponding to the resonance frequency or phase of the second resonance circuit. Therefore, in the conventional position detection device, information related to the user's work, for example, information on the pen pressure applied to the position indicator can be detected from the induced voltage as in the past. Can be secured.
  • the position indicator of the present invention is in a state where it can receive a signal from the position detection device, and when it is not receiving a predetermined signal, it is electromagnetically connected to the conductor of the sensor of the position detection device.
  • a second resonance circuit is configured as a resonance circuit for coupling, and an induced voltage corresponding to the resonance frequency or phase that changes according to the electrical element value of the change element is generated in the position detection device that has transmitted the signal.
  • the position indicator of this invention receives a predetermined signal from the position detection device, the change element is cut off from the second resonance circuit to switch from the second resonance circuit to the first resonance circuit.
  • the resonance circuit for electromagnetic coupling with the conductor of the sensor of the position detection device is switched to the first resonance circuit. Therefore, an induced voltage corresponding to the resonance frequency or phase of the first resonance circuit not including the changing element is generated in the position detection device that has generated the predetermined signal.
  • the position detecting device having a function of generating a predetermined signal includes the resonance frequency or phase signal of the second resonance circuit that changes according to the electrical element value of the changing element, and the inductance without including the changing element.
  • the resonance frequency or phase signal of the first resonance circuit including the element and the capacitance element can be acquired. Therefore, a position detection device having a function of generating a predetermined signal such as a new position detection device is an electric device that changes the resonance frequency and phase by obtaining a difference (frequency difference and phase difference) between signals of both resonance circuits. It is possible to detect information related to the user's action to change the target element value, for example, information on the pen pressure applied to the position indicator.
  • the second pointing circuit including the change element that changes the electric element value that changes the resonance frequency or the phase in relation to the user's action is provided, and the external A switching circuit that is switched by a switching signal that is generated based on a predetermined signal from the second resonance circuit to switch to the first resonance circuit by blocking the change element from the second resonance circuit.
  • the resonance frequency of the second resonance circuit and the resonance frequency of the first resonance circuit are received while considering compatibility so that the conventional position detection device can be used.
  • FIG. 2 is a timing chart for explaining the operation between the configuration example of the first embodiment of the position indicator according to the present invention shown in FIG. 2 and the configuration example of the position detection device used together with the position indicator. is there.
  • FIG. 1 It is a block diagram which shows the structural example of the conventional type position detection apparatus used with embodiment of the position indicator by this invention. It is a block diagram which shows the structural example of the novel type position detection apparatus used with embodiment of the position indicator by this invention. It is a timing chart for demonstrating operation
  • FIG. 1 is an external view of an example of an electronic apparatus 2 including a position indicator 1 according to a first embodiment of the present invention and a position detection device used together with the position indicator 1.
  • the changing element is composed of a variable capacitor for detecting pen pressure applied to the position indicator.
  • the electronic device 2 in this example is a mobile terminal including a display screen 2D of a display device such as an LCD (Liquid Crystal Display), and includes an electromagnetic induction type position detection device 200 at the lower part (back side) of the display screen 2D. ing.
  • the position indicator 1 of the embodiment of the present invention has a pen shape, and a core body 1P is provided at the tip thereof.
  • the position indicator 1 includes a resonance circuit for exchanging signals with the position detection device 200 by electromagnetic induction, although not shown in FIG.
  • the casing of the electronic device 2 in this example is provided with a storage concave hole 2H for storing the pen-shaped position indicator 1. If necessary, the user takes out the position indicator 1 stored in the storage recess 2H from the electronic device 2 and performs a position instruction operation using the display screen 2D as an input surface.
  • the electronic device 2 when a position pointing operation is performed by the pen-shaped position indicator 1 on the display screen 2 ⁇ / b> D, between the position detection device 200 provided on the back side of the display screen 2 ⁇ / b> D and the position indicator 1.
  • the position detection device 200 detects the position and writing pressure instructed by the position indicator 1 by transmitting and receiving signals by electromagnetic coupling.
  • the microcomputer with which the electronic device 2 is provided performs the display process according to the operation position in the display screen 2D detected by the position detection apparatus 200, and writing pressure.
  • the position indicator 1 of the embodiment reflects the pressure applied to the core 1P, that is, the information on the writing pressure, as information related to the user's work on the resonance frequency and phase of the resonance circuit. This is transmitted to the detection device 200. That is, when the user performs an operation of pressing the display screen 2D in order to input the position indicator 1 on the display screen 2D, the core 1P of the position indicator 1 receives pressure from the display screen 2D. .
  • the position indicator 1 of this embodiment includes a variable capacitor that changes the capacitance according to the pressure (writing pressure) applied to the core 1P. Since this variable capacitor is described in detail, for example, in Patent Document 2 described above, description thereof is omitted here.
  • the position indicator 1 of this embodiment uses an internal variable capacitance capacitor with an electrical element value (in this case, capacitance) that changes the resonance frequency and phase of the resonance circuit. It is used as a changing element to be changed.
  • an electrical element value in this case, capacitance
  • the position detection device 200 includes a conventional position detection device 200 ⁇ / b> A that detects the pen pressure as a change in the resonance frequency (phase shift) in accordance with the change in the variable capacitor, and the position pressure in the variable capacitor. Detected as the difference (frequency difference or phase difference) between the signal of the resonance frequency or phase corresponding to the change of the signal and the signal of the reference resonance frequency or phase (resonance frequency or phase of the resonance circuit not including the variable capacitor) Two types of type position detecting device 200B are assumed.
  • FIG. 2 shows an outline of an internal circuit configuration example of the position indicator 1 of the first embodiment, and a conventional type position detection device 200A that constitutes an input device together with the position indicator 1 of the first embodiment. And the relationship with the new type position detection apparatus 200B.
  • FIG. 3 shows a specific circuit example of the internal circuit configuration example of the position indicator 1 of the first embodiment.
  • FIG. 4 is a timing chart for explaining the relationship between the AC signal transmitted from the conventional type position detecting device 200A and the new type position detecting device 200B and the received signal at the position indicator 100.
  • the internal circuit of the position indicator 1 includes a first resonance circuit 11 including a parallel circuit of a coil 11L as an example of an inductance element and a capacitor 11C as an example of a capacitance element.
  • a second resonance circuit 12 including a first resonance circuit 11 and a series circuit of a switch circuit 12SW and a variable capacitor 12C connected in parallel to the capacitor 11C, and a switching signal of the switch circuit 12SW And a switching signal generation circuit 13 for generating.
  • the coil 11L is made of, for example, a thin wire conductor that is coated with an insulation coating on a ferrite core, and the tip of the core 1P in the case (housing) of the position indicator 1 is used. It is fixedly arranged near the part.
  • the capacitor 11C is disposed on a printed circuit board disposed in the case (housing) of the position indicator 1, and is electrically connected to the coil 11L on the printed circuit board.
  • variable capacitor 12 ⁇ / b> C is configured by a writing pressure detection module described in, for example, Patent Document 2 that is configured such that the capacitance changes according to the writing pressure applied to the core 1 ⁇ / b> P.
  • the switch circuit 12SW is configured by a semiconductor switch circuit that is normally on and in a conductive state (so-called normally-on type), and is disposed in a case (housing) of the position indicator 1. Disposed on the printed circuit board. On the printed circuit board, the variable capacitor 12C and the switch circuit 12SW are electrically connected in series, and the series circuit of the variable capacitor 12C and the switch circuit 12SW is connected in parallel to the first resonance circuit 11.
  • the switching signal generation circuit 13 is configured on the printed circuit board, and generates a switching signal for the switch circuit 12SW from the resonance signal obtained by the first resonance circuit 11 or the second resonance circuit 12. Then, the switching signal generation circuit 13 controls the switch circuit 12SW to be turned off by the generated switching signal.
  • the switching signal generation circuit 13 constitutes a switching circuit that switches and drives the switch circuit 12SW.
  • the switching signal generation circuit 13 when used with the conventional type position detection device 200A, the switching signal generation circuit 13 is based on the signal from the conventional type position detection device 200A. Does not generate a switching signal for switching the switch circuit 12SW from on to off, and the switch circuit 12SW remains on.
  • the switching signal generation circuit 13 switches the switch based on the signal from the new type position detection device 200B. A switching signal for switching the circuit 12SW from on to off is generated.
  • the position indicator 1 receives no signal and the switch circuit 12SW is on and in the normal state, and the conventional position detector 200A.
  • the second resonance circuit 12 in which the coil 11L, the capacitor 11C, and the variable capacitor 12C are connected in parallel to each other is used for electromagnetic coupling with the position detection device 200A or the position detection device 200B. Resonance circuit.
  • the second resonance circuit 12 has substantially the same circuit configuration as that of a conventional resonance circuit of this type of electromagnetic induction type position indicator.
  • the switch circuit 12SW when the switch circuit 12SW is turned off by the switching signal from the switching signal generation circuit 13 and the position indicator 1 becomes non-conductive, the electromagnetic coupling resonance circuit of the position indicator 1
  • the resonance circuit 12 is switched to the first resonance circuit 11 including a parallel circuit of a coil 11L and a capacitor 11C. That is, when the switch circuit 12SW is turned off, the variable capacitor 12C that is a changing element is cut off from the second resonance circuit 12 and thereby switched to the first resonance circuit 11.
  • the switch circuit 12SW constitutes a circuit that cuts off the variable capacitor 12C, which is a change element, from the second resonance circuit 12.
  • the new type position detecting device 200B detects the writing pressure based on the difference between the resonance frequency signal of the second resonance circuit 12 and the resonance frequency signal of the first resonance circuit 11. For this reason, the new type position detecting device 200B will be described later as a signal for calculating a difference between the resonance frequency signal of the first resonance circuit 11 and the resonance frequency signal of the second resonance circuit 12. In addition, it is acquired at a predetermined timing. Then, the new type position detecting device 200B uses the acquired signal of the resonance frequency of the first resonance circuit 11 for the difference calculation with the signal of the resonance frequency of the second resonance circuit 12 acquired in the other period. To.
  • FIG. 3 shows a more specific configuration example of the internal circuit of the position indicator 1 of this embodiment.
  • a normally-on junction field effect transistor (JFET) 12T is used as the switch circuit 12SW.
  • the source and drain of the JFET 12T are connected in series to the variable capacitor 12C, and a series circuit of the JFET 12 and the variable capacitor 12C is connected in parallel to the coil 11L and the capacitor 11C.
  • JFET normally-on junction field effect transistor
  • the switching signal generation circuit 13 is configured as a half-wave voltage doubler rectifier circuit as shown in FIG. That is, the switching signal generation circuit 13 includes a coupling capacitor 131 with the first resonance circuit 11 or the second resonance circuit 12, rectification diodes 132 and 133, a rectification voltage holding capacitor 134, and a rectification voltage It consists of a smoothing resistor 135.
  • the AC signal received from the position detection device 200A or 200B by the first resonance circuit 11 or the second resonance circuit 12 is rectified by the diodes 132 and 133 and is held by the holding capacitor 134. Accumulated and retained.
  • the holding voltage Ec of the holding capacitor 134 is supplied to the gate of the JFET 12T as a switching signal.
  • the JFET 12T When the holding voltage Ec of the holding capacitor 134 is lower than a predetermined threshold voltage Eth, the JFET 12T maintains an on state (conducting state) which is a normal state, and when the holding voltage Ec becomes equal to or higher than the predetermined threshold voltage Eth, the JFET 12T (Conducting state).
  • the second resonance circuit 12 In the normal state in which the JFET 12T is on, the second resonance circuit 12 is in an operating state as the electromagnetic coupling resonance circuit of the position indicator 1, and the JFET 12T is switched off.
  • the resonance circuit for electromagnetic coupling of the position indicator 1 is switched to a state in which the first resonance circuit 11 is in an operating state.
  • the conventional type position detecting device 200A receives a transmission signal generation circuit 201A that transmits a transmission signal SA to the position indicator 1 and a signal from the position indicator 1, It includes a reception processing circuit 202A for detecting the indicated position by the position indicator and detecting the writing pressure at that time.
  • the new type of position detection device 200B includes a transmission signal generation circuit 201B that transmits a transmission signal SB different from the transmission signal SA to the position indicator 1, and a position indicator 1 that is similar to the position detection device 200A.
  • a reception processing circuit 202B is provided that detects the indicated position and detects the pen pressure by a method different from that of the position detection device 200A.
  • the transmission signal SA and the transmission signal SB from the position detection device 200A and the position detection device 200B use alternating current signals having the same frequency fo, and the frequency fo includes the first resonance circuit 11 and the second signal SB.
  • the resonance frequency of the resonance circuit 12 is selected.
  • the transmission signal SA and the transmission signal SB have different transmission methods such as a transmission time length and a transmission interval.
  • the transmission signal SA from the transmission signal generation circuit 201A of the conventional position detection apparatus 200A is a burst signal having a frequency fo continuously transmitted with a time length Pa as shown in FIG. BSa is a signal that is intermittently repeated with a time interval Pb.
  • the time length Pa of the continuous transmission of the burst signal BSa and the time interval Pb are determined when the transmission signal SA is received by the first resonance circuit 11 or the second resonance circuit 12 of the position indicator 1.
  • the holding voltage Ec of the holding capacitor 134 has a time length and a time interval that do not exceed the threshold voltage Eth.
  • the holding capacitor of the switching signal generation circuit 13 of the position indicator 1 depends on the transmission signal SA from the transmission signal generation circuit 201A.
  • the holding pressure Ec of 134 does not exceed the threshold voltage Eth (see FIG. 4B).
  • the JFET 12T of the position indicator 1 does not turn off, and always remains on as shown in FIG. 4C, and the position indicator 1 moves the second resonance circuit 12 to the position. It operates as a resonance circuit for electromagnetic coupling with the detection device 200A.
  • the position detection device 200A receives the signal RA having a frequency corresponding to the writing pressure of the variable capacitor 12C by the second resonance circuit 12 from the position indicator 1 in the same manner as in the past.
  • the position indicated by the position indicator 1 is detected from the position of the signal RA and the frequency transition (or phase transition) from the frequency fo in the signal RA is detected, whereby the writing pressure applied to the core 1P of the position indicator 1 is determined. To detect.
  • FIG. 5 is a block diagram showing a circuit configuration example of the position indicator 1 and the position detection device 200A. As described above, when the position indicator 1 is used together with the position detection device 200A, only the second resonance circuit 12 always operates as a resonance circuit for electromagnetic coupling.
  • a sensor 210 is formed by laminating an X-axis direction loop coil group 211 and a Y-axis direction loop coil group 212.
  • Each of the loop coil groups 211 and 212 includes, for example, n and m rectangular loop coils.
  • Each loop coil which comprises each loop coil group 211,212 is arrange
  • the position detection device 200A is provided with a selection circuit 213 to which the X-axis direction loop coil group 211 and the Y-axis direction loop coil group 212 are connected.
  • the selection circuit 213 sequentially selects one loop coil from the two loop coil groups 211 and 212.
  • the position detection device 200A includes an oscillator 221, a current driver 222, a switching connection circuit 223, a reception amplifier 224, a detector 225, a low-pass filter 226, a sample hold circuit 227, an A / D A conversion circuit 228, a processing control unit 229A, a synchronous detector 231, a low-pass filter 232, a sample hold circuit 233, and an A / D conversion circuit 234 are provided.
  • the processing control unit 229A is configured by a microcomputer.
  • the transmission signal generation circuit 201A is configured by the oscillator 221, the current driver 222, the switching connection circuit 223, the processing control unit 229A, and the sensor 210.
  • the sensor 210, the switching connection circuit 223, the reception amplifier 224, the detector 225, the low-pass filter 226, the sample hold circuit 227, the A / D conversion circuit 228, and the processing control unit 229A The detection circuit is configured, and the position indicator is constituted by the sensor 210, the switching connection circuit 223, the reception amplifier 224, the synchronous detector 231, the low-pass filter 232, the sample hold circuit 233, the A / D conversion circuit 234, and the processing control unit 229A. 1 is configured to detect a writing pressure applied to the pressure sensor 1.
  • the oscillator 221 generates an AC signal having a frequency fo.
  • the oscillator 221 supplies the generated AC signal to the current driver 222 and the synchronous detector 231.
  • the current driver 222 converts the AC signal supplied from the oscillator 221 into a current and sends it to the switching connection circuit 223.
  • the switching connection circuit 223 switches connection destinations (transmission side terminal T, reception side terminal R) to which the loop coil selected by the selection circuit 213 is connected under the control of the processing control unit 229A.
  • a current driver 222 is connected to the transmission side terminal T, and a reception amplifier 224 is connected to the reception side terminal R.
  • the processing control unit 229A connects the switching connection circuit 223 to the transmission side terminal T in the period of the continuous transmission time length Pa shown in FIG. 4A, and in the period of the time interval Pb, the reception side terminal R. Switch to connect to. Therefore, in the period of the continuous transmission time length Pa, the AC signal having the frequency fo is transmitted to the position indicator 1 as the transmission signal SA through the loop coil selected by the selection circuit 213.
  • the selection circuit 213 selects the signal RA sent from the resonance circuit of the position indicator 1.
  • An induced voltage is generated in the loop coil.
  • the induced voltage of the loop coil that is instructed by the position indicator 1 and is located in the vicinity of the position indicator 1 becomes larger than the induced voltage of the loop coil at other positions.
  • the induced voltage generated in the loop coil selected by the selection circuit 213 is sent to the reception amplifier 224 via the selection circuit 213 and the switching connection circuit 223.
  • the reception amplifier 224 amplifies the induced voltage supplied from the loop coil and sends it to the detector 225 and the synchronous detector 231.
  • the detector 225 detects the induced voltage generated in the loop coil, that is, the received signal, and sends it to the low-pass filter 226.
  • the low-pass filter 226 has a cutoff frequency sufficiently lower than the above-described frequency fo, converts the output signal of the detector 225 into a DC signal, and sends it to the sample and hold circuit 227.
  • the sample hold circuit 227 holds a voltage value at a predetermined timing of the output signal of the low-pass filter 226, specifically, a predetermined timing during the reception period, and sends it to an A / D (Analog-to-Digital) conversion circuit 228. To do.
  • the A / D conversion circuit 228 converts the analog output of the sample hold circuit 227 into a digital signal and outputs the digital signal to the processing control unit 229A.
  • the synchronous detector 231 synchronously detects the output signal of the reception amplifier 224 with the AC signal from the oscillator 221, and sends a signal having a level corresponding to the phase difference therebetween to the low-pass filter 232.
  • the low-pass filter 232 has a cutoff frequency sufficiently lower than the frequency fo, converts the output signal of the synchronous detector 231 into a DC signal, and sends it to the sample and hold circuit 233.
  • the sample hold circuit 233 holds the voltage value at a predetermined timing of the output signal of the low-pass filter 232 and sends it to an A / D (Analog-to-Digital) conversion circuit 232.
  • the A / D conversion circuit 232 converts the analog output of the sample and hold circuit 233 into a digital signal and outputs the digital signal to the processing control unit 229A.
  • the process control unit 229A controls each unit of the position detection device 200A. That is, the processing control unit 229A controls the selection of the loop coil in the selection circuit 213, the switching of the switching connection circuit 223, and the timing of the sample hold circuits 227 and 231. Based on the input signals from the A / D conversion circuits 228 and 232, the processing control unit 229A receives radio waves from the X-axis direction loop coil group 211 and the Y-axis direction loop coil group 212 with a continuous transmission time of time length Pa in this example. To send.
  • an induced voltage is generated in each loop coil of the X-axis direction loop coil group 211 and the Y-axis direction loop coil group 212 by the radio wave transmitted from the position indicator 1.
  • the processing control unit 229A Based on the digital signal from the A / D conversion circuit 228, the processing control unit 229A detects the level of the voltage value of the induced voltage generated in each loop coil, and the position indicator 1 in the X-axis direction and the Y-axis direction. The coordinate value of the indicated position is calculated.
  • the processing control unit 229A detects the level of the signal corresponding to the frequency shift (phase shift) between the transmitted radio wave and the received radio wave based on the digital signal from the A / D conversion circuit 234, and the detected signal The writing pressure applied to the position indicator 1 is detected on the basis of the level.
  • the processing controller 229A can detect the position indicated by the approaching position indicator 1 of this embodiment, and the writing pressure is similar to the conventional one. By detecting the received frequency shift (or phase shift) by the detection method, information on the pen pressure value of the position indicator 1 can be obtained.
  • the transmission signal SB from the transmission signal generation circuit 201B of the new type position detection apparatus 200B is a burst signal having a frequency fo and a time length Pa, as in the transmission signal generation circuit 201A of the position detection apparatus 200A.
  • the resonance frequency of the first resonance circuit In accordance with the signal acquisition timing, the signal includes a burst signal BSb having a frequency fo that is continuously transmitted with a time length Pc (Pc> Pa).
  • the time length Pc of the burst signal BSb is determined by the switching signal generation circuit 13 when the transmission signal SB is received by the first resonance circuit 11 or the second resonance circuit 12 of the position indicator 1, as shown in FIG.
  • the length of time is such that the holding voltage Ec of the holding capacitor 134 exceeds the threshold voltage Eth over a predetermined time.
  • the position indicator 1 of the position indicator 1 is detected by the burst signal having the time length Pc of the transmission signal SB from the transmission signal generation circuit 201B.
  • the rectified output voltage Ec of the switching signal generation circuit 13 exceeds the threshold voltage Eth (see FIG. 4E).
  • the JFET 12T of the position indicator 1 is switched from on to off at the timing when the burst signal BSb having the time length Pc is transmitted as the transmission signal SB. 1 operates as a resonance circuit for electromagnetic coupling with the position detection device 200B so as to switch from the second resonance circuit 12 to the first resonance circuit 11.
  • the position detection device 200B is instructed by the position indicator 1 in the same manner as the position detection device 200A described above during the period in which the burst signal BSa having the length Pa is intermittently repeated at the time interval Pb in the transmission signal SB. Detect the position. Further, the position detection device 200B detects the frequency and phase in this example of the reception signal at this time, and holds the signal level corresponding to the detected frequency and phase.
  • the position detection device 200B detects the writing pressure applied to the position indicator 1 from the difference from the resonance frequency signal of the second resonance circuit 12, so that the resonance frequency signal of the first resonance circuit is detected. Is transmitted, a burst signal BSb having a time length Pc is transmitted as the transmission signal SB. Then, since the resonance circuit for electromagnetic coupling of the position indicator 1 is switched from the second resonance circuit 12 to the first resonance circuit 11, the position detection device 200B allows the frequency and the frequency in this example of the received signal at this time. The phase is detected, and a signal level corresponding to the detected frequency and phase is obtained.
  • the frequency and phase detected when the electromagnetic coupling resonance circuit of the position indicator 1 is the second resonance circuit 12 are variable to exhibit a capacitance corresponding to the writing pressure applied to the position indicator 1.
  • the frequency and phase include the amount due to the capacitor 12C.
  • the frequency and phase detected when the electromagnetic coupling resonance circuit of the position indicator 1 is the first resonance circuit 11 do not include the amount due to the variable capacitor 12 ⁇ / b> C that exhibits the capacitance according to the writing pressure. Reference frequency and phase. Therefore, it is possible to detect the pen pressure applied to the position indicator 1 as a difference between both frequencies and phases.
  • the signals from the first resonance circuit 11 and the second resonance circuit 12 of the position indicator 1 both have an influence of the surrounding environment on the mutual inductance in the electromagnetic coupling between the position indicator 1 and the position detection device 200B. Since the difference is obtained, the influence of the surrounding environment on the mutual inductance is canceled and removed. Accordingly, it is possible to accurately detect the pen pressure by removing the influence of the surrounding environment.
