WO2016052881A1 - 리튬 이차전지의 제조방법 - Google Patents

리튬 이차전지의 제조방법 Download PDF

Info

Publication number
WO2016052881A1
WO2016052881A1 PCT/KR2015/009527 KR2015009527W WO2016052881A1 WO 2016052881 A1 WO2016052881 A1 WO 2016052881A1 KR 2015009527 W KR2015009527 W KR 2015009527W WO 2016052881 A1 WO2016052881 A1 WO 2016052881A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
sei film
electrolyte
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2015/009527
Other languages
English (en)
French (fr)
Inventor
유성훈
강유선
이경미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150124201A external-priority patent/KR101905246B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580001586.6A priority Critical patent/CN105684208B/zh
Priority to PL15821012T priority patent/PL3038202T3/pl
Priority to EP15821012.0A priority patent/EP3038202B1/en
Priority to US14/908,883 priority patent/US10263293B2/en
Priority to JP2016552396A priority patent/JP6504473B2/ja
Publication of WO2016052881A1 publication Critical patent/WO2016052881A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a lithium secondary battery that can simultaneously improve the output characteristics and life characteristics of the lithium secondary battery.
  • Lithium secondary batteries are the batteries that can best meet these demands, and research on these is being actively conducted.
  • a lithium secondary battery is a battery composed of a positive electrode, a negative electrode, and an electrolyte solution and a separator that provides a movement path of lithium ions between the positive electrode and the negative electrode, and is used for oxidation and reduction reactions when lithium ions are occluded and released from the positive electrode and the negative electrode. Thereby generating electrical energy.
  • the average discharge voltage of the lithium secondary battery is about 3.6V to 3.7V, and one of the advantages is that the discharge voltage is higher than other alkaline batteries, nickel-cadmium batteries, and the like.
  • an electrochemically stable electrolyte composition is required in the charge / discharge voltage region of 0V to 4.2V.
  • lithium ions derived from the positive electrode active material such as lithium metal oxide are transferred to the negative electrode active material such as graphite and inserted into the interlayer of the negative electrode active material.
  • the electrolyte and the carbon constituting the negative electrode active material react on the surface of the negative electrode active material such as graphite to generate a compound such as Li 2 CO 3 , Li 2 O, or LiOH.
  • SEI Solid Electrolyte Interface
  • the SEI membrane acts as an ion tunnel, passing only lithium ions.
  • the SEI membrane is an effect of this ion tunnel, which prevents the breakdown of the negative electrode structure by intercalation of organic solvent molecules having a large molecular weight moving with lithium ions in the electrolyte between the layers of the negative electrode active material. Therefore, it has been reported that by preventing contact between the electrolyte solution and the negative electrode active material, decomposition of the electrolyte solution does not occur, and the amount of lithium ions in the electrolyte solution is reversibly maintained to maintain stable charge and discharge.
  • the SEI film of the lithium secondary battery may be unstable due to the additive or the organic solvent included in the electrolyte, and even if the SEI film is stably formed, gas may be generated by decomposition of the remaining additive.
  • the lithium secondary battery may be affected by corrosion. There is a big limitation in using it.
  • the problem to be solved by the present invention is to prepare an electrode with an SEI film formed by a pretreatment step, and then put the battery assembly including the electrode in a battery case, and inject the electrolyte, thereby simultaneously the output characteristics and life characteristics of the lithium secondary battery It is to provide a method for manufacturing a lithium secondary battery that can be improved.
  • SEI capable of forming a solid electrolyte interphase (SEI) film by lithium salt, non-aqueous organic solvent and electrochemical oxidation or reduction decomposition reaction
  • a lithium secondary battery manufactured by the manufacturing method.
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • a battery assembly including the electrode on which the SEI film is formed is placed in a battery case at least once.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating an electrolyte pouring and a filling step of step II in the method of manufacturing a lithium secondary battery according to an embodiment of the present invention.
  • a method of manufacturing an electrode for a lithium secondary battery according to an embodiment of the present invention is a composition for forming an SEI film including a SEI film forming agent for forming an SEI film by a lithium salt, a non-aqueous organic solvent, and an electrochemical redox decomposition reaction.
  • the electrode having the SEI film formed is placed in a battery case, and the electrolyte is injected one or more times step by step.
  • the output characteristics and lifespan characteristics of the lithium secondary battery may be further improved.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a lithium secondary battery according to an embodiment of the present invention. 1 is only an example for describing the present invention and the present invention is not limited thereto.
  • step I is a pretreatment step of preparing a secondary battery, and includes a composition for forming an SEI film. And forming an SEI film on the electrode.
  • the step I is a SEI film forming composition
  • an SEI film forming agent capable of forming the SEI film by electrochemical oxidation or reduction decomposition reaction, and at the same time excellent in the wettability of the electrolyte solution to easily form the SEI film.
  • An electrochemical reaction is performed by inserting an electrode, that is, a cathode or an anode, to form an SEI film on the anode or the cathode.
  • the present invention by performing the electrode pretreatment using the composition for forming the SEI film which can improve the wettability of the electrolyte, it is possible to sufficiently form the SEI film on the electrode in advance with excellent wettability.
  • the SEI film-forming composition is not particularly limited as long as it is a solution containing a compound capable of forming an SEI film on the electrode, and specifically, may include an SEI film-forming agent, a lithium salt, and a non-aqueous organic solvent.
  • Lithium salt that can be used to prepare the composition for forming the SEI film is a source of lithium ions, and any compound capable of providing lithium ions may be used without particular limitation.
  • the lithium salt may include LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBF 4 , LiBF 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiSO 3 CF 3, LiClO 4 , and the like. Or mixtures of two or more.
  • the lithium salt may be included in a concentration of 0.5 mol / l to 2 mol / l in the composition for forming the SEI film.
  • concentration of the lithium salt is less than 0.5 mol / l, the amount of lithium ions supplied is not sufficient, and when the concentration of the lithium salt is more than 2 mol / l, the viscosity of the SEI film-forming composition may increase, resulting in a decrease in SEI film formability.
  • the lithium salt may be more specifically included in a concentration of 0.5 mol / l to 1.6 mol / l in the SEI film forming composition.
  • the SEI film may also be formed by an electrochemical redox reaction of an electrolyte solution containing a lithium salt and a non-aqueous organic solvent.
  • the SEI film formed by the decomposition of the non-aqueous organic solvent in this manner is thick and has high resistance.
  • the additive for forming the SEI film by using the additive for forming the SEI film, it is possible to form an SEI film having more modified characteristics, such as reducing the thickness of the formed SEI film but increasing the density, thereby reducing the resistance in the SEI film.
  • the SEI film forming agent that can be used to prepare the composition for forming the SEI film is a compound capable of forming the SEI film by electrochemical oxidation or reduction decomposition reaction.
  • the cyclic carbonate compound containing an unsaturated bond Cyclic or chain carbonate compounds containing a halogen atom; Lithium salt comprising an oxalato complex as an anion; Imide lithium salts; Fluorophosphate-based lithium salts; Fluoroborate lithium salts; 6-membered aromatic heterocyclic compound containing two or more nitrogen atoms in the molecule; Sultone compounds; Or an acrylate compound, and any one or a mixture of two or more thereof may be used.
  • the SEI film forming agent is a compound different from the lithium salt and the non-aqueous organic solvent used in the preparation of the SEI film forming composition described below.
  • the cyclic carbonate-based compound containing an unsaturated bond is specifically, vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, Vinylene carbonate-based compounds such as propyl vinylene carbonate, dimethyl vinylene carbonate, or vinylene ethylene carbonate; Or a vinyl ethylene carbonate-based compound such as vinyl ethylene carbonate, and any one or a mixture of two or more thereof may be used.
  • the cyclic or chain carbonate compound containing a halogen atom is specifically a cyclic carbonate compound containing one or more halogen atoms in a molecule such as fluoro ethylene carbonate or difluoro ethylene carbonate. compound; And it may be a chain carbonate-based compound containing one or more halogen atoms in the molecule, such as fluoromethylmethyl carbonate or bis (fluoromethyl) carbonate, any one or a mixture of two or more thereof may be used.
  • any lithium salt containing an oxalato complex as an anion can be used without limitation as long as the anionic compound containing an oxalato group and lithium ion form a complex compound through a coordinating bond or the like. .
  • lithium difluoro (oxalato) borate LiODFB
  • lithium tetrafluoro (oxalato) phosphate LiTFOP
  • lithium tris (oxalato) Earth tris oxalate) phosphate (LTOP)
  • lithium bis (oxalato) borate Lithium bis (oxalato) borate, LiBOB
  • lithium bisfluorosulfonyl imide (LiFSI) and lithium bistrifluoromethanesulfonyl include lithium salts for forming SEI films other than lithium salts in which oxalato complexes are anions.
  • Imide lithium salts such as mead (LiTFSI) or lithium bis (perfluoroethylsulfonyl imide) (LiBETI);
  • Fluorophosphate-based lithium salts such as LiBF 4 , lithium difluorophosphate (Lithium difluorophosphate, LiF 2 O 2 P), or lithium monofluorophosphate (Li 2 PO 3 F) may be used. May be used alone or in mixture of two or more thereof in the form of a mixture.
  • lithium salts, imide lithium salts or fluorophosphate lithium salts having an oxalato complex which can be used as the SEI film forming agent as an anion may also be used as lithium salts in the composition for forming SEI films.
  • the lithium salt, imide-based lithium salt, or fluorophosphate-based lithium salt using the above oxalato complex as an anion has a total concentration of lithium salt contained in the composition for forming the SEI film and the lithium salt concentration condition in the composition for forming the SEI film. It can be included in an amount that satisfies the SEI film former content conditions at the same time.
  • the six-membered aromatic heterocyclic compound including two or more nitrogen atoms in the molecule may be pyrimidine, 1,3,5-triazine, or the like. Mixtures of two or more may be used.
  • the sultone compound may be specifically 1,3-propane sultone (PS), 1,4-butane sultone or 1,3-propenesultone, and the like. Any one or a mixture of two or more of these may be used.
  • PS 1,3-propane sultone
  • 1,4-butane sultone 1,3-propenesultone
  • the SEI film forming agent may be included in an amount of 0.1 wt% to 10 wt% based on the total weight of the composition for forming the SEI film.
  • a film derived from the additive for forming SEI film may be uniformly and thinly formed on the electrode after the electrical reaction, and the amount of gas generated by the filling may be minimized.
  • the SEI forming agent is more specifically 0.25% to 5% by weight, more specifically based on the total weight of the composition for forming the SEI film It may be included in an amount of 0.5% to 3% by weight.
  • the non-aqueous organic solvent serves as a medium to move the ions involved in the electrochemical reaction, the decomposition by the oxidation reaction, etc. during the charge and discharge of the battery can be minimized, It may be appropriate to be able to exhibit the desired properties with the SEI film former.
  • the non-aqueous organic solvent may be a cyclic carbonate solvent such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate (BC); Linear carbonate solvents such as dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethylmethyl carbonate (EMC), methylpropyl carbonate (MPC) and ethyl propyl carbonate (EPC); Ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone and ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Or a ketone solvent such as cyclohexanone, and any one or a mixture of two or more thereof may be used.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • Linear carbonate solvents such as dimethyl carbonate (DMC), die
  • the organic solvent may be a mixture of a cyclic carbonate and a linear carbonate in consideration of the SEI film formability and the like, and more specifically, the linear carbonate may be a mixture in which the linear carbonate is mixed in a higher content than the cyclic carbonate.
  • the mixing volume ratio of the linear carbonate and the cyclic carbonate may be 5: 5 to 8: 2. All.
  • the non-aqueous organic solvent may be included in an amount such that the composition for forming the SEI film has an easy viscosity for forming the SEI film.
  • the electrode pretreated by the above-mentioned composition for forming the SEI film may be an anode or a cathode.
  • the usable positive electrode may include a structure in which a positive electrode active material layer is laminated on a current collector such as a thin film made of aluminum or an aluminum-based alloy.
  • the cathode active material layer may include a cathode active material, a conductive agent, and a binder, and the cathode active material and the conductive agent may be laminated on a current collector by a binder.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound).
  • lithium including a transition metal such as cobalt, manganese, nickel or aluminum and lithium It may be a transition metal oxide.
  • the lithium transition metal oxide may be selected from the group consisting of lithium-nickel-manganese cobalt oxide, lithium-manganese oxide, lithium-nickel-manganese oxide, and lithium-manganese-cobalt oxide.
  • the usable negative electrode may include a structure in which a negative electrode active material layer is laminated on a current collector similarly to the positive electrode.
  • a negative electrode active material and a conductive agent may be laminated on the current collector by a binder in the negative electrode active material layer.
  • the negative electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides capable of doping and undoping lithium such as SiO x (0 ⁇ x ⁇ 2), SnO 2 , vanadium oxide, lithium vanadium oxide; Or a composite including the metallic compound and the carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn,
  • a metal lithium thin film may be used as the negative electrode active material.
  • low crystalline carbon, high crystalline carbon, etc. can also be used for a carbon material.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon
  • high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch
  • High-temperature calcined carbon such as derived cokes is typical.
  • the current collector is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, Surface-treated with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used for the surface of stainless steel.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the conductive agent used in the positive electrode or negative electrode active material layer may be added in an amount of 1 to 20% by weight based on the total weight of the positive electrode or negative electrode active material layer.
  • the conductive agent usable for the positive electrode and the negative electrode is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; Conductive materials, such as a polyphenylene derivative, can be used.
  • the binder used in the positive electrode or negative electrode active material layer is a component that assists the bonding of the positive electrode or negative electrode active material and the conductive agent and the current collector, and is 1 to 20 weight based on the total weight of the positive electrode or negative electrode active material layer. Can be added in%.
  • binders include polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidenefluoride, polyacrylonitrile, polymethylmethacrylate.
  • Polyvinyl alcohol Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM ), Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber or various copolymers, and the like, and any one or a mixture of two or more thereof may be used.
  • CMC carboxymethyl cellulose
  • SBR Sulfonated EPDM
  • SBR styrene butadiene rubber
  • the positive electrode and the negative electrode are coated with a current collector and a composition for forming an electrode in which the electrode active material, the conductive agent and the binder are dispersed in a solvent, followed by drying or casting the composition for forming the electrode on a separate support.
  • the solvent may include dimethyl sulfoxide (DMSO), alcohol, N-methylpyrrolidone (NMP), acetone or water, and the solvent may be removed in a subsequent drying process. .
  • the voltage application process may be performed by applying a voltage range capable of causing an electrochemical oxidation-reduction decomposition reaction of the SEI film-forming agent, and specifically, 0.005 V using the electrode and its counter electrode. It can be carried out by applying a voltage from to 4.5V.
  • the positive electrode it may be performed by applying 1 V to 4.5 V, and more specifically, 2 V to 4.2 V for about 1 hour to 24 hours.
  • the negative electrode may be carried out by applying for about 1 to 24 hours at 0.005 V to 4.5 V, more specifically 0.01 V to 4.0 V.
  • lithium metal foil may be used as the counter electrode thereof
  • copper may be used as the counter electrode thereof, but is not limited thereto.
  • the positive electrode or the negative electrode having the SEI film may be manufactured by placing the positive electrode or the negative electrode in a container and performing an electrical reaction.
  • the positive electrode and the negative electrode may be put in two different containers, respectively, and then subjected to an electrochemical reaction.
  • the positive electrode and the negative electrode on which the SEI film is formed may be manufactured by performing the following steps.
  • the gas generated is smoother than the SEI film is formed in the battery case.
  • a stack type electrode or a jelly roll type electrode may not be smoothly discharged because gas may be collected in the middle by the electrodes in contact with each other.
  • an empty space can be secured in the direction of gas generation. Can be.
  • a degas process and a resealing process which are generally used May be omitted, and may be excellent in terms of simplicity and ease of the process.
  • the step II is a battery assembly including an electrode (for example, a positive electrode or a negative electrode, or a positive electrode and a negative electrode) formed with the SEI film Into the battery case, it may include the step of performing at least one combination process of electrolyte injection and filling.
  • an electrode for example, a positive electrode or a negative electrode, or a positive electrode and a negative electrode
  • the first electrolyte may be injected into a battery case in which a battery assembly including a positive electrode and / or a negative electrode having the SEI film obtained in step I, and a separator interposed therebetween is accommodated.
  • the separator is a conventional porous polymer film conventionally used as a separator, for example, polyolefin-based, such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer
  • the porous polymer film made of a polymer may be used alone or by laminating two or more layers thereof.
  • a conventional porous nonwoven fabric for example, a non-woven fabric made of high melting glass fiber or polyethylene terephthalate fiber may be used. It is not limited.
  • the battery assembly may be any one selected from a jelly-roll type, a stack type, and a stack / fold type.
  • the battery case used in the present invention may be adopted that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, cylindrical, square, pouch type using a can Or a coin type.
  • the positive electrode and / or negative electrode formed with the SEI film obtained in step I may be unstable in moisture, it is preferable to manufacture the battery cell in an environment which avoids contact with air, but is not limited thereto. .
  • the combination process of the electrolyte injection and the filling may be performed once when the process of the electrolyte injection and the filling is one cycle, or two or more times, specifically, two to three times. It may be performed multiple times. More specifically, the combination process of electrolyte injection and filling may be performed once to three times, or once or twice.
  • step II including the process of the electrolyte injection and the filling may include a first injection step of preparing a battery cell by injecting a first electrolyte into the battery case; And a first charging step of charging the battery cell.
  • the step II is a first injection step of preparing a battery cell by injecting a first electrolyte solution to the battery case; A first charging step of charging the battery cell; A second pouring step of injecting a second electrolyte into the charged battery cell; And a second charging step of charging the battery cell in which the second electrolyte is injected.
  • the same solution may be used as the composition for forming the SEI film and the electrolyte for each step such as the first electrolyte solution and the second electrolyte solution, and different solutions may be used.
  • an additive necessary for forming an SEI film is added to the first electrolyte. May not be used.
  • the additive is effective in forming the SEI film, but may also cause gas generation by decomposition when remaining. Since the SEI film is already formed on the electrode, the problem of gas generation may be solved by not using the additive in the first electrolyte. Therefore, only a small amount of the expensive additives may be used during pretreatment, thereby reducing the amount of additives used.
  • the lithium salt and the non-aqueous organic solvent to be used are not particularly limited, and the above-described lithium salt and the non-aqueous organic solvent may be selectively used. have.
  • lithium salts prevent corrosion of the electrode current collector, for example, aluminum (Al).
  • Corrosion-proof lithium salts can be used.
  • the first electrolyte is any one selected from the group consisting of LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBF 4 , LiBF 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiSO 3 CF 3 and LiClO 4
  • two or more lithium salts for corrosion protection and more specifically, may include any one or a mixture of two selected from the group consisting of LiPF 6 and LiBF 4 .
  • LiPF 6 contained in the electrolyte may also be in contact with the current collector, for example, the aluminum layer.
  • LiPF 6 which is in contact with the aluminum layer as described above is in contact with the aluminum layer while a voltage is applied to the aluminum layer, wherein Al and F cause an electrochemical reaction to cause AlF 3.
  • a film can be formed.
  • AlF 3 The film is a layer well known to have strong corrosion resistance.
  • non-aqueous organic solvent that may be included in the first electrolyte solution decomposition may be minimized by an oxidation reaction or the like during the charging and discharging process of the battery, and there is no limitation as long as it can exhibit desired properties with an additive.
  • carbonates, esters, ethers or ketones may be used alone or in the form of a mixture of two or more kinds thereof.
