WO2016056079A1 - 作業車両及び作業車両の制御方法 - Google Patents

作業車両及び作業車両の制御方法 Download PDF

Info

Publication number
WO2016056079A1
WO2016056079A1 PCT/JP2014/076920 JP2014076920W WO2016056079A1 WO 2016056079 A1 WO2016056079 A1 WO 2016056079A1 JP 2014076920 W JP2014076920 W JP 2014076920W WO 2016056079 A1 WO2016056079 A1 WO 2016056079A1
Authority
WO
WIPO (PCT)
Prior art keywords
work vehicle
traveling
travel
pump
command
Prior art date
Application number
PCT/JP2014/076920
Other languages
English (en)
French (fr)
Inventor
泰司 大岩
慎治 金子
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to JP2014560977A priority Critical patent/JP5775232B1/ja
Priority to PCT/JP2014/076920 priority patent/WO2016056079A1/ja
Priority to CN201480002205.1A priority patent/CN105683629B/zh
Priority to US14/422,877 priority patent/US9656840B2/en
Priority to DE112014000203.8T priority patent/DE112014000203T5/de
Publication of WO2016056079A1 publication Critical patent/WO2016056079A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07572Propulsion arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/07Floor-to-roof stacking devices, e.g. "stacker cranes", "retrievers"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/431Pump capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/438Control of forward-reverse switching, e.g. control of the swash plate causing discharge in two directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/15Fork lift trucks, Industrial trucks