  • FIG. 6 shows a circuit configuration example of the transmission signal generation circuit 201B and the reception processing circuit 202B of this new type of position detection device 200B.
  • the same parts as those of the position detection apparatus 200A shown in FIG. 6 are identical parts as those of the position detection apparatus 200A shown in FIG.
  • the processing control unit 229A is replaced with the processing control unit 229B as compared with the position detection device 200A.
  • the components of the detection circuit for the pen pressure applied to the position indicator 1 are replaced by the frequency detector instead of the synchronous detector 231, the low-pass filter 232, the sample hold circuit 233, and the A / D conversion circuit 234.
  • the difference is that the circuit 241, the sample hold circuit 242, and the A / D conversion circuit 243 are included.
  • the new type position detecting device 200B and the conventional type position detecting device 200A have the same configuration.
  • the position indicator 1 turns off the switch circuit 12SW configured by the JFET 12T by the switching signal generated based on the transmission signal SB from the position detection device 200B.
  • the variable capacitor 12C is disconnected (cut off) to switch from the second resonance circuit 12 to the first resonance circuit 11.
  • the switch circuit 12SW is in an ON state, and the resonance circuit for electromagnetic coupling of the position indicator 1 is the second resonance circuit 12. It has become.
  • the processing control unit 229B of the position detection device 200B sets the switching connection circuit 223 in the period of the continuous transmission time length Pa illustrated in FIG. It connects to the transmission side terminal T, and it switches so that it may connect to the reception side terminal R in the period of the time interval Pb. Then, at this time, as described above, the switch circuit 12SW is not switched off, and the resonance circuit for electromagnetic coupling of the position indicator 1 remains the second resonance circuit 12.
  • the position detection device 200B detects the position coordinates on the sensor 210 instructed by the position indicator 1.
  • the position detection device 200B discriminates the frequency of the signal from the reception amplifier obtained when the electromagnetic coupling resonance circuit of the position indicator 1 is the second resonance circuit 12, in the frequency discrimination circuit 241, A signal level corresponding to the frequency and phase is obtained. Then, the signal level corresponding to the frequency and phase is sampled and held by the sample and hold circuit 242, converted into a digital signal by the A / D conversion circuit 243, and supplied to the processing control unit 229B.
  • the processing control unit 229B maintains a signal level corresponding to the frequency and phase of the received signal when the electromagnetic coupling resonance circuit of the position indicator 1 is the second resonance circuit 12.
  • the processing control unit 229B of the position detection device 200B detects the writing pressure applied to the position indicator 1 from the difference from the signal of the resonance frequency of the second resonance circuit 12 in order to detect the writing pressure applied to the position indicator 1.
  • the switching connection circuit 223 is connected to the transmission side terminal T at the continuous transmission time Pc shown in FIG.
  • the switch circuit 12SW is turned off, and the position indicator 1
  • the resonance circuit for electromagnetic coupling is switched from the second resonance circuit 12 to the first resonance circuit 11.
  • the position detection device 200B uses the frequency discrimination circuit 241 to discriminate the frequency and phase of the signal from the reception amplifier obtained when the electromagnetic coupling resonance circuit of the position indicator 1 is switched to the first resonance circuit 11. Separately, a signal level corresponding to the frequency and phase is obtained. Then, the signal level corresponding to the frequency and phase is sampled and held by the sample and hold circuit 242, converted into a digital signal by the A / D conversion circuit 243, and supplied to the processing control unit 229B.
  • the processing control unit 229B includes the signal level corresponding to the frequency and phase of the received signal when the electromagnetic coupling resonance circuit of the position indicator 1 is the first resonance circuit 11, and the position indicator 1 held.
  • the writing pressure applied to the position indicator 1 is detected from the difference from the signal level corresponding to the frequency and phase of the received signal when the electromagnetic coupling resonance circuit is the second resonance circuit 12. To do.
  • the processing control unit 229B can detect the position indicated by the approaching position indicator 1 of this embodiment and the electromagnetic of the position indicator 1 can be detected.
  • a novel pen pressure detection method that detects the pen pressure based on the difference between the reception frequency when the resonance circuit for coupling is the second resonance circuit and the reception frequency when the resonance circuit is the first resonance circuit, Information on the writing pressure value of the indicator 1 can be obtained accurately without being influenced by the surrounding environment at all.
  • the new type position detecting device 200B uses the burst signal BSb having a long continuous transmission time Pc as a switching signal for switching the switch circuit 12SW (JFET 12T) of the position indicator 1.
  • the switching signal for switching the switch circuit 12SW (JFET 12T) of the position indicator 1 is not limited to this.
  • the holding voltage of the holding capacitor 134 is set by setting the time interval of intermittent transmission of the burst signal BSa having the time length Pa to the time interval Pd shorter than the time interval Pb.
  • the JFET 12 configuring the switch circuit 12SW may be turned off so that Ec exceeds the threshold Eth.
  • the holding voltage Ec of the holding capacitor 134 of the switching signal generation circuit 13 of the position indicator 1 is transmitted intermittently with a burst signal BSa having a time length Pa at a time interval Pb.
  • the threshold Eth is not exceeded.
  • the burst signal BSa having a time length Pa is intermittently transmitted at a time interval Pd shorter than the time interval Pb, the threshold Eth is exceeded.
  • the position indicator 1 switches the JFET 12T from the on state to the off state,
  • the resonance circuit for electromagnetic coupling of the indicator 1 is switched from the second resonance circuit 12 to the first resonance circuit 11.
  • the position detection device 200B may repeat the continuous transmission of the time length Pc a plurality of times intermittently at a predetermined time interval so that the detection can be performed.
  • the time interval in that case may be the same as the time interval Pb, or may be shorter or longer than the time interval Pb.
  • the resonance circuit for electromagnetic coupling of the position indicator 1 when the resonance circuit for electromagnetic coupling of the position indicator 1 is the second resonance circuit and when it is the first resonance circuit.
  • the frequency and the phase are used, but the difference may be only the frequency or only the phase.
  • a normally-on type JFET 12T that is on in a normal state is used as the switch circuit 12SW.
  • the JFET 12T has a large resistance of several hundred ohms when conducting, there is a possibility that the signal level is attenuated in the resonance circuit of the position indicator 1.
  • FIG. 8 shows a part of a series circuit of the switch circuit 12SW of the second resonance circuit 12 and the variable capacitor 12C.
  • the switch circuit 12SW a plurality of JFETs 12T 1 , 12T 2 , 12T 3 ,..., 12T n (n is an integer of 2 or more) are connected in parallel in a ladder shape.
  • the sources of JFETs 12T 1 , 12T 2 , 12T 3 ,..., 12T n are connected in common, the drains are connected in common, and the common drain is connected to the variable capacitor 12C.
  • the switching signal from the switching signal generating circuit 13 is supplied to the gates of JFETs 12T 1 , 12T 2 , 12T 3 ,..., 12T n .
  • the resistance when the switch circuit 12SW is turned on can be reduced to R / n, where R is the resistance when one JFET is turned on.
  • R is the resistance when one JFET is turned on.
  • the JFET 12T is not used as the switch circuit 12SW, but a depletion type field effect transistor having a low resistance when conducting is used to connect the second resonance circuit 12 to the position indicator 1
  • the attenuation of the signal level received from the position detection device may be reduced.
  • the depletion-type field effect transistor since the element which is specialized in digital logic, a depletion type field effect transistor when used as the switch circuit 12SW as analog switches in this embodiment, V DS -I D
  • V DS is the drain-source voltage
  • ID is the drain current
  • the position indicator 1 can be used with the conventional type position detecting device 200A and can be used with the new type position detecting device 200B, thereby ensuring compatibility.
  • the position indicator 1 is automatically switched between the case where it is used with the position detection device 200A and the case where it is used together with the position detection device 200B. There is no need to perform any switching operation, and there is also an effect that it is not necessary to recognize whether the position detection device is the conventional type position detection device 200A or the new type position detection device 200B.
  • the switch circuit 12SW is configured by a semiconductor switch circuit that is normally on and in a conductive state (so-called normally-on type), and this switch circuit 12SW. Is switched to the first resonance circuit 11 by disconnecting (cutting off) the variable capacitor 12C, which is an example of a change element, from the second resonance circuit 12, and thus has the following effects. Play.
  • the reference resonance circuit ( Ideally, the first resonant circuit 11) switches instantaneously and returns to its original state.
  • the switching speed it is necessary that the switching speed be fast. This is because if the switching speed is slow, the interruption of the state of resonance in the second resonance circuit 12 becomes long. That is, for example, when writing pressure data that gradually changes from the position indicator 1 is transmitted to the first resonance circuit 11 during the transmission, if the period becomes longer, the writing pressure data is changed. It will be interrupted and a discontinuous state will arise.
  • the second resonant circuit 12 is configured by connecting the changing element in parallel to the first resonant circuit 11 (reference resonant circuit), and the first resonant circuit 11 and the second resonant circuit 12 are configured.
  • the switching circuit 12SW is provided in series with the changing element, and the switching circuit 12SW is always on (closed) and receives a specific signal and is turned off (open). Yes.
  • the switch circuit 12SW is kept normally on, and in the position indicator 1, the second resonance circuit 12 resonates. Then, the variable capacitor 12C, which is an example of the changing element, is disconnected by instantaneously opening the switch circuit 12SW only when the reference frequency / phase is required according to a request by a predetermined signal from the position detection device 200B. After switching to the first resonance circuit 11 and transmitting / receiving a signal, the switch 12SW is closed, and thereby the variable capacitor 12C, which is an example of a change element, is connected again, so that the second resonance circuit is changed. Make it work. As a result, in the position indicator 1 of the first embodiment, it is possible to instantaneously switch to the first resonance circuit 11 that is the reference resonance circuit, and to restore to the second resonance circuit 12. Become.
  • a normally-off switch is normally used so that the changing element is connected in parallel to the reference first resonance circuit 11.
  • the resistance component (on resistance) included in the switch and the change element for example, The capacitance component of the variable capacitor is added. That is, the time constant is slightly changed by adding a CR circuit to the resonance circuit. This is because the rise of the signal is delayed.
  • the first resonance circuit 11 when the second resonance circuit 12 is operated, the first resonance circuit 11 is also operating simultaneously.
  • the switch circuit 12SW By opening (turning off) the switch circuit 12SW from this state, there is no influence of the CR circuit at the time of transition to the first resonance circuit 11.
  • the switch circuit 12SW is closed (turned on), the variable capacitor 12C already has an electric charge as an example of the changing element, so that the influence of the addition of the CR circuit is small. Therefore, switching to the first resonance circuit 11 that is the reference resonance circuit can be instantaneously performed, and restoration to the second resonance circuit 12 can also be instantaneously performed.
  • the second embodiment described below is a modification of the internal circuit of the position indicator 1 of the first embodiment described above.
  • the second resonance circuit 12 is connected to the variable capacitor 12C in series with the switch circuit 12SW that is normally turned on, and this variable capacitor 12C. And a switch circuit 12SW are connected in parallel to the first resonance circuit 11.
  • the configuration of the second resonance circuit of the position indicator of the present invention is not limited to such a configuration example.
  • FIG. 9 is a diagram illustrating a configuration example of an internal circuit of the position indicator 1A according to the second embodiment.
  • the same reference numerals are given to the same parts as the internal circuit configuration of the position indicator 1 of the first embodiment described above, and the description thereof is omitted.
  • the position detection devices 200A and 200B are the same as those in the above-described example, the description thereof is omitted.
  • the coil 11L and the capacitor 11C are connected in parallel, and further in parallel with the coil 11L and the capacitor 11C, the capacitor 11CA and the switch circuit SWA Is formed.
  • a variable capacitor 12C is connected in parallel to the switch circuit SWA.
  • the switch circuit SWA is, for example, an n-type field effect transistor that is off in a normal state (normally off type), and is off when the holding voltage Ec of the holding capacitor 134 of the switching signal generation circuit 13 exceeds the threshold Eth. It is comprised so that it can switch to an ON state.
  • the resonance circuit inside the position indicator 1A is a second resonance circuit in which a coil 11L, a capacitor 11C, and a series circuit of a capacitor 11CA and a variable capacitor 12C are connected in parallel. Circuit 12A is obtained.
  • the resonance circuit inside the position indicator 1A is a first circuit in which the coil 11L, the capacitor 11C, and the series circuit of the capacitor 11CA and the switch circuit SWA are connected in parallel. It becomes the resonance circuit 11A.
  • the switching signal generation circuit 13 holds the signal. Since the holding voltage Ec of the capacitor 134 does not exceed the threshold voltage Eth, the switch circuit SWA is turned off, and the resonance circuit for electromagnetic coupling of the position indicator 1A of the second embodiment is the second resonance circuit. 12A, and the variable capacitor 12C is included as an element of the resonance circuit for electromagnetic coupling of the position indicator 1A.
  • the conventional position detection device 200A receives the signal from the position indicator 1A, and in the same manner as in the first embodiment described above, the electrostatic capacitance of the variable capacitor 12C from the frequency fo of the transmission signal. By detecting the frequency shift and the phase shift due to the capacitance, the writing pressure applied to the position indicator 1A can be detected as in the conventional case.
  • the first resonance circuit In order to detect the writing pressure from the difference from the signal of the resonance frequency of the second resonance circuit 12 in a state where the position indicator 1A is used together with the new type position detection device 200B, the first resonance circuit When it is time to acquire the signal of the resonance frequency, as in the first embodiment, the holding voltage Ec of the holding capacitor 134 of the switching signal generation circuit 13 exceeds the threshold Eth, so that the switch circuit SWA is switched on. Thus, the resonance circuit for electromagnetic coupling of the position indicator 1A of the second embodiment is switched from the second resonance circuit 12A to the first resonance circuit 11A.
  • the new type of position detection device 200B is used together with the position indicator 1A of the second embodiment, so that the signal of the resonance frequency of the second resonance circuit 12A is obtained in the same manner as in the first embodiment.
  • the writing pressure can be detected based on the difference (frequency difference or phase difference) between the resonance frequency signal of the first resonance circuit 11A and the first resonance circuit 11A.
  • FIG. 10 and 11 show an example of the internal circuit configuration of the position indicator 1B of the third embodiment.
  • the third embodiment is a modification of the first embodiment.
  • the position indicator 1B of the third embodiment switches from the second resonance circuit to the first resonance circuit when receiving a predetermined signal at the timing of detecting the writing pressure from the position detection device 200B. Thereafter, a function of transmitting predetermined data to the position detection device 200B is provided.
  • a function of transmitting the identification information of the position indicator 1B itself to the position detection device 200B is provided.
  • a switch circuit 14 for turning on and off the electromagnetic coupling resonance circuits (the first resonance circuit 11 and the second resonance circuit 12) is provided.
  • a power supply voltage generation circuit 15 that generates a power supply voltage from a signal obtained by electromagnetic induction in the first resonance circuit 11 or the second resonance circuit 12 is provided.
  • a control circuit 16 is also provided.
  • the power supply voltage generation circuit 15 includes, for example, an electric double layer capacitor and a secondary battery, and charges them with a signal obtained by electromagnetic induction in the first resonance circuit 11 or the second resonance circuit 12, thereby Is generated.
  • the electric double layer capacitor and the secondary battery are not only charged by the position indicator 1B by a signal obtained by electromagnetic induction from the position detection devices 200A and 200B, but also dedicated to the position indicator 1B of the third embodiment.
  • a charging device may be prepared, and the position indicator 1B may be electromagnetically coupled to the charging device so as to be charged by a signal from the dedicated charging device.
  • the control circuit 16 is driven by receiving the power supply voltage from the power supply voltage generation circuit 15.
  • the control circuit 16 is configured to receive signals from the first resonance circuit 11 and the second resonance circuit 12, and determines the time length and time interval of the burst signals BSa and BSb from the position detection device 200B. It has a function to measure, thereby detecting the writing pressure detection timing from the position detection device 200B.
  • the position detection device 200B transmits the burst signal BSa and the writing pressure as described in the first embodiment. At the detection timing, the burst signal BSb is transmitted.
  • the continuous transmission time length of the burst signal BSb transmitted at the detection timing of the pen pressure is the pen pressure detection by the frequency difference (phase difference).
  • the time length Pc ′ is considered in consideration of the reception time (sending time) of the identification signal ID from the position indicator 1B. Then, as illustrated in FIGS. 11A and 11B, the position detection device 200B periodically repeats the above-described operation.
  • the control circuit 16 of the position indicator 1B detects the burst signal BSb from the position detection device 200B, so that the resonance circuit for electromagnetic coupling of the position indicator 1B at the time point tm1. Is switched from the second resonance circuit 12 having the second resonance frequency f2 to the first resonance circuit 11 having the first resonance frequency f1.
  • the position detection device 200B detects the position indicated by the position indicator 1B based on the signal RB received from the position indicator 1B, as described in the first embodiment, and the first Based on the difference between the resonance frequency f1 and the second resonance frequency f2, the writing pressure applied to the position indicator 1B is detected.
  • control circuit 16 turns on the switch circuit 14 during a period between the time point tm2 and a time point tm3 after a predetermined time has elapsed from the time point tm1 in consideration of the time for detecting the writing pressure based on the frequency difference. By turning off, the identification information ID of the position indicator 1B is transmitted to the position detection device 200B.
  • the control circuit 16 in this example stores the identification information ID composed of a plurality of bits in the built-in memory.
  • the bit of the identification information ID is “0”
  • the switch circuit 14 By turning on the switch circuit 14 and short-circuiting both ends of the first resonance circuit 11 (and the second resonance circuit 12) of the position indicator 1B, the resonance circuit for electromagnetic coupling of the position indicator 1B is obtained.
  • the signal RB is not transmitted to the position detection device 200B.
  • the switch circuit 14 is turned off, and the resonance circuit for electromagnetic coupling of the position indicator 1B including the first resonance circuit 11 is driven to detect the position as the signal RB. Transmit to device 200B.
  • the signal indicating the frequency f1 is ASK modulated (Amplitude Shift Keying) according to the bits “0” and “1” of the identification information ID (ASK signal) from the position indicator 1B. Is transmitted to the position detection device 200B as a signal RB.
  • the processing control unit 229B detects the ASK-modulated identification information ID based on, for example, a signal from the A / D conversion circuit 228.
  • a burst signal having a long time length is transmitted as a signal SB to the position indicator 1B.
  • the resonance circuit for electromagnetic coupling is switched from the second resonance circuit 12 to the first resonance circuit 11, and after a predetermined time after the switching, the identification information ID of the position indicator 1B is changed. It transmits to the position detection apparatus 200B as an ASK signal.
  • the position detection device 200B can accurately detect the pen pressure information applied to the position indicator 1B without being affected by the surrounding environment, There is an effect that the identification information ID of the indicator 1B can be obtained.
  • the predetermined data to be transmitted to the new type position detection device 200B in addition to the pen pressure information is the identification information of the position indicator 1B. Can be transmitted to the position detection device 200B as an ASK modulation signal.
  • the changing element included in the second resonance circuit has been described as the variable capacitor 12C that changes the capacitance according to the writing pressure applied to the position indicator.
  • the changing element is not limited to a variable capacitor.
  • the changing element is composed of a variable inductance element that varies the inductance value according to the writing pressure applied to the position indicator, and a variable resistance element that varies the resistance value according to the writing pressure applied to the position indicator. You can also
  • FIG. 12 is a diagram showing a state in which the variable inductance element and the variable resistance element are connected as a change element in the first embodiment. That is, in FIG. 12A, a variable inductance element 12L that varies the inductance value according to the writing pressure applied to the position indicator is connected in series with the switch circuit 12SW, and the series circuit is the first resonance circuit. 11 shows an example in which the second resonance circuit 12 is configured by being connected in parallel with the circuit 11. In FIG. 12B, a variable resistance element 12R that varies the resistance value according to the writing pressure applied to the position indicator is connected in series with the switch circuit 12SW, and the series circuit is the first resonance circuit. 11 shows an example in which the second resonance circuit 12 is configured by being connected in parallel with the circuit 11. Needless to say, these examples of the change element can also be applied to the second embodiment and the third embodiment.
  • the information related to the user's work in the position indicator, which the change element exhibits is not limited to the pen pressure information applied to the position indicator.
  • the position indicator may be provided with a slider and a wheel operation unit for adjusting the degree of change in selected graphical parameters such as line thickness, color, shading, and gray scale.
  • the information related to the user's operation in the position indicator, which is presented by the changing element may be information for adjusting the degree of change of the graphical parameter in accordance with the user's adjustment operation for these sliders and wheel operation units.
  • FIG. 13 (A) is a diagram showing an example of the appearance of a position indicator 1C including a slider 17.
  • the slider 17 changes the value of the change element by sliding the slide operator 17b along the slide groove 17a, and the graphical parameter corresponding to the value of the change element is changed. Adjust the value.
  • the change element that changes according to the sliding amount of the slider 17 may be any element that changes the resonance frequency of the resonance circuit.
  • FIG. 13B is a diagram showing an example of the appearance of a position indicator 1D that includes the wheel operation unit 18.
  • the wheel operation unit 18 rotates the wheel 18a that can be rotated, thereby changing the value of the change element according to the rotation amount, rotation angle, and rotation speed. Then, the value of the graphical parameter corresponding to the value of the change element is adjusted.
  • the change element may be any one of a variable capacitor, a variable inductance element, and a variable resistance element, as in the case of the slider 17.
  • the position indicated by the position indicators 1C and 1D can be detected.
  • the change amount of the changing element such as the adjustment amount of the graphical parameter can be accurately obtained as the difference in the resonance frequency of the received signal or as the phase difference. Is very convenient.
  • the information related to the operation of the slider and the wheel operation unit provided in the position indicator is not limited to the above-described adjustment amount of the graphical parameter, and can be various other information.
  • the information related to the user's work in the position indicator is not limited to the above-described information on the pen pressure and the information related to the operation of the slider and the wheel operation unit provided in the position indicator. May be information such as the rotation angle or the tilt angle on the sensor of the position detection device.
  • the signal transmitted from the position detection device or the position indicator has been described by way of an example in which a single frequency signal is transmitted in a predetermined variation pattern.
  • the present invention is not limited to this.
  • the present invention can also be applied when transmitting a plurality of signals having different frequencies.
  • a signal of frequency A can be used as a burst signal
  • a signal of frequency B can be used as a guidance signal.
  • the switching signal for switching from the second resonance circuit 12 to the first resonance circuit is generated based on the signal received from the position detection device 200B through the second resonance circuit.
  • the switching signal may be generated from a signal acquired from another route without passing through the second resonance circuit.
  • the position indicator is provided with a receiving circuit that receives the signal for generating the switching signal without passing through the second resonance circuit, and the switching signal is generated from the signal received by the receiving circuit. May be.
  • the position detection device acquires a signal at the resonance frequency of the first resonance circuit in order to detect writing pressure from the difference from the signal at the resonance frequency of the second resonance circuit 12.
  • a predetermined signal for switching from the second resonance circuit to the first resonance circuit is sent out at each timing to perform the operation, but at each timing at which a signal of the resonance frequency of the first resonance circuit is acquired. It does not have to be done every time.
  • the position detection device includes a holding unit that constantly holds information on the resonance frequency and phase of the reference first resonance circuit, and updates the holding information of the holding unit at an appropriate timing, A predetermined signal for switching from the second resonance circuit to the first resonance circuit is sent to the position indicator, and a holding unit is provided based on the resonance frequency and phase information acquired from the position indicator. The information may be updated.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Position Input By Displaying (AREA)

