WO2016052680A1 - セラミックハニカム構造体及びその製造方法、並びにハニカム成形用金型 - Google Patents

セラミックハニカム構造体及びその製造方法、並びにハニカム成形用金型 Download PDF

Info

Publication number
WO2016052680A1
WO2016052680A1 PCT/JP2015/077878 JP2015077878W WO2016052680A1 WO 2016052680 A1 WO2016052680 A1 WO 2016052680A1 JP 2015077878 W JP2015077878 W JP 2015077878W WO 2016052680 A1 WO2016052680 A1 WO 2016052680A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer peripheral
ceramic honeycomb
partition wall
partition
ceramic
Prior art date
Application number
PCT/JP2015/077878
Other languages
English (en)
French (fr)
Inventor
岡崎 俊二
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP15846063.4A priority Critical patent/EP3202546A4/en
Priority to JP2016552152A priority patent/JP6673209B2/ja
Priority to CN201580052866.XA priority patent/CN107073746B/zh
Priority to US15/515,184 priority patent/US11007672B2/en
Publication of WO2016052680A1 publication Critical patent/WO2016052680A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • B28B3/269For multi-channeled structures, e.g. honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding

Definitions

  • the present invention relates to a ceramic honeycomb structure, a method for manufacturing the ceramic honeycomb structure, and a mold for forming the honeycomb formed body.
  • a ceramic honeycomb structure is used as a catalyst carrier and a filter in an exhaust gas purification device of an internal combustion engine.
  • the ceramic honeycomb structure 60 includes an outer peripheral wall 61 and a large number of flow paths 63 surrounded by a porous partition wall 62 on the inner peripheral side thereof.
  • Such a ceramic honeycomb structure can be obtained by extruding a ceramic clay having plasticity using a known mold to obtain a honeycomb formed body, and then cutting, drying, and firing the honeycomb formed body. .
  • a catalyst carrier or filter for diesel engines for example, a large ceramic honeycomb structure with an outer diameter of 190 mm or more and a length of 203 mm or more, or a thin wall with a partition wall thickness thinner than 0.15 mm.
  • a ceramic honeycomb structure during extrusion molding, the weight of the molded body itself and the strength of the molded body are not sufficient, and thus the weight of the molded body cannot be supported, and the partition wall on the outer periphery of the molded body may be deformed, There was a problem that the dimensional accuracy and strength could not be obtained.
  • Japanese Patent Laid-Open No. 3-275309 discloses an outer periphery constituting the outermost periphery of a fired body having a honeycomb structure after the ceramic clay is extruded, dried and fired to obtain a fired body having a honeycomb structure.
  • a method is disclosed in which a partition wall and its peripheral portion are removed by grinding so as to be smaller than a predetermined diameter, and a coating material is applied to the removed outer peripheral surface, followed by drying and curing to form an outer peripheral wall.
  • Japanese Patent Laid-Open No. 2008-155594 discloses an outer peripheral partition wall constituting the outermost periphery of a honeycomb molded body, a partition wall disposed in a honeycomb shape in the outer peripheral partition wall, and is partitioned in the partition wall and penetrates both ends.
  • an extrusion molding process for obtaining a skinless honeycomb molded body 50 in which the end 55 of the partition wall 52 is exposed on the outer peripheral side surface without providing the outer peripheral partition wall constituting the outermost periphery of the honeycomb molded body.
  • a skin formation / heat treatment process for obtaining a cam structure, and the extrusion molding process forms a supply hole formed on a hole forming surface to supply the material, and the material is formed into a honeycomb shape in communication with the supply hole.
  • the skinless honeycomb molded body 50 molded with the mold described in Japanese Patent Application Laid-Open No. 2008-155594 has an end of the partition wall 52 on the outer peripheral side surface thereof.
  • the partition crossing portion When the exposed partition 52 breaks, the impact is transmitted to the partition crossing portion, and the partition crossing portion may be crisp.
  • the ceramic honeycomb body in which the cracks are generated at the partition intersecting portions is subjected to thermal shock, the cracks may propagate to the inside of the ceramic honeycomb structure starting from the cracks generated in the partition intersecting portions.
  • the thermal shock resistance of the structure may be reduced.
  • the honeycomb structure having a large outer diameter of 150 mm and an overall length of 150 mm or more and a high porosity of 50% or more the outermost flow path is likely to be deformed. It has been found that the isostatic strength of the body is reduced.
  • Japanese Utility Model Laid-Open No. 63-144836 is a ceramic in which the outer peripheral wall of a ceramic honeycomb structure smaller than a predetermined outer dimension is partially or wholly provided with a coating layer that compensates for the difference between the predetermined outer dimension and the actual dimension.
  • a honeycomb structure is disclosed.
  • Japanese Utility Model Laid-Open No. 63-144836 describes that by providing such a coating layer, the outer peripheral wall can be reinforced and modified to a predetermined external dimension.
  • Japanese Patent Laid-Open No. 2005-7218 discloses a ceramic honeycomb structure having an outer peripheral wall integrally formed with a partition wall, and is axially continuous to at least a part of the outer peripheral wall and is perpendicular to the axial direction of the ceramic honeycomb structure. Disclosed is a ceramic honeycomb structure having holes having a diameter of 0.1 mm or more in the outer wall, and even if the outer peripheral wall is thickened to ensure strength by providing such holes in the outer peripheral wall, the outer peripheral wall It is described that the thermal conductivity is improved and the thermal shock resistance is improved.
  • Japanese Patent Laid-Open No. 2009-61683 discloses a slit provided with a supply hole portion provided with a supply hole for supplying a material, and a lattice-shaped slit groove for forming the material into a honeycomb shape in communication with the supply hole
  • a mold body having a groove portion, a guide standing portion extending in an extruding direction of the material from an outer peripheral portion of the slit groove portion, and projecting inward from the guide standing portion and the slit groove portion.
  • a guide ring having a guide protrusion provided with a gap therebetween, and the slit groove has a stepped portion protruding in the extrusion direction of the material in a portion not facing the guide protrusion.
  • the thickness of the gap between the slit groove and the guide protrusion is a spacer thickness a
  • the distance between the outer peripheral side surface of the stepped portion and the tip of the guide protrusion is a clearance b
  • the slit groove Stepped part When the height of the portion having the stepped height c, (ca) / b> 1, and (a / b)> 1 is satisfied, the outer peripheral side surface of the stepped portion and the slit groove portion Disclosed is a honeycomb structure molding die characterized by satisfying 90 ° ⁇ ⁇ ⁇ 130 °, where the angle formed by the slit groove forming surface around the stepped portion is the stepped angle ⁇ ing.
  • the shape of the guide ring that forms the outer peripheral wall is circular when viewed in the axial direction.
  • the path does not become a perfect quadrangle at the outermost peripheral portion of the honeycomb structure, but is incomplete in a triangular or pentagonal shape partially delimited by an arc-shaped outer peripheral wall. Therefore, especially when manufacturing a honeycomb structure having a large outer diameter of 150 mm and an overall length of 150 mm or more and a high porosity of 50% or more, the flow path is likely to be deformed in the vicinity of such an incomplete flow path. It has been found that the isostatic strength of the ceramic honeycomb structure is reduced by the deformation that occurs in the outermost channel.
  • an object of the present invention is to integrally form the outer peripheral partition wall by extrusion molding, without having to machine the outer peripheral surface of the honeycomb molded body after extrusion molding, and to handle the ceramic honeycomb molded body after extrusion molding.
  • the outer peripheral surface of the ceramic honeycomb molded body is hardly damaged, and as a result, the crack does not easily propagate to the inside of the ceramic honeycomb structure, and the thermal shock resistance is hardly lowered.
  • the present inventors have a cross-sectional quadrangular lattice-shaped partition wall constituting a large number of axially extending flow paths, and an outer peripheral surface shape reflecting the quadrangular lattice shape of the partition wall, By integrally forming an outer peripheral partition wall thicker than the partition wall by extrusion, it is not necessary to machine the outer peripheral surface, and the outer peripheral surface is less likely to be damaged during handling.
  • the inventors have found that a ceramic honeycomb formed body that is less likely to be deformed can be obtained, and have arrived at the present invention.
  • the ceramic honeycomb structure of the present invention comprises a ceramic honeycomb body having a large number of axially extending channels formed by partition walls having a quadrangular cross section, and an outer peripheral wall provided on the outer periphery of the ceramic honeycomb body.
  • An outer peripheral partition wall constituting the outermost periphery of the ceramic honeycomb body, The outer peripheral surface shape reflecting the quadrangular lattice shape of the partition wall, The minimum thickness of the outer peripheral partition is greater than the thickness of the partition;
  • the outer peripheral wall is formed so as to cover an outer peripheral surface of the outer peripheral partition wall.
  • the ratio T / t between the minimum thickness T of the outer peripheral partition wall and the thickness t of the partition wall preferably satisfies 1 ⁇ T / t ⁇ 10.
  • D 1 / D 0 [D 1 is the diameter of the largest circle inscribed in the partition wall in the outermost channel, and D 0 is an ideal flow without deformation.
  • the channel deformation degree is preferably 0.9 to 1.1.
  • a ceramic honeycomb structure having a ceramic honeycomb body having a large number of axially extending flow paths formed by partition walls having a quadrangular cross section and an outer peripheral wall provided on the outer periphery of the ceramic honeycomb body.
  • the method is By extruding the ceramic goblet, it has partition walls having a quadrangular cross section constituting a large number of channels extending in the axial direction, and an outer peripheral surface shape reflecting the quadrangular grid shape of the partition walls, An extrusion process for obtaining a ceramic honeycomb formed body integrally formed with the outer peripheral partition wall constituting the outermost periphery; A drying and firing step of drying and firing the ceramic honeycomb formed body to obtain a ceramic honeycomb body; and An outer peripheral wall forming step in which a coating material is applied to the outer peripheral surface of the outer peripheral partition wall of the ceramic honeycomb body, and heat treatment is performed to form an outer peripheral wall;
  • the mold used in the extrusion process is A supply hole for supplying the ceramic clay and a ceramic hole supplied from the supply hole in communication with the supply hole formed on the surface opposite to the hole forming surface on which the supply hole is formed is supplied to the honeycomb.
  • the groove forming surface has a partition forming region for forming the quadrangular lattice-shaped partition, and an outer peripheral region configured by providing a step H so that the partition forming region protrudes outside the partition forming region.
  • the partition formation region has an outer peripheral shape reflecting the rectangular lattice shape of the slit
  • the guide ring is disposed so as to surround the partition wall formation region, has an inner peripheral shape along the outer periphery shape of the partition wall formation region, and is higher than the step H between the groove formation surface of the outer periphery region.
  • a small gap is provided for supplying ceramic clay forming the outer peripheral partition wall.
  • the ratio T / t between the minimum thickness T of the outer peripheral partition wall and the thickness t of the partition wall preferably satisfies 1 ⁇ T / t ⁇ 10.
