WO2016052453A1 - 接続構造体及びその製造方法、並びに、輸送機器、電力機器、発電機器、医療機器、宇宙機器 - Google Patents

接続構造体及びその製造方法、並びに、輸送機器、電力機器、発電機器、医療機器、宇宙機器 Download PDF

Info

Publication number
WO2016052453A1
WO2016052453A1 PCT/JP2015/077409 JP2015077409W WO2016052453A1 WO 2016052453 A1 WO2016052453 A1 WO 2016052453A1 JP 2015077409 W JP2015077409 W JP 2015077409W WO 2016052453 A1 WO2016052453 A1 WO 2016052453A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection structure
hole
equipment
melter
molded body
Prior art date
Application number
PCT/JP2015/077409
Other languages
English (en)
French (fr)
Inventor
博明 川崎
Original Assignee
センチュリーイノヴェーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by センチュリーイノヴェーション株式会社 filed Critical センチュリーイノヴェーション株式会社
Priority to US15/513,657 priority Critical patent/US20170287600A1/en
Priority to JP2016552034A priority patent/JPWO2016052453A1/ja
Priority to KR1020177010356A priority patent/KR20170083536A/ko
Priority to CN201580052885.2A priority patent/CN107148704A/zh
Priority to EP15846196.2A priority patent/EP3203585A4/en
Publication of WO2016052453A1 publication Critical patent/WO2016052453A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0023Apparatus or processes specially adapted for manufacturing conductors or cables for welding together plastic insulated wires side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/53Means for plasticising or homogenising the moulding material or forcing it into the mould using injection ram or piston
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0013Apparatus or processes specially adapted for manufacturing conductors or cables for embedding wires in plastic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/029Welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/70Insulation of connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14065Positioning or centering articles in the mould
    • B29C2045/14131Positioning or centering articles in the mould using positioning or centering means forming part of the insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0007Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3493Moulded interconnect devices, i.e. moulded articles provided with integrated circuit traces
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections

Definitions

  • the present invention relates to a connection structure in which a plurality of conductive materials are electrically connected, a manufacturing method thereof, a transportation device, a power device, a power generation device, a medical device, and a space device.
  • Patent Document 1 discloses an invention in which a connection end is insulated with an insulating cap.
  • Patent Document 1 discloses an embodiment in which a connection end portion of a coil conductor is insulated with an insulating cap.
  • an insulating cap as shown in Patent Document 1 is separately provided, and the insulating cap is caulked and fixed to the connecting end to protect the connecting end.
  • connection end In the conventional configuration using an insulating cap, the airtightness at the connection end is not sufficiently maintained, and corrosion is liable to occur, resulting in lack of reliability. In addition, when an impact or the like is applied to the insulating cap, if the insulating cap is crushed, the impact is likely to propagate to the connection end, and the connection end may be damaged.
  • an object of the present invention is to provide a connection structure that can improve the reliability of the connection portion as compared with the related art and a method for manufacturing the connection structure. It is in.
  • the present inventor for example, by using the injection device of the present invention, an electrical connection part formed by joining conductive materials to each other is formed into an electrically insulating molded body.
  • the present invention has been completed by finding that the connection structure can be buried more appropriately and can be made more reliable than the conventional connection structure. That is, the present invention is as follows.
  • connection structure in the present invention includes a plurality of conductive materials, a connection portion that electrically connects the conductive materials, and an electrically insulating molded body that is formed by embedding the connection portion.
  • connection structure In the method for manufacturing a connection structure according to the present invention, an electrically insulating molded body is formed around a connection portion in which a plurality of conductive materials are electrically connected to each other, and the connection portion is embedded by the molded body. It is characterized by.
  • connection portion of the conductive material can be physically reinforced and the airtight state can be prevented, so that corrosion can be prevented and the reliability can be improved as compared with the prior art.
  • a recess is formed in a portion embedded in the molded body on the surface of the conductive material.
  • a conductor of a different metal can be used for the plurality of conductive materials.
  • the molded body is molded by an injection device incorporating a fuser in which the inner wall surface of the through hole is formed as an inclined surface so that the opening width becomes narrower toward the outlet.
  • the molded body is molded by the injection device including the melter in which a gentle slope that is continuous with the slope and is gentler than the slope is formed on the inlet side. It is more preferable.
  • the present invention it is possible to form a molded body around the connection portion using the injection apparatus incorporating the melting device having the above-described structure, and embed the connection portion in the molded body.
  • the injection device of the present invention it is possible to use a small injection device and to reduce the size of the mold.
  • the conductive material is already in a state of being incorporated as a part of a device, apparatus, machine or the like. That is, the molding process of the molded body is not performed in a state where the conductive material exists alone.
  • the injection device is very large, and the mold used for injection molding of the molded body has been very large.
  • connection structure of the present invention it is possible to manufacture transportation equipment, power equipment, power generation equipment, medical equipment, space equipment, and the like provided with the connection structure described above.
  • connection structure of the present invention it is possible to appropriately cope with a large current and high heat resistance, and high reliability can be obtained.
  • connection portion of the conductive material can be physically reinforced and the airtight state can be prevented, so that corrosion can be prevented and reliability can be improved as compared with the conventional structure.
  • connection structure in this Embodiment It is a fragmentary perspective view of the connection structure in this Embodiment. It is a partial cross section schematic diagram of the connection structure in a 1st embodiment. It is a partial cross section schematic diagram of the connection structure in a 2nd embodiment. It is a partial cross section schematic diagram of the connection structure in a 3rd embodiment. It is a partial cross section schematic diagram of the connection structure in a 4th embodiment. It is a partial cross section schematic diagram of the connection structure in a 5th embodiment. It is a partial cross section schematic diagram of the connection structure in a 6th embodiment. It is a fragmentary perspective view of the connection structure in another embodiment different from FIG. It is a partial cross section schematic diagram of the connection structure in a 7th embodiment.
  • connection structure in an 8th embodiment It is a partial cross section schematic diagram of the connection structure in an 8th embodiment. It is a partial cross section schematic diagram of the connection structure in a 9th embodiment. It is a partial expanded cross-section schematic diagram of the hollow part of FIG. It is a partial cross section schematic diagram of the connection structure in a 10th embodiment. It is a partial cross section schematic diagram of the connection structure in an 11th embodiment. It is a partial cross section schematic diagram of the connection structure in a 12th embodiment. It is a cross-sectional schematic diagram of the injection device in this Embodiment. It is a cross-sectional schematic diagram of the injection apparatus which shows the state which supplied the resin pellet to the injection apparatus shown in FIG.
  • FIG. 20 is a longitudinal sectional view of a melting device in another embodiment different from FIG. 19.
  • FIG. 17 is a schematic cross-sectional view of an injection apparatus according to another embodiment different from FIG. 16 and shows a state where resin pellets are supplied.
  • FIG. 22 is a schematic cross-sectional view of an injection apparatus showing a state in which a melter capable of moving up and down (reciprocating) from the state of FIG. 21 is moved upward.
  • FIG. 23 is a schematic cross-sectional view for explaining the forming process of the connection structure by moving the melter downward from the state of FIG. 22.
  • FIG. 1 is a partial perspective view of a connection structure in the present embodiment.
  • FIG. 2 is a partial cross-sectional schematic view of the connection structure in the first embodiment.
  • connection structure 30 includes a plurality of conductive materials 31 and 32, a connection portion 33 in which the conductive materials 31 and 32 are electrically connected, and a connection portion 33. And a formed body 34 to be configured. The entire connection portion 33 is embedded in the molded body 34.
  • the conductive materials 31 and 32 extend from opposite surfaces of the molded body 34 in opposite directions.
  • the arrangement relationship of the conductive materials 31 and 32 with respect to the molded body 34 is an example, and is not particularly limited.
  • 2 to 7 are configured such that a plurality of conductive materials extend from opposite surfaces of the molded body 34 in opposite directions.
  • the conductive materials 31 and 32 shown in FIGS. 1 and 2 are bare conductive materials (conductors), and the tips of the conductive materials 31 and 32 are electrically connected.
  • the formation method of the connection part 33 is not specifically limited, For example, welding, soldering, caulking by a metal ring, etc. can be illustrated.
  • FIG. 2 shows an example in which the conductive materials 31 and 32 are welded.
  • the cross-sectional shape of the conductive materials 31 and 32 may be round or rectangular, and the cross-sectional shape is not limited.
  • the conductive materials 31 and 32 are not particularly limited in material, but are formed of a conductor such as aluminum, silver, or copper, and copper can be mainly used.
  • the conductive materials 31 and 32 may be made of the same material or may be made of different materials. In particular, in the present embodiment, it is possible to preferably use a different metal conductor.
  • the shape of the molded body 34 is a rectangular body, but the shape is not limited and can be an arbitrary shape such as a columnar shape or a disk shape. Further, as shown in FIG. 1, a fixing hole 39 may be provided in the molded body 34. The number of fixing holes 39 is not limited. Further, the molded body 34 is integrally formed and has no cuts.
  • the molded body 34 is preferably formed of a thermoplastic resin.
  • the material used as the molded body 34 preferably has high electrical insulation and excellent heat resistance. Specifically, polycarbonate (PC), polyacetal (POM), polybutylene terephthalate (PBT), poniphenylene sulfide ( PPS), liquid crystal polymer (LCP), polypropylene (PP), polyethylene (PE) and the like are suitable.
  • the size of the molded body 34 is not particularly limited, the width dimension T1 and the length dimension L1 are about 5 mm to 20 mm, and the height dimension H1 is about 5 mm to 10 mm.
  • FIG. 3 is a partial cross-sectional schematic view of the connection structure in the second embodiment.
  • the same reference numerals as those in FIG. 2 indicate the same members as those in FIG.
  • FIG. 3 shows a conductive material with an insulating coating in which the conductive materials 31 and 32 are coated with an insulating coating 37 on the surfaces of the conductors 35 and 36.
  • the insulating coating 37 at the connection portion 33 is removed to remove the conductor 35, 36 is exposed, and the exposed conductors 35 and 36 are connected by welding or the like.
  • the connection part 33 is embed
  • the insulating coating 37 is not particularly limited, and is, for example, an enamel or a holmet coating. That is, the conductive materials 31 and 32 in FIG. 3 are enameled wires, Holmet wires, and the like. In FIG. 3, the insulating coating 37 is not shown in a sectional view, and the state where the surroundings of the conductors 35 and 36 are covered is shown from the front. The same applies to FIG. 4, FIG. 6, FIG. 7, FIG. 9 to FIG.
  • FIG. 4 is a partial cross-sectional schematic view of the connection structure in the third embodiment. 4, the same reference numerals as those in FIG. 2 denote the same members as those in FIG.
  • an insulating member 38 is covered around the conductors 35 and 36 excluding the connection portion 33.
  • the material of the insulating member 38 is not limited, vinyl etc. can be illustrated, for example. That is, the conductive materials 31 and 32 in FIG. 4 are vinyl-coated wires and the like.
  • FIG. 5 is a partial cross-sectional schematic view of the connection structure in the fourth embodiment. 5, the same reference numerals as those in FIG. 2 denote the same members as those in FIG.
  • three conductive materials 31, 32, and 39 are provided.
  • the conductive materials 31, 32, and 39 are bare conductive materials (conductors), and each of the conductive materials 31, 32, and 39 has a connection portion 33 connected by welding or the like.
  • the connection part 33 is embed
  • the number of conductive materials used as the connection structure can be three or more.
  • FIG. 6 is a partial cross-sectional schematic diagram of the connection structure in the fifth embodiment. 6, the same reference numerals as those in FIG. 2 denote the same members as those in FIG.
  • different types of conductive materials 45 and 46 are electrically connected.
  • the conductive material 45 is a vinyl-coated wire
  • the conductive material 46 is an enameled wire.
  • the conductors are exposed at the tips of the conductive materials 45 and 46, and the conductors of the conductive materials 45 and 46 are electrically connected, for example, by soldering.
  • the connection part 47 is formed.
  • the connection part 47 is embed
  • the same kind of electrically conductive material can be electrically connected, and different kinds of electrically conductive materials can also be electrically connected.
  • FIG. 7 is a partial cross-sectional schematic diagram of the connection structure according to the sixth embodiment. 7, the same reference numerals as those in FIG. 3 denote the same members as those in FIG.
  • a plurality of sets of electrically connected conductive materials 31 and 32 shown in FIG. 3 are provided, and the connection portions 33 of the conductive materials 31 and 32 of each set are embedded in a molded body 34 to connect each connection portion 33. Ensures electrical insulation against the outside. In this way, a plurality of connection portions 33 are embedded in one molded body 34.
  • FIG. 8 is a partial perspective view of a connection structure in an embodiment different from FIG.
  • FIG. 9 is a partial cross-sectional schematic view of the connection structure in the seventh embodiment.
  • FIG. 10 is a partial cross-sectional schematic view of the connection structure in the eighth embodiment. 9 and 10 show cut surfaces obtained by cutting the connection structure shown in FIG. 8 from the plane direction. 8, 9, and 10, the same reference numerals as those in FIG. 2 indicate the same members as those in FIG. 2.
  • the conductive materials 50 and 51 constitute a parallel insulating coated electric wire, and the conductors 52 and 53 (55) exposed by removing the insulating coating at the tips of the respective conductive materials 50 and 51. , 56) are welded or the like to form a connection portion 54 that is electrically connected. And the connection part 54 is embed
  • FIG. 11 is a partial cross-sectional schematic view of the connection structure according to the ninth embodiment. 11, the same reference numerals as those in FIG. 10 indicate the same members as those in FIG.
  • FIG. 11 a depression 57 is provided on the surface of the conductive materials 50 and 51 embedded in the molded body 34.
  • FIG. 12 is a partial enlarged cross-sectional schematic view of the hollow portion of FIG. 11. As shown in FIG. 12, the recess (bottomed recess) 57 passes through the insulating coating 58 to reach the conductor 55 (56), and the conductor 55 (56) has a recess.
  • the recess 57 may be formed only on the insulating coating 58, but is preferably formed on the conductor 55 (56). This can more effectively prevent the molded body from coming off.
  • the connection portion 54 is likely to be recessed by welding or the like, the recess portion 57 is preferably provided at a place other than the connection portion 54.
  • FIG. 13 is a partial cross-sectional schematic diagram of the connection structure according to the tenth embodiment.
  • the same reference numerals as those in FIG. 6 denote the same members as those in FIG.
  • the conductive material 45 is a vinyl-coated electric wire
  • the conductive material 46 is an enameled wire.
  • the conductors are exposed at the tips of the conductive materials 45 and 46, and the conductors of the conductive materials 45 and 46 are electrically connected, for example, by soldering. Thereby, the connection part 47 is formed.
  • the conductive materials 45 and 46 are extended to the outside from the same surface side of the molded body 34.
  • FIG. 1 unlike FIG. 6, the conductive materials 45 and 46 are extended to the outside from the same surface side of the molded body 34.
  • connection portion 47 in FIG. 13