  • the organic solvent may be more specifically a carbonate-based organic solvent.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC); Or chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethylmethyl carbonate (EMC), methylpropyl carbonate (MPC) or ethylpropyl carbonate (EPC). Any one or a mixture of two or more of these may be used.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethylmethyl carbonate (EMC), methylpropyl carbonate (MPC) or ethylpropyl carbonate (EPC). Any one or a mixture of two or more of these may be used.
  • the organic solvent may be an ester solvent, and more specifically, methyl formate, methyl acetate, ethyl acetate, isopropyl acetate, isoamyl acetate ( isoamyl acetate, methyl propionate, ethyl propionate, methyl butylate or ethyl butylate, and any one or two or more of them. Mixtures can be used.
  • the concentration of the lithium salt in the first electrolyte solution may be 0.8 M to 2.5 M, the amount of the first electrolyte is 5 to 70% by volume, preferably 10 to the total volume of the electrolyte solution To 30% by volume.
  • the first electrolyte may further include an additive such as sulfonic acid ester to improve the stability of the lithium secondary battery.
  • sulfonic acid ester 1, 3- propane sultone, 1, 4- butane sultone, 2, 4- butane sultone, etc. are mentioned, Any one or a mixture of two or more of these can be used.
  • the sulfonic acid ester may be a cyclic disulfonic acid ester having two sulfonyl groups, or may be used alone or in the form of a mixture with the sulfonic acid ester.
  • a film derived from sulfonic acid ester may be formed on the electrode by the charging of the first charging process.
  • the positive electrode active material manganese elution of the electrolyte layer due to charge and discharge of the battery can be suppressed.
  • the amount of the sulfonic acid ester additive used may be 0.01 wt% to 10 wt%, specifically 0.05 wt% to 6 wt% with respect to 100 wt% of the first electrolyte solution.
  • the film derived from the sulfonic acid ester may be uniformly and thinly formed on the electrode layer after the first filling, and more specifically on the electrode layer on which the SEI film obtained in step I is formed.
  • the lifespan characteristics of the lithium secondary battery can be further improved.
  • a membrane derived from sulfonic acid ester may be formed after the first charging step of step II. In this case, since the gas generation amount at the time of initial charge can be suppressed, the excellent lithium secondary battery with good stability can be obtained.
  • Nitrile-based additives such as swelling suppression, overcharge, overdischarge suppression, safety enhancement, low voltage suppression, or lifetime improvement
  • Phosphate-based additives which are useful for high voltage electrolytes due to high oxidation voltage and for improving lifespan or output power
  • the nitrile-based additive may be, for example, any one or a mixture of two or more selected from the group consisting of succinonitrile, adiponitrile, glutaronitrile, acetonitrile, and 2-methyl glutaronitrile,
  • the additive for example, alkylfluor phosphates can be used.
  • the additives can also be used as a solvent in the second electrolyte.
  • the first electrolyte solution when the combination process of the electrolyte injection and filling is performed only once, that is, when the second pouring step and the second filling step are not performed, the first electrolyte solution is used for preventing corrosion.
  • Lithium salts, non-aqueous organic solvents and additives as necessary.
  • the imide lithium salt examples include lithium bisfluorosulfonyl imide (LiFSI), lithium bistrifluoromethanesulfonylimide (LiTFSI), or lithium bis (perfluoroethylsulfonyl imide) (LiBETI ), And any one or a mixture of two or more thereof can be used. More specifically, the imide lithium salt may include LiFSI.
  • lithium secondary in the case of performing the combination process of the electrolyte injection and filling two or more times in the step II, by using different types of the first electrolyte and the second electrolyte, lithium secondary
  • the performance of the battery can be further improved.
  • an electrolyte solution containing a lithium salt for preventing corrosion may be used as the first electrolyte solution
  • a lithium salt for improving performance of a battery may be used as the second electrolyte solution.
  • a first charging step (first activation step) using an electrolyte solution containing a lithium salt for corrosion protection as the first electrolyte solution, more specifically between the active material and the active material
  • the anti-corrosion coating can be stably formed on the surface of the current collector.
  • the second electrolyte solution containing the lithium salt for improving the performance of the battery is infused with the second electrolyte solution, and then the secondary charging step (second activation step) is performed to thereby output characteristics of the lithium secondary battery. And lifespan characteristics can be improved at the same time.
  • FIG. 2 is a flowchart illustrating step II including a combination process of electrolyte injection and filling in a method of manufacturing a lithium secondary battery according to an embodiment of the present invention.
  • the step II is a first injection step (step i)) injecting a first electrolyte solution; First charging step (step ii)); A second pouring step (step iii) of injecting a second electrolyte solution; Second charging step (step iv)).
  • the first pouring step (step i)) is a step of injecting a first electrolyte into the battery case including the battery assembly.
  • the first electrolyte may include a lithium salt for preventing corrosion, a non-aqueous organic solvent, and additives as necessary.
  • a corrosion protection film by using a first electrolyte solution containing a lithium salt for corrosion protection, it is possible to stably form a corrosion protection film on the current collector.
  • step ii) is a step of primarily charging the battery cell obtained in step i).
  • the electrolyte injection hole of the battery case is not sealed or sealed by welding or heat fusion in a conventional manner. You may not.
  • the sealing bar may mean to temporarily seal the electrolyte inlet for injecting the second electrolyte of step iii).
  • gas such as CO 2 is generated due to decomposition of the organic solvent generated by the electrical reaction, by discharging the gas does not adversely affect the performance of the lithium secondary battery. In order not to do so, it may be desirable that the first filling is performed without sealing the electrolyte inlet.
  • the first charging step is to activate through an electrical reaction, at a charge voltage of 1 V to 4.5 V, 0.01 C to 5 C, specifically 0.5 C to 3 C, more specifically 0.2 C to 2 C, even more specific.
  • the charging can be carried out under constant current conditions of 0.1C to 1C.
  • the charging voltage may be more specifically in the range of 2 V to 4.2 V.
  • the second pouring step (step iii)) in step II is a second injection step of injecting a second electrolyte solution into the battery cell including the battery assembly in which the anti-corrosion coating is stably formed in step ii).
  • the second electrolyte may include a lithium salt, a non-aqueous organic solvent, and an additive as necessary.
  • the lithium salt included in the second electrolyte is a lithium salt capable of improving the performance of the lithium secondary battery, and is formed in the second electrolyte due to the formation of an anti-corrosion coating due to the step ii).
  • Advantages of the lithium salt included can be derived as much as possible, thereby improving the output characteristics and life characteristics of the lithium secondary battery at the same time.
  • the lithium salt contained in the second electrolyte solution is an imide lithium salt, specifically lithium bisfluorosulfonyl imide (LiFSI), lithium bistrifluoromethanesulfonylimide (LiTFSI), and lithium bis (purple) Fluoroethylsulfonyl imide) (LiBETI) and the like, and any one or a mixture of two or more thereof may be used. More specifically, the imide lithium salt may include LiFSI.
  • the imide salt has advantages such as less HF generation and higher ion conductivity than LiPF 6 to increase output characteristics and lifetime characteristics.
  • an imide salt is used for electrolyte solution, there exists a problem of reducing the corrosion inhibitory force of a metal, for example, an aluminum electrical power collector.
  • the corrosion of aluminum may be worsened by using an imide type lithium salt.
  • the advantage of the imide-based lithium salt After the first charging step, after forming a corrosion-resistant coating on the electrode stably, by injecting a second electrolyte solution containing an imide-based lithium salt, the advantage of the imide-based lithium salt can be further improved.
  • the non-aqueous organic solvent included in the second electrolyte and the additives added as necessary may be the same as the first electrolyte.
  • the content of PC (propylene carbonate) in the organic solvent may be increased. Since PC has less degradation than EC (ethylene carbonate), it may be advantageous in terms of life characteristics, storage characteristics, and swelling.
  • EC ethylene carbonate
  • the PC may decompose the negative electrode due to an exfoliation phenomenon, and thus the amount of use may be limited within 10% by weight.
  • the lithium salt concentration in the second electrolyte solution may be 0.8 M to 2.5 M, the amount of the second electrolyte is 30 to 95% by volume, more specifically based on the total volume of the electrolyte solution amount 70 to 90% by volume can be used.
  • the second electrolyte when the second electrolyte is injected, the second electrolyte is injected in a state where the first electrolyte injected in step i) is present in the battery cell, thereby mixing the first electrolyte and the second electrolyte. This can be done.
  • the mixing ratio may vary depending on the case, and the mixing ratio of the first electrolyte solution and the second electrolyte solution may be, for example, 10:90 to 30:70, but is not limited thereto.
  • step iv) is a step of secondary charging the battery cell into which the second electrolyte solution obtained in step iii) is injected.
  • the electrolyte injection hole of the battery case may be sealed by welding or heat fusion in a conventional manner.
  • the second charging step is an step of activating through an electrical reaction, in a charging voltage range of 2 V to 4.5 V, 0.01C to 5C, specifically 0.5C to 3C, more specifically 0.2C to 2C, Specifically, charging can be performed under constant current conditions of 0.1C to 1C. More specifically, the charging voltage may range from 2 V to 4.2 V.
  • the state in which the charging is completed by the second charging step may mean a state of first charging completion.
  • the present invention can provide a lithium secondary battery manufactured by the method of manufacturing the lithium secondary battery.
  • the SEI film is formed on the electrode in advance by pretreatment according to the manufacturing method, and the first electrolyte solution or a different first electrode is formed in a battery case including the electrode on which the SEI film is formed.
  • the lithium secondary battery prepared according to the above production method is an SEI film-forming agent-derived SEI film on the surface; And an electrode in which one or more layers formed by the electrochemical redox reaction of the electrolyte are sequentially formed.
  • the SEI film and the intra-film components are evolved gas analysis (EGA), Fourier transform infrared analysis, two-dimensional nuclear magnetic resonance, X-ray photoelectron X-ray photoelectron spectroscopy, time of flight-secondary-ion mass spectrometry (TOF-SIMS) and scanning electron microscopy (scanning electron microscopy) can be used.
  • EAA evolved gas analysis
  • TOF-SIMS time of flight-secondary-ion mass spectrometry
  • scanning electron microscopy scanning electron microscopy
  • CHOCO 2 Li lithium divinylene dicarbonate
  • CHOLi lithium divinylene dialkoxide
  • RCOOLi R is hydrogen or SEI membrane comprising a reduction product of vinylene carbonate
  • the lithium secondary battery may include two or more layers of different types of coatings derived from the additives added in the electrolyte together with the SEI membrane as the type of the additive in the electrolyte injected into each step during manufacture may be controlled. .
  • the SEI film forming agent includes a cyclic carbonate-based compound including an unsaturated bond
  • the first electrolyte includes an unsaturated bond on a surface when the sulfonic acid ester-based additive is included.
  • the first electrolyte contains an anti-corrosion additive, an anti-corrosion layer and an AlF 3 layer may be formed on the current collector of the electrode.
  • the SEI film forming agent may include a cyclic carbonate compound including an unsaturated bond
  • the first electrolyte may include a sulfonic acid ester additive
  • the second electrolyte is an imide lithium
  • the lithium secondary battery may include a cyclic carbonate-based compound-derived SEI film including an unsaturated bond on its surface; A film derived from a sulfonic acid ester additive; And an electrode in which an imide lithium salt-derived film is sequentially formed.
  • the lithium secondary battery according to an embodiment of the present invention further improves the life characteristics and output characteristics of the lithium secondary battery by forming a desired film on the sufficiently formed SEI film. This may be useful for portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicle fields such as hybrid electric vehicles (HEVs).
  • portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicle fields such as hybrid electric vehicles (HEVs).
  • HEVs hybrid electric vehicles
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Step I Pretreatment Step
  • Li (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 96% by weight of Li (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 as a positive electrode active material, 2 % by weight carbon black as a conductive agent, and 2% by weight of polyvinylidene fluoride (PVdF) as a binder, N-methyl- It was added to 2-pyrrolidone (NMP) to prepare a composition for positive electrode formation.
  • the positive electrode was formed by applying the composition for forming a positive electrode to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of 20 ⁇ m, and then drying the roll.
  • Al aluminum
  • carbon powder as a negative electrode active material PVdF as a binder, and carbon black (carbon black) as a conductive agent were added to NMP as a solvent, respectively, at 96 wt%, 3 wt%, and 1 wt%, respectively, to prepare a composition for forming a negative electrode.
  • the negative electrode composition was applied to a thin copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, and dried, followed by roll press to prepare a negative electrode.
  • Cu thin copper
  • Ethylene carbonate (EC): Ethylmethyl carbonate (EMC): Dimethyl carbonate (DMC) 3: 3: 4
  • LiPF 6 as a lithium salt
  • DMC Dimethyl carbonate
  • VC vinylene carbonate
  • an electrochemical reaction was performed using lithium metal foil as a counter electrode.
  • a constant current of 0.05 C is applied to the cathode and the counter electrode within a voltage range of 2.5 V to 0.005 V, and when the current reaches 0.005 V, current is applied until the current value reaches 1/20 C under the constant voltage condition.
  • An SEI film was formed on the cathode.
  • Step II Electrolyte Filling and Filling Step (Twice Filling)
  • PC Propylene carbonate
  • EMC Ethylmethyl carbonate
  • LiPF 6 based on the total amount of the non-aqueous electrolyte as a lithium salt 0.25 ml of 1 M and 1 wt% of 1,3-propane sultone (PS) based on the total amount of the non-aqueous electrolyte were added as additives to prepare a first electrolyte.
  • the battery assembly After manufacturing a battery assembly between the positive electrode prepared in the step I and the negative electrode on which the SEI film is formed through a separator consisting of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), the battery assembly is a battery case Into, and injected the first electrolyte solution.
  • a separator consisting of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP)
  • the first charging was performed under constant current conditions of 0.1 C to 4.2 V as the first charging process, without sealing the electrolyte injection hole of the battery case obtained in step i).
  • PC Propylene carbonate
  • EC Ethylene carbonate
  • EMC Ethylmethyl carbonate
  • Non-aqueous organic solvent and lithium salt based on the total amount of non-aqueous electrolyte LiFSI 0.25 ml of 1 M was added to prepare a second electrolyte solution, and then injected into the first charged electrode assembly in step ii).
  • the second charging was performed under constant current conditions of 0.2C to 4.2V as a second charging process.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the electrolyte injection and filling step of Example II was performed only once as follows.
  • Step II electrolyte injection step and filling step (single injection)
  • PC Propylene carbonate
  • EMC Ethyl methyl carbonate
  • a first electrolyte was prepared by adding 1 ml of 1,3-propane sultone (PS) as 0.5 ml of 1 M and an additive, based on the total amount of the non-aqueous electrolyte.
  • PS 1,3-propane sultone
  • the battery assembly After manufacturing a battery assembly between the positive electrode prepared in the step I and the negative electrode on which the SEI film is formed through a separator consisting of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP), the battery assembly is a battery case To the first electrolyte solution.
  • a separator consisting of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP)
  • the first charging was performed under constant current conditions of 0.1 C to 4.2 V as the first charging process, without sealing the electrolyte injection hole of the battery case obtained in step i).
  • a lithium secondary battery was manufactured by the same method as Example 1, except for preparing and using the SEI film-forming composition, the first and / or the second electrolyte solution in the formulation as described in Table 1 below.
  • PC Propylene carbonate
  • EMC Ethylmethyl carbonate
  • An electrolyte solution was prepared by adding 0.5 ml of 0.5 M and 0.5 M of LiFSI.
  • Li (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 96% by weight of Li (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 as a positive electrode active material, 2 % by weight carbon black as a conductive agent, and 2% by weight of polyvinylidene fluoride (PVdF) as a binder, N-methyl- It was added to 2-pyrrolidone (NMP) to prepare a composition for positive electrode formation.
  • the positive electrode forming composition was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of 20 ⁇ m, and dried to prepare a positive electrode, followed by roll press, to prepare a positive electrode.
  • Al aluminum
  • carbon powder as a negative electrode active material PVdF as a binder, and carbon black (carbon black) as a conductive agent were added to NMP as a solvent, respectively, at 96 wt%, 3 wt%, and 1 wt%, respectively, to prepare a composition for forming a negative electrode.
  • the negative electrode composition was applied to a thin copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then subjected to roll press to prepare a negative electrode.
  • Cu thin copper
  • the battery assembly After manufacturing a battery assembly with a separator consisting of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP) between the positive electrode and the negative electrode thus prepared, the battery assembly is placed in a battery case, and the electrolyte is Injected.
  • a separator consisting of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP) between the positive electrode and the negative electrode thus prepared.
  • step i After sealing the electrolyte injection hole of the battery case obtained in step i), charging was performed under constant current conditions of 0.1C to 4.2V as the first charging process.
  • PC Propylene carbonate
  • EMC Ethylmethyl carbonate
  • a non-aqueous organic solvent, lithium salt, LiPF 6 based on the total amount of the non-aqueous electrolyte solution 0.25 ml of 1 M and 1 wt% of 1,3-propane sultone (PS) were added based on the total amount of the non-aqueous electrolyte as an additive to prepare a first electrolyte.
  • the first charging was performed under constant current conditions of 0.1 C to 4.2 V as the first charging process, without sealing the electrolyte injection hole of the battery case obtained in step i).
  • PC Propylene carbonate
  • EMC Ethylene carbonate
  • EC Ethylmethyl carbonate
  • LiFSI LiFSI based on the total amount of the non-aqueous electrolyte as a lithium salt in a non-aqueous organic solvent having a composition of 3: 3: 4 (volume ratio). 0.25 ml of 1 M was added to prepare a second electrolyte solution, and then injected into the first charged electrode assembly in step ii).
  • the second charging was performed under constant current conditions of 0.2C to 4.2V as a second charging process.
  • LiFSI is used instead of LiPF 6 as a lithium salt in the preparation of the first electrolyte
  • LiPF 6 is used instead of LiFSI as the lithium salt in the preparation of the second electrolyte
  • a lithium secondary battery was manufactured by the same method as Comparative Example 2, except that 1,3-propane sultone (PS) was further used.
  • PS 1,3-propane sultone
  • compositions of the SEI film-forming compositions and the first and second electrolyte solutions used in Examples 1 to 8 and Comparative Examples 1 to 5 are shown in Table 1 below.
  • Example 1 Composition for Cathode SEI Film Formation First electrolyte Secondary electrolyte
  • the mixing ratio of the solvent is a volume ratio
  • the lithium secondary batteries of Examples 1 and 2, and Comparative Examples 1 and 4 were calculated with a voltage difference generated by discharging for 10 seconds at 0.5C for each SOC (charge depth) at room temperature. The results are shown in FIG.
  • the lithium secondary batteries of Examples 1 and 2 which performed the pretreatment step of forming the SEI film on the electrodes, had better output characteristics than those of Comparative Examples 1 and 4, which did not perform the SEI film formation pretreatment step. Significantly improved.
  • Example 1 in which the electrolyte injection and filling step were performed twice while performing the pretreatment step of forming an SEI film on the electrode, about 15% to 70 at SOC 90 (%) compared to Comparative Examples 1 and 4 It can be seen that the improvement is up to%.
  • Comparative Example 4 which does not perform the pretreatment step of forming the SEI film on the electrode, is reduced by about 15% to 20% compared to Example 2.
  • the lithium secondary batteries of Examples 1 to 5 and Comparative Examples 1 to 4 were charged at 1 C to 4.2 V / 3.25 mA under constant current / constant voltage (CC / CV) conditions at room temperature, and then to 3.03 V under constant current (CC) conditions. It discharged at 3C and the discharge capacity was measured. This was repeated 1 to 80 cycles, the measured discharge capacity is shown in FIG.
  • Example 1 in which the electrolyte injection and filling step were performed one or more times while performing the pretreatment step of forming the SEI film on the electrode, the initial discharge capacity was similar to that of Comparative Examples 1 to 4, but was about It can be seen that after 10 cycles, the discharge capacity is significantly improved.
  • the slope of the life characteristic result graph is gentle from 1 to 80 times, so that the 80th discharge capacity is hardly reduced compared to the initial discharge capacity. After the first cycle, it was significantly reduced, and in the 80th cycle, the lifespan was reduced by about 5% to 15% compared to Example 1.
  • Examples 2 to 8, and the lithium secondary batteries of Comparative Examples 4 and 5 were charged to 1C to 4.2V / 3.25mA under constant current / constant voltage (CC / CV) conditions at room temperature, and then placed in an oven at 85 ° C. for 1 hour.
  • the battery thickness after temperature retention was measured for 4 hours after temperature rising.
  • the swelling degree from the initial thickness is shown in Table 2.
  • the cell of Example 2 is swollen 0.31 nm
  • Comparative Example 4 is 1.40 nm
  • the degree of swelling in the initial thickness of the electrode of Example 2 is reduced by about 351% compared to Comparative Example 4 Confirmed.