Abstract

 従来の位置検出装置に対する互換性を考慮しつつ、周辺金属等の周辺環境による影響を除去した筆圧等の検出が位置検出装置でできるようにした位置指示器を提供する。 インダクタンス素子と、静電容量素子とを含んで構成される第1の共振回路を備えると共に、この第1の共振回路と、使用者の所作に関連して共振周波数または位相を変化させる電気的要素値を変化させる変化素子とを含んで構成される第2の共振回路と、第1の共振回路と第2の共振回路とを切り替えるスイッチ回路とを備える。位置検出装置のセンサの導体との間で電磁結合するための共振回路として、外部から信号を受けない場合及び外部から所定の信号以外の信号を受けた場合には第2の共振回路を、外部から所定の信号を受けた場合には第1の共振回路を選択するようにスイッチ回路に切り替える。

Description

位置指示器
 この発明は、少なくともインダクタンス素子と静電容量素子とを含んで構成される共振回路を備え、位置検出装置と共に使用される位置指示器に関する。
 電磁誘導方式の位置検出方法として、位置検出装置(タブレット)と位置指示器との間で交流信号(電波)を送受し、位置指示器による位置検出装置のセンサ上での指示位置の座標値を、位置検出装置で検出することができるようにしたものが従来から賞用されている(例えば特許文献1(特開昭63‐70326号公報)参照)。
 特許文献1の位置検出装置においては、センサのループコイルから所定の周波数の電波を送信させ、位置指示器に備えられる共振回路に受信させる。そして、センサのループコイルを受信状態に切り替えて、前記電波を受信した位置指示器の共振回路から発信される電波を当該ループコイルに受信させ、誘導電圧を発生させる。そして、以上の処理をセンサの複数のループコイルを順次切り替えて繰り返し実行し、各ループコイルに発生した誘導電圧のレベルに基づいて位置指示器による指示位置の座標値を求めるようにしている。
 そして、上記のような電磁誘導方式の位置検出方法に用いられる従来の位置指示器においては、インダクタンス素子の例としてのコイルと静電容量素子の例としてのコンデンサとの並列接続からなる共振回路を構成する前記コンデンサの一部として、位置指示器の芯体に印加される筆圧に応じて静電容量が連続的に変化する可変容量コンデンサを用い、一方、位置検出装置で、位置指示器の共振回路から受信した誘導電圧から共振周波数の連続的な変化(または位相角の連続的な変化)を検出して、上記の芯体に印加される筆圧に応じた情報を得るようにしている(例えば特許文献2(特開2010-129920号公報)参照)。
特開昭63‐70326号公報 特開2010-129920号公報
 しかしながら、上述の電磁誘導方式の位置検出方法の場合、位置指示器と位置検出装置との間で電磁誘導作用による電波の授受を行っている傍に金属が存在すると、磁束が金属に引き寄せられるために、位置指示器の共振回路のコイルを貫く磁束密度が変化して、位置指示器と位置検出装置との間での相互インダクタンスMが変化し、位置指示器の共振回路の共振点が変化(共振周波数や位相が変化)してしまう。
 このため、位置指示器と位置検出装置との間で電磁誘導作用による電波の授受を行っている傍に金属が存在すると、位置指示器の共振回路の共振点(共振周波数や位相)は、筆圧の変化に応じた可変容量コンデンサの静電容量の変化に応じて変化するのみならず、傍に存在する金属の影響によっても変化しまう。そのため、特許文献2の位置検出装置における筆圧検出方式の場合、位置指示器の芯体に筆圧が印加されていなくても、筆圧が印加されているとして検出してしまい、筆圧を正しく検出することができなくなってしまう恐れがある。
 位置指示器と位置検出装置の傍に金属が存在する以外にも、温度変化などの環境の変化によって、また、経年変化によって、本来の固有の共振点(共振周波数や位相)からずれてしまう共振回路を位置指示器が備える場合には、特許文献2の位置検出装置における筆圧検出方式では、その位置指示器の芯体に印加された筆圧を正しく検出することができなくなるおそれがあるという問題もあった。
 また、最近は、パッド型携帯端末などの小型の電子機器の入力装置として上述したような位置指示器及び位置検出装置が搭載されるようになってきている。この種の小型の電子機器においては、上記の金属等の問題に加えて、位置指示器を、位置検出装置のセンサ面に対して傾けて使用すると、位置指示器の共振回路のコイル及びフェライトコアと、位置検出装置のシールド板との距離が変わって、電磁結合状態が変化するために位置指示器の共振回路の共振点(共振周波数や位相)がずれるという問題も生じてきている。
 さらに、位置指示器及び位置検出装置からなる入力装置を備えるパッド型携帯端末等の電子機器に設けられるスピーカが備える磁石や、パッド型携帯端末等の電子機器のカバーの開閉を検知するための磁石による直流磁界の影響で、電子機器のシールド板が磁気飽和をしてしまい、位置指示器の共振回路からの誘導電圧について位相ドリフトを発生し、この位相ドリフトによる共振点のずれのために、筆圧を正しく検出することができない恐れがあるという問題もある。
 以上のように、位置検出装置のセンサと位置指示器の共振回路との間の相互インダクタンスは、周辺金属の存在、熱等の環境要因、位置指示器(ペン)の位置検出装置のセンサに対する傾き、位置指示器や位置検出装置の筐体素材、システム構成等の周辺環境によって変化し、このため、位置指示器と位置検出装置のセンサとの間での共振点(位置指示器の共振回路の共振周波数や位相)がずれてしまう恐れがあった。
 以上の問題点に鑑み、出願人は、上述した周辺環境に応じた位置指示器と位置検出装置のセンサとの間での共振点(位置指示器の共振回路の共振周波数や位相)の変化の影響を、位置検出装置での筆圧検出において除去することができる新規の筆圧検出方法を創出している。
 この新規の筆圧検出方法においては、位置指示器は、筆圧に応じて静電容量が変化する可変容量コンデンサを共振要素として含まない第1の共振回路と、筆圧に応じて静電容量が変化する可変容量コンデンサを共振要素として含む第2の共振回路とを備える。そして、位置指示器は、位置検出装置との間の電磁結合用の共振回路として、第1の共振回路と、第2の共振回路とを切り替えるようにする。
 位置検出装置側では、位置指示器の電磁結合用の共振回路が第1の共振回路であるときの第1の共振周波数の信号を位置指示器から得ると共に、位置指示器の電磁結合用の共振回路が第2の共振回路であるときの第2の共振周波数の信号を位置指示器から得て、第1の共振周波数の信号と第2の共振周波数の信号との差分から、筆圧を検出するように構成する。
 このような構成によれば、第1の共振周波数の信号と第2の共振周波数の信号とのそれぞれには、前記周辺金属等の影響による共振点の変化分が同様に含まれるため、両者の差分を演算すると、前記周辺金属等の影響による共振点の変化分はキャンセルされることになる。したがって、位置検出装置では、前記周辺金属等の周辺環境による影響を除去して、筆圧の大きさに正しく対応した筆圧検出出力が得られる。
 この場合に、新規の位置指示器は、上述したように、第1の共振回路と、第2の共振回路とを備えると共に、新規の筆圧検出方式を備える位置検出装置に対しては、第1の共振回路と第2の共振回路とを、電磁結合用の共振回路として切り替える構成とする必要がある。
 一方、上述のような問題を含む従来の筆圧検出方式を採用している位置検出装置は、既に多く普及している。この点を考慮すると、当該従来の筆圧検出方式を採用している位置検出装置においても、従来通りの筆圧検出方式で筆圧を検出するができるように、新規の位置指示器を構成することが望ましい。つまり、新規の位置指示器としては、従来から普及している位置検出装置と、新規の筆圧検出方法を搭載する新規の位置検出装置との両方との互換性をとれる構成が望ましい。
 なお、上述の説明では、使用者の所作に応じて位置指示器に印加される筆圧を、共振回路の共振周波数や位相に反映させるようにした筆圧検出方式の場合について説明したが、筆圧のみならず、使用者の所作に関連する種々の情報を共振回路の共振周波数や位相に反映させるようにする場合にも、上述と同様の問題が生じることは言うまでもない。
 この発明は、以上の点を考慮して、従来の位置検出装置でも使用できるように互換性を考慮しつつ、上述した問題点を解決するようにした新規の位置検出装置と共に使用される位置指示器を提供することを目的とする。
 上記の課題を解決するために、この発明は、
 位置検出装置のセンサの導体との間で電磁結合するための共振回路を備え、使用者の所作に関連する情報を前記共振回路の共振周波数または位相に反映させるようにする位置指示器であって、
 インダクタンス素子と、静電容量素子とを含んで構成される第1の共振回路と、
 前記インダクタンス素子と、前記静電容量素子と、使用者の所作に関連して共振周波数または位相を変化させる電気的要素値を変化させる変化素子とを含んで構成される第2の共振回路と、
 前記第1の共振回路と、前記第2の共振回路とを切り替えるスイッチ回路と、
 前記スイッチ回路を駆動する切替信号を生成して前記スイッチ回路に供給するための切替回路と、
 を備え、
 外部から信号を受けない場合及び外部から所定の信号以外の信号を受けた場合には、前記切替回路で前記切替信号は生成されず、前記第2の共振回路を前記位置検出装置のセンサの導体との間で電磁結合するための前記共振回路として構成し、
 外部から前記所定の信号を受けた場合には、前記切替回路で前記切替信号が生成されて前記スイッチ回路に供給され、前記第1の共振回路を前記位置検出装置のセンサの導体との間で電磁結合するための前記共振回路として構成するように切り替わる
 ことを特徴とする位置指示器を提供する。
 上述の構成のこの発明の位置指示器は、外部から信号を受けていない場合、また、例えば従来の構成の位置検出装置からの信号のような所定の信号以外の信号を受けた場合には、位置検出装置のセンサの導体との間で電磁結合するための共振回路は、第2の共振回路となり、この第2の共振回路に位置検出装置からの信号に応じた誘導電圧が発生する。
 第2の共振回路は、変化素子の電気的要素値、例えばインダクタンス値や静電容量の変化に応じて変化する共振周波数または位相の信号を発生する。したがって、この発明の位置指示器からの信号の受信状態とされた例えば従来の構成の位置検出装置には、この第2の共振回路の共振周波数または位相に応じた誘導電圧が発生する。よって、従来の構成の位置検出装置では、従来の通り、使用者の所作に関連する情報、例えば位置指示器に印加される筆圧の情報を、誘導電圧から検出することが可能となり、互換性を確保することができる。
 一方、この発明の位置指示器は、位置検出装置からの信号を受けることができる状態のときであって、所定の信号を受けていないときには、当該位置検出装置のセンサの導体との間で電磁結合するための共振回路として第2の共振回路を構成し、変化素子の電気的要素値に応じて変化する共振周波数または位相に応じた誘導電圧が、信号を送信してきた位置検出装置に発生する。そして、この発明の位置指示器は、位置検出装置から所定の信号を受けると、第2の共振回路から変化素子を遮断することで、第2の共振回路から第1の共振回路に切り替え、当該位置検出装置のセンサの導体との間で電磁結合するための共振回路を第1の共振回路に切り替える。したがって、所定の信号を発生した位置検出装置には、変化素子を含まない第1の共振回路の共振周波数または位相に応じた誘導電圧が発生する。
 こうして、所定の信号を発生する機能を有する位置検出装置は、変化素子の電気的要素値に応じて変化する第2の共振回路の共振周波数または位相の信号と、変化素子を含まずに前記インダクタンス素子と前記静電容量素子とを含んで構成される第1の共振回路の共振周波数または位相の信号とを取得できる。したがって、新規の位置検出装置などの所定の信号を発生する機能を有する位置検出装置は、両共振回路の信号の差分(周波数差や位相差)を求めることで、共振周波数や位相を変化させる電気的要素値を変化させる使用者の所作に関連する情報、例えば位置指示器に印加される筆圧の情報を検出することができる。
 この発明による位置指示器によれば、使用者の所作に関連して共振周波数または位相を変化させる電気的要素値を変化させる変化素子を含んで構成される第2の共振回路を備えると共に、外部からの所定の信号に基づいて生成される切替信号によって切り替えられるスイッチ回路により、前記第2の共振回路から前記変化素子を遮断することで第1の共振回路に切り替える構成を備える。これにより、この発明によれば、従来の位置検出装置でも使用できるように互換性を考慮しつつ、第2の共振回路の共振周波数と第1の共振回路の共振周波数とを受信して、両者の差分を取ることで上述した問題点を解決するようにした新規の位置検出装置と共に使用される位置指示器を提供することができる。
この発明による位置指示器の実施形態と、当該位置指示器と共に使用される位置検出装置からなる電子機器の例を示す図である。 この発明による位置指示器の第1の実施形態の構成例と、当該位置指示器と共に使用される位置検出装置の構成例とを説明するための図である。 この発明による位置指示器の第1の実施形態の要部の構成の回路例を示す図である。 図2に示したこの発明による位置指示器の第1の実施形態の構成例と、当該位置指示器と共に使用される位置検出装置の構成例との間での動作を説明するためのタイミングチャートである。 この発明による位置指示器の実施形態と共に使用される従来タイプの位置検出装置の構成例を示すブロック図である。 この発明による位置指示器の実施形態と共に使用される新規タイプの位置検出装置の構成例を示すブロック図である。 この発明による位置指示器の第1の実施形態の変形例と、当該位置指示器と共に使用される位置検出装置の構成例との間での動作を説明するためのタイミングチャートである。 この発明による位置指示器の第1の実施形態の他の変形例の要部を示す図である。 この発明による位置指示器の第2の実施形態の要部の構成の回路例を示す図である。 この発明による位置指示器の第3の実施形態の要部の構成の回路例を示す図である。 この発明による位置指示器の第3の実施形態の処理動作例を説明するためのタイミングチャートである。 この発明の位置指示器の他の実施形態の構成例を示す図である。 この発明の位置指示器の他の実施形態の外観構成例を示す図である。
 [第1の実施形態]
 以下、この発明による第1の位置指示器の実施形態を、図を参照しながら説明する。図1は、この発明による第1の実施形態の位置指示器1と、当該位置指示器1と共に使用する位置検出装置を備える電子機器2の一例の外観図である。この第1の実施形態は、変化素子が位置指示器に印加される筆圧検出用の可変容量コンデンサからなる場合である。
 この例の電子機器2は、例えばLCD(Liquid Crystal Display)などの表示装置の表示画面2Dを備える携帯端末であり、表示画面2Dの下部(裏側)に、電磁誘導方式の位置検出装置200を備えている。この発明の実施形態の位置指示器1は、ペン形状を有し、その先端に芯体1Pが設けられている。そして、位置指示器1は、図1では、図示は省略するが、位置検出装置200との間で電磁誘導により信号の授受を行うための共振回路を備えている。
 この例の電子機器2の筐体は、ペン形状の位置指示器1を収納する収納凹穴2Hを備えている。使用者は、必要に応じて、収納凹穴2Hに収納されている位置指示器1を、電子機器2から取り出して、表示画面2Dを入力面として位置指示操作を行う。
 電子機器2においては、表示画面2D上で、ペン形状の位置指示器1により位置指示操作がされると、表示画面2Dの裏側に設けられた位置検出装置200と位置指示器1との間での電磁結合により信号の授受がなされることにより、位置検出装置200は、位置指示器1で指示操作された位置及び筆圧を検出する。そして、電子機器2が備えるマイクロコンピュータが、位置検出装置200で検出された表示画面2Dでの操作位置及び筆圧に応じた表示処理を施す。
 そして、実施形態の位置指示器1は、使用者の所作に関連する情報として、芯体1Pに印加される圧力、すなわち、筆圧の情報を、共振回路の共振周波数や位相に反映させて位置検出装置200に伝達するようにする。すなわち、使用者が位置指示器1を表示画面2Dにおいて位置指示入力をするために、当該表示画面2Dを押圧する所作をすると、位置指示器1の芯体1Pは、表示画面2Dから圧力を受ける。この実施形態の位置指示器1は、図示は省略するが、芯体1Pに印加される圧力(筆圧)に応じて静電容量を変化させる可変容量コンデンサを内蔵する。この可変容量コンデンサについては、例えば前述した特許文献2に詳細に説明されているので、ここではその説明は省略する。