  • a plurality of electrically connected conductive materials 45 and 46 shown in FIG. 13 are provided, and each connection portion 47 is embedded in a molded body 34 to electrically insulate each connection portion 47 from the outside. The sex is secured.
  • the molded body 34 shown in FIGS. 1 to 15 can be molded using an injection apparatus incorporating a melter as described below.
  • FIG. 16 is a schematic cross-sectional view of the injection apparatus in the present embodiment.
  • FIG. 17 is a schematic cross-sectional view of the injection apparatus showing a state in which resin pellets are supplied to the injection apparatus shown in FIG.
  • FIG. 17 is a schematic cross-sectional view for explaining a connection structure forming step using the injection apparatus according to the present embodiment.
  • the injection device 1 includes a cylinder 2, a melter 3 disposed in the cylinder 2, a nozzle portion 4 located at the tip of the injection device 1, a heating means for heating the melter 3, and a molten resin. And pressurizing means for pressing and ejecting the nozzle part 4 to the outside.
  • the melter 3 shown in FIG. 16 is fixed in the cylinder 2.
  • the melter 3 is disposed on the tip 2a side (the lower side in FIG. 1) of the cylinder 2.
  • a plunger 5 is provided as a pressurizing means.
  • the plunger 5 is disposed on the rear end 2 b side (the upper side in FIG. 1) of the cylinder 2 with respect to the melter 3.
  • the plunger 5 is supported by the driving means so as to be movable up and down (reciprocating). 16 and 17, the plunger 5 that can move up and down is at the position most retracted in the direction of the rear end of the cylinder 2.
  • FIG. 18 shows the state of FIG. ) Shows the state of movement.
  • the cylinder 2 is formed in an elongated cylindrical shape having a substantially constant inner diameter and outer diameter from the front end 2a to the rear end 2b, but the shape is not particularly limited.
  • the shape of the cylinder 2 is not particularly limited as long as the fuser 3 can be fixed in the cylinder 2 and the plunger 5 as a pressurizing unit can be moved up and down.
  • the cylinder 2 can be a square with a hollow inside.
  • the material of the cylinder 2 is not particularly limited, it is preferable to use iron or stainless steel having a high iron content because heating is required to be performed quickly.
  • the cylinder 2 is provided with a pellet supply port 2c.
  • the pellet supply port 2c is positioned between the fuser 3 fixed to the front end 2a side of the cylinder 2 and the plunger 5 in a state of retreating in the rear end 2b direction (upward direction in the drawing) of the cylinder 2. It is formed in a hole shape communicating with the internal space.
  • a tubular supply pipe 12 is connected to the pellet supply port 2c.
  • the upper end of the supply pipe 12 communicates with a storage unit 18 that stores a large number of resin pellets (injection materials), and the resin pellets are supplied from the storage unit 18 through the supply pipe 12 to the pellet supply port 2c.
  • the storage unit 18 is a hopper, for example. Further, the storage unit 18 is provided with a screw conveyance and a pneumatic device, and the resin pellets can be forcibly introduced into the supply pipe 12. In addition, a storage part is not provided but it can also supply with a pipe from a distance by screw conveyance or pneumatic feeding.
  • the plunger 5 includes a pressing portion 5a and a cylindrical outer peripheral side surface portion 5b provided around the pressing portion 5a and formed toward the rear end 2b of the cylinder 2. As shown in FIG. 16, the size of the pressing portion 5 a matches the inner diameter of the cylinder 2, and the space area of the cylinder 2 from the pressing portion 5 a to the rear end 2 b of the cylinder 2 is blocked by the plunger 5. It is in a state. Note that a hard heat-resistant synthetic resin is fixed to the front surface (lower surface side in the drawing) of the pressing portion 5a as necessary. This insulates between the melter 3 and the plunger 5 so that the heat of the melter 3 is not taken away by the plunger 5, and the plunger 5 is heated so that the heat is not conducted to the drive unit 8. be able to.
  • the plunger 5 is connected to the drive unit 8, and the plunger 5 is supported by the drive force of the drive unit 8 so as to move up and down (reciprocate) in the cylinder 2.
  • a drive transmission shaft (9) 9 is disposed between the drive unit 8 and the plunger 5, and the drive unit 8 and the drive transmission shaft 9 constitute a “drive unit”. is doing.
  • the drive unit 8 is a motor drive unit
  • the drive transmission shaft 9 is a rack shaft
  • a pinion gear (not shown) is disposed between the motor drive unit and the rack shaft
  • the drive means is a motor drive unit, It has a rack shaft and a pinion gear.
  • the cross-sectional shape of the drive transmission shaft ( ⁇ ) 9 is, for example, a circle, but the shape is not limited.
  • a heating means 6 for heating the melter 3 is provided on the outer periphery of the cylinder 2.
  • the heating means 6 is a structural member that heats the melting device 3 from the outer peripheral surface of the cylinder 2, and is preferably configured in a cylindrical shape so that the heat conductivity to the melting device 3 is good. is there.
  • the heating means 6 is provided at a position opposite to the melting device 3 (so as to surround the outer periphery of the melting device 3).
  • the heating means 6 is formed by winding an IH heater or the like.
  • the heating means 6 is preferably an electromagnetic induction device, that is, an IH (Induction Heating) coil, and an IH coil is wound around a heat insulating material coil bobbin made of resin or ceramic.
  • IH Induction Heating
  • a band heater may be used.
  • the heating means 6 is not limited to the above-described one, and any other heating device that can be used in the present invention may be used.
  • the cylinder 2 is preferably provided with a thermocouple, and the temperature of the cylinder 2 can be adjusted to a set value.
  • the melter 3 is provided with a plurality of through holes (melting holes) 10 in the height direction. Further, the shape of the outer peripheral surface of the fuser 3 and the shape of the inner wall surface of the cylinder 2 are matched so that the entire outer peripheral surface of the fuser 3 is in contact with the inner wall surface of the cylinder 2. Therefore, for example, if the inner wall surface (hollow part) of the cylinder 2 is cylindrical, the outer peripheral surface of the melter 3 is also formed in a cylindrical shape having the same diameter.
  • the opening on the upper surface side of the melter 3 of each through hole 10 is an inflow port, and the opening on the lower surface side of the melter 3 in each through hole 10 is an outflow port.
  • the material of the melter 3 is preferably a material having a large heat capacity and good thermal conductivity, or a metal having excellent heat resistance. Specifically, copper, beryllium copper, brass, stainless steel, gold, chrome steel, nickel chrome steel, molybdenum steel, tungsten, and the like are used, but the material is not particularly limited. And it becomes possible to suppress effectively the melt
  • a head portion 11 including a nozzle portion 4 is provided at the tip 2 a of the cylinder 2.
  • the head unit 11 includes a nozzle unit 4, a funnel unit 13, and a connection unit 14.
  • the head part 11 is connected to the cylinder 2 via the connection part 14.
  • the material of the head portion 11 is preferably a material having good heat conduction, and specifically, beryllium copper or copper is desirable.
  • the material of the resin pellet P is not particularly limited, as described above, it is preferable that the material used as the molded body 34 has high electrical insulation and excellent heat resistance. Therefore, as the resin pellet P, polycarbonate (PC), polyacetal (POM), polybutylene terephthalate (PBT), poniphenylene sulfide (PPS), liquid crystal polymer (LCP) and the like are suitable.
  • the resin pellet P has a diameter of about 1 to 1.5 mm or a size having a long side, for example.
  • the resin pellets P When the resin pellets P reach the melter 3, the resin pellets P enter the through holes (melting holes) of the melter 3 from the inlet (upper surface in the drawing). The resin pellets P that have entered the respective through holes 10 are pressed to the outlet side (the lower surface side in the drawing) of the respective through holes 10 by the resin pellets P that flow in later. At this time, the melting device 3 is maintained at a temperature at which the resin pellets P are melted via the heating means 6.
  • the resin pellets P that have flowed into the respective through holes 10 are partially softened by the heat from the melter 3.
  • the driving means is driven to drive the plunger 5 as the pressurizing means in the direction of the nozzle portion 4 (downward direction in the figure).
  • the entire large number of resin pellets P positioned between the inlet side surface (upper surface in the drawing) of the melting device 3 and the lower surface of the pressing portion 5a of the plunger 5 are pressed against each other.
  • the pellet supply port 2 c is closed by the plunger 5 by the downward movement of the plunger 5.
  • the resin pellets P that have flowed into the through holes 10 of the melter 3 by the movement of the plunger 5 are also pressurized.
  • the resin pellets P are pressurized in each through-hole 10 to be in an airtight state, and further melted by the heat from the melter 3, so that the molten resin q passes from the outlet (lower surface side) of the melter 3 to the head. It flows into the part 11.
  • the molten resin q is pressurized while being kept in a high airtight state, and injected from the nozzle portion 4 to the outside.
  • the nozzle portion 4 is positioned at the supply port 21a of the upper mold 21 constituting the mold, and the molten resin q is injected into the upper mold 21 and the lower mold 22 of the mold. The filled molten resin q is then cooled and becomes solid.
  • the injection time of the molten resin q by the injection device 1 is several hundred milliseconds to several seconds (for example, about 1 second).
  • a conductive connecting body 62 is formed by electrically connecting a plurality of conductive materials in advance in the mold, and the periphery of the conductive connecting body 62 is molded by injecting molten resin q. It can be embedded by the body 64, thereby ensuring electrical insulation with respect to the outside of the connection portion 63 of the conductive connection body 62.
  • the melter 3 in the present embodiment will be described in detail.
  • the melter 3 is provided with a plurality of through holes 10.
  • the melting device 3 has a function for passing the resin pellets P through the respective through holes 10 to melt the resin pellets P.
  • the resin pellet P remains undissolved, clogging of the through hole 10 is likely to occur.
  • the melter 3 is required to have a configuration that can effectively suppress the occurrence of unmelted resin pellets P when the molten resin is produced.
  • FIG. 19 is a longitudinal sectional view of a melting device as the first embodiment.
  • the melter 3 has an upper surface 3a, a lower surface 3b, and an outer peripheral surface 3c located between the upper surface 3a and the lower surface 3b.
  • the upper surface 3a and the lower surface 3b are surfaces that face each other and are parallel to each other.
  • the melter 3 is formed with a plurality of through holes 10 provided from the upper surface 3a to the lower surface 3b (in the height direction (Z)).
  • the opening at the upper surface 3a of each through hole 10 is an inflow port 10a, and the opening at the lower surface 3b is an outflow port 10b.
  • the number of through holes 10 can be arbitrarily set, but it is preferable that there are a plurality of through holes 10. Further, for example, the number of the through holes 10 is set so that the ratio of the total area of the inlets 10 a of each through hole 10 to the area of the upper surface 3 a (inlet surface) of the melting device 3 is 50% or more. It is preferable to do.
  • the plurality of through holes 10 may be regularly arranged or randomly arranged, but the entire upper surface (inlet port surface) 3a and the entire lower surface (outlet port surface) 3b are all penetrated uniformly. By fusing the holes 10, the melting efficiency can be increased.
  • each through hole (melting hole) 10 the inner wall surface 10c of the through hole 10 is formed as an inclined surface so that the opening width gradually decreases from the inflow port 10a to the outflow port 10b.
  • Each through hole 10 is preferably formed in a direction parallel to the height direction (Z) from the inflow port 10a to the outflow port 10b.
  • Each through hole 10 is preferably in the shape of a truncated cone, and specifically, a truncated cone or a truncated pyramid can be presented. In FIG. 19, each through hole 10 has a truncated cone shape.
  • the opening width of the inlet 10a of each through hole 10 is T1
  • the opening width of the outlet 10b of each through hole 10 is T2.
  • the opening width T1 is larger than the opening width T2.
  • the opening width T1 and the opening width T2 can be obtained as the opening diameter.
  • the opening width T1 and the opening width T2 indicate the longest straight line width among the sides or the diagonal lines.
  • the opening width T1 is adjusted within the range of 4.1 mm to 10 mm, and the opening width T2 is adjusted within the range of 1.0 mm to 4.5 mm.
  • the expression “lower limit value to upper limit value” includes the lower limit value and the upper limit value.
  • Resin pellets P are introduced into the melter 3 from the inlets 10a of the through holes 10 of the melter 3 shown in FIG. 19 and are heated and pressurized to be in a molten state, so that the molten resin flows into the outlets 10b of the through holes 10. Spilled from.
  • the inlet 10a of each through-hole 10 is opened larger than the outlet 10b. For this reason, it is easy to guide the resin pellet P into the inflow port 10 a of the through hole 10.
  • the opening width T1 of the inlet 10a within the range of 4.1 mm to 10 mm, the sizes of various commercially available resin pellets can be substantially covered, and the resin pellets P are appropriately guided into the inlet 10a. Can do.
  • the resin pellets P are melted in the melter 3 and discharged to the outside from the outlet 10b.
  • the inner wall surface 10c of the through hole 10 is an inclined surface, the molten resin can be smoothly guided toward the outlet 10b.
  • the opening width T2 of the outlet 10b narrower than the opening width T1 of the inlet 10a, the amount of heat and the extrusion pressure on the outlet 10b side can be increased, and the molten resin is appropriately supplied from the outlet 10b. Can be drained into.
  • the opening width T1 of the inlet 10a is 4.1 mm to 10 mm, and the opening width T2 of the outlet 10b is 1.0 mm to 4.5 mm.
  • the opening width of each of the inlet 10a and the outlet 10b is regulated within a predetermined range, so that the resin pellets P It becomes possible to suppress unmelted residue compared to the conventional case.
  • the length dimension H2 from the inlet 10a to the outlet 10b of the through hole 10 is preferably 30 mm to 200 mm.
  • the length dimension H2 is determined by a dimension in a direction parallel to the height direction (Z) from the inlet 10a to the outlet 10b. If the length dimension is too short, the melting route from the inflow port to the outflow port becomes short, so that the resin pellets P are likely to remain undissolved. If the length of the through hole 10 is too long, the inner wall surface of the through hole 10 approaches the vertical surface from the inclined surface, and the relative increase of the amount of heat and the extrusion pressure on the outlet 10b side with respect to the inlet side decreases. It becomes easy. Moreover, when a length dimension is too long, it will lead to the enlargement of the fuser 3.
  • the length dimension H2 is more preferably 70 mm to 150 mm.