Abstract

본 발명은 리튬염, 비수계 유기용매 및 전기 화학적 산화 또는 환원 분해반응에 의해 SEI(solid electrolyte interphase) 막 형성이 가능한 SEI 막 형성제를 포함하는 SEI 막 형성용 조성물에, 전극을 함침시킨 후 전압을 인가하여 전극 상에 SEI 막을 형성하는 전처리 단계, 및 상기 SEI막이 형성된 전극을 이용하여 전지 조립체를 제조한 후, 이를 전지 케이스에 넣고, 전해액 주액 및 충전의 조합 공정을 1회 이상 수행하는 단계를 포함하는 리튬 이차전지의 제조방법을 제공한다. 상기 제조방법에 따르면, 전극의 전처리에 의해 전극 상에 SEI 막을 미리 형성한 후, 상기 SEI 막이 형성된 전극을 전지 케이스에 넣고 1회 이상 전해액을 단계별 주액함으로써, 리튬 이차전지의 출력 특성과 수명 특성을 더욱 향상시킬 수 있다.

Description

리튬 이차전지의 제조방법
관련출원과의 상호인용
본 출원은 2014년 9월 30일자 한국특허출원 제2014-0131746호 및 2015년 9월 2일자 한국특허출원 제2015-0124201호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지의 출력 특성과 수명 특성을 동시에 향상시킬 수 있는 리튬 이차전지의 제조방법에 관한 것이다.
최근 정보 통신 산업의 발전에 따라 전자 기기가 소형화, 경량화, 박형화 및 휴대화되고 있다. 그 결과, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다.
리튬 이차전지는 양극, 음극 및 상기 양극과 음극 사이에 리튬 이온의 이동 경로를 제공하는 전해액과 분리막으로 구성되는 전지로서, 리튬 이온이 상기 양극 및 음극에서 흡장 및 방출될 때의 산화, 환원 반응에 의해 전기에너지를 생성한다.
리튬 이차전지의 평균 방전 전압은 약 3.6V 내지 3.7V로서, 다른 알칼리 전지, 니켈-카드뮴 전지 등에 비하여 방전 전압이 높은 것이 장점 중의 하나이다. 이러한 높은 구동 전압을 내기 위해서는 충방전 전압 영역인 0V 내지 4.2V에서 전기화학적으로 안정한 전해액 조성이 필요하다.
리튬 이차전지의 초기 충전시, 리튬 금속 산화물 등의 양극 활물질로부터 나온 리튬 이온은 흑연계 등의 음극 활물질로 이동하여, 음극 활물질의 층간에 삽입된다. 이때, 리튬은 반응성이 강하므로 흑연계 등의 음극 활물질 표면에서 전해액과 음극 활물질을 구성하는 탄소가 반응하여 Li2CO3, Li2O 또는 LiOH 등의 화합물을 생성한다. 이들 화합물은 흑연계 등의 음극 활물질의 표면에 일종의 SEI(Solid Electrolyte Interface, 고체 전해질 계면) 막을 형성하게 된다.
SEI 막은 이온 터널의 역할을 수행하여 리튬 이온만을 통과시킨다. SEI 막은 이러한 이온 터널의 효과로서, 전해액 중에서 리튬 이온과 함께 이동하는 분자량이 큰 유기 용매 분자가 음극 활물질의 층간에 삽입되어 음극 구조가 파괴되는 것을 막아준다. 따라서, 전해액과 음극 활물질의 접촉을 방지함으로써 전해액의 분해가 발생하지 않고, 전해액 중의 리튬 이온의 양이 가역적으로 유지되어 안정적인 충방전이 유지된다고 보고되어 왔다.
그러나, 전해액에 포함되는 첨가제 또는 유기 용매로 인해 리튬 이차전지의 SEI 막이 불안정할 수 있고, SEI 막이 안정적으로 형성되더라도 잔류하는 첨가제의 분해로 가스가 발생하는 문제가 있다.
또한, 저온에서 유기 용매의 점도의 증가를 최소화하고, 리튬 이온의 이동성을 향상시킴으로써, 고온 저장성 및 저온 출력 특성을 향상시킬 수 있는 이미드계 염을 사용하는 경우에도, 부식의 우려로 인해 리튬 이차전지에 사용하는데 큰 제한이 있다.
따라서, 견고하고 균일한 SEI 막을 형성하면서, 선택적으로 전해액을 선정하여 사용하면서, 리튬 이차전지의 출력 특성 및 수명 특성을 개선할 수 있는 방법이 절실히 요구되고 있는 실정이다.
본 발명이 해결하고자 하는 과제는 전처리 공정에 의해 SEI 막이 형성된 전극을 제조한 후, 상기 전극을 포함하는 전지 조립체를 전지 케이스에 넣고, 전해액을 주액함으로써, 리튬 이차전지의 출력 특성과 수명 특성을 동시에 향상시킬 수 있는 리튬 이차전지의 제조방법을 제공하는 것이다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따르면, 리튬염, 비수계 유기용매 및 전기 화학적 산화 또는 환원 분해반응에 의해 고체 전해질 계면(solid electrolyte interphase, SEI) 막 형성이 가능한 SEI 막 형성제를 포함하는 SEI 막 형성용 조성물에, 전극을 함침시킨 후 전압을 인가하여 상기 전극 상에 SEI 막을 형성하는 전처리 단계; 및 상기 SEI 막이 형성된 전극을 이용하여 전지 조립체를 제조한 후, 이를 전지 케이스에 넣고, 전해액 주액 및 충전의 조립 공정을 1회 이상 수행하는 단계를 포함하는 리튬 이차전지의 제조방법을 제공한다.
본 발명의 다른 일 실시예에 따르면, 상기 제조방법에 의해 제조된 리튬 이차전지를 제공한다.
더 나아가, 본 발명의 또 다른 일 실시예에 따르면, 상기한 리튬 이차전지를 단위셀로 포함하는 전지모듈 및 이를 포함하는 전지팩이 제공된다.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명의 일 실시예에 따른 리튬 이차전지의 제조방법에 따르면, 전극의 전처리에 의해 전극 상에 SEI 막을 미리 형성한 후, 상기 SEI 막이 형성된 전극을 포함하는 전지 조립체를 전지 케이스에 넣고 1회 이상 전해액을 단계별 주액함으로써, 리튬 이차전지의 출력 특성과 수명 특성을 더욱 향상시킬 수 있다.
또한, 상기 SEI 막 형성에 필요한 첨가제를 전처리 단계에서 소량으로만 사용함으로써 고가의 첨가제 사용량을 줄일 수 있고, 전지 케이스 내에서 발생되는 가스(gas) 방출이 용이하고, 전해액의 단계별 주액에 의해 다양한 전해액을 선택적으로 사용할 수 있으므로, 종래의 리튬염 및 첨가제 사용으로 인한 한계를 극복하여 리튬 이차전지의 성능을 더욱 향상시킬 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 리튬 이차전지의 제조 방법을 도시한 플로우 챠트이다.
도 2는 본 발명의 일 실시예에 따른 리튬 이차전지의 제조 방법에 있어서, 단계 II의 전해액 주액 및 충전 단계를 도시한 플로우 챠트이다.
도 3은 실시예 1과 2, 및 비교예 1과 4에서 제조된 리튬 이차전지의 출력 특성 실험 결과 그래프이다.
도 4는 실시예 1 내지 5, 및 비교예 1 내지 4에서 제조된 리튬 이차전지의 수명 특성 실험 결과 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 리튬 이차전지용 전극의 제조 방법은, 리튬염, 비수계 유기용매 및 전기화학적 산화-환원 분해반응에 의해 SEI 막을 형성하는 SEI 막 형성제를 포함하는 SEI 막 형성용 조성물에, 전극을 함침시킨 후, 전압을 인가하여 전극 상에 SEI 막을 형성하는 전처리 단계(단계 I); 및 상기 SEI 막이 형성된 전극을 이용하여 전지 조립체를 제조한 후, 이를전지 조립체 전지 케이스에 넣고, 전해액 주액 및 충전의 공정을 1회 이상 수행하는 단계(단계 II)를 포함한다.
본 발명의 일 실시예에 따른 리튬 이차전지의 제조방법에 따르면, 전극의 전처리에 의해 전극 상에 SEI 막을 미리 형성한 후, 상기 SEI 막이 형성된 전극을 전지 케이스에 넣고 1회 이상 전해액을 단계별 주액함으로써, 리튬 이차전지의 출력 특성과 수명 특성을 더욱 향상시킬 수 있다.
또한, 상기 SEI 막 형성에 필요한 첨가제를 전처리 단계에서 소량으로만 사용함으로써 고가의 첨가제 사용량을 줄일 수 있고, 전지 케이스 내에서 발생되는 가스 방출이 용이하고, 전해액의 단계별 주액에 의해 다양한 전해액을 선택적으로 사용할 수 있으므로, 종래의 리튬염 및 첨가제 사용으로 인한 한계를 극복하여 리튬 이차전지의 성능을 더욱 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 리튬 이차전지의 제조 방법을 도시한 플로우 챠트이다. 도 1은 본 발명을 설명하기 위한 일 예일 뿐 본 발명이 이에 한정되는 것은 아니다.
이하 도 1을 참조하여 각 단계 별로 보다 상세히 설명하며, 본 발명의 일 실시예에 따른 상기 리튬 이차전지의 제조방법에 있어서, 상기 단계 I은 이차전지 제조의 전처리 단계로서, SEI 막 형성용 조성물을 이용하여 전극 상에 SEI 막을 형성하는 단계를 포함할 수 있다.
즉, 상기 단계 I은 전기 화학적 산화 또는 환원 분해반응에 의해 SEI 막 형성이 가능한 동시에, 전해액에 대한 젖음성이 우수하여 SEI 막을 용이하게 형성할 수 있는 SEI 막 형성제를 포함하는 SEI 막 형성용 조성물에 전극, 즉 음극 또는 양극을 넣고 전압을 인가하여 전기화학적 반응을 수행함으로써, 상기 양극 또는 음극 상에 SEI 막을 형성하는 단계이다.
일반적으로 리튬 이차전지에 사용하는 전극의 경우 친유성이 강하므로, 친수성(hydrophilic property)인 전해액에 대한 젖음성(wetting)이 좋지 못하다. 이렇게 전극에 전해액이 충분히 젖지 않은 상태에서 전지의 활성화 작업이 진행될 경우, 전극의 SEI 막이 제대로 형성되지 않아 전지의 수명 특성이 저하되는 문제가 있다.
이에 대해, 본 발명에서는 전해액에 대한 젖음성을 향상시킬 수 있는 SEI 막 형성용 조성물을 사용하여 전극 전처리를 수행함으로써, 우수한 젖음성으로 전극 상에 SEI 막을 미리 충분히 형성시킬 수 있다.
상기 SEI 막 형성용 조성물은 전극 상에 SEI 막을 형성할 수 있는 화합물을 포함하는 용액이라면 특별히 제한되는 것은 아니며, 구체적으로는 SEI 막 형성제, 리튬염, 및 비수성 유기 용매를 포함할 수 있다.
상기 SEI 막 형성용 조성물의 제조에 사용가능한 리튬염은 리튬 이온의 공급원으로서, 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용가능하다. 구체적으로 상기 리튬염으로는 LiPF6, LiAsF6, LiCF3SO3, LiBF4, LiBF6, LiSbF6, LiAlO4, LiAlCl4, LiSO3CF3 또는 LiClO4 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
또, 상기 리튬염은 SEI 막 형성용 조성물 중에 0.5mol/l 내지 2mol/l의 농도로 포함될 수 있다. 상기 리튬염의 농도가 0.5mol/l 미만일 경우 공급되는 리튬 이온 양이 충분하지 않고, 2mol/l를 초과하는 경우 SEI 막 형성용 조성물의 점도가 증가하여 SEI 막 형성성이 저하될 우려가 있다. 이와 같은 SEI 막내 리튬 이온의 전도도 및 SEI 막 형성성을 고려할 때, 상기 리튬염은 보다 구체적으로 상기 SEI 막 형성용 조성물 내에 0.5mol/l 내지 1.6mol/l의 농도로 포함될 수 있다.
통상 리튬염 및 비수계 유기용매를 포함하는 전해액의 전기화학적 산화 환원 반응에 의해서도 SEI 막이 형성될 수 있다. 그러나, 이와 같이 비수계 유기용매의 분해에 의해 형성되는 SEI 막은 두껍고 저항이 크다.
이에 대해 본 발명에서는, SEI 막 형성용 첨가제를 사용함으로써, 형성되는 SEI 막의 두께는 감소시키되 치밀도는 높임으로써 SEI 막 내 저항이 감소되는 등, 보다 개질된 특성을 갖는 SEI 막을 형성할 수 있다.
본 발명의 일 실시예에 따른 리튬 이차전지의 제조방법에 있어서, 상기 SEI 막 형성용 조성물의 제조에 사용가능한 SEI 막 형성제는, 전기 화학적 산화 또는 환원 분해반응에 의해 SEI 막 형성이 가능한 화합물로서, 구체적으로는 불포화 결합을 포함하는 환형 카보네이트계 화합물; 할로겐 원자를 포함하는 환형 또는 사슬형 카보네이트계 화합물; 옥살라토 착물을 음이온으로 포함하는 리튬염; 이미드계 리튬염; 플루오로포스페이트계 리튬염; 플루오로보레이트계 리튬염; 분자내 질소원자를 2개 이상 포함하는 6원 방향족 헤테로 고리 화합물; 설톤계 화합물; 또는 아크릴레이트계 화합물 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 본 발명에 있어서, 특별한 언급이 없는 한, 상기 SEI 막 형성제는 이하에서 설명하는 SEI 막 형성용 조성물의 제조에 사용되는 리튬염 및 비수성 유기용매와는 상이한 화합물이다.
상기 SEI 막 형성제에 있어서, 불포화 결합을 포함하는 환형 카보네이트계 화합물은, 구체적으로, 비닐렌 카보네이트(vinylene carbonate), 메틸비닐렌 카보네이트(methyl vinylene carbonate), 에틸 비닐렌 카보네이트(ethyl vinylene carbonate), 프로필 비닐렌 카보네이트(propyl vinylene carbonate), 디메틸 비닐렌 카보네이트(dimethyl vinylene carbonate), 또는 비닐렌 에틸렌 카보네이트(vinylene ethylene carbonate) 등과 같은 비닐렌 카보네이트계 화합물; 또는 비닐 에틸렌 카보네이트 등과 같은 비닐에틸렌 카보네이트계 화합물일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
또, 상기 SEI 막 형성제에 있어서, 할로겐 원자를 포함하는 환형 또는 사슬형 카보네이트계 화합물은 구체적으로, 플루오로 에틸렌 카보네이트 또는 디플루오로 에틸렌 카보네이트 등과 같이 분자내 할로겐 원자를 1 이상 포함하는 환형 카보네이트계 화합물; 및 플루오로메틸메틸 카보네이트 또는 비스(플루오로메틸)카보네이트 등과 같이 분자내 할로겐 원자를 1 이상 포함하는 사슬형 카보네이트계 화합물일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
또, 상기 SEI 막 형성제에 있어서, 옥살라토 착물을 음이온으로 하는 리튬염으로는 옥살라토 그룹을 포함하는 음이온 화합물과 리튬 이온이 배위결합 등을 통해 착화합물을 형성하는 것이라면 제한 없이 사용할 수 있다. 구체적으로는 리튬 디플루오로(옥살라토)보레이트(Lithium Difluoro(oxalato)borate, LiODFB), 리튬 테트라플루오로(옥살라토)포스페이트(Lithium Tetrafluoro(oxalato) phosphate, LiTFOP), 리튬 트리스(옥살라토)포스페이트(lithium tris(oxalate)phosphate, LTOP) 또는 리튬 비스(옥살라토)보레이트(Lithium bis(oxalato)borate, LiBOB) 등을 들 수 있으며, 이들 중 어느 하나, 또는 둘 이상의 혼합물을 사용할 수 있다.
또, 상기 SEI 막 형성제에 있어서, 옥살라토 착물을 음이온으로 하는 리튬염 외의 SEI 막 형성용 리튬염으로서, 리튬 비스플루오로설포닐 이미드(LiFSI), 리튬 비스트리플루오로메탄설포닐이미드(LiTFSI), 또는 리튬 비스(퍼플루오로에틸설퍼닐 이미드)(LiBETI) 등과 같은 이미드계 리튬염; LiBF4, 리튬 디플루오로포스페이트(Lithium difluorophosphate, LiF2O2P) 또는 리튬 모노플루오로포스페이트(Lithium fluorophosphates, Li2PO3F) 등과 같은 플루오로포스페이트계 리튬염을 사용할 수 있으며, 상기한 화합물을 단독으로 또는 둘 이상 혼합하여 혼합물의 형태로 사용할 수 있다.
이와 같이, 상기 SEI 막 형성제로서 사용가능한 옥살라토 착물을 음이온으로 하는 리튬염, 이미드계 리튬염 또는 플루오로포스페이트계 리튬염은 SEI 막 형성용 조성물에서의 리튬염으로도 사용될 수 있다. 이 경우 상기한 옥살라토 착물을 음이온으로 하는 리튬염, 이미드계 리튬염 또는 플루오로포스페이트계 리튬염은 SEI 막 형성용 조성물 내 포함되는 리튬염의 전체 농도가 SEI 막 형성용 조성물 내의 리튬염 농도 조건을 충족하는 동시에 SEI 막 형성제 함량 조건을 동시에 충족하는 양으로 포함될 수 있다.
또, 상기 SEI 막 형성제에 있어서, 분자내 질소원자를 2개 이상 포함하는 6원 방향족 헤테로 고리 화합물은 구체적으로, 피리미딘 및 1,3,5-트리아진 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
또, 상기 SEI 막 형성제에 있어서, 설톤계 화합물은 구체적으로 1,3-프로판설톤(1,3-propane sultone; PS), 1,4-부탄 설톤 또는 1,3-프로펜설톤 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