  • the coating material preferably contains ceramic aggregate particles and an inorganic binder as main components.
  • the ceramic aggregate particles are preferably at least one selected from the group consisting of cordierite, silica, alumina, mullite, silicon carbide, silicon nitride, and aluminum titanate.
  • a mold according to the present invention for extruding a ceramic honeycomb formed body having a large number of axially extending flow paths formed by partition walls having a rectangular cross section in a cross section includes a supply hole for supplying clay, and the supply hole
  • the groove forming surface has a partition forming region for forming the quadrangular lattice-shaped partition, and an outer peripheral region configured by providing a step H so that the partition forming region protrudes outside the partition forming region.
  • the partition formation region has an outer peripheral shape reflecting the rectangular lattice shape of the slit
  • the guide ring is disposed so as to surround the partition wall formation region, has an inner peripheral shape along the outer periphery shape of the partition wall formation region, and is higher than the step H between the groove formation surface of the outer periphery region. It has a small gap for supplying the clay forming the outer peripheral partition wall.
  • the shortest distance d between the inner peripheral surface of the guide ring and the outermost peripheral portion of the partition wall formation region in the direction orthogonal to the slits of the quadrangular lattice is the interval between the adjacent slits of the quadrangular lattice and the slits,
  • the slit width is ts, it is preferable to satisfy the formula: ts ⁇ d ⁇ (s + ts).
  • the angle ⁇ between the inner peripheral surface of the guide ring and the groove forming surface preferably satisfies 30 ° ⁇ ⁇ ⁇ 90 °.
  • the outer peripheral wall can be formed without machining the outer peripheral surface of the honeycomb molded body after extrusion molding, and the outer periphery of the ceramic honeycomb molded body is handled during handling of the ceramic honeycomb molded body after extrusion molding.
  • a ceramic honeycomb structure having a sufficient isostatic strength can be manufactured, in which the partition wall is hardly damaged on the surface and the outermost flow path is hardly deformed.
  • partition walls having a quadrangular cross section constituting a large number of channels extending in the axial direction, and an outer peripheral surface shape reflecting the quadrangular lattice shape of the partition walls are formed. And an outer peripheral partition wall that is thicker than the partition wall can be integrally formed, and the outermost flow path is hardly deformed.
  • FIG. 7 is a schematic diagram showing an AA cross section of FIG. 6 (b).
  • FIG. 7 is an exploded view of FIG.
  • It is a schematic cross section which shows the flow of the clay of the ceramic honeycomb molding die of the present invention. It is a schematic cross section which shows the flow of the clay of the ceramic honeycomb shaping die of a prior art.
  • FIG. 9 is a schematic diagram showing an enlarged BB cross section of FIG. 8 (a). It is a schematic diagram which shows an example of the ceramic honeycomb structure in a prior art.
  • 1 is a schematic diagram showing a skinless honeycomb structure described in JP-A-2008-155594.
  • FIG. 11 is a schematic cross-sectional view showing an enlarged C portion of FIG. 10 (a).
  • FIG. 3 is a schematic diagram showing a mold described in Japanese Patent Application Laid-Open No. 2008-155594.
  • the ceramic honeycomb structure 10 of the present invention has a large number of axially extending ribs formed by partition walls 12 having a quadrangular cross section.
  • a ceramic honeycomb main body 11 (FIG. 1 (a)) having a flow path 13 and an outer peripheral wall 15 provided on the outer periphery thereof, and an outer peripheral partition wall 12a constituting the outermost periphery of the ceramic honeycomb main body 11 includes the partition wall.
  • the outer peripheral wall 15 has the shape of the outer peripheral surface 14 reflecting the quadrilateral lattice shape of 12, and the outer peripheral surface of the outer peripheral partition wall 12a without machining the outer peripheral surface 14 of the outer peripheral partition wall 12a of the ceramic honeycomb body 11.
  • the outer peripheral surface shape reflecting the quadrangular lattice shape of the partition wall means that one or two partition walls (outer partition wall 12a) exposed to the outside among the four partition walls constituting the rectangular flow channel located at the outermost periphery, It is a shape that forms the outer peripheral surface.
  • the outer peripheral partition wall 12a having the outer peripheral surface 14 shape reflecting the quadrangular lattice shape of the partition wall 12 is formed by forming the partition wall located at the outermost part of the partition wall 12 constituting the quadrangular lattice thicker than the thickness of the partition wall 12.
  • the shape of the outer peripheral surface 14 of the outer peripheral partition wall 12a in the axial cross section is such that the difference in diameter between the largest circle inscribed in the outer peripheral surface 14 shape and the smallest circle inscribed in the outer peripheral surface 14 shape is minimized. It is preferable to choose.
  • the outer peripheral partition wall 12a of the ceramic honeycomb body 11 has the shape of the outer peripheral surface 14 reflecting the quadrangular lattice shape of the partition wall 12, so that the partition wall 12 constituting the ceramic honeycomb body 11 is formed as shown in FIG.
  • the entire grid including the outer peripheral partition wall 12a constituting the outermost periphery is formed, and the end 55 is exposed to the outer peripheral surface as shown in FIGS. 10 (a) and 10 (b).
  • the minimum thickness T of the outer peripheral partition wall 12a constituting the ceramic honeycomb body 11 is larger than the thickness t of the partition wall 12 that is not the outermost periphery, that is, T> t.
  • the minimum thickness T of the outer peripheral partition wall 12a is the minimum value of the thicknesses of the outer peripheral partition wall 12a in an arbitrary direction orthogonal to the partition wall 12. Actually, for any channel (for example, 20 channels) located at the outermost peripheral part, the thickness of the outer peripheral partition wall 12a on one or two sides is obtained, and the minimum thickness among them is determined. T can be used. As shown in Fig.
  • the outer peripheral partition wall 12a with the minimum thickness T moves smoothly without rotating in a state where one side (part or all) is in contact with the outermost peripheral surface. It is preferably represented by a trajectory.
  • FIG. 2 (b) the trajectories of any five consecutive channels (channel 13a to channel 13e) located on the outermost periphery are illustrated.
  • the outer peripheral partition wall is a circle with a minimum diameter X 1 circumscribing the outer peripheral partition wall and a circle with a diameter X 2 drawn inside the circle (where X 2 ⁇ X 1 ) Are preferably all present.
  • the circle of the diameter X 2 when drawn as the maximum circle inscribed in the outer peripheral partition wall, and the diameter X 1 of the smallest circle circumscribing the outer peripheral partition walls, between the diameter X 2 of the largest circle circumscribing the outer peripheral partition wall It is preferable to configure the outer peripheral partition so as to minimize the difference.
  • the diameter X 1 and the diameter X 2 are preferably 0.9 ⁇ X 2 / X 1 , more preferably 0.93 ⁇ X 2 / X 1 , more preferably 0.95 ⁇ X 2 / X 1 . Is most preferred.
  • X 1 represents the diameter of the honeycomb body.
  • the minimum thickness T of the outer peripheral partition wall 12a is larger than the thickness t of the partition wall 12 which is not the outermost peripheral wall, when the ceramic honeycomb molded body 11 is handled, the outer peripheral surface 14 of the ceramic honeycomb molded body 11 The partition wall 12a) is difficult to break.
  • the minimum thickness T of the outer peripheral partition wall 12a is preferably not more than 10 times the thickness t of the partition wall, that is, the ratio T / t satisfies 1 ⁇ T / t ⁇ 10.
  • the ratio T / t preferably satisfies 1.5 ⁇ T / t ⁇ 7, and more preferably satisfies 1.5 ⁇ T / t ⁇ 5.
  • the deformation degree of the flow path is at least two of the four partition walls constituting the flow path in the cross section perpendicular to the axis of the ceramic honeycomb structure. Evaluation is based on the diameter of the largest circle inscribed in the partition wall (hereinafter referred to as “the largest circle inscribed”). That is, when the diameter of the maximum circle inscribed in an ideal flow path (design value) without deformation is D 0 and the diameter of the maximum circle inscribed in an arbitrary flow path is D 1 , It represents a road deformation degree D 1 / D 0. For example, when the ideal square channel (Fig. 4 (a)) is not deformed, the partition wall is deformed into a diamond shape (Fig.
  • the channel deformation degree D 1 / D 0 in the outermost channel is preferably in the range of 0.9 to 1.1, more preferably 0.92 to 1.08.
  • the channel deformation degree D 1 / D 0 in the outermost channel is represented by an average value measured for 20 randomly selected outermost channels (channels located on the outermost periphery).
  • the flow path 13 after the outer peripheral wall 15 is formed is substantially parallel to the central axis z of the ceramic honeycomb structure 10 as shown in FIG.
  • it may be inclined with respect to the central axis z of the ceramic honeycomb structure.
  • the flow path may be curved, or as shown in FIG. 5 (d), the cross-sectional area of the flow path may be gradually increased or decreased.
  • the method of the present invention for producing a ceramic honeycomb structure comprises: (a) by extruding a ceramic goblet, having a square lattice-shaped partition wall constituting a large number of channels extending in the axial direction, and an outer peripheral surface shape reflecting the rectangular lattice shape of the partition wall, the ceramic An extrusion forming step of obtaining a ceramic honeycomb formed body integrally formed with an outer peripheral partition wall constituting the outermost periphery of the honeycomb body, and (b) drying and firing the ceramic honeycomb formed body to obtain a ceramic honeycomb body.
  • the mold used in the extrusion molding step is (1) a supply hole for supplying the ceramic clay, and communicated with the supply hole formed on the surface opposite to the hole forming surface on which the supply hole is formed.
  • the groove forming surface has a partition forming region for forming the quadrangular lattice-shaped partition, and an outer peripheral region configured by providing a step H so that the partition forming region protrudes outside the partition forming region.
  • the partition formation region has an outer peripheral shape reflecting the rectangular lattice shape of the slit,
  • the guide ring is disposed so as to surround the partition wall formation region, has an inner peripheral shape along the outer periphery shape of the partition wall formation region, and is higher than the step H between the groove formation surface of the outer periphery region.
  • a small gap is provided for supplying ceramic clay forming the outer peripheral partition wall.
  • a ceramic honeycomb formed body obtained by extruding a ceramic clay using the mold reflects a square lattice-shaped partition wall that forms a large number of channels extending in the axial direction, and a rectangular lattice shape of the partition wall. Since the outer peripheral partition wall is formed integrally with the outer peripheral partition wall that is thicker than the thickness of the partition wall, a deformed flow path is unlikely to occur near the outer periphery, and an incomplete flow path that does not have a square lattice shape is formed. Therefore, when handling the ceramic honeycomb molded body after extrusion molding, the partition walls are hardly damaged on the outer peripheral surface of the ceramic honeycomb molded body.
  • the ceramic honeycomb body formed by drying and firing the ceramic honeycomb formed body can form an outer peripheral wall on the outer peripheral surface formed by the outer peripheral partition without performing machining, and there is no deformation channel near the outer periphery. Therefore, a ceramic honeycomb structure having high isostatic strength can be obtained.
  • the coating material preferably contains ceramic aggregate particles and an inorganic binder as main components.
  • the coating material uses ceramic aggregate particles as its aggregate, and an inorganic binder is used for the purpose of bonding the aggregate. Since the coating material is mainly composed of ceramic aggregate particles and an inorganic binder, the coating material is applied to the outer peripheral surface of the ceramic honeycomb main body without performing machining, and after the heat treatment, the outer peripheral wall and the outer peripheral surface Is suitably joined, so that a ceramic honeycomb structure with good thermal shock resistance can be obtained that is less likely to be crisp inside the ceramic honeycomb body.
  • the inorganic binder colloidal oxides such as colloidal silica and colloidal alumina can be used.
  • the coating material may contain ceramic fibers.
  • the ceramic honeycomb structure of the present invention is used as an exhaust gas purifying device, the ceramic aggregate particles are cordierite, silica, alumina, mullite, silicon carbide, silicon nitride, excellent in heat resistance, It is preferably at least one selected from aluminum titanate. Among these, by using cordierite and / or amorphous silica, the thermal expansion coefficient of the outer peripheral wall is reduced, and further excellent thermal shock resistance is obtained.
  • the die 30 has a supply hole 31 for supplying clay (for example, ceramic clay) provided on the hole forming surface 31a. Formed in such a way that slits 32 in the form of a square lattice communicating with the supply holes 31 are formed on the groove forming surfaces 32a and 32b that are opposite to the hole forming surface 31a on which the supply holes 31 are formed.
  • the groove forming surface 32a is a surface constituting a partition forming region 33a that forms a rectangular lattice partition of the honeycomb formed body, and the groove forming surface 32b is an outer peripheral region 33b positioned outside the partition forming region 33a. It is the surface which comprises.
  • the partition wall formation region 33a has an outer peripheral shape reflecting the rectangular lattice shape of the slit 32.
  • the groove forming surface 32b of the outer peripheral region 33b is configured with a step H so that the groove forming surface 32a of the partition forming region 33a is convex. That is, the step H is formed at the boundary between the partition wall formation region 33a and the outer peripheral region 33b.
  • the step H is formed by using a slit 32c that forms an outer peripheral partition wall of the honeycomb formed body. That is, the outermost peripheral portion 33c of the partition wall forming region 33a coincides with the surface on the inner side (center side of the mold) of the slit 32c forming the outer peripheral partition wall.
  • the outer peripheral shape of the partition wall forming region 33a in the axial cross section is preferably selected so that the difference in diameter between the largest circle inscribed in the outer circumferential shape and the smallest circle inscribed in the outer circumferential shape is minimized.
  • a guide ring 35 for regulating the shape of the outer peripheral surface 14 of the outer peripheral partition wall 12a of the honeycomb molded body 11 surrounds the outermost peripheral portion 33c of the partition wall forming region 33a.
  • the guide ring 35 has a contact surface 35b that contacts the groove forming surface 32b and a non-contact surface 35p that forms a clearance L between the groove forming surface 32b, and the clearance L is
  • the groove forming surface 32a and the groove forming surface 32b are configured to be smaller (L ⁇ H) than the step H.
  • the inner peripheral surface 35a of the guide ring 35 has a shape along the outer peripheral shape of the partition wall forming region 33a when viewed from the extrusion direction.
  • the partition wall forming region 33a and the guide ring 35 are selected so as to have an outer diameter of the honeycomb main body in consideration of an outer peripheral wall thickness from a desired diameter of the honeycomb structure.
  • the mold according to the present invention has such a configuration (a configuration in which the slit 32c is located at a position where the step H is provided and the clearance L of the guide ring 35 is smaller than the step H).
  • the clay discharged from the slit 32 of the groove forming surface 32b changes its flow direction to the extrusion direction (axial direction) at the outermost peripheral portion 33c (part provided with the step H) of the partition forming region 32a. In doing so, since the force only in the extrusion direction acts on the clay, the outermost flow path of the ceramic honeycomb formed body is hardly deformed.
  • the guide ring does not have an inner peripheral shape along the outer peripheral surface shape of the outer peripheral partition wall of the ceramic honeycomb molded body, as in the mold described in JP-A-2009-61683 (for example, In the case of a circular shape), for example, as shown in FIG. 7 (b), there is a portion where the slit 32c is not located at the position where the step H is provided, so the interval s1 between the outermost peripheral portion 33c and the adjacent slit 32d And the clay forming the outer peripheral wall receives a force toward the center of the honeycomb formed body, and the outermost flow path is likely to be deformed.
  • the angle ⁇ between the inner peripheral surface 35a of the guide ring 35 and the non-contact surface 35p (the groove forming surface 32b of the outer peripheral region 33b) is more than 90 ° as shown in FIGS. 8 (a) and 8 (b).
  • a small angle is preferable, and 30 ° ⁇ ⁇ ⁇ 90 ° is more preferable.
  • is less than 30 °, the strength of the guide ring 35 is weakened. Therefore, the guide ring 35 may be deformed by the pressure of the clay discharged from the groove forming surface 32b. Is not preferable because it deforms.
  • a ceramic honeycomb formed body having an outer peripheral surface shape reflecting a quadrangular lattice shape and integrally formed with an outer peripheral partition wall thicker than the partition wall thickness can be suitably obtained, and ceramic honeycomb molding is performed during handling.
  • the partition wall is less likely to be damaged on the outer peripheral surface of the body, and the outermost flow path is less likely to be deformed during extrusion molding. Therefore, a ceramic honeycomb structure having high isostatic strength can be obtained by applying a coating material to the outer peripheral surface of the outer peripheral partition wall to form the outer peripheral wall.
  • L / H preferably satisfies 0.1 ⁇ L / H ⁇ 0.9.
  • the ratio L / H between the clearance L and the step H is less than 0.1, it is difficult to discharge the clay from the groove forming surface 32b, and it is difficult to form the outer peripheral partition wall, which is not preferable.
  • the shortest distance d between the inner peripheral surface 35a of the guide ring 35 and the outermost peripheral portion 33c of the partition wall formation region 32a needs to be larger than the slit width ts.
  • the distance s and the slit width ts are preferably equal to or less than the sum (s + ts). That is, it is preferable that the shortest interval d, the interval s between adjacent slits, and the slit width ts satisfy the formula: ts ⁇ d ⁇ (s + ts).
  • the sum of the interval s and the slit width ts corresponds to the pitch of the slits.
  • the ceramic clay supplied to form the outer peripheral partition in the outer peripheral region 33b may not be gathered, and the outer peripheral partition may not be formed well. Since d ⁇ (s + ts), the partition wall has a quadrangular cross-section that forms a large number of channels extending in the axial direction, and the outer peripheral surface shape reflects the quadrangular lattice shape of the partition wall.
  • a honeycomb formed body formed by integrally forming the outer peripheral partition walls constituting the outermost periphery of the plurality of flow paths, which are thicker than the thickness, can be suitably obtained.
  • (Lp + d) is not less than (s + 2ts).
  • (Lp + d) is (s + 2ts) or more, it is supplied from two or more slits (three slits in the mold shown in FIGS. 6 (b) and 8 (b)) in the outer peripheral region 33b. Ceramic clay is extruded from the shortest distance d to form an outer peripheral partition wall.
  • the length of Lp is preferably set so that 2 to 15 slits of the outer peripheral region 33b are included in the range of (Lp + d), and is set to include 3 to 12 slits. Is more preferable, and most preferably, 4 to 10 slits are included.
  • Examples 1 to 3 and Comparative Example 1 Kaolin powder, talc powder, silica powder and alumina powder were prepared and adjusted to have a cordierite composition of 50% by mass of SiO 2 , 36% by mass of Al 2 O 3 and 14% by mass of MgO. Ceramics plasticized by adding methylcellulose, hydroxypropylmethylcellulose as a binder, balloon-type foamed resin as a pore former, mixing well in a dry process, adding a specified amount of water, and kneading thoroughly A clay was made.
  • s is the distance between adjacent slits 32 and 32, and the ts slit width
  • n is the number of slits included in the range of (Lp + d) ( FIG. 6 (a) to FIG. 6 (c)), that is, the number of slits for supplying ceramic clay extruded from the shortest interval d to form the outer peripheral partition wall.
  • the ceramic clay was extruded using the mold and cut to a predetermined length to obtain a ceramic honeycomb formed body.
  • the ceramic honeycomb formed bodies of Examples 1 to 3 reflect the square lattice-shaped partition walls constituting a large number of flow paths extending in the axial direction as shown in FIG. 1 (a), and the square lattice shape of the partition walls.
  • a ceramic honeycomb molded body having an outer peripheral surface shape and integrally forming an outer peripheral partition wall constituting the outermost periphery of the ceramic honeycomb molded body, and the ceramic honeycomb molded body of Comparative Example 1 is shown in FIG.
  • FIG. 10 (b) there was a skinless honeycomb molded body 50 in which the end 55 of the partition wall 52 was exposed to the outer peripheral side surface without providing the outer peripheral partition wall constituting the outermost periphery of the honeycomb molded body.
  • X 1 is the diameter of the smallest circle circumscribing the outer peripheral bulkhead.
  • X 2 is the diameter of the largest circle inscribed in the outer peripheral partition wall.
  • the outer peripheral surface of these ceramic honeycomb bodies was coated with a coating material composed of an aggregate and an inorganic binder as shown in Table 3, and methylcellulose (organic binder) and water, and dried at 140 ° C. for 2 hours.
  • a ceramic honeycomb structure having a cylindrical outer shape having a diameter of the outer diameter of the main body + 2 mm was obtained.
  • the deformation degree of the flow path is determined by inserting a steel wire with a circular cross section into an arbitrary outermost flow path, and setting the maximum diameter of the steel wire that can be inserted as the diameter D 1 of the largest circle inscribed in the partition wall of the flow path.
  • the diameter D 0 of an ideal flow path without a gap was obtained from the design value, and evaluated by the ratio D 1 / D 0 .
  • the channel deformation degree D 1 / D 0 was measured for the 20 outermost peripheral channels selected at random, and the average value thereof was evaluated. The results are shown in Table 4.
  • the isostatic strength test was performed based on the automobile standard (JASO) M505-87 published by the Japan Society for Automotive Engineers.
  • a 20 mm thick aluminum plate is in contact with both axial end faces of the ceramic honeycomb structure to seal both ends, and a sample with a 2 mm thick rubber sheet in close contact with the outer wall surface is placed in a pressure vessel. Water was injected into the container, and hydrostatic pressure was applied from the outer wall surface, and the pressure when the ceramic honeycomb structure broke was measured to obtain isostatic strength.
  • Isostatic strength is Those with an isostatic strength of 2 MPa or more are ⁇ Excellent ( ⁇ ) '', Those with an isostatic strength of 1.5 MPa to less than 2 MPa “Impossible ( ⁇ )” if the isostatic strength is 1.0 MPa or more and less than 1.5 MPa, and “No ( ⁇ )” if the isostatic strength is less than 1.0 MPa. As evaluated. The results are shown in Table 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Filtering Materials (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

