WO2016051972A1 - 有機半導体膜の製造方法、有機トランジスタ - Google Patents

有機半導体膜の製造方法、有機トランジスタ Download PDF

Info

Publication number
WO2016051972A1
WO2016051972A1 PCT/JP2015/072925 JP2015072925W WO2016051972A1 WO 2016051972 A1 WO2016051972 A1 WO 2016051972A1 JP 2015072925 W JP2015072925 W JP 2015072925W WO 2016051972 A1 WO2016051972 A1 WO 2016051972A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
ink
region
organic semiconductor
lyophilic
Prior art date
Application number
PCT/JP2015/072925
Other languages
English (en)
French (fr)
Inventor
浩史 太田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016551620A priority Critical patent/JP6298896B2/ja
Publication of WO2016051972A1 publication Critical patent/WO2016051972A1/ja
Priority to US15/447,852 priority patent/US9960351B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an organic semiconductor film and an organic transistor.
  • organic thin film transistors are used for liquid crystal displays, organic EL (Electro Luminescence) displays, RFID (Radio Frequency Identifier), and the like.
  • organic TFTs organic thin film transistors
  • organic EL Electro Luminescence
  • RFID Radio Frequency Identifier
  • an organic semiconductor film having a large area can be manufactured at low energy and cost by printing technology using a solution (ink) in which an organic semiconductor is dissolved in an organic solvent at a high concentration. is there.
  • Patent Document 1 discloses an embodiment in which two types of solvents are used. More specifically, in Patent Document 1, an organic semiconductor, a first solvent that is a good solvent for the organic semiconductor, and a second solvent that is a poor solvent for the organic semiconductor and has a higher boiling point than the first solvent. There has been proposed a method for manufacturing an organic semiconductor film using an organic semiconductor solution containing the organic semiconductor solution.
  • an organic semiconductor film is to be applied to various uses (for example, an organic semiconductor film of an organic TFT), it is preferable that the organic semiconductor crystal in the organic semiconductor film is large.
  • the present inventors made an organic semiconductor film by the method described in the literature using the organic semiconductor solution described in Patent Document 1, and the size of the organic semiconductor crystal in the organic semiconductor film was variously used. From the point of application, it was not always satisfactory, and further improvement was necessary.
  • the present inventors have given a solvent for controlling the volatilization rate of the solvent in the ink containing the organic semiconductor to the liquid repellent area of the substrate having the lyophilic area and the liquid repellent area.
  • a solvent for controlling the volatilization rate of the solvent in the ink containing the organic semiconductor to the liquid repellent area of the substrate having the lyophilic area and the liquid repellent area.
  • the manufacturing method of the organic-semiconductor film which can manufacture the organic-semiconductor film containing the organic-semiconductor crystal of a larger crystal size can be provided.
  • the organic transistor containing the organic-semiconductor film manufactured by the said manufacturing method can be provided.
  • FIG. 1B is a top view of the substrate shown in FIG. 1A
  • FIG. 1D is a top view of the substrate shown in FIG. 1C
  • FIG. 1E is a top view of the substrate shown in FIG. 1E
  • FIG. 1H is a top view of the substrate shown in FIG.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • Patent Document 1 the features of the present invention compared to the prior art (Patent Document 1) will be described in detail.
  • One of the features of the present invention is that the organic semiconductor, the first solvent that is a good solvent for the organic semiconductor, and the second solvent that is a poor solvent for the organic semiconductor and has a higher boiling point than the first solvent.
  • a volatile rate controlling solvent composed of the same type of solvent as the first solvent contained in the ink is applied to the lyophilic region of the substrate.
  • the volatilization rate of the solvent is related as one of the factors that the desired crystal size cannot be obtained. That is, when the ink containing the organic semiconductor, the first solvent, and the second solvent is applied to the substrate, the first solvent having a low boiling point is likely to volatilize. When the first solvent volatilizes, the ratio of the second solvent, which is a poor solvent, increases, the organic semiconductor begins to precipitate, and a seed crystal of the organic semiconductor crystal is formed. On the other hand, in the prior art, since the volatilization rate of the first solvent is too high, the organic semiconductor is precipitated in various places, and as a result, a plurality of seed crystals are formed, and the formed organic semiconductor crystal is considered not to grow so much.
  • the present inventors apply the ink to the lyophilic region on the substrate and control the volatilization rate comprising the same type of solvent as the first solvent that is a good solvent contained in the ink in the liquid repellent region.
  • the volatilization rate of the first solvent in the ink is controlled. That is, when a volatilization rate control solvent comprising the same solvent as the first solvent is applied to the liquid repellent region, the applied first solvent volatilizes, and the atmosphere around the ink applied to the lyophilic region is the first.
  • the saturated vapor pressure of the solvent is easily reached, and as a result, the volatilization rate of the first solvent in the ink is decreased. That is, since the first solvent is volatilized slowly from the ink, the number of seed crystals formed is reduced, and as a result, the size of the formed organic semiconductor crystal is increased.
  • One embodiment of a method for producing an organic semiconductor film includes a step A (ink application step) of applying an ink containing a predetermined component to a lyophilic region on a substrate, and a liquid repellent region on the substrate of a volatilization rate control solvent.
  • Step B volatileization rate control solvent application step
  • step C solvent volatilization step in which the solvent in the ink is volatilized to produce an organic semiconductor film is performed.
  • FIG. 1 is a cross-sectional view showing an embodiment of the method for producing an organic semiconductor film of the present invention in the order of steps.
  • materials used in each step and the procedure thereof will be described in detail with reference to the drawings. Below, the process A and the process B are explained in full detail first.
  • Step B the step B of applying the solvent for controlling the volatilization rate to the liquid repellent area on the substrate is performed, and then ink containing a predetermined component is applied to the lyophilic area on the substrate.
  • Step A the volatilization rate control solvent is previously applied onto the substrate, and therefore, the volatilization rate of the first solvent in the ink can be controlled more easily.
  • materials (components in ink) and members used in Step A and Step B will be described in detail, and then the procedure of the steps will be described in detail.
  • organic semiconductor organic semiconductor
  • pentacenes such as 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS pentacene), tetramethylpentacene, perfluoropentacene, TES-ADT, diF-TES-ADT (2,8-difluoro- 5,11-bis (triethylsilylethynyl) anthradithiophene) and the like
  • DPh-BTBT 2,7-diphenyl [1] benzothieno [3,2-b] [1] benzothiophene
  • Cn— Benzthienobenzothiophenes such as BTBT (benzothienobenzothiophene) and dinaphthothieno such as Cn-DNTT (dinaphtho [2,3-b: 2 ′, 3′-f
  • the organic semiconductor SP value (Solubility Parameter) (MPa) 1/2 is, the SP value of the first solvent (MPa) 1/2 and a 2 SP value of the solvent (MPa) 1/2 It is preferable that the predetermined relationship is satisfied.
  • a method for measuring the SP value (MPa) 1/2 of the organic semiconductor a Fedors calculation method (R. F. Fedors, Polymer Engineering Science, 14, p 147-154 (1974)) is used.
  • the first solvent is an organic solvent having a high affinity for the organic semiconductor.
  • High affinity means that the solubility of the organic semiconductor is high and corresponds to a so-called good solvent for the organic semiconductor.
  • the type of the first solvent is not particularly limited, and an optimal organic solvent is appropriately selected according to the type of the organic semiconductor.
  • organic solvent examples include alcohol solvents such as methanol, ethanol, isopropanol, normal-butanol, secondary butanol, normal-hexanol, 1,3-butanediol, 1,2-propanediol, cyclohexanol; acetone, methyl ethyl ketone, Ketone solvents such as methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, cyclopentanone, benzaldehyde; ethyl acetate, butyl acetate, acetic acid-normal-amyl, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, propylene glycol monomethyl Ester solvents such as ether acetate and methoxypropyl acetate; hydrocarbons such as toluene, xylene, benzene, ethyl
  • a preferred embodiment of the first solvent is an organic solvent X that exhibits an SP value of S1 that satisfies the relationship of the following formula (1) when the SP value (MPa) 1/2 of the organic semiconductor is A.
  • Formula (1) A-1.5 ⁇ S1 ⁇ A + 1.5
  • the SP value (S1) (MPa) 1/2 of the organic solvent X is in the range of more than (A-1.5) and less than (A + 1.5) with reference to A which is the SP value of the organic semiconductor. Is preferred.
  • the SP value of the first solvent is within the above range, the affinity for the organic semiconductor is higher and the solubility of the organic semiconductor is higher.
  • the range of SP value (S1) of the organic solvent X satisfy
  • the SP value of TIPS pentacene, which is an organic semiconductor is calculated as 19.4 (MPa) 1/2 . Therefore, as the first solvent suitable for this organic semiconductor, it is preferable to use an organic solvent having an SP value (MPa) 1/2 of more than 17.9 and less than 20.9 with reference to the above formula (1). .
  • Examples of the organic solvent exhibiting an SP value (MPa) 1/2 in the above range include toluene (18.2), tetralin (19.9), chloroform (19.0), chlorobenzene (19.4), o- Examples include dichlorobenzene (20.5) and anisole (19.5).
  • the parenthesized column of the above-mentioned solvent description intends SP value (MPa) 1/2 of each solvent.
  • the SP value of the first solvent is described in Polymer HandBook (Second Edition), Chapter IV, Solubility Parameter Values, and this value is used as the SP value in the present invention.
  • a unit is (MPa) 1/2 and points out the value in 25 degreeC.
  • R.D. F The value calculated by the method described in Fedors, Polymer Engineering Science, 14, p147-154 (1974) is used as the SP value in the present invention.
  • the SP value of the second solvent which will be described later, has the same definition as above.
  • the solubility (mass%) of the organic semiconductor in the first solvent is not particularly limited, but the organic semiconductor crystal formed has a larger size (hereinafter, also simply referred to as “the effect of the present invention is more excellent”). 1.5 mass% or more is preferable and 3.0 mass% or more is more preferable.
  • the upper limit is not particularly limited, but is usually 10% by mass or less, and preferably 5% by mass or less from the viewpoint of handleability.
  • the said solubility (mass%) intends the maximum mass (mass%) of the organic semiconductor which can melt
  • the boiling point of the first solvent is not particularly limited as long as it is smaller than the boiling point of the second solvent described later, but is preferably from 100 to 250 ° C, more preferably from 150 to 210 ° C, from the viewpoint that the effect of the present invention is more excellent.
  • the boiling point (° C.) is intended at 1 atm.
  • the second solvent is an organic solvent having a low affinity for the organic semiconductor.
  • the low affinity means that the solubility of the organic semiconductor is low, and corresponds to a so-called poor solvent for the organic semiconductor.
  • the type of the second solvent is not particularly limited, and an optimal organic solvent is appropriately selected according to the type of the organic semiconductor.
  • an organic solvent the solvent enumerated by the 1st solvent mentioned above is mentioned, for example.
  • an organic solvent Y exhibiting an SP value of S2 satisfying the relationship of the following formula (3) or formula (4) when the SP value (MPa) 1/2 of the organic semiconductor is A: Is mentioned.
  • the SP value of the second solvent is within the above range, better compatibility between the low affinity for the organic semiconductor and the miscibility with the first solvent can be achieved.
  • the range of SP value (S2) of the organic solvent Y satisfy
  • the solubility (mass%) of the organic semiconductor with respect to the second solvent is not particularly limited, 1.0 mass% or less is preferable and 0.1 mass% or less is more preferable in that the effect of the present invention is more excellent.
  • the lower limit is not particularly limited, but is usually usually 0.001% by mass or more, and preferably 0.005% by mass or more from the viewpoint of handleability.
  • the said solubility (mass%) intends the maximum mass (mass%) of the organic semiconductor which can be melt
  • the boiling point of the second solvent is higher than the boiling point of the first solvent.
  • the difference between the boiling point of the second solvent and the boiling point of the first solvent is not particularly limited, but is preferably 2 to 150 ° C. and more preferably 3 to 130 ° C. from the viewpoint that the effect of the present invention is more excellent.
  • the boiling point of the second solvent is not particularly limited as long as it satisfies the predetermined relationship with the boiling point of the first solvent, but is preferably 120 to 300 ° C., more preferably 150 to 290 ° C. in terms of more excellent effects of the present invention. preferable.
  • the boiling point (° C.) is intended at 1 atm.
  • the relationship between the surface tension of the second solvent and the surface tension of the first solvent is not particularly limited, but the surface tension of the second solvent is larger than the surface tension of the first solvent in that the effect of the present invention is more excellent. preferable.
  • a drip meter in accordance with JIS K-3362 is used as a method for measuring the surface tension.
  • the first solvent and the second solvent described above are miscible.
  • mixing is intended to mean that the first solvent and the second solvent are uniformly mixed in any ratio in a normal temperature and normal pressure environment.
  • the absolute value of the difference (MPa) 1/2 between the SP value of the first solvent and the SP value of the second solvent is not particularly limited, but both are more uniformly mixed and the effect of the present invention is more excellent. It is preferably more than 2.5 and less than 10, more preferably 3.0 or more and 5.0 or less.
  • the ink is obtained by dissolving the organic semiconductor in the mixed solvent of the first solvent and the second solvent described above.
  • the method for producing the ink is not particularly limited, and examples thereof include a method in which an organic semiconductor is added to a predetermined amount of a mixed solvent, and stirring and / or ultrasonic treatment is performed as necessary.
  • the content of the organic semiconductor in the ink is not particularly limited, but is preferably from 0.01 to 3.0 parts by mass, preferably from 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the total mass of the ink because the effects of the present invention are more excellent. 2.0 parts by mass is more preferable.
  • the volume ratio of the first solvent and the second solvent in the ink (volume amount of the first solvent / volume amount of the second solvent) is not particularly limited, but is preferably 1 to 99 in terms of more excellent effects of the present invention. 3 to 19 are more preferable.
  • the volatilization rate controlling solvent used in Step B is composed of the same type of solvent as the first solvent in the ink. That is, the same type of solvent as the first solvent used in the ink is used.
  • the volatilization rate control solvent is used to control the volatilization rate of the first solvent in the ink applied to the lyophilic region.
  • the volatilization rate controlling solvent the first solvent in the ink described above is used, and specific examples thereof include the solvents described in the first solvent.
  • the substrate is not particularly limited as long as it has a lyophilic region (parent ink region) and a lyophobic region (ink repellent region) on its surface, and is a known substrate (resin substrate, glass substrate, metal substrate, silicon) Substrate, etc.) can be used.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyethylene (PE), polypropylene (PP), polystyrene, EVA (Ethylene) -vinyl acetate) and other polyolefin resins; polyvinyl chloride, polyvinylidene chloride and other vinyl resins; others, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate (PC), Polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), or the like can be used.
  • the substrate has at least one lyophilic region on its surface and a lyophobic region disposed around the lyophilic region.
  • the lyophilic region is a region where the solution tends to wet and spread
  • the liquid repellent region is a region where the solution is difficult to spread. Therefore, when ink is applied on the substrate, the ink is likely to be repelled in the liquid repellent area, and the ink tends to stay in the lyophilic area.
  • the presence of the lyophilic region and the liquid repellent region on the substrate surface means that there are two regions on the substrate surface having different contact angles with respect to the ink.
  • the absolute value of the difference in contact angle between the lyophilic region and the liquid repellent region with respect to the ink is not particularly limited, but is preferably 20 ° or more, and more preferably 25 ° or more in that the ink tends to stay in one region.
  • the upper limit is not particularly limited, but is often 90 ° or less.
  • the lyophilic region is preferably a region having a contact angle with respect to ink of 15 ° or less, and the lyophobic region is preferably a region having a contact angle with respect to ink of 40 ° or more.
  • the method for producing the lyophilic region and the lyophobic region is not particularly limited, and a known method can be adopted.
  • the lyophilic treatment includes a method of performing light irradiation (UV (ultraviolet) irradiation) on the substrate
  • the liquid repellent treatment include a method of applying a known liquid repellent (water repellent) (for example, hexamethyldisilazane) onto the substrate.
  • a known liquid repellent water repellent
  • the lyophilic process or the lyophobic process may be performed on a part of the substrate surface, and both processes may be performed at a predetermined place.
  • the shape of the lyophilic region on the substrate is not particularly limited, and examples thereof include a quadrangular shape, a rounded rectangular shape, a circular shape, an elliptical shape, and a triangular shape. Moreover, as will be described later, it may have a region where crystals are likely to precipitate.
  • the number of lyophilic regions on the substrate is not particularly limited, and it may be at least one and may be plural. When there are a plurality of lyophilic regions, the size (area) and / or shape of each lyophilic region may be different.
  • step B a volatilization rate control solvent is applied to the liquid repellent region of the substrate. More specifically, as shown in FIG. 1A and FIG. 1B, a substrate 10 having a lyophilic region 12 and a liquid repellent region 14 on the surface is prepared, and the liquid repellent region 14 of the substrate 10 is provided. A solvent 16 for volatilization rate control is applied. Note that FIG. 1A is a cross-sectional view taken along line AA in FIG. As described above, the volatilization rate controlling solvent is the same solvent as the first solvent contained in the ink.
  • the method for applying the solvent for controlling the volatilization rate is not particularly limited, and includes an ink jet method, a spin coat method, a kneader coat method, a bar coat method, a blade coat method, a dip coat method, a curtain coat method, a cast method, a screen transfer method, and the like.
  • a known method can be employed.
  • the inkjet method is preferable at the point which is easy to provide a 1st solvent to a predetermined position.
  • the volume per droplet when the solvent for volatilization rate control is ejected by the ink jet method is not particularly limited, but is preferably 1 to 1000 pL, more preferably 10 to 100 pL, from the viewpoint that the effect of the present invention is more excellent.
  • the well-known apparatus provided with the inkjet head can be used as an inkjet apparatus.
  • FIG. 1 a mode in which the solvent for controlling the volatilization rate is applied to one part of the liquid repellent region is shown, but the present invention is not limited to this mode.
  • a solvent for controlling the volatilization rate may be added.
  • the position at which the solvent for controlling the volatilization rate is applied is not particularly limited as long as it is on the liquid repellent region, but it is preferably applied in the vicinity (periphery) of the lyophilic region.
  • step A ink is applied to the lyophilic region of the substrate. More specifically, as shown in FIGS. 1C and 1D, ink 18 is applied to the lyophilic region 12 of the substrate 10. Note that FIG. 1C is a cross-sectional view taken along the line BB in FIG.
  • the method for applying the ink is not particularly limited, and examples thereof include the methods listed in the method for applying the volatilization rate controlling solvent in the step B, and the ink jet method is preferable.
  • the relationship between the volume of the ink applied to the lyophilic region in step A and the volume of the volatilization rate control solvent applied to the liquid repellent region in step B is not particularly limited, but the effect of the present invention is not limited. From the standpoint of superiority, the volume of the first solvent in the ink applied to the lyophilic region is preferably larger than the volume of the volatilization rate controlling solvent applied to the lyophobic region.
  • Step C is a step of manufacturing an organic semiconductor film by volatilizing the first solvent and the second solvent in the ink applied to the lyophilic region. More specifically, the first solvent and the second solvent are volatilized from the ink 18 as indicated by arrows in FIG. 1E, and the parent solvent is obtained as shown in FIGS. 1G and 1H.
  • An organic semiconductor film 20 is manufactured in the liquid region 12.
  • 1E is a cross-sectional view taken along line CC in FIG. 1F
  • FIG. 1G is a cross-sectional view taken along line DD in FIG. 1H.
  • the method for volatilizing the first solvent and the second solvent in the ink is not particularly limited, and examples thereof include a method of standing at room temperature, a method of standing under heating conditions, and a method of air drying.
  • the temperature condition for volatilizing the first solvent and the second solvent is not particularly limited, and may be at room temperature or under heating. When heating, the temperature is preferably below the boiling point of the first solvent.
  • a volatilization rate control solvent may be applied to a plurality of locations in the liquid repellent region. Specifically, as shown in FIG. 2, ink 18 is applied to the lyophilic region 12 on the substrate 10, and a plurality of locations (6 in FIG. 2) of the lyophobic region 14 are surrounded so as to surround the lyophilic region 12.
  • the solvent 16 for volatilization rate control may be added to the location.
  • the position for applying the volatilization rate control solvent is not particularly limited, but it is preferable to apply the volatilization rate control solvent to the liquid repellent region so as to surround the lyophilic region.
  • the number of places where the solvent for controlling the volatilization rate is applied may be two or more, usually 2 to 10 and more preferably 2 to 8.
  • the amount of application of the volatilization rate control solvent at each application location is not particularly limited, but may be different or the same depending on the application location.
  • the total amount (total volume) of the application amount at each application location satisfies a predetermined relationship with the above-described volume amount of the first solvent in the ink applied to the lyophilic region. That is, the volume of the first solvent in the ink applied to the lyophilic region is preferably larger than the total volume of the volatilization rate control solvent applied to a plurality of locations in the liquid repellent region.
  • the pattern of the lyophilic region and the lyophobic region formed on the substrate is not particularly limited.
  • a plurality of lyophilic regions may be formed, and the plurality of lyophilic regions have a size ( Area) and shape may be different.
  • the application amount, application position, and number of application locations of the volatilization rate controlling solvent applied to the liquid repellent region may be adjusted according to the size (area) and shape of the lyophilic region.
  • Ink 18A and ink 18B are applied to each of the liquid regions 12B. Since the lyophilic area 12B is larger than the lyophilic area 12A, in order to control the volatilization rate of the first solvent in the ink 18B applied to the lyophilic area 12B, a larger amount of the lyophilic area 12B is provided around the lyophilic area 12B. It is desirable to provide a solvent for controlling the volatilization rate. As shown in FIG.
  • the lyophobic area 14 around the lyophilic area 12A is provided with a solvent 16A for volatilization rate control at four locations, and the lyophobic area 14 around the lyophilic area 12B has The volatilization rate controlling solvent 16B having a larger application amount than the volatilization rate controlling solvent 16A is provided at six locations. In this way, by adjusting at least one of the application amount of the volatilization rate control solvent, the application position, and the number of application locations in accordance with the size and shape of the lyophilic area, An organic semiconductor film including a large-sized organic semiconductor crystal can be formed.
  • the shape of the lyophilic region is not particularly limited, and various shapes can be adopted.
  • the lyophilic area is composed of an ink accumulation area and an ink narrowing area (seed crystal precipitation area) narrower than the ink accumulation area, which is connected to the ink accumulation area, in that the effect of the present invention is more excellent. It is preferable to have. More specifically, as shown in FIG. 4, a lyophilic area 120 and a lyophobic area 14 are arranged on the substrate 100, and the lyophilic area 120 has an ink accumulation area 22 and an ink narrowing area 24. .
  • the ink located in the ink confining region has a narrower width than the other regions, so that the contained solvent (first solvent and The second solvent) is likely to volatilize. Therefore, the organic semiconductor material is likely to precipitate in the ink confined region. Once the crystal is precipitated, it functions as a so-called seed crystal, and the organic semiconductor material precipitates around the seed crystal. It is easy to be done.
  • the lyophilic region shown in FIG. 4 is connected to the ink narrowing region including an acute-angled portion at the boundary line with the liquid repellent region, and the ink narrowing region, and is in one direction (connection direction) from the ink narrowing region. It has an ink accumulation area (an ink accumulation area having a rounded rectangular shape) that extends and does not include a sharp corner at the boundary line with the liquid repellent area.
  • the ink accumulation area is an area for accumulating ink consumed for forming the organic semiconductor film. As shown in FIG. 4, it is preferable that the boundary line between the ink accumulation area and the liquid repellent area does not include an acute-angled portion.
  • the boundary line with the liquid repellent area at each corner is preferably formed by an obtuse angle of 130 ° or more or an arc.
  • the ink narrowing area is an area for narrowing the ink supplied to the ink accumulation area, and the seed crystal is likely to precipitate.
  • the ink narrowing area is narrower than the ink accumulation area.
  • the width means the length (width) of each region in a direction orthogonal to the direction in which the ink narrowing region and the ink accumulation region are connected. More specifically, as shown in FIG. 4, it is intended that the width W1 of the ink narrowing area is narrower than the width W2 of the ink accumulation area. As shown in FIG.
  • the width of the ink narrowing area may be changed or constant, but the width (maximum width) of the ink narrowing area may be changed even when the width of the ink narrowing area changes.
  • W1) should be narrower than the width of the ink accumulation area.
  • at least one boundary line between the ink confining area and the liquid repellent area is acute.
  • region reduces continuously toward the front-end
  • the above-described method can be applied.
  • the volatilization rate control solvent may be applied to only one portion of the liquid repellent region, or at a plurality of locations in the liquid repellent region so as to surround the lyophilic region.
  • a solvent for controlling the volatilization rate may be added.
  • volatilization rate controlling solvent 16 it is preferable to apply the volatilization rate controlling solvent 16 to the liquid repellent area 14 on the side facing the ink confining area 24 and the ink accumulation area 22.
  • volatilizing the solvent for controlling the volatilization rate toward the liquid repellent area on the ink accumulation area side volatilization of the solvent (especially the first solvent) from the ink accumulation area can be suppressed. It becomes easy to precipitate a seed crystal in the region, and the effect of the present invention is more excellent.
  • the volatilization rate controlling solvent 16 is applied at three locations, but the present invention is not limited to this mode. Also good.
  • the organic semiconductor film produced by the above procedure contains a large-sized organic semiconductor crystal and can be suitably used for various applications. In particular, it can be suitably used for an organic semiconductor film of an organic transistor.
  • Example A> (Production of substrate A having a lyophilic region and a liquid repellent region) A 200 nm oxide-coated Si wafer was subjected to UV / O 3 treatment to clean the surface and make it lyophilic. Thereafter, the surface was immersed in a 5% by mass octadecyltrimethoxysilane / toluene solution overnight to make the surface liquid repellent.
  • a metal mask having an opening of 600 ⁇ m ⁇ 100 ⁇ m is adsorbed on the liquid repellent surface with a magnet, and UV / O 3 treatment is performed again in this state, so that a lyophilic region corresponding to the metal mask opening and the metal mask A liquid-repellent region corresponding to the portion shielded with was formed.
  • Example 1 An organic semiconductor material (TIPS-PEN), a first solvent (toluene), and a second solvent (DMF) shown in Table 1, which will be described later, were mixed and subjected to ultrasonic treatment for 10 minutes for dissolution to prepare an ink. .
  • the concentration of the organic semiconductor material in the ink is 1.0% by mass, and the mixing volume ratio of the first solvent to the second solvent (volume amount of the first solvent / volume volume of the second solvent) is 9. there were.
  • Separate ink jet heads were filled with the combination of the ink prepared above and the volatilization rate control solvent (toluene) shown in Table 1.
  • the discharge volumes (volumes per droplet) of the ink and the solvent for controlling the volatilization rate were 60 pL and 20 pL, respectively.
  • a solvent for volatilization rate control (10 drops) is deposited at a predetermined position in the liquid repellent region of the substrate A, and immediately after that (before the solvent for volatilization rate control volatilizes), Ink (40 drops) was ejected onto the lyophilic area of the substrate A to fill the lyophilic area with ink.
  • the droplets of the volatilization rate control solvent were deposited at six locations so as to surround the lyophilic region, and 10 droplets of the volatilization rate control solvent were deposited at each location. . Then, by leaving it at room temperature, the first solvent and the second solvent in the ink were evaporated and dried within a few minutes, and an organic semiconductor film was obtained in the lyophilic region.
  • Example 2 An organic semiconductor film was produced according to the same procedure as in Example 1 except that the number of droplets of the solvent for controlling the volatilization rate was changed to 20 droplets.
  • Example 3 Example 1 except that the droplet ejection position of the volatilization rate control solvent was changed to one in the vicinity of the lyophilic region as shown in FIG. 1 (A) and the number of droplets of the volatilization rate control solvent was changed to 60 droplets.
  • An organic semiconductor film was manufactured according to the same procedure as described above.
  • Examples 4, 7, 10, 13, 16, 19, 22> An organic semiconductor film was produced according to the same procedure as in Example 1 except that the types of the organic semiconductor, the first solvent, the second solvent, and the volatilization rate controlling solvent shown in Table 1 were changed.
  • Examples 5, 8, 11, 14, 17, 20, 23> An organic semiconductor film was produced according to the same procedure as in Example 2 except that the types of the organic semiconductor, the first solvent, the second solvent, and the volatilization rate controlling solvent shown in Table 1 were changed.
  • Examples 6, 9, 12, 15, 18, 21, 24> An organic semiconductor film was produced according to the same procedure as in Example 3 except that the types of the organic semiconductor, the first solvent, the second solvent, and the volatilization rate controlling solvent shown in Table 1 were changed.
  • the evaluation criteria are as follows, and are preferably A to C. The results are summarized in Table 1. "A”: Occupancy rate exceeds 80% "B”: Occupancy rate exceeds 65% and 80% or less "C”: Occupancy rate exceeds 50% and 65% or less "D”: Occupancy rate is 50% or less
  • the “SP value” column represents the SP value (MPa) 1/2 of each compound.
  • “A” indicates that the boiling point of the second solvent is higher than the boiling point of the first solvent
  • “B” indicates that the boiling point of the first solvent is equal to or lower than the boiling point of the second solvent.
  • the volume of the solvent of the first solvent in the ink is added to the liquid-repellent region.
  • the volume of the volatilization rate control solvent is the sum of the volume of the volatilization rate control solvent at each location. Intended.
  • Table 1 in the “Volatilization rate control solvent application location” column, as shown in FIG. 2, the cases where the volatilization rate control solvent is applied to a plurality of locations in the liquid-repellent region are indicated as “multiple”, FIG. ), The case where the solvent for volatilization rate control is applied to one place in the liquid repellent region is defined as “one place”.
  • Example B> (Production of substrate B having a lyophilic region and a liquid repellent region) A 200 nm oxide-coated Si wafer was subjected to UV / O 3 treatment to clean the surface and make it lyophilic. Thereafter, the surface was immersed in a 5% by mass octadecyltrimethoxysilane / toluene solution overnight to make the surface liquid repellent. On this liquid repellent surface, a metal mask having an opening of 600 ⁇ m ⁇ 100 ⁇ m and an opening of 300 ⁇ m ⁇ 50 ⁇ m is adsorbed with a magnet, and UV / O 3 treatment is performed again in this state, so that the parent corresponding to the opening portion of the metal mask is obtained. A liquid region X (600 ⁇ m ⁇ 100 ⁇ m) and a lyophilic region Y (300 ⁇ m ⁇ 50 ⁇ m) and a liquid repellent region corresponding to a portion shielded by a metal mask were formed.
  • Example 31 A combination of the ink used in Example 1 and the volatilization rate controlling solvent (toluene) shown in Table 2 was filled in different ink jet heads.
  • the discharge volumes (volumes per droplet) of the ink and the solvent for controlling the volatilization rate were 60 pL and 20 pL, respectively.
  • a solvent for controlling the volatilization rate was ejected onto a predetermined position of the liquid repellent region of the substrate B.
  • the solvent for volatilization rate control was applied to six locations so as to surround the lyophilic region X, and 10 drops of the solvent for volatilization rate control were ejected at each location.
  • the solvent for volatilization rate control was applied to four locations so as to surround the lyophilic region Y, and four drops of the solvent for volatilization rate control were ejected at each location.
  • ink is deposited on the lyophilic area X (28 drops) and lyophilic area Y (7 drops) of the substrate B. Each area was filled with ink. Then, by leaving it at room temperature, the first solvent and the second solvent in the ink were evaporated and dried within a few minutes, and an organic semiconductor film was obtained in the lyophilic region X and lyophilic region Y.
  • Example 32> Similar to the application of the volatilization rate control solvent around the lyophilic region Y, the volatilization rate control solvent is applied to the four locations so as to surround the lyophilic region X, and four drops of the volatilization rate at each location.
  • An organic semiconductor film was produced according to the same procedure as in Example 31 except that the control solvent was ejected.
  • the method for applying the volatilization rate controlling solvent to the periphery of the lyophilic region X and the method for applying the volatilization rate controlling solvent to the periphery of the lyophilic region Y are the same.
  • Example 33 An organic semiconductor film was produced according to the same procedure as in Example 31 except that the types of the organic semiconductor, the first solvent, the second solvent, and the volatilization rate controlling solvent shown in Table 1 were changed.
  • Example 34 An organic semiconductor film was produced according to the same procedure as in Example 32 except that the types of the organic semiconductor, the first solvent, the second solvent, and the volatilization rate controlling solvent shown in Table 1 were changed.
  • the organic semiconductor crystal in the organic semiconductor film deposited in the lyophilic region X is observed with a crossed Nicol microscope, the largest crystal is selected in the lyophilic region X, and the lyophilic region X of the crystal is selected.
  • the occupancy ⁇ (area of crystal / area of lyophilic region X) ⁇ 100 ⁇ was determined.
  • the said occupation rate was calculated
  • the occupancy ratios of the lyophilic region X and the lyophilic region Y were evaluated according to the following criteria. The results are summarized in Table 2.
  • A Occupation rate exceeds 80% in both lyophilic region X and lyophilic region Y
  • B Occupation rate of at least one of lyophilic region X and lyophilic region Y exceeds 65% and is 80% or less
  • C Occupancy ratio of at least one of lyophilic area X and lyophilic area Y is more than 50% and not more than 65%
  • D Occupancy ratio of at least one of lyophilic area X and lyophilic area Y is 50% or less
  • Example C (Production of substrate C having a lyophilic region and a liquid repellent region) A 200 nm oxide-coated Si wafer was subjected to UV / O 3 treatment to clean the surface and make it lyophilic. Thereafter, the surface was immersed in a 5% by mass octadecyltrimethoxysilane / toluene solution overnight to make the surface liquid repellent. On this liquid repellent surface, a metal mask having an opening having the shape of a lyophilic region as shown in FIG. 4 is adsorbed by a magnet, and in this state, UV / O 3 treatment is performed again, so that the metal mask opening is formed.
  • a corresponding lyophilic region and a lyophobic region corresponding to a portion shielded by a metal mask were formed.
  • the size of the ink accumulation region in the opening is 600 ⁇ m ⁇ 100 ⁇ m
  • W2 is 100 ⁇ m
  • the width W1 of the ink confining region is 30 ⁇ m
  • the length (the length in the direction perpendicular to the width W1) is It was 50 ⁇ m.
  • Example 51 A combination of the ink used in Example 1 and the volatilization rate controlling solvent (toluene) shown in Table 3 was filled in different ink jet heads.
  • the discharge volumes (volumes per droplet) of the ink and the solvent for controlling the volatilization rate were 60 pL and 20 pL, respectively.
  • a solvent for controlling the volatilization rate was ejected onto a predetermined position of the liquid repellent region of the substrate C.
  • a solvent for controlling the volatilization rate was applied to three locations in the liquid repellent region on the ink accumulation region side, and 25 droplets of the solvent for controlling the volatility rate were ejected at each location.
  • ink 24 drops is ejected onto the lyophilic area of the substrate C, and the lyophilic area is filled with ink. It was. Then, by leaving it at room temperature, the first solvent and the second solvent in the ink were evaporated and dried within a few minutes, and an organic semiconductor film was obtained in the lyophilic region.
  • the volume of the first solvent in the ink applied to the lyophilic area was smaller than the volume of the volatilization rate controlling solvent applied to the liquid repellent area.
  • Example 52> As shown in FIG. 6, except that the volatilization rate control solvent was applied to 6 locations of the liquid repellent region so as to surround the lyophilic region, and 12 drops of the volatilization rate control solvent were ejected at each location. Produced an organic semiconductor film according to the same procedure as in Example 51.
  • the ink 18 is applied to the lyophilic region 120 of the substrate 100 having the lyophilic region 120 and the lyophobic region 14, and the volatilization rate control solvent 16 is applied so as to surround the lyophilic region 120. Represents.
  • Example 53 An organic semiconductor film was produced according to the same procedure as in Example 51 except that the types of the organic semiconductor, the first solvent, the second solvent, and the volatilization rate controlling solvent shown in Table 1 were changed.
  • Example 54 An organic semiconductor film was produced according to the same procedure as in Example 52 except that the types of the organic semiconductor, the first solvent, the second solvent, and the volatilization rate controlling solvent shown in Table 1 were changed.
  • the evaluation criteria are as follows, and are preferably A to C. The results are summarized in Table 3. "A”: Occupancy rate exceeds 80% "B”: Occupancy rate exceeds 65% and 80% or less "C”: Occupancy rate exceeds 50% and 65% or less "D”: Occupancy rate is 50% or less

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)

Abstract

 本発明は、より大きな結晶サイズの有機半導体結晶を含む有機半導体膜を製造することができる有機半導体膜の製造方法、および、有機トランジスタを提供する。本発明の有機半導体膜の製造方法は、有機半導体と、有機半導体に対する親和性が高い第1溶媒と、第1溶媒より有機半導体に対する親和性が低く、第1溶媒より沸点が高い第2溶媒とを含むインクを、表面に少なくとも1つの親液領域と親液領域の周辺に配置された撥液領域とを有する基板の親液領域に付与する工程、および、親液領域に付与されたインク中の第1溶媒の揮発速度を制御するための、インク中の第1溶媒と同じ種類の溶媒からなる揮発速度制御用溶媒を、基板の撥液領域に付与する工程を順不同に実施して、その後、親液領域に付与されたインク中の第1溶媒および第2溶媒を揮発させて、有機半導体膜を製造する工程を実施する。

Description

有機半導体膜の製造方法、有機トランジスタ
 本発明は、有機半導体膜の製造方法、および、有機トランジスタに関する。
 軽量化、低コスト化、柔軟化が可能であることから、液晶ディスプレイや有機EL(Electro Luminescence)ディスプレイ、RFID(Radio Frequency Identifier)等に、有機薄膜トランジスタ(有機TFT)が利用されている。
 有機薄膜トランジスタの製造においては、有機半導体を有機溶媒等に高濃度に溶解させた溶液(インク)を介する印刷技術により、省エネルギーかつ低コストで大面積の有機半導体膜を製造することができる可能性がある。
 このような有機半導体膜の製造方法としては種々の方法が提案されており、例えば、特許文献1では、2種の溶媒を使用する態様が開示されている。より具体的には、特許文献1では、有機半導体と、有機半導体に対する良溶媒である第1の溶媒と、有機半導体に対する貧溶媒であり第1の溶媒よりも沸点が高い第2の溶媒とを含む有機半導体溶液を用いて、有機半導体膜を製造する方法が提案されている。
特開2011-258824号公報
 一方、有機半導体膜を種々の用途(例えば、有機TFTの有機半導体膜)に適用しようとする場合、有機半導体膜中の有機半導体結晶が大きいことが好ましい。
 本発明者らは、特許文献1に記載の有機半導体溶液を用いて、その文献に記載の方法にて有機半導体膜の作製を行ったところ、有機半導体膜中の有機半導体結晶のサイズは各種用途への応用の点からは必ずしも満足できるものではなく、さらなる改良が必要であった。
 本発明は、上記実情を鑑みて、より大きな結晶サイズの有機半導体結晶を含む有機半導体膜を製造することができる有機半導体膜の製造方法を提供することを目的とする。
 また、本発明は、上記製造方法より製造される有機半導体膜を含む有機トランジスタを提供することも目的とする。
 本発明者らは、上記課題について鋭意検討した結果、親液領域と撥液領域とを有する基板の撥液領域に、有機半導体を含むインク中の溶媒の揮発速度を制御するための溶媒を付与することにより、より大きな結晶サイズの有機半導体結晶を含む有機半導体膜が得られることを見出し、本発明に至った。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
(1) 有機半導体と、有機半導体に対する親和性が高い第1溶媒と、第1溶媒より有機半導体に対する親和性が低く、第1溶媒より沸点が高い第2溶媒とを含むインクを、表面に少なくとも1つの親液領域と親液領域の周辺に配置された撥液領域とを有する基板の親液領域に付与する工程、および、
 親液領域に付与されたインク中の第1溶媒の揮発速度を制御するための、インク中の第1溶媒と同じ種類の溶媒からなる揮発速度制御用溶媒を、基板の撥液領域に付与する工程、を順不同に実施して、
 その後、親液領域に付与されたインク中の第1溶媒および第2溶媒を揮発させて、有機半導体膜を製造する工程を実施する、有機半導体膜の製造方法。
(2) 親液領域に付与されたインク中の第1溶媒の体積量が、撥液領域に付与された揮発速度制御用溶媒の体積量よりも多い、(1)に記載の有機半導体膜の製造方法。
(3) 大きさおよび/または形状が異なる複数の親液領域が基板上に配置され、それぞれの親液領域の周辺の撥液領域に揮発速度制御用溶媒を付与する際、親液領域の大きさおよび/または形状に応じて揮発速度制御用溶媒の付与量、付与位置、および、付与箇所数の少なくとも1つを調整する、(1)または(2)に記載の有機半導体膜の製造方法。
(4) 親液領域を囲むように、撥液領域の複数の箇所に揮発速度制御用溶媒を付与する、(1)~(3)のいずれかに記載の有機半導体膜の製造方法。
(5) 親液領域が、インク蓄積領域、および、インク蓄積領域と連結され、インク蓄積領域よりも幅が狭いインク絞込領域を有する、(1)~(4)のいずれかに記載の有機半導体膜の製造方法。
(6) インク絞込領域の撥液領域との境界線の少なくとも一箇所が鋭角状であり、インク蓄積領域の撥液領域との境界線に鋭角状の箇所が含まれない、(5)に記載の有機半導体膜の製造方法。
(7) インク蓄積領域側の撥液領域に揮発速度制御用溶媒を付与する、(5)または(6)に記載の有機半導体膜の製造方法。
(8) インクの付与、および、揮発速度制御用溶媒の付与が、インクジェット法により実施される、(1)~(7)のいずれかに記載の有機半導体膜の製造方法。
(9) (1)~(8)のいずれかに記載の製造方法より製造される有機半導体膜を含む有機トランジスタ。
 本発明によれば、より大きな結晶サイズの有機半導体結晶を含む有機半導体膜を製造することができる有機半導体膜の製造方法を提供することができる。
 また、本発明によれば、上記製造方法より製造される有機半導体膜を含む有機トランジスタを提供することができる。
有機半導体膜の製造方法の一実施態様を工程順に示す断面図である。なお、図1(B)は図1(A)に示される基板の上面図であり、図1(D)は図1(C)に示される基板の上面図であり、図1(F)は図1(E)に示される基板の上面図であり、図1(H)は図1(G)に示される基板の上面図である。 有機半導体膜の製造方法の変形例1の手順を説明するための図であり、インクおよび揮発速度制御用溶媒が基板上に付与された際の基板の上面図である。 有機半導体膜の製造方法の変形例2の手順を説明するため図であり、インクおよび揮発速度制御用溶媒が基板上に付与された際の基板の上面図である。 有機半導体膜の製造方法の変形例3で使用される親液領域を説明するための基板の上面図である。 有機半導体膜の製造方法の変形例3の手順を説明するための図であり、インクおよび揮発速度制御用溶媒が基板上に付与された際の基板の上面図である。 実施例52で実施される揮発速度制御用溶媒を付与する際の手順を説明するための図であり、インクおよび揮発速度制御用溶媒が基板上に付与された際の基板の上面図である。
 以下に、本発明の有機半導体膜の製造方法(形成方法)について説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 まず、従来技術(特許文献1)と比較した本発明の特徴点を詳述する。本発明の特徴点の一つとしては、有機半導体と、有機半導体に対して良溶媒である第1溶媒と、有機半導体に対して貧溶媒であり、第1溶媒よりも沸点が高い第2溶媒を含むインクを基板の親液領域に付与し、かつ、撥液領域に上記インクに含まれる第1溶媒と同一の種類の溶媒からなる揮発速度制御用溶媒を付与する点が挙げられる。特許文献1において、所望の結晶サイズが得られない要因の一つとして、溶媒の揮発速度が関連していると考えられる。つまり、有機半導体、第1溶媒および第2溶媒を含むインクを基板上に付与すると、沸点の低い第1溶媒が揮発しやすい。第1溶媒が揮発すると貧溶媒である第2溶媒の比率が高まり、有機半導体が析出し始め、有機半導体結晶の種結晶が形成される。一方で、従来技術では、第1溶媒の揮発速度が速すぎるため、有機半導体の析出が各所で生じ、結果として複数の種結晶ができ、形成される有機半導体結晶もあまり成長しないと考えられる。
 そこで、本発明者らは、基板上の親液領域に上記インクを付与すると共に、撥液領域にインク中に含まれる良溶媒である第1溶媒と同一の種類の溶媒からなる揮発速度制御用溶媒を付与することにより、インク中の第1溶媒の揮発速度を制御している。つまり、撥液領域に第1溶媒と同一の溶媒からなる揮発速度制御用溶媒を付与すると、この付与された第1溶媒が揮発して、親液領域に付与されたインク近辺の雰囲気が第1溶媒の飽和蒸気圧に達しやすくなり、結果としてインク中の第1溶媒の揮発速度が低下する。つまり、ゆっくりとインクから第1溶媒が揮発していくため、形成される種結晶の数が減り、結果として形成される有機半導体結晶の大きさが大きくなる。
 以下、本発明の有機半導体膜の製造方法の一実施態様について、添付の図面を参照しながら説明する。
 有機半導体膜の製造方法の一実施態様は、所定の成分を含むインクを基板上の親液領域に付与する工程A(インク付与工程)、および、揮発速度制御用溶媒を基板上の撥液領域に付与する工程B(揮発速度制御用溶媒付与工程)を順不同で実施して、その後、インク中の溶媒を揮発させて有機半導体膜を製造する工程C(溶媒揮発工程)を実施する。
 なお、後述する説明においては、工程Aと工程Bとの順番としては、先に、工程Bを実施して、その後、工程Aを実施する態様について説明するが、この順番に限定されず、先に工程Aを実施して、その後、工程Bを実施してもよいし、工程Aおよび工程Bを同時に実施してもよい。
 図1は、本発明の有機半導体膜の製造方法の一実施態様を工程順に示す断面図である。以下に、図面を参照しながら、各工程で使用される材料およびその手順について詳述する。
 以下では、まず、工程Aおよび工程Bについて詳述する。
<工程A(インク付与工程)および工程B(揮発速度制御用溶媒付与工程)>
 本実施態様においては、上述したように、揮発速度制御用溶媒を基板上の撥液領域に付与する工程Bを実施して、その後、所定の成分を含むインクを基板上の親液領域に付与する工程Aを実施する。この実施態様であれば、先に揮発速度制御用溶媒が基板上に付与されているため、インク中の第1溶媒の揮発速度の制御がより容易となる。
 以下では、まず、工程Aおよび工程Bにて使用される材料(インク中の成分)、部材について詳述し、その後、工程の手順について詳述する。
(有機半導体)
 使用される有機半導体の種類は特に制限されず、公知の有機半導体を使用することができる。具体的には、6,13-ビス(トリイソプロピルシリルエチニル)ペンタセン(TIPSペンタセン)、テトラメチルペンタセン、パーフルオロペンタセン等のペンタセン類、TES-ADT、diF-TES-ADT(2,8-ジフルオロ-5,11-ビス(トリエチルシリルエチニル)アントラジチオフェン)等のアントラジチオフェン類、DPh-BTBT(2,7-ジフェニル[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン)、Cn-BTBT(ベンゾチエノベンゾチオフェン)等のベンゾチエノベンゾチオフェン類、Cn-DNTT(dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene)等のジナフトチエノチオフェン類、ペリキサンテノキサンテン等のジオキサアンタントレン類、ルブレン類、C60、PCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)等のフラーレン類、銅フタロシアニン、フッ素化銅フタロシアニン等のフタロシアニン類、P3RT(ポリ(3-アルキルチオフェン))、PQT(ポリ[5,5'-ビス(3-ドデシル-2-チエニル1)-2,2'-ビチオフェン])、P3HT(ポリ(3-ヘキシルチオフェン))等のポリチオフェン類、ポリ[2,5-ビス(3-ドデシルチオフェン-2-イル)チエノ[3,2-b]チオフェン](PBTTT)等のポリチエノチオフェン類等が例示される。
 なお、後述するように、上記有機半導体のSP値(Solubility Parameter)(MPa)1/2は、第1溶媒のSP値(MPa)1/2および第2溶媒のSP値(MPa)1/2との間で所定の関係を満たしていることが好ましい。
 なお、有機半導体のSP値(MPa)1/2の測定方法としては、Fedorsの計算方法(R.F.Fedors,Polymer Engineering Science,14,p147-154(1974))を用いる。
(第1溶媒および第2溶媒)
 第1溶媒は、上記有機半導体に対する親和性が高い有機溶媒である。親和性が高いとは、有機半導体の溶解度が高いことを意図し、いわゆる有機半導体の良溶媒に該当する。
 第1溶媒の種類は特に制限されず、有機半導体の種類に応じて、適宜最適な有機溶媒が選択される。有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール、ノルマル-ブタノール、セカンダリーブタノール、ノルマル-ヘキサノール、1,3-ブタンジオール、1,2-プロパンジオール、シクロヘキサノール等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、シクロペンタノン、ベンズアルデヒド等のケトン系溶媒;酢酸エチル、酢酸ブチル、酢酸-ノルマル-アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、プロピレングリコールモノメチルエーテルアセテート、メトキシプロピルアセテート等のエステル系溶媒;トルエン、キシレン、ベンゼン、エチルベンゼン、テトラリン、ヘキサデカン等の炭化水素系溶媒;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1-トリクロロエタン、塩化メチレン、モノクロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素系溶媒;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1-メトキシ-2-プロパノール、プロピレングリコールモノメチルエーテル等のエーテル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド、スルホラン等のスルホン酸系溶媒などが挙げられる。
 第1溶媒の好適態様としては、有機半導体のSP値(MPa)1/2をAとした時、以下の式(1)の関係を満たすS1のSP値を示す有機溶媒Xが挙げられる。
 式(1)   A-1.5<S1<A+1.5
 つまり、有機半導体のSP値であるAを基準として、上記有機溶媒XのSP値(S1)(MPa)1/2は(A-1.5)超(A+1.5)未満の範囲にあることが好ましい。第1溶媒のSP値が上記範囲内であれば、有機半導体に対する親和性がより高く、有機半導体の溶解度がより高い。なかでも、有機半導体に対する親和性がより高く、高濃度のインクを調製できる点で、有機溶媒XのSP値(S1)の範囲は、式(2)の関係を満たすことが好ましい。
 式(2)   A-1.0<S1<A+1.0
 例えば、有機半導体であるTIPSペンタセンのSP値は19.4(MPa)1/2と計算される。よって、この有機半導体に好適な第1溶媒としては、上記式(1)を参照して、SP値(MPa)1/2が17.9超20.9未満の有機溶媒を使用することが好ましい。上記範囲のSP値(MPa)1/2を示す有機溶媒としては、例えば、トルエン(18.2)、テトラリン(19.9)、クロロホルム(19.0)、クロロベンゼン(19.4)、o-ジクロロベンゼン(20.5)、アニソール(19.5)などが挙げられる。なお、上記溶媒記載のカッコ欄は、各溶媒のSP値(MPa)1/2を意図する。
 第1溶媒のSP値については、Polymer HandBook(Second Edition)第IV章 Solubility Parameter Valuesに記載があり、その値を本発明におけるSP値とする。また、単位は(MPa)1/2であり、25℃における値を指す。なお、データの記載がないものについては、R.F.Fedors,Polymer Engineering Science,14,p147-154(1974)に記載の方法で計算した値を本発明におけるSP値とする。
 また、後述する第2溶媒のSP値に関しても、上記と同様の定義である。
 第1溶媒に対する有機半導体の溶解度(質量%)は特に制限されないが、形成される有機半導体結晶の大きさがより大きい点(以後、単に「本発明の効果がより優れる点」とも称する)で、1.5質量%以上が好ましく、3.0質量%以上がより好ましい。上限は特に制限されないが、通常、10質量%以下の場合が多く、取扱い性の点から、5質量%以下が好ましい。
 なお、上記溶解度(質量%)は、第1溶媒の質量に対して、25℃にて、均一に溶解できる有機半導体の最大質量(質量%)を意図する。例えば、第1溶媒100gに対して、有機半導体が10gまで均一に溶解できる場合は、溶解度(質量%)は10質量%となる。
 第1溶媒の沸点は、後述する第2溶媒の沸点よりも小さければ特に制限されないが、本発明の効果がより優れる点で、100~250℃が好ましく、150~210℃がより好ましい。
 なお、沸点(℃)は、1気圧下でのものを意図する。
 第2溶媒は、上記有機半導体に対する親和性が低い有機溶媒である。親和性が低いとは、有機半導体の溶解度が低いことを意図し、いわゆる有機半導体の貧溶媒に該当する。
 第2溶媒の種類は特に制限されず、有機半導体の種類に応じて、適宜最適な有機溶媒が選択される。有機溶媒としては、例えば、上述した第1溶媒で列挙した溶媒が挙げられる。
 第2溶媒の好適態様としては、有機半導体のSP値(MPa)1/2をAとした時、以下の式(3)または式(4)の関係を満たすS2のSP値を示す有機溶媒Yが挙げられる。
 式(3)   A-10.0<S2<A-4.0
 式(4)   A+4.0<S2<A+10.0
 つまり、有機半導体のSP値であるAを基準として、上記有機溶媒YのSP値(S2)(MPa)1/2は(A-10.0)超(A-4.0)未満の範囲にあるか、または、(A+4.0)超(A+10.0)未満の範囲にあることが好ましい。第2溶媒のSP値が上記範囲内であれば、有機半導体に対する親和性の低さと、第1溶媒との混和性とのより良好な両立が可能となる。なかでも、本発明の効果がより優れる点で、有機溶媒YのSP値(S2)の範囲は、式(5)または式(6)の関係を満たすことが好ましい。
 式(5)   A-7.5<S2<A-5.0
 式(6)   A+5.0<S2<A+7.5
 第2溶媒に対する有機半導体の溶解度(質量%)は特に制限されないが、本発明の効果がより優れる点で、1.0質量%以下が好ましく、0.1質量%以下がより好ましい。下限は特に制限されないが、通常、0.001質量%以上の場合が多く、取扱い性の点から、0.005質量%以上が好ましい。
 なお、上記溶解度(質量%)は、第2溶媒100gに対して、25℃にて、均一に溶解できる有機半導体の最大質量(質量%)を意図する。例えば、第2溶媒100gに対して、有機半導体が1gまで均一に溶解できる場合は、溶解度(質量%)は1質量%となる。
 第2溶媒の沸点は、第1溶媒の沸点より高い。第2溶媒の沸点と第1溶媒の沸点との差は特に制限されないが、本発明の効果がより優れる点で、2~150℃が好ましく、3~130℃がより好ましい。
 第2溶媒の沸点は、上記第1溶媒の沸点と所定の関係を満たしていれば特に制限されないが、本発明の効果がより優れる点で、120~300℃が好ましく、150~290℃がより好ましい。
 なお、沸点(℃)は、1気圧下でのものを意図する。
 第2溶媒の表面張力と第1溶媒の表面張力との関係は特に制限されないが、本発明の効果がより優れる点で、第2溶媒の表面張力が第1溶媒の表面張力よりも大きいことが好ましい。
 なお、表面張力の測定方法は、JIS K-3362に準拠した滴数計を用いる。
 上述した第1溶媒と第2溶媒とは、混和する。混和とは、常温常圧環境下において、いずれに比率においても第1溶媒と第2溶媒とが均一に混合することを意図する。
 第1溶媒のSP値と第2溶媒のSP値との差(MPa)1/2の絶対値は特に制限されないが、両者がより均一に混和して、本発明の効果がより優れる点で、2.5超10未満であることが好ましく、3.0以上5.0以下であることがより好ましい。
(インクの製造方法)
 インクは、上述した、第1溶媒および第2溶媒の混合溶媒に有機半導体を溶解させて得られる。
 インクの製造方法は特に制限されず、例えば、所定量の混合溶媒に有機半導体を添加して、必要に応じて撹拌および/または超音波処理などを施す方法が挙げられる。
 インク中における有機半導体の含有量は特に制限されないが、本発明の効果がより優れる点で、インク全質量100質量部に対して、0.01~3.0質量部が好ましく、0.1~2.0質量部がより好ましい。
 インク中における第1溶媒と第2溶媒との体積比(第1溶媒の体積量/第2溶媒の体積量)は特に制限されないが、本発明の効果がより優れる点で、1~99が好ましく、3~19がより好ましい。
(揮発速度制御用溶媒)
 工程Bで使用される揮発速度制御用溶媒は、インク中の第1溶媒と同じ種類の溶媒からなる。つまり、インク中で使用される第1溶媒と同一の種類の溶媒が使用される。揮発速度制御用溶媒は、上述したように、親液領域に付与されたインク中の第1溶媒の揮発速度を制御するために用いられる。
 揮発速度制御用溶媒としては、上述したインク中の第1溶媒が使用され、その具体例としては、上述した第1溶媒で説明した溶媒が挙げられる。
(基板)
 基板としては、その表面上に親液領域(親インク領域)および撥液領域(撥インク領域)を有していれば特に制限されず、公知の基板(樹脂基板、ガラス基板、金属基板、シリコン基板など)を使用することができる。樹脂基板(プラスチックフィルム、プラスチック板)を構成する材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類;ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、EVA(Ethylene-vinyl acetate)等のポリオレフィン類;ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂;その他、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを使用することができる。
 基板は、その表面に少なくとも1つの親液領域と、親液領域の周辺に配置された撥液領域とを有する。ここで、親液領域とは、溶液が濡れ広がりやすい領域であり、撥液領域とは、溶液が濡れ広がり難い領域である。そのため、インクを基板上に付与した際には、撥液領域ではインクが弾かれやすく、親液領域においてインクが留まりやすい。
 なお、基板表面上に親液領域および撥液領域があるとは、言い換えると、基板表面上にインクに対する接触角の大きさが異なる領域が2つあることを意図する。親液領域と撥液領域とのインクに対する接触角の差の絶対値は特に制限されないが、インクがより一方の領域内に留まりやすい点で、20°以上が好ましく、25°以上がより好ましい。上限は特に制限されないが、90°以下の場合が多い。
 また、親液領域は、インクに対する接触角が15°以下の領域であることが好ましく、撥液領域は、インクに対する接触角が40°以上の領域であることが好ましい。
 なお、上記接触角の測定方法としては、25℃で、親液領域(または、撥液領域)上にインクを滴下して、滴下後1秒時点での接触角を測定する。
 上記親液領域および撥液領域の作製方法は特に制限されず、公知の方法を採用でき、例えば、親液化処理としては基板上に光照射(UV(紫外線)照射)を行う方法が挙げられ、撥液化処理としては公知の撥液剤(撥水剤)(例えば、ヘキサメチルジシラザン)を基板上に付与する方法が挙げられる。
 親液領域と撥液領域とを作製する際には、基板表面の一部に上記親液化処理または上記撥液化処理を実施すればよく、両者の処理を所定の場所に実施してもよい。
 基板上の親液領域の形状は特に制限されず、例えば、四角形状、角丸長方形状、円形状、楕円形状、三角形状などが挙げられる。また、後述するように、結晶が析出しやすい領域を有していてもよい。
 基板上の親液領域の数は特に制限されず、少なくとも1つあればよく、複数あってもよい。複数の親液領域がある場合、それぞれの親液領域の大きさ(面積)および/または形状は異なっていてもよい。
(工程Bの手順)
 工程Bでは、基板の撥液領域に揮発速度制御用溶媒を付与する。より具体的には、図1(A)および図1(B)に示すように、親液領域12および撥液領域14を表面に有する基板10を用意し、その基板10の撥液領域14に揮発速度制御用溶媒16を付与する。なお、図1(A)は、図1(B)中のA-A線で切断した断面図である。
 上述したように、揮発速度制御用溶媒は、インク中に含まれる第1溶媒と同一の溶媒である。
 揮発速度制御用溶媒を付与する方法は特に制限されず、インクジェット法、スピンコート法、ニーダーコート法、バーコート法、ブレードコート法、ディップコート法、カーテンコート法、キャスト法、スクリーン転写法などの公知の方法が採用できる。なかでも、所定の位置に第1溶媒を付与しやすい点で、インクジェット法が好ましい。
 インクジェット法にて揮発速度制御用溶媒を吐出する際の一滴あたりの体積は特に制限されないが、本発明の効果がより優れる点で、1~1000pLが好ましく、10~100pLがより好ましい。
 なお、インクジェット装置としては、インクジェットヘッドを備えた公知の装置を使用することができる。
 図1においては、撥液領域の一か所に揮発速度制御用溶媒を付与する態様を示したが、この態様には限定されず、後述するように撥液領域の複数の箇所(複数箇所)に揮発速度制御用溶媒を付与してもよい。
 また、揮発速度制御用溶媒が付与される位置は撥液領域上であれば特に制限されないが、親液領域の近傍(周辺)に付与されることが好ましい。
(工程Aの手順)
 工程Aでは、基板の親液領域にインクを付与する。より具体的には、図1(C)および図1(D)に示すように、基板10の親液領域12にインク18を付与する。なお、図1(C)は、図1(D)中のB-B線で切断した断面図である。
 インクを付与する方法は特に制限されず、上記工程Bで揮発速度制御用溶媒を付与する方法にて列挙した方法が挙げられ、インクジェット法が好ましい。
 工程Aにて親液領域に付与されたインクの体積量と、工程Bにて撥液領域に付与された揮発速度制御用溶媒の体積量との関係は特に制限されないが、本発明の効果がより優れる点で、親液領域に付与されたインク中の第1溶媒の体積量が、撥液領域に付与された揮発速度制御用溶媒の体積量よりも多いことが好ましい。
<工程C(溶媒揮発工程)>
 工程Cは、親液領域に付与されたインク中の第1溶媒および第2溶媒を揮発させ、有機半導体膜を製造する工程である。より具体的には、図1(E)中の矢印で示すように、インク18から第1溶媒および第2溶媒を揮発させ、図1(G)および図1(H)に示すように、親液領域12に有機半導体膜20を製造する。なお、図1(E)は、図1(F)中のC-C線で切断した断面図であり、図1(G)は、図1(H)中のD-D線で切断した断面図である。
 図1(E)に示すように、インク18から第1溶媒および第2溶媒を揮発させる際には、撥液領域14に付与された揮発速度制御用溶媒である第1溶媒と同一の種類の溶媒も合わせて揮発することにより、インク18周辺の第1溶媒の飽和蒸気圧が影響を受けて、インク18からの第1溶媒の揮発速度が低下し、結果としてサイズの大きい有機半導体結晶が形成される。
 インク中の第1溶媒および第2溶媒を揮発させる方法は特に制限されず、室温下で静置する方法や、加熱条件下で静置する方法や、風乾する方法などが挙げられる。
 上記のように、第1溶媒および第2溶媒を揮発させる際の温度条件は特に制限されず、室温下であっても、加熱下であってもよい。加熱を行う場合は、その温度は第1溶媒の沸点以下が好ましい。
<変形例1>
 図1においては、工程Bにて撥液領域14の1か所に揮発速度制御用溶媒16を付与する態様について詳述したが、その態様には限定されず、親液領域を囲むように、撥液領域の複数の箇所に揮発速度制御用溶媒を付与してもよい。具体的には、図2に示すように、基板10上の親液領域12にインク18を付与すると共に、親液領域12を囲むように、撥液領域14の複数の箇所(図2では6か所)に揮発速度制御用溶媒16を付与してもよい。このように複数の箇所に揮発速度制御用溶媒を付与することにより、インク中の第1溶媒の揮発速度を制御しやすく、本発明の効果がより優れる。
 揮発速度制御用溶媒を付与する位置は特に制限されないが、親液領域を囲むように、撥液領域に揮発速度制御用溶媒を付与することが好ましい。
 揮発速度制御用溶媒の付与箇所数は特に制限されないが、2箇所以上であればよく、通常、2~10箇所が好ましく、2~8箇所がより好ましい。
 揮発速度制御用溶媒の各付与箇所での付与量は特に制限されないが、付与箇所によって異なっていても同一であってもよい。なお、各付与箇所での付与量の合計量(合計体積)が、上述した、親液領域に付与されたインク中の第1溶媒の体積量と所定の関係を満たしていることが好ましい。つまり、親液領域に付与されたインク中の第1溶媒の体積量が、撥液領域の複数の箇所に付与された揮発速度制御用溶媒の合計体積量よりも多いことが好ましい。
<変形例2>
 上述したように、基板上に形成される親液領域および撥液領域のパターンは特に制限されず、例えば、親液領域が複数形成されていてもよく、複数の親液領域はその大きさ(面積)や形状が異なっていてもよい。
 工程Bにおいては、撥液領域に付与される揮発速度制御用溶媒の付与量、付与位置、および、付与箇所数は、親液領域の大きさ(面積)や形状によって調整してもよい。つまり、大きさおよび形状の少なくとも一方が異なる(大きさおよび/または形状が異なる)複数の親液領域と、撥液領域とを有する基板の親液領域の周辺の撥液領域に揮発速度制御用溶媒を付与する際、それぞれの親液領域の大きさおよび/または形状に応じて揮発速度制御用溶媒の付与量、付与位置、および、付与箇所数の少なくとも1つを調整することができる。
 より具体的には、図3においては、基板10の表面に大きさの異なる2つの親液領域12Aおよび親液領域12Bと、撥液領域14とが形成されており、親液領域12Aおよび親液領域12Bのそれぞれにインク18Aおよびインク18Bが付与されている。親液領域12Bは親液領域12Aよりも大きいため、親液領域12Bに付与されたインク18B中の第1溶媒の揮発速度を制御するためには、親液領域12Bの周辺により多くの量の揮発速度制御用溶媒を付与することが望ましい。図3に示すように、親液領域12Aの周辺の撥液領域14には、4か所に揮発速度制御用溶媒16Aが付与されており、親液領域12Bの周辺の撥液領域14には、6か所に揮発速度制御用溶媒16Aよりも付与量が多い揮発速度制御用溶媒16Bが付与されている。このように、親液領域の大きさ・形状に合わせて、揮発速度制御用溶媒の付与量、付与位置、および、付与箇所数の少なくとも1つを調整することにより、各親液領域において、同時にサイズの大きな有機半導体結晶を含む有機半導体膜を形成することができる。
<変形例3>
 上述したように、親液領域の形状は特に制限されず、種々の形状を採用できる。
 なかでも、本発明の効果がより優れる点で、親液領域は、インク蓄積領域、および、インク蓄積領域と連結した、インク蓄積領域よりも幅が狭いインク絞込領域(種結晶析出領域)を有することが好ましい。より具体的には、図4に示すように、基板100上には親液領域120と撥液領域14とが配置され、親液領域120はインク蓄積領域22とインク絞込領域24とを有する。
 上記のような2つの領域を有する親液領域にインクが付与されると、インク絞込領域に位置するインクはその領域の幅が他の領域よりも狭いため、含まれる溶媒(第1溶媒および第2溶媒)が揮発しやすい。そのため、インク絞込領域において、有機半導体材料が析出しやすく、一旦結晶が析出すると、いわゆる種結晶として機能して、その種結晶を中心に有機半導体材料が析出するため、大きな有機半導体結晶が得られやすい。
 図4に示す親液領域は、撥液領域との境界線にて鋭角状の箇所を含むインク絞込領域と、インク絞込領域と連結し、インク絞込領域から一方向(連結方向)に延在し、撥液領域との境界線にて鋭角状の箇所を含まないインク蓄積領域(角丸長方形状のインク蓄積領域)とを有する。
 インク蓄積領域は、有機半導体膜を形成するために消費されるインクを蓄積しておくための領域である。図4に示すように、インク蓄積領域の撥液領域との境界線には鋭角状の箇所が含まれないことが好ましい。また、インク蓄積領域が角丸長方形状である場合、各角部での撥液領域との境界線は、130°以上の鈍角または円弧により形成されることが好ましい。
 インク絞込領域は、インク蓄積領域に供給されたインクを絞り込むための領域であり、種結晶が析出しやすい。インク絞込領域は、インク蓄積領域よりも幅が狭い。なお、幅とは、インク絞込領域とインク蓄積領域とが連結する方向と直交する方向での各領域の長さ(幅)を意図する。より具体的には、図4に示すように、インク絞込領域の幅W1が、インク蓄積領域の幅W2よりも狭いことを意図する。なお、図4に示すように、インク絞込領域の幅は変化していても一定であってもよいが、インク絞込領域の幅が変化する場合でも、インク絞込領域の幅(最大幅W1)が、インク蓄積領域の幅よりも狭ければよい。
 図4に示すように、インク絞込領域の撥液領域との境界線の少なくとも1箇所が鋭角状であることが好ましい。なかでも、インク絞込領域の幅が、その先端(インク蓄積領域がある側と反対側)に向かって連続的に減少して、境界線が鋭角状になっていることが好ましい。このような鋭角状の凸部が含まれることにより、その先端にて種結晶が析出しやすい。
 上記親液領域120を有する基板100上に、インクおよび揮発速度制御用溶媒を付与する際には、上述した方法を適用できる。特に、揮発速度制御用溶媒を付与する際には、撥液領域の1箇所のみに揮発速度制御用溶媒を付与してもよいし、親液領域を囲むように撥液領域の複数の箇所に揮発速度制御用溶媒を付与してもよい。
 なかでも、本発明の効果がより優れる点で、インク蓄積領域側の撥液領域に揮発速度制御用溶媒を付与することが好ましい。より具体的には、図5に示すように、揮発速度制御用溶媒16を、インク蓄積領域22側の撥液領域14に付与する。つまり、インク絞込領域24とインク蓄積領域22を挟んで対向する位置にある側の撥液領域14に、揮発速度制御用溶媒16を付与することが好ましい。このように揮発速度制御用溶媒をインク蓄積領域側の撥液領域に偏って付与することにより、インク蓄積領域からの溶媒(特に、第1溶媒)の揮発を抑制でき、先に、インク絞込領域にて種結晶を析出させやすくなり、本発明の効果がより優れる。
 なお、図5においては、3箇所において揮発速度制御用溶媒16が付与されているが、この態様に限定されず、1箇所であっても、2箇所であっても、4箇所以上であってもよい。
 上記手順により製造した有機半導体膜には、サイズの大きな有機半導体結晶が含まれており、種々の用途に好適に使用することができる。特に、有機トランジスタの有機半導体膜に好適使用することができる。
 以下に実施例を示すが、本発明はこれらに限定されるものではない。
<実施例A>
(親液領域および撥液領域を有する基板Aの作製)
 200nmの酸化膜付きSiウェハにUV/O3処理を行い、表面の清浄化、親液化処理を行った。その後、5質量%のオクタデシルトリメトキシシラン/トルエン溶液に一晩浸漬して表面を撥液化した。この撥液表面上に、600μm×100μmの開口を持つメタルマスクを磁石で吸着させ、その状態で再度UV/O3処理を行うことで、メタルマスク開口部分に対応する親液領域と、メタルマスクで遮蔽された部分に対応する撥液領域を形成した。なお、後述する実施例1~24および比較例1~12で使用するインクの接触角は、親液領域では15°未満であり、撥液領域では50°超であった。
<実施例1>
 後述する表1に示す有機半導体材料(TIPS-PEN)、第1溶媒(トルエン)、および、第2溶媒(DMF)を混合して、超音波処理を10分間行って溶解させ、インクを作製した。なお、インク中のおける有機半導体材料の濃度は1.0質量%であり、第1溶媒と第2溶媒との混合体積比(第1溶媒の体積量/第2溶媒の体積量)は9であった。
 上記で作製したインク、および、表1に示した揮発速度制御用溶媒(トルエン)の組み合わせをそれぞれ別のインクジェットヘッドに充填した。インクおよび揮発速度制御用溶媒それぞれの吐出体積(1滴あたりの体積)は、60pLおよび20pLとした。なお、吐出の順番としては、まず、揮発速度制御用溶媒(10滴)を基板Aの撥液領域の所定の位置に打滴し、直後に(揮発速度制御用溶媒が揮発する前に)、インク(40滴)を基板Aの親液領域に打滴して、親液領域をインクで満たした。なお、上記揮発速度制御用溶媒の打滴は、図2に示すように、親液領域を囲むように、6箇所になされ、各箇所において10滴の揮発速度制御用溶媒の打滴がなされた。その後、室温にて放置することにより、その後数分でインク中の第1溶媒および第2溶媒が蒸発して乾燥し、親液領域に有機半導体膜が得られた。
<実施例2>
 揮発速度制御用溶媒の打滴数を20滴に変更した以外は、実施例1と同様の手順に従って、有機半導体膜を製造した。
<実施例3>
 揮発速度制御用溶媒の打滴位置を図1(A)に示すように親液領域周辺の1箇所にして、揮発速度制御用溶媒の打滴数を60滴に変更した以外は、実施例1と同様の手順に従って、有機半導体膜を製造した。
<実施例4,7,10,13,16,19,22>
 表1に示す、有機半導体、第1溶媒、第2溶媒、および、揮発速度制御用溶媒の種類を変更した以外は、実施例1と同様の手順に従って、有機半導体膜を製造した。
<実施例5,8,11,14,17,20,23>
 表1に示す、有機半導体、第1溶媒、第2溶媒、および、揮発速度制御用溶媒の種類を変更した以外は、実施例2と同様の手順に従って、有機半導体膜を製造した。
<実施例6,9,12,15,18,21,24>
 表1に示す、有機半導体、第1溶媒、第2溶媒、および、揮発速度制御用溶媒の種類を変更した以外は、実施例3と同様の手順に従って、有機半導体膜を製造した。
<比較例1,3,4,6,7,9,10,12>
 表1に示す、有機半導体、第1溶媒、第2溶媒の種類を変更し、揮発速度制御用溶媒の撥液領域の付与を実施しなかった以外は、実施例1と同様の手順に従って、有機半導体膜を製造した。
<比較例2,5,8,11>
 表1に示す、有機半導体、第1溶媒、第2溶媒、および、揮発速度制御用溶媒の種類を変更した以外は、実施例1と同様の手順に従って、有機半導体膜を製造した。
<評価:結晶サイズ(その1)>
 各実施例および比較例にて析出した有機半導体膜中の有機半導体結晶をクロスニコル顕微鏡で観察し、親液領域内で最大の結晶を選び、その結晶の親液領域内における占有率{(結晶の面積/親液領域の面積)×100}として評価した。評価基準は以下の通りであり、A~Cであることが好ましい。結果を表1にまとめ示す。
「A」:占有率が80%超
「B」:占有率が65%超80%以下
「C」:占有率が50%超65%以下
「D」:占有率が50%以下
 表1中、「SP値」欄は、各化合物のSP値(MPa)1/2を表す。
 表1中、「沸点の関係」欄では、第1溶媒の沸点より第2溶媒の沸点が高い場合を「A」、第1溶媒の沸点が第2溶媒の沸点以下の場合を「B」とする。
 表1中、「揮発速度制御用溶媒の体積量<インク中の第1溶媒の体積量」欄では、インク中の第1溶媒の体積量が撥液領域に付与された揮発速度制御用溶媒の体積量よりも多い場合を「A」、インク中の第1溶媒の体積量が撥液領域に付与された揮発速度制御用溶媒の体積量以下の場合を「B」とする。なお、撥液領域の複数の箇所に揮発速度制御用溶媒が付与された場合には、上記揮発速度制御用溶媒の体積量は、それぞれの箇所の揮発速度制御用溶媒の体積量の合計値を意図する。
 表1中、「揮発速度制御用溶媒の付与箇所」欄では、図2に示すように撥液領域の複数の箇所に揮発速度制御用溶媒が付与される場合を「複数」、図1(A)に示すように撥液領域の1箇所に揮発速度制御用溶媒が付与される場合を「1箇所」とする。
 表1中の「化合物」欄の各記号は、以下の通りである。
「TIPS-PEN」:6,13-ビス(トリイソプロピルシリルエチニル)ペンタセン
「TES-ADT」:5,11-ビス(トリエチルシリルエチニル)アントラジチオフェン
「C8-BTBT」:2,7-ジオクチル[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン
「C8-DNTT」:2,9-ジオクチル-ジナフト[2,3-b:2'3’-f]チエノ[3,2-b]チオフェン
「o-DCB」:o-ジクロロベンゼン
「2BE」:2-ブトキシエタノール
「CyH」:シクロヘキサノール
「DMF」:ジメチルホルムアミド
「13BG」:1,3-ブタンジオール
「DMSO」:ジメチルスルホキシド
「12PG」:1,2-プロパンジオール
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明の有機半導体膜の製造方法によれば、より大きな有機半導体結晶を含む有機半導体膜が得られることが確認された。
 なかでも、実施例1と2との比較より、親液領域に付与されたインク中の第1溶媒の体積量が、撥液領域に付与された揮発速度制御用溶媒の体積量よりも多い場合、より優れた効果が得られることが確認された。
 また、実施例1と3との比較より、撥液領域の複数の箇所に揮発速度制御用溶媒を付与する場合、より優れた効果が得られることが確認された。
 一方、比較例に示すように、揮発速度制御用溶媒を使用していない場合や、第1溶媒と第2溶媒との沸点の関係が満たされてない場合は、所望の効果が得られなかった。
<実施例B>
(親液領域および撥液領域を有する基板Bの作製)
 200nmの酸化膜付きSiウェハにUV/O3処理を行い、表面の清浄化、親液化処理を行った。その後、5質量%のオクタデシルトリメトキシシラン/トルエン溶液に一晩浸漬して表面を撥液化した。この撥液表面上に、600μm×100μmの開口および300μm×50μmの開口を持つメタルマスクを磁石で吸着させ、その状態で再度UV/O3処理を行うことで、メタルマスク開口部分に対応する親液領域X(600μm×100μm)および親液領域Y(300μm×50μm)と、メタルマスクで遮蔽された部分に対応する撥液領域を形成した。
<実施例31>
 実施例1で使用したインク、および、表2に示した揮発速度制御用溶媒(トルエン)の組み合わせをそれぞれ別のインクジェットヘッドに充填した。インクおよび揮発速度制御用溶媒それぞれの吐出体積(1滴あたりの体積)は、60pLおよび20pLとした。吐出の順番としては、まず、揮発速度制御用溶媒を基板Bの撥液領域の所定の位置に打滴した。その際、図3に示すように、親液領域Xを囲むように、6箇所に揮発速度制御用溶媒を付与して、各箇所において10滴の揮発速度制御用溶媒の打滴がなされた。また、同時に、親液領域Yを囲むように、4箇所に揮発速度制御用溶媒を付与して、各箇所において4滴の揮発速度制御用溶媒の打滴がなされた。上記揮発速度制御用溶媒が付与された直後に(揮発速度制御用溶媒が揮発する前に)、インクを基板Bの親液領域X(28滴)および親液領域Y(7滴)に打滴して、各領域をインクで満たした。その後、室温にて放置することにより、その後数分でインク中の第1溶媒および第2溶媒が蒸発して乾燥し、親液領域Xおよび親液領域Yに有機半導体膜が得られた。
<実施例32>
 親液領域Yの周辺に揮発速度制御用溶媒を付与するのと同様に、親液領域Xを囲むように、4箇所に揮発速度制御用溶媒を付与して、各箇所において4滴の揮発速度制御用溶媒の打滴をした以外は、実施例31と同様の手順に従って、有機半導体膜を製造した。
 本実施例では、親液領域Xの周辺への揮発速度制御用溶媒の付与の方法と、親液領域Yの周辺への揮発速度制御用溶媒の付与の方法とは同じである。
<実施33,35,37,39,41,43,45>
 表1に示す、有機半導体、第1溶媒、第2溶媒、および、揮発速度制御用溶媒の種類を変更した以外は、実施例31と同様の手順に従って、有機半導体膜を製造した。
<実施34,36,38,40,42,44,46>
 表1に示す、有機半導体、第1溶媒、第2溶媒、および、揮発速度制御用溶媒の種類を変更した以外は、実施例32と同様の手順に従って、有機半導体膜を製造した。
<評価:結晶サイズ(その2)>
 各実施例において、親液領域Xにて析出した有機半導体膜中の有機半導体結晶をクロスニコル顕微鏡でそれぞれ観察し、親液領域X内で最大の結晶を選び、その結晶の親液領域X内における占有率{(結晶の面積/親液領域Xの面積)×100}を求めた。
 また、上記と同様の手順に従って、親液領域Yに対しても、上記占有率を求めた。
 親液領域Xおよび親液領域Yのそれぞれの占有率に関して、以下の基準に従って評価した。結果を表2にまとめ示す。
「A」:親液領域Xおよび親液領域Yの両方において占有率が80%超
「B」:親液領域Xおよび親液領域Yの少なくとも一方の占有率が65%超80%以下
「C」:親液領域Xおよび親液領域Yの少なくとも一方の占有率が50%超65%以下
「D」:親液領域Xおよび親液領域Yの少なくとも一方の占有率が50%以下
 表2中、「パターン形状に応じた付与方法」欄において、親液領域Xおよび親液領域Yに大きさに応じて揮発速度制御用溶媒の付与量および付与箇所数を変更した場合を「A」、親液領域Xおよび親液領域Yのそれぞれの周辺に揮発速度制御用溶媒を同じ付与量および同じ付与箇所数で付与した場合を「B」とする。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、親液領域の大きさに合わせて揮発速度制御用溶媒の付与量および付与箇所を変更した場合、親液領域XおよびYのいずれにおいても、より大きなサイズの有機半導体結晶を含む有機半導体膜が得られた。
<実施例C>
(親液領域および撥液領域を有する基板Cの作製)
 200nmの酸化膜付きSiウェハにUV/O3処理を行い、表面の清浄化、親液化処理を行った。その後、5質量%のオクタデシルトリメトキシシラン/トルエン溶液に一晩浸漬して表面を撥液化した。この撥液表面上に、図4で示すような親液領域の形状を有する開口を持つメタルマスクを磁石で吸着させ、その状態で再度UV/O3処理を行うことで、メタルマスク開口部分に対応する親液領域と、メタルマスクで遮蔽された部分に対応する撥液領域を形成した。なお、上記開口のインク蓄積領域の大きさは600μm×100μmであり、W2が100μmであり、インク絞込領域の幅W1は30μmであり、長さ(幅W1と直交する方向の長さ)は50μmであった。
<実施例51>
 実施例1で使用したインク、および、表3に示した揮発速度制御用溶媒(トルエン)の組み合わせをそれぞれ別のインクジェットヘッドに充填した。インクおよび揮発速度制御用溶媒それぞれの吐出体積(1滴あたりの体積)は、60pLおよび20pLとした。吐出の順番としては、まず、揮発速度制御用溶媒を基板Cの撥液領域の所定の位置に打滴した。その際、図5に示すように、インク蓄積領域側の撥液領域の3箇所に揮発速度制御用溶媒を付与して、各箇所において25滴の揮発速度制御用溶媒の打滴を行った。上記揮発速度制御用溶媒が付与された直後に(揮発速度制御用溶媒が揮発する前に)、インク(24滴)を基板Cの親液領域に打滴して、親液領域をインクで満たした。その後、室温にて放置することにより、その後数分でインク中の第1溶媒および第2溶媒が蒸発して乾燥し、親液領域に有機半導体膜が得られた。
 なお、本実施例においては、親液領域に付与されたインク中の第1溶媒の体積量が、撥液領域に付与された揮発速度制御用溶媒の体積量よりも少なかった。
<実施例52>
 図6に示すように、親液領域を囲むように、撥液領域の6箇所に揮発速度制御用溶媒を付与して、各箇所において12滴の揮発速度制御用溶媒の打滴を行った以外は、実施例51と同様の手順に従って、有機半導体膜を製造した。
 なお、図6においては、親液領域120および撥液領域14を有する基板100の親液領域120にインク18を付与し、親液領域120を囲むように揮発速度制御用溶媒16を付与した態様を表す。
<実施53,55,57,59,61,63,65>
 表1に示す、有機半導体、第1溶媒、第2溶媒、および、揮発速度制御用溶媒の種類を変更した以外は、実施例51と同様の手順に従って、有機半導体膜を製造した。
<実施54,56,58,60,62,64,66>
 表1に示す、有機半導体、第1溶媒、第2溶媒、および、揮発速度制御用溶媒の種類を変更した以外は、実施例52と同様の手順に従って、有機半導体膜を製造した。
<評価:結晶サイズ(その3)>
 各実施例にて析出した有機半導体膜中の有機半導体結晶をクロスニコル顕微鏡で観察し、親液領域内で最大の結晶を選び、その結晶の親液領域内における占有率{(結晶の面積/親液領域の面積)×100}として評価した。評価基準は以下の通りであり、A~Cであることが好ましい。結果を表3にまとめ示す。
「A」:占有率が80%超
「B」:占有率が65%超80%以下
「C」:占有率が50%超65%以下
「D」:占有率が50%以下
 表3中、「付与パターン」欄において、図5に示すように親液領域の一方の領域側の撥液領域にのみ揮発速度制御用溶媒を付与した場合を「A」、図6に示すように親液領域を囲むように揮発速度制御用溶媒を付与した場合を「B」とする。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、インク蓄積領域側に偏って揮発速度制御用溶媒の付与した場合、より大きなサイズの有機半導体結晶を含む有機半導体膜が得られた。
 10,100  基板
 12,12A,12B,120  親液領域
 14  撥液領域
 16,16A,16B  揮発速度制御用溶媒
 18,18A,18B  インク
 20  有機半導体膜
 22  インク蓄積領域
 24  インク絞込領域

Claims (9)

  1.  有機半導体と、前記有機半導体に対する親和性が高い第1溶媒と、前記第1溶媒より前記有機半導体に対する親和性が低く、前記第1溶媒より沸点が高い第2溶媒とを含むインクを、表面に少なくとも1つの親液領域と前記親液領域の周辺に配置された撥液領域とを有する基板の前記親液領域に付与する工程、および、
     前記親液領域に付与された前記インク中の前記第1溶媒の揮発速度を制御するための、前記インク中の前記第1溶媒と同じ種類の溶媒からなる揮発速度制御用溶媒を、前記基板の前記撥液領域に付与する工程、を順不同に実施して、
     その後、前記親液領域に付与された前記インク中の前記第1溶媒および前記第2溶媒を揮発させて、有機半導体膜を製造する工程を実施する、有機半導体膜の製造方法。
  2.  前記親液領域に付与された前記インク中の前記第1溶媒の体積量が、前記撥液領域に付与された前記揮発速度制御用溶媒の体積量よりも多い、請求項1に記載の有機半導体膜の製造方法。
  3.  大きさおよび/または形状が異なる複数の前記親液領域が前記基板上に配置され、それぞれの前記親液領域の周辺の前記撥液領域に前記揮発速度制御用溶媒を付与する際、前記親液領域の大きさおよび/または形状に応じて前記揮発速度制御用溶媒の付与量、付与位置、および、付与箇所数の少なくとも1つを調整する、請求項1または2に記載の有機半導体膜の製造方法。
  4.  前記親液領域を囲むように、前記撥液領域の複数の箇所に前記揮発速度制御用溶媒を付与する、請求項1~3のいずれか1項に記載の有機半導体膜の製造方法。
  5.  前記親液領域が、インク蓄積領域、および、前記インク蓄積領域と連結され、前記インク蓄積領域よりも幅が狭いインク絞込領域を有する、請求項1~4のいずれか1項に記載の有機半導体膜の製造方法。
  6.  前記インク絞込領域の前記撥液領域との境界線の少なくとも一箇所が鋭角状であり、前記インク蓄積領域の前記撥液領域との境界線に鋭角状の箇所が含まれない、請求項5に記載の有機半導体膜の製造方法。
  7.  前記インク蓄積領域側の前記撥液領域に前記揮発速度制御用溶媒を付与する、請求項5または6に記載の有機半導体膜の製造方法。
  8.  前記インクの付与、および、前記揮発速度制御用溶媒の付与が、インクジェット法により実施される、請求項1~7のいずれか1項に記載の有機半導体膜の製造方法。
  9.  請求項1~8のいずれか1項に記載の製造方法より製造される有機半導体膜を含む有機トランジスタ。
PCT/JP2015/072925 2014-09-29 2015-08-13 有機半導体膜の製造方法、有機トランジスタ WO2016051972A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016551620A JP6298896B2 (ja) 2014-09-29 2015-08-13 有機半導体膜の製造方法、有機トランジスタ
US15/447,852 US9960351B2 (en) 2014-09-29 2017-03-02 Method for producing organic semiconductor film and organic transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-199122 2014-09-29
JP2014199122 2014-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/447,852 Continuation US9960351B2 (en) 2014-09-29 2017-03-02 Method for producing organic semiconductor film and organic transistor

Publications (1)

Publication Number Publication Date
WO2016051972A1 true WO2016051972A1 (ja) 2016-04-07

Family

ID=55630018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072925 WO2016051972A1 (ja) 2014-09-29 2015-08-13 有機半導体膜の製造方法、有機トランジスタ

Country Status (4)

Country Link
US (1) US9960351B2 (ja)
JP (1) JP6298896B2 (ja)
TW (1) TWI671926B (ja)
WO (1) WO2016051972A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183179A (zh) * 2017-12-29 2018-06-19 深圳市华星光电技术有限公司 一种oled功能层喷墨打印制备方法及其掩膜板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201815998A (zh) * 2016-06-28 2018-05-01 德商麥克專利有限公司 有機功能材料之調配物
CN108400259B (zh) * 2018-03-20 2020-05-01 京东方科技集团股份有限公司 Oled器件的制备方法及显示面板的制备方法
CN110265549B (zh) * 2019-06-19 2023-01-06 苏州大学 一种少层有机晶态膜的制备方法及有机场效应晶体管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532096A (ja) * 2001-02-27 2004-10-21 ケンブリッジ ディスプレイ テクノロジー リミテッド 基板に材料を蒸着する方法
JP2006013492A (ja) * 2004-06-24 2006-01-12 Palo Alto Research Center Inc 半導層および絶縁層を形成するために混合溶液を使ってボトムゲート型薄膜トランジスタを形成する改良された方法
JP2012044111A (ja) * 2010-08-23 2012-03-01 Sony Corp 有機薄膜の形成方法および形成装置、ならびに有機デバイスの製造方法
JP2012049291A (ja) * 2010-08-26 2012-03-08 National Institute Of Advanced Industrial & Technology 単結晶性有機半導体薄膜の製造方法
JP2013211384A (ja) * 2012-03-30 2013-10-10 Dainippon Printing Co Ltd 有機半導体層の形成方法および形成装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100578744C (zh) * 2005-06-24 2010-01-06 柯尼卡美能达控股株式会社 有机半导体膜的形成方法、有机半导体膜及有机薄膜晶体管
JP4996846B2 (ja) * 2005-11-22 2012-08-08 株式会社日立製作所 電界効果トランジスタ及びその製造方法
JP5062252B2 (ja) * 2007-04-20 2012-10-31 コニカミノルタホールディングス株式会社 有機薄膜トランジスタの製造方法
US8680296B2 (en) * 2009-09-11 2014-03-25 Ricoh Company, Ltd. Leaving substituent-containing compound, products produced using the same, and methods for producing the products
KR101642786B1 (ko) * 2009-11-26 2016-07-26 제이에스알 가부시끼가이샤 유기 반도체 배향용 조성물, 유기 반도체 배향막, 유기 반도체 소자 및 그 제조 방법
JP2011258824A (ja) 2010-06-10 2011-12-22 Fuji Xerox Co Ltd 有機結晶構造物、有機トランジスタ、及び有機結晶構造物の製造方法
US20130095605A1 (en) * 2010-06-15 2013-04-18 Ricoh Company, Ltd. Leaving substituent-containing compound, organic semiconductor material formed therefrom, organic electronic device, organic thin-film transistor and display device using the organic semiconductor material, method for producing film-like product, pi-electron conjugated compound and method for producing the pi electron conjugated compound
JP5737505B2 (ja) * 2011-03-31 2015-06-17 大日本印刷株式会社 有機半導体素子の製造方法
JP5757142B2 (ja) * 2011-04-11 2015-07-29 大日本印刷株式会社 有機半導体素子の製造方法
JP2013098487A (ja) * 2011-11-04 2013-05-20 Sony Corp 有機半導体素子の製造方法、有機半導体素子および電子機器
CN103066216A (zh) * 2012-12-27 2013-04-24 青岛艾德森能源科技有限公司 一种有机半导体薄膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532096A (ja) * 2001-02-27 2004-10-21 ケンブリッジ ディスプレイ テクノロジー リミテッド 基板に材料を蒸着する方法
JP2006013492A (ja) * 2004-06-24 2006-01-12 Palo Alto Research Center Inc 半導層および絶縁層を形成するために混合溶液を使ってボトムゲート型薄膜トランジスタを形成する改良された方法
JP2012044111A (ja) * 2010-08-23 2012-03-01 Sony Corp 有機薄膜の形成方法および形成装置、ならびに有機デバイスの製造方法
JP2012049291A (ja) * 2010-08-26 2012-03-08 National Institute Of Advanced Industrial & Technology 単結晶性有機半導体薄膜の製造方法
JP2013211384A (ja) * 2012-03-30 2013-10-10 Dainippon Printing Co Ltd 有機半導体層の形成方法および形成装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183179A (zh) * 2017-12-29 2018-06-19 深圳市华星光电技术有限公司 一种oled功能层喷墨打印制备方法及其掩膜板
CN108183179B (zh) * 2017-12-29 2019-08-20 深圳市华星光电技术有限公司 一种oled功能层喷墨打印制备方法及其掩膜板

Also Published As

Publication number Publication date
TW201624783A (zh) 2016-07-01
US9960351B2 (en) 2018-05-01
JPWO2016051972A1 (ja) 2017-06-15
TWI671926B (zh) 2019-09-11
US20170179388A1 (en) 2017-06-22
JP6298896B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6298896B2 (ja) 有機半導体膜の製造方法、有機トランジスタ
Jiang et al. Fabrication of transparent multilayer circuits by inkjet printing
JP6317032B2 (ja) 有機半導体膜の製造方法、有機トランジスタ
Diao et al. Morphology control strategies for solution-processed organic semiconductor thin films
Kwak et al. Self‐organization of inkjet‐printed organic semiconductor films prepared in inkjet‐etched microwells
JP5360737B2 (ja) 有機トランジスタの製造方法および有機トランジスタ
JP5154831B2 (ja) 表示装置
JP6148634B2 (ja) 有機半導体結晶の製造方法
JP2015029019A (ja) 有機半導体層形成用溶液、有機半導体層および有機薄膜トランジスタ
Singh et al. Inverted polymer bulk heterojunction solar cells with ink-jet printed electron transport and active layers
JP5868757B2 (ja) 薄膜トランジスタとその製造方法及び表示装置
US10549311B2 (en) Manufacturing device of organic semiconductor film
KR101616190B1 (ko) 도펀트의 선택적 인쇄에 따른 트랜지스터 제조방법
JP2016115728A (ja) 有機トランジスタの製造方法、有機トランジスタ
US20120121800A1 (en) Method of modifying surface of substrate for inkjet printing
KR101402831B1 (ko) 유기재료 패턴 형성 장치 및 이를 이용한 유기재료 패턴 형성 방법
TW201330343A (zh) 製造有機半導體元件之方法、半導體元件及電子裝置
JP3900125B2 (ja) 有機エレクトロルミネッセンス装置の製造方法
EP2244302A1 (en) Method for forming film for organic semiconductor layer and method for manufacturing organic thin film transistor
JP2008277728A (ja) 有機半導体素子およびその製造方法、有機トランジスタアレイ、およびディスプレイ
CN102906878B (zh) 用于制造由不同材料制成的两毗邻区域的方法
JP2010219447A (ja) 有機トランジスタ用インク、有機トランジスタの電極及びその形成方法並びに有機トランジスタ
JP2005251809A (ja) 薄膜トランジスタの製造方法、薄膜トランジスタ、薄膜トランジスタ回路、電子デバイスおよび電子機器
JP5103982B2 (ja) 有機半導体素子の製造方法
US20170104044A1 (en) Substrate, display device having the same, and fabricating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847125

Country of ref document: EP

Kind code of ref document: A1