상기한 SEI 막 형성제는 SEI 막 형성용 조성물 총 중량에 대하여, 0.1 중량% 내지 10 중량%로 포함될 수 있다. 상기 SEI 막 형성제의 함량이 상기 범위 내이면, 상기 전기적 반응 후에 전극 상에 SEI 막 형성용 첨가제 유래의 피막을 균일하고 얇게 형성할 수 있고, 충전에 의해 발생하는 가스의 양도 최소화할 수 있다. 또, 상기 SEI 막 형성제 사용에 따라 형성되는 SEI 막의 물성 개선 효과를 고려할 때, 상기 SEI 형성제는 보다 구체적으로는 SEI 막 형성용 조성물 총 중량에 대하여 0.25 중량% 내지 5 중량%, 보다 더 구체적으로는 0.5 중량% 내지 3 중량%의 양으로 포함될 수 있다.
한편, 상기 SEI 막 형성용 조성물에 있어서, 비수성 유기 용매는 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 하는 것으로, 전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, SEI 막 형성제와 함께 목적하는 특성을 발휘할 수 있는 것이 적절할 수 있다.
구체적으로, 상기 비수성 유기 용매는 에틸렌 카보네이트(EC), 프로필렌카보네이트(PC) 및 부틸렌 카보네이트(BC) 등의 환형 카보네이트계 용매; 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC) 및 에틸프로필 카보네이트(EPC) 등의 선형 카보네이트계 용매; 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 또는 시클로헥사논(cyclohexanone) 등의 케톤계 용매일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 이중에서도, SEI 막 형성성 등을 고려할 때, 상기 유기 용매는 환형 카보네이트와 선형 카보네이트의 혼합물일 수 있으며, 보다 구체적으로는 상기한 선형 카보네이트가 환형 카보네이트 보다 더 높은 함량으로 혼합된 혼합물일 수 있다. 구체적으로 상기 선형 카보네이트와 환형 카보네이트의 혼합 부피비는 5:5 내지 8:2일 수 있다. 다.
상기 비수계 유기 용매는 SEI 막 형성용 조성물이 SEI 막 형성에 용이한 점도를 갖도록 하는 양으로 포함될 수 있다.
한편, 상기한 SEI 막 형성용 조성물에 의해 전처리 되는 전극은 양극일 수도 있고, 음극일 수도 있다.
구체적으로, 상기 전극이 양극일 경우, 사용 가능한 양극은 양극 활물질층이 알루미늄 또는 알루미늄계 합금으로 이루어진 박막과 같은 집전체 상에 적층되어 있는 구조를 포함할 수 있다. 이때 상기 양극 활물질층은 양극 활물질, 도전제 및 바인더를 포함하며, 상기 양극활물질 및 도전제는 바인더에 의하여 집전체 상에 적층될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 전이금속과 리튬을 포함하는 리튬 전이금속 산화물일 수 있다. 나아가, 상기 리튬 전이금속 산화물은 리튬-니켈-망간 코발트계 산화물, 리튬-망간계 산화물, 리튬-니켈-망간계 산화물 및 리튬-망간-코발트계 산화물로 이루어진 군에서 선택될 수 있으며, 보다 구체적으로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(여기에서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1 - YCoYO2, LiCo1-YMnYO2, LiNi1 - YMnYO2 (여기에서, 0≤≤Y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(여기에서, 0<Z<2) 일 수 있다.
또, 상기 전극이 음극일 경우, 사용 가능한 음극은 상기 양극과 마찬가지로 음극 활물질층이 집전체 상에 적층되어 있는 구조를 포함할 수 있다. 이때, 상기 음극 활물질층에는 음극 활물질 및 도전제가 바인더에 의하여 집전체 상에 적층될 수 있다.
상기 음극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막을 사용할 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등을 사용할 수도 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 양극 및 음극에 있어서, 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등을 사용할 수 있다. 또한, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용할 수도 있다.
또, 상기 양극 또는 음극 활물질층에 사용되는 도전제는 양극 또는 음극 활물질층 총 중량을 기준으로 1 내지 20 중량%의 양으로 첨가될 수 있다. 상기 양극 및 음극에 사용가능한 도전제로는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙류; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등을 사용할 수 있다.
또, 상기 양극 또는 음극 활물질층에 사용되는 상기 바인더는 양극 또는 음극 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 양극 또는 음극 활물질층 총 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무 또는 다양한 공중합체 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
상기 양극 및 음극은, 각각의 전극 활물질, 도전제 및 바인더를 용매에 분산시킨 전극 형성용 조성물을 집전체에 도포 후 건조하거나, 또는 상기 전극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 집전체 상에 라미네이션함으로써 제조할 수 있다. 이때, 상기 용매로는 구체적으로 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 알코올, N-메틸피롤리돈(NMP), 아세톤 또는 물 등을 들 수 있으며, 상기 용매는 이후 건조 과정에서 제거할 수 있다.
한편, 본 발명의 일 실시예에 따른 리튬 이차전지의 제조방법에 있어서, 상기한 조성을 갖는 SEI 막 형성용 조성물을 이용한 SEI 막 형성은, 상기 SEI 막 형성용 조성물에 상기 전극을 함침시킨 후 전압을 인가하여 수행될 수 있다. 이때 상기 전압 인가 공정은 SEI 막 형성제의 전기화학적 산화-환원 분해반응을 일으킬 수 있는 전압 범위로 인가함으로써 수행할 수 있으며, 구체적으로는 상기 전극 및 이의 상대전극(counter electrode)을 이용하여 0.005 V 내지 4.5 V로 전압을 인가함으로써 수행할 수 있다.
보다 구체적으로는, 양극의 경우 1 V 내지 4.5 V, 보다 더 구체적으로는 2 V 내지 4.2 V로 약 1 시간 내지 24 시간 인가하여 수행할 수 있다. 또한 음극의 경우 0.005 V 내지 4.5 V, 보다 더 구체적으로는 0.01 V 내지 4.0 V로 약 1 내지 24시간 인가하여 수행할 수 있다.
또, 상기 전극으로 양극을 사용하는 경우 이의 상대전극으로서 리튬 금속 호일을 사용할 수 있고, 음극을 사용하는 경우 이의 상대전극으로서 구리를 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기와 같은 전극 전처리 공정은, 양극 또는 음극을 용기에 넣고 전기적 반응 수행함으로써 SEI 막이 형성된 양극 또는 음극을 제조할 수도 있고, 또 다른 일례로 서로 다른 두 개의 용기에 양극 및 음극을 각각 넣고 전기화학적 반응을 수행함으로써 SEI 막이 형성된 양극 및 음극을 제조할 수도 있다.
상기한 바와 같은 방법으로 용기 내에서 전처리 방식으로 전극 활물질 표면에 SEI 막을 형성하는 경우, 일반적으로 행해지는 전지 케이스 내에서 SEI 막을 형성하는 것에 비해 발생되는 가스의 배출이 원활하다. 예를 들면 스택(stack)형 전극이나 젤리-롤(jelly roll)형 전극은 서로 맞닿은 전극들에 의해 가스가 중간에 포집될 수 있기 때문에, 가스 배출이 원활하지 않을 수 있다. 반면에 본 발명의 일 실시예에 따라 일차적으로 용기 내에서 전극을 넣고 그의 단면만으로 SEI 막을 형성하는 경우에는 가스 발생 방향으로 빈 공간을 확보할 수 있으므로, 방출되는 가스가 중간에 포집되지 않고 모두 방출될 수 있다.
뿐만 아니라, 본 발명의 일 실시예에 따른 리튬 이차전지의 제조방법에 따르면, 상기 가스 발생 및 첨가제의 사용량을 감소시킬 수 있으므로, 일반적으로 사용하는 가스 제거(degas) 공정 및 재밀봉(resealing) 공정을 생략할 수 있어, 공정의 간편성 및 용이성 면에서 우수할 수 있다.
다음으로, 본 발명의 일 실시예에 따른 상기 리튬 이차전지의 제조방법에 있어서, 상기 단계 II는 상기 SEI 막이 형성된 전극(예를 들어, 양극 또는 음극, 또는 양극 및 음극)을 포함하는 전지 조립체를 전지 케이스에 넣고, 전해액 주액 및 충전의 조합 공정을 1회 이상 수행하는 단계를 포함할 수 있다.
구체적으로 살펴보면, 상기 단계 I에서 얻은 SEI막이 형성된 양극 및/또는 음극, 및 이들 사이에 개재된 분리막을 구비하는 전지 조립체가 수납된 전지 케이스에 상기 제1 전해액을 주입할 수 있다.
상기 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 2층 이상 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유 또는 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 리튬 이차전지의 제조방법에 따르면, 상기 전지 조립체는 젤리-롤형, 스택형, 및 스택/폴딩형 중 선택된 어느 하나일 수 있다.
또, 본 발명에서 사용되는 전지 케이스는 당분야에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명의 일 실시예에 따르면, 상기 단계 I에서 얻은 SEI 막이 형성된 양극 및/또는 음극은 수분에 불안정할 수 있으므로 공기와 접촉을 피한 환경에서 전지 셀을 제조하는 것이 바람직하나, 이에 제한되는 것은 아니다.
본 발명의 일 실시예에 따르면, 상기 전해액 주액 및 충전의 조합 공정은 전해액 주액 후 충전의 공정을 1 사이클로 할 때, 1회 수행할 수도 있고, 또는 2회 이상, 구체적으로는 2회 내지 3회 복수 회 수행할 수도 있다. 보다 구체적으로, 상기 전해액 주액 및 충전의 조합 공정은 1회 내지 3회, 또는 1회 또는 2회 수행할 수 있다.
상기 전해액 주액 및 충전의 조합 공정을 1회 수행하는 경우, 상기 전해액 주액 및 충전의 공정을 포함하는 단계 II는 상기 전지 케이스에 제1 전해액을 주입하여 전지셀을 제조하는 제1 주액단계; 및 상기 전지셀을 충전하는 제1 충전단계를 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 따라, 상기 전해액 주액 및 충전의 조합 공정을 2회 수행하는 경우, 상기 단계 II는 전지 케이스에 제1 전해액을 주입하여 전지셀을 제조하는 제1 주액 단계; 상기 전지셀을 충전하는 제1 충전 단계; 상기 충전된 전지셀에 제2 전해액을 주입하는 제2 주액 단계; 및 상기 제2 전해액이 주입된 전지셀을 충전하는 제2 충전 단계를 포함할 수 있다.
또, 본 발명의 일 실시예에 따르면, 상기 SEI 막 형성용 조성물과, 제1 전해액 및 제2 전해액 등의 각 단계별 전해액으로서 동일한 용액이 사용될 수도 있고, 각각 다른 용액이 사용될 수도 있다.
예를 들어, 본 발명의 일 실시예에 따르면, 상기 단계 II에서 SEI 막이 형성된 전극을 포함하는 전지 케이스에 전해액 주액 및 충전의 조합 공정을 수행하는 경우, 제1 전해액에 SEI 막 형성에 필요한 첨가제를 사용하지 않을 수 있다. 상기 첨가제는 SEI 막 형성에 효과적이나 잔류 시 분해로 가스 발생의 원인이 되기도 하므로, 전극에 SEI 막이 이미 형성되었으므로, 제1 전해액에 첨가제를 사용하지 않음으로써, 상기 가스 발생의 문제를 해결할 수 있다. 따라서, 상기 고가의 첨가제를 전처리 시에 소량만 사용할 수 있어, 첨가제의 사용량을 줄일 수 있는 장점이 있다.
또한, 상기 단계 II에서, 전해액 주액 및 충전의 조합 공정을 1회 수행하는 경우, 사용되는 리튬염 및 비수성 유기용매는 특별히 제한되지 않으며, 상술한 리튬염 및 비수성 유기용매를 선택적으로 사용할 수 있다.
또, 본 발명의 일 실시예에 따르면, 상기 단계 II에서, 전해액 주액 및 충전의 조합 공정을 1회 이상 수행하는 경우, 리튬염으로는 전극 집전체, 예를 들어 알루미늄(Al)의 부식을 방지할 수 있는 부식 방지용 리튬염을 사용할 수 있다. 보다 구체적으로, 상기 제1 전해액은 LiPF6, LiAsF6, LiCF3SO3, LiBF4, LiBF6, LiSbF6, LiAlO4, LiAlCl4, LiSO3CF3 및 LiClO4로 이루어진 군에서 선택되는 어느 하나 또는 2종 이상의 부식 방지용 리튬염을 포함할 수 있으며, 보다 구체적으로는 LiPF6 및 LiBF4로 이루어진 군으로부터 선택된 어느 하나 또는 둘의 혼합물을 포함할 수 있다.
상기 부식 방지용 리튬염, 예를 들어 LiPF6를 포함하는 전해액이 알루미늄층에 유출되는 경우, 상기 전해액에 포함된 LiPF6 또한 집전체, 예를 들어 알루미늄층에 닿게 될 수 있다. 상기와 같이 알루미늄층에 접촉되게 되는 LiPF6은 알루미늄층에 전압이 인가된 상태로 상기 알루미늄층과 접촉하게 되는데 이때, 상기 Al과 F은 전기 화학 반응을 일으켜 AlF3 피막을 형성할 수 있다. 상기 AlF3 피막은 강한 내부식성을 가지는 것으로 잘 알려진 층으로서, 상기와 같은 전압 인가 조건이 만족된 상태에서 전해액이 알루미늄층에 유출되는 경우 상기 유출된 영역 또는 계면 등에 형성되게 된다. 이렇게 형성된 AlF3 피막은 내부식층으로서 전해액 노출에 의한 알루미늄층의 부식을 방지하게 되고, 스웰링 현상 등이 발생되지 않도록 하는 보호층의 기능을 수행할 수 있다.
또한, 상기 제1 전해액에 포함될 수 있는 비수성 유기 용매로는, 전지의 충방전 과정에서 산화 반응 등에 의한 분해를 최소화할 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한이 없다. 예를 들어 카보네이트, 에스테르, 에테르 또는 케톤 등 일 수 있다. 이들은 이들은 단독으로 사용할 수도 있고, 2종 이상이 혼합된 혼합물의 형태로 사용할 수도 있다.
이중에서도 상기 유기 용매는 보다 구체적으로 카보네이트계 유기 용매일 수 있다. 보다 더 구체적으로는 에틸렌 카보네이트(EC), 프로필렌카보네이트(PC) 또는 부틸렌 카보네이트(BC) 등의 환형 카보네이트; 또는 디메틸카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC) 또는 에틸프로필 카보네이트(EPC) 등의 사슬형 카보네이트를 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
또, 상기 유기 용매는 에스테르계 용매일 수 있으며, 보다 구체적으로 메틸 포르메이트(methyl formate), 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), 이소프로필 아세테이트(isopropyl acetate), 이소아밀 아세테이트(isoamyl acetate), 메틸 프로피오네이트(methyl propionate), 에틸 프로피오네이트(ethyl propionate), 메틸 부틸레이트(methyl butylate) 또는 에틸 부틸레이트(ethyl butylate) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제1 전해액 내 리튬염의 농도는 0.8 M 내지 2.5 M일 수 있으며, 제1 전해액의 사용량은 주액 전해액량의 총 부피 대비 5 내지 70 부피%, 바람직하게는 10 내지 30 부피%일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 제1 전해액은 리튬 이차전지의 안정성을 향상시키기 위해 설폰산 에스테르 등의 첨가제를 더 포함할 수 있다.