 そして、後述するように、この実施形態の位置指示器1は、内蔵する可変容量コンデンサを、共振回路の共振周波数や位相を変化させる電気的要素値(この場合には静電容量となる)を変化させる変化素子として用いるようにする。
 また、位置検出装置200は、この実施形態では、筆圧を可変容量コンデンサの変化に応じた共振周波数の変移(位相変移)として検出する従来タイプの位置検出装置200Aと、筆圧を可変容量コンデンサの変化に応じた共振周波数や位相の信号と、基準の共振周波数や位相(可変容量コンデンサを含まない共振回路の共振周波数や位相)の信号との差分(周波数差や位相差)として検出する新規タイプの位置検出装置200Bの2つのタイプを想定する。
 図2に、第1の実施形態の位置指示器1の内部回路構成例の概略を示すと共に、この第1の実施形態の位置指示器1と共に、入力装置を構成する従来タイプの位置検出装置200Aと、新規タイプの位置検出装置200Bとの関係を示す。また、図3に、第1の実施形態の位置指示器1の内部回路構成例の具体回路例を示す。そして、図4は、従来タイプの位置検出装置200A及び新規タイプの位置検出装置200Bから送信する交流信号と、位置指示器100での受信信号との関係を説明するためのタイミングチャートである。
 図2に示すように、位置指示器1の内部回路は、インダクタンス素子の例としてのコイル11Lと静電容量素子の例としてのコンデンサ11Cとの並列回路からなる第1の共振回路11と、この第1の共振回路11を含み、そのコンデンサ11Cに更に並列にスイッチ回路12SW及び可変容量コンデンサ12Cの直列回路が接続されることで構成される第2の共振回路12と、スイッチ回路12SWの切替信号を生成する切替信号生成回路13とからなる。
 図示は省略するが、コイル11Lは、例えばフェライトコアに絶縁被覆された細い線状の導体が巻回されたものからなり、位置指示器1のケース(筐体)内の、芯体1Pの先端部近傍に固定配置されている。コンデンサ11Cは、位置指示器1のケース(筐体)内に配設されているプリント基板上に配設されて、当該プリント基板上においてコイル11Lと電気的に接続されている。
 可変容量コンデンサ12Cは、前述したように、芯体1Pに印加される筆圧に応じて静電容量が変化するように構成された例えば特許文献2に記載されている筆圧検出モジュールで構成される。
 スイッチ回路12SWは、この実施形態では、通常時オンであって導通状態(いわゆるノーマリオンタイプ)となっている半導体スイッチ回路で構成され、位置指示器1のケース(筐体)内に配設されているプリント基板に配設される。そして、プリント基板上において、可変容量コンデンサ12Cとスイッチ回路12SWが電気的に直列に接続されると共に、可変容量コンデンサ12Cとスイッチ回路12SWの直列回路が、第1の共振回路11に並列に接続される。
 切替信号生成回路13は、前記プリント基板上に構成されており、第1の共振回路11あるいは第2の共振回路12で得られる共振信号から、スイッチ回路12SWの切替信号を生成する。そして、切替信号生成回路13は、生成した切替信号により、スイッチ回路12SWをオフに切り替えるように制御する。この実施形態では、切替信号生成回路13は、スイッチ回路12SWを切り替え駆動する切替回路を構成している。
 後述するように、この実施形態の位置指示器1では、従来タイプの位置検出装置200Aと共に使用される状態では、切替信号生成回路13は、当該従来タイプの位置検出装置200Aからの信号に基づいては、スイッチ回路12SWをオンからオフには切り替える切替信号は生成せず、スイッチ回路12SWはオンのままとする。そして、この実施形態の位置指示器1が、新規タイプの位置検出装置200Bと共に使用される状態になると、切替信号生成回路13は、当該新規タイプの位置検出装置200Bからの信号に基づいて、スイッチ回路12SWをオンからオフには切り替える切替信号を生成する。
 したがって、この実施形態の位置指示器1では、当該位置指示器1が何も信号を受信しておらずスイッチ回路12SWがオンであって導通状態である通常時と、従来タイプの位置検出装置200Aと共に使用される状態のときには、コイル11Lと、コンデンサ11Cと、可変容量コンデンサ12Cとが互いに並列に接続された第2の共振回路12が、位置検出装置200Aまたは位置検出装置200Bとの電磁結合用の共振回路となる。この第2の共振回路12は、従来のこの種の電磁誘導方式の位置指示器の共振回路とほぼ同一の回路構成を備える。
 また、位置指示器1は、切替信号生成回路13からの切替信号によりスイッチ回路12SWがオフに切り替えられて非導通状態になった時には、位置指示器1の電磁結合用の共振回路は、第2の共振回路12から、コイル11Lとコンデンサ11Cとの並列回路からなる第1の共振回路11に切り替えられる。すなわち、スイッチ回路12SWがオフに切り替えられることにより、変化素子である可変容量コンデンサ12Cが、第2の共振回路12から遮断されることで、第1の共振回路11に切り替えられる。スイッチ回路12SWは、変化素子である可変容量コンデンサ12Cを第2の共振回路12から遮断する回路を構成している。
 新規タイプの位置検出装置200Bは、第2の共振回路12の共振周波数の信号と第1の共振回路11の共振周波数の信号との差分に基づいて筆圧を検出するようにする。このため、新規タイプの位置検出装置200Bは、第1の共振回路11の共振周波数の信号を、第2の共振回路12の共振周波数の信号との差分を演算するための信号として、後述するように、所定のタイミングで取得するようにする。そして、新規タイプの位置検出装置200Bは、取得した第1の共振回路11の共振周波数の信号を、その他の期間で取得する第2の共振回路12の共振周波数の信号との差分演算に用いるようにする。
 図3は、この実施形態の位置指示器1の内部回路の、より具体的な構成例を示すものである。図3に示す例においては、スイッチ回路12SWとして、ノーマリオンタイプの接合型電界効果トランジスタ(JFET;Junction Field Effect Transistor)12Tを用いている。そして、このJFET12Tのソース-ドレイン間を可変容量コンデンサ12Cに直列に接続し、当該JFET12と可変容量コンデンサ12Cとの直列回路を、コイル11L及びコンデンサ11Cに並列に接続する。
 切替信号生成回路13は、この例では、図3に示すような半波倍圧整流回路の構成とされている。すなわち、切替信号生成回路13は、第1の共振回路11または第2の共振回路12との結合用コンデンサ131と、整流用ダイオード132及び133と、整流電圧の保持用コンデンサ134と、整流電圧の平滑用抵抗135とからなる。
 この構成の切替信号生成回路13においては、第1の共振回路11または第2の共振回路12で位置検出装置200Aまたは200Bから受信した交流信号は、ダイオード132及び133で整流されて保持用コンデンサ134に蓄積されて保持される。そして、この保持用コンデンサ134の保持電圧Ecが、切替信号として、JFET12Tのゲートに供給されている。
 JFET12Tは、保持用コンデンサ134の保持電圧Ecが、所定の閾値電圧Ethよりも低いときには、通常状態であるオン状態(導通状態)を維持し、所定の閾値電圧Eth以上になると、オフ状態(非導通状態)に切り替えられる。そして、前述もしたように、JFET12Tがオンである通常状態においては、位置指示器1の電磁結合用の共振回路としては、第2の共振回路12が動作状態となり、JFET12Tがオフに切り替えられたときには、位置指示器1の電磁結合用の共振回路は、第1の共振回路11が動作状態となる状態に切り替えられる。
 一方、図2に示すように、従来タイプの位置検出装置200Aは、位置指示器1に対して送信信号SAを送信する送信信号発生回路201Aと、位置指示器1からの信号を受信して、位置指示器による指示位置の検出及びその時の筆圧を検出する受信処理回路202Aとを備える。
 また、新規タイプの位置検出装置200Bは、位置指示器1に対して送信信号SAとは異なる送信信号SBを送信する送信信号発生回路201Bと、位置検出装置200Aと同様にして位置指示器1による指示位置の検出を行うと共に、位置検出装置200Aとは異なる方式で筆圧の検出を行う受信処理回路202Bとを備える。
 ここで、位置検出装置200A及び位置検出装置200Bからの送信信号SA及び送信信号SBとは、同じ周波数foの交流信号を用いるもので、その周波数foは、第1の共振回路11及び第2の共振回路12の共振周波数に対応して選定されている。そして、送信信号SA及び送信信号SBとでは、送信時間長や送信間隔など、送信の仕方が異なるものとされている。
 すなわち、従来タイプの位置検出装置200Aの送信信号発生回路201Aからの送信信号SAは、この実施形態では、図4(A)に示すように、時間長Paで連続送信される周波数foのバースト信号BSaが、時間間隔Pbを開けて間欠的に繰り返される信号とされている。この場合に、バースト信号BSaの連続送信の時間長Pa及び前記時間間隔Pbは、送信信号SAが位置指示器1の第1の共振回路11または第2の共振回路12で受信されたときに、切替信号生成回路13では、図4(B)に示すように、保持用コンデンサ134の保持電圧Ecが、閾値電圧Ethを超えることがないような時間長及び時間間隔とされている。
 したがって、位置指示器1が、従来タイプの位置検出装置200Aと共に使用される状態においては、送信信号発生回路201Aからの送信信号SAによっては、位置指示器1の切替信号生成回路13の保持用コンデンサ134の保持圧Ecは、閾値電圧Ethを超えることはない(図4(B)参照)。このために、位置指示器1のJFET12Tは、オフとなることはなく、図4(C)に示すように、常にオンのままとなり、位置指示器1は、第2の共振回路12を、位置検出装置200Aとの電磁結合用の共振回路として動作する。
 よって、位置検出装置200Aは、従来と同様に、位置指示器1からは、第2の共振回路12により可変容量コンデンサ12Cの筆圧に応じた周波数とされた信号RAを受信し、この信号RAから位置指示器1による指示位置を検出すると共に、この信号RAにおける周波数foからの周波数遷移(または位相遷移)を検出することで、位置指示器1の芯体1Pに印加されている筆圧を検出する。
 この従来タイプの位置検出装置200Aの送信信号発生回路201A及び受信処理回路202Aの回路構成例を、図5を参照して以下に説明する。
 図5は、位置指示器1及び位置検出装置200Aの回路構成例を示すブロック図である。位置指示器1は、前述したように、位置検出装置200Aと共に使用される場合には、第2の共振回路12のみが電磁結合用の共振回路として常に動作する状態となる。
 位置検出装置200Aには、X軸方向ループコイル群211と、Y軸方向ループコイル群212とが積層されてセンサ210が形成されている。各ループコイル群211,212は、例えば、それぞれn,m本の矩形のループコイルからなっている。各ループコイル群211,212を構成する各ループコイルは、等間隔に並んで順次重なり合うように配置されている。
 また、位置検出装置200Aには、X軸方向ループコイル群211及びY軸方向ループコイル群212が接続される選択回路213が設けられている。この選択回路213は、2つのループコイル群211,212のうちの一のループコイルを順次選択する。
 さらに、位置検出装置200Aには、発振器221と、電流ドライバ222と、切替接続回路223と、受信アンプ224と、検波器225と、低域通過フィルタ226と、サンプルホールド回路227と、A/D変換回路228と、処理制御部229Aと、同期検波器231と、低域通過フィルタ232と、サンプルホールド回路233と、A/D変換回路234とが設けられている。処理制御部229Aは、マイクロコンピュータにより構成されている。
 発振器221、電流ドライバ222、切替接続回路223、処理制御部229A、更に、センサ210により、送信信号発生回路201Aが構成される。また、センサ210、切替接続回路223、受信アンプ224、検波器225、低域通過フィルタ226、サンプルホールド回路227とA/D変換回路228、処理制御部229Aにより、位置指示器1による指示位置の検出回路が構成され、センサ210、切替接続回路223、受信アンプ224、同期検波器231、低域通過フィルタ232、サンプルホールド回路233、A/D変換回路234、処理制御部229Aにより、位置指示器1に印加されている筆圧の検出回路が構成される。
 発振器221は、周波数foの交流信号を発生する。そして、発振器221は、発生した交流信号を、電流ドライバ222と同期検波器231に供給する。電流ドライバ222は、発振器221から供給された交流信号を電流に変換して切替接続回路223へ送出する。切替接続回路223は、処理制御部229Aからの制御により、選択回路213によって選択されたループコイルが接続される接続先(送信側端子T、受信側端子R)を切り替える。この接続先のうち、送信側端子Tには電流ドライバ222が、受信側端子Rには受信アンプ224が、それぞれ接続されている。
 そして、処理制御部229Aは、切替接続回路223を、図4(A)に示した連続送信時間長Paの期間では、送信側端子Tに接続し、時間間隔Pbの期間では、受信側端子Rに接続するように切り替える。したがって、連続送信時間長Paの期間では、周波数foの交流信号が、選択回路213により選択されたループコイルを通じて、送信信号SAとして位置指示器1に送信される。
 そして、時間間隔Pbの期間で、切替接続回路223が切り替えられて受信側端子Rに接続されると、位置指示器1の共振回路から送られてくる信号RAに応じて選択回路213により選択されたループコイルに誘導電圧が発生する。この場合に、位置指示器1により指示されていて、位置指示器1の近傍に位置するループコイルの誘導電圧ほど、他の位置のループコイルの誘導電圧よりも大きくなる。
 選択回路213により選択されたループコイルに発生した誘導電圧は、選択回路213及び切替接続回路223を介して受信アンプ224に送られる。受信アンプ224は、ループコイルから供給された誘導電圧を増幅し、検波器225及び同期検波器231へ送出する。
 検波器225は、ループコイルに発生した誘導電圧、すなわち受信信号を検波し、低域通過フィルタ226へ送出する。低域通過フィルタ226は、前述した周波数foより充分低い遮断周波数を有しており、検波器225の出力信号を直流信号に変換してサンプルホールド回路227へ送出する。サンプルホールド回路227は、低域通過フィルタ226の出力信号の所定のタイミング、具体的には受信期間中の所定のタイミングにおける電圧値を保持し、A/D(Analog to Digital)変換回路228へ送出する。A/D変換回路228は、サンプルホールド回路227のアナログ出力をディジタル信号に変換し、処理制御部229Aに出力する。
 一方、同期検波器231は、受信アンプ224の出力信号を発振器221からの交流信号で同期検波し、それらの間の位相差に応じたレベルの信号を低域通過フィルタ232に送出する。この低域通過フィルタ232は、周波数foより充分低い遮断周波数を有しており、同期検波器231の出力信号を直流信号に変換してサンプルホールド回路233に送出する。このサンプルホールド回路233は、低域通過フィルタ232の出力信号の所定のタイミングにおける電圧値を保持し、A/D(Analog to Digital)変換回路232へ送出する。A/D変換回路232は、サンプルホールド回路233のアナログ出力をディジタル信号に変換し、処理制御部229Aに出力する。
 処理制御部229Aは、位置検出装置200Aの各部を制御する。すなわち、処理制御部229Aは、選択回路213におけるループコイルの選択、切替接続回路223の切り替え、サンプルホールド回路227、231のタイミングを制御する。処理制御部229Aは、A/D変換回路228、232からの入力信号に基づき、X軸方向ループコイル群211及びY軸方向ループコイル群212から、この例では時間長Paの連続送信時間をもって電波を送信させる。
 前述したように、X軸方向ループコイル群211及びY軸方向ループコイル群212の各ループコイルには、位置指示器1から送信される電波によって誘導電圧が発生する。処理制御部229Aは、A/D変換回路228からのディジタル信号に基づき、各ループコイルに発生した誘導電圧の電圧値のレベルを検知して、位置指示器1のX軸方向及びY軸方向の指示位置の座標値を算出する。
 また、処理制御部229Aは、A/D変換回路234からのディジタル信号に基づき、送信した電波と受信した電波との周波数変移(位相変移)に応じた信号のレベルを検出し、その検出した信号のレベルに基づいて、位置指示器1に印加されている筆圧を検出する。