Definitions

  • the present invention includes a variable displacement hydraulic pump driven by an engine, and a hydraulic motor that forms a closed circuit between the hydraulic pump and is driven by hydraulic oil discharged from the hydraulic pump.
  • the present invention relates to a vehicle and a work vehicle control method.
  • HST Hydrostatic power transmission device
  • the HST includes a variable displacement traveling hydraulic pump driven by an engine and a variable displacement hydraulic motor driven by hydraulic oil discharged from the traveling hydraulic pump in a main hydraulic circuit that is a closed circuit.
  • the vehicle is driven by transmitting the driving force of the hydraulic motor to the driving wheels.
  • a work vehicle such as a forklift moves backward or forward by operating the forward / reverse lever from the reverse side to the forward side during reverse travel, or by operating the forward / backward lever from the forward side to the reverse side during forward travel.
  • a switchback operation for increasing the forward travel or the reverse travel is performed.
  • the work vehicle performs a switchback operation from a relatively high speed, if a time lag occurs between the change of the direction of travel and the actual change of the direction of travel, the work efficiency of the work vehicle decreases.
  • the work vehicle performs a switchback operation from a relatively low speed, there is often a demand for a precise movement that operates accurately with respect to the fine operation of the operator of the work vehicle. In such a case, if a shock occurs in the work vehicle during the switchback operation, it may be difficult to perform precise work.
  • An object of the present invention is to suppress a time lag and reduce a shock when a work vehicle equipped with an HST performs a switchback operation.
  • the present invention is a work vehicle including a work machine, wherein a closed circuit is formed between a hydraulic motor that drives a driving wheel that drives the work vehicle and the hydraulic motor, and hydraulic oil is discharged to discharge the hydraulic oil.
  • a traveling hydraulic pump that is a pump that drives a motor, and has an operation mechanism that changes a capacity of the pump and changes a rotation direction of the hydraulic motor by reversing a suction side and a discharge side of the hydraulic oil.
  • a traveling direction detection device for detecting a state of a traveling direction switching device for switching between forward and reverse movement of the work vehicle, and a drive command for running the work vehicle to the drive device of the operation mechanism to provide the operation
  • a control device that discharges the hydraulic oil from the traveling hydraulic pump by operating a mechanism, and an operation amount of the operation mechanism is determined by the traveling command and a load of the closed circuit.
  • the control device is configured such that the traveling state of the work vehicle when the traveling direction detection device detects a reversing operation of the traveling direction switching device for reversing the traveling direction of the work vehicle while the work vehicle is traveling.
  • Determination information is obtained from the reversal operation detection time information indicating the first travel command for traveling the work vehicle in the traveling direction of the work vehicle at the time of the reversal operation detection from the time of the reversal operation detection. And the vehicle speed information indicating the traveling state of the work vehicle is increased by increasing a second travel command for causing the work vehicle to travel in a direction opposite to the traveling direction of the work vehicle when the reversal operation is detected. When it becomes information, it is a work vehicle which makes the said 1st run command 0.
  • the determination information increases as the inversion operation detection time information increases.
  • the reversal operation detection time information, the determination information, and the vehicle speed information are preferably speeds.
  • the work machine includes a fork for loading a load, and the work vehicle is a forklift.
  • the present invention is a work vehicle including a fork for loading a load, and forms a closed circuit between a hydraulic motor that drives a drive wheel that drives the work vehicle and the hydraulic motor, and discharges hydraulic oil.
  • a pump that drives the hydraulic motor, and has an operation mechanism that changes a capacity of the pump and changes a rotation direction of the hydraulic motor by reversing a suction side and a discharge side of the hydraulic oil.
  • a hydraulic pump a driving device that operates the operating mechanism with hydraulic oil, a traveling direction detection device that detects a state of a traveling direction switching device for switching between forward and backward movement of the work vehicle, and the work vehicle.
  • a control device that discharges the hydraulic oil from the traveling hydraulic pump by operating the operating mechanism by giving a driving command for driving to the driving device.
  • the operation amount of the mechanism is determined by the travel command and the load of the closed circuit, and the control device is configured to control the travel direction switching device for reversing the travel direction of the work vehicle while the work vehicle is traveling.
  • a determination vehicle speed is obtained from a vehicle speed at the time of reversal operation detection of the work vehicle when the reversal operation is detected by the travel direction detection device, and from a detection time of the reversal operation to a travel direction of the work vehicle at the time of detection of the reverse operation Decreasing a first travel command for traveling the work vehicle and increasing a second travel command for traveling the work vehicle in a direction opposite to the traveling direction of the work vehicle at the time of detecting the reversal operation.
  • the first traveling command is set to 0, and the reversing operation is detected when an abnormality occurs in the device for detecting the vehicle speed,
  • the vehicle speed of the industrial vehicle is equal to or less than a predetermined value
  • the pressure on the suction side of the traveling hydraulic pump is equal to or less than a predetermined value
  • the pressure on the discharge side of the traveling hydraulic pump is equal to or less than a predetermined value;
  • produces is below a predetermined value, it is a work vehicle which makes said 1st driving
  • the present invention is a pump that forms a closed circuit between a work machine, a hydraulic motor that drives a drive wheel that drives the work vehicle, and a hydraulic motor that discharges hydraulic oil to drive the hydraulic motor.
  • a traveling hydraulic pump having an operation mechanism for changing a rotation direction of the hydraulic motor by changing a capacity of the pump and reversing a suction side and a discharge side of the hydraulic oil;
  • a traveling direction detecting device for detecting a state of a traveling direction switching device for switching between the forward and reverse directions, and a driving command for causing the work vehicle to travel to a drive device of the operating mechanism to operate the operating mechanism.
  • a control device that discharges the hydraulic oil from the traveling hydraulic pump, and an operation amount of the operation mechanism controls a work vehicle determined by the traveling command and a load of the closed circuit.
  • a reversing operation representing a traveling state of the work vehicle when the traveling direction detection device detects a reversing operation of the traveling direction switching device for reversing the traveling direction of the work vehicle while the work vehicle is traveling.
  • the work vehicle control method includes: setting the first travel command to 0 when
  • the present invention can suppress a time lag and reduce a shock when a work vehicle equipped with HST performs a switchback operation.
  • FIG. 1 is a diagram illustrating an overall configuration of a forklift according to the present embodiment.
  • FIG. 2 is a block diagram showing a control system of the forklift shown in FIG.
  • FIG. 3 is a diagram illustrating an example of the switchback operation.
  • FIG. 4 is a control block diagram of the control device.
  • FIG. 5 is an example of a table in which the relationship between the reverse operation detection time vehicle as the reverse operation detection time information and the determination vehicle speed as the determination information is described.
  • FIG. 6 is a flowchart illustrating a processing example of the work vehicle control method according to the present embodiment.
  • FIG. 7 is a timing chart of the work vehicle control method according to the present embodiment.
  • FIG. 8 is a timing chart of the work vehicle control method according to the present embodiment.
  • FIG. 1 is a diagram illustrating an overall configuration of a forklift 1 according to the present embodiment.
  • FIG. 2 is a block diagram showing a control system of the forklift 1 shown in FIG.
  • the forklift 1 includes a vehicle body 3 having a drive wheel 2a and a steered wheel 2b, a work implement 5, and a mechanical brake 9 that brakes the drive wheel 2a and the steered wheel 2b.
  • the forklift 1 has a front side from the driver seat ST toward the steering member HL, and a rear side from the steering member HL to the driver seat ST.
  • the work machine 5 is provided in front of the vehicle body 3.
  • the vehicle body 3 is provided with an engine 4 that is an example of an internal combustion engine, a variable displacement travel hydraulic pump 10 that drives the engine 4 as a drive source, and a work machine hydraulic pump 16.
  • the engine 4 is a diesel engine, for example, it is not limited to this.
  • An output shaft 4S of the engine 4 is connected to the traveling hydraulic pump 10 and the work machine hydraulic pump 16.
  • the traveling hydraulic pump 10 and the work machine hydraulic pump 16 are driven by the engine 4 via the output shaft 4S.
  • the drive wheel 2 a is driven by the power of the hydraulic motor 20.
  • the variable displacement type traveling hydraulic pump 10 and the variable displacement type hydraulic motor 20 are connected by a closed hydraulic circuit to form an HST.
  • the forklift 1 travels by HST.
  • both the traveling hydraulic pump 10 and the work machine hydraulic pump 16 have a swash plate 10S and a swash plate 16S, and the swash plate tilt angle between the swash plate 10S and the swash plate 16S is changed. As a result, the capacity changes.
  • the work machine 5 includes a fork 6 on which a load is placed and a lift mechanism that moves the fork 6 up and down.
  • the lift mechanism includes a lift cylinder 7 and a tilt cylinder 8 that tilts the fork 6.
  • the driver's seat of the vehicle body 3 includes a forward / reverse lever 42 a, an inching pedal (brake pedal) 40 a as a brake operation unit, an accelerator pedal 41 a as an accelerator operation unit, and a lift lever and a tilt lever for operating the work machine 5.
  • a work machine operation lever (not shown) is provided.
  • the inching pedal 40a operates the inching rate.
  • the accelerator pedal 41 a changes the amount of fuel supplied to the engine 4.
  • the inching pedal 40a and the accelerator pedal 41a are provided at positions where the operator of the forklift 1 can perform a stepping operation from the driver's seat.
  • the inching pedal 40 a and the accelerator pedal 41 a are depicted in an overlapping state.
  • the forklift 1 includes an engine 4, an output shaft 20a, a transfer 20b, drive wheels 2a and 2a, a lift cylinder 7 that drives the work machine 5, a tilt cylinder 8, and a control device. 30 and a main hydraulic circuit 100.
  • the main hydraulic circuit 100 is a closed circuit including a traveling hydraulic pump 10, a hydraulic motor 20, and a hydraulic supply line 10a and a hydraulic supply line 10b that connect the two.
  • the traveling hydraulic pump 10 is a pump that drives the hydraulic motor 20 by forming a closed circuit with the hydraulic motor 20 and being driven by the engine 4 to discharge hydraulic oil.
  • the traveling hydraulic pump 10 is, for example, a variable displacement pump having a swash plate 10S and capable of changing the capacity by changing the swash plate tilt angle.
  • the swash plate 10S is an operation mechanism that changes the rotation direction of the hydraulic motor 20 by changing the capacity of the traveling hydraulic pump 10 and reversing the suction side and the discharge side of the hydraulic oil.
  • a portion connected to the hydraulic supply line 10a is an A port 10A
  • a portion connected to the hydraulic supply line 10b is a B port 10B.
  • the hydraulic motor 20 is rotationally driven by the hydraulic oil discharged from the traveling hydraulic pump 10.
  • the hydraulic motor 20 is, for example, a variable capacity hydraulic motor having a swash plate 20S and capable of changing the capacity by changing the swash plate tilt angle.
  • the hydraulic motor 20 may be a fixed capacity type hydraulic motor.
  • the output shaft 20a of the hydraulic motor 20 is connected to the drive wheel 2a via the transfer 20b.
  • the hydraulic motor 20 can drive the forklift 1 by rotationally driving the drive wheels 2a via the transfer 20b.
  • the hydraulic motor 20 can switch the rotation direction according to the supply direction of the hydraulic oil from the traveling hydraulic pump 10. By switching the rotation direction of the hydraulic motor 20, the forklift 1 can move forward or backward.
  • the forklift 1 moves forward, and when the hydraulic oil is supplied from the hydraulic supply line 10b to the hydraulic motor 20. It is assumed that the forklift 1 moves backward.
  • the forklift 1 has a pump capacity setting unit 11, a motor capacity setting unit 21, and a charge pump 15.
  • the pump capacity setting unit 11 is provided in the traveling hydraulic pump 10.
  • the pump capacity setting unit 11 includes a forward pump electromagnetic proportional control valve 12, a reverse pump electromagnetic proportional control valve 13, and a pump capacity control cylinder 14.
  • a command signal is given to the forward pump electromagnetic proportional control valve 12 and the reverse pump electromagnetic proportional control valve 13 from a control device 30 described later.
  • the pump capacity setting unit 11 is operated by the pump capacity control cylinder 14 in accordance with a command signal given from the control device 30, and the swash plate tilt angle of the traveling hydraulic pump 10 is changed. The capacity of is changed.
  • the pump capacity setting unit 11 is a drive device that operates the operation mechanism, that is, the swash plate 10S of the traveling hydraulic pump 10 with hydraulic oil.
  • the pump capacity control cylinder 14 has a piston 14A housed in a cylinder case 14C.
  • the piston 14A reciprocates in the cylinder case 14C when hydraulic oil is supplied to the space between the cylinder case 14C and the piston 14A.
  • the cylinder 14C is partitioned into a first hydraulic oil chamber 14Cf and a second hydraulic oil chamber 14Cr by the piston 14A.
  • a forward pump electromagnetic proportional control valve 12 is connected to the first hydraulic oil chamber 14Cf
  • a reverse pump electromagnetic proportional control valve 13 is connected to the second hydraulic oil chamber 14Cr.
  • the first hydraulic oil chamber 14 ⁇ / b> Cf is supplied with hydraulic oil from the forward pump electromagnetic proportional control valve 12 and discharges the hydraulic oil to the forward pump electromagnetic proportional control valve 12.
  • the second hydraulic oil chamber 14Cr is supplied with hydraulic oil from the reverse pump electromagnetic proportional control valve 13 and discharges the hydraulic oil to the reverse pump electromagnetic proportional control valve 13.
  • a command signal for increasing the capacity of the traveling hydraulic pump 10 is given from the control device 30 to the forward pump electromagnetic proportional control valve 12.
  • a pump control pressure is applied to the pump displacement control cylinder 14 from the forward pump electromagnetic proportional control valve 12 in accordance with this command signal.
  • the piston 14A moves to the left in FIG.
  • the swash plate 10S of the traveling hydraulic pump 10 is tilted toward the direction of discharging the hydraulic oil to the hydraulic supply line 10a in conjunction with this movement. .
  • the amount of movement of the piston 14A increases as the pump control pressure from the forward pump electromagnetic proportional control valve 12, that is, the hydraulic oil pressure increases. For this reason, the amount of change in the tilt angle of the swash plate 10S in the traveling hydraulic pump 10 is also large. That is, when a command signal (running command) Ipf is given from the control device 30 to the forward pump electromagnetic proportional control valve 12, the pump control pressure corresponding to the command signal Ipf is pumped from the forward pump electromagnetic proportional control valve 12.
  • the displacement control cylinder 14 is given.
  • the pump displacement control cylinder 14 is operated by the pump control pressure described above, the swash plate 10S of the traveling hydraulic pump 10 is inclined so that a predetermined amount of hydraulic oil can be discharged to the hydraulic pressure supply line 10a.
  • the hydraulic oil is discharged from the traveling hydraulic pump 10 to the hydraulic pressure supply line 10a, and the hydraulic motor 20 rotates in the forward direction.
  • the control device 30 gives a command signal Ipr for increasing the capacity of the traveling hydraulic pump 10 to the reverse pump electromagnetic proportional control valve 13, the reverse pump electromagnetic proportional control valve 13 according to the command signal Ipr.
  • the pump displacement control cylinder 14 is given a pump control pressure, that is, a hydraulic oil pressure. Then, the piston 14A moves to the right side in FIG.
  • the swash plate 10S of the traveling hydraulic pump 10 is linked to this in the direction of discharging hydraulic oil to the hydraulic supply line 10b. Tilt.
  • the moving amount of the piston 14A increases as the pump control pressure supplied from the reverse pump electromagnetic proportional control valve 13 increases, the amount of change in the swash plate tilt angle of the traveling hydraulic pump 10 increases. That is, when a command signal Ipr is given from the control device 30 to the reverse pump electromagnetic proportional control valve 13, the pump control pressure corresponding to the command signal Ipr is changed from the reverse pump electromagnetic proportional control valve 13 to the pump displacement control cylinder 14. Given to. Then, the operation of the pump displacement control cylinder 14 causes the swash plate 10S of the traveling hydraulic pump 10 to tilt so that a desired amount of hydraulic oil can be discharged to the hydraulic pressure supply line 10b. As a result, when the engine 4 rotates, hydraulic oil is discharged from the traveling hydraulic pump 10 to the hydraulic pressure supply line 10b, and the hydraulic motor 20 rotates in the reverse direction.
  • the pump control pressure from the forward pump electromagnetic proportional control valve 12 can be, for example, the pressure of the hydraulic oil in the first hydraulic oil chamber 14Cf.
  • the pump control pressure from the reverse pump electromagnetic proportional control valve 13, that is, the hydraulic oil pressure can be the hydraulic oil pressure in the second hydraulic oil chamber 14Cr.
  • the pressure Pef of the hydraulic oil in the first hydraulic oil chamber 14Cf is detected by a first pressure sensor 12s that is a pressure detection device, and the pressure Per of the hydraulic oil in the second hydraulic oil chamber 14Cr is a pressure detection device. It is detected by the two pressure sensor 13s. Detection values of the first pressure sensor 12 s and the second pressure sensor 13 s are input to the control device 30.
  • the motor capacity setting unit 21 is provided in the hydraulic motor 20.
  • the motor capacity setting unit 21 includes a motor electromagnetic proportional control valve 22, a motor cylinder control valve 23, and a motor capacity control cylinder 24.
  • motor control pressure is supplied from the motor electromagnetic proportional control valve 22 to the motor cylinder control valve 23 to control the motor capacity.
  • the cylinder 24 is activated.