상기 설폰산 에스테르로서는, 1,3-프로판설톤, 1,4-부탄 설톤, 또는 2,4-부탄 설톤 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 또 상기 설폰산 에스테르로는 설포닐기를 2개 갖는 환식 디설폰산에스테르를 사용할 수 있으며, 단독으로 또는 상기한 설폰산 에스테르와의 혼합물 형태로 사용할 수도 있다.
본 발명의 일 실시예에 따르면, 상기 제1 전해액이 상기 설폰산 에스테르를 포함하는 경우, 제1 충전 공정의 충전에 의해 전극 상에 설폰산 에스테르 유래의 피막이 형성될 수 있다. 이 경우, 양극 활물질로서, 예를 들어 리튬 망간 산화물을 이용하는 경우 전지의 충방전에 의한 전해질 층의 망간 용출을 억제할 수 있다.
상기 설폰산 에스테르의 첨가제의 사용량은 상기 제1 전해액 100중량%에 대해 0.01중량% 내지 10 량%, 구체적으로는 0.05중량% 내지 6중량%일 수 있다. 상기 설폰산 에스테르의 사용량이 상기 범위내이면, 제1 충전 후, 전극 층상에, 더욱 구체적으로 상기 단계 I에서 얻은 SEI 막이 형성된 전극 층 상에 상기 설폰산 에스테르 유래의 피막이 균일하고 얇게 형성될 수 있어 리튬 이차전지의 수명 특성을 더욱 향상시킬 수 있다. 특히, 본 발명의 일 실시예에 따르면, 상기 단계 I에 의해 SEI 막이 형성된 후, 상기 단계 II의 제1 충전 단계 후 설폰산 에스테르 유래의 막이 형성될 수 있다. 이 경우, 첫회 충전시의 가스 발생량이 억제될 수 있으므로, 안정성이 좋은 우수한 리튬 이차전지를 얻을 수 있다.
이외에 수명 향상을 위해 비닐린계 첨가제; 스웰링(swelling) 억제, 과충전, 과방전 억제 등의 안전성 향상, 저전압 억제 또는 수명 향상 등의 니트릴계 첨가제; 산화전압이 높아서 고전압 전해액에 유용하고, 수명향상 또는 출력 향상을 위한 포스페이트계 첨가제; 및 O-Si 결합 등 HF를 제거할 수 있는 작용기를 지닌 HF 스케빈저(scavenger) 등도 추가로 사용할 수 있다.
상기 니트릴계 첨가제는 예를 들어 숙시노니트릴, 아디포니트릴, 글루타르노니트릴, 아세토니트릴 및 2-메틸 글루타르노니트릴로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 둘 이상의 혼합물일 수 있으며, 포스페이트계 첨가제는 예를 들어 알킬플루오르 포스페이트류 등을 사용할 수 있다. 상기 첨가제들은 제2 전해액에 있어서 용매로도 사용할 수 있다.
또한, 본 발명의 또 다른 실시예에 따라, 상기 전해액 주액 및 충전의 조합 공정을 1회만 수행하는 경우, 즉 제2 주액 단계 및 제2 충전 단계를 수행하지 않을 경우, 상기 제1 전해액은 부식 방지용 리튬염, 비수성 유기용매 및 필요에 따라 첨가제를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 이미드계 리튬염을 포함하는 제1 전해액을 주입함으로써, 이미드계 리튬염의 장점인 리튬 이차전지의 출력 특성 및 수명 특성을 향상시킬 수 있다.
상기 이미드계 리튬염로는 구체적으로 리튬 비스플루오로설포닐 이미드(LiFSI), 리튬 비스트리플루오로메탄설포닐이미드(LiTFSI), 또는 리튬 비스(퍼플루오로에틸설퍼닐 이미드)(LiBETI) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 보다 구체적으로 상기 이미드계 리튬염은 LiFSI를 포함할 수 있다.
또, 본 발명의 일 실시예에 따른 제조방법에 따르면, 상기 단계 II에서 전해액 주액 및 충전의 조합 공정을 2회 이상 수행하는 경우, 제1 전해액 및 제2 전해액의 종류를 다르게 사용함으로써, 리튬 이차전지의 성능을 더욱 향상시킬 수 있다. 예를 들어, 상기 제1 전해액으로 부식 방지용 리튬염을 포함하는 전해액을 사용하고, 제2 전해액으로 전지의 성능 향상용 리튬염을 사용할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제1 전해액으로 부식 방지용 리튬염을 포함하는 전해액을 사용하여 1차 충전 단계(1차 활성화 단계)를 수행함으로써 집전체 표면, 더욱 구체적으로는 활물질과 활물질 사이의 집전체 표면에 부식 방지피막을 안정적으로 형성할 수 있다. 이렇게 안정적으로 부식 방지 피막이 형성된 상태에서 제2 전해액으로 전지의 성능 향상용 리튬염을 포함하는 제2 전해액을 주액한 후 2차 충전 단계(2차 활성화 단계)를 수행함으로써, 리튬 이차전지의 출력 특성과 수명 특성을 동시에 향상시킬 수 있다.
예를 들면, 도 2는 본 발명의 일 실시예에 따른 리튬 이차전지의 제조 방법에 있어서, 전해액 주액 및 충전의 조합 공정을 포함하는 단계 II를 도시한 플로우 챠트이다.
도 2를 참조하여 구체적으로 살펴보면, 본 발명의 일 실시예에 따른 리튬 이차전지의 제조방법에 있어서, 상기 단계 II는 제1 전해액을 주입하는 제1 주액 단계(단계 i)); 제1 충전단계(단계 ii)); 제2 전해액을 주입하는 제2 주액 단계(단계 iii)); 제2 충전단계(단계 iv))를 포함할 수 있다.
먼저, 상기 제1 주액단계(단계 i))은 전지 조립체를 포함하는 전지 케이스에 제1 전해액을 주입하는 단계이다.
상기 제1 전해액은 상술한 종류 및 양의 부식 방지용 리튬염, 비수성 유기용매 및 필요에 따라 첨가제를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 1차적으로 부식 방지용 리튬염을 포함하는 제1 전해액을 사용함으로써, 집전체 상에 부식 방지 피막을 안정적으로 형성할 수 있다.
다음으로 상기 단계 II에서의 상기 제1 충전단계(단계 ii))은, 상기 단계 i)에서 얻은 전지셀을 1차적으로 충전하는 단계이다.
본 발명의 일 실시예에 따르면, 상기 전지셀을 충전하기 전에, 상기 단계 i)의 제1 주액 단계 후, 전지 케이스의 전해액 주입구를 통상적인 방법으로 용접 또는 열융착 등에 의해 가밀봉하거나, 밀봉하지 않을 수 있다. 이때, 상기 가밀봉은 단계 iii)의 제2 전해액을 주입하기 위해 전해액 주입구를 임시적으로 밀봉하는 것을 의미할 수 있다.
그러나, 본 발명의 일 실시예에 따르면, 전기적 반응에 의해 발생하는 유기용매의 분해로 인해 CO2 등의 가스(gas)가 발생하므로, 상기 가스를 배출시킴으로써 리튬 이차전지의 성능에 악영향을 끼치지 않기 위해, 전해액 주입구를 밀봉하지 않은 상태로 제1 충전이 수행되는 것이 바람직할 수 있다.
상기 제1 충전단계는 전기적 반응을 통해 활성화시키는 단계로서, 충전 전압 1 V 내지 4.5 V 범위 조건에서 0.01 C 내지 5C, 구체적으로는 0.5C 내지 3C, 보다 구체적으로는 0.2C 내지 2C, 보다 더 구체적으로는 0.1C 내지 1C의 정전류 조건에서 충전을 실시할 수 있다. 또 상기 충전 전압은 보다 구체적으로 2 V 내지 4.2 V 범위일 수 있다. 상기한 조건에서 제1 충전단계를 수행함으로써 부식 방지 피막인 AlF3 피막이 안정적으로 집전체 상에 형성될 수 있다.
다음으로 상기 단계 II에서의 상기 제2 주액단계(단계 iii))는, 상기 단계 ii)에서 부식 방지 피막이 안정적으로 형성된 전지 조립체를 포함하는 전지셀에 제2 전해액을 주입하는 제2 주액 단계이다.
상기 제2 전해액은 상기 제1 전해액과 마찬가지로, 리튬염, 비수성 유기용매 및 필요에 따라 첨가제를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제2 전해액에 포함되는 리튬염은 리튬 이차전지의 성능을 향상시킬 수 있는 리튬염으로서, 상기 단계 ii)로 인한 부식 방지 피막 형성으로 인해 상기 제2 전해액에 포함되는 리튬염의 장점을 최대한 도출할 수 있어, 리튬 이차전지의 출력 특성 및 수명 특성을 동시에 향상시킬 수 있다.
상기 제2 전해액에 포함되는 리튬염은 이미드계 리튬염으로서, 구체적으로는 리튬 비스플루오로설포닐 이미드(LiFSI), 리튬 비스트리플루오로메탄설포닐이미드(LiTFSI), 및 리튬 비스(퍼플루오로에틸설퍼닐 이미드)(LiBETI) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 보다 구체적으로 상기 이미드계 리튬염은 LiFSI를 포함할 수 있다.
상기 이미드염은 LiPF6 대비 HF 발생이 적고 이온 전도도가 높아 출력 특성 및 수명 특성을 증가시키는 등 장점이 있다. 그러나, 전해액에 이미드염을 사용할 경우 금속, 예를 들어 알루미늄 집전체의 부식 억제력을 저하시키는 문제가 있다. 또한, 전극에 부식을 억제할 수 있는 피막이 안정적으로 충분히 형성되지 않은 경우 이미드계 리튬염을 사용함으로써 알루미늄의 부식을 더욱 악화시킬 가능성도 있을 수 있다. 따라서, 본 발명의 일 실시예에 따르면, 상기 제1 충전단계 이후, 전극 상에 안정적으로 부식 방지 피막을 형성시킨 후, 이미드계 리튬염을 포함하는 제2 전해액을 주입함으로써, 이미드계 리튬염의 장점인 리튬 이차전지의 출력 특성 및 수명 특성을 더욱 향상시킬 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 제2 전해액에 포함되는 비수성 유기용매 및 필요에 따라 첨가되는 첨가제는 상기 제1 전해액과 동일한 것을 사용할 수 있다.
본 발명의 일 실시예에 따라, 상기 제1 전해액 또는 제2 전해액에 이미드계 리튬염을 사용할 경우 유기용매 중 PC(프로필렌 카보네이트)의 함량을 늘려 사용할 수 있다. PC는 EC(에틸렌 카보네이트) 대비 분해가 적으므로 수명 특성이나 저장 특성 및, 스웰링(swelling) 감소 측면에서 유리할 수 있다. 그러나 일반적인 흑연계 음극 사용시 PC는 탈리(exfoliation) 현상을 일으켜 음극을 분해시키므로 10중량% 이내로 사용량에 한계가 있을 수 있다. 그러나 이미드계 리튬염을 사용하는 경우, 음극에 보호 피막을 형성하여 PC를 30중량%까지 사용할 수도 있다.
본 발명의 일 실시예에 따르면, 상기 제2 전해액 내 리튬염 농도는 0.8 M 내지 2.5 M일 수 있으며, 제2 전해액의 사용량은 주액 전해액 양의 총 부피에 대하여 30 내지 95 부피%, 보다 구체적으로는 70 내지 90 부피%를 사용할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제2 전해액의 주입시, 전지셀에 단계 i)에서 주액한 제1 전해액이 존재하는 상태에서 제2 전해액을 주액하게 되어 제1 전해액과 제2 전해액의 혼합이 이루어질 수 있다.
이 때의 혼합비는 경우에 따라 달라질 수 있으며, 제1 전해액과 제2 전해액의 혼합 비율은 예를 들어 10:90 내지 30:70 비율이 고려될 수 있으나 이에 한정 되는 것은 아니다.
다음으로 상기 단계 II에서의 상기 제2 충전단계(단계 iv))은, 상기 단계 iii)에서 얻은 제2 전해액이 주입된 전지셀을 2차적으로 충전하는 단계이다.
본 발명의 일 실시예에 따르면, 상기 단계 iii)의 제2 주액 단계 후, 전지 케이스의 전해액 주입구를 통상적인 방법으로 용접 또는 열융착 등에 의해 밀봉하여 충전을 실시할 수 있다.
상기 제2 충전단계는 전기적 반응을 통해 활성화시키는 단계로서, 충전 전압 2 V 내지 4.5 V 범위 조건에서, 0.01C 내지 5C, 구체적으로는 0.5C 내지 3C, 보다 구체적으로는 0.2C 내지 2C, 보다 더 구체적으로는 0.1C 내지 1C의 정전류 조건에서 충전을 실시할 수 있다. 보다 구체적으로 상기 충전 전압은 2 V 내지 4.2 V 범위일 수 있다.
본 발명의 일 실시예에 따르면, 상기 제2 충전단계에 의해 충전이 완료된 상태가 첫회 충전 완료 상태를 의미할 수 있다.
또한, 본 발명의 일 실시예에 따라, 상기 전해액 주액 단계 및 충전 단계를 3회 이상 수행하는 경우, 전지의 추가적인 출력 특성 및 수명 특성을 향상하기 위하여, 적절한 리튬염 및 첨가제를 선택하여 사용할 수 있으며, 이에 한정되는 것은 아니다.
한편, 본 발명은 상기 리튬 이차전지의 제조방법에 의해 제조된 리튬 이차전지를 제공할 수 있다.
본 발명의 일 실시예에 따른 상기 리튬 이차전지는, 상기 제조방법에 따라 전처리에 의해 전극 상에 SEI 막을 미리 형성하고, SEI 막이 형성된 전극을 포함하는 전지 케이스에 제1 전해액, 또는 서로 다른 제1 전해액 및 제2 전해액을 단계별로 나누어 주액 및 충전을 실시함으로써 목적하는 피막을 전극 및 집전체에 형성할 수 있고, 이로 인해 리튬 이차전지의 수명 특성 및 출력 특성을 더욱 향상시킬 수 있다.
구체적으로, 상기 제조방법에 따라 제조된 리튬 이차전지는 표면 상에 SEI 막 형성제 유래 SEI 막; 및 전해액의 전기화학적 산화 환원반응에 의해 생성된 1층 이상의 피막이 순차로 형성된 전극을 포함할 수 있다.
상기 SEI 막 및 피막내 구성성분들은 생성기체 분석법(evolved gas analysis, EGA), 퓨리에 변환 적외선 분석(Fourier transform infrared analysis), 2차원 핵자기 공명법(two-dimensional nuclear magnetic resonance), X-선 광전자 분광법(X-ray photoelectron spectroscopy), 비행시간형 이차이온 질량 분석법(time of flight-secondary-ion mass spectrometry, TOF-SIMS) 및 주사전자현미경(scanning electron microscopy)을 이용하여 확인할 수 있다.
일례로, SEI 막 형성제로서, 비닐렌 카보네이트를 사용한 경우, 폴리(비닐렌 카보네이트), 비닐렌카보네이트계 올리고머, 비닐렌 카보네이트의 개환 폴리머(ring-open polymer) 및 폴리아세틸렌 등을 포함하는 폴리머종;과 리튬 비닐렌 디카보네이트(CHOCO2Li), 리튬 디비닐렌 디카보네이트(CH=CHOCO2Li), 리튬 디비닐렌 디알콕사이드(CH=CHOLi) 및 리튬 카르복실레이트(RCOOLi, R은 수소 또는 알킬기임) 등을 포함하는 비닐렌 카보네이트의 환원 생성물을 포함하는 SEI 막이 형성될 수 있다.
또, 상기 리튬 이차전지는 제조시 각 단계별로 주입되는 전해액 내 첨가제의 종류를 제어함에 따라, 상기 SEI 막과 함께, 전해액내 첨가된 첨가제 유래의 서로 다른 종류의 피막을 2층 이상 포함할 수도 있다.
구체적으로, 상기 리튬 이차전지의 제조시 상기 SEI 막 형성제가 불포화 결합을 포함하는 환형 카보네이트계 화합물을 포함하고, 상기 제1전해액은 설폰산 에스테르계 첨가제를 포함하는 경우, 표면 상에 불포화 결합을 포함하는 환형 카보네이트계 화합물 유래 SEI 막; 및 설폰산 에스테르계 첨가제 유래 피막이 순차로 형성된 전극을 포함할 수 있다. 또 이때 상기 제1전해액이 부식방지용 첨가제를 포함하는 경우, 상기 전극의 집전체 상에 부식방지층, AlF3 층이 형성될 수도 있다.
또, 상기 리튬 이차전지의 제조시 상기 SEI 막 형성제가 불포화 결합을 포함하는 환형 카보네이트계 화합물을 포함하고, 상기 제1전해액이 설폰산 에스테르계 첨가제를 포함하며, 그리고 상기 제2전해액이 이미드계 리튬염을 포함하는 경우, 상기 리튬 이차전지는 표면 상에 불포화 결합을 포함하는 환형 카보네이트계 화합물 유래 SEI 막; 설폰산 에스테르계 첨가제 유래 피막; 및 이미드계 리튬염 유래 피막이 순차로 형성된 전극을 포함할 수 있다.
상기한 바와 같이, 본 발명의 일 실시예에 따른 상기 리튬 이차전지는 충분히 형성된 SEI 막 상에 목적하는 피막이 더욱 형성됨으로써, 리튬 이차전지의 수명 특성 및 출력 특성을 더욱 향상시킬 있다. 이에 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용할 수 있다.
따라서, 본 발명의 또 다른 일 실시예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당 분야에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
단계 I : 전처리 단계
<전극의 제조>
양극 활물질로서 Li(Ni0.33Co0.33Mn0.33)O2 96 중량%, 도전제로 카본 블랙(carbon black) 2 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 2 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 형성용 조성물을 제조하였다. 상기 양극 형성용 조성물을 두께 20 ㎛의 양극 집전체인 알루미늄(Al) 박막에 도포하고 건조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