 以上のようにして、従来タイプの位置検出装置200Aでは、処理制御部229Aで、接近したこの実施形態の位置指示器1により指示された位置を検出することができると共に、従来と同様の筆圧検出方式により、受信した周波数変移(または位相変移)を検出することにより、位置指示器1の筆圧値の情報を得ることができる。
 次に、新規タイプの位置検出装置200Bについて説明する。新規タイプの位置検出装置200Bの送信信号発生回路201Bからの送信信号SBは、図4Dに示すように、位置検出装置200Aの送信信号発生回路201Aと同様に、周波数foで時間長Paのバースト信号BSaが、時間間隔Pbを開けて間欠的に繰り返されるだけでなく、第2の共振回路12の共振周波数の信号との差分から筆圧を検出するために、第1の共振回路の共振周波数の信号を取得するタイミングに合わせて、時間長Pc(Pc>Pa)で連続送信される周波数foのバースト信号BSbが含まれる信号とされている。ここで、バースト信号BSbの時間長Pcは、送信信号SBが位置指示器1の第1の共振回路11または第2の共振回路12で受信されたときに、切替信号生成回路13で、図4(E)に示すように、保持用コンデンサ134の保持電圧Ecが閾値電圧Ethを所定時間にわたって超えるような時間長とされている。
 以上のことから、位置指示器1が、新規タイプの位置検出装置200Bと共に使用される状態においては、送信信号発生回路201Bからの送信信号SBの時間長Pcのバースト信号によって、位置指示器1の切替信号生成回路13の整流出力電圧Ecは、閾値電圧Ethを超える(図4(E)参照)。このために、位置指示器1のJFET12Tは、図4(F)に示すように、時間長Pcのバースト信号BSbが送信信号SBとして送信されるタイミングにおいて、オンからオフに切り替えられ、位置指示器1は、位置検出装置200Bとの電磁結合用の共振回路として、第2の共振回路12から、第1の共振回路11に切り替えるように動作する。
 位置検出装置200Bは、送信信号SBのうち、時間長Paのバースト信号BSaが、時間間隔Pbで間欠的に繰り返す期間において、前述した位置検出装置200Aと同様にして、位置指示器1により指示されている位置を検出する。また、位置検出装置200Bは、この時の受信信号の、この例では周波数及び位相を検出して、その検出した周波数及び位相に応じた信号レベルを保持しておく。
 そして、位置検出装置200Bは、第2の共振回路12の共振周波数の信号との差分から位置指示器1に印加されている筆圧を検出するために、第1の共振回路の共振周波数の信号を取得するタイミングになると、送信信号SBとして、時間長Pcのバースト信号BSbを送信するようにする。すると、位置指示器1の電磁結合用の共振回路が、第2の共振回路12から第1の共振回路11に切り替わるので、位置検出装置200Bは、この時の受信信号の、この例では周波数及び位相を検出して、その検出した周波数及び位相に応じた信号レベルを得る。
 位置指示器1の電磁結合用の共振回路が第2の共振回路12であったときに検出した周波数及び位相は、位置指示器1に印加されていた筆圧に応じた静電容量を呈する可変容量コンデンサ12Cによる分を含む周波数及び位相である。一方、位置指示器1の電磁結合用の共振回路が第1の共振回路11であるときに検出した周波数及び位相は、筆圧に応じた静電容量を呈する可変容量コンデンサ12Cによる分を含まない基準の周波数及び位相である。したがって、両周波数及び位相の差として、位置指示器1に印加されている筆圧を検出することが可能である。
 そして、位置指示器1の第1の共振回路11及び第2の共振回路12からの信号には、共に、位置指示器1と位置検出装置200Bとの電磁結合における相互インダクタンスに対する周辺環境の影響が同様に含まれているので、その差分を求めると、前記相互インダクタンスに対する周辺環境の影響がキャンセルされて除去される。したがって、周辺環境の影響を除去して、正確な筆圧の検出ができる。
 この新規タイプの位置検出装置200Bの送信信号発生回路201B及び受信処理回路202Bの回路構成例を、図6に示す。この図6において、図5に示した位置検出装置200Aと同一部分には、同一参照符号を付して、その説明は省略する。
 図6に示すように、この新規タイプの位置検出装置200Bの送信信号発生回路201B及び受信処理回路202Bの回路構成例は、位置検出装置200Aと比較すると、処理制御部229Aが処理制御部229Bに変わると共に、位置指示器1に印加されている筆圧の検出回路の構成部分が、同期検波器231、低域通過フィルタ232、サンプルホールド回路233、A/D変換回路234に代えて、周波数弁別回路241、サンプルホールド回路242、A/D変換回路243を含む構成とされている点が異なる。その他の点は、新規タイプの位置検出装置200Bと従来タイプの位置検出装置200Aとは同一の構成とされている。
 位置指示器1は、この場合には、図6に示すように、JFET12Tにより構成されているスイッチ回路12SWを、位置検出装置200Bからの送信信号SBに基づいて生成した切替信号によりオフにすることにより、可変容量コンデンサ12Cを切り離す(遮断する)ことで、第2の共振回路12から、第1の共振回路11へと切り替えるようにする。位置指示器1が位置検出装置200Bからの送信信号SBを受けていないときには、スイッチ回路12SWはオンの状態であって、位置指示器1の電磁結合用の共振回路は、第2の共振回路12となっている。
 そして、位置検出装置200Bの処理制御部229Bは、位置検出装置200Aの処理制御部229Aと同様にして、切替接続回路223を、図4(D)に示した連続送信時間長Paの期間では、送信側端子Tに接続し、時間間隔Pbの期間では、受信側端子Rに接続するように切り替える。すると、この時には、前述したように、スイッチ回路12SWは、オフに切替らえることはなく、位置指示器1の電磁結合用の共振回路は、第2の共振回路12のままであるので、上述した位置検出装置200Aと同様にして、位置検出装置200Bは、位置指示器1により指示されたセンサ210上の位置座標を検出するようにする。
 そして、位置検出装置200Bは、この位置指示器1の電磁結合用の共振回路が第2の共振回路12である時に得られる受信アンプからの信号の周波数を、周波数弁別回路241において弁別して、その周波数及び位相に応じた信号レベルを得る。そして、その周波数及び位相に応じた信号レベルをサンプルホールド回路242でサンプルホールドし、A/D変換回路243でディジタル信号にして、処理制御部229Bに供給する。処理制御部229Bは、この位置指示器1の電磁結合用の共振回路が第2の共振回路12である時の受信信号の周波数及び位相に対応する信号レベルを保持しておくようにする。
 そして、位置検出装置200Bの処理制御部229Bは、第2の共振回路12の共振周波数の信号との差分から位置指示器1に印加されている筆圧を検出するために、第1の共振回路の共振周波数の信号を取得するタイミングになると、切替接続回路223を、図4(D)に示した連続送信時間Pcで、送信側端子Tに接続するようにする。すると、前述したようにして、位置指示器1の切替信号生成回路13の保持用コンデンサ134の保持電圧Ecが閾値電圧Ethを超えるために、スイッチ回路12SWがオフとなって、位置指示器1の電磁結合用の共振回路は、第2の共振回路12から第1の共振回路11に切り替わる。
 そして、位置検出装置200Bは、この位置指示器1の電磁結合用の共振回路が第1の共振回路11に切り替わった時に得られる受信アンプからの信号の周波数及び位相を、周波数弁別回路241において弁別して、その周波数及び位相に応じた信号レベルを得る。そして、その周波数及び位相に応じた信号レベルをサンプルホールド回路242でサンプルホールドし、A/D変換回路243でディジタル信号にして、処理制御部229Bに供給する。処理制御部229Bは、この位置指示器1の電磁結合用の共振回路が第1の共振回路11である時の受信信号の周波数及び位相に対応する信号レベルと、保持していた位置指示器1の電磁結合用の共振回路が第2の共振回路12である時の受信信号の周波数及び位相に対応する信号レベルとの差分から、位置指示器1に印加されている筆圧を検出するようにする。
 以上のようにして、新規タイプの位置検出装置200Bでは、処理制御部229Bで、接近したこの実施形態の位置指示器1により指示された位置を検出することができると共に、位置指示器1の電磁結合用の共振回路が第2の共振回路の時の受信周波数と、第1の共振回路であるときの受信周波数との差分に基づいて筆圧を検出するという新規の筆圧検出方式により、位置指示器1の筆圧値の情報を、周辺環境に全く影響されることなく、正確に得ることができる。
 [実施形態の変形例]
 <切替信号生成回路13におけるJFET12Tの切替信号>
 上述の実施形態においては、新規タイプの位置検出装置200Bは、位置指示器1のスイッチ回路12SW(JFET12T)を切り替える切替信号として、連続送信時間が長い時間長Pcのバースト信号BSbを用いるようにした。しかし、位置指示器1のスイッチ回路12SW(JFET12T)を切り替える切替信号としては、これに限られるものではない。例えば、図7(A)に示すように、時間長Paのバースト信号BSaの間欠的な送信の時間間隔を、時間間隔Pbよりも短い時間間隔Pdとすることで、保持用コンデンサ134の保持電圧Ecが閾値Ethを超えるようにして、スイッチ回路12SWを構成するJFET12をオフとするようにしてもよい。
 すなわち、位置指示器1の切替信号生成回路13の保持用コンデンサ134の保持電圧Ecは、図7(B)に示すように、時間長Paのバースト信号BSaが時間間隔Pbで間欠的に送信される期間では、閾値Ethを超えることはないが、時間長Paのバースト信号BSaが時間間隔Pbよりも短い時間間隔Pdで間欠的に送信される期間になると、閾値Ethを超える。このため、時間長Paのバースト信号BSaが時間間隔Pbよりも短い時間間隔Pdで間欠的に送信される期間になると、位置指示器1では、JFET12Tが、オンからオフの状態に切り替えられ、位置指示器1の電磁結合用の共振回路は、第2の共振回路12から第1の共振回路11に切り替えられる。
 また、図4では、周波数foの信号の、時間長Paよりも長い時間長Pcの連続送信は、1回のみが示されているが、位置指示器1に印加されている筆圧を確実に検出することができるように、位置検出装置200Bは、当該時間長Pcの連続送信を、所定の時間間隔を空けて間欠的に複数回、繰り返すようにしても勿論よい。その場合の時間間隔は、前記時間間隔Pbと同一であってもよいし、時間間隔Pbよりも短くても、また、長くてもよい。
 また、上述の実施形態の説明では、新規タイプの位置検出装置200Bでは、位置指示器1の電磁結合用の共振回路が、第2の共振回路であるときと、第1の共振回路であるときとの差分としては、周波数及び位相としたが、差分としては、周波数分のみでもよいし、位相分のみでもよい。
 <スイッチ回路12SWの構成>
 位置指示器1の第2の共振回路12においては、スイッチ回路12SWの導通時の抵抗が大きいと、位置検出装置から受信した信号の信号レベル減衰が起こるので、スイッチ回路12SWの導通時の抵抗は、できるだけ低抵抗である方がよい。
 上述の実施形態では、スイッチ回路12SWとして、通常状態でオンであるノーマリオンタイプのJFET12Tを用いた。しかし、このJFET12Tは、導通時の抵抗が数百オームと大きいため、位置指示器1の共振回路において信号レベルの減衰が起こる恐れがある。
 この問題を解決したスイッチ回路12SWの一例を、図8に示す。図8は、第2の共振回路12のスイッチ回路12SWと可変容量コンデンサ12Cとの直列回路の部分を示すものである。この例においては、スイッチ回路12SWとしては、複数個のJFET12T,12T,12T,・・・,12T(nは2以上の整数)を、ラダー状に並列に接続したとしたものを用いる。すなわち、JFET12T,12T,12T,・・・,12Tの互いのソースを共通に接続すると共に、互いのドレインを共通に接続し、共通ドレインを可変容量コンデンサ12Cに接続する。そして、JFET12T,12T,12T,・・・,12Tのそれぞれのゲートに、切替信号生成回路13からの切替信号を供給するものである。
 このように構成すれば、スイッチ回路12SWの導通時の抵抗は、1個のJFETの導通時の抵抗をRとすれば、R/nとなり、小さくすることができる。そのため、第2の共振回路12を位置指示器1の電磁結合用の共振回路としたときの、位置検出装置から受けた信号レベルの減衰を小さくすることができる。
 また、図示は省略するが、スイッチ回路12SWとして、JFET12Tを用いるのではなく、導通時の抵抗が低抵抗である空乏型電界効果トランジスタを用いることで、第2の共振回路12を位置指示器1の電磁結合用の共振回路としたときの、位置検出装置から受けた信号レベルの減衰を小さくするようにしてもよい。なお、空乏型電界効果トランジスタは、デジタルロジックに特化された素子であるので、この実施形態において空乏型電界効果トランジスタをスイッチ回路12SWとして用いる場合には、アナログスイッチ用として、VDS-I特性(VDSはドレインーソース間電圧、また、Iはドレイン電流である)の最適化を行うようにする。
 上述した実施形態の位置指示器1によれば、従来タイプの位置検出装置200Aと共に使用することができると共に、新規タイプの位置検出装置200Bと共に使用でき、互換性を確保することができる。しかも、この場合に、位置指示器1は、位置検出装置200Aと共に使用される場合と、位置検出装置200Bと共に使用される場合とで、自動的に切り替わるので、位置指示器1の使用者は、何等かの切り替え操作を行う必要はなく、また、位置検出装置が、従来タイプの位置検出装置200Aか、新規タイプの位置検出装置200Bであるかを認識する必要もないという効果もある。
 さらに、上述の第1の実施形態の位置指示器1においては、スイッチ回路12SWを通常時オンであって導通状態(いわゆるノーマリオンタイプ)となっている半導体スイッチ回路で構成し、このスイッチ回路12SWをオフに切り替えて変化素子の例である可変容量コンデンサ12Cを第2の共振回路12から切り離す(遮断する)ことで、第1の共振回路11に切り替える構成であるので、次のような効果を奏する。
 位置指示器1について、従来タイプの位置検出装置200Aと新規タイプの位置検出装置200Bとの互換性を保つためには、常時動作している第2の共振回路12に対して、基準共振回路(第1の共振回路11)は瞬間的に切り替わり、元に戻るのが理想である。そのためには切り替えの速度が速いことが必要となる。切り替えの速度が遅いと、第2の共振回路12で共振している状態の中断が長くなってしまうからである。すなわち、例えば、位置指示器1から徐々に変化する筆圧データを送信している場合、その送信の途中で第1の共振回路11に切り替えられる場合に、その期間が長くなると、筆圧データが途切れてしまうこととなり、不連続な状態が生じる。
 切り替えを早くするためには、第2の共振回路12から第1の共振回路11への切り替え回路の反応スピードが速いことは言うまでも無く、切り替えた時の新しい共振回路の立ち上がりが早いことが必要となる。
 上述の実施形態においては、第1の共振回路11(基準共振回路)に変化素子を並列に接続して第2の共振回路12を構成し、第1の共振回路11と第2の共振回路12の切り替えの為、変化素子に直列にスイッチ回路12SWを設けており、かつ、スイッチ回路12SWは、常時オン状態(閉)で、特定の信号を受けてオフ(開)状態となるものを用いている。
 したがって、通常動作のときには、スイッチ回路12SWは常時オン(normally-on)の状態を保ち、位置指示器1では、第2の共振回路12が共振を行う。そして、位置検出装置200Bからの所定の信号による要求により、基準周波数・位相が必要な時だけ、瞬間的にスイッチ回路12SWを開とすることによって、変化素子の例である可変容量コンデンサ12Cを切り離し、第1の共振回路11に切り替え、信号の送受信を行った後、スイッチ12SWを閉とし、これにより、変化素子の例である可変容量コンデンサ12Cを再び接続することで、第2の共振回路を動作させる。このことにより、第1の実施形態の位置指示器1においては、瞬時に、基準共振回路である第1の共振回路11への切り替えができると共に、第2の共振回路12への復元が可能となる。