 断面四角形格子状の隔壁によって形成された軸方向に延びる多数の流路を有するセラミックハニカム本体と、前記セラミックハニカム本体の外周に設けられた外周壁とを有するセラミックハニカム構造体であって、前記セラミックハニカム本体の最外周を構成する外周隔壁が、前記隔壁の四角形格子形状を反映した外周面形状を有し、前記外周隔壁の厚さが前記隔壁の厚さよりも厚く、前記外周壁は、前記外周隔壁の外周面を被覆するように形成されていることを特徴とするセラミックハニカム構造体。

Description

セラミックハニカム構造体及びその製造方法、並びにハニカム成形用金型
 本発明は、セラミックハニカム構造体及びセラミックハニカム構造体を製造する方法、並びにハニカム成形体を成形するための金型に関するものである。
 内燃機関の排ガス浄化装置における触媒担体やフィルターとして、セラミックハニカム構造体が使用されている。図9に示すように、セラミックハニカム構造体60は、外周壁61と、その内周側で多孔質構造の隔壁62により囲まれた多数の流路63を有している。このようなセラミックハニカム構造体は、可塑性を有するセラミック坏土を公知の金型を用いて押出成形することによりハニカム成形体を得たのち、これを切断、乾燥及び焼成することにより得ることができる。
 しかしながら、ディーゼルエンジン用の触媒担体やフィルターとして用いられる、例えば外径が190 mm以上で長さが203 mm以上の大型のセラミックハニカム構造体や、隔壁の厚さが0.15 mmよりも薄い薄壁のセラミックハニカム構造体の場合には、押出成形時に、成形体自体の自重や、成形体の強度が十分でないことにより、自重を支えきれず、成形体外周部の隔壁が変形したりして、所定の寸法精度や強度が得られないという問題があった。
 この問題に対して、特開平3-275309号は、セラミック杯土を押出成形、乾燥及び焼成してハニカム構造を有する焼成体とした後、このハニカム構造を有する焼成体の最外周を構成する外周隔壁とその周縁部を研削加工によって所定直径寸法より小さくする除去加工を行い、除去加工した外周面にコート材を塗布、乾燥及び硬化させて外周壁を形成する方法を開示している。特開平3-275309号は、この方法によれば、ハニカム構造を有する焼成体の最外周を構成する外周隔壁とその周縁部を研削加工で除去しているので、周縁部の変形した流路を除くことができ、機械的強度を高くでき、さらにハニカム構造を有する焼成体全体の真円度が悪い場合にも、研削加工により真円度を高めた後に外周壁を形成することにより、寸法精度が向上されると記載している。
 しかしながら、特開平3-275309号に記載の方法は、ハニカム構造を有する焼成体の最外周を構成する外周隔壁とその周縁部を除去する機械加工を行うため、加工時に外部に開放された流路がダメージを受けたり、後工程での変形、割れ等の不具合が発生するという問題や、除去加工を行うことによりコストが増大するという問題を有している。そのため、寸法精度の高いハニカム構造体を容易に製造することが可能なハニカム構造体の製造方法が求められている。
 特開2008-155594号は、ハニカム成形体の最外周を構成する外周隔壁と、前記外周隔壁内にハニカム状に配設された隔壁と、前記隔壁内に区画されていると共に両端に貫通するよう軸方向に沿って形成された多数の流路とを有するハニカム構造体を製造する方法において、少なくとも原料粉末と水とを混練してなるセラミック原料を押出成形することにより、図10(a)及び図10(b)に示すように、ハニカム成形体の最外周を構成する外周隔壁を備えることなく前記隔壁52の端部55を外周側面に露出させたスキンレスハニカム成形体50を得る押出成形工程と、前記スキンレスハニカム成形体を乾燥させる乾燥工程と、前記スキンレスハニカム成形体の外周側面に機械加工を施すことなく前記外周側面を覆うコート材を配設すると共に、熱処理を行って、ハニカム構造体を得るスキン形成・熱処理工程とを有し、前記押出成形工程は、材料を供給するために穴成形面に形成された供給穴と、前記供給穴に連通し材料をハニカム形状に成形するために穴成形面の反対側の面である溝成形面に形成された多角形格子状のスリットとを有する金型本体と、前記スキンレスハニカム成形体の外径を規制するために前記溝成形面に当接するように設けられたガイドリングとを有し、前記金型本体の前記供給穴は、前記ガイドリングの最小内径位置よりも外周側には存在しない又は材料が侵入しないよう閉塞されており、かつ前記ガイドリングは、溝成形面に対し100°±5°の範囲内の傾斜を有する内周面を有する金型を用いることを特徴とするハニカム構造体の製造方法を開示している。特開2008-155594号は、この方法により、寸法精度の高いハニカム構造体及び寸法精度の高いスキンレスハニカム成形体を容易に得ることができると記載している。
 しかしながら、本発明者らが特開2008-155594号に記載の方法に基づいてセラミックハニカム構造体を製造してみると、この方法には以下のような問題があることが分かった。すなわち、図10(a)及び図10(b)に示すように、特開2008-155594号に記載された金型で成形されたスキンレスハニカム成形体50は、その外周側面に隔壁52の端部55が露出し外部に開口して軸方向に延びる多数の溝56を有しているため、押出成形後のスキンレスハニカム成形体50の外周側面を覆うコート材を配設するスキン形成工程において、ハンドリングの際に、前記外周側面に露出した隔壁52が破損する場合があることが分かった。露出した隔壁52が破損する際に、その衝撃が隔壁交差部に伝達され、隔壁交差部にキレツが生じる場合がある。隔壁交差部にキレツが生じたセラミックハニカム体が熱衝撃を受けた場合には、前記隔壁交差部に生じたキレツを起点にセラミックハニカム構造体の内部にまでキレツが進展することがあり、セラミックハニカム構造体の耐熱衝撃性の低下を招くことがある。さらに、例えば、外径150 mm及び全長150 mm以上の大型で、50%以上の高い気孔率を有するハニカム構造体を製造する場合、最外周の流路に変形が生じ易くなるため、セラミックハニカム構造体のアイソスタティック強度が低下してしまうことが分かった。
 実開昭63-144836号は、所定の外形寸法より小さいセラミックハニカム構造体の外周壁に、所定の外形寸法と実際の寸法との差を補う被覆層を部分的又は全体的に設けてなるセラミックハニカム構造体を開示している。実開昭63-144836号は、このような被覆層を設けることにより、外周壁を補強するとともに所定の外形寸法に修正することができると記載している。
 しかしながら、例えば、外径150 mm及び全長150 mm以上の大型で、50%以上の高い気孔率を有するハニカム構造体を製造する場合、最外周の流路に変形が生じ易くなるため、セラミックハニカム構造体のアイソスタティック強度が低下し、実開昭63-144836号に記載されたような被覆層のみでは十分な改良効果が得られず、さらなる対策が必要となる。
 特開2005-7218号は、隔壁と一体に形成された外周壁を有するセラミックハニカム構造体において、前記外周壁の少なくとも一部に、軸方向に連続し、且つセラミックハニカム構造体の軸方向垂直断面における径が0.1 mm以上である孔を有するセラミックハニカム構造体を開示しており、このような孔を外周壁に設けることにより、強度を確保するために外周壁を厚肉化した場合でも外周壁の熱容量が小さくなるので、熱伝導性が向上し、耐熱衝撃性が改良されると記載している。
 しかしながら、例えば、外径150 mm及び全長150 mm以上の大型で、50%以上の高い気孔率を有するハニカム構造体を製造する場合、最外周の流路に変形が生じ易くなるため、セラミックハニカム構造体のアイソスタティック強度が低下し、特開2005-7218号に記載されたような方法では十分な改良効果が得られないことが分かった。
 特開2009-61683号は、材料を供給するための供給穴を設けた供給穴部と、前記供給穴に連通して前記材料をハニカム状に成形するための格子状のスリット溝を設けたスリット溝部とを有する金型本体と、前記スリット溝部の外周部から前記材料の押出方向に伸びたガイド立設部と、前記ガイド立設部から内方に向かって突出していると共に前記スリット溝部との間に間隙を設けたガイド突出部とを有するガイドリングとを備えており、前記スリット溝部は、前記ガイド突出部に対面しない部分に、前記材料の押出方向に突出した段付部を有し、前記スリット溝部と前記ガイド突出部との間の前記間隙の厚さをスペーサ厚a、前記段付部の外周側面と前記ガイド突出部の先端部との間の距離をクリアランスb、前記スリット溝部における前記段付部を有する部分の高さを段付高さcとした場合に、(c-a)/b>1、かつ(a/b)>1の関係を満たし、前記段付部の外周側面と前記スリット溝部における前記段付部の周囲の部分のスリット溝形成面とが成す角度を段付角度θとした場合に、90°≦θ≦130°を満たすことを特徴とするハニカム構造体成形用金型を開示している。
 しかしながら、特開2009-61683号に記載されたハニカム構造体成形用金型は、外周壁を形成するガイドリングの形状が軸方向視で円形であるため、四角形格子状の隔壁によって形成された流路はハニカム構造体の最外周部分では完全な四角形とならず、円弧状の外周壁によって一部が区切られた三角形や五角形の形状の不完全なものとなってしまう。そのため、特に外径150 mm及び全長150 mm以上の大型で、50%以上の高い気孔率を有するハニカム構造体を製造する場合、そのような不完全な流路付近では流路の変形が生じやすく、このような最外周の流路に生じる変形により、セラミックハニカム構造体のアイソスタティック強度が低下してしまうことが分かった。
 したがって、本発明の目的は、押出成形により外周隔壁が一体に形成され、押出成形後のハニカム成形体の外周面に機械加工を施す必要がなく、かつ押出成形後のセラミックハニカム成形体のハンドリングの際に、セラミックハニカム成形体の外周面に破損が生じ難く、その結果セラミックハニカム構造体の内部にまでキレツが進展し難く、耐熱衝撃性の低下を招き難く、さらに、押出成形時に最外周の流路に変形が生じ難く、十分なアイソスタティック強度を有するセラミックハニカム構造体及びその製造方法、並びにハニカム成形体用金型を提供することにある。
 上記目的に鑑み鋭意研究の結果、本発明者らは、軸方向に延びる多数の流路を構成する断面四角形格子状の隔壁と、前記隔壁の四角形格子形状を反映した外周面形状を有し、前記隔壁の厚さよりも厚い外周隔壁とを押出成形によって一体に形成することにより、外周面に機械加工を施す必要がなく、ハンドリングの際に外周面に破損が生じ難く、さらに最外周の流路に変形が生じにくいセラミックハニカム成形体が得られることを見出し、本発明に想到した。
 すなわち、本発明のセラミックハニカム構造体は、断面四角形格子状の隔壁によって形成された軸方向に延びる多数の流路を有するセラミックハニカム本体と、前記セラミックハニカム本体の外周に設けられた外周壁とを有し、
前記セラミックハニカム本体の最外周を構成する外周隔壁が、
前記隔壁の四角形格子形状を反映した外周面形状を有し、
前記外周隔壁の最小厚さが前記隔壁の厚さよりも厚く、
前記外周壁は、前記外周隔壁の外周面を被覆するように形成されていることを特徴とする。
 前記外周隔壁の最小厚さTと、前記隔壁の厚さtとの比T/tは、1<T/t≦10を満たすのが好ましい。
 軸方向断面視での流路変形度をD1/D0[ただし、D1は最外周流路での隔壁に内接する最大の円の直径であり、D0は変形の無い理想的な流路の隔壁に内接する最大の円の直径である。]で表したとき、前記流路変形度が0.9~1.1であるのが好ましい。
 断面四角形格子状の隔壁によって形成された軸方向に延びる多数の流路を有するセラミックハニカム本体と、前記セラミックハニカム本体の外周に設けられた外周壁とを有するセラミックハニカム構造体を製造する本発明の方法は、
 セラミック杯土を押出成形することにより、軸方向に延びる多数の流路を構成する断面四角形格子状の隔壁と、前記隔壁の四角形格子形状を反映した外周面形状を有し、前記セラミックハニカム本体の最外周を構成する外周隔壁とを一体に形成してなるセラミックハニカム成形体を得る押出成形工程と、
 前記セラミックハニカム成形体を乾燥及び焼成してセラミックハニカム本体を得る乾燥・焼成工程と、
 前記セラミックハニカム本体の前記外周隔壁の外周面にコート材を塗布し、熱処理を行って外周壁を形成する外周壁形成工程とを有し、
 前記押出し成形工程において使用する金型は、
前記セラミック坏土を供給するための供給穴と、前記供給穴が形成された穴形成面の反対面に形成された、前記供給穴に連通し、前記供給穴から供給した前記セラミック坏土をハニカム形状に押出し成形するための四角形格子状のスリットとを有する金型本体と、
前記スリットが形成された溝形成面側に配置された、前記セラミックハニカム成形体の外周隔壁の外周面形状を規制するためのガイドリングとを有し、
 前記溝形成面は、前記四角形格子形状の隔壁を形成する隔壁形成領域と、前記隔壁形成領域の外側に前記隔壁形成領域が凸となるように段差Hを設けて構成された外周領域とを有し、
 前記隔壁形成領域は、前記スリットの四角形格子形状を反映した外周形状を有し、
 前記ガイドリングは、前記隔壁形成領域を取り囲むように配置され、前記隔壁形成領域の外周形状に沿った内周形状を有するとともに、前記外周領域の溝形成面との間に、前記段差Hよりも小さい、前記外周隔壁を形成するセラミック坏土を供給するための間隙を有することを特徴とする。