또한, 음극 활물질로 탄소 분말, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 형성용 조성물을 제조하였다. 상기 음극 형성용 조성물을 두께가 10 ㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
<SEI 막 형성용 조성물의 제조>
에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC): 디메틸 카보네이트(DMC)=3:3:4 (부피비)의 조성을 갖는 비수성 유기 용매에 리튬염으로서 LiPF6를 1.0M의 농도로 첨가한 후, SEI 막 형성용 조성물 총 중량에 대하여 비닐렌 카보네이트(VC) 1 중량%를 첨가하여 SEI 막 형성용 조성물을 제조하였다.
<전처리 단계 : SEI 막 형성 단계>
15 mL의 용기(bath)에 상기에서 제조한 SEI 막 형성용 조성물 및 음극을 넣은 후, 상대 전극(counter electrode)으로 리튬 금속 호일(foil)을 사용하여 전기화학적 반응을 수행하였다. 상기 전기화학적 반응은 음극 및 상대전극에 2.5V에서 0.005V까지의 전압 범위내에서는 0.05C 정전류를 걸어주고, 0.005V가 되면 정전압의 조건으로 전류값이 1/20C가 될 때까지 전류를 가하여 상기 음극 상에 SEI 막을 형성시켰다.
단계 II : 전해액 주액 및 충전 단계(2회 주액)
단계 i) 제1 전해액 주액 단계
<제1 전해액의 제조>
프로필렌 카보네이트(PC): 에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC)=3:3:4 (부피비)의 조성을 갖는 비수성 유기 용매에, 리튬염으로서 비수성 전해액 총량을 기준으로 LiPF6 1 M 0.25ml, 및 첨가제로서 비수성 전해액 총량을 기준으로 1,3-프로판 설톤(PS) 1 중량%를 첨가하여 제1 전해액을 제조하였다.
<제1 전해액 주액 단계>
상기 단계 I에서 제조된 양극과, SEI 막이 형성된 음극 사이에 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 개재시켜 전지 조립체를 제작한 후, 상기 전지 조립체를 전지 케이스에 넣고, 상기 제1 전해액을 주액하였다.
단계 ii) 제1 충전단계
상기 단계 i)에서 얻은 전지 케이스의 전해액 주입구를 밀봉하지 않은 상태로, 제1 충전 공정으로서 4.2V까지 0.1C의 정전류 조건에서 제1 충전을 수행하였다.
단계 iii) 제2 전해액 주액 단계
<제2 전해액의 제조>
프로필렌 카보네이트(PC): 에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC)=3:3:4 (부피비)의 조성을 갖는 비수성 유기 용매 및 리튬염으로서 비수성 전해액 총량을 기준으로 LiFSI 1 M 0.25ml을 첨가하여 제2 전해액을 제조한 후, 상기 상기 단계 ii)에서 제1충전한 전극 조립체에 주액 하였다.
단계 iv) 제2 충전단계
상기 단계 iii)에서 얻은 전지 케이스의 전해액 주입구를 밀봉한 후, 제2 충전 공정으로서 4.2V까지 0.2C의 정전류 조건에서 제2 충전을 수행하였다.
실시예 2
상기 실시예 1에서 단계 II의 전해액 주액 및 충전 단계를 다음과 같이 1회만 수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 리튬 이차전지를 제조하였다.
단계 II : 전해액 주액 단계 및 충전단계(1회 주액)
i) 제1 전해액 주액 단계
<제1 전해액의 제조>
프로필렌 카보네이트(PC):에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC)=3:3:4 (부피비)의 조성을 갖는 비수성 유기 용매에, 리튬염으로서 비수성 전해액 총량을 기준으로 LiPF6 1 M 0.5ml 및 첨가제로서 비수성 전해액 총량을 기준으로, 1,3-프로판 설톤(PS) 1 중량%를 첨가하여 제1 전해액을 제조하였다.
<제1 전해액 주액단계>
상기 단계 I에서 제조된 양극과, SEI 막이 형성된 음극 사이에 폴리프로필렌/폴리에틸렌/폴리프로필렌(PP/PE/PP) 3층으로 이루어진 분리막을 개재시켜 전지 조립체를 제작한 후, 상기 전지 조립체를 전지 케이스에 넣고 상기 제1 전해액을 주액하였다.
단계 ii) 제1 충전단계
상기 단계 i)에서 얻은 전지 케이스의 전해액 주입구를 밀봉하지 않은 상태로, 제1 충전 공정으로서 4.2V까지 0.1C의 정전류 조건에서 제1 충전을 수행하였다.
실시예 3 내지 8
하기 표 1에 기재된 바와 같은 배합으로 SEI 막 형성용 조성물, 제1 및/또는 제2 전해액을 제조하여 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 리튬 이차전지를 제조하였다.
비교예 1
i) 전해액 주액 단계
< 전해액의 제조>
프로필렌 카보네이트(PC): 에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC)=3:3:4 (부피비)의 조성을 갖는 비수성 유기 용매에, 리튬염으로서 비수성 전해액 총량을 기준으로 LiPF6 0.5 M 및 LiFSI 0.5 M씩 총 0.5ml을 첨가하여 전해액을 제조하였다.
<리튬 이차전지의 제조>
양극 활물질로서 Li(Ni0.33Co0.33Mn0.33)O2 96 중량%, 도전제로 카본 블랙(carbon black) 2 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 2 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 형성용 조성물을 제조하였다. 상기 양극 형성용 조성물을 두께 20 ㎛의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
또한, 음극 활물질로 탄소 분말, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 형성용 조성물을 제조하였다. 상기 음극 형성용 조성물을 두께가 10 ㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
이와 같이 제조된 양극과 음극 사이에 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 개재시켜 전지 조립체를 제작한 후, 상기 전지 조립체를 전지 케이스에 넣고, 상기 전해액을 주액하였다.
ii) 충전단계
상기 단계 i)에서 얻은 전지 케이스의 전해액 주입구를 밀봉한 후, 제1 충전 공정으로서 4.2V까지 0.1C의 정전류 조건에서 충전을 수행하였다.
비교예 2
단계 i) 제1 전해액 주액 단계
<제1 전해액의 제조>
프로필렌 카보네이트(PC): 에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC)=3:3:4 (부피비)의 조성을 갖는 비수성 유기 용매, 리튬염으로서 비수성 전해액 총량을 기준으로 LiPF6 1 M 0.25ml, 및 첨가제로서 비수성 전해액 총량을 기준으로, 1,3-프로판 설톤(PS) 1 중량%를 첨가하여 제1 전해액을 제조하였다.
<제1 전해액 주액 단계>
상기 비교예 1에서 제조된 양극 및 음극 사이에 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막을 개재시켜 전지 조립체를 제작한 후, 상기 전지 조립체를 전지 케이스에 넣고, 상기 제1 전해액을 주액하였다.
단계 ii) 제1 충전단계
상기 단계 i)에서 얻은 전지 케이스의 전해액 주입구를 밀봉하지 않은 상태로, 제1 충전 공정으로서 4.2V까지 0.1C의 정전류 조건에서 제1 충전을 수행하였다.
단계 iii) 제2 전해액 주액 단계
<제2 전해액의 제조>
프로필렌 카보네이트(PC): 에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC)=3:3:4 (부피비)의 조성을 갖는 비수성 유기 용매에, 리튬염으로서 비수성 전해액 총량을 기준으로 LiFSI 1 M 0.25ml을 첨가하여 제2 전해액을 제조한 후, 상기 상기 단계 ii)에서 제1충전한 전극 조립체에 주액 하였다.
단계 iv) 제2 충전단계
상기 단계 iii)에서 얻은 전지 케이스의 전해액 주입구를 밀봉한 후, 제2 충전 공정으로서 4.2V까지 0.2C의 정전류 조건에서 제2 충전을 수행하였다.
비교예 3
상기 비교예 2의 리튬 이차전지의 제조방법에 있어서, 상기 제1 전해액 제조시 리튬염으로서 LiPF6 대신 LiFSI을 사용하고, 제2 전해액 제조시 리튬염으로서 LiFSI 대신 LiPF6을 사용하고, 그리고 첨가제로서 1,3-프로판 설톤(PS)을 더 사용한 것을 제외하고는, 비교예 2와 동일한 방법으로 수행하여 리튬 이차전지를 제조하였다.
비교예 4
상기 비교예 1의 리튬 이차전지의 제조방법에 있어서, 프로필렌 카보네이트(PC): 에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC) 3:3:4 (부피비)의 조성을 갖는 비수성 유기 용매에에, 리튬염으로서 비수성 전해액 총량을 기준으로 LiPF6 1 M 0.5ml, 및 첨가제로서 비수성 전해액 총량을 기준으로, 1,3 프로판 설톤 1 중량% 및 비닐렌 카보네이트(VC) 1 중량%을 첨가하여 제조한 전해액을 사용하는 것을 제외하고는, 비교예 1과 동일한 방법으로 수행하여 리튬 이차전지를 제조하였다.
비교예 5
상기 비교예 3의 리튬 이차전지의 제조방법에 있어서, 프로필렌 카보네이트(PC): 에틸렌 카보네이트(EC): 에틸메틸 카보네이트(EMC) =3:3:4 (부피비)의 조성을 갖는 비수성 유기 용매에에, 리튬염으로서 비수성 전해액 총량을 기준으로 LiPF6 1 M 0.5ml, 및 첨가제로서 비수성 전해액 총량을 기준으로, 비닐렌 카보네이트(VC) 1 중량%을 첨가하여 제조한 전해액을 사용하는 것을 제외하고는, 비교예 3과 동일한 방법으로 수행하여 리튬 이차전지를 제조하였다.
상기 실시예 1 내지 8, 및 비교예 1 내지 5에서 사용한 SEI 막 형성용 조성물, 그리고 제1 및 제2 전해액의 조성은 하기 표 1과 같다.
음극 SEI 막 형성용 조성물 제1 전해액 제2 전해액
실시예1 ○(조성A) ○(PC/EC/EMC=3/3/4, LiPF6 1M, PS 1중량%) ○(PC/EC/EMC=3/3/4, LiFSI 1M)
실시예2 ○(조성A) ○(PC/EC/EMC=3/3/4, LiPF6 1M, PS 1중량%) ×
실시예3 ○(조성B) ○(PC/EC/EMC=3/3/4, LiPF6 1M, PS 1중량%) ○(PC/EC/EMC=3/3/4, LiFSI 1M)
실시예4 ○(조성C) ○(PC/EC/EMC=3/3/4, LiPF6 1M, PS 1중량%) ×
실시예5 ○(조성D) ○(PC/EC/EMC=3/3/4, LiPF6 1M, PS 1중량%) ○(PC/EC/EMC=3/3/4, LiFSI 1M)
실시예6 ○(조성E) ○(PC/EC/EMC=3/3/4, LiPF6 1M, PS 1중량%) ×
실시예7 ○(조성F) ○(PC/EC/EMC=3/3/4, LiPF6 1M, PS 1중량%) (PC/EC/EMC=3/3/4, LiFSI 1M)
실시예8 ○(조성G) ○(PC/EC/EMC=3/3/4, LiPF6 1M, PS 1중량%) ×
비교예1 × ○(PC/EC/EMC=3/3/4, LiPF6 0.5M, LiFSI 0.5M) ×
비교예2 × ○(PC/EC/EMC=3/3/4, LiPF6 1M, PS 1중량%) (PC/EC/EMC=3/3/4, LiFSI 1M)
비교예3 × ○(PC/EC/EMC=3/3/4, LiFSI 1M) (PC/EC/EMC=3/3/4, LiPF6 1M, PS 1중량%)
비교예4 × ○(PC/EC/EMC=3/3/4, LiPF6 1M, PS 1중량%, VC 1중량%) ×
비교예 5 × ○(EC/EMC/DMC=3/3/4, LiPF6 1M, VC 1중량%) ○(PC/EC/EMC=3/3/4, LiPF6 1M, PS 1중량%)
상기 표 1에서, 용매의 혼합비 기준은 부피비이며,
조성A : EC/EMC/DMC=3/3/4, LiPF6 1M, VC 1중량%
조성B : EC/EMC/DMC=3/3/4, LiPF6 1M, FEC 1중량%
조성C : EC/EMC/DMC=3/3/4, LiPF6 0.9M, LiODFB 0.1M
조성D : EC/EMC/DMC=3/3/4, LiPF6 0.9M, LiFSI 0.1M
조성E : EC/EMC/DMC=3/3/4, LiPF6 0.9M, LiF2O2P 0.1M
조성F : EC/EMC/DMC=3/3/4, LiPF6 1M, 피리미딘 0.5중량%
조성G : EC/EMC/DMC=3/3/4, LiPF6 1M, PS 0.5중량%이다.
실험예 1 :출력 특성 실험
실시예 1과 2, 및 비교예 1과 4의 리튬 이차전지를 상온에서 SOC(충전 심도) 별로 0.5C로 10초간 방전하여 발생하는 전압차로 출력을 계산하였다. 그 결과를 도 3에 나타내었다.
도 3에 나타낸 바와 같이, 전극 상에 SEI 막을 형성하는 전처리 단계를 수행한 실시예 1과 2의 리튬 이차전지는, SEI 막 형성 전처리 단계를 수행하지 않은 비교예 1 및 4와 비교하여 출력 특성이 현저히 향상되었다.
구체적으로 살펴보면, 전극 상에 SEI 막을 형성하는 전처리 단계를 수행하면서, 전해액 주액 및 충전 단계를 2회 실시한 실시예 1의 경우, 비교예 1 및 4에 비해 SOC 90(%)에서 약 15% 내지 70%까지 향상됨을 알 수 있다.
또, 실시예 2와 비교예 4를 비교해 보면, 전극 상에 SEI 막을 형성하는 전처리 단계를 수행하지 않은 비교예 4는 실시예 2에 비해 약 15% 내지 20%까지 감소함을 알 수 있다.
따라서, 전해액 주액 및 충전 단계 이전에 전극 상에 SEI 막을 형성하는 전처리 단계를 수행하는 경우, 출력특성이 현저히 향상되었음을 알 수 있다.
실험예 2 : 수명 특성 실험
실시예 1 내지 5, 및 비교예 1 내지 4의 리튬 이차전지를 상온에서 정전류/정전압(CC/CV) 조건에서 4.2V/ 3.25mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 3.03V까지 3C로 방전하고, 그 방전 용량을 측정하였다. 이를 1 내지 80 사이클로 반복 실시하였고, 측정한 방전 용량을 도 4에 나타내었다.
도 4에서 알 수 있는 바와 같이, 본 발명에 따라, 전극 상에 SEI 막을 형성하는 전처리 단계를 수행하는 경우의 실시예 1 내지 5는, 그렇지 않은 비교예 1 내지 4에 비해 수명 특성이 현저히 향상됨을 알 수 있다.
구체적으로 살펴보면, 전극 상에 SEI 막을 형성하는 전처리 단계를 수행하면서, 전해액 주액 및 충전 단계를 1회 이상 실시한 실시예 1의 경우, 비교예 1 내지 4에 비해 초기 방전 용량은 유사함을 나타내었으나 약 10회 사이클 이후 방전 용량이 현저히 향상됨을 알 수 있다.
즉, 실시예 1 내지 5의 이차전지는 1회 내지 80회까지 수명 특성 결과 그래프의 기울기가 완만하여 80회째 방전 용량이 초기 방전 용량에 비해 거의 감소하지 않은데 반해, 비교예 1 내지 4의 경우 30회째 사이클 이후 현저히 감소하였고, 80회째 사이클에서는 실시예 1에 비해 수명특성이 약 5% 내지 15%까지 감소함을 확인하였다.
또한, 전해액 주액 단계 및 충전 단계를 동일 조건에서 2회 실시한 비교예 1과 2를 비교하여 보면, 전해액 주액 및 충전 단계 이전에 전극 상에 SEI 막을 형성하는 전처리 단계를 수행 유무에 따라 약 11% 정도 감소함을 보였다.
따라서, 전해액 주액 및 충전 단계 이전에 전극 상에 SEI 막을 형성하는 전처리 단계를 수행하는 경우, 수명 특성이 현저히 향상되었음을 알 수 있다.
실험예 3 : 스웰링 (swelling) 특성 실험
실시예 2 내지 8, 그리고 비교예 4 및 5의 리튬 이차전지를 상온에서 정전류/정전압(CC/CV) 조건에서 4.2V/3.25mA까지 1C로 충전한 다음, 오븐에 넣고 1시간 동안 85 ℃로 승온 후 4시간 온도 유지 후의 전지 두께를 측정하였다. 초기 두께에서 부풀어 오른 정도를 표 2에 나타내었다.
부풀어 오른 정도(mm)
실시예 2 0.31
실시예 3 0.25
실시예 4 0.44
실시예 5 0.50
실시예 6 0.36
실시예 7 0.40
실시예 8 0.38
비교예 4 1.40
비교예 5 1.55
상기 표 2에 나타낸 바와 같이, 실시예 2 내지 8의 경우 비교예 4 및 5에 비해 스웰링 특성이 현저히 감소함을 알 수 있다.
일례로, 실시예 2의 전지는 부풀어 오른 정도가 0.31 nm이고, 비교예 4는 1.40 nm로서, 실시예 2의 전극의 초기 두께에서 부풀어 오른 정도는 비교예 4에 비해 약 351%까지 감소함을 확인하였다.