 従来、この種の技術においては、基準となる第1の共振回路11に変化素子を並列に接続するように、常時オフのスイッチ(normally-off)を使用する。しかし、この回路構成だと、第1の共振回路11に変化素子を並列に接続するために、スイッチをオンにする構成となる為、スイッチに含まれる抵抗成分(オン抵抗)と変化素子、例えば可変容量コンデンサの容量成分が加わる。すなわち、共振回路にCR回路が追加されることで、時定数が若干変化する。このことで信号の立ち上がりが遅くなるためである。
 一方、上述の第1の実施形態の構成では、第2の共振回路12の動作の時は、第1の共振回路11も同時に動作している。この状態からスイッチ回路12SWを開(オフ)にすることで、第1の共振回路11に移行する時点ではCR回路の影響は無い。また、スイッチ回路12SWを閉(オン)に戻したとしても、すでに変化素子の例として可変容量コンデンサ12Cには電荷が存在しているのでCR回路の追加の影響は小さい。したがって、基準共振回路である第1の共振回路11への切り替えが瞬時にできると共に、第2の共振回路12への復元も瞬時にできる。
 [第2の実施形態]
 以下に説明する第2の実施形態は、上述した第1の実施形態の位置指示器1の内部回路の変形例である。
 上述した第1の実施形態の位置指示器1では、内部回路において、第2の共振回路12は、可変容量コンデンサ12Cに直列に通常時オンとなるスイッチ回路12SWを接続し、この可変容量コンデンサ12Cとスイッチ回路12SWとの直列回路を、第1の共振回路11に更に並列に接続する構成とした。しかし、この発明の位置指示器の第2の共振回路の構成は、このような構成例に限られるものではない。
 図9は、第2の実施形態の位置指示器1Aの内部回路の構成例を示す図である。この図9の例において、前述した第1の実施形態の位置指示器1の内部回路構成と同一部分には、同一符号を付して、その説明は省略する。また、位置検出装置200A及び200Bは、前述の例と同様であるので、その説明は省略する。
 この図9の例においては、第1の実施形態と同様に、コイル11Lとコンデンサ11Cとが並列に接続されると共に、これらコイル11Lとコンデンサ11Cとにさらに並列に、コンデンサ11CAとスイッチ回路SWAとの直列回路が構成される。そして、スイッチ回路SWAに並列に可変容量コンデンサ12Cが接続される。
 スイッチ回路SWAは、例えば、通常状態でオフである(ノーマリオフタイプ)のn型電界効果トランジスタが用いられ、切替信号生成回路13の保持用コンデンサ134の保持電圧Ecが閾値Ethを超えると、オフ状態からオン状態に切り替えられるように構成されている。
 スイッチ回路SWAがオフとされるときには、位置指示器1Aの内部の共振回路は、コイル11L、コンデンサ11C、コンデンサ11CAと可変容量コンデンサ12Cの直列回路、のそれぞれが並列に接続された第2の共振回路12Aとなる。また、スイッチ回路SWAがオンとされるときには、位置指示器1Aの内部の共振回路は、コイル11L、コンデンサ11C、コンデンサ11CAとスイッチ回路SWAの直列回路、のそれぞれが並列に接続された第1の共振回路11Aとなる。
 したがって、第1の実施形態と同様に、位置指示器1Aが何も信号を受信していない通常状態、また、従来タイプの位置検出装置200Aと共に使用される状態では、切替信号生成回路13の保持用コンデンサ134の保持電圧Ecは、閾値電圧Ethを超えないので、スイッチ回路SWAがオフとされ、この第2の実施形態の位置指示器1Aの電磁結合用の共振回路は、第2の共振回路12Aとなり、可変容量コンデンサ12Cを位置指示器1Aの電磁結合用の共振回路の要素として含むものとなる。
 これにより、従来タイプの位置検出装置200Aは、位置指示器1Aからの信号を受けて、前述した第1の実施形態と同様にして、送信信号の周波数foからの、可変容量コンデンサ12Cの静電容量分による周波数変移や位相変移を検出することで、位置指示器1Aに印加される筆圧を従来と同様に検出することができる。
 そして、位置指示器1Aが新規タイプの位置検出装置200Bと共に使用される状態で、第2の共振回路12の共振周波数の信号との差分から筆圧を検出するために、第1の共振回路の共振周波数の信号を取得するタイミングになると、第1の実施形態と同様にして、切替信号生成回路13の保持用コンデンサ134の保持電圧Ecが閾値Ethを超えるので、スイッチ回路SWAがオンに切り替えられて、この第2の実施形態の位置指示器1Aの電磁結合用の共振回路は、第2の共振回路12Aから、第1の共振回路11Aに切り替えられる。
 したがって、新規タイプの位置検出装置200Bは、この第2の実施形態の位置指示器1Aと共に使用されることで、第1の実施形態と同様にして、第2の共振回路12Aの共振周波数の信号と第1の共振回路11Aの共振周波数の信号との差分(周波数差または位相差)に基づいて、筆圧を検出することができる。
 [第3の実施形態]
 図10及び図11は、第3の実施形態の位置指示器1Bの内部回路構成例を示すものである。この第3の実施形態は、第1の実施形態の変形例である。この第3の実施形態の位置指示器1Bは、位置検出装置200Bからの筆圧を検出するタイミングでの所定の信号を受けたときに、第2の共振回路から第1の共振回路に切り替えると共に、その後、所定のデータを位置検出装置200Bに送信する機能を備える。以下に説明する第3の実施形態では、前記所定のデータの例として、当該位置指示器1B自身の識別情報を、位置検出装置200Bに送信する機能を備える。
 この第3の実施形態の位置指示器1Bにおいては、電磁結合用の共振回路(第1の共振回路11及び第2の共振回路12)をオン、オフするスイッチ回路14が設けられる。そして、この第3の実施形態の位置指示器1Bにおいては、第1の共振回路11また第2の共振回路12で電磁誘導により得た信号から電源電圧を生成する電源電圧生成回路15が設けられると共に、制御回路16が設けられている。
 電源電圧生成回路15は、例えば電気二重層コンデンサや、2次電池を備え、それらを第1の共振回路11また第2の共振回路12で電磁誘導により得た信号により充電することにより、電源電圧を生成する。電気二重層コンデンサや、2次電池は、位置指示器1Bが位置検出装置200Aや200Bから電磁誘導により得た信号により充電するだけでなく、この第3の実施形態の位置指示器1Bに専用の充電装置を用意して、その充電装置に位置指示器1Bを電磁結合することにより、当該専用の充電装置からの信号により充電するようにしてもよい。
 制御回路16は、電源電圧生成回路15からの電源電圧を受けて駆動する。そして、制御回路16は、第1の共振回路11また第2の共振回路12からの信号を受けるように構成されており、位置検出装置200Bからのバースト信号BSa、BSbの時間長や時間間隔を計測する機能を備え、これにより、位置検出装置200Bからの筆圧検出タイミングを検出する。
 この第3の実施形態においても、図11(A)に示すように、位置検出装置200Bは、第1の実施形態で説明したのと同様にして、バースト信号BSaを送出すると共に、筆圧の検出タイミングにおいて、バースト信号BSbを送出するが、この第3の実施形態では、筆圧の検出タイミングにおいて送出されるバースト信号BSbの連続送信時間長は、周波数差(位相差)による筆圧検出のための時間に加えて、位置指示器1Bからの識別信号IDの受信時間(送出時間)に考慮した時間長Pc´とされている。そして、図11(A),(B)に示すように、位置検出装置200Bは、上述の動作を周期的に繰り返す。
 位置指示器1Bの制御回路16は、図11(B)に示すように、位置検出装置200Bからのバースト信号BSbを検出することで、時点tm1において、位置指示器1Bの電磁結合用の共振回路を、第2の共振周波数f2の第2の共振回路12から、第1の共振周波数f1の第1の共振回路11に切り替える。これにより、位置検出装置200Bでは、上述の第1の実施形態で説明したようにして、位置指示器1Bから受けた信号RBに基づいて、位置指示器1Bによる指示位置を検出すると共に、第1の共振周波数f1と第2の共振周波数f2との差分に基づいて、位置指示器1Bに印加される筆圧を検出する。
 そして、この例では、時点tm1から周波数差分による筆圧検出のための時間を考慮した所定時間の経過した時点tm2と、時点tm3との間の期間で、制御回路16は、スイッチ回路14をオン、オフすることで、位置指示器1Bの識別情報IDを位置検出装置200Bに送信する。
 すなわち、この例の制御回路16は、内蔵するメモリに複数ビットからなる識別情報IDを記憶しており、図11(C)に示すように、当該識別情報IDのビットが「0」のときには、スイッチ回路14をオンとして、位置指示器1Bの第1の共振回路11(及び第2の共振回路12)の両端を短絡(ショート)することで、位置指示器1Bの電磁結合用の共振回路をオフとして、信号RBを位置検出装置200Bに送信しないようにする。また、識別情報IDのビットが「1」のときには、スイッチ回路14をオフとして、第1の共振回路11からなる位置指示器1Bの電磁結合用の共振回路を駆動させて、信号RBとして位置検出装置200Bに送信する。
 これにより、位置指示器1Bからは、識別情報IDのビット「0」、「1」に応じて、周波数f1の信号がASK変調(Amplitude Shift Keying;振幅偏移変調)された信号(ASK信号)が、信号RBとして、位置検出装置200Bに送信される。位置検出装置200Bでは、処理制御部229Bが、例えばA/D変換回路228からの信号に基づいて、このASK変調された識別情報IDを検出する。
 以上のようにして、この第3の実施形態においては、位置検出装置200Bが筆圧を検出するタイミングになった時に、時間長の長いバースト信号を信号SBとして位置指示器1Bに送出することで、位置指示器1Bでは、電磁結合用の共振回路を第2の共振回路12から第1の共振回路11に切り替えると共に、その切り替え後の所定時間後には、位置指示器1Bの識別情報IDを、ASK信号として、位置検出装置200Bに送信する。
 したがって、この第3の実施形態によれば、位置検出装置200Bでは、位置指示器1Bに印加されている筆圧情報を、周辺環境の影響を受けることなく正確に検出することができると共に、位置指示器1Bの識別情報IDを得ることができるという効果を奏する。
 なお、上述の第3の実施形態では、筆圧情報に加えて新規タイプの位置検出装置200Bに送信する所定のデータは、位置指示器1Bの識別情報としたが、識別情報に限らず、種々の情報をASK変調信号として位置検出装置200Bに送信することができるものである。
 [その他の実施形態及び変形例]
 <変化素子の他の例>
 上述した第1~第3の実施形態においては、第2の共振回路に含まれる変化素子が、位置指示器に印加される筆圧に応じて静電容量を変化させる可変容量コンデンサ12Cとして説明したが、変化素子は、可変容量コンデンサに限るものではない。例えば、変化素子は、位置指示器に印加される筆圧に応じてインダクタンス値を可変させる可変インダクタンス素子や、位置指示器に印加される筆圧に応じて抵抗値を可変させる可変抵抗素子で構成することもできる。
 図12は、第1の実施形態において、変化素子して、それら可変インダクタンス素子や可変抵抗素子を接続する状態を示す図である。すなわち、図12(A)は、位置指示器に印加される筆圧に応じてインダクタンス値を可変させる可変インダクタンス素子12Lが、スイッチ回路12SWと直列に接続され、その直列回路が第1の共振回路11と並列に接続されることで、第2の共振回路12が構成される例を示している。また、図12(B)は、位置指示器に印加される筆圧に応じて抵抗値を可変させる可変抵抗素子12Rが、スイッチ回路12SWと直列に接続され、その直列回路が第1の共振回路11と並列に接続されることで、第2の共振回路12が構成される例を示している。これらの変化素子の例は、第2の実施形態や、第3の実施形態にも適用できることは言うまでもない。
 また、変化素子が呈する、位置指示器において使用者の所作に関連する情報は、位置指示器に印加される筆圧情報に限られるものではない。例えば、位置指示器には、線の太さ、色、陰影、グレースケールといった選択されたグラフィカルパラメータの変化度合を調整するためのスライダやホイール操作部が設けられている場合がある。変化素子が呈する、位置指示器において使用者の所作に関連する情報は、これらのスライダやホイール操作部に対する使用者の調整操作に応じたグラフィカルパラメータの変化度合を調整する情報であってもよい。
 図13(A)は、スライダ17を備える位置指示器1Cの外観例を示す図である。スライダ17は、図13(A)に示すように、スライド溝17aに沿ってスライド操作子17bをスライドさせることにより、変化素子の値を変化させて、当該変化素子の値に対応するグラフィカルパラメータの値を調整する。この場合に、スライダ17のスライド量に応じた変化をする変化素子としては、共振回路の共振周波数を変化させるものであればよいので、上述したように、可変容量コンデンサ、可変インダクタンス素子、可変抵抗素子のいずれであってもよい。
 図13(B)は、ホイール操作部18を備える位置指示器1Dの外観例を示す図である。ホイール操作部18は、図13(B)に示すように、回動可能にされたホイール18aを回動させることにより、その回転量、回転角、回転速度に応じて、変化素子の値を変化させて、当該変化素子の値に対応するグラフィカルパラメータの値を調整する。変化素子としては、可変容量コンデンサ、可変インダクタンス素子、可変抵抗素子のいずれであってもよいことは、スライダ17の場合と同様である。
 したがって、これら図13(A)や(B)の例の位置指示器1C,1Dと共に使用される新規タイプの位置検出装置200Bでは、位置指示器1C,1Dによる指示位置を検出することができると共に、位置指示器1C,1Dからの信号RBを受けて、例えばグラフィカルパラメータの調整量などの変化素子の変化量を受信信号の共振周波数の差分として、或いは、位相差として、正確に求めることができ、非常に便利である。
 なお、位置指示器に設けられるスライダやホイール操作部を操作に関連する情報は、上述したグラフィカルパラメータの調整量に限られるものではなく、その他の種々の情報とすることができることは言うまでもない。
 また、位置指示器において使用者の所作に関連する情報は、上述した筆圧の情報や、位置指示器に設けられるスライダやホイール操作部を操作に関連する情報のみではなく、例えば、位置指示器の回転角や、位置検出装置のセンサ上での傾き角などの情報であってもよい。
 なお、上述した実施形態では、位置検出装置や位置指示器から送信する信号は、単一周波数の信号を、所定の変動パターンで送信する場合を例にして説明したが、これに限るものではない。例えば、周波数の異なる複数の信号を送信する場合にもこの発明を適用できる。例えば、周波数Aの信号はバースト信号として用い、周波数Bの信号は誘導用信号として用いるといったことが可能である。
 なお、上述の実施形態においては、第2の共振回路12から第1の共振回路への切り替える切替信号は、第2の共振回路を通じて位置検出装置200Bから受信した信号に基づいて生成するようにしたが、前記切替信号は、第2の共振回路を通じずに他のルートから取得した信号から生成するようにしてもよい。すなわち、位置指示器に、前記切替信号を生成するための信号を前記第2の共振回路を経由せずに受信する受信回路を設け、その受信回路で受信した信号から切替信号を生成するようにしてもよい。
 また、上述の実施形態においては、位置検出装置においては、第2の共振回路12の共振周波数の信号との差分から筆圧を検出するために、第1の共振回路の共振周波数の信号を取得するタイミング毎に、第2の共振回路から第1の共振回路に切り替えるようにするための所定の信号を送出するようにしたが、第1の共振回路の共振周波数の信号を取得するタイミング毎に毎回行なわなくてもよい。例えば、位置検出装置が、基準の第1の共振回路の共振周波数及び位相の情報を常時保持する保持部を備えるようにすると共に、保持部の保持情報を更新するために、適宜のタイミングで、位置指示器に対してその第2の共振回路から第1の共振回路へ切り替えるようにするための所定の信号を送出し、それに対して位置指示器から取得する共振周波数及び位相の情報により保持部の情報を更新するように構成してもよい。
 1,1A,1B…位置指示器、2…電子機器、11…第1の共振回路、11L…コイル、11C…コンデンサ、12…第2の共振回路、12C…可変容量コンデンサ、12SW…スイッチ回路、12T…ジャンクション型電界効果トランジスタ(JFET)、13…切替信号生成回路、14…スイッチ回路、15…電源電圧生成回路、16…制御回路、200A…従来タイプの位置検出装置、200B…新規タイプの位置検出装置
 