  • the motor capacity control cylinder 24 operates, the swash plate tilt angle of the hydraulic motor 20 changes in conjunction with the movement of the motor capacity control cylinder 24. For this reason, the capacity
  • FIG. Specifically, the motor capacity setting unit 21 is configured such that the swash plate tilt angle of the hydraulic motor 20 decreases as the motor control pressure supplied from the motor electromagnetic proportional control valve 22 increases.
  • the charge pump 15 is driven by the engine 4.
  • the charge pump 15 supplies pump control pressure to the pump displacement control cylinder 14 via the forward pump electromagnetic proportional control valve 12 and the reverse pump electromagnetic proportional control valve 13 described above.
  • the charge pump 15 has a function of supplying motor control pressure to the motor cylinder control valve 23 via the motor electromagnetic proportional control valve 22.
  • the engine 4 drives the work machine hydraulic pump 16 in addition to the traveling hydraulic pump 10.
  • the work machine hydraulic pump 16 supplies hydraulic oil to the lift cylinder 7 and the tilt cylinder 8 which are work actuators for driving the work machine 5 through valves.
  • the forklift 1 includes an inching potentiometer (brake potentiometer) 40, an accelerator potentiometer 41, a forward / reverse lever switch 42, an engine rotation sensor 43, a vehicle speed sensor 46, pressure sensors 47A and 47B, a pressure sensor 48, and a temperature sensor 49.
  • the inching potentiometer 40 detects and outputs the operation amount when the inching pedal (brake pedal) 40a is operated.
  • the operation amount of the inching pedal 40a is the inching operation amount Is.
  • the inching operation amount Is output from the inching potentiometer 40 is input to the control device 30.
  • the inching operation amount Is may be referred to as an inching stroke Is.
  • the accelerator potentiometer 41 outputs the operation amount Aop of the accelerator pedal 41a when the accelerator pedal 41a is operated.
  • the operation amount Aop of the accelerator pedal 41a is also referred to as an accelerator opening Aop.
  • the accelerator opening Aop output from the accelerator potentiometer 41 is input to the control device 30.
  • the forward / reverse lever switch 42 is a traveling direction detection device for switching the traveling direction of the forklift 1 to forward or reverse.
  • the forward / reverse lever switch 42 is applied.
  • the forward / reverse lever 42a is a traveling direction switching device for switching the traveling direction of the forklift 1 to forward or reverse.
  • Information indicating the traveling direction of the forklift 1 selected by the forward / reverse lever switch 42 is given from the forward / reverse lever switch 42 to the control device 30 as the traveling direction command value DR.
  • the traveling direction command value DR indicates that F is forward, N is neutral, and R is reverse.
  • the traveling direction of the forklift 1 selected by the forward / reverse lever switch 42 includes both the direction in which the forklift 1 will travel and the direction in which the forklift 1 actually travels.
  • the engine rotation sensor 43 detects the actual rotation speed of the engine 4.
  • the rotation speed of the engine 4 detected by the engine rotation sensor 43 is the actual rotation speed Nr of the engine 4.
  • Information indicating the rotational speed Nr of the engine 4 is input to the control device 30.
  • the rotational speed of the engine 4 is the rotational speed of the output shaft 4S of the engine 4 per unit time.
  • the vehicle speed sensor 46 is a device that detects a speed at which the forklift 1 travels, that is, a vehicle speed Vc.
  • the pressure sensor 47A is provided in the hydraulic pressure supply line 10a and detects the pressure of the hydraulic oil in the hydraulic pressure supply line 10a.
  • the pressure sensor 47B is provided in the hydraulic pressure supply line 10b and detects the pressure of the hydraulic oil in the hydraulic pressure supply line 10b.
  • the pressure detected by the pressure sensor 47A corresponds to the pressure of hydraulic oil in the A port 10A of the traveling hydraulic pump 10.
  • the pressure detected by the pressure sensor 47B corresponds to the pressure of hydraulic oil in the B port 10B of the traveling hydraulic pump 10.
  • the control device 30 acquires the detection values of the pressure sensor 47A and the pressure sensor 47B and uses them in the work vehicle control method according to the present embodiment.
  • the pressure sensor 48 is a lift pressure detection device that detects a lift pressure in the lift cylinder 7, that is, a pressure of hydraulic oil in the lift cylinder 7.
  • the temperature sensor 49 is a temperature detection device that detects the temperature of hydraulic oil in the HST.
  • the control device 30 includes a processing unit 30C and a storage unit 30M.
  • the control device 30 is a device that includes, for example, a computer and executes various processes related to the control of the forklift 1.
  • the processing unit 30C is, for example, a device that combines a CPU (Central Processing Unit) and a memory.
  • the processing unit 30C controls the operation of the main hydraulic circuit 100 by reading a computer program stored in the storage unit 30M for controlling the main hydraulic circuit 100 and executing instructions described therein. .
  • the storage unit 30M stores the above-described computer program, data necessary for controlling the main hydraulic circuit 100, and the like.
  • the storage unit 30M is, for example, a ROM (Read Only Memory), a storage device, or a device that combines these.
  • the controller 30 is electrically connected to various sensors such as an inching potentiometer 40, an accelerator potentiometer 41, a forward / reverse lever switch 42, an engine rotation sensor 43, a vehicle speed sensor 46, and pressure sensors 47A and 47B. Based on the input signals from these various sensors, the control device 30 generates command signals for the forward pump electromagnetic proportional control valve 12 and the reverse pump electromagnetic proportional control valve 13, and generates the generated command signals respectively.
  • the electromagnetic proportional control valves 12, 13 and 22 are given.
  • the control device 30 shown in FIG. 2 executes the work vehicle control method according to the present embodiment when the forklift 1 performs a switchback operation.
  • the switchback operation is an operation of the forklift 1 when the actual traveling direction of the forklift 1 is different from the traveling direction defined by the traveling direction command value DR. For example, when the operator depresses the accelerator pedal 41a shown in FIG. 1 and the forklift 1 is advanced with the forward / reverse lever 42a as the forward F, the operation when the forward / reverse lever 42a is switched to the reverse R is switched back. Is the action.
  • FIG. 3 is a diagram illustrating an example of the switchback operation.
  • Such an operation is an example of a switchback operation.
  • FIG. 4 is a control block diagram of the control device 30.
  • FIG. 5 is an example of a table 50 in which the relationship between the vehicle speed at the time of reverse operation detection, which is information at the time of reverse operation detection, and the determination vehicle speed, which is determination information, is described.
  • the control device 30, more specifically, the processing unit 30C executes the work vehicle control method according to the present embodiment when the forklift 1 is switched back.
  • the processing unit 30C of the control device 30 includes a determination information calculation unit 31A and a travel command calculation unit 31B.
  • the control device 30 When the control device 30 detects the switchback operation while the forklift 1 is traveling, the control device 30 obtains the determination information from the reverse operation detection time information indicating the traveling state when the switchback operation is detected. For example, when the reversing operation of the forward / reverse lever 42a for reversing the traveling direction of the forklift 1 is detected by the forward / reverse lever switch 42, the timing when the switchback operation is detected can be set.
  • the determination information is obtained by the determination information calculation unit 31A.
  • the control device 30 more specifically, the travel command calculation unit 31 ⁇ / b> B is a command signal for causing the forklift 1 to travel in the traveling direction of the forklift 1 when the switchback operation is detected from when the switchback operation is detected.
  • a first travel command is decreased, and a second travel command, which is a command signal for causing the forklift 1 to travel in the direction opposite to the traveling direction of the forklift 1 when the switchback operation is detected, is increased.
  • the control device 30 sets the first travel command to 0 when the vehicle speed information indicating the travel state of the forklift 1 becomes the determination information.
  • the determination information calculation unit 31A obtains determination information.
  • the determination information is information for the travel command calculation unit 31B to determine the timing when the first travel command is set to 0, and is obtained from the reverse operation detection time information.
  • the reverse operation detection time information is the vehicle speed Vca when the switchback operation of the forklift 1 is detected.
  • the reverse operation detection time information is appropriately referred to as reverse operation detection vehicle speed Vca.
  • the determination information is a speed Vch that is determined in advance corresponding to the vehicle speed Vca when the reversal operation is detected.
  • the speed Vch is referred to as a determination vehicle speed Vch as appropriate.
  • the relationship between the vehicle speed Vca when the reversal operation is detected and the determination vehicle speed Vch is described in the table 50.
  • the table 50 is stored in the storage unit 30M of the control device 30 shown in FIG.
  • the determination information calculation unit 31A reads, for example, the table 50 from the storage unit 30M, refers to this, and the vehicle speed at the time of reverse operation detection acquired from the vehicle speed sensor 46 is obtained.
  • a determination vehicle speed Vch corresponding to Vca is obtained.
  • the reverse operation detection time information that is, the reverse operation detection time vehicle speed Vca increases from 0 to Vca1, Vca2, and Vca3 in this order.
  • the determination information that is, the determination vehicle speed Vch increases in the order of Vch0 to Vch1, Vch2, and Vch3 corresponding to the vehicle speed Vca at the time of reversal operation detection.
  • the determination vehicle speed Vch can be changed appropriately according to the change in the vehicle speed Vca when the forklift 1 is reversed.
  • the control device 30 can reverse the traveling direction of the forklift 1 at a timing with little discomfort given to the operator even if the vehicle speed Vc of the forklift 1 at the start of the switchback operation is different.
  • the determination vehicle speed Vch may be defined by a calculation formula other than the table 50.
  • the inversion operation detection time information and the determination information are speeds, but are not limited thereto.
  • the absorption torque of the traveling hydraulic pump 10 shown in FIG. 2 may be used as the reverse operation detection time information and determination information.
  • the command value of the absorption torque generated by the control device 30 is used as the reverse operation detection time information.
  • the determination information is a torque determined corresponding to the reversal operation detection time information, and is determined by experiment or computer simulation. The point that the determination information increases as the inversion operation detection time information increases is the same as the case where the speed is used for the inversion operation detection time information and the determination information.
  • the travel command calculation unit 31B will be described.
  • the travel command calculation unit 31B controls the forward pump electromagnetic proportional control valve 12 and the reverse pump electromagnetic proportional control valve 13 provided in the pump capacity setting unit 11 shown in FIG. By this control, the travel command calculation unit 31B changes the swash plate tilt angle of the swash plate 10S of the travel hydraulic pump 10, changes the capacity of the travel hydraulic pump 10, and discharges and sucks the hydraulic oil. Executes switching.
  • the swash plate tilt angle of the swash plate 10S of the traveling hydraulic pump 10, that is, the operation amount of the operating mechanism of the traveling hydraulic pump 10 is determined by the traveling command and the load of the main hydraulic circuit 100 which is a closed circuit. This means that the swash plate 10S of the traveling hydraulic pump 10 is controlled without using a servo mechanism, that is, the traveling hydraulic pump 10 is a servoless pump.
  • the travel command calculation unit 31B first decreases the first travel command and increases the second travel command. Next, the travel command calculation unit 31B sets the first travel command to 0 at the timing when the vehicle speed Vc of the forklift 1 reaches the determination vehicle speed Vch.
  • the travel command calculation unit 31B detects that the absorption torque of the traveling hydraulic pump 10 included in the forklift 1 is the reverse operation detected.
  • the first travel command is set to 0 at the timing when the determination absorption torque obtained from the current absorption torque is reached. In this case, the determination absorption torque is set to increase as the absorption torque at the time of reversal operation detection increases.
  • the first travel command is a travel command for causing the forklift 1 to travel in the first traveling direction.
  • the first traveling direction is the traveling direction of the forklift 1 when the travel command calculation unit 31B of the control device 30 detects the switchback operation of the forklift 1.
  • the first traveling direction is the direction in which the forklift 1 moves forward.
  • the first travel command is a travel command for moving the forklift 1 forward.
  • the forward / reverse lever 42a is switched from reverse to forward while the forklift 1 is moving backward
  • the first traveling direction is the direction in which the forklift 1 moves backward.
  • the first travel command is a travel command for moving the forklift 1 backward.
  • the first travel command differs depending on the traveling direction of the forklift 1 when the forklift 1 starts the switchback operation.
  • the second travel command is a command for causing the forklift 1 to travel in the second traveling direction.
  • the second traveling direction is opposite to the first traveling direction.
  • the second travel command is a travel command for causing the forklift 1 to move backward.
  • the forward / reverse lever 42a is switched from reverse to forward while the forklift 1 is moving backward
  • the direction opposite to the direction of movement when the switchback operation is detected is the direction in which the forklift 1 moves forward.
  • the second travel command is a travel command for moving the forklift 1 forward.
  • the second travel command differs depending on the traveling direction of the forklift 1 when the forklift 1 starts the switchback operation.
  • the travel command calculation unit 31B executes the method for controlling the work vehicle according to the present embodiment.
  • the time lag until the traveling direction is reversed can be reduced. Further, in the switchback operation when the forklift 1 is traveling at a low speed, a shock when the traveling direction of the forklift 1 is reversed is reduced and the traveling direction is smoothly switched.
  • the travel command calculation unit 31B will be described in more detail.
  • the travel command calculation unit 31B includes a forward travel command calculation unit 32 and a reverse travel command calculation unit 33.
  • the forward travel command calculation unit 32 controls the forward pump electromagnetic proportional control valve 12 of the pump capacity setting unit 11.
  • the reverse travel command calculation unit 33 controls the reverse pump electromagnetic proportional control valve 13 for the pump capacity setting unit 11.
  • the control device 30 generates at least one of a travel command ipf given to the forward pump electromagnetic proportional control valve 12 and a travel command ipr given to the reverse pump electromagnetic proportional control valve 13 from the operation amount of the accelerator pedal 41a shown in FIG. To do.
  • the travel command ipf and the travel command ipr are both currents in the present embodiment, but are not limited to currents, and may be, for example, voltages.
  • the forward travel command calculation unit 32 outputs a travel command (hereinafter referred to as a forward travel command as appropriate) Ipf for advancing the forklift 1 to the forward pump electromagnetic proportional control valve 12.
  • the reverse travel command calculation unit 33 outputs a travel command (hereinafter referred to as a reverse travel command as appropriate) Ipr for causing the forklift 1 to move backward to the reverse pump electromagnetic proportional control valve 13. Except when the travel command calculation unit 31B sets the first travel command to 0 during the switchback operation of the forklift 1, the forward travel command Ipf is the same as the travel command ipf generated by the control device 30, and the reverse travel command Ipr Is the same as the travel command ipr generated by the control device 30.
  • the control device 30 When the forklift 1 is moving forward, the control device 30 generates a travel command ipf to be given to the forward pump electromagnetic proportional control valve 12 from the operation amount of the accelerator pedal 41a and the like, and gives it to the reverse pump electromagnetic proportional control valve 13
  • the control device 30 When the forklift 1 is moving backward, the control device 30 generates a travel command ipr to be given to the reverse pump electromagnetic proportional control valve 13 from the operation amount of the accelerator pedal 41a and the like, and gives it to the forward pump electromagnetic proportional control valve 12
  • the travel command ipf is set to 0.
  • the forward pump electromagnetic proportional control valve 12 operates the pump displacement control cylinder 14 by generating hydraulic pressure of hydraulic oil, that is, pump control pressure corresponding to the magnitude of the current of the forward travel command Ipf.
  • the reverse pump electromagnetic proportional control valve 13 operates the pump displacement control cylinder 14 by generating a hydraulic pressure of hydraulic oil, that is, a pump control pressure corresponding to the magnitude of the current of the reverse travel command Ipr. Since the pump displacement control cylinder 14 is operated, the swash plate tilt angle of the swash plate 10S of the traveling hydraulic pump 10 is changed. Therefore, the traveling hydraulic pump 10 must at least receive the forward travel command Ipf and the reverse travel command Ipr.
  • the hydraulic oil is discharged to the hydraulic motor 20 at a flow rate corresponding to one.
  • the control device 30 decreases the travel command ipf given to the forward pump electromagnetic proportional control valve 12 over time, and the reverse pump electromagnetic proportional control valve 13. Is increased with the passage of time.
  • the control device 30 decreases the traveling command ipr given to the reverse pump electromagnetic proportional control valve 13 with time, and the forward pump electromagnetic proportional control valve 12. Is increased with the passage of time.
  • the forward travel command calculation unit 32 includes a switching determination unit 32a, a switchback determination unit 32b, a vehicle speed determination unit 32c, an A port pressure determination unit 32d, a B port pressure determination unit 32e, and a pump control pressure determination unit 32f.
  • the first AND operation unit 32g, the second AND operation unit 32h, the OR operation unit 32i, the third AND operation unit 32j, and the output selection unit 32k are provided as processing elements.