 前記外周隔壁の最小厚さTと、前記隔壁の厚さtとの比T/tは、1<T/t≦10を満たすのが好ましい。
 前記コート材はセラミックス骨材粒子及び無機バインダーを主成分とするのが好ましい。
 前記セラミックス骨材粒子はコーディエライト、シリカ、アルミナ、ムライト、炭化珪素、窒化珪素及びチタン酸アルミニウムからなる群から選ばれた少なくとも1種であるのが好ましい。
 断面四角形格子状の隔壁によって形成された軸方向に延びる多数の流路を有するセラミックハニカム成形体を押出成形する本発明の金型は、坏土を供給するための供給穴と、前記供給穴が形成された穴形成面の反対面に形成された、前記供給穴に連通し、前記坏土をハニカム形状に成形するための四角形格子状のスリットとを有する金型本体と、
 前記スリットが形成された溝形成面側に配置された、前記ハニカム成形体の最外周を構成する外周隔壁の外周面形状を規制するためのガイドリングとを有し、
 前記溝形成面は、前記四角形格子形状の隔壁を形成する隔壁形成領域と、前記隔壁形成領域の外側に前記隔壁形成領域が凸となるように段差Hを設けて構成された外周領域とを有し、
 前記隔壁形成領域は、前記スリットの四角形格子形状を反映した外周形状を有し、
 前記ガイドリングは、前記隔壁形成領域を取り囲むように配置され、前記隔壁形成領域の外周形状に沿った内周形状を有するとともに、前記外周領域の溝形成面との間に、前記段差Hよりも小さい、前記外周隔壁を形成する坏土を供給するための間隙を有することを特徴とする。
 前記四角形格子状のスリットに直交する方向における、前記ガイドリングの内周面と前記隔壁形成領域の最外周部との最短間隔dは、前記四角形格子の隣接するスリットとスリットとの間隔をs、スリット幅をtsとしたとき、式:ts<d≦(s+ts)を満たすのが好ましい。
 前記ガイドリングの内周面と、前記溝形成面との角度θは、30°≦θ<90°を満たすのが好ましい。
 本発明の方法よれば、押出成形後のハニカム成形体の外周面に機械加工を施すことなく外周壁を形成でき、押出成形後のセラミックハニカム成形体のハンドリングの際に、セラミックハニカム成形体の外周面で隔壁の破損が生じ難く、最外周の流路に変形が生じ難く、十分なアイソスタティック強度を有するセラミックハニカム構造体を製造することができる。
 本発明のハニカム成形体用金型を用いて押出成形することによって、軸方向に延びる多数の流路を構成する断面四角形格子状の隔壁と、前記隔壁の四角形格子形状を反映した外周面形状を有し、前記隔壁の厚さよりも厚い外周隔壁とを一体に形成することができるとともに、最外周の流路に変形が生じにくい。
セラミックハニカム本体の一例を示す模式図である。 本発明のセラミックハニカム構造体の一例を示す模式図である。 本発明のセラミックハニカム構造体の外周隔壁の構成を示す部分断面図である。 本発明のセラミックハニカム構造体の外周隔壁の構成を示す部分断面図である。 セラミックハニカム本体の一例を模式的に示す部分断面図である。 セラミックハニカム本体の他の一例を模式的に示す部分断面図である。 セラミックハニカム本体のさらに他の一例を模式的に示す部分断面図である。 セラミックハニカム本体のさらに他の一例を模式的に示す部分断面図である。 変形のない理想的な流路に内接する最大円を示す模式断面図である。 変形した流路に内接する最大円の一例を示す模式断面図である。 変形した流路に内接する最大円の他の一例を示す模式断面図である。 変形した流路に内接する最大円のさらに他の一例を示す模式断面図である。 本発明のセラミックハニカム構造体の流路方向断面の一例を示す模式図である。 本発明のセラミックハニカム構造体の流路方向断面の他の一例を示す模式図である。 本発明のセラミックハニカム構造体の流路方向断面のさらに他の一例を示す模式図である。 本発明のセラミックハニカム構造体の流路方向断面のさらに他の一例を示す模式図である。 本発明のセラミックハニカム成形用金型の一例を示すスリット側から見た正面図である。 本発明のセラミックハニカム成形用金型の一例を示す供給穴側から見た拡大正面図である。 図6(b)のA-A断面を示す模式図である。 図6(c)の分解図である。 本発明のセラミックハニカム成形用金型の坏土の流れを示す模式断面図である。 従来技術のセラミックハニカム成形用金型の坏土の流れを示す模式断面図である。 本発明のセラミックハニカム成形用金型の他の一例を示す正面図である。 図8(a)のB-B断面を拡大して示す模式図である。 従来技術でのセラミックハニカム構造体の一例を示す模式図である。 特開2008-155594号に記載されたスキンレスハニカム構造体を示す模式図である。 図10(a)のC部分を拡大して示す模式断面図である。 特開2008-155594号に記載された金型を示す模式図である。
 以下、本発明の実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
[1] セラミックハニカム構造体
 本発明のセラミックハニカム構造体10は、図1(a)及び図1(b)に示すように、断面四角形格子状の隔壁12によって形成された軸方向に延びる多数の流路13を有するセラミックハニカム本体11(図1(a))と、その外周に設けられた外周壁15とを有し、前記セラミックハニカム本体11の最外周を構成する外周隔壁12aが、前記隔壁12の四角形格子形状を反映した外周面14形状を有し、外周壁15は、前記セラミックハニカム本体11の前記外周隔壁12aの外周面14に機械加工を施すことなく、前記外周隔壁12aの外周面14を被覆するように形成されている。ここで、隔壁の四角形格子形状を反映した外周面形状とは、最外周に位置する四角形流路を構成する4つの隔壁のうち、外部に露出する1又は2の隔壁(外周隔壁12a)が、外周面を構成してなる形状のことである。また、隔壁12の四角形格子形状を反映した外周面14形状を有する外周隔壁12aは、四角形格子を構成する隔壁12の最外部に位置する隔壁を、隔壁12の厚さより厚く形成したものである。軸方向断面における前記外周隔壁12aの外周面14形状は、前記外周面14形状に内接する最大の円と、前記外周面14形状に外接する最小の円との直径の差が最小になるように選ぶのが好ましい。
 セラミックハニカム本体11の外周隔壁12aが、前記隔壁12の四角形格子形状を反映した外周面14形状を有することにより、図1(a)に示すように、セラミックハニカム本体11を構成する前記隔壁12が、最外周を構成する外周隔壁12aを含めて、全て完全な格子を形成しており、図10(a)及び図10(b)に示すような、端部55を外周面に露出させたような不完全な隔壁52が存在しておらず、押出成形後のセラミックハニカム成形体11を乾燥及び焼成する工程や、乾燥及び焼成したセラミックハニカム本体11の外周面14に外周壁15を形成する工程におけるハンドリングの際に、セラミックハニカム成形体11の外周面14の破損が起こり難くなり、セラミックハニカム構造体の内部にまでキレツが進展し難く、耐熱衝撃性の低下を招き難くなる。さらに、本発明のセラミックハニカム構造体10は、最外周の流路に変形が生じ難くなるため、十分なアイソスタティック強度を有する。
 前記セラミックハニカム本体11を構成する前記外周隔壁12aの最小厚さTは、最外周でない前記隔壁12の厚さtよりも大きく、つまりT>tを満たすように形成されている。ここで前記外周隔壁12aの最小厚さTとは、前記隔壁12に直交する任意の方向における外周隔壁12aの厚さのうちの最小値である。実際には、最外周部に位置する任意の流路(例えば、20個の流路)について、その1辺又は2辺の外周隔壁12aの厚さを求め、それらの内の最小の厚さをTとすればよい。最小厚さTの外周隔壁12aは、図2(a)に示すように、一辺がTの正方形をその一辺(一部又は全部)が最外周面に接した状態で回転させずに滑らかに移動させた軌跡で表されるのが好ましい。なお図2(b)では、最外周に位置する任意の連続した5つの流路(流路13a~流路13e)についての軌跡を図示している。また、外周隔壁は、図2(b)に示すように、外周隔壁に外接する最小の直径X1の円と、その円の内部に描いた直径X2の円(ただし、X2<X1)との間に全て存在しているのが好ましい。前記直径X2の円を、外周隔壁に内接する最大の円として描いたときに、外周隔壁に外接する最小の円の直径X1と、外周隔壁に外接する最大の円の直径X2との差が最小になるように外周隔壁を構成するのが好ましい。このとき、直径X1及び直径X2は、0.9≦X2/X1であるのが好ましく、0.93≦X2/X1であるのがより好ましくは、0.95≦X2/X1であるのが最も好ましい。なお、X1はハニカム本体の直径を表す。
 外周隔壁12aの最小厚さTが、最外周でない隔壁12の厚さtよりも大きいことで、セラミックハニカム成形体11をハンドリングする際に、セラミックハニカム成形体11の外周面14で、隔壁(外周隔壁12a)が破損し難くなる。前記外周隔壁12aの最小厚さTは、前記隔壁の厚さtの10倍以下、すなわち、比T/tが1<T/t≦10を満たすのが好ましい。前記比T/tは、1.5<T/t≦7を満たすのがより好ましく、1.5<T/t≦5を満たすのがさらに好ましい。外周隔壁12aの最小厚さTを、T=3t、T=5t、T=7t及びT=10tとなるように作製したセラミックハニカム成形体11の断面をそれぞれ図3(a)、図3(b)、図3(c)及び図3(d)に模式的に示す。
 流路の変形度は、図4(a)~図4(d)に示すように、セラミックハニカム構造体の軸に垂直な断面において、流路を構成する4つの隔壁のうち少なくとの2つの隔壁に内接する最大の円(以下、「内接する最大円」という。)の直径で評価する。すなわち、変形のない理想的な流路(設計値)に内接する最大円の直径をD0として、任意の流路に内接する最大円の直径をD1としたときに、その流路の流路変形度をD1/D0で表す。例えば、正四角形の理想的な流路(図4(a))に対して、隔壁の曲がり変形はないが菱形に変形した場合(図4(b))、さらに隔壁の曲がり変形が加わった場合(図4(c)及び図4(d))が考えられる。本発明において、最外周流路における流路変形度D1/D0が0.9~1.1の範囲にあるのが好ましく、0.92~1.08であるのがさらに好ましい。なお最外周流路における流路変形度D1/D0は、無作為に選択した20カ所の最外周流路(最外周に位置する流路)について測定した平均値で表す。
 本発明のセラミックハニカム構造体10は、外周壁15が形成された後の流路13が、図5(a)に示すように、セラミックハニカム構造体10の中心軸zに対してほぼ平行であってもよいし、図5(b)に示すように、セラミックハニカム構造体の中心軸zに対して傾斜していてもよい。さらに、図5(c)に示すように、流路が湾曲した形態、図5(d)に示すように、流路の断面積が漸次増減する形態であっても良い。
[2] セラミックハニカム構造体の製造方法
 断面四角形格子状の隔壁によって形成された軸方向に延びる多数の流路を有するセラミックハニカム本体と、前記セラミックハニカム本体の外周に設けられた外周壁とを有するセラミックハニカム構造体を製造する本発明の方法は、
 (a)セラミック杯土を押出成形することにより、軸方向に延びる多数の流路を構成する断面四角形格子状の隔壁と、前記隔壁の四角形格子形状を反映した外周面形状を有し、前記セラミックハニカム本体の最外周を構成する外周隔壁とを一体に形成してなるセラミックハニカム成形体を得る押出成形工程と、(b)前記セラミックハニカム成形体を乾燥及び焼成してセラミックハニカム本体を得る乾燥・焼成工程と、(c)前記セラミックハニカム本体の前記外周隔壁の外周面にコート材を塗布し、熱処理を行って外周壁を形成する外周壁形成工程とを有し、
 前記押出し成形工程において使用する金型は、(1)前記セラミック坏土を供給するための供給穴と、前記供給穴が形成された穴形成面の反対面に形成された、前記供給穴に連通し、前記供給穴から供給した前記セラミック坏土をハニカム形状に押出し成形するための四角形格子状のスリットとを有する金型本体と、(2)前記スリットが形成された溝形成面側に配置された、前記セラミックハニカム成形体の外周隔壁の外周面形状を規制するためのガイドリングとを有し、
 前記溝形成面は、前記四角形格子形状の隔壁を形成する隔壁形成領域と、前記隔壁形成領域の外側に前記隔壁形成領域が凸となるように段差Hを設けて構成された外周領域とを有し、
 前記隔壁形成領域は、前記スリットの四角形格子形状を反映した外周形状を有し、
 前記ガイドリングは、前記隔壁形成領域を取り囲むように配置され、前記隔壁形成領域の外周形状に沿った内周形状を有するとともに、前記外周領域の溝形成面との間に、前記段差Hよりも小さい、前記外周隔壁を形成するセラミック坏土を供給するための間隙を有することを特徴とする。
 前記金型を用いてセラミック杯土を押出成形することによって得られるセラミックハニカム成形体は、軸方向に延びる多数の流路を構成する断面四角形格子状の隔壁と、前記隔壁の四角形格子形状を反映した外周面形状を有し、前記隔壁の厚さよりも厚い外周隔壁とを一体に形成してなるので、外周近くに変形流路が生じ難く、四角形格子形状となっていない不完全な流路が無く、そのため押出成形後のセラミックハニカム成形体のハンドリングの際に、セラミックハニカム成形体の外周面で隔壁の破損が生じ難い。前記セラミックハニカム成形体を乾燥及び焼成してなるセラミックハニカム本体は、機械加工を施すことなく外周隔壁で形成された外周面に外周壁を形成することができ、かつ外周近くに変形流路がないので高いアイソスタティック強度を有するセラミックハニカム構造体とすることができる。
(1)コート材
 前記コート材は、セラミックス骨材粒子及び無機バインダーを主成分とするのが好ましい。前記コート材は、その骨材としてセラミックス骨材粒子を用い、その骨材を結合させる目的で無機バインダーを用いる。前記コート材がセラミックス骨材粒子及び無機バインダーを主成分とすることで、セラミックハニカム本体の外周面に、機械加工を施すことなくコート材を塗布し、熱処理した後において、外周壁と外周面とが好適に接合されるので、セラミックハニカム本体内部にキレツが生じ難く、耐熱衝撃性の良好なセラミックハニカム構造体を得ることができる。無機バインダーとしては、コロイダルシリカ、コロイダルアルミナ等のコロイド状酸化物を用いることができる。また、コート材には、セラミックスファイバーを含んでいても良い。
 ここで、本発明のセラミックハニカム構造体は、排ガス浄化装置として使用されることから、前記セラミックス骨材粒子は、耐熱性に良好なコーディエライト、シリカ、アルミナ、ムライト、炭化珪素、窒化珪素、チタン酸アルミニウムから選ばれる少なくとも1種以上であることが好ましい。なかでも、コーディエライト及び/又は非晶質シリカを用いることにより、外周壁の熱膨張係数が低減されて、さらに優れた耐熱衝撃性が得られる。
(2)ハニカム成型用金型
 金型30は、図6(a)~図6(d)に示すように、坏土(例えば、セラミック坏土)を供給する供給穴31が穴形成面31aに開口するように形成され、前記供給穴31が形成された穴形成面31aの反対面である溝形成面32a,32bに、供給穴31に連通する四角形格子状のスリット32が開口するように形成されている。前記溝形成面32aは、ハニカム成形体の四角形格子形状の隔壁を形成する隔壁形成領域33aを構成する面であり、前記溝形成面32bは、前記隔壁形成領域33aの外側に位置する外周領域33bを構成する面である。前記隔壁形成領域33aは、前記スリット32の四角形格子形状を反映した外周形状を有する。前記外周領域33bの溝形成面32bは、前記隔壁形成領域33aの溝形成面32aが凸となるように段差Hを設けて構成されている。すなわち前記隔壁形成領域33aと前記外周領域33bとの境界に前記段差Hが形成されている。前記段差Hは、ハニカム成形体の外周隔壁を形成するスリット32cを利用して形成されている。すなわち、隔壁形成領域33aの最外周部33cは、前記外周隔壁を形成するスリット32cの内側(金型の中心側)の面に一致する。軸方向断面における前記隔壁形成領域33aの外周形状は、前記外周形状に内接する最大の円と、前記外周形状に外接する最小の円との直径の差が最小になるように選ぶのが好ましい。
 前記外周領域33bの溝形成面32bには、前記ハニカム成形体11の外周隔壁12aの外周面14形状を規制するためのガイドリング35が、前記隔壁形成領域33aの最外周部33cを取り囲むように配置されている。ガイドリング35は、溝形成面32bに当接される当接面35bと、溝形成面32bとの間にクリアランスLを形成する非当接面35pとを有しており、前記クリアランスLが、前記溝形成面32aと前記溝形成面32bとの段差Hよりも小(L<H)となるように構成されている。ガイドリング35の内周面35aは、押出方向から見たときに、前記隔壁形成領域33aの外周形状に沿った形状を有している。なお隔壁形成領域33a及びガイドリング35は、所望するハニカム構造体の直径から外周壁厚さを考慮したハニカム本体の外径となるように選択する。
 本発明の金型がこのような構成(段差Hが設けられた位置にスリット32cが位置し、ガイドリング35のクリアランスLを段差Hよりも小さくした構成)を有することで、図7(a)に示すように、溝形成面32bのスリット32から排出された坏土が、隔壁形成領域32aの最外周部33c(段差Hを設けた部分)でその流動方向を押出方向(軸方向)に変化する際に、坏土には押出方向のみの力が作用するため、セラミックハニカム成形体の最外周の流路に変形が生じ難くなる。これに対して、特開2009-61683号に記載された金型のように、ガイドリングがセラミックハニカム成形体の外周隔壁の外周面形状に沿った内周形状を有していない場合(例えば、円形の場合)、例えば図7(b)に示すように、前記段差Hが設けられた位置にスリット32cが位置していない箇所が生じるため、最外周部33cと隣接するスリット32dとの間隔s1が小さくなり、外周壁を形成する坏土がハニカム成形体の中心方向への力を受け、最外周の流路に変形が生じやすくなる。
 ガイドリング35の内周面35aと非当接面35p(外周領域33bの溝形成面32b)との角度θは、図8(a)及び図8(b)に示すように、90°よりも小さい角度であるのが好ましく、30°≦θ<90°であるがより好ましい。θが30°未満の場合、ガイドリング35の強度が弱くなるため、溝形成面32bから排出される坏土の圧力によって前記ガイドリング35が変形する場合があり、外周隔壁及び最外周の流路が変形してしまうので好ましくない。
 このような金型で、例えばセラミック坏土を押出成形することで、図1(a)に示すような、軸方向に延びる多数の流路を構成する断面四角形格子状の隔壁と、前記隔壁の四角形格子形状を反映した外周面形状を有し、前記隔壁の厚さよりも厚い外周隔壁とを一体に形成してなるセラミックハニカム成形体を好適に得ることができ、ハンドリングの際に、セラミックハニカム成形体の外周面での隔壁の破損が発生し難くなるとともに、押出成形時に最外周の流路に変形が生じにくい。そのため、外周隔壁の外周面にコート材を塗布して外周壁を形成することで、高いアイソスタティック強度を有するセラミックハニカム構造体を得ることができる。
 このようなハニカム成形体を好適に得るためには、前記非当接面35pと前記溝形成面32bとのクリアランスLと、前記溝形成面32aと前記溝形成面32bとの段差Hとの比L/Hが、0.1≦L/H≦0.9を満たすのが好ましい。クリアランスLと段差Hとの比L/Hが0.1未満の場合、溝形成面32bからの坏土の排出が困難となり、外周隔壁が形成され難くなるので好ましくない。一方、比L/Hが0.9を超えると、溝形成面32bから排出された坏土がハニカム成形体に求心方向の力を加えるため、外周隔壁及び最外周の流路が変形し易くなるので好ましくない。好ましくは0.2≦L/H≦0.8でる。
 本発明で用いる金型において、ガイドリング35の内周面35aと隔壁形成領域32aの最外周部33cとの最短間隔dは、スリット幅tsよりも大きい必要があり、隣接するスリットとスリットとの間隔s及び前記スリット幅tsの和(s+ts)以下であるのが好ましい。つまり前記最短間隔d、隣接するスリットとスリットとの間隔s及びスリット幅tsが、式:ts<d≦(s+ts)を満たすのが好ましい。ここで間隔sとスリット幅tsとの和は、スリットのピッチに相当する。前記最短間隔dが(s+ts)よりも大きい場合、前記外周領域33bにおいて外周隔壁を形成するために供給されたセラミック坏土がまとまらず、外周隔壁がうまく形成されない場合がある。d≦(s+ts)であることで、軸方向に延びる多数の流路を構成する断面四角形格子状の隔壁と、前記隔壁の四角形格子形状を反映した外周面形状を有し、前記隔壁の厚さよりも厚い、前記多数の流路の最外周を構成する外周隔壁とを一体に形成してなるハニカム成形体を好適に得ることができる。
 また、ガイドリング35の非当接面35pの前記内周面35aからの長さをLpとすると、(Lp+d)は(s+2ts)以上であるのが好ましい。(Lp+d)は(s+2ts)以上である場合、前記外周領域33bの2つ以上のスリット(図6(b)及び図8(b)に示す金型では3つのスリット)から供給されたセラミック坏土が前記最短間隔dから押し出され、外周隔壁を形成する。Lpの長さは、前記外周領域33bの2~15個のスリットが(Lp+d)の範囲に含まれるように設定するのが好ましく、3~12個のスリットが含まれるように設定するのがさらに好ましく、4~10個のスリットが含まれるように設定するのが最も好ましい。
 本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1~3及び比較例1
 カオリン粉末、タルク粉末、シリカ粉末及びアルミナ粉末を調整し、50質量%のSiO2、36質量%のAl2O3及び14質量%のMgOのコーディエライト組成となるように調整し、これにバインダーとしてメチルセルロース、ヒドロキシプロピルメチルセルロース、潤滑剤、造孔材としてバルーン型の発泡樹脂を添加し、乾式で十分混合した後、規定量の水を添加して、十分な混練を行って可塑化したセラミック杯土を作製した。
 このセラミック坏土を押出成型するための金型として、図6(a)~図6(c)及び図11に示す特開2008-155594号に記載された金型を準備し、実施例1~3を図6(a)~図6(c)に示す金型30で作製し、比較例1を図11に示す特開2008-155594号に記載された金型で作製した。金型の構成を表1に示す。ここでLはガイドリング35の非当接面35pと溝形成面32bとの間のクリアランス、Hは溝形成面32aと溝形成面32bとの段差、dはガイドリング35の内周面35aと隔壁形成領域33aの最外周部33cとの最短間隔、sは隣接するスリット32とスリット32との間隔、及びtsスリット幅であり、nは(Lp+d)の範囲に含まれるスリットの数(図6(a)~図6(c)を参照)、すなわち最短間隔dから押し出され外周隔壁を形成するセラミック坏土を供給するスリットの数を表す。
Figure JPOXMLDOC01-appb-T000001
注(1):外周隔壁を形成するセラミック坏土を供給するスリットの数
 前記金型を用いてセラミック坏土を押出成型し、所定長さに切断し、セラミックハニカム成形体を得た。実施例1~3のセラミックハニカム成形体は、図1(a)に示すような、軸方向に延びる多数の流路を構成する断面四角形格子状の隔壁と、前記隔壁の四角形格子形状を反映した外周面形状を有し、前記セラミックハニカム成形体の最外周を構成する外周隔壁とを一体に形成してなるセラミックハニカム成形体であり、比較例1のセラミックハニカム成形体は、図10(a)及び図10(b)に示すような、ハニカム成形体の最外周を構成する外周隔壁を備えることなく前記隔壁52の端部55を外周側面に露出させたスキンレスハニカム成形体50であった。
 これらの成形体を乾燥後、1410℃で焼成して、外径264 mm、全長305 mm、隔壁厚さ0.13 mm、流路ピッチ1.57 mm、隔壁の気孔率が61%のコーディエライト質のセラミックハニカム本体を得た。これらのセラミックハニカム本体の外周隔壁及び隔壁の厚さを表2に示す。ここで、外径は、外周隔壁12aを全て包含する最小の円の直径、すなわちセラミックハニカム本体に外接する円筒の直径である。
Figure JPOXMLDOC01-appb-T000002
注(1):X1は外周隔壁に外接する最小円の直径である。
注(2):X2は外周隔壁に内接する最大円の直径である。
 これらのセラミックハニカム本体の外周面に、表3に示す骨材及び無機バインダー、並びにメチルセルロース(有機バインダー)及び水を配合してなるコート材を塗布し、140℃で2時間乾燥し、(セラミックハニカム本体の外径+2 mm)の直径を有する円柱状の外形のセラミックハニカム構造体を得た。
Figure JPOXMLDOC01-appb-T000003
 実施例1~3及び比較例1について、外周面にコート材を塗布する前のセラミックハニカム本体の流路変形度D1/D0、コート材塗布時のハンドリングでの破損、及び外周面にコート材を塗布して得られたセラミックハニカム構造体のアイソスタティック強度の評価を行った。
<流路変形度>
 流路変形度は、任意の最外周流路に断面円形の鋼線を挿入し、挿入可能な鋼線の最大直径を、その流路の隔壁に内接する最大の円の直径D1とし、変形の無い理想的な流路の直径D0を設計値から求め、比D1/D0で評価した。無作為に選択した20カ所の最外周流路について流路変形度D1/D0を測定し、それらの平均値で評価した。結果を表4に示す。
<ハンドリング時の破損>
 セラミックハニカム成形体の外周面にコート材を塗布する工程において、外周面に生じた破損の有無を目視で評価した。破損が見られなかった場合を無、破損が1か所でも見られた場合を有として評価した。
<アイソスタティック強度>
 アイソスタティック強度試験は、社団法人自動車技術会発行の自動車規格(JASO)M505-87に基づいて行った。セラミックハニカム構造体の軸方向両端面に厚さ20 mmのアルミ板を当接して両端を密閉するとともに、外壁部表面に厚さ2 mmのゴムシートを密着させた試料を圧力容器に入れ、圧力容器内に水を注入して、外壁部表面から静水圧を加えてゆき、セラミックハニカム構造体が破壊した時の圧力を測定して、アイソスタティック強度とした。アイソスタティック強度は、
アイソスタティック強度が2 MPa以上有するものを「優(◎)」、
アイソスタティック強度が1.5 MPa以上2 MPa未満有するものを「良(○)」、
アイソスタティック強度が1.0 MPa以上1.5 MPa未満有するものを「可(△)」、及び
アイソスタティック強度が1.0 MPa未満のものを「不可(×)」
として評価した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表1から、本発明の実施例1~3のセラミックハニカム構造体は、流路変形度が低く、アイソスタティック強度が良好であることがわかる。一方、比較例1は、外周壁が破損し易く、アイソスタティック強度に問題があることがわかる。

Claims (11)

  1.  断面四角形格子状の隔壁によって形成された軸方向に延びる多数の流路を有するセラミックハニカム本体と、前記セラミックハニカム本体の外周に設けられた外周壁とを有するセラミックハニカム構造体であって、
    前記セラミックハニカム本体の最外周を構成する外周隔壁が、
    前記隔壁の四角形格子形状を反映した外周面形状を有し、
    前記外周隔壁の最小厚さが前記隔壁の厚さよりも厚く、
    前記外周壁は、前記外周隔壁の外周面を被覆するように形成されていることを特徴とするセラミックハニカム構造体。
  2.  請求項1に記載のセラミックハニカム構造体において、前記外周隔壁の最小厚さTと、前記隔壁の厚さtとの比T/tが、1<T/t≦10を満たすことを特徴とするセラミックハニカム構造体。
  3.  請求項1又は請求項2に記載のセラミックハニカム構造体において、軸方向断面視での流路変形度をD1/D0[ただし、D1は最外周流路での隔壁に内接する最大の円の直径であり、D0は変形の無い理想的な流路の隔壁に内接する最大の円の直径である。]で表したとき、前記流路変形度が0.9~1.1であることを特徴とするセラミックハニカム構造体。
  4.  請求項1~3のいずれかに記載のセラミックハニカム構造体において、前記外周隔壁の最小厚さTが0.1~2 mmであることを特徴とするセラミックハニカム構造体。
  5.  断面四角形格子状の隔壁によって形成された軸方向に延びる多数の流路を有するセラミックハニカム本体と、前記セラミックハニカム本体の外周に設けられた外周壁とを有するセラミックハニカム構造体を製造する方法であって、
     セラミック杯土を押出成形することにより、軸方向に延びる多数の流路を構成する断面四角形格子状の隔壁と、前記隔壁の四角形格子形状を反映した外周面形状を有し、前記セラミックハニカム本体の最外周を構成する外周隔壁とを一体に形成してなるセラミックハニカム成形体を得る押出成形工程と、
     前記セラミックハニカム成形体を乾燥及び焼成してセラミックハニカム本体を得る乾燥・焼成工程と、
     前記セラミックハニカム本体の前記外周隔壁の外周面にコート材を塗布し、熱処理を行って外周壁を形成する外周壁形成工程とを有し、
     前記押出し成形工程において使用する金型は、
    前記セラミック坏土を供給するための供給穴と、前記供給穴が形成された穴形成面の反対面に形成された、前記供給穴に連通し、前記供給穴から供給した前記セラミック坏土をハニカム形状に押出し成形するための四角形格子状のスリットとを有する金型本体と、
    前記スリットが形成された溝形成面側に配置された、前記セラミックハニカム成形体の外周隔壁の外周面形状を規制するためのガイドリングとを有し、
     前記溝形成面は、前記四角形格子形状の隔壁を形成する隔壁形成領域と、前記隔壁形成領域の外側に前記隔壁形成領域が凸となるように段差Hを設けて構成された外周領域とを有し、
     前記隔壁形成領域は、前記スリットの四角形格子形状を反映した外周形状を有し、 前記ガイドリングは、前記隔壁形成領域を取り囲むように配置され、前記隔壁形成領域の外周形状に沿った内周形状を有するとともに、前記外周領域の溝形成面との間に、前記段差Hよりも小さい、前記外周隔壁を形成するセラミック坏土を供給するための間隙を有することを特徴とするセラミックハニカム構造体の製造方法。
  6.  請求項5に記載のセラミックハニカム構造体の製造方法において、前記外周隔壁の最小厚さTと、前記隔壁の厚さtとの比T/tが、1<T/t≦10を満たすことを特徴とするセラミックハニカム構造体の製造方法。
  7.  請求項5又は6に記載のセラミックハニカム構造体の製造方法において、前記コート材がセラミックス骨材粒子及び無機バインダーを主成分とすることを特徴とするセラミックハニカム構造体の製造方法。
  8.  請求項5~7のいずれかに記載のセラミックハニカム構造体の製造方法において、前記セラミックス骨材粒子がコーディエライト、シリカ、アルミナ、ムライト、炭化珪素、窒化珪素及びチタン酸アルミニウムからなる群から選ばれた少なくとも1種であることを特徴とするセラミックハニカム構造体の製造方法。
  9.  断面四角形格子状の隔壁によって形成された軸方向に延びる多数の流路を有するセラミックハニカム成形体を押出成形する金型であって、坏土を供給するための供給穴と、前記供給穴が形成された穴形成面の反対面に形成された、前記供給穴に連通し、前記坏土をハニカム形状に成形するための四角形格子状のスリットとを有する金型本体と、
     前記スリットが形成された溝形成面側に配置された、前記ハニカム成形体の最外周を構成する外周隔壁の外周面形状を規制するためのガイドリングとを有し、
     前記溝形成面は、前記四角形格子形状の隔壁を形成する隔壁形成領域と、前記隔壁形成領域の外側に前記隔壁形成領域が凸となるように段差Hを設けて構成された外周領域とを有し、
     前記隔壁形成領域は、前記スリットの四角形格子形状を反映した外周形状を有し、
     前記ガイドリングは、前記隔壁形成領域を取り囲むように配置され、前記隔壁形成領域の外周形状に沿った内周形状を有するとともに、前記外周領域の溝形成面との間に、前記段差Hよりも小さい、前記外周隔壁を形成する坏土を供給するための間隙を有することを特徴とするハニカム成形用金型。
  10.  請求項9に記載のハニカム成形用金型において、前記四角形格子状のスリットに直交する方向における、前記ガイドリングの内周面と前記隔壁形成領域の最外周部との最短間隔dが、前記四角形格子の隣接するスリットとスリットとの間隔をs、スリット幅をtsとしたとき、式:ts<d≦(s+ts)を満たすことを特徴とするハニカム成形用金型。
  11.  請求項9又は10に記載のハニカム成形用金型において、前記ガイドリングの内周面と、前記溝形成面との角度θが、30°≦θ<90°を満たすことを特徴とするハニカム成形用金型。
PCT/JP2015/077878 2014-09-30 2015-09-30 セラミックハニカム構造体及びその製造方法、並びにハニカム成形用金型 WO2016052680A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15846063.4A EP3202546A4 (en) 2014-09-30 2015-09-30 Ceramic honeycomb structure, manufacturing method therefor, and honeycomb molding mold
JP2016552152A JP6673209B2 (ja) 2014-09-30 2015-09-30 セラミックハニカム構造体及びその製造方法、並びにハニカム成形用金型
CN201580052866.XA CN107073746B (zh) 2014-09-30 2015-09-30 陶瓷蜂窝结构体的制造方法、以及蜂窝成形用模具
US15/515,184 US11007672B2 (en) 2014-09-30 2015-09-30 Ceramic honeycomb structure and its production method, and honeycomb-molding die