Claims (14)

  1.  位置検出装置のセンサの導体との間で電磁結合するための共振回路を備え、使用者の所作に関連する情報を前記共振回路の共振周波数または位相に反映させるようにする位置指示器であって、
     インダクタンス素子と、静電容量素子とを含んで構成される第1の共振回路と、
     前記インダクタンス素子と、前記静電容量素子と、使用者の所作に関連して共振周波数または位相を変化させる電気的要素値を変化させる変化素子とを含んで構成される第2の共振回路と、
     前記第1の共振回路と、前記第2の共振回路とを切り替えるスイッチ回路と、
     前記スイッチ回路を駆動する切替信号を生成して前記スイッチ回路に供給するための切替回路と、
     を備え、
     外部から信号を受けない場合及び外部から所定の信号以外の信号を受けた場合には、前記切替回路で前記切替信号は生成されず、前記第2の共振回路を前記位置検出装置のセンサの導体との間で電磁結合するための前記共振回路として構成し、
     外部から前記所定の信号を受けた場合には、前記切替回路で前記切替信号が生成されて前記スイッチ回路に供給され、前記第1の共振回路を前記位置検出装置のセンサの導体との間で電磁結合するための前記共振回路として構成するように切り替わる
     ことを特徴とする位置指示器。
  2.  前記第2の共振回路は、前記第1の共振回路の前記インダクタンス素子及び前記静電容量素子に、前記変化素子が並列に接続されることで構成され、
     前記スイッチ回路は前記変化素子に直列に接続され、
     前記切替回路は、外部から信号を受けない場合及び外部から前記所定の信号以外の信号を受けた場合には、前記スイッチ回路を導通状態とし、外部から前記所定の信号を受けた場合には、前記スイッチ回路を非導通状態とする
     ことを特徴とする請求項1に記載の位置指示器。
  3.  前記第2の共振回路は、前記第1の共振回路の前記インダクタンス素子及び前記静電容量素子に、前記変化素子が並列に接続されることで構成され、
     前記スイッチ回路は前記変化素子に並列に接続され、
     前記切替回路は、外部から信号を受けない場合及び外部から前記所定の信号以外の信号を受けた場合には、前記スイッチ回路を非導通状態とし、外部から前記所定の信号を受けた場合には、前記スイッチ回路を導通状態とする
     ことを特徴とする請求項1に記載の位置指示器。
  4.  前記切替回路は、外部から受けた前記所定の信号に基づいて前記切替信号を生成する
     ことを特徴とする請求項1に記載の位置指示器。
  5.  前記所定の信号は、前記第2の共振回路を通じて受信する
     ことを特徴とする請求項1に記載の位置指示器。
  6.  前記所定の信号は、連続送信時間が所定時間以上長いバースト信号である
     ことを特徴とする請求項4に記載の位置指示器。
  7.  前記変化素子は、当該位置指示器の芯体に印加される圧力に応じて前記電気的要素値を変化させる素子である
     ことを特徴とする請求項1に記載の位置指示器。
  8.  前記変化素子は、当該位置指示器の芯体に印加される圧力に応じて静電容量を変化させる可変容量コンデンサである
     ことを特徴とする請求項7に記載の位置指示器。
  9.  前記スイッチ回路は、電界効果トランジスタで構成される
     ことを特徴とする請求項1に記載の位置指示器。
  10.  前記スイッチ回路は、ジャンクション型電界効果トランジスタで構成される
     ことを特徴とする請求項2に記載の位置指示器。
  11.  前記スイッチ回路は、ジャンクション型電界効果トランジスタの複数個が並列に接続されたものである
     ことを特徴とする請求項2に記載の位置指示器。
  12.  前記スイッチ回路は、空乏型電界効果トランジスタで構成される
     ことを特徴とする請求項2に記載の位置指示器。
  13.  前記第1の共振回路及び前記第2の共振回路の共振動作をオン、オフ制御する第2のスイッチ回路が、前記第1の共振回路及び前記第2の共振回路に対して接続されると共に、
     前記第2のスイッチ回路をオン、オフ制御することにより、前記第1の共振回路及び前記第2の共振回路の共振動作をオン、オフ制御することで、所定のデータをASK信号として外部に送出する制御回路を備える
     ことを特徴とする請求項1に記載の位置指示器。
  14.  前記所定の信号は、前記第1の共振回路の共振周波数の信号と、前記第2の共振回路の共振周波数の信号との差分を検出することにより、前記第2の共振回路の前記変化素子の前記電気的要素値に応じた値を検出する検出方式の位置検出装置から送出される信号である
     ことを特徴とする請求項1に記載の位置指示器。
     