  • the reverse travel command calculation unit 33 includes a switching determination unit 33a, a switchback determination unit 33b, a vehicle speed determination unit 33c, an A port pressure determination unit 33d, a B port pressure determination unit 33e, and a pump control pressure determination unit 33f.
  • the first AND operation unit 33g, the second AND operation unit 33h, the OR operation unit 33i, the third OR operation unit 33j, and the output selection unit 33k are provided as processing elements.
  • the processing elements included in the forward travel command calculation unit 32 and the reverse travel command calculation unit 33 may be realized by software or may be realized by hardware.
  • the processing elements included in the forward travel command calculation unit 32 and the reverse travel command calculation unit 33 have a common function between the forward travel command calculation unit 32 and the reverse travel command calculation unit 33. The processing elements possessed will be described together.
  • the switching determination units 32a and 33a determine whether or not the vehicle speed Vc of the forklift 1 after the switchback operation is detected is equal to or lower than the determination vehicle speed Vch.
  • the switching determination units 32a and 33a When the vehicle speed Vc of the forklift 1 is higher than the determination vehicle speed Vch, the switching determination units 32a and 33a output an OFF signal, and when the vehicle speed Vc of the forklift 1 becomes equal to or lower than the determination vehicle speed Vch, the switching determination units 32a and 33a are ON. Output a signal.
  • the OFF signal is a signal having a voltage of 0 volts, for example, and the ON signal is a signal having a voltage of 5 volts, for example.
  • the switchback determination units 32b and 33b output an OFF signal when the switchback operation of the forklift 1 is not detected, and output an ON signal when the switchback operation of the forklift 1 is detected.
  • the switchback operation of the forklift 1 is detected while the forklift 1 is traveling and when the reverse operation of the forward / reverse lever 42a is detected by the forward / reverse lever switch 42.
  • the travel direction command value DR from the forward / reverse lever switch 42 shown in FIG. 2 is input to the switchback determination units 32b and 33b.
  • the switchback determination unit 32b of the forward travel command calculation unit 32 is a travel direction command from the forward / reverse lever switch 42 when the travel command ipf given to the forward pump electromagnetic proportional control valve 12 is generated by the control device 30.
  • the switchback operation of the forklift 1 is detected and an ON signal is output.
  • the switchback determination unit 32b of the forward travel command calculation unit 32 outputs an OFF signal.
  • the switchback determination unit 33b of the reverse travel command calculation unit 33 is a travel direction command from the forward / reverse lever switch 42 when the travel command ipr given to the reverse pump electromagnetic proportional control valve 13 is generated by the control device 30.
  • an ON signal is output because the switchback operation of the forklift 1 is detected.
  • the switchback determination unit 33b of the reverse travel command calculation unit 33 outputs an OFF signal.
  • the vehicle speed determination units 32c and 33c, the A port pressure determination units 32d and 33d, the B port pressure determination units 32e and 33e, and the pump control pressure determination units 32f and 33f all have some abnormality in the vehicle speed sensor 46 shown in FIG. Is used to control the operation of the forklift 1 during switchback.
  • the vehicle speed determination units 32c and 33c determine whether or not the vehicle speed Vc of the forklift 1 detected by the vehicle speed sensor 46 is equal to or less than a predetermined threshold value. When the vehicle speed Vc is larger than a predetermined threshold, the vehicle speed determination units 32c and 33c output an OFF signal. When the vehicle speed Vc is equal to or less than a predetermined threshold, the vehicle speed determination units 32c and 33c output an ON signal.
  • the predetermined threshold value can be set to 0.1 km / h, for example, but is not limited thereto.
  • a port pressure determination units 32d and 33d have a hydraulic pressure (hereinafter referred to as A port pressure as appropriate) Pa within the A port 10A of the traveling hydraulic pump 10 shown in FIG. Determine whether or not.
  • the A port pressure Pa is detected by the pressure sensor 47A.
  • the A port pressure determination units 32d and 33d output an OFF signal.
  • the A port pressure determination units 32d and 33d output an ON signal.
  • B port pressure determination units 32e and 33e have a hydraulic oil pressure (hereinafter referred to as B port pressure as appropriate) Pb in the B port 10B of the traveling hydraulic pump 10 shown in FIG. Determine whether or not.
  • the B port pressure Pb is detected by the pressure sensor 47B.
  • the B port pressure determination units 32e and 33e output an OFF signal.
  • the B port pressure determination units 32e and 33e output an ON signal.
  • the pump control pressure determination unit 32f of the forward travel command calculation unit 32 has a pump control pressure (hereinafter, appropriately referred to as forward control pressure) Pef from the forward pump electromagnetic proportional control valve 12 equal to or less than a predetermined threshold value. Determine whether or not.
  • the forward side control pressure Pef is detected by the first pressure sensor 12s shown in FIG.
  • the pump control pressure determination unit 32f outputs an OFF signal.
  • the pump control pressure determination unit 32f outputs an ON signal.
  • the pump control pressure determination unit 33f of the reverse travel command calculation unit 33 determines whether the pump control pressure (hereinafter referred to as reverse control pressure as appropriate) Per from the reverse pump electromagnetic proportional control valve 13 is equal to or less than a predetermined threshold value. Determine whether or not.
  • the reverse side control pressure Per is detected by the second pressure sensor 13s shown in FIG. When the reverse side control pressure Per is larger than a predetermined threshold, the pump control pressure determination unit 32f outputs an OFF signal. When the reverse control pressure Per is equal to or lower than a predetermined threshold, the pump control pressure determination unit 33f outputs an ON signal.
  • both the A port pressure Pa and the B port pressure Pb may decrease. For this reason, when an abnormality occurs in the vehicle speed sensor 46, if the first travel command is set to 0 using the determination results of the A port pressure determination units 32d and 33d and the B port pressure determination units 32e and 33e, a shock is generated. May occur. For this reason, in order to set the first travel command to 0 after the vehicle speed Vc of the forklift 1 becomes sufficiently small, the determinations of the pump control pressure determination units 32f and 33f are added.
  • the predetermined threshold value is, for example, the forward side control pressure Pef when the forklift 1 is traveling at a speed close to no load and close to a stop (in this embodiment, it is not limited to 0.6 km / h). Or it can be set as the reverse side control pressure Per.
  • the pump control pressure determination units 32f and 33f it is possible to reduce the shock generated in the forklift 1 in the switchback operation when an abnormality occurs in the vehicle speed sensor 46.
  • the first AND operation units 32g and 33g receive the vehicle speed monitoring flag Svc and the outputs of the switching determination units 32a and 32b.
  • the vehicle speed monitoring flag Svc is an ON signal when the vehicle speed sensor 46 is normal, and becomes an OFF signal when an abnormality occurs in the vehicle speed sensor 46. For this reason, the first AND operation units 32g and 33g output an ON signal only when the vehicle speed sensor 46 is normal and the vehicle speed Vc is equal to or lower than the determination vehicle speed Vch. Even if the vehicle speed sensor 46 is normal, if the vehicle speed Vc is greater than the determination vehicle speed Vch, or if the vehicle speed sensor 46 is abnormal, the first AND operation units 32g and 33g output an OFF signal. When the vehicle speed sensor 46 is normal, the first AND operation units 32g and 33g can detect whether or not a condition for setting the first travel command to 0 is satisfied.
  • the second AND operation units 32h and 33h receive the output of the vehicle speed determination unit 32c, the output of the A port pressure determination unit 32d, the output of the B port pressure determination unit 32e, and the output of the pump control pressure determination unit 32f. Is done.
  • the second AND operation units 32h and 33h output an ON signal only when these outputs are all ON signals, and output an OFF signal when at least one of these outputs is an OFF signal.
  • the second AND operation units 32h and 33h can detect whether or not a condition for setting the first travel command to 0 is satisfied when an abnormality occurs in the vehicle speed sensor 46.
  • the OR operation units 32i and 33i receive the outputs of the first AND operation units 32g and 33g and the outputs of the second AND operation units 32h and 33h.
  • the OR operation units 32i and 33i output an ON signal when at least one of the outputs of the first AND operation units 32g and 33g and the outputs of the second AND operation units 32h and 33h is an ON signal. When both are OFF signals, an OFF signal is output. It is determined by the OR operation units 32i and 33i that the condition for setting the first travel command to 0 is satisfied even when the vehicle speed sensor 46 is normal or when an abnormality occurs in the vehicle speed sensor 46. can do.
  • the third AND operation units 32j and 33j receive the outputs of the OR operation units 32i and 33i and the output of the switchback determination unit 32b.
  • the third AND operation units 32j and 33j output an ON signal only when the output of the switchback determination unit 32b is an ON signal and the outputs of the OR operations units 32i and 33i are ON signals. Outputs an OFF signal. That is, the OR operation unit 32i is the case where the output of the switchback determination unit 32b is an ON signal, that is, the case where the switchback operation is detected, and the output of the OR operation units 32i and 33i becomes the ON signal. An ON signal is output only when there is a failure. Through such processing, the third AND operation units 32j and 33j can determine when the condition for setting the first travel command to 0 is satisfied during the switchback operation.
  • the output selection unit 32k of the forward travel command calculation unit 32 selects either 0 or the travel command ipf generated by the control device 30 and outputs it to the forward pump electromagnetic proportional control valve 12 as the forward travel command Ipf. Specifically, when the output of the third AND operation unit 32j of the forward travel command computation unit 32 is an OFF signal, the output selection unit 32k selects the travel command ipf generated by the control device 30 and selects the forward travel command. Output as Ipf. When the output of the third AND operation unit 32j is an ON signal, that is, when the condition for setting the first travel command to 0 is established during the switchback operation, the output selection unit 32k selects 0 and moves forward. It outputs as traveling command Ipf.
  • the output selection unit 33k of the reverse travel command calculation unit 33 selects either 0 or the travel command ipr generated by the control device 30 and outputs it to the reverse pump electromagnetic proportional control valve 13 as the reverse travel command Ipr. Specifically, when the output of the third AND operation unit 33j of the reverse travel command calculation unit 33 is an OFF signal, the output selection unit 33k selects the travel command ipr generated by the control device 30 and selects the reverse travel command. Output as Ipr. When the output of the third AND operation unit 33j is an ON signal, that is, when the condition for setting the first travel command to 0 is satisfied during the switchback operation, the output selection unit 33k selects 0 and moves backward. The travel command Ipr is output.
  • FIG. 6 is a flowchart illustrating a processing example of the work vehicle control method according to the present embodiment.
  • the switchback determination units 32b and 33b of the control device 30 determine whether or not a switchback operation is being performed.
  • the switchback determination units 32b and 33b determine that the switchback operation is being performed when the traveling direction of the forklift 1 based on the traveling direction command value DR is different from the traveling direction determined by the traveling command ipf or the traveling command ipr.
  • the switchback determination units 32b and 33b are not in the switchback operation when the traveling direction of the forklift 1 based on the traveling direction command value DR is the same as the traveling direction determined by the traveling command ipf or the traveling command ipr. Is determined.
  • step S101, No the work vehicle control method according to the present embodiment ends.
  • the control device 30 decreases the first travel command and increases the second travel command.
  • step S ⁇ b> 102 the determination information calculation unit 31 ⁇ / b> A of the control device 30 acquires the vehicle speed Vc of the forklift 1 at the timing determined to be during the switchback operation from the vehicle speed sensor 46.
  • the vehicle speed Vc is the vehicle speed Vca when the reversal operation is detected.
  • the determination information calculation unit 31A refers to the table 50 shown in FIG. 5 to determine the determination vehicle speed Vch corresponding to the vehicle speed Vca at the time of detecting the reverse operation.
  • the switchback determination units 32b and 33b determine whether or not a switchback operation is being performed.
  • the work vehicle control method ends.
  • the control device 30 generates the travel command ipf or the travel command ipr from the operation amount of the accelerator pedal 41a at the present time, and controls the forward pump electromagnetic proportional control valve 12 or the reverse pump electromagnetic proportional control valve 13. To do.
  • step S104 the switching determination unit 32a of the forward travel command calculation unit 32 or the switching determination unit 33a of the reverse travel command calculation unit 33 is vehicle speed information indicating the traveling state of the forklift 1, vehicle speed acquired from the vehicle speed sensor 46 in this embodiment. It is determined whether or not Vc is equal to or lower than a determination vehicle speed Vch.
  • the control device 30 When the vehicle speed Vc is higher than the determination vehicle speed Vch (No at Step S104), the control device 30 returns to Step S103.
  • the control device 30 sets the first travel command to 0 in step S105. For example, in the switchback operation when the forklift 1 is moving forward, the forward travel command calculation unit 32 sets the forward travel command Ipf to 0. Further, in the switchback operation when the forklift 1 is moving backward, the reverse travel command calculation unit 33 sets the forward travel command Ipr to zero.
  • FIG. 7 and 8 are timing charts of the work vehicle control method according to the present embodiment.
  • FIG. 7 shows a case where the switchback operation is started when the forklift 1 is traveling at high speed
  • FIG. 8 is a case where the switchback operation is entered when the forklift 1 is traveling at a low speed.
  • 7 and 8 show an example in which the switchback operation is entered when the forklift 1 is traveling forward.
  • the forward travel command Ipf which is the first travel command
  • the reverse travel command Ipr which is the second travel command
  • the determination vehicle speed Vch is smaller than the vehicle speed Vca when the reversal operation is detected.
  • Qm is the capacity of the hydraulic motor 20 shown in FIG.
  • a command for changing the capacity Qm of the hydraulic motor 20 includes the pressure of hydraulic oil in the main hydraulic circuit 100 and a command signal for the traveling hydraulic pump 10, specifically, forward traveling. It is determined by integral control according to the command Ipf or the reverse travel command Ipr.
  • the hydraulic motor control command is determined so that the command signal to the traveling hydraulic pump 10 is large, that is, when the forklift 1 is driven at a high speed, the capacity Qm of the hydraulic motor 20 can be reduced to increase the vehicle speed Vc. Further, the hydraulic motor control command is determined so that the torque Q can be increased by increasing the capacity Qm of the hydraulic motor 20 when the command signal to the traveling hydraulic pump 10 is large, that is, when the forklift 1 is driven at a low speed.
  • the forward travel command calculation unit 32 of the control device 30 sets the forward travel command Ipf, which is the first travel command in this case, to 0, and continuously increases the reverse travel command Ipr, which is the second travel command in this case.
  • the acceleration that is, the inclination of the vehicle speed Vc with respect to the time t increases as shown in the middle part of FIG.
  • the forward travel command Ipf which is the first travel command, can be set to 0 at the timing. As a result, it is possible to suppress a time lag from when the forward / reverse lever 42a is operated until the forklift 1 is reversed, thereby realizing agile driving.
  • the acceleration is reduced as shown in the middle part of FIG. 8, so that the first traveling command is advanced at a relatively late timing.
  • the travel command Ipf can be set to zero.
  • the capacity Qm of the hydraulic motor 20 is large as shown in the lower part of FIG. In this example, the capacity Qm of the hydraulic motor 20 is maximum during the switchback operation.
  • the control device 30 sets the first travel command to 0 when the vehicle speed Vc of the forklift 1 becomes equal to or lower than the determination vehicle speed Vch, but when the vehicle speed is low, the acceleration is relatively small, so the timing when the first travel command becomes 0. Can be relatively slow. As a result, the control device 30 can effectively suppress a shock in the switchback operation at a low speed, so that the operator can obtain an advantage that the forklift 1 can easily make a precise movement.
  • the traveling hydraulic pump 10 is a servoless pump, but the servoless pump may cause an unintended movement of the swash plate 10S different from the drive command depending on the load in the main hydraulic circuit 100. For this reason, in the servoless pump, the capacity of the pump may change at an unintended timing.
  • the traveling hydraulic pump 10 needs to operate against the pressure of the hydraulic oil in the main hydraulic circuit 100 in order to reverse the traveling direction of the forklift 1.
  • the time lag increases unless the discharge side and the suction side of the traveling hydraulic pump 10 are switched quickly and largely when the forklift 1 is stopped by the switchback operation. .
  • the control device 30 of the present embodiment sets the first travel command to 0 at the timing when the vehicle speed Vc of the forklift 1 becomes equal to or lower than the determination vehicle speed Vch. Therefore, the servoless pump is used for the travel hydraulic pump 10. Even in such a case, the time lag can be reduced.
  • the reverse operation detection time information and the determination information are speeds.
  • the speed of the forklift 1 that is, the vehicle speed, has a high correlation with the swash plate tilt angle of the swash plate 10 ⁇ / b> S of the traveling hydraulic pump 10, so the swash plate tilt of the swash plate 10 ⁇ / b> S of the traveling hydraulic pump 10 depends on the vehicle speed of the forklift 1.
  • the turning angle can be estimated with high accuracy. For this reason, the swash plate 10S of the traveling hydraulic pump 10 to be controlled is accurately controlled by setting the reverse operation detection time information and the determination information to the speed of the forklift 1, and the first traveling command is issued at an appropriate timing. Can be zero.
  • the work vehicle may be a wheel loader, for example, as long as it is a work vehicle equipped with wheels, and is not limited to the forklift 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