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-201888 2014-09-30
JP2014201888 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052680A1 true WO2016052680A1 (ja) 2016-04-07

Family

ID=55630701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077878 WO2016052680A1 (ja) 2014-09-30 2015-09-30 セラミックハニカム構造体及びその製造方法、並びにハニカム成形用金型

Country Status (5)

Country Link
US (1) US11007672B2 (ja)
EP (1) EP3202546A4 (ja)
JP (1) JP6673209B2 (ja)
CN (1) CN107073746B (ja)
WO (1) WO2016052680A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654480A (zh) * 2018-08-30 2021-04-13 日立金属株式会社 陶瓷蜂窝结构和蜂窝成型模具

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421213B2 (en) * 2016-03-30 2019-09-24 Ngk Insulators, Ltd. Ceramic formed body extrusion method, ceramic formed body, and ceramic porous body
JP7006662B2 (ja) * 2019-07-12 2022-01-24 株式会社デンソー 排ガス浄化フィルタ
US11890609B2 (en) * 2019-09-12 2024-02-06 Corning Incorporated Honeycomb bodies with improved skin CTE and isostatic strength and methods of making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283327A (ja) * 2001-03-28 2002-10-03 Ngk Insulators Ltd ハニカム構造体成形装置及び成形方法
JP2004001365A (ja) * 2002-04-26 2004-01-08 Ngk Insulators Ltd ハニカム構造体の製造方法及びハニカム構造体
WO2008126335A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838083B2 (ja) * 1980-01-22 1983-08-20 株式会社日本自動車部品総合研究所 ハニカム構造体押出成形用ダイス装置
JPH07183Y2 (ja) 1987-03-16 1995-01-11 日本碍子株式会社 セラミックハニカム構造体
JP2604876B2 (ja) 1990-03-27 1997-04-30 日本碍子株式会社 セラミックハニカム構造体の製造方法
US5256054A (en) * 1990-11-30 1993-10-26 Corning Incorporated Method and apparatus for forming a uniform skin on a cellular substrate
US5466415A (en) * 1994-10-20 1995-11-14 Corning Incorporated Extrusion of metal honeycombs
JP3080563B2 (ja) * 1995-08-21 2000-08-28 日本碍子株式会社 ハニカム構造体押出用ダイスの製造方法
US6455124B1 (en) * 2000-12-01 2002-09-24 Corning Incorporated Method for extruding ceramic honeycombs
JP4282960B2 (ja) * 2001-08-30 2009-06-24 日本碍子株式会社 高強度ハニカム構造体、その成形方法及びハニカム構造コンバーター
JP2003285308A (ja) * 2002-03-28 2003-10-07 Ngk Insulators Ltd ハニカム成形用口金及びこれを用いたハニカム成形用口金治具
JP2005007218A (ja) * 2003-06-16 2005-01-13 Hitachi Metals Ltd セラミックハニカム構造体及びセラミックハニカム構造体用金型
US7524448B2 (en) * 2004-11-17 2009-04-28 Corning Incorporated Honeycomb extrusion die
US7914724B2 (en) * 2005-07-29 2011-03-29 Corning Incorporated Methods for extruding a honeycomb article with a skin surrrounding a central cellular structure
JP2008155594A (ja) * 2006-12-26 2008-07-10 Denso Corp ハニカム構造体の製造方法及びスキンレスハニカム成形体成形用の金型
WO2008120291A1 (ja) * 2007-02-28 2008-10-09 Ibiden Co., Ltd. ハニカム構造体の製造方法
JP2009023319A (ja) * 2007-07-24 2009-02-05 Denso Corp ハニカム構造体成形用金型
JP2009023318A (ja) * 2007-07-24 2009-02-05 Denso Corp ハニカム構造体成形用金型
JP2009023316A (ja) * 2007-07-24 2009-02-05 Denso Corp ハニカム構造体成形用金型
JP2009061683A (ja) 2007-09-06 2009-03-26 Denso Corp ハニカム構造体成形用金型及びそれを用いたハニカム構造体の製造方法
JP5184400B2 (ja) * 2009-02-18 2013-04-17 日本碍子株式会社 ハニカム構造体成形用口金
US8491295B2 (en) * 2009-05-28 2013-07-23 Corning Incorporated Die assembly and method of extruding cellular ceramic substrates with a skin
US8435025B2 (en) * 2009-08-27 2013-05-07 Corning Incorporated Honeycomb extrusion die apparatus
CN102470548B (zh) * 2009-09-29 2014-07-16 日本碍子株式会社 封孔蜂窝结构体的制造方法
WO2011117964A1 (ja) 2010-03-23 2011-09-29 イビデン株式会社 ハニカム構造体
JP2012170935A (ja) * 2011-02-24 2012-09-10 Denso Corp ハニカム構造体
US9475245B2 (en) * 2012-05-08 2016-10-25 Corning Incorporated Honeycomb extrusion apparatus and methods
US8864488B2 (en) * 2012-05-08 2014-10-21 Corning Incorporated Honeycomb extrusion apparatus and methods
JP5805039B2 (ja) * 2012-09-25 2015-11-04 日本碍子株式会社 ハニカム構造体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283327A (ja) * 2001-03-28 2002-10-03 Ngk Insulators Ltd ハニカム構造体成形装置及び成形方法
JP2004001365A (ja) * 2002-04-26 2004-01-08 Ngk Insulators Ltd ハニカム構造体の製造方法及びハニカム構造体
WO2008126335A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202546A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654480A (zh) * 2018-08-30 2021-04-13 日立金属株式会社 陶瓷蜂窝结构和蜂窝成型模具

Also Published As

Publication number Publication date
EP3202546A1 (en) 2017-08-09
US20170216747A1 (en) 2017-08-03
JPWO2016052680A1 (ja) 2017-07-20
JP6673209B2 (ja) 2020-03-25
CN107073746A (zh) 2017-08-18
EP3202546A4 (en) 2018-11-07
CN107073746B (zh) 2022-02-18
US11007672B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
US7981497B2 (en) Honeycomb structure and method of producing the same
JP5916713B2 (ja) 目封止ハニカム構造体
JP4238858B2 (ja) 六角ハニカム構造体及びその製造方法
WO2016052680A1 (ja) セラミックハニカム構造体及びその製造方法、並びにハニカム成形用金型
KR20130135930A (ko) 밀봉된 하니컴 구조체
KR20130137673A (ko) 밀봉된 하니컴 구조체 및 배기 가스 정화 장치
US10688483B2 (en) Honeycomb structure
JP6749853B2 (ja) ハニカム構造体の製造方法及びハニカム構造体
EP2153958B1 (en) Die for molding honeycomb segment and method of producing honeycomb structure
JP2015157257A (ja) ハニカム構造体
JP4373177B2 (ja) ハニカム構造体、その製造方法及びキャニング構造体
CN108568209B (zh) 蜂窝结构体
JP6862245B2 (ja) ハニカムフィルタ
US11059754B2 (en) Honeycomb structure
JP7181704B2 (ja) ハニカム構造体
CN111749761B (zh) 蜂窝过滤器
US11046621B2 (en) Honeycomb structure
JP2018167221A (ja) ハニカム構造体
JP6144946B2 (ja) ハニカムフィルタ
JP7334737B2 (ja) セラミックハニカム構造体及びハニカム成形用金型
JP5261526B2 (ja) 目封止ハニカム構造体
JP2022147540A (ja) ハニカムフィルタ
JP5261527B2 (ja) 目封止ハニカム構造体
KR20050031065A (ko) 벌집형 구조체 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552152

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15515184

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015846063

Country of ref document: EP