PCT/JP2015/072719 2014-10-06 2015-08-11 位置指示器 WO2016056299A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15849652.1A EP3206111B1 (en) 2014-10-06 2015-08-11 Position indicator
CN201580051102.9A CN107077225B (zh) 2014-10-06 2015-08-11 位置指示器
KR1020177009098A KR102344098B1 (ko) 2014-10-06 2015-08-11 위치 지시기
JP2015551638A JP5856363B1 (ja) 2014-10-06 2015-08-11 位置指示器
US15/455,777 US10452161B2 (en) 2014-10-06 2017-03-10 Position indicator including switch circuit that performs changeover between first resonance circuit and second resonance circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-205394 2014-10-06
JP2014205394 2014-10-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/455,777 Continuation US10452161B2 (en) 2014-10-06 2017-03-10 Position indicator including switch circuit that performs changeover between first resonance circuit and second resonance circuit

Publications (1)

Publication Number Publication Date
WO2016056299A1 true WO2016056299A1 (ja) 2016-04-14

Family

ID=55652924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072719 WO2016056299A1 (ja) 2014-10-06 2015-08-11 位置指示器

Country Status (4)

Country Link
US (1) US10452161B2 (ja)
EP (1) EP3206111B1 (ja)
CN (1) CN107077225B (ja)
WO (1) WO2016056299A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533208A (ja) * 2017-12-27 2019-11-14 シェンチェン グディックス テクノロジー カンパニー,リミテッド 信号送信方法及びアクティブスタイラスペン、信号受信方法及びタッチパネル
EP3582087A1 (en) 2018-06-15 2019-12-18 Wacom Co., Ltd. Integrated circuit and electronic pen
DE112019007828T5 (de) 2019-12-13 2022-07-07 Wacom Co., Ltd. Verfahren zum einstellen der resonanzfrequenz eines schwingkreises in einem elektronischen stift, elektronischer stift und verfahren zum herstellen eines elektronischen stifts
WO2023223587A1 (ja) * 2022-05-20 2023-11-23 株式会社ワコム 電磁誘導ペン及び位置検出装置
WO2024090186A1 (ja) * 2022-10-28 2024-05-02 株式会社ワコム 電磁誘導ペン、集積回路、及び位置検出装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221395A1 (ja) * 2016-06-24 2017-12-28 株式会社ワコム 発信型電子ペンの信号発信回路及び発信型電子ペン
US10635246B2 (en) * 2017-03-10 2020-04-28 Cypress Semiconductor Corporation Capacitance sensing and inductance sensing in different modes
US11092657B2 (en) * 2018-03-29 2021-08-17 Cirrus Logic, Inc. Compensation of changes in a resonant phase sensing system including a resistive-inductive-capacitive sensor
US10908200B2 (en) 2018-03-29 2021-02-02 Cirrus Logic, Inc. Resonant phase sensing of resistive-inductive-capacitive sensors
US10642435B2 (en) * 2018-03-29 2020-05-05 Cirrus Logic, Inc. False triggering prevention in a resonant phase sensing system
US10725549B2 (en) 2018-03-29 2020-07-28 Cirrus Logic, Inc. Efficient detection of human machine interface interaction using a resonant phase sensing system
US11537242B2 (en) 2018-03-29 2022-12-27 Cirrus Logic, Inc. Q-factor enhancement in resonant phase sensing of resistive-inductive-capacitive sensors
US10921159B1 (en) * 2018-03-29 2021-02-16 Cirrus Logic, Inc. Use of reference sensor in resonant phase sensing system
DE112019003276A5 (de) * 2018-06-29 2021-03-18 Brusa Elektronik Ag Induktive leistungsübertragung mit schwingkreis und verfahren zum betrieb der vorrichtung
EP3664526A1 (en) * 2018-12-05 2020-06-10 Koninklijke Philips N.V. A method for device synchronization
US11536758B2 (en) 2019-02-26 2022-12-27 Cirrus Logic, Inc. Single-capacitor inductive sense systems
US10935620B2 (en) 2019-02-26 2021-03-02 Cirrus Logic, Inc. On-chip resonance detection and transfer function mapping of resistive-inductive-capacitive sensors
US10948313B2 (en) 2019-02-26 2021-03-16 Cirrus Logic, Inc. Spread spectrum sensor scanning using resistive-inductive-capacitive sensors
US11402946B2 (en) 2019-02-26 2022-08-02 Cirrus Logic, Inc. Multi-chip synchronization in sensor applications
US11171641B2 (en) 2019-06-03 2021-11-09 Cirrus Logic, Inc. Compensation for air gap changes and temperature changes in a resonant phase detector
US11255892B2 (en) * 2019-06-05 2022-02-22 Cirrus Logic, Inc. Phase compensation in a resonant phase detector
US11079874B2 (en) 2019-11-19 2021-08-03 Cirrus Logic, Inc. Virtual button characterization engine
US11579030B2 (en) 2020-06-18 2023-02-14 Cirrus Logic, Inc. Baseline estimation for sensor system
US11868540B2 (en) 2020-06-25 2024-01-09 Cirrus Logic Inc. Determination of resonant frequency and quality factor for a sensor system
US11835410B2 (en) 2020-06-25 2023-12-05 Cirrus Logic Inc. Determination of resonant frequency and quality factor for a sensor system
TW202206987A (zh) * 2020-08-12 2022-02-16 大陸商深圳市繪王動漫科技有限公司 諧振電路、電磁筆及電磁筆的電容調節方法
DE202020105904U1 (de) 2020-10-15 2021-10-18 Cherry Europe Gmbh Einrichtung zur Erfassung eines Tastendrucks eines Tastenmoduls und Tastatur
US11619519B2 (en) 2021-02-08 2023-04-04 Cirrus Logic, Inc. Predictive sensor tracking optimization in multi-sensor sensing applications
US11808669B2 (en) 2021-03-29 2023-11-07 Cirrus Logic Inc. Gain and mismatch calibration for a phase detector used in an inductive sensor
US11821761B2 (en) 2021-03-29 2023-11-21 Cirrus Logic Inc. Maximizing dynamic range in resonant sensing
US11507199B2 (en) 2021-03-30 2022-11-22 Cirrus Logic, Inc. Pseudo-differential phase measurement and quality factor compensation
US11979115B2 (en) 2021-11-30 2024-05-07 Cirrus Logic Inc. Modulator feedforward compensation
US11854738B2 (en) 2021-12-02 2023-12-26 Cirrus Logic Inc. Slew control for variable load pulse-width modulation driver and load sensing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07200137A (ja) * 1993-12-28 1995-08-04 Wacom Co Ltd 位置検出装置及びその位置指示器
JPH07219698A (ja) * 1994-02-03 1995-08-18 Wacom Co Ltd 位置検出装置及びその位置指示器
JP2010113612A (ja) * 2008-11-07 2010-05-20 Wacom Co Ltd 位置検出装置及び位置検出方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370326A (ja) 1986-09-12 1988-03-30 Wacom Co Ltd 位置検出装置
US5434372A (en) * 1993-08-19 1995-07-18 Acer Peripherals, Inc. Position detecting apparatus with coils of opposite loop direction
DE19623468A1 (de) * 1996-06-12 1997-12-18 Wacom Co Ltd Positionserfassungseinrichtung und Positionszeigeeinrichtung
JPH10171583A (ja) * 1996-12-05 1998-06-26 Wacom Co Ltd 位置検出装置およびその位置指示器
CN1307520C (zh) * 2002-09-25 2007-03-28 株式会社华科姆 位置检测装置及其位置指示器
JP4364685B2 (ja) * 2003-03-28 2009-11-18 株式会社ワコム 位置検出装置
JP4280562B2 (ja) * 2003-06-16 2009-06-17 株式会社ワコム 位置指示器
US20080128180A1 (en) * 2004-12-01 2008-06-05 Haim Perski Position Detecting System and Apparatuses and Methods For Use and Control Thereof
US8243049B2 (en) * 2006-12-20 2012-08-14 3M Innovative Properties Company Untethered stylus employing low current power converter
JP5235631B2 (ja) 2008-11-28 2013-07-10 株式会社ワコム 位置指示器、可変容量コンデンサ及び入力装置
JP5270482B2 (ja) * 2009-07-13 2013-08-21 株式会社ワコム 位置検出装置及びセンサユニット
JP5345050B2 (ja) * 2009-12-25 2013-11-20 株式会社ワコム 指示体、位置検出装置及び位置検出方法
JP6008393B2 (ja) * 2012-07-28 2016-10-19 株式会社ワコム 電磁誘導方式の位置指示器及び電子インクカートリッジ
CN104020877B (zh) * 2014-05-21 2017-07-21 上海天马微电子有限公司 电感触摸屏及其驱动检测方法、坐标输入装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07200137A (ja) * 1993-12-28 1995-08-04 Wacom Co Ltd 位置検出装置及びその位置指示器
JPH07219698A (ja) * 1994-02-03 1995-08-18 Wacom Co Ltd 位置検出装置及びその位置指示器
JP2010113612A (ja) * 2008-11-07 2010-05-20 Wacom Co Ltd 位置検出装置及び位置検出方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533208A (ja) * 2017-12-27 2019-11-14 シェンチェン グディックス テクノロジー カンパニー,リミテッド 信号送信方法及びアクティブスタイラスペン、信号受信方法及びタッチパネル
EP3582087A1 (en) 2018-06-15 2019-12-18 Wacom Co., Ltd. Integrated circuit and electronic pen
US10866657B2 (en) 2018-06-15 2020-12-15 Wacom Co., Ltd. Integrated circuit and electronic pen
US11327584B2 (en) 2018-06-15 2022-05-10 Wacom Co., Ltd. Integrated circuit and electronic pen
EP4024172A1 (en) 2018-06-15 2022-07-06 Wacom Co., Ltd. Integrated circuit
US11669176B2 (en) 2018-06-15 2023-06-06 Wacom Co., Ltd. Integrated circuit and electronic pen
DE112019007828T5 (de) 2019-12-13 2022-07-07 Wacom Co., Ltd. Verfahren zum einstellen der resonanzfrequenz eines schwingkreises in einem elektronischen stift, elektronischer stift und verfahren zum herstellen eines elektronischen stifts
US11762487B2 (en) 2019-12-13 2023-09-19 Wacom Co., Ltd. Method for adjusting resonance frequency of resonance circuit included in electronic pen, electronic pen, and method for manufacturing electronic pen
WO2023223587A1 (ja) * 2022-05-20 2023-11-23 株式会社ワコム 電磁誘導ペン及び位置検出装置
WO2024090186A1 (ja) * 2022-10-28 2024-05-02 株式会社ワコム 電磁誘導ペン、集積回路、及び位置検出装置

Also Published As

Publication number Publication date
US10452161B2 (en) 2019-10-22
EP3206111B1 (en) 2018-12-19
CN107077225A (zh) 2017-08-18
EP3206111A4 (en) 2017-10-25
CN107077225B (zh) 2019-12-17
EP3206111A1 (en) 2017-08-16
US20170185173A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
WO2016056299A1 (ja) 位置指示器
US11979030B2 (en) Shared power converter for a wireless transmitter device
EP2695041B1 (en) Touch sensor controller with adjustable parameters
US11550410B2 (en) Position detection device and control method for position detection sensor
RU2585658C2 (ru) Устройство передачи, устройство приема и система связи
JP5713714B2 (ja) 給電装置及び制御方法
KR102034323B1 (ko) 급전 장치, 급전 방법 및 기록 매체
JP5587165B2 (ja) 非接触電力伝送システムおよび受電アンテナ
JP5177270B2 (ja) 通信装置、通信システム、および通信方法
JP2020120580A (ja) 給電システムの動作方法
TW201224937A (en) Portable communication device, reader/writer device, and resonant frequency adjustment method
JP2011030404A (ja) 情報処理装置、プログラム、および情報処理システム
JP6713772B2 (ja) 位置指示器及び位置指示方法
WO2002007173A1 (fr) Dispositif à couplage électromagnétique
JP5856363B1 (ja) 位置指示器
JP6241421B2 (ja) 制御装置、制御方法、およびプログラム
KR101980604B1 (ko) 센싱 시스템 및 방법, 이를 이용한 휴대 단말기
JP2015023397A (ja) プログラム、携帯装置、電気機器、ダウンロードサーバ、制御方法、及び情報提供方法
JP2018133855A (ja) 給電装置
JP6866461B2 (ja) 充電装置、制御方法、およびプログラム
JP2011077976A (ja) アンテナ自動調整方法
US20230134091A1 (en) Wireless Power Transmission Antenna with Antenna Molecules
US20230133274A1 (en) Method of Manufacturing Large Area Wireless Power Transmission Antennas

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015551638

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177009098

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015849652

Country of ref document: EP