 作業車両の走行中に、前記作業車両の進行方向を反転させるための進行方向切替装置の反転操作を進行方向検出装置が検出したときにおける前記作業車両の走行状態を表す反転操作検出時情報から判定情報を求め、前記反転操作の検出時から、前記反転操作の検出時における前記作業車両の進行方向に前記作業車両を走行させるための第1走行指令を減少させ、かつ前記反転操作の検出時における前記作業車両の進行方向とは反対方向に前記作業車両を走行させるための第2走行指令を増加させ、前記作業車両の走行状態を表す車速情報が、前記判定情報になったときに、前記第1走行指令を0にする。

Description

作業車両及び作業車両の制御方法
 本発明は、エンジンによって駆動される可変容量型の油圧ポンプと、前記油圧ポンプとの間で閉回路を形成し、前記油圧ポンプから吐出された作動油によって駆動される油圧モータと、を有する作業車両及び作業車両の制御方法に関する。
 駆動源であるエンジンと、駆動輪との間にHST(Hydro Static Transmission:静油圧式動力伝達装置)と称される油圧駆動装置が設けられているフォークリフトがある(例えば、特許文献1)。HSTは、閉回路である主油圧回路に、エンジンによって駆動される可変容量型の走行用油圧ポンプと、走行用油圧ポンプから吐出された作動油によって駆動される可変容量型の油圧モータとを備えており、油圧モータの駆動力を駆動輪に伝達することによって車両を走行させるものである。
特開2012-57502号公報
 フォークリフトのような作業車両は、後進走行中に前後進レバーを後進側から前進側へ操作したり、前進走行中に前後進レバーを前進側から後進側へ操作したりすることにより、後進走行又は前進走行を減速させ停止した直後に、前進走行又は後進走行を増速させるスイッチバック動作が行われる。作業車両が比較的高い速度からスイッチバック動作を行う場合、進行方向の指令が切り替わってから実際に進行方向が切り替わるまでにタイムラグが発生すると、作業車両の作業効率が低下する。また、作業車両が比較的低い速度からスイッチバック動作を行う場合は、作業車両のオペレータの細かい操作に対して正確に動作する精密な動きを要求されている場合が多い。このような場合、スイッチバック動作中に作業車両にショックが発生すると、精密な作業を実行しにくくなる可能性がある。
 本発明は、HSTを備えた作業車両がスイッチバック動作をする場合のタイムラグを抑制し、かつショックを低減することを目的とする。
 本発明は、作業機を備えた作業車両であり、前記作業車両を走行させる駆動輪を駆動する油圧モータと、前記油圧モータとの間で閉回路を形成し、作動油を吐出して前記油圧モータを駆動するポンプであり、前記ポンプの容量を変更し、かつ前記作動油の吸入側と吐出側とを反転することにより前記油圧モータの回転方向を変更する操作機構を有する走行用油圧ポンプと、前記作業車両の前進と後進とを切り替えるための進行方向切替装置の状態を検出する進行方向検出装置と、前記作業車両を走行させるための走行指令を前記操作機構の駆動装置に与えて前記操作機構を作動させることにより前記走行用油圧ポンプから前記作動油を吐出させる制御装置と、を含み、前記操作機構の作動量は、前記走行指令と、前記閉回路の負荷とで定まり、前記制御装置は、前記作業車両の走行中に、前記作業車両の進行方向を反転させるための前記進行方向切替装置の反転操作を前記進行方向検出装置が検出したときにおける前記作業車両の走行状態を表す反転操作検出時情報から判定情報を求め、前記反転操作の検出時から、前記反転操作の検出時における前記作業車両の進行方向に前記作業車両を走行させるための第1走行指令を減少させ、かつ前記反転操作の検出時における前記作業車両の進行方向とは反対方向に前記作業車両を走行させるための第2走行指令を増加させ、前記作業車両の走行状態を表す車速情報が、前記判定情報になった場合に、前記第1走行指令を0にする、作業車両である。
 前記判定情報は、前記反転操作検出時情報が大きくなるにしたがって大きくなることが好ましい。
 前記反転操作検出時情報、前記判定情報及び前記車速情報は、速度であることが好ましい。
 前記作業機は、荷物を積載するフォークを含み、前記作業車両はフォークリフトであることが好ましい。
 本発明は、荷物を積載するフォークを備えた作業車両であり、前記作業車両を走行させる駆動輪を駆動する油圧モータと、前記油圧モータとの間で閉回路を形成し、作動油を吐出して前記油圧モータを駆動するポンプであり、前記ポンプの容量を変更し、かつ前記作動油の吸入側と吐出側とを反転することにより前記油圧モータの回転方向を変更する操作機構を有する走行用油圧ポンプと、作動油によって前記操作機構を作動させる駆動装置と、前記作業車両の前進と後進とを切り替えるための進行方向切替装置の状態を検出する進行方向検出装置と、前記作業車両を走行させるための走行指令を前記駆動装置に与えて前記操作機構を作動させることにより前記走行用油圧ポンプから前記作動油を吐出させる制御装置と、を含み、前記操作機構の作動量は、前記走行指令と、前記閉回路の負荷とで定まり、前記制御装置は、前記作業車両の走行中に、前記作業車両の進行方向を反転させるための前記進行方向切替装置の反転操作を前記進行方向検出装置が検出したときにおける前記作業車両の反転操作検出時車速から判定車速を求め、前記反転操作の検出時から、前記反転操作の検出時における前記作業車両の進行方向に前記作業車両を走行させるための第1走行指令を減少させ、かつ前記反転操作の検出時における前記作業車両の進行方向とは反対方向に前記作業車両を走行させるための第2走行指令を増加させ、前記作業車両の車速が、前記判定車速になった場合に、前記第1走行指令を0とし、前記車速を検出する装置の異常発生時に、前記反転操作が検出されると、前記作業車両の車速が予め定められた値以下、かつ前記走行用油圧ポンプの吸入側の圧力が予め定められた値以下、かつ前記走行用油圧ポンプの吐出側の圧力が予め定められた値以下、かつ前記駆動装置が発生する作動油の圧力が予め定められた値以下である場合に、前記第1走行指令を0とする、作業車両である。
 本発明は、作業機と、前記作業車両を走行させる駆動輪を駆動する油圧モータと、前記油圧モータとの間で閉回路を形成し、作動油を吐出して前記油圧モータを駆動するポンプであり、前記ポンプの容量を変更し、かつ前記作動油の吸入側と吐出側とを反転することにより前記油圧モータの回転方向を変更する操作機構を有する走行用油圧ポンプと、前記作業車両の前進と後進とを切り替えるための進行方向切替装置の状態を検出する進行方向検出装置と、前記作業車両を走行させるための走行指令を前記操作機構の駆動装置に与えて前記操作機構を作動させることにより前記走行用油圧ポンプから前記作動油を吐出させる制御装置と、を含み、前記操作機構の作動量は、前記走行指令と、前記閉回路の負荷とで定まる作業車両を制御するにあたり、前記作業車両の走行中に、前記作業車両の進行方向を反転させるための前記進行方向切替装置の反転操作を前記進行方向検出装置が検出したときにおける前記作業車両の走行状態を表す反転操作検出時情報から判定情報を求めることと、前記反転操作の検出時から、前記反転操作の検出時における前記作業車両の進行方向に前記作業車両を走行させるための第1走行指令を減少させ、かつ前記反転操作の検出時における前記作業車両の進行方向とは反対方向に前記作業車両を走行させるための第2走行指令を増加させることと、前記作業車両の走行状態を表す車速情報が前記判定情報になった場合に、前記第1走行指令を0にすることと、を含む、作業車両の制御方法である。
 本発明は、HSTを備えた作業車両がスイッチバック動作をする場合のタイムラグを抑制し、かつショックを低減することができる。
図1は、本実施形態に係るフォークリフトの全体構成を示す図である。 図2は、図1に示されたフォークリフトの制御系統を示すブロック図である。 図3は、スイッチバック動作の一例を示す図である。 図4は、制御装置の制御ブロック図である。 図5は、反転操作検出時情報である反転操作検出時車と判定情報である判定車速との関係が記述されたテーブルの一例である。 図6は、本実施形態に係る作業車両の制御方法の処理例を示すフローチャートである。 図7は、本実施形態に係る作業車両の制御方法のタイミングチャートである。 図8は、本実施形態に係る作業車両の制御方法のタイミングチャートである。
 以下、図面を参照してこの発明を実施するための形態について説明する。
<フォークリフト>
 図1は、本実施形態に係るフォークリフト1の全体構成を示す図である。図2は、図1に示されたフォークリフト1の制御系統を示すブロック図である。フォークリフト1は、駆動輪2a及び操向輪2bを有した車体3と、作業機5と、駆動輪2a及び操向輪2bを制動する機械式ブレーキ9と、を有する。フォークリフト1は、運転席STから操舵部材HLへ向かう側が前であり、操舵部材HLから運転席STへ向かう側が後である。作業機5は、車体3の前方に設けられる。
 車体3には、内燃機関の一例であるエンジン4、エンジン4を駆動源として駆動する可変容量型の走行用油圧ポンプ10及び作業機油圧ポンプ16が設けられる。エンジン4は、例えばディーゼルエンジンであるが、これには限定されない。走行用油圧ポンプ10及び作業機油圧ポンプ16には、エンジン4の出力軸4Sが連結されている。走行用油圧ポンプ10及び作業機油圧ポンプ16は、出力軸4Sを介してエンジン4に駆動される。駆動輪2aは、油圧モータ20の動力で駆動される。可変容量型の走行用油圧ポンプ10と可変容量型の油圧モータ20とは閉じた油圧回路で連通されて、HSTを形成している。このように、フォークリフト1は、HSTによって走行する。本実施形態において、走行用油圧ポンプ10と作業機油圧ポンプ16とは、いずれも斜板10Sと斜板16Sとを有し、斜板10Sと斜板16Sとの斜板傾転角が変更されることにより、容量が変化する。
 作業機5は、積荷を載置するフォーク6と、フォーク6を昇降させるリフト機構とを有する。リフト機構は、リフトシリンダ7及びフォーク6をチルトさせるチルトシリンダ8を有する。車体3の運転席には、前後進レバー42a、ブレーキ操作部としてのインチングペダル(ブレーキペダル)40a、アクセル操作部としてのアクセルペダル41a並びに作業機5を操作するためのリフトレバー及びチルトレバーを含む図示しない作業機操作レバーが設けられる。インチングペダル40aは、インチング率を操作する。アクセルペダル41aは、エンジン4への燃料供給量を変更する。インチングペダル40a及びアクセルペダル41aは、フォークリフト1のオペレータが、運転席から足踏み操作できる位置に設けられている。図1では、インチングペダル40aとアクセルペダル41aとが重なった状態で描かれている。
 図2に示されるように、フォークリフト1は、エンジン4と、出力軸20aと、トランスファ20bと、駆動輪2a、2aと、作業機5を駆動するリフトシリンダ7と、チルトシリンダ8と、制御装置30と、主油圧回路100を備えている。主油圧回路100は、走行用油圧ポンプ10と、油圧モータ20と、両者を接続する油圧供給管路10a及び油圧供給管路10bとを含んだ閉回路である。
 走行用油圧ポンプ10は、油圧モータ20との間で閉回路を形成し、エンジン4によって駆動されて作動油を吐出することにより、油圧モータ20を駆動するポンプである。本実施形態において、走行用油圧ポンプ10は、例えば、斜板10Sを有し、斜板傾転角を変更することによって容量を変更することのできる可変容量型のポンプである。斜板10Sは、走行用油圧ポンプ10の容量を変更し、かつ作動油の吸入側と吐出側とを反転することにより油圧モータ20の回転方向を変更する操作機構である。
 走行用油圧ポンプ10は、油圧供給管路10aに接続されている部分がAポート10A、油圧供給管路10bに接続されている部分がBポート10Bである。フォークリフト1の前進時には、Aポート10Aが作動油の吐出側となり、Bポート10Bが作動油の流入側となる。フォークリフト1の後進時には、Aポート10Aが作動油の流入側となり、Bポート10Bが作動油の吐出側となる。
 油圧モータ20は、走行用油圧ポンプ10から吐出された作動油によって回転駆動される。油圧モータ20は、例えば、斜板20Sを有し、斜板傾転角を変更することによって容量を変更することのできる可変容量型の油圧モータである。油圧モータ20は、固定容量型の油圧モータであってもよい。油圧モータ20は、その出力軸20aがトランスファ20bを介して駆動輪2aに接続されている。油圧モータ20は、トランスファ20bを介して駆動輪2aを回転駆動することで、フォークリフト1を走行させることができる。
 油圧モータ20は、走行用油圧ポンプ10からの作動油の供給方向に応じて回転方向を切り替えることができる。油圧モータ20の回転方向が切り替えられることにより、フォークリフト1は前進又は後進することができる。以下の説明においては、便宜上、油圧供給管路10aから油圧モータ20に作動油が供給された場合にフォークリフト1が前進し、油圧供給管路10bから油圧モータ20に作動油が供給された場合にフォークリフト1が後進するものとする。
 フォークリフト1は、ポンプ容量設定ユニット11、モータ容量設定ユニット21及びチャージポンプ15を有する。ポンプ容量設定ユニット11は、走行用油圧ポンプ10に設けられる。ポンプ容量設定ユニット11は、前進用ポンプ電磁比例制御バルブ12、後進用ポンプ電磁比例制御バルブ13及びポンプ容量制御シリンダ14を備える。ポンプ容量設定ユニット11は、前進用ポンプ電磁比例制御バルブ12及び後進用ポンプ電磁比例制御バルブ13に、後述する制御装置30から指令信号が与えられる。ポンプ容量設定ユニット11は、制御装置30から与えられた指令信号に応じてポンプ容量制御シリンダ14が作動し、走行用油圧ポンプ10の斜板傾転角が変化することによって、走行用油圧ポンプ10の容量が変更される。このように、ポンプ容量設定ユニット11は、作動油によって操作機構、すなわち走行用油圧ポンプ10の斜板10Sを作動させる駆動装置である。
 ポンプ容量制御シリンダ14は、シリンダケース14C内にピストン14Aが収納されている。ピストン14Aは、シリンダケース14Cとピストン14Aとの間の空間に作動油が供給されることによって、シリンダケース14C内を往復する。ピストン14Aによって、シリンダケース14Cは、第1作動油室14Cfと第2作動油室14Crとに区画される。第1作動油室14Cfには前進用ポンプ電磁比例制御バルブ12が接続され、第2作動油室14Crには後進用ポンプ電磁比例制御バルブ13が接続される。第1作動油室14Cfは、前進用ポンプ電磁比例制御バルブ12から作動油が供給され、前進用ポンプ電磁比例制御バルブ12に作動油を排出する。第2作動油室14Crは、後進用ポンプ電磁比例制御バルブ13から作動油が供給され、後進用ポンプ電磁比例制御バルブ13に作動油を排出する。
 第1作動油室14Cfに前進用ポンプ電磁比例制御バルブ12から作動油が供給されると、ピストン14Aは第2作動油室14Cr側に移動して、走行用油圧ポンプ10の斜板10Sを開く。また、第2作動油室14Crに後進用ポンプ電磁比例制御バルブ13から作動油が供給されると、ピストン14Aは第1作動油室14Cf側に移動して、走行用油圧ポンプ10の斜板10Sを開く。ポンプ容量制御シリンダ14は、斜板傾転角が0の状態において、ピストン14Aが中立位置に保持されている。このため、エンジン4が回転しても、走行用油圧ポンプ10から主油圧回路100の油圧供給管路10a又は油圧供給管路10bへ吐出される作動油の量は0である。
 走行用油圧ポンプ10の斜板傾転角が0の状態から、例えば、前進用ポンプ電磁比例制御バルブ12に対して制御装置30から走行用油圧ポンプ10の容量を増大する旨の指令信号が与えられるとする。すると、この指令信号に応じて前進用ポンプ電磁比例制御バルブ12からポンプ容量制御シリンダ14にポンプ制御圧力が与えられる。その結果、ピストン14Aは、図2において左側に移動する。ポンプ容量制御シリンダ14のピストン14Aが図2において左側に移動すると、この動きに連動して走行用油圧ポンプ10の斜板10Sは、油圧供給管路10aに作動油を吐出する方向へ向けて傾く。
 前進用ポンプ電磁比例制御バルブ12からのポンプ制御圧力、すなわち作動油の圧力が増大するにしたがって、ピストン14Aの移動量が大きくなる。このため、走行用油圧ポンプ10での斜板10Sの傾転角は、その変化量も大きなものとなる。つまり、前進用ポンプ電磁比例制御バルブ12に対して制御装置30から指令信号(走行指令)Ipfが与えられると、この指令信号Ipfに応じたポンプ制御圧力が前進用ポンプ電磁比例制御バルブ12からポンプ容量制御シリンダ14に与えられる。前述したポンプ制御圧力によって、ポンプ容量制御シリンダ14が作動することにより、走行用油圧ポンプ10の斜板10Sが油圧供給管路10aに対して所定量の作動油を吐出できるように傾く。この結果、エンジン4が回転すれば、走行用油圧ポンプ10から油圧供給管路10aに作動油が吐出されて、油圧モータ20は前進方向に回転する。
 前述した状態において、前進用ポンプ電磁比例制御バルブ12に制御装置30から走行用油圧ポンプ10の容量を減少する旨の指令信号Ipfが与えられると、この指令信号Ipfに応じて前進用ポンプ電磁比例制御バルブ12からポンプ容量制御シリンダ14に供給されるポンプ制御圧力が減少する。このため、ポンプ容量制御シリンダ14のピストン14Aは、中立位置に向かって移動する。この結果、走行用油圧ポンプ10の斜板傾転角が減少し、走行用油圧ポンプ10から油圧供給管路10aへの作動油の吐出量が減少する。
 制御装置30が、後進用ポンプ電磁比例制御バルブ13に対して走行用油圧ポンプ10の容量を増大する旨の指令信号Iprを与えると、この指令信号Iprに応じて後進用ポンプ電磁比例制御バルブ13からポンプ容量制御シリンダ14に対してポンプ制御圧力、すなわち作動油の圧力が与えられる。すると、ピストン14Aは、図2において右側に移動する。ポンプ容量制御シリンダ14のピストン14Aが、図2において右側に移動すると、これに連動して走行用油圧ポンプ10の斜板10Sが油圧供給管路10bに対して作動油を吐出する方向へ向かって傾転する。
 後進用ポンプ電磁比例制御バルブ13から供給されるポンプ制御圧力が増大するにしたがってピストン14Aの移動量が大きくなるため、走行用油圧ポンプ10の斜板傾転角の変化量は大きくなる。つまり、後進用ポンプ電磁比例制御バルブ13に対して制御装置30から指令信号Iprが与えられると、この指令信号Iprに応じたポンプ制御圧力が後進用ポンプ電磁比例制御バルブ13からポンプ容量制御シリンダ14に与えられる。そして、ポンプ容量制御シリンダ14の作動により走行用油圧ポンプ10の斜板10Sが油圧供給管路10bに対して所望量の作動油を吐出できるように傾く。この結果、エンジン4が回転すると、走行用油圧ポンプ10から油圧供給管路10bに作動油が吐出されて、油圧モータ20は、後進方向に回転する。
 後進用ポンプ電磁比例制御バルブ13に対して制御装置30から走行用油圧ポンプ10の容量を減少する旨の指令信号Iprが与えられると、この指令信号Iprに応じて後進用ポンプ電磁比例制御バルブ13からポンプ容量制御シリンダ14に供給するポンプ制御圧力が減少し、ピストン14Aが中立位置に向けて移動する。この結果、走行用油圧ポンプ10の斜板傾転角が減少するので、走行用油圧ポンプ10から油圧供給管路10bへ吐出される作動油の量が減少する。
 前進用ポンプ電磁比例制御バルブ12からのポンプ制御圧力は、例えば、第1作動油室14Cf内の作動油の圧力とすることができる。後進用ポンプ電磁比例制御バルブ13からのポンプ制御圧力すなわち作動油の圧力は、第2作動油室14Cr内の作動油の圧力とすることができる。第1作動油室14Cf内の作動油の圧力Pefは、圧力検出装置である第1圧力センサ12sにより検出され、第2作動油室14Cr内の作動油の圧力Perは、圧力検出装置である第2圧力センサ13sにより検出される。第1圧力センサ12s及び第2圧力センサ13sの検出値は、制御装置30に入力される。
 モータ容量設定ユニット21は、油圧モータ20に設けられる。モータ容量設定ユニット21は、モータ電磁比例制御バルブ22、モータ用シリンダ制御バルブ23及びモータ容量制御シリンダ24を備えている。モータ容量設定ユニット21では、モータ電磁比例制御バルブ22に制御装置30から指令信号が与えられると、モータ電磁比例制御バルブ22からモータ用シリンダ制御バルブ23にモータ制御圧力が供給されて、モータ容量制御シリンダ24が作動する。モータ容量制御シリンダ24が作動すると、モータ容量制御シリンダ24の動きに連動して油圧モータ20の斜板傾転角が変化することになる。このため、制御装置30からの指令信号に応じて油圧モータ20の容量が変更されることになる。具体的には、モータ容量設定ユニット21は、モータ電磁比例制御バルブ22から供給されるモータ制御圧力が増加するにしたがって、油圧モータ20の斜板傾転角が減少するようになっている。
 チャージポンプ15は、エンジン4によって駆動される。チャージポンプ15は、前述した前進用ポンプ電磁比例制御バルブ12及び後進用ポンプ電磁比例制御バルブ13を介してポンプ容量制御シリンダ14にポンプ制御圧力を供給する。チャージポンプ15は、モータ電磁比例制御バルブ22を介してモータ用シリンダ制御バルブ23にモータ制御圧力を供給する機能を有している。
 本実施形態において、エンジン4は、走行用油圧ポンプ10の他に、作業機油圧ポンプ16を駆動する。この作業機油圧ポンプ16は、作業機5を駆動するための作業用アクチュエータであるリフトシリンダ7及びチルトシリンダ8に、バルブを介して作動油を供給する。
 フォークリフト1は、インチングポテンショメータ(ブレーキポテンショメータ)40、アクセルポテンショメータ41、前後進レバースイッチ42、エンジン回転センサ43、車速センサ46、圧力センサ47A、47B、圧力センサ48及び温度センサ49を備えている。
 インチングポテンショメータ40は、インチングペダル(ブレーキペダル)40aが操作された場合に、その操作量を検出して出力する。インチングペダル40aの操作量は、インチング操作量Isである。インチングポテンショメータ40が出力するインチング操作量Isは、制御装置30に入力される。以下において、インチング操作量IsをインチングストロークIsと称することもある。
 アクセルポテンショメータ41は、アクセルペダル41aが操作された場合に、アクセルペダル41aの操作量Aopを出力するものである。アクセルペダル41aの操作量Aopは、アクセル開度Aopともいう。アクセルポテンショメータ41が出力するアクセル開度Aopは、制御装置30に入力される。
 前後進レバースイッチ42は、フォークリフト1の進行方向を前進又は後進に切り替えるための進行方向検出装置である。本実施形態では、運転席から選択操作できる位置に設けた前後進レバー42aの操作により、前進と、中立と、後進との3つの進行方向を選択して、フォークリフト1の前進と後進とを切り替えることができる前後進レバースイッチ42を適用している。前後進レバー42aは、フォークリフト1の進行方向を前進又は後進に切り替えるための進行方向切替装置である。前後進レバースイッチ42によって選択されたフォークリフト1の進行方向を示す情報は、進行方向指令値DRとして前後進レバースイッチ42から制御装置30に与えられる。進行方向指令値DRは、Fが前進、Nが中立、Rが後進を示す。前後進レバースイッチ42が選択するフォークリフト1の進行方向は、これからフォークリフト1が進行する方向と、フォークリフト1が実際に進行している方向との両方を含む。
 エンジン回転センサ43は、エンジン4の実際の回転速度を検出するものである。エンジン回転センサ43によって検出されたエンジン4の回転速度は、実際のエンジン4の回転速度Nrである。エンジン4の回転速度Nrを示す情報は、制御装置30に入力される。エンジン4の回転速度は、単位時間あたりにおけるエンジン4の出力軸4Sの回転数である。車速センサ46は、フォークリフト1が走行するときの速度、すなわち車速Vcを検出する装置である。
 圧力センサ47Aは、油圧供給管路10aに設けられて、油圧供給管路10a内の作動油の圧力を検出する。圧力センサ47Bは、油圧供給管路10bに設けられて、油圧供給管路10b内の作動油の圧力を検出する。圧力センサ47Aが検出する圧力は、走行用油圧ポンプ10のAポート10A内における作動油の圧力に相当する。圧力センサ47Bが検出する圧力は、走行用油圧ポンプ10のBポート10B内における作動油の圧力に相当する。制御装置30は、圧力センサ47A及び圧力センサ47Bの検出値を取得し、本実施形態に係る作業車両の制御方法に用いる。圧力センサ48は、リフトシリンダ7内のリフト圧力、すなわちリフトシリンダ7内の作動油の圧力を検出するリフト圧力検出装置である。温度センサ49は、HST内の作動油の温度を検出する温度検出装置である。
 制御装置30は、処理部30Cと記憶部30Mとを含む。制御装置30は、例えば、コンピュータを備え、フォークリフト1の制御に関する各種の処理を実行する装置である。処理部30Cは、例えば、CPU(Central Processing Unit)とメモリとを組合せた装置である。処理部30Cは、記憶部30Mに記憶されている、主油圧回路100を制御するためのコンピュータプログラムを読み込んでこれに記述されている命令を実行することにより、主油圧回路100の動作を制御する。記憶部30Mは、前述したコンピュータプログラム及び主油圧回路100の制御に必要なデータ等を記憶している。記憶部30Mは、例えば、ROM(Read Only Memory)、ストレージデバイス又はこれらを組合せた装置である。
 制御装置30には、インチングポテンショメータ40、アクセルポテンショメータ41、前後進レバースイッチ42、エンジン回転センサ43、車速センサ46及び圧力センサ47A、47Bといった各種センサ類が電気的に接続されている。制御装置30は、これらの各種センサ類からの入力信号に基づいて、前進用ポンプ電磁比例制御バルブ12、後進用ポンプ電磁比例制御バルブ13の指令信号を生成し、かつ生成した指令信号をそれぞれの電磁比例制御バルブ12、13、22に与える。
<スイッチバック動作>
 図2に示される制御装置30は、フォークリフト1がスイッチバック動作を実行するときに本実施形態に係る作業車両の制御方法を実行する。スイッチバック動作とは、フォークリフト1の実際の進行方向と、進行方向指令値DRが規定する進行方向とが相違する場合におけるフォークリフト1の動作である。例えば、オペレータが図1に示すアクセルペダル41aを踏み、かつ前後進レバー42aを前進Fとしてフォークリフト1を前進させている状態で、前後進レバー42aを後進Rに切り替えたとき等の動作がスイッチバック動作である。
 図3は、スイッチバック動作の一例を示す図である。例えば、フォークリフト1が荷物PKを積載して後進(進行方向指令値DR=B)しているときの、あるタイミングで、オペレータが前後進レバー42aを後進から前進(進行方向指令値DR=F)に切り替える。すると、フォークリフト1は前進を開始する。このような動作がスイッチバック動作の一例である。
<制御装置30の制御ブロック>
 図4は、制御装置30の制御ブロック図である。図5は、反転操作検出時情報である反転操作検出時車速と判定情報である判定車速との関係が記述されたテーブル50の一例である。制御装置30、より具体的には処理部30Cは、フォークリフト1のスイッチバック動作時に、本実施形態に係る作業車両の制御方法を実行する。制御装置30の処理部30Cは、判定情報演算部31Aと、走行指令演算部31Bとを含む。
 制御装置30は、フォークリフト1の走行中に、スイッチバック動作を検出したら、スイッチバック動作が検出されたときの走行状態を表す反転操作検出時情報から判定情報を求める。例えば、フォークリフト1の進行方向を反転させるための前後進レバー42aの反転操作が前後進レバースイッチ42に検出されたときを、スイッチバック動作が検出されたタイミングとすることができる。判定情報は、判定情報演算部31Aによって求められる。
 次に、制御装置30、より具体的には走行指令演算部31Bは、スイッチバック動作の検出時から、スイッチバック動作の検出時におけるフォークリフト1の進行方向にフォークリフト1を走行させるための指令信号である第1走行指令を減少させ、かつスイッチバック動作の検出時におけるフォークリフト1の進行方向とは反対方向にフォークリフト1を走行させるための指令信号である第2走行指令を増加させる。その後、制御装置30は、フォークリフト1の走行状態を表す車速情報が判定情報になったときに、第1走行指令を0にする。
 前述したように、判定情報演算部31Aは、判定情報を求める。判定情報は、走行指令演算部31Bが、第1走行指令を0にするタイミングを判定するための情報であり、反転操作検出時情報から求められる。本実施形態において、反転操作検出時情報は、フォークリフト1のスイッチバック動作が検出されたときの車速Vcaである。以下において、反転操作検出時情報を、適宜反転操作検出時車速Vcaと称する。本実施形態において、判定情報は、反転操作検出時車速Vcaに対応して予め定められた速度Vchである。以下において、速度Vchを、適宜判定車速Vchと称する。
 本実施形態において、反転操作検出時車速Vcaと判定車速Vchとの関係は、テーブル50に記述されている。テーブル50は、図2に示す制御装置30の記憶部30Mに記憶されている。判定情報演算部31Aは、本実施形態に係る作業車両の制御方法を実行する場合、例えば、記憶部30Mからテーブル50を読み出し、これを参照して、車速センサ46から取得した反転操作検出時車速Vcaに対応する判定車速Vchを求める。
 図5に示されるように、テーブル50は、反転操作検出時情報、すなわち反転操作検出時車速Vcaが0からVca1、Vca2、Vca3の順に大きくなっている。判定情報、すなわち判定車速Vchは、反転操作検出時車速Vcaに対応してVch0からVch1、Vch2、Vch3の順に大きくなっている。このようにすることで、フォークリフト1の反転操作検出時車速Vcaの変化に応じて判定車速Vchを適切に変化させることができる。その結果、制御装置30は、スイッチバック動作開始時におけるフォークリフト1の車速Vcが異なっても、オペレータに与える違和感が少ないタイミングで、フォークリフト1の進行方向を反転させることができる。本実施形態において、判定車速Vchは、反転操作検出時車速Vca=0よりも大きく、かつ反転操作検出時車速Vca1よりも小さい。判定車速Vchは、テーブル50以外の計算式等によって規定されてもよい。
 本実施形態において、前述したように、反転操作検出時情報及び判定情報は速度であるが、これに限定されるものではない。例えば、図2に示す走行用油圧ポンプ10の吸収トルクを反転操作検出時情報及び判定情報としてもよい。この場合、反転操作検出時情報は、制御装置30が生成する吸収トルクの指令値を用いる。判定情報は、反転操作検出時情報に対応して定められたトルクであり、実験又はコンピュータシミュレーション等によって定められる。反転操作検出時情報が大きくなるにしたがって判定情報が大きくなる点は、反転操作検出時情報及び判定情報に速度が用いられる場合と同様である。次に、走行指令演算部31Bについて説明する。
 走行指令演算部31Bは、図2に示されるポンプ容量設定ユニット11が備える前進用ポンプ電磁比例制御バルブ12及び後進用ポンプ電磁比例制御バルブ13を制御する。この制御により、走行指令演算部31Bは、走行用油圧ポンプ10の斜板10Sの斜板傾転角を変更して、走行用油圧ポンプ10の容量の変更及び作動油の吐出側と吸入側との切替を実行する。走行用油圧ポンプ10の斜板10Sの斜板傾転角、すなわち走行用油圧ポンプ10の操作機構の作動量は、走行指令と、閉回路である主油圧回路100の負荷とで定まる。これは、走行用油圧ポンプ10の斜板10Sがサーボ機構を用いないで制御されること、すなわち走行用油圧ポンプ10はサーボレスポンプであることを意味する。
 フォークリフト1がスイッチバック動作を開始した場合、走行指令演算部31Bは、まず第1走行指令を減少させ、かつ第2走行指令を増加させる。次に、走行指令演算部31Bは、フォークリフト1の車速Vcが判定車速Vchになったタイミングで、第1走行指令を0にする。反転操作検出時情報及び判定情報を速度以外、例えば、走行用油圧ポンプ10の吸収トルクとした場合、走行指令演算部31Bは、フォークリフト1が備える走行用油圧ポンプ10の吸収トルクが、反転操作検出時の吸収トルクから求められる判定吸収トルクになったタイミングで、第1走行指令を0にする。この場合、反転操作検出時の吸収トルクが大きくなるにしたがって、判定吸収トルクも大きくなるように設定されている。
 第1走行指令は、フォークリフト1を第1の進行方向に走行させるための走行指令である。第1の進行方向は、制御装置30の走行指令演算部31Bがフォークリフト1のスイッチバック動作を検出したときにおけるフォークリフト1の進行方向である。例えば、フォークリフト1が前進しているときに前後進レバー42aが前進から後進に切り替えられた場合、第1の進行方向はフォークリフト1が前進する方向である。この場合、第1走行指令は、フォークリフト1を前進させるための走行指令になる。フォークリフト1が後進しているときに前後進レバー42aが後進から前進に切り替えられた場合、第1の進行方向はフォークリフト1が後進する方向である。この場合、第1走行指令は、フォークリフト1を後進させるための走行指令になる。このように、第1走行指令は、フォークリフト1がスイッチバック動作を開始するときにおけるフォークリフト1の進行方向によって異なる。
 第2走行指令は、フォークリフト1を第2の進行方向に走行させるための指令である。第2の進行方向は、第1の進行方向とは反対方向である。例えば、フォークリフト1が前進しているときに前後進レバー42aが前進から後進に切り替えられた場合、スイッチバック動作検出時の進行方向とは反対方向は、フォークリフト1が後進する方向である。この場合、第2走行指令は、フォークリフト1を後進させるための走行指令になる。フォークリフト1が後進しているときに前後進レバー42aが後進から前進に切り替えられた場合、スイッチバック動作検出時の進行方向とは反対方向は、フォークリフト1が前進する方向である。この場合、第2走行指令は、フォークリフト1を前進させるための走行指令になる。このように、第2走行指令は、フォークリフト1がスイッチバック動作を開始するときにおけるフォークリフト1の進行方向によって異なる。
 走行指令演算部31Bが本実施形態に係る作業車両の制御方法を実行することにより、フォークリフト1が高速走行しているときのスイッチバック動作においては、前後進レバー42aの反転操作時からフォークリフト1の進行方向が反転するまでのタイムラグを低減できる。また、フォークリフト1が低速走行しているときのスイッチバック動作においては、フォークリフト1の進行方向が反転する際のショックが低減されて滑らかに進行方向が切り替わる。次に、走行指令演算部31Bをより詳細に説明する。
 図4に示されるように、走行指令演算部31Bは、前進走行指令演算部32と、後進走行指令演算部33とを含む。前進走行指令演算部32は、ポンプ容量設定ユニット11の前進用ポンプ電磁比例制御バルブ12を制御する。後進走行指令演算部33は、ポンプ容量設定ユニット11の後進用ポンプ電磁比例制御バルブ13を制御する。
 制御装置30は、図2に示すアクセルペダル41aの操作量等から、前進用ポンプ電磁比例制御バルブ12に与える走行指令ipf及び後進用ポンプ電磁比例制御バルブ13に与える走行指令iprの少なくとも一方を生成する。走行指令ipf及び走行指令iprは、本実施形態においてはいずれも電流であるが、電流に限定されず、例えば、電圧等であってもよい。
 前進走行指令演算部32は、前進用ポンプ電磁比例制御バルブ12に、フォークリフト1を前進させるための走行指令(以下、適宜前進走行指令と称する)Ipfを出力する。後進走行指令演算部33は、後進用ポンプ電磁比例制御バルブ13に、フォークリフト1を後進させるための走行指令(以下、適宜後進走行指令と称する)Iprを出力する。走行指令演算部31Bがフォークリフト1のスイッチバック動作中に第1走行指令を0にしたときを除いて、前進走行指令Ipfは制御装置30が生成した走行指令ipfと同一であり、後進走行指令Iprは制御装置30が生成した走行指令iprと同一である。
 フォークリフト1が前進しているとき、制御装置30は、アクセルペダル41aの操作量等から、前進用ポンプ電磁比例制御バルブ12に与える走行指令ipfを生成し、後進用ポンプ電磁比例制御バルブ13に与える走行指令iprを0とする。このため、前進走行指令演算部32は、前進用ポンプ電磁比例制御バルブ12に走行指令ipfを前進走行指令Ipfとして出力し、後進走行指令演算部33は、後進走行指令Ipr=0を後進用ポンプ電磁比例制御バルブ13に出力する。
 フォークリフト1が後進しているとき、制御装置30は、アクセルペダル41aの操作量等から、後進用ポンプ電磁比例制御バルブ13に与える走行指令iprを生成し、前進用ポンプ電磁比例制御バルブ12に与える走行指令ipfを0とする。このため、前進走行指令演算部32は、前進用ポンプ電磁比例制御バルブ12に前進走行指令Ipf=0を出力し、後進走行指令演算部33は、走行指令iprを後進走行指令Iprとして後進用ポンプ電磁比例制御バルブ13に出力する。
 前進用ポンプ電磁比例制御バルブ12は、前進走行指令Ipfの電流の大きさに応じた作動油の油圧、すなわちポンプ制御圧力を発生させてポンプ容量制御シリンダ14を動作させる。後進用ポンプ電磁比例制御バルブ13は、後進走行指令Iprの電流の大きさに応じた作動油の油圧、すなわちポンプ制御圧力を発生させてポンプ容量制御シリンダ14を動作させる。ポンプ容量制御シリンダ14が動作することで、走行用油圧ポンプ10の斜板10Sの斜板傾転角が変更されるので、走行用油圧ポンプ10は、前進走行指令Ipf及び後進走行指令Iprの少なくとも一方に応じた流量で、作動油を油圧モータ20に吐出する。
 フォークリフト1が前進している状態でスイッチバック動作を開始すると、制御装置30は、前進用ポンプ電磁比例制御バルブ12に与える走行指令ipfを時間の経過とともに減少させ、後進用ポンプ電磁比例制御バルブ13に与える走行指令iprを時間の経過とともに増加させる。フォークリフト1が後進している状態でスイッチバック動作を開始すると、制御装置30は、後進用ポンプ電磁比例制御バルブ13に与える走行指令iprを時間の経過とともに減少させ、前進用ポンプ電磁比例制御バルブ12に与える走行指令ipfを時間の経過とともに増加させる。
 前進走行指令演算部32は、切替判定部32aと、スイッチバック判定部32bと、車速判定部32cと、Aポート圧力判定部32dと、Bポート圧力判定部32eと、ポンプ制御圧力判定部32fと、第1論理積演算部32gと、第2論理積演算部32hと、論理和演算部32iと、第3論理積演算部32jと、出力選択部32kとを処理要素として備える。後進走行指令演算部33は、切替判定部33aと、スイッチバック判定部33bと、車速判定部33cと、Aポート圧力判定部33dと、Bポート圧力判定部33eと、ポンプ制御圧力判定部33fと、第1論理積演算部33gと、第2論理積演算部33hと、論理和演算部33iと、第3論理和演算部33jと、出力選択部33kとを処理要素として備える。前進走行指令演算部32及び後進走行指令演算部33が備える処理要素は、ソフトウェアで実現されてもよいし、ハードウェアで実現されてもよい。前進走行指令演算部32及び後進走行指令演算部33が備える処理要素は、前進走行指令演算部32と後進走行指令演算部33との間で共通の機能を有するものがあるので、共通の機能を有する処理要素についてはまとめて説明する。
 切替判定部32a、33aは、スイッチバック動作が検出された後におけるフォークリフト1の車速Vcが、判定車速Vch以下になったか否かを判定する。フォークリフト1の車速Vcが判定車速Vchよりも大きい場合、切替判定部32a、33aはOFF信号を出力し、フォークリフト1の車速Vcが判定車速Vch以下になった場合、切替判定部32a、33aはON信号を出力する。OFF信号は、例えば電圧が0ボルトの信号であり、ON信号は、例えば電圧が5ボルトの信号である。
 スイッチバック判定部32b、33bは、フォークリフト1のスイッチバック動作を検出していないときにOFF信号を出力し、フォークリフト1のスイッチバック動作を検出たときにON信号を出力する。前述したように、フォークリフト1の走行中、かつ前後進レバー42aの反転操作が前後進レバースイッチ42に検出されたときに、フォークリフト1のスイッチバック動作が検出されたとすることができる。
 スイッチバック判定部32b、33bには、図2に示す前後進レバースイッチ42からの進行方向指令値DRが入力される。前進走行指令演算部32のスイッチバック判定部32bは、前進用ポンプ電磁比例制御バルブ12に与えられる走行指令ipfが制御装置30で生成されている場合に、前後進レバースイッチ42からの進行方向指令値DRがFからRに切り替わると、フォークリフト1のスイッチバック動作を検出したとしてON信号を出力する。この場合以外、前進走行指令演算部32のスイッチバック判定部32bはOFF信号を出力する。
 後進走行指令演算部33のスイッチバック判定部33bは、後進用ポンプ電磁比例制御バルブ13に与えられる走行指令iprが制御装置30で生成されている場合に、前後進レバースイッチ42からの進行方向指令値DRがRからFに切り替わると、フォークリフト1のスイッチバック動作を検出したとしてON信号を出力する。この場合以外、後進走行指令演算部33のスイッチバック判定部33bはOFF信号を出力する。
 車速判定部32c、33c、Aポート圧力判定部32d、33d、Bポート圧力判定部32e、33e及びポンプ制御圧力判定部32f、33fは、いずれも図2に示される車速センサ46に何らかの異常が発生したときに、フォークリフト1のスイッチバック時の動作を制御するために用いられる。車速判定部32c、33cは、車速センサ46によって検出されたフォークリフト1の車速Vcが予め定められた閾値以下であるか否かを判定する。車速Vcが予め定められた閾値よりも大きい場合、車速判定部32c、33cはOFF信号を出力する。車速Vcが予め定められた閾値以下である場合、車速判定部32c、33cはON信号を出力する。
 車速センサ46に何らかの異常が発生すると、車速センサ46は、車速Vc=0を出力するので、前述した閾値は、車速センサ46の異常を検出できる値とする。例えば、予め定められた閾値は、例えば、0.1km/hとすることができるが、これに限定されるものではない。
 Aポート圧力判定部32d、33dは、図2に示す走行用油圧ポンプ10のAポート10A内における作動油の圧力(以下、適宜Aポート圧力と称する)Paが予め定められた閾値以下であるか否かを判定する。Aポート圧力Paは、圧力センサ47Aによって検出される。Aポート圧力Paが予め定められた閾値よりも大きい場合、Aポート圧力判定部32d、33dはOFF信号を出力する。Aポート圧力Paが予め定められた閾値以下である場合、Aポート圧力判定部32d、33dはON信号を出力する。
 Bポート圧力判定部32e、33eは、図2に示す走行用油圧ポンプ10のBポート10B内における作動油の圧力(以下、適宜Bポート圧力と称する)Pbが予め定められた閾値以下であるか否かを判定する。Bポート圧力Pbは、圧力センサ47Bによって検出される。Bポート圧力Pbが予め定められた閾値よりも大きい場合、Bポート圧力判定部32e、33eはOFF信号を出力する。Bポート圧力Pbが予め定められた閾値以下である場合、Bポート圧力判定部32e、33eはON信号を出力する。
 フォークリフト1がスイッチバック動作中において、Aポート圧力Pa及びBポート圧力Pbがともに小さくなると、第1走行指令が0にならない状態が継続する結果、フォークリフト1の進行方向が切り替わらない状態が継続する可能性がある。このため、Aポート圧力Pa及びBポート圧力Pbが予め定められた閾値以下になった場合には、Aポート圧力判定部32d、33d及びBポート圧力判定部32e、33eからON信号を出力させて、フォークリフト1の進行方向が速やかに切り替わるようにする。
 前進走行指令演算部32のポンプ制御圧力判定部32fは、前進用ポンプ電磁比例制御バルブ12からのポンプ制御圧力(以下、適宜前進側制御圧力と称する)Pefが予め定められた閾値以下であるか否かを判定する。前進側制御圧力Pefは、図2に示される第1圧力センサ12sによって検出される。前進側制御圧力Pefが予め定められた閾値よりも大きい場合、ポンプ制御圧力判定部32fはOFF信号を出力する。前進側制御圧力Pefが予め定められた閾値以下である場合、ポンプ制御圧力判定部32fはON信号を出力する。
 後進走行指令演算部33のポンプ制御圧力判定部33fは、後進用ポンプ電磁比例制御バルブ13からのポンプ制御圧力(以下、適宜後進側制御圧力と称する)Perが予め定められた閾値以下であるか否かを判定する。後進側制御圧力Perは、図2に示される第2圧力センサ13sによって検出される。後進側制御圧力Perが予め定められた閾値よりも大きい場合、ポンプ制御圧力判定部32fはOFF信号を出力する。後進側制御圧力Perが予め定められた閾値以下である場合、ポンプ制御圧力判定部33fはON信号を出力する。
 フォークリフト1のスイッチバック動作が検出されたタイミングにおいて、車速Vcが高い場合にAポート圧力Pa及びBポート圧力Pbがともに小さくなることがある。このため、車速センサ46に異常が発生している場合において、Aポート圧力判定部32d、33d及びBポート圧力判定部32e、33eの判定結果を用いて第1走行指令を0にすると、ショックが発生する可能性がある。このため、フォークリフト1の車速Vcが十分に小さくなってから第1走行指令を0にするために、ポンプ制御圧力判定部32f、33fの判定を加えている。予め定められた閾値は、例えば、フォークリフト1が無負荷かつ停止に近い速度(本実施形態では0.6km/hであるがこれには限定されない)で走行しているときにおける前進側制御圧力Pef又は後進側制御圧力Perとすることができる。ポンプ制御圧力判定部32f、33fの判定により、車速センサ46に異常が発生している場合のスイッチバック動作において、フォークリフト1に発生するショックを低減できる。
 第1論理積演算部32g、33gは、車速監視フラグSvcと、切替判定部32a、32bの出力とが入力される。車速監視フラグSvcは、車速センサ46が正常である場合にはON信号であり、車速センサ46に異常が発生するとOFF信号になる。このため、第1論理積演算部32g、33gは、車速センサ46が正常であり、かつ車速Vcが判定車速Vch以下になった場合のみに、ON信号を出力する。車速センサ46が正常であっても車速Vcが判定車速Vchよりも大きい場合、車速センサ46が異常である場合、第1論理積演算部32g、33gはOFF信号を出力する。第1論理積演算部32g、33gにより、車速センサ46が正常である場合に、第1走行指令を0にする条件が成立したか否かを検出することができる。
 第2論理積演算部32h、33hは、車速判定部32cの出力と、Aポート圧力判定部32dの出力と、Bポート圧力判定部32eの出力と、ポンプ制御圧力判定部32fの出力とが入力される。第2論理積演算部32h、33hは、これらの出力がすべてON信号である場合のみにON信号を出力し、これらの出力のうち少なくとも一つがOFF信号である場合にOFF信号を出力する。第2論理積演算部32h、33hにより、車速センサ46に異常が発生したときに、第1走行指令を0にする条件が成立したか否かを検出することができる。
 論理和演算部32i、33iは、第1論理積演算部32g、33gの出力と、第2論理積演算部32h、33hの出力とが入力される。論理和演算部32i、33iは、第1論理積演算部32g、33gの出力と、第2論理積演算部32h、33hの出力とのうち少なくとも一方がON信号である場合にON信号を出力し、両方がOFF信号である場合にOFF信号を出力する。論理和演算部32i、33iにより、車速センサ46が正常であるときであっても車速センサ46に異常が発生したときであっても、第1走行指令を0にする条件が成立したことを判定することができる。
 第3論理積演算部32j、33jは、論理和演算部32i、33iの出力と、スイッチバック判定部32bの出力とが入力される。第3論理積演算部32j、33jは、スイッチバック判定部32bの出力がON信号、かつ論理和演算部32i、33iの出力がON信号である場合のみ、ON信号を出力し、この場合以外はOFF信号を出力する。つまり、論理和演算部32iは、スイッチバック判定部32bの出力がON信号である場合、すなわちスイッチバック動作が検出された場合であって、論理和演算部32i、33iの出力がON信号になった場合にのみ、ON信号を出力する。このような処理により、第3論理積演算部32j、33jは、スイッチバック動作時に第1走行指令を0にする条件が成立した場合を判定することができる。
 前進走行指令演算部32の出力選択部32kは、0又は制御装置30が生成した走行指令ipfのいずれか一方を選択して、前進走行指令Ipfとして前進用ポンプ電磁比例制御バルブ12に出力する。具体的には、前進走行指令演算部32の第3論理積演算部32jの出力がOFF信号である場合、出力選択部32kは、制御装置30が生成した走行指令ipfを選択して前進走行指令Ipfとして出力する。第3論理積演算部32jの出力がON信号である場合、すなわち、スイッチバック動作中に第1走行指令を0にする条件が成立した場合に、出力選択部32kは、0を選択して前進走行指令Ipfとして出力する。
 後進走行指令演算部33の出力選択部33kは、0又は制御装置30が生成した走行指令iprのいずれか一方を選択して、後進走行指令Iprとして後進用ポンプ電磁比例制御バルブ13に出力する。具体的には、後進走行指令演算部33の第3論理積演算部33jの出力がOFF信号である場合、出力選択部33kは、制御装置30が生成した走行指令iprを選択して後進走行指令Iprとして出力する。第3論理積演算部33jの出力がON信号である場合、すなわち、スイッチバック動作中に第1走行指令を0にする条件が成立した場合に、出力選択部33kは、0を選択して後進走行指令Iprとして出力する。
<処理例>
 図6は、本実施形態に係る作業車両の制御方法の処理例を示すフローチャートである。本実施形態に係る作業車両の制御方法を実行するにあたり、ステップS101において、制御装置30のスイッチバック判定部32b、33bは、スイッチバック動作中か否かを判定する。スイッチバック判定部32b、33bは、進行方向指令値DRによるフォークリフト1の進行方向と、走行指令ipf又は走行指令iprによって決定される進行方向とが異なる場合にスイッチバック動作中であると判定する。また、スイッチバック判定部32b、33bは、進行方向指令値DRによるフォークリフト1の進行方向と、走行指令ipf又は走行指令iprによって決定される進行方向とが同一である場合にスイッチバック動作中ではないと判定する。
 フォークリフト1がスイッチバック動作中でない場合(ステップS101、No)、本実施形態に係る作業車両の制御方法は終了する。フォークリフト1がスイッチバック動作中である場合(ステップS101、Yes)、制御装置30は、第1走行指令を減少させ、第2走行指令を増加させる。そして、ステップS102において、制御装置30の判定情報演算部31Aは、スイッチバック動作中であると判定されたタイミングのフォークリフト1の車速Vcを車速センサ46から取得する。この車速Vcは、反転操作検出時車速Vcaである。判定情報演算部31Aは、図5に示されるテーブル50を参照して、反転操作検出時車速Vcaに対応する判定車速Vchを求める。
 次に、ステップS103に進み、スイッチバック判定部32b、33bは、スイッチバック動作中か否かを判定する。フォークリフト1がスイッチバック動作中でない場合(ステップS103、No)、本実施形態に係る作業車両の制御方法は終了する。この場合、制御装置30は、現時点におけるアクセルペダル41aの操作量等から、走行指令ipf又は走行指令iprを生成して、前進用ポンプ電磁比例制御バルブ12又は後進用ポンプ電磁比例制御バルブ13を制御する。
 フォークリフト1がスイッチバック動作中である場合(ステップS103、Yes)、制御装置30は、処理をステップS104に進める。ステップS104において、前進走行指令演算部32の切替判定部32a又は後進走行指令演算部33の切替判定部33aは、フォークリフト1の走行状態を表す車速情報、本実施形態では車速センサ46から取得した車速Vcが判定車速Vch以下であるか否かを判定する。
 車速Vcが判定車速Vchよりも大きい場合(ステップS104、No)、制御装置30は、ステップS103に戻る。車速Vcが判定車速Vch以下である場合(ステップS104、Yes)、制御装置30は、ステップS105において、第1走行指令を0にする。例えば、フォークリフト1が前進中である場合のスイッチバック動作において、前進走行指令演算部32は前進走行指令Ipfを0にする。また、フォークリフト1が後進中である場合のスイッチバック動作において、後進走行指令演算部33は前進走行指令Iprを0にする。
 図7及び図8は、本実施形態に係る作業車両の制御方法のタイミングチャートである。図7は、フォークリフト1が高速走行しているときにスイッチバック動作に入った場合であり、図8は、フォークリフト1が低速走行しているときにスイッチバック動作に入った場合である。図7及び図8は、フォークリフト1が前進で走行しているときにスイッチバック動作に入った例を示している。
 図7及び図8の時間t=t1において、フォークリフト1のスイッチバック動作が検出されている。前述したように、第1走行指令である前進走行指令Ipfは減少し、第2走行指令である後進走行指令Iprは増加する。時間t=t1のときのフォークリフト1の車速が反転操作検出時車速Vcaである。判定車速Vchは、反転操作検出時車速Vcaよりも小さい。Qmは、図2に示す油圧モータ20の容量である。
 油圧モータ20の容量Qmを変更する指令(以下、適宜油圧モータ制御指令と称する)は、主油圧回路100内の作動油の圧力と、走行用油圧ポンプ10に対する指令信号、具体的には前進走行指令Ipf又は後進走行指令Iprとによって、積分制御で決定される。油圧モータ制御指令は、走行用油圧ポンプ10に対する指令信号が大きい、すなわち高速でフォークリフト1を走行させる場合には油圧モータ20の容量Qmを小さくして車速Vcを大きくできるように決定される。また、油圧モータ制御指令は、走行用油圧ポンプ10に対する指令信号が大きい、すなわち低速でフォークリフト1を走行させる場合には油圧モータ20の容量Qmを大きくしてトルクを大きくできるように決定される。
 時間t=t2において、フォークリフト1の車速Vcが判定車速Vch以下になっている。すると、制御装置30の前進走行指令演算部32は、この場合の第1走行指令である前進走行指令Ipfを0とし、この場合の第2走行指令である後進走行指令Iprを引き続き増加させる。図7の上段に示されるように、フォークリフト1が高速からスイッチバック動作をする場合、図7の中段に示されるように、加速度、すなわち車速Vcの時間tに対する傾きが大きくなるので、比較的早いタイミングで第1走行指令である前進走行指令Ipfを0とすることができる。その結果、前後進レバー42aを操作してからフォークリフト1が反転するまでのタイムラグを抑制して、機敏な走行を実現できる。
 図8の上段に示されるように、フォークリフト1が低速からスイッチバック動作をする場合、図8の中段に示されるように、加速度が小さくなるので、比較的遅いタイミングで第1走行指令である前進走行指令Ipfを0とすることができる。その結果、前後進レバー42aを操作してからフォークリフト1が反転する間のショックを抑制できる。フォークリフト1が低速からスイッチバック動作をする場合、車速Vcが低いために走行用油圧ポンプ10の容量は小さいので、図8の下段に示されるように油圧モータ20の容量Qmは大きくなる。この例において、スイッチバック動作中、油圧モータ20の容量Qmは最大となっている。
 このように、フォークリフト1の車速Vcが判定車速Vch以下になったタイミングで第1走行指令を0にすることにより、高速でのスイッチバック動作においては走行方向が反転するまでのタイムラグを抑制でき、低速でのスイッチバック動作においてはショックを低減できる。フォークリフト1が低速でスイッチバック動作を行う場合は、精密な動きを要求されることが多い。制御装置30は、フォークリフト1の車速Vcが判定車速Vch以下になったタイミングで第1走行指令を0とするが、低速の場合は加速度が比較的小さいので、第1走行指令が0となるタイミングは比較的遅くすることができる。その結果、制御装置30は、低速でのスイッチバック動作においてショックを効果的に抑制できるので、オペレータは、フォークリフト1に精密な動きをさせやすくなるという利点が得られる。
 本実施形態において、走行用油圧ポンプ10はサーボレスポンプであるが、サーボレスポンプは、主油圧回路100内の負荷によって斜板10Sが駆動指令と異なる、意図しない動きをすることがある。このため、サーボレスポンプは、ポンプの容量が意図しないタイミングで変化する可能性がある。スイッチバック動作においては、フォークリフト1の進行方向を反転させるために、走行用油圧ポンプ10は主油圧回路100内の作動油の圧力に逆らうように動作する必要がある。走行用油圧ポンプ10にサーボレスポンプが用いられる場合、スイッチバック動作でフォークリフト1が停止する際に走行用油圧ポンプ10の吐出側と吸入側とを素早く、かつ大きく切り替えないと、タイムラグが大きくなる。本実施形態の制御装置30は、前述したように、フォークリフト1の車速Vcが判定車速Vch以下になったタイミングで第1走行指令を0にするので、サーボレスポンプを走行用油圧ポンプ10に用いた場合であっても、タイムラグを低減できる。
 本実施形態において、反転操作検出時情報及び判定情報は速度である。フォークリフト1の速度、すなわち車速は、走行用油圧ポンプ10の斜板10Sの斜板傾転角との相関が高いため、フォークリフト1の車速によって、走行用油圧ポンプ10の斜板10Sの斜板傾転角を精度よく推測できる。このため、反転操作検出時情報及び判定情報をフォークリフト1の速度とすることにより、制御対象である走行用油圧ポンプ10の斜板10Sを精度よく制御して、適切なタイミングで第1走行指令を0にすることができる。
 以上、本実施形態を説明したが、前述した内容により本実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組合せることが可能である。さらに、本実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。作業車両は、ホイールを備えた作業車両であれば、例えばホイールローダーであってもよく、フォークリフト1には限定されない。
1 フォークリフト
2a 駆動輪
3 車体
4 エンジン
6 フォーク
10 走行用油圧ポンプ
10A Aポート
10B Bポート
10S 斜板
10a、10b 油圧供給管路
11 ポンプ容量設定ユニット
12 前進用ポンプ電磁比例制御バルブ
13 後進用ポンプ電磁比例制御バルブ
14 ポンプ容量制御シリンダ
14A ピストン
20 油圧モータ
20S 斜板
21 モータ容量設定ユニット
30 制御装置
30C 処理部
30M 記憶部
31A 判定情報演算部
31B 走行指令演算部
32 前進走行指令演算部
33 後進走行指令演算部
32a、33a 切替判定部
32b、33b スイッチバック判定部
32c、33c 車速判定部
32d、33d Aポート圧力判定部
32e、33e Bポート圧力判定部
32f、33f ポンプ制御圧力判定部
32g、33g 第1論理積演算部
32h、33h 第2論理積演算部
32i、33i 論理和演算部
32j、33j 第3論理積演算部
32k、33k 出力選択部
42 前後進レバースイッチ
42a 前後進レバー
46 車速センサ
47A、47B、48 圧力センサ
49 温度センサ
50 テーブル
100 主油圧回路
DR 進行方向指令値
Ipf 前進走行指令
Ipr 後進走行指令
ipf、ipr 走行指令
Pa Aポート圧力
Pb Bポート圧力
Pef 前進側制御圧力
Per 後進側制御圧力
Vca 反転操作検出時車速
Vch 判定車速
 

Claims (6)

  1.  作業機を備えた作業車両であり、
     前記作業車両を走行させる駆動輪を駆動する油圧モータと、
     前記油圧モータとの間で閉回路を形成し、作動油を吐出して前記油圧モータを駆動するポンプであり、前記ポンプの容量を変更し、かつ前記作動油の吸入側と吐出側とを反転することにより前記油圧モータの回転方向を変更する操作機構を有する走行用油圧ポンプと、
     前記作業車両の前進と後進とを切り替えるための進行方向切替装置の状態を検出する進行方向検出装置と、
     前記作業車両を走行させるための走行指令を前記操作機構の駆動装置に与えて前記操作機構を作動させることにより前記走行用油圧ポンプから前記作動油を吐出させる制御装置と、を含み、
     前記操作機構の作動量は、前記走行指令と、前記閉回路の負荷とで定まり、
     前記制御装置は、
      前記作業車両の走行中に、前記作業車両の進行方向を反転させるための前記進行方向切替装置の反転操作を前記進行方向検出装置が検出したときにおける前記作業車両の走行状態を表す反転操作検出時情報から判定情報を求め、
      前記反転操作の検出時から、前記反転操作の検出時における前記作業車両の進行方向に前記作業車両を走行させるための第1走行指令を減少させ、かつ前記反転操作の検出時における前記作業車両の進行方向とは反対方向に前記作業車両を走行させるための第2走行指令を増加させ、
      前記作業車両の走行状態を表す車速情報が、前記判定情報になった場合に、前記第1走行指令を0にする、作業車両。
  2.  前記判定情報は、前記反転操作検出時情報が大きくなるにしたがって大きくなる、請求項1に記載の作業車両。
  3.  前記反転操作検出時情報、前記判定情報及び前記車速情報は、速度である、請求項1又は請求項2に記載の作業車両。
  4.  前記作業機は、荷物を積載するフォークを含み、前記作業車両はフォークリフトである、請求項1から請求項3のいずれか1項に記載の作業車両。
  5.  荷物を積載するフォークを備えた作業車両であり、
     前記作業車両を走行させる駆動輪を駆動する油圧モータと、
     前記油圧モータとの間で閉回路を形成し、作動油を吐出して前記油圧モータを駆動するポンプであり、前記ポンプの容量を変更し、かつ前記作動油の吸入側と吐出側とを反転することにより前記油圧モータの回転方向を変更する操作機構を有する走行用油圧ポンプと、
     作動油によって前記操作機構を作動させる駆動装置と、
     前記作業車両の前進と後進とを切り替えるための進行方向切替装置の状態を検出する進行方向検出装置と、
     前記作業車両を走行させるための走行指令を前記駆動装置に与えて前記操作機構を作動させることにより前記走行用油圧ポンプから前記作動油を吐出させる制御装置と、を含み、
     前記操作機構の作動量は、前記走行指令と、前記閉回路の負荷とで定まり、
     前記制御装置は、
      前記作業車両の走行中に、前記作業車両の進行方向を反転させるための前記進行方向切替装置の反転操作を前記進行方向検出装置が検出したときにおける前記作業車両の反転操作検出時車速から判定車速を求め、
      前記反転操作の検出時から、前記反転操作の検出時における前記作業車両の進行方向に前記作業車両を走行させるための第1走行指令を減少させ、かつ前記反転操作の検出時における前記作業車両の進行方向とは反対方向に前記作業車両を走行させるための第2走行指令を増加させ、
      前記作業車両の車速が、前記判定車速になった場合に、前記第1走行指令を0とし、
      前記車速を検出する装置の異常発生時に、前記反転操作が検出されると、前記作業車両の車速が予め定められた値以下、かつ前記走行用油圧ポンプの吸入側の圧力が予め定められた値以下、かつ前記走行用油圧ポンプの吐出側の圧力が予め定められた値以下、かつ前記駆動装置が発生する作動油の圧力が予め定められた値以下である場合に、前記第1走行指令を0とする、作業車両。
  6.  作業機と、前記作業車両を走行させる駆動輪を駆動する油圧モータと、前記油圧モータとの間で閉回路を形成し、作動油を吐出して前記油圧モータを駆動するポンプであり、前記ポンプの容量を変更し、かつ前記作動油の吸入側と吐出側とを反転することにより前記油圧モータの回転方向を変更する操作機構を有する走行用油圧ポンプと、前記作業車両の前進と後進とを切り替えるための進行方向切替装置の状態を検出する進行方向検出装置と、前記作業車両を走行させるための走行指令を前記操作機構の駆動装置に与えて前記操作機構を作動させることにより前記走行用油圧ポンプから前記作動油を吐出させる制御装置と、を含み、前記操作機構の作動量は、前記走行指令と、前記閉回路の負荷とで定まる作業車両を制御するにあたり、
     前記作業車両の走行中に、前記作業車両の進行方向を反転させるための前記進行方向切替装置の反転操作を前記進行方向検出装置が検出したときにおける前記作業車両の走行状態を表す反転操作検出時情報から判定情報を求めることと、
     前記反転操作の検出時から、前記反転操作の検出時における前記作業車両の進行方向に前記作業車両を走行させるための第1走行指令を減少させ、かつ前記反転操作の検出時における前記作業車両の進行方向とは反対方向に前記作業車両を走行させるための第2走行指令を増加させることと、
     前記作業車両の走行状態を表す車速情報が前記判定情報になった場合に、前記第1走行指令を0にすることと、
     を含む、作業車両の制御方法。
     
PCT/JP2014/076920 2014-10-08 2014-10-08 作業車両及び作業車両の制御方法 WO2016056079A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014560977A JP5775232B1 (ja) 2014-10-08 2014-10-08 作業車両及び作業車両の制御方法
PCT/JP2014/076920 WO2016056079A1 (ja) 2014-10-08 2014-10-08 作業車両及び作業車両の制御方法
CN201480002205.1A CN105683629B (zh) 2014-10-08 2014-10-08 作业车辆和作业车辆的控制方法
US14/422,877 US9656840B2 (en) 2014-10-08 2014-10-08 Work vehicle and control method for work vehicle
DE112014000203.8T DE112014000203T5 (de) 2014-10-08 2014-10-08 Arbeitsfahrzeug und Steuerungsverfahren für Arbeitsfahrzeug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076920 WO2016056079A1 (ja) 2014-10-08 2014-10-08 作業車両及び作業車両の制御方法

Publications (1)

Publication Number Publication Date
WO2016056079A1 true WO2016056079A1 (ja) 2016-04-14

Family

ID=54192551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076920 WO2016056079A1 (ja) 2014-10-08 2014-10-08 作業車両及び作業車両の制御方法

Country Status (5)

Country Link
US (1) US9656840B2 (ja)
JP (1) JP5775232B1 (ja)
CN (1) CN105683629B (ja)
DE (1) DE112014000203T5 (ja)
WO (1) WO2016056079A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143770A (ja) * 2018-02-23 2019-08-29 株式会社小松製作所 作業車両、及び、作業車両の制御方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5866489B1 (ja) * 2014-09-19 2016-02-17 株式会社小松製作所 作業車両及び作業車両の制御方法
JP6900871B2 (ja) * 2017-10-23 2021-07-07 株式会社豊田自動織機 産業車両のスイッチバック制御装置
DE102018210685A1 (de) * 2018-06-29 2020-01-02 Robert Bosch Gmbh Hydrostatischer Fahrantrieb und Verfahren zur Steuerung des hydrostatischen Fahrantriebes
DE102018210694A1 (de) * 2018-06-29 2020-01-02 Robert Bosch Gmbh Hydrostatische Axialkolbenpumpe für einen hydrostatischen Fahrantrieb
DE102018211586A1 (de) * 2018-06-29 2020-01-02 Robert Bosch Gmbh Radantriebsanordnung für einen hydrostatischen Fahrantrieb und hydrostatischer Fahrantrieb
DE102018216750A1 (de) * 2018-09-28 2020-04-02 Robert Bosch Gmbh Verfahren zur Steuerung einer Axialkolbenpumpe und Antriebseinheit mit einer derartigen Axialkolbenpumpe und hydrostatischer Fahrantrieb mit einer derartigen Antriebseinheit
US10760243B2 (en) 2018-12-07 2020-09-01 Deere & Company Work tool attachment for a work machine
US10801178B2 (en) 2018-12-07 2020-10-13 Deere & Company Work tool attachment for a work machine
IT201900005160A1 (it) * 2019-04-05 2020-10-05 Cnh Ind Italia Spa Trasmissione idrostatica per veicolo movimento terra con sistema per ridurre il jerk durante manovre di inversione del senso di marcia

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141628A (ja) * 1984-08-02 1986-02-28 Toyoda Autom Loom Works Ltd 車両の前後進切換時におけるエンジン回転制御装置
JPH05280635A (ja) * 1992-04-02 1993-10-26 Hitachi Constr Mach Co Ltd 油圧走行車両の駆動装置
JPH0658407A (ja) * 1992-08-07 1994-03-01 Toyota Autom Loom Works Ltd 可変速用可変容量油圧ポンプを備えたエンジン車両における加減速調整装置
JPH06280997A (ja) * 1993-03-23 1994-10-07 Hitachi Constr Mach Co Ltd Hst油圧走行駆動装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769774A (en) 1984-07-26 1988-09-06 Kabushiki Kaisha Toyoda Jidoshokki System for controlling engine speed when direction of vehicle changed
JPH08135789A (ja) 1994-11-09 1996-05-31 Komatsu Ltd 車両の油圧式駆動装置の変速装置およびその変速制御方法
EP0980324B1 (de) * 1998-03-06 2006-06-14 Voith Turbo GmbH & Co. KG Hydrodynamisch-mechanisches verbundgetriebe
US6782961B1 (en) * 1999-10-18 2004-08-31 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Driving control apparatus for industrial vehicle
JP4209257B2 (ja) * 2003-05-29 2009-01-14 三菱重工業株式会社 分散型コントローラとその動作方法、及び、分散型コントローラを備えるフォークリフト
WO2008022455A1 (en) * 2006-08-23 2008-02-28 S.O.E. Technologies Inc. Mechanical cvt drive train and control method for earth working vehicle
CN101680542B (zh) * 2007-03-30 2014-07-23 株式会社小松制作所 具备静液压式无级变速器的车辆的控制装置
US7549287B2 (en) * 2007-09-14 2009-06-23 Cnh America Llc Hydrostatic auto/manual speed control
JP4990334B2 (ja) 2009-09-03 2012-08-01 株式会社小松製作所 作業車両
US8978515B2 (en) * 2010-03-22 2015-03-17 Gm Global Technology Operations, Llc Transmission heating and storage device
JP5341041B2 (ja) 2010-09-06 2013-11-13 株式会社小松製作所 油圧駆動式の車両、およびその制御方法と装置
JP5332044B2 (ja) * 2010-09-10 2013-11-06 株式会社小松製作所 作業車両のエンジンオーバーラン防止制御装置
US9194475B2 (en) 2011-06-17 2015-11-24 Kubota Corporation Work vehicle
US8954245B2 (en) * 2012-01-13 2015-02-10 Caterpillar Inc. Method of controlling gear ratio rate of change in continuously variable transmission
CN103486240B (zh) 2013-10-11 2016-03-23 中联重科股份有限公司 车辆变速箱的输出控制方法及装置、系统
US9540011B2 (en) * 2014-09-18 2017-01-10 Komatsu Ltd. Work vehicle and method of controlling work vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141628A (ja) * 1984-08-02 1986-02-28 Toyoda Autom Loom Works Ltd 車両の前後進切換時におけるエンジン回転制御装置
JPH05280635A (ja) * 1992-04-02 1993-10-26 Hitachi Constr Mach Co Ltd 油圧走行車両の駆動装置
JPH0658407A (ja) * 1992-08-07 1994-03-01 Toyota Autom Loom Works Ltd 可変速用可変容量油圧ポンプを備えたエンジン車両における加減速調整装置
JPH06280997A (ja) * 1993-03-23 1994-10-07 Hitachi Constr Mach Co Ltd Hst油圧走行駆動装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143770A (ja) * 2018-02-23 2019-08-29 株式会社小松製作所 作業車両、及び、作業車両の制御方法
JP7156806B2 (ja) 2018-02-23 2022-10-19 株式会社小松製作所 作業車両、及び、作業車両の制御方法

Also Published As

Publication number Publication date
US20160257538A1 (en) 2016-09-08
US9656840B2 (en) 2017-05-23
JP5775232B1 (ja) 2015-09-09
JPWO2016056079A1 (ja) 2017-04-27
DE112014000203T5 (de) 2016-06-23
CN105683629B (zh) 2017-05-10
CN105683629A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5775232B1 (ja) 作業車両及び作業車両の制御方法
JP5968559B1 (ja) 作業車両及び作業車両の制御方法
US9624079B2 (en) Forklift and control method of forklift
JP2009235893A (ja) 建設機械の走行システム
WO2013145336A1 (ja) 作業車両及び作業車両の制御方法
JP5902877B1 (ja) 作業車両及び作業車両の制御方法
US9580075B2 (en) Forklift and control method of forklift
JP5680804B1 (ja) フォークリフト及びフォークリフトの制御方法
US20160297654A1 (en) Forklift and control method of forklift
US9221657B2 (en) Forklift and control method of forklift
JP2006306199A (ja) 作業機械における走行駆動制御装置
JP5866489B1 (ja) 作業車両及び作業車両の制御方法
JP7074734B2 (ja) クローラ式作業用車両
JP2020085034A (ja) 作業車両、及び作業車両の制御方法
WO2023145684A1 (ja) 作業車両及び作業車両を制御するための方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014560977

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14422877

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014000203

Country of ref document: DE

Ref document number: 1120140002038

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903693

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14903693

Country of ref document: EP

Kind code of ref document: A1