  • the resin pellet P is more effectively dissolved by adjusting the length of the through hole 10 together with the opening widths of the inlet 10a and the outlet 10b of the through hole 10 appropriately. It becomes possible to improve the melting efficiency.
  • the opening width T1 of the inlet 10a is preferably 4.1 mm to 6 mm.
  • the opening width T2 of the outlet 10b is preferably 1.0 mm to 2.9 mm.
  • the lower limit value of the opening width T2 of the outlet 10b is more preferably 1.6 mm.
  • FIG. 20 is a longitudinal sectional view of a melting device as a second embodiment.
  • each through-hole (melting hole) 10 constituting the melter 3 penetrates so that the opening width gradually decreases from the inlet 10a to the outlet 10b.
  • the inner wall surface 10c of the hole 10 is formed with an inclined surface.
  • each through-hole 10 is formed by an inclined surface (first inclined surface) 70 having an opening angle ⁇ 1 and a gentle inclined surface (second inclined surface) 71 having an opening angle ⁇ 2 on the inlet 10a side. Is formed.
  • the relationship ⁇ 1 ⁇ 2 ⁇ 120 ° is satisfied.
  • the opening angle ⁇ 1 has the same opening angle in FIG. 20, and the opening angle ⁇ 1 is determined by the relationship between the inflow port 10a and the outflow port 10b.
  • the “opening angle” refers to an angle between the inclined surfaces facing each other in the cross section shown in FIG. 20, and the opening angle is defined when the inclination angle of each inclined surface is defined as an angle from the height direction (Z). Is approximately twice the tilt angle.
  • the edge 10d of the inflow port 10a of the adjacent through-hole 10 approaches and the edges 10d come into contact with each other, or the edge 10d has a blade shape or a blade shape in a close contact portion.
  • the resin pellets P are positioned on the edge 10d, the resin pellets P are crushed and finely separated so that they can easily enter the through holes 10 and clogging in the through holes 10 is suppressed. Is done.
  • the steeply inclined surface 70 is formed from the outlet 10b to a position close to the inlet 10a, and a gentle slope 71 having a gentle inclination is formed only in the vicinity of the inlet 10a.
  • the inclined surface may be formed in three or more steps. It is preferable that most of the through holes are formed by an inclined surface 70 having a steep inclination and a two-stage inclined structure in which a gentle inclined surface 71 is formed only in the vicinity of the inflow port 10a.
  • the inner wall surface of the through hole 10 is formed as an inclined surface so that the opening width becomes narrower from the inlet 10 a to the outlet 10 b of the through hole 10.
  • the resin pellet P can be easily guided into the inflow port 10a of the through hole 10.
  • the resin pellet P is melted in the melter 3 and flows out from the outlet 10b.
  • the inner wall surface of the through hole 10 is an inclined surface, it is easily guided smoothly toward the outlet, and the outlet 10b.
  • the gentle slope 71 is formed on the inflow port 10a side.
  • the resin pellet P can be more easily guided into the inflow port 10 a of the through hole 10.
  • it can suppress that a flat part is formed in the inlet surface of a melter, and can form a sharp edge part between each inlet (refer FIG. 20). Therefore, the effect that the resin pellet P is shredded at the edge 10d of the inlet 10a can be expected, and as a result, the resin pellet P remaining on the upper surface (inlet surface) 3a of the melter 3 can be reduced.
  • ⁇ 1 ⁇ 2 ⁇ 120 ° is satisfied.
  • ⁇ 2 is preferably 30 ° to 120 °.
  • ⁇ 2 is more preferably 30 ° to 90 °.
  • ⁇ 2 is more preferably 30 ° to 60 °.
  • the opening angle ⁇ 1 is determined by the sizes of the inlet 10a and the outlet 10b, and is at least smaller than the opening angle ⁇ 1. Specifically, ⁇ 1 is about 0 ° to 20 °, or about 0 ° to 10 °.
  • the opening width T1 of the inlet 10a is preferably 4.1 mm to 10 mm
  • the opening width T2 of the outlet 10b is preferably 1.0 mm to 4.5 mm.
  • the opening width T1 of the inflow port 10a is 4.1 mm to 6 mm
  • the opening width T2 of the outflow port 10b is 1.0 mm to 2.9 mm.
  • the lower limit value of the opening width T2 is more preferably 1.6 mm.
  • the length dimension HI from the inlet 10a to the outlet 10b of the through hole 10 is preferably 30 mm to 200 mm.
  • the length dimension HI is more preferably 70 mm to 150 mm.
  • melter 3 in the present embodiment is used by being fixed in the injection apparatus 1 as shown in FIG. 16, and may be configured to move up and down (reciprocate) in the cylinder as described below. it can.
  • FIG. 21 is a schematic cross-sectional view of an injection apparatus according to an embodiment different from FIG. 16, and shows a state in which resin pellets are supplied.
  • FIG. 22 is a schematic cross-sectional view of the injection apparatus showing a state in which a melter capable of moving up and down (reciprocating) from the state of FIG. 21 is moved upward.
  • FIG. 23 is a schematic cross-sectional view of the injection apparatus showing a state in which the melter is moved downward from the state of FIG. 22 and the molten resin is injected from the nozzle portion to the outside.
  • FIG. 21 the same parts as those in FIGS. 16 to 18 are denoted by the same reference numerals.
  • the melter 3 and the drive unit 8 are connected via a drive transmission shaft 9.
  • a closing member 40 is provided on the rear end side of the cylinder 2 with respect to the melter 3.
  • the planar area of the closing member 40 matches the planar area of the space surrounded by the inner wall surface in the cylinder 2.
  • the closing member 40 is fixed in the cylinder 2.
  • the drive transmission shaft 9 passes through the closing member 40 and is connected to the melter 3. As shown in FIG. 21, the drive transmission shaft 9 passes through the central portion of the melter 3, and the melter 3 and the drive transmission shaft 9 are fixedly connected.
  • an opening / closing member 41 is provided on the lower surface (outlet surface) 3b side of the melter 3.
  • the opening / closing member 41 is supported so as to close or release the outlet of each through hole 10 of the melting device 3 based on the vertical movement of the melting device 3.
  • the opening / closing member 41 is always urged to the lower surface (outlet surface) of the melter 3 using an elastic member (not shown).
  • the opening / closing member 41 can be released from the lower surface 3 b of the melter 3 by the action of the drive unit 8 and the drive transmission shaft 9.
  • the opening / closing member 41 is formed with a smaller area than the melter 3. Further, the opening / closing member 41 may be formed with a through hole. At this time, the position and size of the through hole formed in the opening / closing member 41 are regulated so as not to overlap the outlet 10 b of each through hole 10 of the melting device 3.
  • the melter 3 is located on the tip side of the cylinder 2, and in the initial state of FIG. 21, a large number of solid resin pellets (injected material) P are supplied from the storage unit 18 to the supply pipe 12. Through the cylinder 2.
  • the resin pellet P enters each through hole (melting hole) 10 of the melting device 3 from the inlet (upper surface in the drawing).
  • the resin pellets P that have entered the respective through holes 10 are pressed to the outlet side (the lower surface side in the drawing) of the respective through holes 10 by the resin pellets P that flow in later.
  • the melting device 3 is maintained at a temperature at which the resin pellets P are melted via the heating means 6.
  • the resin pellets P that have flowed into the respective through holes 10 are partially softened by the heat from the melting device 3.
  • the driving means is driven to close the fuser 3 in the direction of the member 40 (upward direction in the drawing) (melting step).
  • the entire large number of resin pellets P positioned between the inlet side surface (the upper surface in the drawing) of the melting device 3 and the lower surface of the closing member 40 are pressed against each other.
  • the heating means 6 is fixed to the outer periphery of the cylinder 2, but the heat capacity of the melter 3 is sufficiently maintained even if the fuser 3 is reciprocated vertically by the driving means.
  • a heat insulating structure is preferably provided between the melter 3 and the drive transmission shaft 9 so that the heat of the melter 3 is not transmitted to the drive transmission shaft 9.
  • the resin pellet P filled in each through hole (melting hole) 10 of the melting device 3 is heated and pressurized while being airtight, and starts melting.
  • the opening / closing member 41 located on the lower surface (outlet) 3 b side of the melting device 3 is in a state of being released from the melting device 3.
  • the molten resin q that has flowed downward from the melter 3 accumulates between the melter 3 and the nozzle portion 4.
  • the driving unit is operated to move the melter 3 in the direction of the nozzle portion 4 (downward direction in the drawing) (injection process).
  • the opening / closing member 41 is in contact with the lower surface 3 b of the melting device 3, thereby closing the outlet 10 b of each through hole 10 of the melting device 3.
  • the molten resin q accumulated between the melter 3 and the nozzle part 4 is pressurized and injected from the nozzle part 4 while maintaining an airtight state.
  • the molten resin q is injected between the upper mold 21 and the lower mold 22 constituting the mold. As shown in FIG.
  • a conductive connecting body 62 in which a plurality of conductive materials are electrically connected in advance is arranged in the mold, and the periphery of the conductive connecting body 62 is molded by injecting molten resin q. It can be embedded by the body 64, thereby ensuring electrical insulation with respect to the outside of the connection portion 63 of the conductive connection body 62.
  • the opening width T1 of the inflow port 10a shown in FIG. 19 is 4.1 mm to 10 mm
  • the opening width T2 of the outflow port 10b is 1.0 mm to 4.5 mm. 20 or by using the melter 3 in which the inlet 10a side of each through hole 10 shown in FIG. 20 is formed with a gentle slope, the melting efficiency is effectively improved as compared with the conventional case. It is possible to make it.
  • connection structure in the present embodiment includes a plurality of conductive materials, a connection portion in which the conductive materials are electrically connected, and an electrically insulating molded body in which the connection portion is embedded. It is characterized by that.
  • connection structure in the present embodiment, an electrically insulating molded body is formed around a connection portion in which a plurality of conductive materials are electrically connected to each other, and the connection portion is embedded by the molded body. It is characterized by that.
  • the electrical connection portion of the conductive material is protected by, for example, an insulating cap.
  • the connection part of an electrically-conductive material is embed
  • an insulating cap there was a concern about the problem of corrosion because air gaps were apt to be generated between the insulating cap and the connection part.
  • the insulating cap is crushed by an impact, the impact propagates to the connecting portion inside the insulating cap, and the connecting portion may be damaged.
  • the volume of the insulating cap is large and the insulating cap cannot be stored.
  • the conductive material connecting portion by embedding the conductive material connecting portion with a molded body, the conductive material connecting portion can be physically reinforced and can be kept airtight, thereby preventing corrosion. Therefore, the reliability can be improved as compared with the conventional case. Further, since the connection portion does not need to maintain the mechanical strength itself, minimization (miniaturization) corresponding to the current capacity can be promoted, and the size can be reduced even when a plurality of connection portions exist. For this reason, in addition to the above effects, the connection portion of the large current can be highly reliable and reduced in size and weight.
  • the conductive material has a recess 57 formed in a portion embedded in the molded body. It is more effective that the recessed portion 57 is formed in a portion other than the connection portion. As a result, when the molded body 34 is molded, the molten resin can enter the hollow portion 57, the contact area between the conductor and the resin increases, and the molded body can be more effectively prevented from coming off.
  • connection portion is embedded in the molded body, so that the connection portion can be effectively kept in an airtight state. Therefore, even when a different metal conductor is used for the plurality of conductive materials, it is possible to appropriately prevent galvanic corrosion due to a potential difference between different metals.
  • the dissimilar metals include those formed of different elements and those having different mixing ratios. For example, even when the mixing ratio of iron and copper is different, the different metal is used.
  • the melter has a through hole, and one opening of the through hole is an inlet for resin pellets (injection material), and the other opening is an outlet for resin pellets (injection material).
  • the inner wall surface of the through hole is formed as an inclined surface so that the opening width becomes narrower from the inlet to the outlet of the through hole.
  • the melter is formed with a gentle slope that is continuous with the slope and has a gentle slope than the slope on the inlet side.
  • the mold is, for example, a concaved metal plate.
  • the conductive material is already in a state of being already incorporated as a part of an apparatus, device, machine or the like. That is, the molding process of the molded body is not performed in a state where the conductive material exists alone.
  • the injection device is very large, and the mold used for injection molding of the molded body has been very large.
  • the injection device incorporating the melter of the present embodiment it is possible to realize a reduction in the size of the injection device and a reduction in the size of the mold, and a state in which the device is already incorporated as a part of equipment, device, or machine
  • the molding die can be easily set in the connecting portion of the conductive material, and a small molded body can be molded only in the connecting portion using the injection apparatus of the present embodiment.
  • connection portion in which a plurality of conductive materials are electrically connected with a molded body
  • the connection portion can be physically reinforced and airtight, and corrosion can be prevented.
  • the protection state at the connecting portion is extremely important for ensuring reliability.
  • Transportation equipment includes automobiles, aircraft, railways, ships, and the like.
  • the car includes an electric car.
  • the electric power device includes a battery such as a solar battery.
  • the power generation equipment includes a thermoelectric generator and the like.
  • Space equipment includes rockets and artificial satellites.
  • connection structure of the present embodiment it is possible to appropriately cope with an increase in current, an increase in strength, and a heat resistance, and high reliability can be obtained.
  • connection part of a large current can be reduced in size and weight.
  • the present invention can provide a connection structure that can physically reinforce the connection portion of the conductive material and can prevent corrosion by being in an airtight state, and can increase reliability as compared with the prior art.
  • a connection structure of the present embodiment it is possible to manufacture an electric vehicle, a solar cell, a thermoelectric generator, or the like having excellent reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

 従来に比べて、接続部の信頼性を高めることができる接続構造体及びその製造方法を提供すること。本発明における接続構造体(30)は、複数の導電材(31、32)と、前記導電材同士を電気的に接続した接続部(33)と、前記接続部を埋設してなる電気的絶縁性の成形体(34)と、を有することを特徴とする。これにより導電材の接続部を物理的に補強でき且つ、気密状態にできることで腐食を防ぐことができ、従来に比べて信頼性を高めることができる。

Description

接続構造体及びその製造方法、並びに、輸送機器、電力機器、発電機器、医療機器、宇宙機器
 本発明は、複数の導電材が電気的に接続されてなる接続構造体及びその製造方法、並びに、輸送機器、電力機器、発電機器、医療機器、宇宙機器に関する。
 下記特許文献1には、接続端部を絶縁キャップで絶縁した発明が開示されている。特許文献1には、例えば、コイル導線の接続端部を絶縁キャップで絶縁した実施例が開示されている。従来では、特許文献1に示すような絶縁キャップを別に設け、絶縁キャップを接続端部にかしめ固定して接続端部の保護を図っていた。
特開2011-97779号公報 特許第5527706号公報
 しかしながら、従来のように絶縁キャップを用いる構成では、接続端部での気密性が十分に保たれず腐食が生じやすい等、信頼性に欠けるものであった。また衝撃等が絶縁キャップに加わった際、絶縁キャップが潰れるなどした場合には、その衝撃が接続端部に伝搬されやすくなり、接続端部の破損等が生じることがあった。
 そこで本発明は、このような問題に鑑みてなされたもので、その目的とするところは、従来に比べて、接続部の信頼性を高めることができる接続構造体及びその製造方法を提供することにある。
 本発明者は上記目的を解決すべく鋭意研究を重ねた結果、例えば本発明の射出装置を用いることで、導電材同士を接合してなる電気的な接続部を、電気的絶縁性の成形体により適切に埋設することができ、従来に比べて信頼性の高い接続構造体にできることを見出し、本発明を完成するに至った。即ち本発明は以下の通りである。
 本発明における接続構造体は、複数の導電材と、前記導電材同士を電気的に接続した接続部と、前記接続部を埋設してなる電気的絶縁性の成形体と、を有することを特徴とする。
 また本発明における接続構造体の製造方法は、複数の導電材同士を電気的に接続した接続部の周囲に電気的絶縁性の成形体を成形して、前記接続部を成形体により埋設することを特徴とする。
 本発明によれば、導電材の接続部を物理的に補強でき且つ、気密状態にできることで腐食を防ぐことができ、従来に比べて信頼性を高めることができる。
 本発明では、前記導電材の表面には前記成形体内に埋設された部分に窪み部が形成されていることが好ましい。これにより成形体の成形の際、溶融樹脂を窪み部内に入り込ませることができ、成形体抜けをより効果的に抑制することができる。
 また本発明では、前記複数の導電材に、異種金属の導体を用いる構成にできる。本発明では、異種金属の電位差によるガルバニック腐食が生じることを適切に防止することが可能である。
 また本発明では、貫通孔を有し、前記貫通孔の一方の開口部が射出材料の流入口で、他方の開口部が前記射出材料の流出口であり、前記貫通孔の前記流入口から前記流出口にかけて開口幅が狭くなるように、前記貫通孔の内壁面が傾斜面で形成された溶融器を内蔵した射出装置により、前記成形体が成形されることが好ましい。また本発明では、前記流入口側に、前記傾斜面と連続し前記傾斜面よりも緩やかな傾斜の緩斜面が形成された前記溶融器を内蔵した前記射出装置により、前記成形体が成形されることがより好ましい。
 本発明では、上記した構造の溶融器を内蔵した射出装置を用いて接続部の周囲の成形体を成形して、接続部を成形体により埋設することができる。このとき本発明の射出装置によれば、小型の射出装置を使用できるとともに成形型の小型化を実現できる。ところで成形体を形成する際、導電材はすでに、機器、装置、機械等の一部としてすでに組み込まれた状態にある。すなわち導電材が単独で存在する状態において、成形体の成形工程が行われるわけではない。そして従来では、射出装置が非常に大型であり、また成形体を射出成形するのに用いる成形型も非常に大きかった。そのため従来では、機器、装置、機械等の一部として組み込まれた導電材の接続部を成形体で埋設するといった発想はなかった(そもそも成形体を成形することが困難であった)。そこで従来では、特許文献1に示すように絶縁キャップ等を用いていた。これに対して本発明の溶融器を有する射出装置によれば、射出装置の小型化及び成形型の小型化を実現でき、機器や装置、機械の一部としてすでに組み込まれた状態にある導電材の接続部に成形型をセットして本発明の射出装置により小型で且つ高品質の成形体を適切に成形することが可能になる。
 なお本発明では、上記に記載の接続構造体を備える、輸送機器、電力機器、発電機器、医療機器、あるいは宇宙機器等を製造することが可能である。本発明の接続構造体を用いることで、大電流化、高耐熱化に適切に対応でき、高い信頼性を得ることができる。
 本発明の接続構造体によれば、導電材の接続部を物理的に補強でき且つ、気密状態にできることで腐食を防ぐことができ、従来に比べて信頼性を高めることができる。
本実施の形態における接続構造体の部分斜視図である。 第1の実施の形態における接続構造体の部分断面模式図である。 第2の実施の形態における接続構造体の部分断面模式図である。 第3の実施の形態における接続構造体の部分断面模式図である。 第4の実施の形態における接続構造体の部分断面模式図である。 第5の実施の形態における接続構造体の部分断面模式図である。 第6の実施の形態における接続構造体の部分断面模式図である。 図1とは別の実施の形態における接続構造体の部分斜視図である。 第7の実施の形態における接続構造体の部分断面模式図である。 第8の実施の形態における接続構造体の部分断面模式図である。 第9の実施の形態における接続構造体の部分断面模式図である。 図11の窪み部の部分拡大断面模式図である。 第10の実施の形態における接続構造体の部分断面模式図である。 第11の実施の形態における接続構造体の部分断面模式図である。 第12の実施の形態における接続構造体の部分断面模式図である。 本実施の形態における射出装置の断面模式図である。 図16に示す射出装置に樹脂ペレットを供給した状態を示す射出装置の断面模式図である。 本実施の形態における射出装置を用いて接続構造体の成形工程を説明するための断面模式図である。 本実施の形態における溶融器の縦断面図である。 図19とは別の実施の形態における溶融器の縦断面図である。 図16とは別の実施の形態における射出装置の断面模式図であり、樹脂ペレットを供給した状態を示す。 図21の状態から上下移動(往復移動)可能な溶融器を上方に移動させた状態を示す射出装置の断面模式図である。 図22の状態から溶融器を下方に移動させて接続構造体の成形工程を説明するための断面模式図である。
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。図1は、本実施の形態における接続構造体の部分斜視図である。図2は、第1の実施の形態における接続構造体の部分断面模式図である。
 図1及び図2に示すように接続構造体30は、複数本の導電材31、32と、導電材31、32同士が電気的に接続される接続部33と、接続部33を埋設してなる成形体34と、を有して構成される。接続部33全体が成形体34内に埋まった状態とされる。
 図1、図2に示す構成では、導電材31、32は成形体34の対向する面から夫々反対方向に向けて延出している。ただし成形体34に対する導電材31、32の配置関係は一例であり、特に限定されるものでない。なお図2~図7は、複数の導電材が成形体34の対向する面から夫々反対方向に向けて延出する構成とした。
 図1及び図2に示す導電材31、32は裸導電材(導体)であり、各導電材31、32の先端部分が電気的に接続された状態とされている。接続部33の形成方法は、特に限定されるものでないが、例えば溶接や半田付け、金属環によるカシメ等を例示できる。図2は、導電材31、32間を溶接した例である。なお導電材31、32の断面形状は丸型であってもよいし、矩形型であってもよく断面形状を限定するものでない。
 導電材31、32は、特に材質を限定するものでないが、アルミニウム、銀、銅等の導体で形成され、主として銅を用いることができる。また導電材31、32は同じ材質の導体であってもよいし異なる材質の導体で形成されていてもよい。特に本実施の形態では、異種金属の導体を好ましく用いることが可能である。
 図1では、成形体34の形状は、角体であるが、形状を限定するものでなく円柱状、ディスク形状等、任意の形状とすることができる。また図1に示すように、固定穴39を成形体34に設けてもよい。固定穴39の数は限定されない。また成形体34は一体で成形されており切れ目等がない。
 成形体34は熱可塑性樹脂で形成されることが好ましい。成形体34として用いられる材質は、電気的絶縁性が高く且つ耐熱性に優れることが好ましく、具体的には、ポリカーボネート(PC)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポニフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリプロピレン(PP)、ポリエチレン(PE)等が好適である。
 成形体34の大きさを特に限定するものでないが、幅寸法T1及び長さ寸法L1は、5mm~20mm程度であり、高さ寸法H1は、5mm~10mm程度である。
 図3は、第2の実施の形態における接続構造体の部分断面模式図である。図3において図2と同じ符号の部分は図2と同じ部材を示している。図3は、導電材31、32が絶縁被膜37を導体35、36の表面に塗布した絶縁被膜付き導電材であり、図3では、接続部33の部分の絶縁被膜37を剥がして導体35、36を露出させており、露出した導体35、36同士を溶接等で接続している。そして接続部33を成形体34にて埋設して接続部33の外部に対する電気的絶縁性を確保している。絶縁被膜37は特に限定されるものでないが、例えばエナメルやホルメット被膜等である。すなわち図3の導電材31、32は、エナメル線やホルメット線等である。なお図3においては絶縁被膜37の部分を断面図で示さず導体35、36の周囲が被覆された状態を正面から見た図とした。図4、図6、図7、図9~図11、図13~図15においても同様である。
 図4は、第3の実施の形態における接続構造体の部分断面模式図である。図4において図2と同じ符号の部分は図2と同じ部材を示している。図4では、接続部33を除く導体35、36の周囲に絶縁部材38を被覆した。絶縁部材38の材質を限定するものでないが、例えば、ビニール等を例示することができる。すなわち図4の導電材31、32は、ビニール被覆電線等である。
 図5は、第4の実施の形態における接続構造体の部分断面模式図である。図5において図2と同じ符号の部分は図2と同じ部材を示している。図5に示す構成では、3本の導電材31、32、39が設けられている。図5に示すように、例えば、導電材31、32、39は裸導電材(導体)であり、各導電材31、32、39が溶接等で接続された接続部33を有する。そして接続部33を成形体34にて埋設して接続部33の外部に対する電気的絶縁性を確保している。図5に示すように、接続構造体として用いる導電材の数を3本以上とすることができる。
 図6は、第5の実施の形態における接続構造体の部分断面模式図である。図6において図2と同じ符号の部分は図2と同じ部材を示している。図6では、異なる種類の導電材45、46同士を電気的に接続させている。例えば導電材45は、ビニール被覆電線であり、導電材46は、エナメル線である。そして導電材45、46の先端には導体が露出しており、各導電材45、46の導体間を例えば、半田付けして電気的に接続している。これにより接続部47が形成される。そして接続部47を成形体34にて埋設して接続部47の外部に対する電気的絶縁性を確保している。このように本実施の形態では、同種の導電材を電気的に接続することができるし、異なる種類の導電材同士を電気的に接続させることもできる。
 図7は、第6の実施の形態における接続構造体の部分断面模式図である。図7において図3と同じ符号の部分は図3と同じ部材を示している。図7では、図3に示す電気的に接続された導電材31、32の組が複数設けられ、各組の導電材31、32の接続部33を成形体34により埋設して各接続部33の外部に対する電気的絶縁性を確保している。このように一つの成形体34の内部に複数の接続部33が埋設された構成とされている。
 図8は、図1とは別の実施の形態における接続構造体の部分斜視図である。図9は、第7の実施の形態における接続構造体の部分断面模式図である。図10は、第8の実施の形態における接続構造体の部分断面模式図である。図9、図10は図8に示す接続構造体を平面方向から切断した切断面を示す。図8、図9、図10において図2と同じ符号の部分は図2と同じ部材を示している。
 図8、図9、図10に示すように導電材50、51は、平行絶縁被膜電線を構成し、各導電材50、51の先端では絶縁被膜が除去されて露出した導体52、53(55、56)が溶接等されて電気的に接続された接続部54を構成している。そして接続部54を成形体34にて埋設して、接続部54の外部に対する電気的絶縁性を確保している。
 図11は、第9の実施の形態における接続構造体の部分断面模式図である。図11において図10と同じ符号の部分は図10と同じ部材を示している。
 図11では、成形体34内に埋まる導電材50、51の表面に窪み部57を設ける。図12は、図11の窪み部の部分拡大断面模式図である。図12に示すように、窪み部(有底凹部)57は絶縁被膜58を貫通して導体55(56)に到達し、導体55(56)に窪みをもたせている。なお窪み部57は絶縁被膜58の部分のみに形成される構成もあり得るが、導体55(56)に形成することが好適である。これにより成形体抜けをより効果的に防止することができる。また接続部54には溶接等により窪んだ部分が生じやすいが、窪み部57は、接続部54以外の箇所に設けることが好適である。
 図13は、第10の実施の形態における接続構造体の部分断面模式図である。図13において図6と同じ符号の部分は図6と同じ部材を示している。図13では、例えば導電材45は、ビニール被覆電線であり、導電材46は、エナメル線である。そして導電材45、46の先端には導体が露出しており、各導電材45、46の導体間を例えば、半田付けして電気的に接続する。これにより接続部47が形成される。図13では図6と異なって、各導電材45、46を成形体34の同じ面側から外部に延出させている。図14では、図13にさらにエナメル線等からなる導電材60を接続部47にて電気的に接続したものである。図15では、図13に示す電気的に接続された導電材45、46の組が複数設けられ、各接続部47を成形体34にて埋設して、各接続部47の外部に対する電気的絶縁性を確保している。
 本実施の形態では、図1~図15に示す成形体34を以下に示す溶融器を内蔵した射出装置を用いて成形することができる。
 図16は、本実施の形態における射出装置の断面模式図である。図17は、図16に示す射出装置に樹脂ペレットを供給した状態を示す射出装置の断面模式図である。図17は、本実施の形態における射出装置を用いて接続構造体の成形工程を説明するための断面模式図である。
 射出装置1は、シリンダ2と、シリンダ2内に配置された溶融器3と、射出装置1の先端に位置するノズル部4と、溶融器3を加熱するための加熱手段と、溶融樹脂を加圧してノズル部4から外部に射出するための加圧手段と、を有して構成される。
 図16に示す溶融器3はシリンダ2内に固定されている。溶融器3はシリンダ2の先端2a側(図1の下方側)に配置されている。またシリンダ2内には、加圧手段としてのプランジャ5が設けられている。図16では、プランジャ5は、溶融器3よりもシリンダ2の後端2b側(図1の上方側)に配置されている。図16に示すように、溶融器3とプランジャ5との間には所定の間隔が空いている。プランジャ5は、駆動手段により上下移動(往復移動)が可能に支持されている。上下移動が可能なプランジャ5は、図16、図17では、シリンダ2の後端方向に最も後退した位置にあり、図18は、図17の状態からシリンダ2の先端方向(図16の下方向)に移動した状態を示している。
 シリンダ2は先端2aから後端2bに向けて略一定の内径及び外径を有する細長い円筒状で形成されているが、特に形状を限定するものではない。すなわちシリンダ2内で溶融器3を固定でき、加圧手段としてのプランジャ5を上下移動させることが可能な形態のシリンダ2であれば特に形状を限定しない。例えばシリンダ2を内部が空洞の角形とすることもできる。
 またシリンダ2の材質を特に限定するものでないが、加熱が迅速に行われる必要性から、鉄又は鉄の含有量の多いステンレスなどを用いることが好適である。
 図16に示すように、シリンダ2には、ペレット供給口2cが設けられている。ペレット供給口2cは、シリンダ2の先端2a側に固定された溶融器3と、シリンダ2の後端2b方向(図示上方向)に後退した状態のプランジャ5との間に位置するように、シリンダ内部の空間に連通する孔形状で形成される。そして、ペレット供給口2cには、管状の供給管12が接続されている。
 供給管12の上端は、多数の樹脂ペレット(射出材料)を保管する保管部18と連通しており、樹脂ペレットは、保管部18から供給管12を通じてペレット供給口2cへ供給される。保管部18は例えばホッパである。また保管部18には、スクリュー搬送や空気圧装置が具備されており、樹脂ペレットを強制的に供給管12へ投入することもできる。なお保管部を設けず、スクリュー搬送や空気圧送により遠方からパイプで供給することもできる。
 プランジャ5は、押圧部5aと、押圧部5aの周囲に設けられ、シリンダ2の後端2b方向に向けて形成された筒状の外周側面部5bとを有して構成される。図16に示すように、押圧部5aの大きさは、シリンダ2の内径に一致しており、押圧部5aからシリンダ2の後端2bにかけてのシリンダ2の空間領域がプランジャ5により塞がれた状態とされている。なお、押圧部5aの前面(図示下面側)には、硬質耐熱性の合成樹脂が必要に応じて固着されている。これによって、溶融器3とプランジャ5との間を断熱して溶融器3の熱がプランジャ5に奪われないように、また、プランジャ5が加熱して駆動部8に熱が伝導しないようにすることができる。
 プランジャ5は駆動部8と接続されており、駆動部8の駆動力により、プランジャ5はシリンダ2内を上下移動(往復移動)できるように支持されている。なお図16に示すように、駆動部8とプランジャ5との間には駆動伝達軸(竿)9が配置されており、駆動部8と駆動伝達軸9とを含めて「駆動手段」を構成している。例えば、駆動部8はモータ駆動部、駆動伝達軸9はラック軸であり、モータ駆動部とラック軸との間にピニオンギア(図示しない)が配置されており、駆動手段が、モータ駆動部、ラック軸及びピニオンギアを有して構成されている。なお駆動伝達軸(竿)9の断面形状は例えば円形であるが形状を限定するものでない。
 図16に示すように、シリンダ2の外周には溶融器3を加熱するための加熱手段6が設けられている。このように加熱手段6は、シリンダ2の外周面から溶融器3を加熱する構成部材であり、溶融器3への熱伝導性が良好となるように筒状に構成されていることが好適である。加熱手段6は、溶融器3と相対向する位置に(溶融器3の外周を囲むように)設けられる。
 例えば、加熱手段6は、IHヒータ等が巻き線状に構成されたものである。具体的には、加熱手段6は、電磁誘導装置つまりIH(インダクションヒーティング)コイルが好適であり、樹脂又はセラミック製の断熱材コイルボビンにIHコイルを巻いたものである。なお、ボビンを使わなくて両端を断熱材のホルダーで保持しても良い。また加熱手段6の別のタイプとして、バンドヒーターが使用されることもある。さらに、加熱手段6は、上記したものに限定されるものではなく、その他の本発明に使用可能な加熱装置であれば何れのものが使用されても構わない。なおシリンダ2には、熱電対が取り付けられており、シリンダ2の温度を設定値に調整できることが好適である。
 溶融器3については後で詳しく説明するが、溶融器3には高さ方向に複数の貫通孔(溶融孔)10が設けられている。また、溶融器3の外周面全体は、シリンダ2の内壁面に接するように、溶融器3の外周面の形状と、シリンダ2の内壁面の形状とが一致している。よって例えば、シリンダ2の内壁面(中空部)が円柱状であれば、溶融器3の外周面も同じ径からなる円柱状で形成される。
 図16に示すように各貫通孔10の溶融器3の上面側の開口部が流入口であり、各貫通孔10の溶融器3の下面側の開口部が流出口である。
 溶融器3の材質は、熱容量が大きく、且つ熱伝導の良いもの、あるいは耐熱性に優れた金属が好適である。具体的には、銅、ベリリウム銅、真鍮、ステンレス鋼、金、クロム鋼、ニッケルクロム鋼、モリブデン鋼、タングステン項等が使用されるが特に材質を限定するものでない。そして溶融器3を後述する寸法にて形成することで樹脂ペレットP(射出材料)の溶け残りを効果的に抑制することが可能になる。
 図16に示すように、シリンダ2の先端2aには、ノズル部4を備えるヘッド部11が設けられている。ヘッド部11は、ノズル部4と、漏斗部13と、接続部14とから構成されている。ヘッド部11は接続部14を介してシリンダ2に接続されている。ヘッド部11の材質は、熱伝導の良いものが好適で、具体的には、ベリリウム銅あるいは銅が望ましい。
 図17に示すように、多数の固体状の樹脂ペレット(射出材料)Pが、保管部18から供給管12を通じてシリンダ2内に供給される。
 樹脂ペレットPの材質を特に限定するものでないが、上記したように、成形体34として用いられる材質は、電気的絶縁性が高く且つ耐熱性に優れることが好ましい。したがって、樹脂ペレットPとしては、ポリカーボネート(PC)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポニフェニレンサルファイド(PPS)、液晶ポリマー(LCP)等が好適である。なお樹脂ペレットPは例えば、1~1.5mm程度の径、あるいは長辺を有する大きさである。
 樹脂ペレットPが溶融器3上に到達すると、樹脂ペレットPは、溶融器3の各貫通孔(溶融孔)内に流入口(図示上面)から入り込む。各貫通孔10内に入り込んだ樹脂ペレットPは、あとから流入する樹脂ペレットPによって、各貫通孔10の流出口側(図示下面側)に押圧される。このとき、溶融器3は、加熱手段6を介して樹脂ペレットPを溶融する温度に維持されている。
 図17に示すように、各貫通孔10に流入した樹脂ペレットPは、溶融器3からの熱により一部軟化される。
 図18に示すように、駆動手段を駆動させて加圧手段としてのプランジャ5をノズル部4の方向(図示下方向)に駆動させる。これにより溶融器3の流入口側面(図示上面)とプランジャ5の押圧部5aの下面との間に位置する多数の樹脂ペレットP全体が相互に押圧される。図18に示すように、プランジャ5の下方向への移動によりペレット供給口2cはプランジャ5により塞がれた状態になる。
 プランジャ5の移動により溶融器3の各貫通孔10内に流入した樹脂ペレットPも加圧される。このように樹脂ペレットPは、各貫通孔10内で加圧されて気密状態となり、さらに溶融器3からの熱により溶融し、溶融樹脂qが、溶融器3の流出口(下面側)からヘッド部11内に流れ込む。そして溶融樹脂qは高い気密状態を保ちつつ加圧されて、ノズル部4から外部に射出される。
 図18では、ノズル部4が、成形型を構成する上型21の供給口21aに位置しており、溶融樹脂qを成形型の上型21及び下型22内に注入する。充填された溶融樹脂qは、その後、冷されて固体状となる。射出装置1による溶融樹脂qの射出時間は数百ミリ秒から数秒(例えば1秒程度)である。図18に示すように、成形型内には、予め複数の導電材を電気的に接続してなる導電接続体62が配置されており、溶融樹脂qの注入により導電接続体62の周囲を成形体64により埋設することができ、これにより、導電接続体62の接続部63の外部に対する電気的絶縁性を確保することができる。
 次に、本実施の形態における溶融器3について詳しく説明する。既に記載したように、溶融器3には複数の貫通孔10が設けられている。溶融器3は、樹脂ペレットPを各貫通孔10に通して、樹脂ペレットPを溶融させるための機能を備える。このとき、樹脂ペレットPの溶け残りが発生すると、貫通孔10の目詰まりが生じやすくなる。また、樹脂ペレットPの溶け残りが溶融器3から放出されると、溶融器3の先端側に位置するノズル部4での目詰まりや部材間の接続体及び樹脂成形品の品質に影響を与える結果となる。このため、溶融器3には、溶融樹脂を生成する際に樹脂ペレットPの溶け残りが発生するのを効果的に抑制できる形態が求められる。
 図19は、第1の実施の形態としての溶融器の縦断面図である。溶融器3は、上面3aと、下面3bと、上面3aと下面3bとの間に位置する外周面3cと、を有する。上面3aと下面3bとは、相対向し互いに平行な面である。
 図19に示すように溶融器3には上面3aから下面3bにかけて(高さ方向(Z)に向けて)設けられた貫通孔10が複数、形成されている。各貫通孔10の上面3aでの開口部は、流入口10aであり、下面3bでの開口部は、流出口10bである。
 貫通孔10の数は任意に設定することができるが、貫通孔10は複数であることが好適である。また例えば、溶融器3の上面3a(流入口面)の面積に対して、各貫通孔10の流入口10aの合計面積の比率が、50%以上となるように、貫通孔10の数を設定することが好適である。
 また、複数の貫通孔10は規則的に配置されてもよいしランダムに配置されてもよいが、上面(流入口面)3a全体及び下面(流出口面)3b全体に、万遍なく各貫通孔10を散在させることで溶融効率を上げることができる。
 図19に示すように、各貫通孔(溶融孔)10は、流入口10aから流出口10bにかけて開口幅が徐々に狭くなるように、貫通孔10の内壁面10cが傾斜面で形成されている。各貫通孔10は、流入口10aから流出口10bにかけて高さ方向(Z)と平行な方向に形成されることが好適である。各貫通孔10は、截頭錐体の形状であることが好ましく、具体的には円錐台や角錐台を提示できる。図19では、各貫通孔10は円錐台形状である。
 図19に示すように、各貫通孔10の流入口10aの開口幅はT1であり、各貫通孔10の流出口10bの開口幅はT2である。そして、開口幅T1は開口幅T2よりも大きくなっている。各貫通孔10が円錐台形状であるとき、開口幅T1及び開口幅T2は、開口径として求めることができる。また、貫通孔10が角錐台形状であるとき、開口幅T1及び開口幅T2は、辺あるいは対角線のうち最も長い直線幅を指す。
 図19では、開口幅T1は、4.1mm~10mmの範囲内で調整され、開口幅T2は、1.0mm~4.5mmの範囲内で調整される。なお本明細書において「下限値~上限値」の表記は、下限値及び上限値を含むものとする。
 図19に示す溶融器3の各貫通孔10の流入口10aから樹脂ペレットPが溶融器3内に流入され、加熱且つ加圧されて溶融状態となり、溶融樹脂が各貫通孔10の流出口10bから流出される。
 図19に示すように、各貫通孔10の流入口10aは流出口10bよりも大きく開口している。このため、樹脂ペレットPを貫通孔10の流入口10a内に導きやすい。流入口10aの開口幅T1を4.1mm~10mmの範囲内で調整したことで、市販されている種々の樹脂ペレットのサイズをほぼカバーでき、適切に樹脂ペレットPを流入口10a内に導くことができる。また樹脂ペレットPは溶融器3内で溶融され、流出口10bから外部に放出されるが、貫通孔10の内壁面10cは傾斜面であるので、溶融樹脂を流出口10b方向へスムーズに導くことができ、また流出口10bの開口幅T2を流入口10aの開口幅T1よりも狭くすることで、流出口10b側での熱量及び押し出し圧力を高めることができ、流出口10bから溶融樹脂を適切に流出させることができる。そして図19に示す実施の形態では、流入口10aの開口幅T1を、4.1mm~10mmとし、流出口10bの開口幅T2を1.0mm~4.5mmとした。このように、貫通孔10が流入口10aから流出口10bに向けて傾斜する構成において、流入口10aと流出口10bのそれぞれの開口幅寸法を所定範囲内に規制することで、樹脂ペレットPの溶け残りを従来に比べて抑制することが可能になる。
 また、貫通孔10の流入口10aから流出口10bまでの長さ寸法H2が、30mm~200mmであることが好ましい。長さ寸法H2は、流入口10aから流出口10bに至る高さ方向(Z)と平行な方向への寸法で決められる。長さ寸法が短すぎると、流入口から流出口に至る溶融経路が短くなることで、樹脂ペレットPの溶け残りが生じやすくなる。また貫通孔10の長さ寸法が長すぎると、貫通孔10の内壁面が傾斜面から垂直面に近づき流出口10b側での熱量及び押し出し圧力の、流入口側に対する相対的な上昇は低下しやすくなる。また、長さ寸法が長すぎると溶融器3の大型化に繋がる。長さ寸法H2は、70mm~150mmであることがより好ましい。
 本実施の形態では、貫通孔10の流入口10a及び流出口10bの各開口幅とともに、貫通孔10の長さ寸法も適切に調整することで、より効果的に、樹脂ペレットPの溶け残りがなくなり、溶融効率の向上を図ることが可能になる。
 本実施の形態では、流入口10aの開口幅T1が、4.1mm~6mmであることが好ましい。また、流出口10bの開口幅T2が1.0mm~2.9mmであることが好ましい。また、流出口10bの開口幅T2の下限値は、1.6mmであることがより好ましい。
 図20は、第2の実施の形態としての溶融器の縦断面図である。図20に示す実施の形態でも、図19と同様に、溶融器3を構成する各貫通孔(溶融孔)10は、流入口10aから流出口10bにかけて開口幅が徐々に狭くなるように、貫通孔10の内壁面10cが傾斜面で形成されている。
 図20に示す実施の形態では、流入口10a側に、各貫通孔10を構成する傾斜面と連続し前記傾斜面よりも緩やかな傾斜の緩斜面が形成されている。より具体的に説明すると、各貫通孔10は、開き角度θ1の傾斜面(第1の傾斜面)70で形成され、流入口10a側に開き角度θ2の緩斜面(第2の傾斜面)71が形成されている。そして、θ1<θ2≦120°の関係を満たしている。なお開き角度θ1は、図20でも同様の開き角度を有しており、開き角度θ1は、流入口10aと流出口10bとの関係により決められる。
 ここで「開き角度」とは、図20に示す断面にて相対向する傾斜面間の角度を指し、各傾斜面の傾き角度を高さ方向(Z)からの角度と規定したとき、開き角度は、傾き角度の略2倍となる。
 図20に示すように、隣接する貫通孔10の流入口10aの縁部10dが近付いて縁部10d同士が接触し、あるいは近接触した形状部分では、縁部10dが刃状、あるいは刃状に近い形状となり、樹脂ペレットPが縁部10d上に位置したときは、樹脂ペレットPが破砕され、細かく分離されて貫通孔10内へ一層、入りやすく、かつ、貫通孔10内での詰まりが抑制される。
 図20に示すように、傾斜が急な傾斜面70は流出口10bから流入口10aに近い位置まで形成されており、流入口10a付近にのみ傾斜が緩やかな緩斜面71が形成されている。
 なお、傾斜面は、3段以上で形成されてもよい。なお、貫通孔の大部分は傾斜が急な傾斜面70で形成され、流入口10a付近のみ緩斜面71が形成された2段の傾斜構造で形成されることが好適である。
 以上のように図20ではまず、貫通孔10の流入口10aから流出口10bにかけて開口幅が狭くなるように、貫通孔10の内壁面が傾斜面で形成されている。このように流入口10aが流出口10bよりも大きく開口しているので、樹脂ペレットPを貫通孔10の流入口10a内に導きやすい。そして樹脂ペレットPは溶融器3内で溶融され、流出口10bから流出するが、このとき貫通孔10の内壁面は傾斜面であるので、流出口方向へスムーズに導かれやすく、また流出口10bの開口幅を流入口10aの開口幅よりも狭くすることで、流出口側での熱量及び押し出し圧力を高めることができ、流出口10bから溶融樹脂を適切に外部に流出させることができる。そして、図20に示す実施の形態では、流入口10a側に緩斜面71を形成した。これにより、より一層、樹脂ペレットPを貫通孔10の流入口10a内に導きやすくできる。また溶融器の流入口面に平坦な部分が形成されるのを抑制でき、各流入口の間に鋭いエッジ部を形成できる(図20参照)。したがって流入口10aの縁部10dで樹脂ペレットPが細断される等の効果も期待でき、この結果、溶融器3の上面(流入口面)3a上に留まる樹脂ペレットPを減らすことができる。
 特に本実施の形態では、θ1<θ2≦120°の関係を満たしている。また、θ2は、30°~120°であることが好ましい。また、θ2は、30°~90°であることがより好ましい。また、θ2は、30°~60°であることがさらに好ましい。なお、開き角度θ1は、流入口10aと流出口10bのサイズで決まり、少なくとも開き角度θ1よりも小さい角度とされる。具体的にはθ1は0°~20°程度、あるいは0°~10°程度である。θ2が30°よりも小さくなると、開き角度θ1との差が小さくなり、溶融器3の上面(流入口面)3a上に留まる樹脂ペレットPを抑制する効果や樹脂ペレットPに対する細断効果が低下する。また、開き角度θ2が少なくとも120°よりも大きくなると、流入口側の緩斜面71が緩やかすぎて、樹脂ペレットPが流入口側の緩やかな傾斜面の途中で堆積しやすくなり、また溶融器3の大型化に繋がりやすい。これに対して本実施の形態のように、開き角度θ2を上記範囲内にて規制することで、溶融器3の小型化を確保しつつ、より効果的に、溶融効率を向上させることができる。
 図20に示す実施の形態において、図19で示した流入口10a及び流出口10bの開口幅T1、T2を採用することが好ましい。すなわち、流入口10aの開口幅T1は、4.1mm~10mmであり、流出口10bの開口幅T2は、1.0mm~4.5mmであることが好ましい。また、流入口10aの開口幅T1は、4.1mm~6mmであり、流出口10bの開口幅T2は1.0mm~2.9mmであることがより好ましい。また開口幅T2の下限値は1.6mmであることがさらに好ましい。
 また本実施の形態では、貫通孔10の流入口10aから流出口10bまでの長さ寸法HIが、30mm~200mmであることが好ましい。また長さ寸法HIは、70mm~150mmであることがより好ましい。
 また本実施の形態における溶融器3は、図16に示すように射出装置1内にて固定して用いるほか、次に説明するようにシリンダ内を上下移動(往復移動)する構成とすることもできる。
 図21は、図16とは別の実施の形態における射出装置の断面模式図であり、樹脂ペレットを供給した状態を示す。図22は、図21の状態から上下移動(往復移動)可能な溶融器を上方に移動させた状態を示す射出装置の断面模式図である。図23は、図22の状態から溶融器を下方に移動させ、ノズル部から溶融樹脂が外部に射出される状態を示す射出装置の断面模式図である。
 図21~図23において、図16~図18と同じ部分は同じ符号を付した。図21に示すように、溶融器3と駆動部8とが、駆動伝達軸9を介して接続されている。図21に示すように、溶融器3よりもシリンダ2の後端側には塞ぎ部材40が設けられている。塞ぎ部材40の平面面積は、シリンダ2内の内壁面で囲まれた空間の平面面積と一致している。塞ぎ部材40はシリンダ2内に固定されている。
 図21に示すように、駆動伝達軸9は、塞ぎ部材40を貫通して、溶融器3に接続されている。図21に示すように、溶融器3の中央部分に駆動伝達軸9が貫通して、溶融器3と駆動伝達軸9とが固定接続されている。
 また図21に示すように溶融器3の下面(流出口面)3b側には開閉部材41が設けられている。開閉部材41は、溶融器3の上下移動に基づいて、溶融器3の各貫通孔10の流出口を塞いだり解放するように支持されている。例えば図示しない弾性部材を用いて常に開閉部材41が溶融器3の下面(流出口面)に付勢されている。そして、駆動部8及び駆動伝達軸9の作用により、開閉部材41を溶融器3の下面3bから解放することを可能とする。
 開閉部材41は、溶融器3よりも小さい面積で形成されている。また、開閉部材41には貫通孔が形成されていてもよい。このとき、開閉部材41に形成された貫通孔は、溶融器3の各貫通孔10の流出口10bとは重ならないように位置及び大きさが規制されている。
 図21に示すように、溶融器3がシリンダ2の先端側に位置しており、図21の初期状態では、多数の固体状の樹脂ペレット(射出材料)Pが、保管部18から供給管12を通じてシリンダ2内に供給される。
 樹脂ペレットPは、溶融器3の各貫通孔(溶融孔)10内に流入口(図示上面)から入り込む。各貫通孔10内に入り込んだ樹脂ペレットPは、あとから流入する樹脂ペレットPによって、各貫通孔10の流出口側(図示下面側)に押圧される。このとき、溶融器3は、加熱手段6を介して樹脂ペレットPを溶融する温度に維持されている。
 図21に示すように、各貫通孔10に流入した樹脂ペレットPは、溶融器3からの熱により一部軟化される。
 次に、図22に示すように、駆動手段を駆動させて溶融器3を塞ぎ部材40の方向(図示上方向)に駆動させる(溶融工程)。これにより溶融器3の流入口側面(図示上面)と塞ぎ部材40の下面との間に位置する多数の樹脂ペレットP全体が相互に押圧される。
 図22に示すように、加熱手段6は、シリンダ2の外周に固定されているが、溶融器3の熱容量的には、駆動手段にて上下方向に往復移動させても、十分に熱源を保つようにできる。なお溶融器3の熱が駆動伝達軸9へ伝わらないように、溶融器3と駆動伝達軸9との間に断熱構造が設けられていることが好ましい。
 溶融器3の各貫通孔(溶融孔)10に充填された樹脂ペレットPは加熱されるとともに気密状態となりつつ加圧もされて溶融を開始する。このとき溶融器3の下面(流出口)3b側に位置する開閉部材41は、溶融器3から解放された状態にある。これにより、溶融器3から下方向に流出した溶融樹脂qは、溶融器3とノズル部4との間に溜まる。
 続いて、図23では、駆動手段を作用させて溶融器3をノズル部4の方向(図示下方向)に移動させる(射出工程)。このとき、開閉部材41は溶融器3の下面3bに当接し、溶融器3の各貫通孔10の流出口10bを塞いだ状態とされる。これにより、溶融器3とノズル部4との間に溜まった溶融樹脂qは気密状態を保ちながら加圧されてノズル部4から射出される。そして溶融樹脂qが成形型を構成する上型21と下型22との間に注入される。図21に示すように、成形型内には、予め複数の導電材を電気的に接続してなる導電接続体62が配置されており、溶融樹脂qの注入により導電接続体62の周囲を成形体64により埋設することができ、これにより、導電接続体62の接続部63の外部に対する電気的絶縁性を確保することができる。
 図21~図23に示した射出装置においても、図19に示した流入口10aの開口幅T1が、4.1mm~10mmであり、流出口10bの開口幅T2が1.0mm~4.5mmである溶融器3を用い、あるいは、図20に示した各貫通孔10の流入口10a側を緩斜面で形成した溶融器3を用いることで、従来に比べて効果的に、溶融効率を向上させることが可能である。
 以上により本実施の形態における接続構造体は、複数の導電材と、導電材同士を電気的に接続した接続部と、前記接続部を埋設してなる電気的絶縁性の成形体と、を有することを特徴とする。
 また本実施の形態における接続構造体の製造方法は、複数の導電材同士を電気的に接続した接続部の周囲に電気的絶縁性の成形体を成形して、接続部を成形体により埋設することを特徴とする。
 従来では、導電材の電気的な接続部を、例えば、絶縁キャップにより保護していた。これに対して本実施の形態では、導電材の接続部を成形体にて埋設して保護するというものである。絶縁キャップの場合、どうしても絶縁キャップと接続部との間に空隙が生じやすく腐食の問題が懸念された。また絶縁キャップが衝撃で潰れるなどした場合、その衝撃が絶縁キャップ内部の接続部まで伝播してしまい、接続部が損傷を受けることがあった。また絶縁キャップの体積が大きく、絶縁キャップを収納できないことがあった。これに対して本実施の形態のように、導電材の接続部を成形体により埋設することで、導電材の接続部を物理的に補強でき且つ、気密状態にできるため腐食を防ぐことができ、従来に比べて信頼性を高めることができる。さらに、接続部は機械的強度をそれ自身で保持する必要がないので電流容量に見合った最小化(小型化)を促進でき、複数の接続部が存在しても小型化が出来る。このため上記の効果に加えて、大電流の接続部を高信頼化かつ小型軽量化することが可能である。
 本実施の形態では、図11に示したように、導電材には成形体内に埋設される部分に窪み部57が形成されていることが好ましい。窪み部57は、接続部以外の部分に形成されることがより効果的である。これにより成形体34の成形の際、溶融樹脂を窪み部57内に入り込ませることができ、導体と樹脂との接触面積が増え、成形体抜けをより効果的に抑制することができる。
 また上記したように、本実施の形態では本実施の形態では、接続部を成形体にて埋設する構成とすることで、接続部において、効果的に気密状態を保つことができる。したがって複数の導電材に異種金属の導体を用いても、異種金属の電位差によるガルバニック腐食が生じることを適切に防止することが可能である。ここで異種金属とは、異なる元素で形成されているもの、あるいは混合比が異なるものも含まれる。例えば、鉄と銅との混合比が異なる場合も異種金属とされる。
 また本実施の形態では、図16~図18や、図21~図23に示す溶融器を内蔵した射出装置を用いて成形体を形成することが可能である。図19に示すように、溶融器は、貫通孔を有し、貫通孔の一方の開口部が樹脂ペレット(射出材料)の流入口で、他方の開口部が樹脂ペレット(射出材料)の流出口であり、貫通孔の前記流入口から前記流出口にかけて開口幅が狭くなるように、貫通孔の内壁面が傾斜面で形成されている。また図20に示すように、溶融器には、流入口側に、傾斜面と連続し傾斜面よりも緩やかな傾斜の緩斜面が形成されていることが好適である。
 本実施の形態における溶融器を内蔵した射出装置を用いることで、射出装置の小型化及び成形型の小型化を実現できる。成形型は例えば金属板に凹加工を施したものである。一般的に、導電材はすでに、機器、装置、機械等の一部としてすでに組み込まれた状態にある。すなわち導電材が単独で存在する状態において、成形体の成形工程が行われるわけではない。そして従来では、射出装置が非常に大型であり、また成形体を射出成形するのに用いる成形型も非常に大きかった。そのため従来では、機器、装置、機械等の一部として組み込まれた導電材の接続部を成形体で埋設するといった発想はなかった(成形体を成形することが困難であった)。従来では、特許文献1に示すように絶縁キャップ等を用いていた。これに対して本実施の形態の溶融器を内蔵した射出装置を用いることで、射出装置の小型化及び成形型の小型化を実現でき、機器や装置、機械の一部としてすでに組み込まれた状態にある導電材の接続部に成形型を簡単にセットでき、本実施の形態の射出装置を用いて、接続部の部分だけに小型の成形体を成形することが可能になる。
 以上のように、複数の導電材を電気的に接続した接続部を成形体にて埋設することで、接続部を物理的に補強でき且つ気密状態にでき腐食を防ぐことが可能になる。特に多数の接続部材を直列接続することが必要な機器、装置、機械等では、接続部における保護状態は信頼性を確保するうえで極めて重要である。例えば、本実施の形態における接続構造体を用いて、輸送機器、電力機器、発電機器、医療機器、あるいは宇宙機器等を製造することが可能である。輸送機器には、自動車、航空機、鉄道、船舶等が含まれる。自動車には電気自動車が含まれる。また電力機器には、太陽電池等の電池が含まれる。発電機器には熱発電素子等が含まれる。また宇宙機器にはロケット、人工衛星等が含まれる。このとき本実施の形態の接続構造体を用いることで、大電流化、高強度化、耐熱化に適切に対応でき、高い信頼性を得ることができる。また大電流の接続部を小型軽量化することができる。
 本発明は、導電材の接続部を物理的に補強でき且つ、気密状態にできることで腐食を防ぐことができ、従来に比べて信頼性を高めることが可能な接続構造体を提供できる。そして本実施の形態の接続構造体を用いることで、信頼性に優れた電気自動車、太陽電池あるいは熱発電素子等を製造することが可能である。
 本出願は、2014年9月30日出願の特願2014-200200に基づく。この内容は全てここに含めておく。

Claims (13)

  1.  複数の導電材と、前記導電材同士を電気的に接続した接続部と、前記接続部を埋設してなる電気的絶縁性の成形体と、を有することを特徴とする接続構造体。
  2.  前記導電材の表面には前記成形体内に埋設された部分に窪み部が形成されていることを特徴とする請求項1に記載の接続構造体。
  3.  前記複数の導電材に、異種金属の導体を用いることを特徴とする請求項1又は2に記載の接続構造体。
  4.  貫通孔を有し、前記貫通孔の一方の開口部が射出材料の流入口で、他方の開口部が前記射出材料の流出口であり、前記貫通孔の前記流入口から前記流出口にかけて開口幅が狭くなるように、前記貫通孔の内壁面が傾斜面で形成された溶融器を内蔵した射出装置により、前記成形体が成形されることを特徴とする請求項1ないし3のいずれかに記載の接続構造体。
  5.  前記流入口側に、前記傾斜面と連続し前記傾斜面よりも緩やかな傾斜の緩斜面が形成された前記溶融器を内蔵した前記射出装置により、前記成形体が成形されることを特徴とする請求項4に記載の接続構造体。
  6.  請求項1ないし5のいずれかに記載の接続構造体を備えることを特徴とする輸送機器。
  7.  請求項1ないし5のいずれかに記載の接続構造体を備えることを特徴とする電力機器。
  8.  請求項1ないし5のいずれかに記載の接続構造体を備えることを特徴とする発電機器。
  9.  請求項1ないし5のいずれかに記載の接続構造体を備えることを特徴とする医療機器。
  10.  請求項1ないし5のいずれかに記載の接続構造体を備えることを特徴とする宇宙機器。
  11.  複数の導電材同士を電気的に接続した接続部の周囲に電気的絶縁性の成形体を成形して、前記接続部を成形体により埋設することを特徴とする接続構造体の製造方法。
  12.  貫通孔を有し、前記貫通孔の一方の開口部が射出材料の流入口で、他方の開口部が前記射出材料の流出口であり、前記貫通孔の前記流入口から前記流出口にかけて開口幅が狭くなるように、前記貫通孔の内壁面が傾斜面で形成された溶融器を内蔵した射出装置を用いて、前記成形体を成形することを特徴とする請求項11に記載の接続構造体の製造方法。
  13.  前記流入口側に、前記傾斜面と連続し前記傾斜面よりも緩やかな傾斜の緩斜面が形成された前記溶融器を内蔵した前記射出装置を用いて、前記成形体を成形することを特徴とする請求項12に記載の接続構造体の製造方法。
PCT/JP2015/077409 2014-09-30 2015-09-29 接続構造体及びその製造方法、並びに、輸送機器、電力機器、発電機器、医療機器、宇宙機器 WO2016052453A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/513,657 US20170287600A1 (en) 2014-09-30 2015-09-29 Connection structure and manufacturing method therefor, and transport equipment, power equipment, power generation equipment, medical instrument and space equipment
JP2016552034A JPWO2016052453A1 (ja) 2014-09-30 2015-09-29 接続構造体及びその製造方法、並びに、輸送機器、電力機器、発電機器、医療機器、宇宙機器
KR1020177010356A KR20170083536A (ko) 2014-09-30 2015-09-29 접속 구조체 및 그 제조방법, 그리고, 수송기기, 전력기기, 발전기기, 의료기기, 우주기기
CN201580052885.2A CN107148704A (zh) 2014-09-30 2015-09-29 连接构造体及其制造方法,以及输送设备、电力设备、发电设备、医疗设备、宇航设备
EP15846196.2A EP3203585A4 (en) 2014-09-30 2015-09-29 Connection structure and production method therefor, as well as transportation equipment, electric power equipment, electricity generation equipment, medical equipment, and space equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-200200 2014-09-30
JP2014200200 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052453A1 true WO2016052453A1 (ja) 2016-04-07

Family

ID=55630481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077409 WO2016052453A1 (ja) 2014-09-30 2015-09-29 接続構造体及びその製造方法、並びに、輸送機器、電力機器、発電機器、医療機器、宇宙機器

Country Status (6)

Country Link
US (1) US20170287600A1 (ja)
EP (1) EP3203585A4 (ja)
JP (1) JPWO2016052453A1 (ja)
KR (1) KR20170083536A (ja)
CN (1) CN107148704A (ja)
WO (1) WO2016052453A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017199700A1 (ja) * 2016-05-19 2019-03-14 東洋紡株式会社 ワイヤハーネス
WO2019088277A1 (ja) * 2017-11-06 2019-05-09 株式会社デンソー 通電部材モジュール、及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019084740A (ja) * 2017-11-06 2019-06-06 株式会社デンソー 通電部材モジュール、及びその製造方法
US11521764B2 (en) * 2018-03-28 2022-12-06 Autonetworks Technologies, Ltd. Wire harness and method of manufacturing wire harness
CN109494546A (zh) * 2018-10-26 2019-03-19 景宁众驰自动化科技有限公司 电源线插头加工生产线及其制作工艺
CN111716628A (zh) * 2020-06-29 2020-09-29 安徽可尔海思塑业有限公司 一种抗变形的pvc塑料板及其生产工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348791A (ja) * 1999-06-01 2000-12-15 Sumitomo Wiring Syst Ltd フラットケーブルと電線の接続構造
JP2014013657A (ja) * 2012-07-03 2014-01-23 Yazaki Corp コネクタ端子及びコネクタ端子の止水方法
JP2014049411A (ja) * 2012-09-04 2014-03-17 Japan Aviation Electronics Industry Ltd 防水コネクタ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846757B2 (ja) * 1997-08-06 2006-11-15 古河電気工業株式会社 ケーブル
DE19804607C2 (de) * 1998-02-06 2000-02-10 Bosch Gmbh Robert Anordnung zum elektrischen Anschluß zumindest eines Sensors
EP2690658B1 (en) * 2011-03-24 2019-11-13 Mitsubishi Electric Corporation Power semiconductor module and power unit device
JP5712911B2 (ja) * 2011-12-08 2015-05-07 株式会社オートネットワーク技術研究所 端子付電線及びその製造方法
CN104471364B (zh) * 2012-07-16 2016-10-12 株式会社电装 电子装置及其制造方法
JP6281677B2 (ja) * 2013-03-08 2018-02-21 国立大学法人名古屋大学 磁気計測装置
JP5527706B1 (ja) * 2013-11-26 2014-06-25 センチュリーイノヴェーション株式会社 溶融樹脂の製造法
JP2015101088A (ja) * 2014-02-17 2015-06-04 センチュリーイノヴェーション株式会社 溶融樹脂の製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348791A (ja) * 1999-06-01 2000-12-15 Sumitomo Wiring Syst Ltd フラットケーブルと電線の接続構造
JP2014013657A (ja) * 2012-07-03 2014-01-23 Yazaki Corp コネクタ端子及びコネクタ端子の止水方法
JP2014049411A (ja) * 2012-09-04 2014-03-17 Japan Aviation Electronics Industry Ltd 防水コネクタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203585A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017199700A1 (ja) * 2016-05-19 2019-03-14 東洋紡株式会社 ワイヤハーネス
WO2019088277A1 (ja) * 2017-11-06 2019-05-09 株式会社デンソー 通電部材モジュール、及びその製造方法
JP2019084741A (ja) * 2017-11-06 2019-06-06 株式会社デンソー 通電部材モジュール、及びその製造方法
CN111315554A (zh) * 2017-11-06 2020-06-19 株式会社电装 通电部件模块及其制造方法

Also Published As

Publication number Publication date
KR20170083536A (ko) 2017-07-18
EP3203585A4 (en) 2018-04-25
JPWO2016052453A1 (ja) 2017-07-20
US20170287600A1 (en) 2017-10-05
EP3203585A1 (en) 2017-08-09
CN107148704A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
WO2016052453A1 (ja) 接続構造体及びその製造方法、並びに、輸送機器、電力機器、発電機器、医療機器、宇宙機器
JP6329251B2 (ja) 電気端子を電線に圧着する方法
JP6711753B2 (ja) 溶融器、及びそれを用いた射出装置、並びに、射出成形品及びその製造方法、部材間の接合体の製造方法
CN102185214B (zh) 线束及其制造方法
JP5598888B1 (ja) 圧着端子、圧着端子の製造方法および製造装置
KR20150016348A (ko) 전지의 제조 방법 및 전지
KR101016522B1 (ko) 전류퓨즈기능 부착 온도퓨즈
EP3118860A1 (en) Edge insulation structure for electrical cable
JP6945365B2 (ja) 溶融器、及びそれを用いた射出装置、並びに、射出成形品の製造方法
EP3113287B1 (en) Method of manufacturing a connection assembly
CN203680811U (zh) 3d打印机的送料机构
JP2011069550A (ja) グロープラグ及びその製造方法
KR20160129616A (ko) 액체재료 토출용 노즐
CN106796832A (zh) 保护元件
JP5786378B2 (ja) 超音波溶接方法
CN111128493B (zh) 保险丝电阻器组件及其制造方法
US20170326769A1 (en) Resin molded body
CN108352668B (zh) 带端子的导电构件的制造方法、导电构件及带端子的电线
CN102842836A (zh) 线束的制造方法
JP2016100062A (ja) 被覆電線及び端子付き被覆電線の製造方法
JP6383185B2 (ja) 端子化電線の製造方法及び端子化電線
WO2017175699A1 (ja) 導体の接続構造およびワイヤハーネス
JP2015180128A (ja) モールド部付端子付電線の製造方法
WO2019049440A1 (ja) スパークプラグの製造方法
TWI492427B (zh) 發光二極體導線架的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15513657

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016552034

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015846196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015846196

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177010356

Country of ref document: KR

Kind code of ref document: A