Claims (34)

  1. SEI(solid electrolyte interphase) 막 형성용 조성물에, 전극을 함침시킨 후 전압을 인가하여 상기 전극 상에 SEI 막을 형성하는 전처리 단계, 및
    상기 SEI 막이 형성된 전극을 이용하여 전지 조립체를 제조한 후, 이를 전지 케이스에 넣고, 전해액 주액 및 충전의 조합 공정을 1회 이상 수행하는 단계를 포함하며,
    상기 SEI 막 형성용 조성물은 리튬염, 비수계 유기용매, 및 전기 화학적 산화 또는 환원 분해반응에 의해 SEI 막을 형성하는 SEI 막 형성제를 포함하는 것인 리튬 이차전지의 제조방법.
  2. 제1항에 있어서,
    상기 SEI 막 형성제는 불포화 결합을 포함하는 환형 카보네이트계 화합물; 할로겐 원자를 포함하는 환형 또는 사슬형 카보네이트계 화합물; 옥살라토 착물을 음이온으로 하는 리튬염; 이미드계 리튬염; 플루오로포스페이트계 리튬염; 분자내 질소원자를 2개 이상 포함하는 6원 방향족 헤테로 고리 화합물; 및 설톤계 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물을 포함하는 리튬 이차전지의 제조방법.
  3. 제1항에 있어서,
    상기 SEI 막 형성제는 비닐렌 카보네이트, 메틸비닐렌 카보네이트, 에틸 비닐렌 카보네이트, 프로필 비닐렌 카보네이트, 디메틸 비닐렌 카보네이트 및 비닐 에틸렌 카보네이트로 이루어진 군에서 선택된 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 리튬 이차전지의 제조방법.
  4. 제1항에 있어서,
    상기 SEI 막 형성제는 상기 SEI 막 형성용 조성물 총 중량에 대하여 0.1 중량% 내지 10 중량%의 양으로 포함되는 것인 리튬 이차전지의 제조방법.
  5. 제1항에 있어서,
    상기 리튬염은 LiPF6, LiAsF6, LiCF3SO3, LiBF4, LiBF6, LiSbF6, LiAlO4, LiAlCl4, LiSO3CF3 및 LiClO4로 이루어진 군에서 선택된 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 리튬 이차전지의 제조방법.
  6. 제1항에 있어서,
    상기 SEI 막 형성은 0.01 C 내지 5 C의 정전류 조건에서 0.005 V 내지 4.5 V의 전압을 인가하여 수행되는 것인 리튬 이차전지의 제조방법.
  7. 제1항에 있어서,
    상기 SEI 막 형성은 상기 전극이 양극인 경우, 0.01 C 내지 5 C 의 정전류 조건에서 1 V 내지 4.5 V의 전압을 1 시간 내지 24 시간 인가하여 수행되는 것인 리튬 이차전지의 제조방법.
  8. 제1항에 있어서,
    상기 SEI 막 형성은 상기 전극이 음극인 경우, 0.01 C 내지 5 C의 정전류 조건에서 0.005 V 내지 4.5 V의 전압을 1 내지 24 시간 인가하여 수행되는 것인 리튬 이차전지의 제조방법.
  9. 제1항에 있어서,
    상기 전해액 주액 및 충전의 조합 공정은 1회 내지 3회 수행되는 것인 리튬 이차전지의 제조방법.
  10. 제1항에 있어서,
    상기 전해액 주액 및 충전의 조합 공정은,
    상기 전지 케이스에 제1 전해액을 주입하여 전지셀을 제조하는 제1 주액단계; 및
    상기 전지셀을 충전하는 제1 충전단계를 포함하는 것인 리튬 이차전지의 제조방법.
  11. 제1항에 있어서,
    상기 전해액 주액 및 충전의 조합 공정은,
    상기 전지 케이스에 제1 전해액을 주입하여 전지셀을 제조하는 제1 주액단계;
    상기 전지셀을 충전하는 제1 충전단계;
    상기 충전된 전지셀에 제2 전해액을 주입하는 제2 주액단계; 및
    상기 제2 전해액이 주입된 전지셀을 충전하는 제2 충전단계를 포함하는 것인 리튬 이차전지의 제조방법.
  12. 제10항 또는 제11항에 있어서,
    상기 제1 전해액은 LiPF6, LiAsF6, LiCF3SO3, LiBF4, LiBF6, LiSbF6, 및 LiSO3CF3로 이루어진 군에서 선택된 어느 하나 또는 둘 이상의 리튬염을 포함하고,
    상기 전극은 알루미늄 집전체를 포함하며,
    상기 제1 충전단계 후, 상기 집전체 상에 AlF3 피막이 형성되는 것인 리튬 이차전지의 제조방법.
  13. 제10항 또는 제11항에 있어서,
    상기 제1 전해액은 설폰산 에스테르계 첨가제를 더 포함하는 것인 리튬 이차전지의 제조방법.
  14. 제13항에 있어서,
    상기 설폰산 에스테르계 첨가제는 1,3-프로판설톤, 1,4-부탄 설톤, 2,4-부탄 설톤 및 환식 디설폰산 에스테르로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 리튬 이차전지의 제조방법.
  15. 제11항에 있어서,
    상기 제2 전해액은 이미드계 리튬염을 포함하는 것인 리튬 이차전지의 제조방법.
  16. 제15항에 있어서,
    상기 이미드계 리튬염은 리튬 비스플루오로설포닐 이미드, 리튬 비스트리플루오로메탄설포닐 이미드 및 리튬 비스(퍼플루오로에틸설퍼닐 이미드)로 이루어진 군에서 선택된 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 리튬 이차전지의 제조방법.
  17. 제11항에 있어서,
    상기 제2 전해액은 니트릴계 화합물 및 포스페이트계 화합물로 이루어진 군에서 선택되는 어느 하나, 또는 이들의 혼합물을 더 포함하는 것인 리튬 이차전지의 제조방법.
  18. 제10항 또는 제11항에 있어서,
    상기 제1 충전단계는 0.01 C 내지 5 C의 정전류 조건에서 1.0 V 내지 4.5 V의 전압을 인가하여 수행되는 것인 리튬 이차전지의 제조방법.
  19. 제11항에 있어서,
    상기 제1 충전단계는 제1 전해액 주입 후 전지 케이스를 밀봉하지 않은 상태로 수행되는 것인 리튬 이차전지의 제조방법.
  20. 제11항에 있어서,
    상기 제2 충전단계는 0.01 C 내지 5 C의 정전류 조건에서 2.0 V 내지 4.5 V의 전압을 인가하여 수행되는 것인 리튬 이차전지의 제조방법.
  21. 제11항에 있어서,
    상기 제2 충전단계는 제2 전해액 주입 후 전지 케이스를 밀봉한 상태로 수행되는 것인 리튬 이차전지의 제조방법.
  22. 제10항 또는 제11항에 있어서,
    상기 SEI 막 형성제는 불포화 결합을 포함하는 환형 카보네이트계 화합물을 포함하고,
    상기 제1 전해액은 LiPF6, LiAsF6, LiCF3SO3, LiBF4, LiBF6, LiSbF6, 및 LiSO3CF3로 이루어진 군에서 선택된 어느 하나 또는 둘 이상의 리튬염을 포함하는 것인 리튬 이차전지의 제조방법.
  23. 제22항에 있어서,
    상기 제1 전해액은 설폰산 에스테르계 첨가제를 더 포함하는 것인 리튬 이차전지의 제조방법.
  24. 제11항에 있어서,
    상기 SEI 막 형성제는 불포화 결합을 포함하는 환형 카보네이트계 화합물을 포함하고,
    상기 제1 전해액은 LiPF6, LiAsF6, LiCF3SO3, LiBF4, LiBF6, LiSbF6, 및 LiSO3CF3로 이루어진 군에서 선택된 어느 하나 또는 둘 이상의 리튬염; 및 설폰산 에스테르계 첨가제를 포함하며, 그리고
    상기 제2 전해액은 이미드계 리튬염을 포함하는 것인 리튬 이차전지의 제조방법.
  25. 제1항에 있어서,
    상기 전지 조립체는 젤리 롤형, 스택형, 및 스택/폴딩형 중 선택된 어느 하나인 것인 리튬 이차전지의 제조방법.
  26. 제1항에 있어서,
    상기 리튬 이차전지는 원통형, 각형 또는 파우치형인 것인 리튬 이차전지의 제조방법.
  27. 제1항에 따른 제조방법에 의해 제조된 리튬 이차전지.
  28. 제27항에 있어서,
    상기 리튬 이차전지는, 전극의 표면 상에 SEI 막 형성제 유래 SEI 막, 및 상기 SEI 막 상에 전해액의 전기화학적 산화 또는 환원반응에 의해 생성된 1층 이상의 피막이 형성된 전극을 포함하며,
    상기 SEI 막 형성제는 불포화 결합을 포함하는 환형 카보네이트계 화합물; 할로겐 원자를 포함하는 환형 또는 사슬형 카보네이트계 화합물; 옥살라토 착물을 음이온으로 하는 리튬염; 이미드계 리튬염; 플루오로포스페이트계 리튬염; 분자내 질소원자를 2개 이상 포함하는 6원 방향족 헤테로 고리 화합물; 및 설톤계 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 리튬 이차전지.
  29. 제27항에 있어서,
    상기 리튬 이차전지는, 전극의 표면 상에 불포화 결합을 포함하는 환형 카보네이트계 화합물 유래 SEI 막, 및 상기 SEI 막 상에 설폰산 에스테르계 첨가제 유래 피막이 형성된 전극을 포함하는 것인 리튬 이차전지.
  30. 제27항에 있어서,
    상기 리튬 이차전지는, 전극 표면 상에 불포화 결합을 포함하는 환형 카보네이트계 화합물 유래 SEI 막; 상기 SEI 막 상에 설폰산 에스테르계 첨가제 유래 피막; 그리고 상기 설폰산 에스테르계 첨가제 유래 피막 상에 이미드계 리튬염 유래 피막이 형성된 전극을 포함하는 것인 리튬 이차전지.
  31. 제27항에 따른 리튬 이차전지를 단위셀로 포함하는 전지모듈.
  32. 제31항에 따른 전지모듈을 포함하는 전지팩.
  33. 제32항에 있어서,
    중대형 디바이스의 전원으로 사용되는 것인 전지팩.
  34. 제33항에 있어서,
    상기 중대형 디바이스가 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 것인 전지팩.
PCT/KR2015/009527 2014-09-30 2015-09-10 리튬 이차전지의 제조방법 WO2016052881A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580001586.6A CN105684208B (zh) 2014-09-30 2015-09-10 锂二次电池的制造方法
PL15821012T PL3038202T3 (pl) 2014-09-30 2015-09-10 Sposób wytwarzania akumulatora litowego
EP15821012.0A EP3038202B1 (en) 2014-09-30 2015-09-10 Lithium secondary battery manufacturing method
US14/908,883 US10263293B2 (en) 2014-09-30 2015-09-10 Manufacturing method of lithium secondary battery
JP2016552396A JP6504473B2 (ja) 2014-09-30 2015-09-10 リチウム二次電池の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140131746 2014-09-30
KR10-2014-0131746 2014-09-30
KR1020150124201A KR101905246B1 (ko) 2014-09-30 2015-09-02 리튬 이차전지의 제조방법
KR10-2015-0124201 2015-09-02

Publications (1)

Publication Number Publication Date
WO2016052881A1 true WO2016052881A1 (ko) 2016-04-07

Family

ID=55630863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009527 WO2016052881A1 (ko) 2014-09-30 2015-09-10 리튬 이차전지의 제조방법

Country Status (1)

Country Link
WO (1) WO2016052881A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200003740A (ko) * 2018-07-02 2020-01-10 주식회사 엘지화학 고온 특성이 향상된 리튬 이차전지
WO2021155432A1 (en) * 2020-02-03 2021-08-12 Commonwealth Scientific And Industrial Research Organisation Chemical treatment for preparing metal electrodes
CN113793990A (zh) * 2021-09-15 2021-12-14 中国科学院长春应用化学研究所 一种人工合成特定固态电解质界面膜提高锂离子电池倍率性能的方法
CN113921917A (zh) * 2021-09-30 2022-01-11 蜂巢能源科技有限公司 一种锂离子电池的电解液浸润方法
CN114142094A (zh) * 2021-09-14 2022-03-04 惠州锂威新能源科技有限公司 一种硅基负极的锂离子电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050041513A (ko) * 2003-10-31 2005-05-04 삼성에스디아이 주식회사 리튬 전지의 제조방법
JP2008004424A (ja) * 2006-06-23 2008-01-10 Toyota Motor Corp リチウムイオン二次電池とその製造方法
KR20090021768A (ko) * 2007-08-28 2009-03-04 삼성에스디아이 주식회사 이차전지용 음극활물질 및 이를 포함하는 리튬이차전지
KR20120106672A (ko) * 2004-02-27 2012-09-26 산요덴키가부시키가이샤 리튬 2차 전지의 제조 방법
KR20130134242A (ko) * 2012-05-30 2013-12-10 주식회사 엘지화학 리튬 이차전지의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050041513A (ko) * 2003-10-31 2005-05-04 삼성에스디아이 주식회사 리튬 전지의 제조방법
KR20120106672A (ko) * 2004-02-27 2012-09-26 산요덴키가부시키가이샤 리튬 2차 전지의 제조 방법
JP2008004424A (ja) * 2006-06-23 2008-01-10 Toyota Motor Corp リチウムイオン二次電池とその製造方法
KR20090021768A (ko) * 2007-08-28 2009-03-04 삼성에스디아이 주식회사 이차전지용 음극활물질 및 이를 포함하는 리튬이차전지
KR20130134242A (ko) * 2012-05-30 2013-12-10 주식회사 엘지화학 리튬 이차전지의 제조방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200003740A (ko) * 2018-07-02 2020-01-10 주식회사 엘지화학 고온 특성이 향상된 리튬 이차전지
KR102402109B1 (ko) 2018-07-02 2022-05-26 주식회사 엘지에너지솔루션 고온 특성이 향상된 리튬 이차전지
WO2021155432A1 (en) * 2020-02-03 2021-08-12 Commonwealth Scientific And Industrial Research Organisation Chemical treatment for preparing metal electrodes
CN114142094A (zh) * 2021-09-14 2022-03-04 惠州锂威新能源科技有限公司 一种硅基负极的锂离子电池及其制备方法
CN113793990A (zh) * 2021-09-15 2021-12-14 中国科学院长春应用化学研究所 一种人工合成特定固态电解质界面膜提高锂离子电池倍率性能的方法
CN113793990B (zh) * 2021-09-15 2023-07-04 中国科学院长春应用化学研究所 一种人工合成特定固态电解质界面膜提高锂离子电池倍率性能的方法
CN113921917A (zh) * 2021-09-30 2022-01-11 蜂巢能源科技有限公司 一种锂离子电池的电解液浸润方法
CN113921917B (zh) * 2021-09-30 2023-02-28 蜂巢能源科技有限公司 一种锂离子电池的电解液浸润方法

Similar Documents

Publication Publication Date Title
US10263293B2 (en) Manufacturing method of lithium secondary battery
WO2018135915A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2018143733A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2016052881A1 (ko) 리튬 이차전지의 제조방법
WO2019045399A2 (ko) 리튬 이차전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2018236168A1 (ko) 리튬 이차전지
WO2019004699A1 (ko) 리튬 이차전지
WO2023027547A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2023043190A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022092688A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2021049872A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021040392A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019151724A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2021101174A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022103101A1 (ko) 리튬 이차 전지
WO2022197094A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021049875A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020197278A1 (ko) 리튬 이차 전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016552396

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015821012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015821012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14908883

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE